Latest 25 from a total of 6,434 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00039548 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00039548 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00039548 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00039548 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00009134 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00009134 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00009134 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00023728 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00009131 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00009134 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00009134 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00001262 | ||||
| Deposit | 23877093 | 8 days ago | IN | 0 ETH | 0.00001262 | ||||
| Deposit | 23876860 | 8 days ago | IN | 0 ETH | 0.0000407 | ||||
| Accept Ownership | 23876849 | 8 days ago | IN | 0 ETH | 0.00004534 | ||||
| Deposit | 23876828 | 8 days ago | IN | 0 ETH | 0.00002649 | ||||
| Deposit | 23876828 | 8 days ago | IN | 0 ETH | 0.00002894 | ||||
| Deposit | 23876827 | 8 days ago | IN | 0 ETH | 0.00010747 | ||||
| Accept Ownership | 23876824 | 8 days ago | IN | 0 ETH | 0.00004265 | ||||
| Deposit | 23876823 | 8 days ago | IN | 0 ETH | 0.0001084 | ||||
| Deposit | 23876823 | 8 days ago | IN | 0 ETH | 0.00002967 | ||||
| Deposit | 23876823 | 8 days ago | IN | 0 ETH | 0.00002968 | ||||
| Deposit | 23876823 | 8 days ago | IN | 0 ETH | 0.00002968 | ||||
| Deposit | 23876823 | 8 days ago | IN | 0 ETH | 0.00002968 | ||||
| Deposit | 23876817 | 8 days ago | IN | 0 ETH | 0.00003642 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
MegaUSDmPreDeposit
Compiler Version
v0.8.30+commit.73712a01
Optimization Enabled:
No with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.30;
import "@openzeppelin/contracts/access/Ownable2Step.sol";
import "@openzeppelin/contracts/utils/Pausable.sol";
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {PurchasePermit, PurchasePermitLib} from "./permits/PurchasePermit.sol";
import {IMegaSale} from "../interfaces/ITokenSale.sol";
/// @title MegaUSDmPreDeposit
/// @notice A secure pre-deposit vault for managing USDC deposits on Ethereum mainnet as part of the MegaETH ecosystem onboarding process
/// @dev This contract handles the initial phase of user fund collection with eligibility verification
///
/// Key Features:
/// - Eligibility verification: users can participate with valid purchase permits
/// - Entity-based access control: each entityID can only bind to one wallet address
/// - Accepts USDC deposits with enforced caps and time limits
/// - Prevents wallet/entityID double-binding for enhanced security
/// - Admin controls for configuration management
/// - Supports efficient bulk user data retrieval for off-chain processing
///
/// Workflow:
/// - Users obtain purchase permits from Sonar with valid KYC
/// - Each entityID is permanently bound to the first wallet used for deposit
/// - Collected funds are securely held in custody and bridged to MegaETH until MegaETH mainnet launch
/// - Deposited amounts are tracked for future cross-chain distribution as USDm
///
contract MegaUSDmPreDeposit is Ownable2Step, Pausable, ReentrancyGuard {
using EnumerableSet for EnumerableSet.Bytes32Set;
using SafeERC20 for IERC20;
// ============ Errors ============
error InvalidUSDCAddress();
error InvalidTokenAddress();
error InvalidAmount();
error InsufficientBalance(uint256 amount, uint256 balance);
error DepositEnded();
error CapReached();
error ZeroCap();
error CapBelowCurrentDeposits();
error InvalidSaleUUID(bytes16 got, bytes16 want);
error InvalidSender(address got, address want);
error UnauthorizedSigner(address signer);
error PurchasePermitExpired();
error USUserNotAllowed();
error UserNotEligible();
error InvalidTreasuryAddress();
error NotStarted();
error InvalidStartTime();
error InvalidEndTime();
error ZeroDuration();
error ZeroEntityID();
error EntityIDAlreadyBound(bytes16 entityID, address existingUser);
error WalletAlreadyBound(address wallet, bytes16 existingEntityID);
// ============ Structs ============
struct UserView {
bytes16 entityID; // Entity ID
address user; // Wallet address
uint256 amount; // Deposit amount
uint256 index; // Index in the collection
}
// User entity
struct UserEntity {
address user; // Bound wallet address
uint256 deposits; // Total deposit amount of this entity
}
// ============ Enums ============
/// @notice Possible states of the deposit vault
enum Status {
NOT_STARTED, // Current time < startTime
ACTIVE, // startTime <= current time <= endTime AND not paused
PAUSED, // Admin has paused deposits (regardless of time)
CAP_REACHED, // Contract total deposits exceeds cap
ENDED // Current time > endTime
}
// ============ Events ============
event Deposited(
bytes16 indexed entityID,
address indexed user,
uint256 wantAmount,
uint256 actualAmount,
uint256 userTotalAmount,
uint256 contractTotalAmount
);
event CapUpdated(uint256 oldCap, uint256 newCap);
event FundsWithdrawn(address indexed token, address indexed treasury, uint256 amount);
event TreasuryUpdated(address oldTreasury, address newTreasury);
event PauseStatusUpdated(bool paused);
event SaleUUIDUpdated(bytes16 oldSaleUUID, bytes16 newSaleUUID);
event PermitSignerUpdated(address oldSigner, address newSigner);
event StartTimeUpdated(uint48 oldStartTime, uint48 newStartTime);
event EndTimeUpdated(uint48 oldEndTime, uint48 newEndTime);
// ============ Constants ============
uint256 private constant DEFAULT_CAP = 250_000_000 * 10 ** 6; // 250 million USDC
// ============ Storage ============
IERC20 public immutable usdc;
uint256 public cap;
bytes16 public saleUUID; // Token sale uuid
address public permitSigner; // Token sale permit signer
address public treasury;
// Total amount deposited
uint256 public totalDeposited;
uint48 public startTime;
uint48 public endTime;
// User entity tracking
EnumerableSet.Bytes32Set private _entityIDs;
mapping(bytes16 => UserEntity) public userEntities; // entityID -> user entity information
mapping(address => bytes16) public walletToEntityID; // wallet -> entityID (reverse mapping)
// ============ Modifiers ============
/// @dev Modifier to check if deposits are currently active
/// @dev Ensures current time is within startTime and endTime bounds
/// @custom:reverts NotStarted If called before startTime
/// @custom:reverts DepositEnded If called after endTime
modifier whenActive() {
if (block.timestamp > endTime) {
revert DepositEnded();
}
if (block.timestamp >= startTime) {
_;
} else {
revert NotStarted();
}
}
// ============ Constructor ============
/// @notice The initialization parameters for the MegaUSDmPreDeposit
/// @param safeOwner Owner of the contract (Safe Gnosis account)
/// @param usdc USDC token address
/// @param permitSigner Signer of purchase permits
/// @param treasury Treasury address for fund withdrawals
/// @param saleUUID The Sonar UUID identifying the token sale
struct Init {
address safeOwner;
address usdc;
address permitSigner;
address treasury;
bytes16 saleUUID;
}
/// @dev Initializes the MegaUSDmPreDeposit with the provided configuration
constructor(Init memory init) Ownable(init.safeOwner) {
if (init.usdc == address(0)) {
revert InvalidUSDCAddress();
}
if (init.treasury == address(0)) {
revert InvalidTreasuryAddress();
}
usdc = IERC20(init.usdc);
permitSigner = init.permitSigner;
saleUUID = init.saleUUID;
cap = DEFAULT_CAP;
treasury = init.treasury;
// Initialize with deposit period inactive
startTime = type(uint48).max;
endTime = 0;
}
// ============ External Functions ============
/// @notice Deposit USDC tokens into the vault with eligibility verification
/// @dev Validates purchase permit, checks deposit limits, and transfers USDC
/// @param amount Amount of USDC to deposit (6 decimals)
/// @param permit Purchase permit with allocation data from Sonar
/// @param permitSignature ECDSA signature of the permit by the authorized signer
/// @custom:reverts InvalidAmount If amount is zero or actual deposit becomes zero
/// @custom:reverts CapReached If total deposits have reached the cap
/// @custom:reverts Various permit validation errors
function deposit(uint256 amount, PurchasePermit calldata permit, bytes calldata permitSignature)
external
nonReentrant
whenNotPaused
whenActive
{
if (amount == 0) {
revert InvalidAmount();
}
uint256 _totalDeposited = totalDeposited;
uint256 _cap = cap;
if (_totalDeposited >= _cap) {
revert CapReached();
}
_validatePurchasePermit(permit, permitSignature);
if (permit.wallet != msg.sender) {
revert InvalidSender(msg.sender, permit.wallet);
}
// Calculate actual amount to deposit (prevent exceeding cap)
uint256 remainingCap = _cap - _totalDeposited;
uint256 actualAmount = amount > remainingCap ? remainingCap : amount;
bytes16 entityID = permit.entityID;
UserEntity storage userEntity = userEntities[entityID];
// Check 1: Whether entityID is already bound to another wallet
if (userEntity.user != address(0) && userEntity.user != msg.sender) {
revert EntityIDAlreadyBound(entityID, userEntity.user);
}
// Check 2: Whether wallet is already bound to another entityID
bytes16 existingEntityID = walletToEntityID[msg.sender];
if (existingEntityID != bytes16(0) && existingEntityID != entityID) {
revert WalletAlreadyBound(msg.sender, existingEntityID);
}
// If it's a new entityID, initialize user entity
if (userEntity.user == address(0)) {
userEntity.user = msg.sender;
walletToEntityID[msg.sender] = entityID;
_entityIDs.add(bytes32(entityID));
}
// Update deposit amount
userEntity.deposits = userEntity.deposits + actualAmount;
totalDeposited = _totalDeposited + actualAmount;
if (actualAmount == 0) {
revert InvalidAmount();
}
// Transfer USDC from user
require(actualAmount > 0, "Zero actual amount");
usdc.safeTransferFrom(msg.sender, address(this), actualAmount);
emit Deposited(entityID, msg.sender, amount, actualAmount, userEntity.deposits, totalDeposited);
}
// ============ View Functions ============
/// @notice Get user entity information
/// @param entityID User entity ID
/// @return userEntity User entity information
function getUserEntity(bytes16 entityID) external view returns (UserEntity memory) {
return userEntities[entityID];
}
/// @notice Get user entity information by wallet address
/// @param user Wallet address
/// @return userEntity User entity information
function getUserEntity(address user) external view returns (UserEntity memory) {
bytes16 entityID = walletToEntityID[user];
if (entityID == bytes16(0)) {
return UserEntity(address(0), 0);
}
return userEntities[entityID];
}
/// @notice Get user deposit amount by entityID
/// @param entityID User entity ID
/// @return depositAmount Deposit amount
function getUserDeposit(bytes16 entityID) external view returns (uint256) {
return userEntities[entityID].deposits;
}
/// @notice Get user deposit amount by wallet address
/// @param user Wallet address
/// @return depositAmount Deposit amount
function getUserDeposit(address user) external view returns (uint256) {
bytes16 entityID = walletToEntityID[user];
if (entityID == bytes16(0)) {
return 0;
}
return userEntities[entityID].deposits;
}
/// @dev Get total number of users
/// @return Total number of unique users
function getUserCount() external view returns (uint256) {
return _entityIDs.length();
}
/// @dev Get all users with their amounts and indices using struct array
/// @param startIndex Starting index
/// @param count Number of users to return
/// @return users Array of UserView structs
function getUsers(uint256 startIndex, uint256 count) external view returns (UserView[] memory users) {
uint256 totalEntities = _entityIDs.length();
if (startIndex >= totalEntities) {
return new UserView[](0);
}
uint256 endIndex = startIndex + count;
if (endIndex > totalEntities) {
endIndex = totalEntities;
}
uint256 resultCount = endIndex - startIndex;
users = new UserView[](resultCount);
for (uint256 i = startIndex; i < endIndex; i++) {
bytes16 entityID = bytes16(_entityIDs.at(i));
UserEntity memory userEntity = userEntities[entityID];
users[i - startIndex] =
UserView({entityID: entityID, user: userEntity.user, amount: userEntity.deposits, index: i});
}
}
/// @dev Check if deposit is active
function isDepositActive() external view returns (bool) {
return block.timestamp >= startTime && block.timestamp <= endTime && !paused();
}
/// @dev Get time until start
/// @return seconds until start, 0 if already started
function getTimeUntilStart() external view returns (uint48) {
if (block.timestamp >= startTime) return 0;
return startTime - uint48(block.timestamp);
}
/// @dev Get time until end
/// @return seconds until end, 0 if already ended
function getTimeUntilEnd() external view returns (uint48) {
if (block.timestamp >= endTime) return 0;
return endTime - uint48(block.timestamp);
}
/// @dev Get current deposit status
/// @return status The current status of the deposit vault
function getDepositStatus() external view returns (Status) {
if (block.timestamp < startTime) {
return Status.NOT_STARTED;
} else if (paused()) {
return Status.PAUSED;
} else if (totalDeposited >= cap) {
return Status.CAP_REACHED;
} else if (uint48(block.timestamp) > endTime) {
return Status.ENDED;
} else {
return Status.ACTIVE;
}
}
/// @notice Verify if a purchase permit and signature are valid
/// @dev This function allows external callers to check permit validity without making a deposit
/// @param permit Purchase permit with allocation data from Sonar
/// @param permitSignature ECDSA signature of the permit by the authorized signer
/// @return True if the permit is valid, false otherwise
function verifyPurchasePermit(PurchasePermit calldata permit, bytes calldata permitSignature)
external
view
returns (bool)
{
// 1. Basic validation
if (permit.entityID == bytes16(0)) {
return false;
}
if (permit.saleUUID != saleUUID) {
return false;
}
if (permit.expiresAt <= block.timestamp) {
return false;
}
// 2. Signature verification
if (permitSignature.length != 65) {
return false;
}
bytes32 messageHash = PurchasePermitLib.digest(permit);
// Create memory copy of signature to avoid calldata direct access
bytes memory signatureMem = permitSignature;
bytes32 r;
bytes32 s;
uint8 v;
assembly {
r := mload(add(signatureMem, 32))
s := mload(add(signatureMem, 64))
v := byte(0, mload(add(signatureMem, 96)))
}
// Adjust v value
if (v < 27) {
v += 27;
}
// Check that the s value is in the lower half order to prevent signature malleability
// This is required by EIP-2 and implemented in OpenZeppelin's ECDSA library
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return false;
}
// Validate v value validity
if (v != 27 && v != 28) {
return false;
}
// Use ecrecover (does not revert)
address recoveredSigner = ecrecover(messageHash, v, r, s);
// Check if ecrecover was successful
if (recoveredSigner == address(0)) {
return false;
}
if (permitSigner != recoveredSigner) {
return false;
}
// 3. Payload validation
if (permit.payload.length == 0) {
return false;
}
// Create memory copy of payload to avoid calldata direct access
bytes memory payloadMem = permit.payload;
// Manually check payload structure
// PurchasePermitPayload structure is {bool isEligible, bool forcedLockup, uint64 maxPrice}
// Total size should be 32 * 3 = 96 bytes (including padding)
if (payloadMem.length != 96) {
return false;
}
// Manually decode payload from memory
bool isEligible;
bool forcedLockup;
assembly {
// Read first bool (isEligible) - occupies 32 bytes, but only last byte is valid
let temp := mload(add(payloadMem, 32))
isEligible := and(temp, 0xff)
// Read second bool (forcedLockup) - next 32 bytes
temp := mload(add(payloadMem, 64))
forcedLockup := and(temp, 0xff)
}
// 4. Final eligibility check
if (forcedLockup || !isEligible) {
return false;
}
return true;
}
// ============ Admin Functions ============
/// @dev Set the start time and active duration for deposits
/// @param newStartTime The timestamp when deposits can start
/// @param activeDuration The duration in seconds that deposits will be active
function setStartTime(uint48 newStartTime, uint48 activeDuration) external onlyOwner {
if (newStartTime < uint48(block.timestamp)) {
revert InvalidStartTime();
}
if (activeDuration == 0) {
revert ZeroDuration();
}
uint48 newEndTime = newStartTime + activeDuration;
emit StartTimeUpdated(startTime, newStartTime);
emit EndTimeUpdated(endTime, newEndTime);
startTime = newStartTime;
endTime = newEndTime;
}
/// @dev Set the end time for deposits
/// @param newEndTime The timestamp when deposits will end
function setEndTime(uint48 newEndTime) external onlyOwner {
if (newEndTime <= uint48(block.timestamp)) {
revert InvalidEndTime();
}
if (startTime != type(uint48).max && newEndTime <= startTime) {
revert InvalidEndTime();
}
emit EndTimeUpdated(endTime, newEndTime);
endTime = newEndTime;
}
/// @dev Set pause status for deposits
/// @param pause True to pause, false to unpause
function setPause(bool pause) external onlyOwner {
if (pause) {
_pause();
} else {
_unpause();
}
emit PauseStatusUpdated(pause);
}
/// @dev Set new deposit cap
/// @param newCap New cap amount
function setCap(uint256 newCap) external onlyOwner {
if (newCap == 0) {
revert ZeroCap();
}
if (newCap < totalDeposited) {
revert CapBelowCurrentDeposits();
}
emit CapUpdated(cap, newCap);
cap = newCap;
}
/// @dev Set new sale UUID
/// @param newSaleUUID New sale UUID
function setSaleUUID(bytes16 newSaleUUID) external onlyOwner {
if (newSaleUUID == bytes16(0)) {
revert InvalidSaleUUID(newSaleUUID, saleUUID);
}
emit SaleUUIDUpdated(saleUUID, newSaleUUID);
saleUUID = newSaleUUID;
}
/// @notice Update the authorized permit signer address
/// @dev Important: Changing the signer invalidates all existing permits
/// @dev Only callable by contract owner
/// @param newPermitSigner The new ECDSA signer address for validating purchase permits
/// @custom:reverts UnauthorizedSigner If new signer address is zero
/// @custom:emits PermitSignerUpdated When signer is successfully updated
function setPermitSigner(address newPermitSigner) external onlyOwner {
if (newPermitSigner == address(0)) {
revert UnauthorizedSigner(newPermitSigner);
}
emit PermitSignerUpdated(permitSigner, newPermitSigner);
permitSigner = newPermitSigner;
}
/// @dev Set new treasury address
/// @param newTreasury New treasury address
function setTreasury(address newTreasury) external onlyOwner {
if (newTreasury == address(0)) revert InvalidTreasuryAddress();
emit TreasuryUpdated(treasury, newTreasury);
treasury = newTreasury;
}
/// @dev Withdraw tokens from the contract to treasury address
/// @param token Token address to withdraw
/// @param amount Amount to withdraw
function withdrawToTreasury(address token, uint256 amount) external onlyOwner {
if (token == address(0)) revert InvalidTokenAddress();
if (treasury == address(0)) revert InvalidTreasuryAddress();
if (amount == 0) revert InvalidAmount();
uint256 balance = IERC20(token).balanceOf(address(this));
if (amount > balance) {
revert InsufficientBalance(amount, balance);
}
require(amount > 0, "Zero amount transfer");
IERC20(token).safeTransfer(treasury, amount);
emit FundsWithdrawn(token, treasury, amount);
}
// ============ Internal Functions ============
/// @notice Validates a purchase permit.
/// @dev This ensures that the permit was issued for the right sale (preventing the reuse of the same permit across sales),
/// @dev is not expired, and is signed by the purchase permit signer.
function _validatePurchasePermit(PurchasePermit memory permit, bytes calldata signature) internal view {
if (permit.entityID == bytes16(0)) {
revert ZeroEntityID();
}
if (permit.saleUUID != saleUUID) {
revert InvalidSaleUUID(permit.saleUUID, saleUUID);
}
if (permit.expiresAt <= block.timestamp) {
revert PurchasePermitExpired();
}
address recoveredSigner = PurchasePermitLib.recoverSigner(permit, signature);
if (permitSigner != recoveredSigner) {
revert UnauthorizedSigner(recoveredSigner);
}
IMegaSale.PurchasePermitPayload memory payload = abi.decode(permit.payload, (IMegaSale.PurchasePermitPayload));
// forcedLockup indicates that it is a U.S. user and is not allowed to participate.
if (payload.forcedLockup) {
revert USUserNotAllowed();
}
if (!payload.isEligible) {
revert UserNotEligible();
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol)
pragma solidity ^0.8.20;
import {Ownable} from "./Ownable.sol";
/**
* @dev Contract module which provides access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* This extension of the {Ownable} contract includes a two-step mechanism to transfer
* ownership, where the new owner must call {acceptOwnership} in order to replace the
* old one. This can help prevent common mistakes, such as transfers of ownership to
* incorrect accounts, or to contracts that are unable to interact with the
* permission system.
*
* The initial owner is specified at deployment time in the constructor for `Ownable`. This
* can later be changed with {transferOwnership} and {acceptOwnership}.
*
* This module is used through inheritance. It will make available all functions
* from parent (Ownable).
*/
abstract contract Ownable2Step is Ownable {
address private _pendingOwner;
event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);
/**
* @dev Returns the address of the pending owner.
*/
function pendingOwner() public view virtual returns (address) {
return _pendingOwner;
}
/**
* @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
* Can only be called by the current owner.
*
* Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
*/
function transferOwnership(address newOwner) public virtual override onlyOwner {
_pendingOwner = newOwner;
emit OwnershipTransferStarted(owner(), newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual override {
delete _pendingOwner;
super._transferOwnership(newOwner);
}
/**
* @dev The new owner accepts the ownership transfer.
*/
function acceptOwnership() public virtual {
address sender = _msgSender();
if (pendingOwner() != sender) {
revert OwnableUnauthorizedAccount(sender);
}
_transferOwnership(sender);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
import {Arrays} from "../Arrays.sol";
import {Math} from "../math/Math.sol";
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
* - Set can be cleared (all elements removed) in O(n).
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* The following types are supported:
*
* - `bytes32` (`Bytes32Set`) since v3.3.0
* - `address` (`AddressSet`) since v3.3.0
* - `uint256` (`UintSet`) since v3.3.0
* - `string` (`StringSet`) since v5.4.0
* - `bytes` (`BytesSet`) since v5.4.0
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: This function has an unbounded cost that scales with set size. Developers should keep in mind that
* using it may render the function uncallable if the set grows to the point where clearing it consumes too much
* gas to fit in a block.
*/
function _clear(Set storage set) private {
uint256 len = _length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set, uint256 start, uint256 end) private view returns (bytes32[] memory) {
unchecked {
end = Math.min(end, _length(set));
start = Math.min(start, end);
uint256 len = end - start;
bytes32[] memory result = new bytes32[](len);
for (uint256 i = 0; i < len; ++i) {
result[i] = Arrays.unsafeAccess(set._values, start + i).value;
}
return result;
}
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(Bytes32Set storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set, uint256 start, uint256 end) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner, start, end);
bytes32[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(AddressSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set, uint256 start, uint256 end) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner, start, end);
address[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(UintSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set, uint256 start, uint256 end) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner, start, end);
uint256[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
struct StringSet {
// Storage of set values
string[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(string value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(StringSet storage set, string memory value) internal returns (bool) {
if (!contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(StringSet storage set, string memory value) internal returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
string memory lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(StringSet storage set) internal {
uint256 len = length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(StringSet storage set, string memory value) internal view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(StringSet storage set) internal view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(StringSet storage set, uint256 index) internal view returns (string memory) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(StringSet storage set) internal view returns (string[] memory) {
return set._values;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(StringSet storage set, uint256 start, uint256 end) internal view returns (string[] memory) {
unchecked {
end = Math.min(end, length(set));
start = Math.min(start, end);
uint256 len = end - start;
string[] memory result = new string[](len);
for (uint256 i = 0; i < len; ++i) {
result[i] = Arrays.unsafeAccess(set._values, start + i).value;
}
return result;
}
}
struct BytesSet {
// Storage of set values
bytes[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(BytesSet storage set, bytes memory value) internal returns (bool) {
if (!contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(BytesSet storage set, bytes memory value) internal returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes memory lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(BytesSet storage set) internal {
uint256 len = length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(BytesSet storage set, bytes memory value) internal view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function length(BytesSet storage set) internal view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(BytesSet storage set, uint256 index) internal view returns (bytes memory) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(BytesSet storage set) internal view returns (bytes[] memory) {
return set._values;
}
/**
* @dev Return a slice of the set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(BytesSet storage set, uint256 start, uint256 end) internal view returns (bytes[] memory) {
unchecked {
end = Math.min(end, length(set));
start = Math.min(start, end);
uint256 len = end - start;
bytes[] memory result = new bytes[](len);
for (uint256 i = 0; i < len; ++i) {
result[i] = Arrays.unsafeAccess(set._values, start + i).value;
}
return result;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: GPL-3.0-only
pragma solidity 0.8.30;
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";
/// @notice A permit that allows a wallet to purchase a tokens in a sale.
struct PurchasePermit {
bytes16 entityID;
bytes16 saleUUID;
address wallet;
uint64 expiresAt;
bytes payload; // Generic extra data field for future use.
}
library PurchasePermitLib {
function digest(PurchasePermit memory permit) internal pure returns (bytes32) {
return MessageHashUtils.toEthSignedMessageHash(abi.encode(permit));
}
function recoverSigner(PurchasePermit memory permit, bytes calldata signature) internal pure returns (address) {
return ECDSA.recover(digest(permit), signature);
}
}// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.30;
// IMegaSale.sol - Interface and type definitions for MegaSale contract
interface IMegaSale {
/// @notice The additional payload on the purchase permit issued by Sonar.
/// @param forcedLockup Whether the purchased tokens for a specific entity must be locked up.
/// @param maxPrice The maximum price that the entity is allowed to bid at.
struct PurchasePermitPayload {
bool isEligible;
bool forcedLockup;
uint64 maxPrice;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using SlotDerivation for bytes32;
using StorageSlot for bytes32;
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
/**
* @dev Sort an array of address (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
* at end (exclusive). Sorting follows the `comp` comparator.
*
* Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
*
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
for (uint256 it = begin + 0x20; it < end; it += 0x20) {
if (comp(_mload(it), pivot)) {
// If the value stored at the iterator's position comes before the pivot, we increment the
// position of the pivot and move the value there.
pos += 0x20;
_swap(pos, it);
}
}
_swap(begin, pos); // Swap pivot into place
_quickSort(begin, pos, comp); // Sort the left side of the pivot
_quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
}
}
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
assembly ("memory-safe") {
ptr := add(array, 0x20)
}
}
/**
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
}
/**
* @dev Swaps the elements memory location `ptr1` and `ptr2`.
*/
function _swap(uint256 ptr1, uint256 ptr2) private pure {
assembly {
let value1 := mload(ptr1)
let value2 := mload(ptr2)
mstore(ptr1, value2)
mstore(ptr2, value1)
}
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* NOTE: The `array` is expected to be sorted in ascending order, and to
* contain no repeated elements.
*
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
* support for repeated elements in the array. The {lowerBound} function should
* be used instead.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value greater or equal than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
*/
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value strictly greater than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
*/
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Same as {lowerBound}, but with an array in memory.
*/
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Same as {upperBound}, but with an array in memory.
*/
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytesSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getStringSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(address[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(uint256[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(string[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)
pragma solidity >=0.6.2;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to compare values.
*
* _Available since v5.1._
*/
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)
pragma solidity >=0.4.16;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)
pragma solidity >=0.4.16;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}{
"remappings": [
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"forge-std/=lib/forge-std/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/"
],
"optimizer": {
"enabled": false,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"components":[{"internalType":"address","name":"safeOwner","type":"address"},{"internalType":"address","name":"usdc","type":"address"},{"internalType":"address","name":"permitSigner","type":"address"},{"internalType":"address","name":"treasury","type":"address"},{"internalType":"bytes16","name":"saleUUID","type":"bytes16"}],"internalType":"struct MegaUSDmPreDeposit.Init","name":"init","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CapBelowCurrentDeposits","type":"error"},{"inputs":[],"name":"CapReached","type":"error"},{"inputs":[],"name":"DepositEnded","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[{"internalType":"bytes16","name":"entityID","type":"bytes16"},{"internalType":"address","name":"existingUser","type":"address"}],"name":"EntityIDAlreadyBound","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"balance","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"InvalidEndTime","type":"error"},{"inputs":[{"internalType":"bytes16","name":"got","type":"bytes16"},{"internalType":"bytes16","name":"want","type":"bytes16"}],"name":"InvalidSaleUUID","type":"error"},{"inputs":[{"internalType":"address","name":"got","type":"address"},{"internalType":"address","name":"want","type":"address"}],"name":"InvalidSender","type":"error"},{"inputs":[],"name":"InvalidStartTime","type":"error"},{"inputs":[],"name":"InvalidTokenAddress","type":"error"},{"inputs":[],"name":"InvalidTreasuryAddress","type":"error"},{"inputs":[],"name":"InvalidUSDCAddress","type":"error"},{"inputs":[],"name":"NotStarted","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PurchasePermitExpired","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"USUserNotAllowed","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"UnauthorizedSigner","type":"error"},{"inputs":[],"name":"UserNotEligible","type":"error"},{"inputs":[{"internalType":"address","name":"wallet","type":"address"},{"internalType":"bytes16","name":"existingEntityID","type":"bytes16"}],"name":"WalletAlreadyBound","type":"error"},{"inputs":[],"name":"ZeroCap","type":"error"},{"inputs":[],"name":"ZeroDuration","type":"error"},{"inputs":[],"name":"ZeroEntityID","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newCap","type":"uint256"}],"name":"CapUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes16","name":"entityID","type":"bytes16"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"wantAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"actualAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"userTotalAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"contractTotalAmount","type":"uint256"}],"name":"Deposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint48","name":"oldEndTime","type":"uint48"},{"indexed":false,"internalType":"uint48","name":"newEndTime","type":"uint48"}],"name":"EndTimeUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"treasury","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"FundsWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PauseStatusUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldSigner","type":"address"},{"indexed":false,"internalType":"address","name":"newSigner","type":"address"}],"name":"PermitSignerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes16","name":"oldSaleUUID","type":"bytes16"},{"indexed":false,"internalType":"bytes16","name":"newSaleUUID","type":"bytes16"}],"name":"SaleUUIDUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint48","name":"oldStartTime","type":"uint48"},{"indexed":false,"internalType":"uint48","name":"newStartTime","type":"uint48"}],"name":"StartTimeUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldTreasury","type":"address"},{"indexed":false,"internalType":"address","name":"newTreasury","type":"address"}],"name":"TreasuryUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"components":[{"internalType":"bytes16","name":"entityID","type":"bytes16"},{"internalType":"bytes16","name":"saleUUID","type":"bytes16"},{"internalType":"address","name":"wallet","type":"address"},{"internalType":"uint64","name":"expiresAt","type":"uint64"},{"internalType":"bytes","name":"payload","type":"bytes"}],"internalType":"struct PurchasePermit","name":"permit","type":"tuple"},{"internalType":"bytes","name":"permitSignature","type":"bytes"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"endTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDepositStatus","outputs":[{"internalType":"enum MegaUSDmPreDeposit.Status","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTimeUntilEnd","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTimeUntilStart","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getUserCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes16","name":"entityID","type":"bytes16"}],"name":"getUserDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserEntity","outputs":[{"components":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"deposits","type":"uint256"}],"internalType":"struct MegaUSDmPreDeposit.UserEntity","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes16","name":"entityID","type":"bytes16"}],"name":"getUserEntity","outputs":[{"components":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"deposits","type":"uint256"}],"internalType":"struct MegaUSDmPreDeposit.UserEntity","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"startIndex","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"getUsers","outputs":[{"components":[{"internalType":"bytes16","name":"entityID","type":"bytes16"},{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"index","type":"uint256"}],"internalType":"struct MegaUSDmPreDeposit.UserView[]","name":"users","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isDepositActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"permitSigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"saleUUID","outputs":[{"internalType":"bytes16","name":"","type":"bytes16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newCap","type":"uint256"}],"name":"setCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"newEndTime","type":"uint48"}],"name":"setEndTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"pause","type":"bool"}],"name":"setPause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newPermitSigner","type":"address"}],"name":"setPermitSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes16","name":"newSaleUUID","type":"bytes16"}],"name":"setSaleUUID","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"newStartTime","type":"uint48"},{"internalType":"uint48","name":"activeDuration","type":"uint48"}],"name":"setStartTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newTreasury","type":"address"}],"name":"setTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalDeposited","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"usdc","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes16","name":"","type":"bytes16"}],"name":"userEntities","outputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"deposits","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes16","name":"entityID","type":"bytes16"},{"internalType":"bytes16","name":"saleUUID","type":"bytes16"},{"internalType":"address","name":"wallet","type":"address"},{"internalType":"uint64","name":"expiresAt","type":"uint64"},{"internalType":"bytes","name":"payload","type":"bytes"}],"internalType":"struct PurchasePermit","name":"permit","type":"tuple"},{"internalType":"bytes","name":"permitSignature","type":"bytes"}],"name":"verifyPurchasePermit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"walletToEntityID","outputs":[{"internalType":"bytes16","name":"","type":"bytes16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawToTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60a060405234801561000f575f5ffd5b50604051614b74380380614b74833981810160405281019061003191906105a6565b805f01515f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036100a5575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161009c91906105e0565b60405180910390fd5b6100b4816102de60201b60201c565b5060016002819055505f73ffffffffffffffffffffffffffffffffffffffff16816020015173ffffffffffffffffffffffffffffffffffffffff1603610126576040517f3ec08db000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff16816060015173ffffffffffffffffffffffffffffffffffffffff160361018f576040517fcfe2ea6300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b806020015173ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff1681525050806040015160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550806080015160045f6101000a8154816fffffffffffffffffffffffffffffffff021916908360801c021790555065e35fa931a000600381905550806060015160065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555065ffffffffffff60085f6101000a81548165ffffffffffff021916908365ffffffffffff1602179055505f600860066101000a81548165ffffffffffff021916908365ffffffffffff160217905550506105f9565b60015f6101000a81549073ffffffffffffffffffffffffffffffffffffffff02191690556103118161031460201b60201c565b50565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f604051905090565b5f5ffd5b5f5ffd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61042c826103e6565b810181811067ffffffffffffffff8211171561044b5761044a6103f6565b5b80604052505050565b5f61045d6103d5565b90506104698282610423565b919050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6104978261046e565b9050919050565b6104a78161048d565b81146104b1575f5ffd5b50565b5f815190506104c28161049e565b92915050565b5f7fffffffffffffffffffffffffffffffff0000000000000000000000000000000082169050919050565b6104fc816104c8565b8114610506575f5ffd5b50565b5f81519050610517816104f3565b92915050565b5f60a08284031215610532576105316103e2565b5b61053c60a0610454565b90505f61054b848285016104b4565b5f83015250602061055e848285016104b4565b6020830152506040610572848285016104b4565b6040830152506060610586848285016104b4565b606083015250608061059a84828501610509565b60808301525092915050565b5f60a082840312156105bb576105ba6103de565b5b5f6105c88482850161051d565b91505092915050565b6105da8161048d565b82525050565b5f6020820190506105f35f8301846105d1565b92915050565b60805161455c6106185f395f81816109d10152612246015261455c5ff3fe608060405234801561000f575f5ffd5b506004361061021a575f3560e01c8063b185b20d11610123578063e30c3978116100ab578063f5650f4a1161007a578063f5650f4a14610607578063fa91513c14610637578063fd43bf7714610653578063fe29ea0314610671578063ff50abdc1461068d5761021a565b8063e30c397814610593578063f0f44260146105b1578063f24b5f6b146105cd578063f2fde38b146105eb5761021a565b8063c084b10b116100f2578063c084b10b146104c8578063c36a4654146104f8578063c4f343c714610528578063c8ab7dbf14610546578063e20061c3146105625761021a565b8063b185b20d14610454578063b5cb15f714610472578063bc9685cf14610490578063bedb86fb146104ac5761021a565b806361d027b3116101a6578063722288221161017557806372228822146103c257806378e97925146103de57806379ba5097146103fc578063816a1d6c146104065780638da5cb5b146104365761021a565b806361d027b31461034c57806364ac6b051461036a5780636766d1ba1461039a578063715018a6146103b85761021a565b806338e66d22116101ed57806338e66d22146102a65780633e413bee146102c457806345982a66146102e257806347786d37146103125780635c975abb1461032e5761021a565b80630654b7611461021e5780631fe2af121461024e5780633197cbb61461026a578063355274ea14610288575b5f5ffd5b610238600480360381019061023391906133df565b6106ab565b604051610245919061345e565b60405180910390f35b610268600480360381019061026391906134b2565b61080c565b005b61027261095f565b60405161027f91906134ec565b60405180910390f35b610290610977565b60405161029d9190613514565b60405180910390f35b6102ae61097d565b6040516102bb91906134ec565b60405180910390f35b6102cc6109cf565b6040516102d99190613588565b60405180910390f35b6102fc60048036038101906102f791906135cb565b6109f3565b604051610309919061373e565b60405180910390f35b61032c6004803603810190610327919061375e565b610c40565b005b610336610d02565b60405161034391906137a3565b60405180910390f35b610354610d18565b60405161036191906137cb565b60405180910390f35b610384600480360381019061037f919061380e565b610d3d565b6040516103919190613514565b60405180910390f35b6103a2610d80565b6040516103af91906134ec565b60405180910390f35b6103c0610dd0565b005b6103dc60048036038101906103d7919061380e565b610de3565b005b6103e6610edb565b6040516103f391906134ec565b60405180910390f35b610404610ef2565b005b610420600480360381019061041b91906133df565b610f80565b60405161042d9190613848565b60405180910390f35b61043e610f9d565b60405161044b91906137cb565b60405180910390f35b61045c610fc4565b6040516104699190613848565b60405180910390f35b61047a610fd6565b6040516104879190613514565b60405180910390f35b6104aa60048036038101906104a59190613861565b610fe6565b005b6104c660048036038101906104c191906138c9565b6112ed565b005b6104e260048036038101906104dd91906133df565b61134b565b6040516104ef9190613514565b60405180910390f35b610512600480360381019061050d919061380e565b611416565b60405161051f919061345e565b60405180910390f35b6105306114c5565b60405161053d9190613967565b60405180910390f35b610560600480360381019061055b91906133df565b611558565b005b61057c6004803603810190610577919061380e565b61166d565b60405161058a929190613980565b60405180910390f35b61059b6116ac565b6040516105a891906137cb565b60405180910390f35b6105cb60048036038101906105c691906133df565b6116d4565b005b6105d56117de565b6040516105e291906137cb565b60405180910390f35b610605600480360381019061060091906133df565b611803565b005b610621600480360381019061061c9190613a2a565b6118af565b60405161062e91906137a3565b60405180910390f35b610651600480360381019061064c9190613aa3565b611c54565b005b61065b612345565b60405161066891906137a3565b60405180910390f35b61068b60048036038101906106869190613b30565b6123a3565b005b61069561252c565b6040516106a29190613514565b60405180910390f35b6106b36132f9565b5f600c5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460801b90505f60801b6fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff1916036107635760405180604001604052805f73ffffffffffffffffffffffffffffffffffffffff1681526020015f815250915050610807565b600b5f826fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f206040518060400160405290815f82015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016001820154815250509150505b919050565b610814612532565b4265ffffffffffff168165ffffffffffff161161085d576040517f38af65f700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b65ffffffffffff801660085f9054906101000a900465ffffffffffff1665ffffffffffff16141580156108b3575060085f9054906101000a900465ffffffffffff1665ffffffffffff168165ffffffffffff1611155b156108ea576040517f38af65f700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7fcf2832223f40fcc88a6518aceec9d60e8863284e1c8a10d5babf1e149252a021600860069054906101000a900465ffffffffffff168260405161092f929190613b6e565b60405180910390a180600860066101000a81548165ffffffffffff021916908365ffffffffffff16021790555050565b600860069054906101000a900465ffffffffffff1681565b60035481565b5f600860069054906101000a900465ffffffffffff1665ffffffffffff1642106109a9575f90506109cc565b42600860069054906101000a900465ffffffffffff166109c99190613bc2565b90505b90565b7f000000000000000000000000000000000000000000000000000000000000000081565b60605f610a0060096125b9565b9050808410610a65575f67ffffffffffffffff811115610a2357610a22613bfb565b5b604051908082528060200260200182016040528015610a5c57816020015b610a49613327565b815260200190600190039081610a415790505b50915050610c3a565b5f8385610a729190613c28565b905081811115610a80578190505b5f8582610a8d9190613c5b565b90508067ffffffffffffffff811115610aa957610aa8613bfb565b5b604051908082528060200260200182016040528015610ae257816020015b610acf613327565b815260200190600190039081610ac75790505b5093505f8690505b82811015610c35575f610b078260096125cc90919063ffffffff16565b90505f600b5f836fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f206040518060400160405290815f82015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200160018201548152505090506040518060800160405280836fffffffffffffffffffffffffffffffff19168152602001825f015173ffffffffffffffffffffffffffffffffffffffff1681526020018260200151815260200184815250878a85610c0a9190613c5b565b81518110610c1b57610c1a613c8e565b5b602002602001018190525050508080600101915050610aea565b505050505b92915050565b610c48612532565b5f8103610c81576040517fdd616a4500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600754811015610cbd576040517f751f101700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7fd3636070a5893c88088ab04180c3c0fe9be316dbea031e03a4aadbd688bf553a60035482604051610cf0929190613cbb565b60405180910390a18060038190555050565b5f600160149054906101000a900460ff16905090565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f600b5f836fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f20600101549050919050565b5f60085f9054906101000a900465ffffffffffff1665ffffffffffff164210610dab575f9050610dcd565b4260085f9054906101000a900465ffffffffffff16610dca9190613bc2565b90505b90565b610dd8612532565b610de15f6125e1565b565b610deb612532565b5f60801b6fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff191603610e68578060045f9054906101000a900460801b6040517f265688c2000000000000000000000000000000000000000000000000000000008152600401610e5f929190613ce2565b60405180910390fd5b7f6054f39bf471259ab17f56ac8fba21ccf8a6bb8da444f379a086814753df609160045f9054906101000a900460801b82604051610ea7929190613ce2565b60405180910390a18060045f6101000a8154816fffffffffffffffffffffffffffffffff021916908360801c021790555050565b60085f9054906101000a900465ffffffffffff1681565b5f610efb612611565b90508073ffffffffffffffffffffffffffffffffffffffff16610f1c6116ac565b73ffffffffffffffffffffffffffffffffffffffff1614610f7457806040517f118cdaa7000000000000000000000000000000000000000000000000000000008152600401610f6b91906137cb565b60405180910390fd5b610f7d816125e1565b50565b600c602052805f5260405f205f915054906101000a900460801b81565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b60045f9054906101000a900460801b81565b5f610fe160096125b9565b905090565b610fee612532565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611053576040517f1eb00b0600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff1660065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16036110d9576040517fcfe2ea6300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8103611112576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8273ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b815260040161114c91906137cb565b602060405180830381865afa158015611167573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061118b9190613d1d565b9050808211156111d45781816040517fcf4791810000000000000000000000000000000000000000000000000000000081526004016111cb929190613cbb565b60405180910390fd5b5f8211611216576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161120d90613da2565b60405180910390fd5b61126260065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16838573ffffffffffffffffffffffffffffffffffffffff166126189092919063ffffffff16565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fa92ff919b850e4909ab2261d907ef955f11bc1716733a6cbece38d163a69af8a846040516112e09190613514565b60405180910390a3505050565b6112f5612532565b801561130857611303612697565b611311565b6113106126f9565b5b7f7c4d1fe30fdbfda9e9c4c43e759ef32e4db5128d4cb58ff3ae9583b89b6242a58160405161134091906137a3565b60405180910390a150565b5f5f600c5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460801b90505f60801b6fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff1916036113d2575f915050611411565b600b5f826fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f20600101549150505b919050565b61141e6132f9565b600b5f836fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f206040518060400160405290815f82015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016001820154815250509050919050565b5f60085f9054906101000a900465ffffffffffff1665ffffffffffff164210156114f1575f9050611555565b6114f9610d02565b156115075760029050611555565b6003546007541061151b5760039050611555565b600860069054906101000a900465ffffffffffff1665ffffffffffff164265ffffffffffff1611156115505760049050611555565b600190505b90565b611560612532565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036115d057806040517fe74c68bb0000000000000000000000000000000000000000000000000000000081526004016115c791906137cb565b60405180910390fd5b7f327cc90f9986ed3e4c007add8876806eccb10aa8bd3afcb84680757d89c33f8b60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1682604051611622929190613dc0565b60405180910390a18060055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b600b602052805f5260405f205f91509050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16908060010154905082565b5f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b6116dc612532565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611741576040517fcfe2ea6300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7f4ab5be82436d353e61ca18726e984e561f5c1cc7c6d38b29d2553c790434705a60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1682604051611793929190613dc0565b60405180910390a18060065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61180b612532565b8060015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508073ffffffffffffffffffffffffffffffffffffffff1661186a610f9d565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f5f60801b6fffffffffffffffffffffffffffffffff1916845f0160208101906118d9919061380e565b6fffffffffffffffffffffffffffffffff1916036118f9575f9050611c4d565b60045f9054906101000a900460801b6fffffffffffffffffffffffffffffffff191684602001602081019061192e919061380e565b6fffffffffffffffffffffffffffffffff19161461194e575f9050611c4d565b428460600160208101906119629190613e24565b67ffffffffffffffff1611611979575f9050611c4d565b6041838390501461198c575f9050611c4d565b5f61199f8561199a90614007565b61275b565b90505f84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f81840152601f19601f8201169050808301925050505050505090505f5f5f602084015192506040840151915060608401515f1a9050601b8160ff161015611a1e57601b81611a1b9190614025565b90505b7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0825f1c1115611a55575f95505050505050611c4d565b601b8160ff1614158015611a6d5750601c8160ff1614155b15611a7f575f95505050505050611c4d565b5f6001868386866040515f8152602001604052604051611aa29493929190614080565b6020604051602081039080840390855afa158015611ac2573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611b0f575f9650505050505050611c4d565b8073ffffffffffffffffffffffffffffffffffffffff1660055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614611b71575f9650505050505050611c4d565b5f8a8060800190611b8291906140cf565b905003611b97575f9650505050505050611c4d565b5f8a8060800190611ba891906140cf565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f81840152601f19601f8201169050808301925050505050505090506060815114611c04575f975050505050505050611c4d565b5f5f602083015160ff811692506040840151905060ff81169150508080611c29575081155b15611c3f575f9950505050505050505050611c4d565b600199505050505050505050505b9392505050565b611c5c61278b565b611c646127cf565b600860069054906101000a900465ffffffffffff1665ffffffffffff16421115611cba576040517f3c508e8000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60085f9054906101000a900465ffffffffffff1665ffffffffffff164210612305575f8403611d15576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60075490505f6003549050808210611d5a576040517fd7e991d200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b611d6e85611d6790614007565b8585612810565b3373ffffffffffffffffffffffffffffffffffffffff16856040016020810190611d9891906133df565b73ffffffffffffffffffffffffffffffffffffffff1614611e045733856040016020810190611dc791906133df565b6040517fe1130dba000000000000000000000000000000000000000000000000000000008152600401611dfb929190613dc0565b60405180910390fd5b5f8282611e119190613c5b565b90505f818811611e215787611e23565b815b90505f875f016020810190611e38919061380e565b90505f600b5f836fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f2090505f73ffffffffffffffffffffffffffffffffffffffff16815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614158015611f2057503373ffffffffffffffffffffffffffffffffffffffff16815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614155b15611f865781815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040517facf30ae4000000000000000000000000000000000000000000000000000000008152600401611f7d929190614131565b60405180910390fd5b5f600c5f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460801b90505f60801b6fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff1916141580156120325750826fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff191614155b156120765733816040517faf5253a600000000000000000000000000000000000000000000000000000000815260040161206d929190614158565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff16825f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16036121995733825f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555082600c5f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a8154816fffffffffffffffffffffffffffffffff021916908360801c0217905550612197836fffffffffffffffffffffffffffffffff19166009612a8390919063ffffffff16565b505b8382600101546121a99190613c28565b826001018190555083876121bd9190613c28565b6007819055505f84036121fc576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f841161223e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612235906141c9565b60405180910390fd5b61228b3330867f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16612a98909392919063ffffffff16565b3373ffffffffffffffffffffffffffffffffffffffff16836fffffffffffffffffffffffffffffffff19167f3ac5d9bb5643287f0ca432ba95ff1c49c7c36d5b68ab528ab6cd1d8160f65b6e8d8786600101546007546040516122f194939291906141e7565b60405180910390a350505050505050612337565b6040517f6f312cbd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61233f612b1a565b50505050565b5f60085f9054906101000a900465ffffffffffff1665ffffffffffff16421015801561238d5750600860069054906101000a900465ffffffffffff1665ffffffffffff164211155b801561239e575061239c610d02565b155b905090565b6123ab612532565b4265ffffffffffff168265ffffffffffff1610156123f5576040517fb290253c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8165ffffffffffff1603612436576040517f68d5686e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8183612443919061422a565b90507f733f132c6c6db289b47cee101de1fa7cda3c0fb96500d6e48ca59ccc535d177160085f9054906101000a900465ffffffffffff1684604051612489929190613b6e565b60405180910390a17fcf2832223f40fcc88a6518aceec9d60e8863284e1c8a10d5babf1e149252a021600860069054906101000a900465ffffffffffff16826040516124d6929190613b6e565b60405180910390a18260085f6101000a81548165ffffffffffff021916908365ffffffffffff16021790555080600860066101000a81548165ffffffffffff021916908365ffffffffffff160217905550505050565b60075481565b61253a612611565b73ffffffffffffffffffffffffffffffffffffffff16612558610f9d565b73ffffffffffffffffffffffffffffffffffffffff16146125b75761257b612611565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016125ae91906137cb565b60405180910390fd5b565b5f6125c5825f01612b24565b9050919050565b5f6125d9835f0183612b33565b905092915050565b60015f6101000a81549073ffffffffffffffffffffffffffffffffffffffff021916905561260e81612b5a565b50565b5f33905090565b612692838473ffffffffffffffffffffffffffffffffffffffff1663a9059cbb858560405160240161264b929190613980565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050612c1b565b505050565b61269f6127cf565b60018060146101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586126e2612611565b6040516126ef91906137cb565b60405180910390a1565b612701612cb6565b5f600160146101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa612744612611565b60405161275191906137cb565b60405180910390a1565b5f612784826040516020016127709190614345565b604051602081830303815290604052612cf6565b9050919050565b60028054036127c6576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60028081905550565b6127d7610d02565b1561280e576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f60801b6fffffffffffffffffffffffffffffffff1916835f01516fffffffffffffffffffffffffffffffff191603612875576040517f03f5ed9400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60045f9054906101000a900460801b6fffffffffffffffffffffffffffffffff191683602001516fffffffffffffffffffffffffffffffff19161461290557826020015160045f9054906101000a900460801b6040517f265688c20000000000000000000000000000000000000000000000000000000081526004016128fc929190613ce2565b60405180910390fd5b42836060015167ffffffffffffffff161161294c576040517f2b298ee400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f612958848484612d30565b90508073ffffffffffffffffffffffffffffffffffffffff1660055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146129eb57806040517fe74c68bb0000000000000000000000000000000000000000000000000000000081526004016129e291906137cb565b60405180910390fd5b5f8460800151806020019051810190612a0491906143ee565b9050806020015115612a42576040517f10b542da00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b805f0151612a7c576040517f99f05a9c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050505050565b5f612a90835f0183612d8f565b905092915050565b612b14848573ffffffffffffffffffffffffffffffffffffffff166323b872dd868686604051602401612acd93929190614419565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050612c1b565b50505050565b6001600281905550565b5f815f01805490509050919050565b5f825f018281548110612b4957612b48613c8e565b5b905f5260205f200154905092915050565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f5f60205f8451602086015f885af180612c3a576040513d5f823e3d81fd5b3d92505f519150505f8214612c53576001811415612c6e565b5f8473ffffffffffffffffffffffffffffffffffffffff163b145b15612cb057836040517f5274afe7000000000000000000000000000000000000000000000000000000008152600401612ca791906137cb565b60405180910390fd5b50505050565b612cbe610d02565b612cf4576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f612d018251612df6565b82604051602001612d139291906144ae565b604051602081830303815290604052805190602001209050919050565b5f612d86612d3d8561275b565b84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f81840152601f19601f82011690508083019250505050505050612ec0565b90509392505050565b5f612d9a8383612eea565b612dec57825f0182908060018154018082558091505060019003905f5260205f20015f9091909190915055825f0180549050836001015f8481526020019081526020015f208190555060019050612df0565b5f90505b92915050565b60605f6001612e0484612f0a565b0190505f8167ffffffffffffffff811115612e2257612e21613bfb565b5b6040519080825280601f01601f191660200182016040528015612e545781602001600182028036833780820191505090505b5090505f82602083010190505b600115612eb5578080600190039150507f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8581612eaa57612ea96144e0565b5b0494505f8503612e61575b819350505050919050565b5f5f5f5f612ece868661305b565b925092509250612ede82826130b0565b82935050505092915050565b5f5f836001015f8481526020019081526020015f20541415905092915050565b5f5f5f90507a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310612f66577a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008381612f5c57612f5b6144e0565b5b0492506040810190505b6d04ee2d6d415b85acef81000000008310612fa3576d04ee2d6d415b85acef81000000008381612f9957612f986144e0565b5b0492506020810190505b662386f26fc100008310612fd257662386f26fc100008381612fc857612fc76144e0565b5b0492506010810190505b6305f5e1008310612ffb576305f5e1008381612ff157612ff06144e0565b5b0492506008810190505b6127108310613020576127108381613016576130156144e0565b5b0492506004810190505b606483106130435760648381613039576130386144e0565b5b0492506002810190505b600a8310613052576001810190505b80915050919050565b5f5f5f604184510361309b575f5f5f602087015192506040870151915060608701515f1a905061308d88828585613212565b9550955095505050506130a9565b5f600285515f1b9250925092505b9250925092565b5f60038111156130c3576130c26138f4565b5b8260038111156130d6576130d56138f4565b5b031561320e57600160038111156130f0576130ef6138f4565b5b826003811115613103576131026138f4565b5b0361313a576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600381111561314e5761314d6138f4565b5b826003811115613161576131606138f4565b5b036131a557805f1c6040517ffce698f700000000000000000000000000000000000000000000000000000000815260040161319c9190613514565b60405180910390fd5b6003808111156131b8576131b76138f4565b5b8260038111156131cb576131ca6138f4565b5b0361320d57806040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600401613204919061450d565b60405180910390fd5b5b5050565b5f5f5f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c111561324e575f6003859250925092506132ef565b5f6001888888886040515f81526020016040526040516132719493929190614080565b6020604051602081039080840390855afa158015613291573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036132e2575f60015f5f1b935093509350506132ef565b805f5f5f1b935093509350505b9450945094915050565b60405180604001604052805f73ffffffffffffffffffffffffffffffffffffffff1681526020015f81525090565b60405180608001604052805f6fffffffffffffffffffffffffffffffff191681526020015f73ffffffffffffffffffffffffffffffffffffffff1681526020015f81526020015f81525090565b5f604051905090565b5f5ffd5b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6133ae82613385565b9050919050565b6133be816133a4565b81146133c8575f5ffd5b50565b5f813590506133d9816133b5565b92915050565b5f602082840312156133f4576133f361337d565b5b5f613401848285016133cb565b91505092915050565b613413816133a4565b82525050565b5f819050919050565b61342b81613419565b82525050565b604082015f8201516134455f85018261340a565b5060208201516134586020850182613422565b50505050565b5f6040820190506134715f830184613431565b92915050565b5f65ffffffffffff82169050919050565b61349181613477565b811461349b575f5ffd5b50565b5f813590506134ac81613488565b92915050565b5f602082840312156134c7576134c661337d565b5b5f6134d48482850161349e565b91505092915050565b6134e681613477565b82525050565b5f6020820190506134ff5f8301846134dd565b92915050565b61350e81613419565b82525050565b5f6020820190506135275f830184613505565b92915050565b5f819050919050565b5f61355061354b61354684613385565b61352d565b613385565b9050919050565b5f61356182613536565b9050919050565b5f61357282613557565b9050919050565b61358281613568565b82525050565b5f60208201905061359b5f830184613579565b92915050565b6135aa81613419565b81146135b4575f5ffd5b50565b5f813590506135c5816135a1565b92915050565b5f5f604083850312156135e1576135e061337d565b5b5f6135ee858286016135b7565b92505060206135ff858286016135b7565b9150509250929050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b5f7fffffffffffffffffffffffffffffffff0000000000000000000000000000000082169050919050565b61366681613632565b82525050565b608082015f8201516136805f85018261365d565b506020820151613693602085018261340a565b5060408201516136a66040850182613422565b5060608201516136b96060850182613422565b50505050565b5f6136ca838361366c565b60808301905092915050565b5f602082019050919050565b5f6136ec82613609565b6136f68185613613565b935061370183613623565b805f5b8381101561373157815161371888826136bf565b9750613723836136d6565b925050600181019050613704565b5085935050505092915050565b5f6020820190508181035f83015261375681846136e2565b905092915050565b5f602082840312156137735761377261337d565b5b5f613780848285016135b7565b91505092915050565b5f8115159050919050565b61379d81613789565b82525050565b5f6020820190506137b65f830184613794565b92915050565b6137c5816133a4565b82525050565b5f6020820190506137de5f8301846137bc565b92915050565b6137ed81613632565b81146137f7575f5ffd5b50565b5f81359050613808816137e4565b92915050565b5f602082840312156138235761382261337d565b5b5f613830848285016137fa565b91505092915050565b61384281613632565b82525050565b5f60208201905061385b5f830184613839565b92915050565b5f5f604083850312156138775761387661337d565b5b5f613884858286016133cb565b9250506020613895858286016135b7565b9150509250929050565b6138a881613789565b81146138b2575f5ffd5b50565b5f813590506138c38161389f565b92915050565b5f602082840312156138de576138dd61337d565b5b5f6138eb848285016138b5565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b60058110613932576139316138f4565b5b50565b5f81905061394282613921565b919050565b5f61395182613935565b9050919050565b61396181613947565b82525050565b5f60208201905061397a5f830184613958565b92915050565b5f6040820190506139935f8301856137bc565b6139a06020830184613505565b9392505050565b5f5ffd5b5f60a082840312156139c0576139bf6139a7565b5b81905092915050565b5f5ffd5b5f5ffd5b5f5ffd5b5f5f83601f8401126139ea576139e96139c9565b5b8235905067ffffffffffffffff811115613a0757613a066139cd565b5b602083019150836001820283011115613a2357613a226139d1565b5b9250929050565b5f5f5f60408486031215613a4157613a4061337d565b5b5f84013567ffffffffffffffff811115613a5e57613a5d613381565b5b613a6a868287016139ab565b935050602084013567ffffffffffffffff811115613a8b57613a8a613381565b5b613a97868287016139d5565b92509250509250925092565b5f5f5f5f60608587031215613abb57613aba61337d565b5b5f613ac8878288016135b7565b945050602085013567ffffffffffffffff811115613ae957613ae8613381565b5b613af5878288016139ab565b935050604085013567ffffffffffffffff811115613b1657613b15613381565b5b613b22878288016139d5565b925092505092959194509250565b5f5f60408385031215613b4657613b4561337d565b5b5f613b538582860161349e565b9250506020613b648582860161349e565b9150509250929050565b5f604082019050613b815f8301856134dd565b613b8e60208301846134dd565b9392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f613bcc82613477565b9150613bd783613477565b9250828203905065ffffffffffff811115613bf557613bf4613b95565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b5f613c3282613419565b9150613c3d83613419565b9250828201905080821115613c5557613c54613b95565b5b92915050565b5f613c6582613419565b9150613c7083613419565b9250828203905081811115613c8857613c87613b95565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f604082019050613cce5f830185613505565b613cdb6020830184613505565b9392505050565b5f604082019050613cf55f830185613839565b613d026020830184613839565b9392505050565b5f81519050613d17816135a1565b92915050565b5f60208284031215613d3257613d3161337d565b5b5f613d3f84828501613d09565b91505092915050565b5f82825260208201905092915050565b7f5a65726f20616d6f756e74207472616e736665720000000000000000000000005f82015250565b5f613d8c601483613d48565b9150613d9782613d58565b602082019050919050565b5f6020820190508181035f830152613db981613d80565b9050919050565b5f604082019050613dd35f8301856137bc565b613de060208301846137bc565b9392505050565b5f67ffffffffffffffff82169050919050565b613e0381613de7565b8114613e0d575f5ffd5b50565b5f81359050613e1e81613dfa565b92915050565b5f60208284031215613e3957613e3861337d565b5b5f613e4684828501613e10565b91505092915050565b5f5ffd5b5f601f19601f8301169050919050565b613e6c82613e53565b810181811067ffffffffffffffff82111715613e8b57613e8a613bfb565b5b80604052505050565b5f613e9d613374565b9050613ea98282613e63565b919050565b5f5ffd5b5f5ffd5b5f67ffffffffffffffff821115613ed057613ecf613bfb565b5b613ed982613e53565b9050602081019050919050565b828183375f83830152505050565b5f613f06613f0184613eb6565b613e94565b905082815260208101848484011115613f2257613f21613eb2565b5b613f2d848285613ee6565b509392505050565b5f82601f830112613f4957613f486139c9565b5b8135613f59848260208601613ef4565b91505092915050565b5f60a08284031215613f7757613f76613e4f565b5b613f8160a0613e94565b90505f613f90848285016137fa565b5f830152506020613fa3848285016137fa565b6020830152506040613fb7848285016133cb565b6040830152506060613fcb84828501613e10565b606083015250608082013567ffffffffffffffff811115613fef57613fee613eae565b5b613ffb84828501613f35565b60808301525092915050565b5f6140123683613f62565b9050919050565b5f60ff82169050919050565b5f61402f82614019565b915061403a83614019565b9250828201905060ff81111561405357614052613b95565b5b92915050565b5f819050919050565b61406b81614059565b82525050565b61407a81614019565b82525050565b5f6080820190506140935f830187614062565b6140a06020830186614071565b6140ad6040830185614062565b6140ba6060830184614062565b95945050505050565b5f5ffd5b5f5ffd5b5f5ffd5b5f5f833560016020038436030381126140eb576140ea6140c3565b5b80840192508235915067ffffffffffffffff82111561410d5761410c6140c7565b5b602083019250600182023603831315614129576141286140cb565b5b509250929050565b5f6040820190506141445f830185613839565b61415160208301846137bc565b9392505050565b5f60408201905061416b5f8301856137bc565b6141786020830184613839565b9392505050565b7f5a65726f2061637475616c20616d6f756e7400000000000000000000000000005f82015250565b5f6141b3601283613d48565b91506141be8261417f565b602082019050919050565b5f6020820190508181035f8301526141e0816141a7565b9050919050565b5f6080820190506141fa5f830187613505565b6142076020830186613505565b6142146040830185613505565b6142216060830184613505565b95945050505050565b5f61423482613477565b915061423f83613477565b9250828201905065ffffffffffff81111561425d5761425c613b95565b5b92915050565b61426c81613de7565b82525050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f6142a482614272565b6142ae818561427c565b93506142be81856020860161428c565b6142c781613e53565b840191505092915050565b5f60a083015f8301516142e75f86018261365d565b5060208301516142fa602086018261365d565b50604083015161430d604086018261340a565b5060608301516143206060860182614263565b5060808301518482036080860152614338828261429a565b9150508091505092915050565b5f6020820190508181035f83015261435d81846142d2565b905092915050565b5f815190506143738161389f565b92915050565b5f8151905061438781613dfa565b92915050565b5f606082840312156143a2576143a1613e4f565b5b6143ac6060613e94565b90505f6143bb84828501614365565b5f8301525060206143ce84828501614365565b60208301525060406143e284828501614379565b60408301525092915050565b5f606082840312156144035761440261337d565b5b5f6144108482850161438d565b91505092915050565b5f60608201905061442c5f8301866137bc565b61443960208301856137bc565b6144466040830184613505565b949350505050565b7f19457468657265756d205369676e6564204d6573736167653a0a000000000000815250565b5f81905092915050565b5f61448882614272565b6144928185614474565b93506144a281856020860161428c565b80840191505092915050565b5f6144b88261444e565b601a820191506144c8828561447e565b91506144d4828461447e565b91508190509392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f6020820190506145205f830184614062565b9291505056fea2646970667358221220321e48d0c5365e0abeed725b8e4f7e0b2b681856dad5abc3e6f78ae128f0e54a64736f6c634300081e0033000000000000000000000000cb264def50d166d4ae7cf60188ec0038819fb719000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4800000000000000000000000022d54e4eed77f86ab0f19e7586f099ddeee1fe73000000000000000000000000cb264def50d166d4ae7cf60188ec0038819fb719c3e73992d3d34c838709d5864221da4600000000000000000000000000000000
Deployed Bytecode
0x608060405234801561000f575f5ffd5b506004361061021a575f3560e01c8063b185b20d11610123578063e30c3978116100ab578063f5650f4a1161007a578063f5650f4a14610607578063fa91513c14610637578063fd43bf7714610653578063fe29ea0314610671578063ff50abdc1461068d5761021a565b8063e30c397814610593578063f0f44260146105b1578063f24b5f6b146105cd578063f2fde38b146105eb5761021a565b8063c084b10b116100f2578063c084b10b146104c8578063c36a4654146104f8578063c4f343c714610528578063c8ab7dbf14610546578063e20061c3146105625761021a565b8063b185b20d14610454578063b5cb15f714610472578063bc9685cf14610490578063bedb86fb146104ac5761021a565b806361d027b3116101a6578063722288221161017557806372228822146103c257806378e97925146103de57806379ba5097146103fc578063816a1d6c146104065780638da5cb5b146104365761021a565b806361d027b31461034c57806364ac6b051461036a5780636766d1ba1461039a578063715018a6146103b85761021a565b806338e66d22116101ed57806338e66d22146102a65780633e413bee146102c457806345982a66146102e257806347786d37146103125780635c975abb1461032e5761021a565b80630654b7611461021e5780631fe2af121461024e5780633197cbb61461026a578063355274ea14610288575b5f5ffd5b610238600480360381019061023391906133df565b6106ab565b604051610245919061345e565b60405180910390f35b610268600480360381019061026391906134b2565b61080c565b005b61027261095f565b60405161027f91906134ec565b60405180910390f35b610290610977565b60405161029d9190613514565b60405180910390f35b6102ae61097d565b6040516102bb91906134ec565b60405180910390f35b6102cc6109cf565b6040516102d99190613588565b60405180910390f35b6102fc60048036038101906102f791906135cb565b6109f3565b604051610309919061373e565b60405180910390f35b61032c6004803603810190610327919061375e565b610c40565b005b610336610d02565b60405161034391906137a3565b60405180910390f35b610354610d18565b60405161036191906137cb565b60405180910390f35b610384600480360381019061037f919061380e565b610d3d565b6040516103919190613514565b60405180910390f35b6103a2610d80565b6040516103af91906134ec565b60405180910390f35b6103c0610dd0565b005b6103dc60048036038101906103d7919061380e565b610de3565b005b6103e6610edb565b6040516103f391906134ec565b60405180910390f35b610404610ef2565b005b610420600480360381019061041b91906133df565b610f80565b60405161042d9190613848565b60405180910390f35b61043e610f9d565b60405161044b91906137cb565b60405180910390f35b61045c610fc4565b6040516104699190613848565b60405180910390f35b61047a610fd6565b6040516104879190613514565b60405180910390f35b6104aa60048036038101906104a59190613861565b610fe6565b005b6104c660048036038101906104c191906138c9565b6112ed565b005b6104e260048036038101906104dd91906133df565b61134b565b6040516104ef9190613514565b60405180910390f35b610512600480360381019061050d919061380e565b611416565b60405161051f919061345e565b60405180910390f35b6105306114c5565b60405161053d9190613967565b60405180910390f35b610560600480360381019061055b91906133df565b611558565b005b61057c6004803603810190610577919061380e565b61166d565b60405161058a929190613980565b60405180910390f35b61059b6116ac565b6040516105a891906137cb565b60405180910390f35b6105cb60048036038101906105c691906133df565b6116d4565b005b6105d56117de565b6040516105e291906137cb565b60405180910390f35b610605600480360381019061060091906133df565b611803565b005b610621600480360381019061061c9190613a2a565b6118af565b60405161062e91906137a3565b60405180910390f35b610651600480360381019061064c9190613aa3565b611c54565b005b61065b612345565b60405161066891906137a3565b60405180910390f35b61068b60048036038101906106869190613b30565b6123a3565b005b61069561252c565b6040516106a29190613514565b60405180910390f35b6106b36132f9565b5f600c5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460801b90505f60801b6fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff1916036107635760405180604001604052805f73ffffffffffffffffffffffffffffffffffffffff1681526020015f815250915050610807565b600b5f826fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f206040518060400160405290815f82015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016001820154815250509150505b919050565b610814612532565b4265ffffffffffff168165ffffffffffff161161085d576040517f38af65f700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b65ffffffffffff801660085f9054906101000a900465ffffffffffff1665ffffffffffff16141580156108b3575060085f9054906101000a900465ffffffffffff1665ffffffffffff168165ffffffffffff1611155b156108ea576040517f38af65f700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7fcf2832223f40fcc88a6518aceec9d60e8863284e1c8a10d5babf1e149252a021600860069054906101000a900465ffffffffffff168260405161092f929190613b6e565b60405180910390a180600860066101000a81548165ffffffffffff021916908365ffffffffffff16021790555050565b600860069054906101000a900465ffffffffffff1681565b60035481565b5f600860069054906101000a900465ffffffffffff1665ffffffffffff1642106109a9575f90506109cc565b42600860069054906101000a900465ffffffffffff166109c99190613bc2565b90505b90565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4881565b60605f610a0060096125b9565b9050808410610a65575f67ffffffffffffffff811115610a2357610a22613bfb565b5b604051908082528060200260200182016040528015610a5c57816020015b610a49613327565b815260200190600190039081610a415790505b50915050610c3a565b5f8385610a729190613c28565b905081811115610a80578190505b5f8582610a8d9190613c5b565b90508067ffffffffffffffff811115610aa957610aa8613bfb565b5b604051908082528060200260200182016040528015610ae257816020015b610acf613327565b815260200190600190039081610ac75790505b5093505f8690505b82811015610c35575f610b078260096125cc90919063ffffffff16565b90505f600b5f836fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f206040518060400160405290815f82015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16815260200160018201548152505090506040518060800160405280836fffffffffffffffffffffffffffffffff19168152602001825f015173ffffffffffffffffffffffffffffffffffffffff1681526020018260200151815260200184815250878a85610c0a9190613c5b565b81518110610c1b57610c1a613c8e565b5b602002602001018190525050508080600101915050610aea565b505050505b92915050565b610c48612532565b5f8103610c81576040517fdd616a4500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b600754811015610cbd576040517f751f101700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7fd3636070a5893c88088ab04180c3c0fe9be316dbea031e03a4aadbd688bf553a60035482604051610cf0929190613cbb565b60405180910390a18060038190555050565b5f600160149054906101000a900460ff16905090565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f600b5f836fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f20600101549050919050565b5f60085f9054906101000a900465ffffffffffff1665ffffffffffff164210610dab575f9050610dcd565b4260085f9054906101000a900465ffffffffffff16610dca9190613bc2565b90505b90565b610dd8612532565b610de15f6125e1565b565b610deb612532565b5f60801b6fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff191603610e68578060045f9054906101000a900460801b6040517f265688c2000000000000000000000000000000000000000000000000000000008152600401610e5f929190613ce2565b60405180910390fd5b7f6054f39bf471259ab17f56ac8fba21ccf8a6bb8da444f379a086814753df609160045f9054906101000a900460801b82604051610ea7929190613ce2565b60405180910390a18060045f6101000a8154816fffffffffffffffffffffffffffffffff021916908360801c021790555050565b60085f9054906101000a900465ffffffffffff1681565b5f610efb612611565b90508073ffffffffffffffffffffffffffffffffffffffff16610f1c6116ac565b73ffffffffffffffffffffffffffffffffffffffff1614610f7457806040517f118cdaa7000000000000000000000000000000000000000000000000000000008152600401610f6b91906137cb565b60405180910390fd5b610f7d816125e1565b50565b600c602052805f5260405f205f915054906101000a900460801b81565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b60045f9054906101000a900460801b81565b5f610fe160096125b9565b905090565b610fee612532565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611053576040517f1eb00b0600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff1660065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16036110d9576040517fcfe2ea6300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8103611112576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8273ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b815260040161114c91906137cb565b602060405180830381865afa158015611167573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061118b9190613d1d565b9050808211156111d45781816040517fcf4791810000000000000000000000000000000000000000000000000000000081526004016111cb929190613cbb565b60405180910390fd5b5f8211611216576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161120d90613da2565b60405180910390fd5b61126260065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16838573ffffffffffffffffffffffffffffffffffffffff166126189092919063ffffffff16565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fa92ff919b850e4909ab2261d907ef955f11bc1716733a6cbece38d163a69af8a846040516112e09190613514565b60405180910390a3505050565b6112f5612532565b801561130857611303612697565b611311565b6113106126f9565b5b7f7c4d1fe30fdbfda9e9c4c43e759ef32e4db5128d4cb58ff3ae9583b89b6242a58160405161134091906137a3565b60405180910390a150565b5f5f600c5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460801b90505f60801b6fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff1916036113d2575f915050611411565b600b5f826fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f20600101549150505b919050565b61141e6132f9565b600b5f836fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f206040518060400160405290815f82015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020016001820154815250509050919050565b5f60085f9054906101000a900465ffffffffffff1665ffffffffffff164210156114f1575f9050611555565b6114f9610d02565b156115075760029050611555565b6003546007541061151b5760039050611555565b600860069054906101000a900465ffffffffffff1665ffffffffffff164265ffffffffffff1611156115505760049050611555565b600190505b90565b611560612532565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036115d057806040517fe74c68bb0000000000000000000000000000000000000000000000000000000081526004016115c791906137cb565b60405180910390fd5b7f327cc90f9986ed3e4c007add8876806eccb10aa8bd3afcb84680757d89c33f8b60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1682604051611622929190613dc0565b60405180910390a18060055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b600b602052805f5260405f205f91509050805f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16908060010154905082565b5f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b6116dc612532565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611741576040517fcfe2ea6300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7f4ab5be82436d353e61ca18726e984e561f5c1cc7c6d38b29d2553c790434705a60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1682604051611793929190613dc0565b60405180910390a18060065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61180b612532565b8060015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508073ffffffffffffffffffffffffffffffffffffffff1661186a610f9d565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f5f60801b6fffffffffffffffffffffffffffffffff1916845f0160208101906118d9919061380e565b6fffffffffffffffffffffffffffffffff1916036118f9575f9050611c4d565b60045f9054906101000a900460801b6fffffffffffffffffffffffffffffffff191684602001602081019061192e919061380e565b6fffffffffffffffffffffffffffffffff19161461194e575f9050611c4d565b428460600160208101906119629190613e24565b67ffffffffffffffff1611611979575f9050611c4d565b6041838390501461198c575f9050611c4d565b5f61199f8561199a90614007565b61275b565b90505f84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f81840152601f19601f8201169050808301925050505050505090505f5f5f602084015192506040840151915060608401515f1a9050601b8160ff161015611a1e57601b81611a1b9190614025565b90505b7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0825f1c1115611a55575f95505050505050611c4d565b601b8160ff1614158015611a6d5750601c8160ff1614155b15611a7f575f95505050505050611c4d565b5f6001868386866040515f8152602001604052604051611aa29493929190614080565b6020604051602081039080840390855afa158015611ac2573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611b0f575f9650505050505050611c4d565b8073ffffffffffffffffffffffffffffffffffffffff1660055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614611b71575f9650505050505050611c4d565b5f8a8060800190611b8291906140cf565b905003611b97575f9650505050505050611c4d565b5f8a8060800190611ba891906140cf565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f81840152601f19601f8201169050808301925050505050505090506060815114611c04575f975050505050505050611c4d565b5f5f602083015160ff811692506040840151905060ff81169150508080611c29575081155b15611c3f575f9950505050505050505050611c4d565b600199505050505050505050505b9392505050565b611c5c61278b565b611c646127cf565b600860069054906101000a900465ffffffffffff1665ffffffffffff16421115611cba576040517f3c508e8000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60085f9054906101000a900465ffffffffffff1665ffffffffffff164210612305575f8403611d15576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60075490505f6003549050808210611d5a576040517fd7e991d200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b611d6e85611d6790614007565b8585612810565b3373ffffffffffffffffffffffffffffffffffffffff16856040016020810190611d9891906133df565b73ffffffffffffffffffffffffffffffffffffffff1614611e045733856040016020810190611dc791906133df565b6040517fe1130dba000000000000000000000000000000000000000000000000000000008152600401611dfb929190613dc0565b60405180910390fd5b5f8282611e119190613c5b565b90505f818811611e215787611e23565b815b90505f875f016020810190611e38919061380e565b90505f600b5f836fffffffffffffffffffffffffffffffff19166fffffffffffffffffffffffffffffffff191681526020019081526020015f2090505f73ffffffffffffffffffffffffffffffffffffffff16815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614158015611f2057503373ffffffffffffffffffffffffffffffffffffffff16815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614155b15611f865781815f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166040517facf30ae4000000000000000000000000000000000000000000000000000000008152600401611f7d929190614131565b60405180910390fd5b5f600c5f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460801b90505f60801b6fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff1916141580156120325750826fffffffffffffffffffffffffffffffff1916816fffffffffffffffffffffffffffffffff191614155b156120765733816040517faf5253a600000000000000000000000000000000000000000000000000000000815260040161206d929190614158565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff16825f015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16036121995733825f015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555082600c5f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a8154816fffffffffffffffffffffffffffffffff021916908360801c0217905550612197836fffffffffffffffffffffffffffffffff19166009612a8390919063ffffffff16565b505b8382600101546121a99190613c28565b826001018190555083876121bd9190613c28565b6007819055505f84036121fc576040517f2c5211c600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f841161223e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401612235906141c9565b60405180910390fd5b61228b3330867f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4873ffffffffffffffffffffffffffffffffffffffff16612a98909392919063ffffffff16565b3373ffffffffffffffffffffffffffffffffffffffff16836fffffffffffffffffffffffffffffffff19167f3ac5d9bb5643287f0ca432ba95ff1c49c7c36d5b68ab528ab6cd1d8160f65b6e8d8786600101546007546040516122f194939291906141e7565b60405180910390a350505050505050612337565b6040517f6f312cbd00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61233f612b1a565b50505050565b5f60085f9054906101000a900465ffffffffffff1665ffffffffffff16421015801561238d5750600860069054906101000a900465ffffffffffff1665ffffffffffff164211155b801561239e575061239c610d02565b155b905090565b6123ab612532565b4265ffffffffffff168265ffffffffffff1610156123f5576040517fb290253c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8165ffffffffffff1603612436576040517f68d5686e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f8183612443919061422a565b90507f733f132c6c6db289b47cee101de1fa7cda3c0fb96500d6e48ca59ccc535d177160085f9054906101000a900465ffffffffffff1684604051612489929190613b6e565b60405180910390a17fcf2832223f40fcc88a6518aceec9d60e8863284e1c8a10d5babf1e149252a021600860069054906101000a900465ffffffffffff16826040516124d6929190613b6e565b60405180910390a18260085f6101000a81548165ffffffffffff021916908365ffffffffffff16021790555080600860066101000a81548165ffffffffffff021916908365ffffffffffff160217905550505050565b60075481565b61253a612611565b73ffffffffffffffffffffffffffffffffffffffff16612558610f9d565b73ffffffffffffffffffffffffffffffffffffffff16146125b75761257b612611565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016125ae91906137cb565b60405180910390fd5b565b5f6125c5825f01612b24565b9050919050565b5f6125d9835f0183612b33565b905092915050565b60015f6101000a81549073ffffffffffffffffffffffffffffffffffffffff021916905561260e81612b5a565b50565b5f33905090565b612692838473ffffffffffffffffffffffffffffffffffffffff1663a9059cbb858560405160240161264b929190613980565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050612c1b565b505050565b61269f6127cf565b60018060146101000a81548160ff0219169083151502179055507f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586126e2612611565b6040516126ef91906137cb565b60405180910390a1565b612701612cb6565b5f600160146101000a81548160ff0219169083151502179055507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa612744612611565b60405161275191906137cb565b60405180910390a1565b5f612784826040516020016127709190614345565b604051602081830303815290604052612cf6565b9050919050565b60028054036127c6576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60028081905550565b6127d7610d02565b1561280e576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f60801b6fffffffffffffffffffffffffffffffff1916835f01516fffffffffffffffffffffffffffffffff191603612875576040517f03f5ed9400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60045f9054906101000a900460801b6fffffffffffffffffffffffffffffffff191683602001516fffffffffffffffffffffffffffffffff19161461290557826020015160045f9054906101000a900460801b6040517f265688c20000000000000000000000000000000000000000000000000000000081526004016128fc929190613ce2565b60405180910390fd5b42836060015167ffffffffffffffff161161294c576040517f2b298ee400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f612958848484612d30565b90508073ffffffffffffffffffffffffffffffffffffffff1660055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146129eb57806040517fe74c68bb0000000000000000000000000000000000000000000000000000000081526004016129e291906137cb565b60405180910390fd5b5f8460800151806020019051810190612a0491906143ee565b9050806020015115612a42576040517f10b542da00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b805f0151612a7c576040517f99f05a9c00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5050505050565b5f612a90835f0183612d8f565b905092915050565b612b14848573ffffffffffffffffffffffffffffffffffffffff166323b872dd868686604051602401612acd93929190614419565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050612c1b565b50505050565b6001600281905550565b5f815f01805490509050919050565b5f825f018281548110612b4957612b48613c8e565b5b905f5260205f200154905092915050565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f5f60205f8451602086015f885af180612c3a576040513d5f823e3d81fd5b3d92505f519150505f8214612c53576001811415612c6e565b5f8473ffffffffffffffffffffffffffffffffffffffff163b145b15612cb057836040517f5274afe7000000000000000000000000000000000000000000000000000000008152600401612ca791906137cb565b60405180910390fd5b50505050565b612cbe610d02565b612cf4576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f612d018251612df6565b82604051602001612d139291906144ae565b604051602081830303815290604052805190602001209050919050565b5f612d86612d3d8561275b565b84848080601f0160208091040260200160405190810160405280939291908181526020018383808284375f81840152601f19601f82011690508083019250505050505050612ec0565b90509392505050565b5f612d9a8383612eea565b612dec57825f0182908060018154018082558091505060019003905f5260205f20015f9091909190915055825f0180549050836001015f8481526020019081526020015f208190555060019050612df0565b5f90505b92915050565b60605f6001612e0484612f0a565b0190505f8167ffffffffffffffff811115612e2257612e21613bfb565b5b6040519080825280601f01601f191660200182016040528015612e545781602001600182028036833780820191505090505b5090505f82602083010190505b600115612eb5578080600190039150507f3031323334353637383961626364656600000000000000000000000000000000600a86061a8153600a8581612eaa57612ea96144e0565b5b0494505f8503612e61575b819350505050919050565b5f5f5f5f612ece868661305b565b925092509250612ede82826130b0565b82935050505092915050565b5f5f836001015f8481526020019081526020015f20541415905092915050565b5f5f5f90507a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008310612f66577a184f03e93ff9f4daa797ed6e38ed64bf6a1f0100000000000000008381612f5c57612f5b6144e0565b5b0492506040810190505b6d04ee2d6d415b85acef81000000008310612fa3576d04ee2d6d415b85acef81000000008381612f9957612f986144e0565b5b0492506020810190505b662386f26fc100008310612fd257662386f26fc100008381612fc857612fc76144e0565b5b0492506010810190505b6305f5e1008310612ffb576305f5e1008381612ff157612ff06144e0565b5b0492506008810190505b6127108310613020576127108381613016576130156144e0565b5b0492506004810190505b606483106130435760648381613039576130386144e0565b5b0492506002810190505b600a8310613052576001810190505b80915050919050565b5f5f5f604184510361309b575f5f5f602087015192506040870151915060608701515f1a905061308d88828585613212565b9550955095505050506130a9565b5f600285515f1b9250925092505b9250925092565b5f60038111156130c3576130c26138f4565b5b8260038111156130d6576130d56138f4565b5b031561320e57600160038111156130f0576130ef6138f4565b5b826003811115613103576131026138f4565b5b0361313a576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002600381111561314e5761314d6138f4565b5b826003811115613161576131606138f4565b5b036131a557805f1c6040517ffce698f700000000000000000000000000000000000000000000000000000000815260040161319c9190613514565b60405180910390fd5b6003808111156131b8576131b76138f4565b5b8260038111156131cb576131ca6138f4565b5b0361320d57806040517fd78bce0c000000000000000000000000000000000000000000000000000000008152600401613204919061450d565b60405180910390fd5b5b5050565b5f5f5f7f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0845f1c111561324e575f6003859250925092506132ef565b5f6001888888886040515f81526020016040526040516132719493929190614080565b6020604051602081039080840390855afa158015613291573d5f5f3e3d5ffd5b5050506020604051035190505f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036132e2575f60015f5f1b935093509350506132ef565b805f5f5f1b935093509350505b9450945094915050565b60405180604001604052805f73ffffffffffffffffffffffffffffffffffffffff1681526020015f81525090565b60405180608001604052805f6fffffffffffffffffffffffffffffffff191681526020015f73ffffffffffffffffffffffffffffffffffffffff1681526020015f81526020015f81525090565b5f604051905090565b5f5ffd5b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6133ae82613385565b9050919050565b6133be816133a4565b81146133c8575f5ffd5b50565b5f813590506133d9816133b5565b92915050565b5f602082840312156133f4576133f361337d565b5b5f613401848285016133cb565b91505092915050565b613413816133a4565b82525050565b5f819050919050565b61342b81613419565b82525050565b604082015f8201516134455f85018261340a565b5060208201516134586020850182613422565b50505050565b5f6040820190506134715f830184613431565b92915050565b5f65ffffffffffff82169050919050565b61349181613477565b811461349b575f5ffd5b50565b5f813590506134ac81613488565b92915050565b5f602082840312156134c7576134c661337d565b5b5f6134d48482850161349e565b91505092915050565b6134e681613477565b82525050565b5f6020820190506134ff5f8301846134dd565b92915050565b61350e81613419565b82525050565b5f6020820190506135275f830184613505565b92915050565b5f819050919050565b5f61355061354b61354684613385565b61352d565b613385565b9050919050565b5f61356182613536565b9050919050565b5f61357282613557565b9050919050565b61358281613568565b82525050565b5f60208201905061359b5f830184613579565b92915050565b6135aa81613419565b81146135b4575f5ffd5b50565b5f813590506135c5816135a1565b92915050565b5f5f604083850312156135e1576135e061337d565b5b5f6135ee858286016135b7565b92505060206135ff858286016135b7565b9150509250929050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b5f7fffffffffffffffffffffffffffffffff0000000000000000000000000000000082169050919050565b61366681613632565b82525050565b608082015f8201516136805f85018261365d565b506020820151613693602085018261340a565b5060408201516136a66040850182613422565b5060608201516136b96060850182613422565b50505050565b5f6136ca838361366c565b60808301905092915050565b5f602082019050919050565b5f6136ec82613609565b6136f68185613613565b935061370183613623565b805f5b8381101561373157815161371888826136bf565b9750613723836136d6565b925050600181019050613704565b5085935050505092915050565b5f6020820190508181035f83015261375681846136e2565b905092915050565b5f602082840312156137735761377261337d565b5b5f613780848285016135b7565b91505092915050565b5f8115159050919050565b61379d81613789565b82525050565b5f6020820190506137b65f830184613794565b92915050565b6137c5816133a4565b82525050565b5f6020820190506137de5f8301846137bc565b92915050565b6137ed81613632565b81146137f7575f5ffd5b50565b5f81359050613808816137e4565b92915050565b5f602082840312156138235761382261337d565b5b5f613830848285016137fa565b91505092915050565b61384281613632565b82525050565b5f60208201905061385b5f830184613839565b92915050565b5f5f604083850312156138775761387661337d565b5b5f613884858286016133cb565b9250506020613895858286016135b7565b9150509250929050565b6138a881613789565b81146138b2575f5ffd5b50565b5f813590506138c38161389f565b92915050565b5f602082840312156138de576138dd61337d565b5b5f6138eb848285016138b5565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b60058110613932576139316138f4565b5b50565b5f81905061394282613921565b919050565b5f61395182613935565b9050919050565b61396181613947565b82525050565b5f60208201905061397a5f830184613958565b92915050565b5f6040820190506139935f8301856137bc565b6139a06020830184613505565b9392505050565b5f5ffd5b5f60a082840312156139c0576139bf6139a7565b5b81905092915050565b5f5ffd5b5f5ffd5b5f5ffd5b5f5f83601f8401126139ea576139e96139c9565b5b8235905067ffffffffffffffff811115613a0757613a066139cd565b5b602083019150836001820283011115613a2357613a226139d1565b5b9250929050565b5f5f5f60408486031215613a4157613a4061337d565b5b5f84013567ffffffffffffffff811115613a5e57613a5d613381565b5b613a6a868287016139ab565b935050602084013567ffffffffffffffff811115613a8b57613a8a613381565b5b613a97868287016139d5565b92509250509250925092565b5f5f5f5f60608587031215613abb57613aba61337d565b5b5f613ac8878288016135b7565b945050602085013567ffffffffffffffff811115613ae957613ae8613381565b5b613af5878288016139ab565b935050604085013567ffffffffffffffff811115613b1657613b15613381565b5b613b22878288016139d5565b925092505092959194509250565b5f5f60408385031215613b4657613b4561337d565b5b5f613b538582860161349e565b9250506020613b648582860161349e565b9150509250929050565b5f604082019050613b815f8301856134dd565b613b8e60208301846134dd565b9392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f613bcc82613477565b9150613bd783613477565b9250828203905065ffffffffffff811115613bf557613bf4613b95565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b5f613c3282613419565b9150613c3d83613419565b9250828201905080821115613c5557613c54613b95565b5b92915050565b5f613c6582613419565b9150613c7083613419565b9250828203905081811115613c8857613c87613b95565b5b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f604082019050613cce5f830185613505565b613cdb6020830184613505565b9392505050565b5f604082019050613cf55f830185613839565b613d026020830184613839565b9392505050565b5f81519050613d17816135a1565b92915050565b5f60208284031215613d3257613d3161337d565b5b5f613d3f84828501613d09565b91505092915050565b5f82825260208201905092915050565b7f5a65726f20616d6f756e74207472616e736665720000000000000000000000005f82015250565b5f613d8c601483613d48565b9150613d9782613d58565b602082019050919050565b5f6020820190508181035f830152613db981613d80565b9050919050565b5f604082019050613dd35f8301856137bc565b613de060208301846137bc565b9392505050565b5f67ffffffffffffffff82169050919050565b613e0381613de7565b8114613e0d575f5ffd5b50565b5f81359050613e1e81613dfa565b92915050565b5f60208284031215613e3957613e3861337d565b5b5f613e4684828501613e10565b91505092915050565b5f5ffd5b5f601f19601f8301169050919050565b613e6c82613e53565b810181811067ffffffffffffffff82111715613e8b57613e8a613bfb565b5b80604052505050565b5f613e9d613374565b9050613ea98282613e63565b919050565b5f5ffd5b5f5ffd5b5f67ffffffffffffffff821115613ed057613ecf613bfb565b5b613ed982613e53565b9050602081019050919050565b828183375f83830152505050565b5f613f06613f0184613eb6565b613e94565b905082815260208101848484011115613f2257613f21613eb2565b5b613f2d848285613ee6565b509392505050565b5f82601f830112613f4957613f486139c9565b5b8135613f59848260208601613ef4565b91505092915050565b5f60a08284031215613f7757613f76613e4f565b5b613f8160a0613e94565b90505f613f90848285016137fa565b5f830152506020613fa3848285016137fa565b6020830152506040613fb7848285016133cb565b6040830152506060613fcb84828501613e10565b606083015250608082013567ffffffffffffffff811115613fef57613fee613eae565b5b613ffb84828501613f35565b60808301525092915050565b5f6140123683613f62565b9050919050565b5f60ff82169050919050565b5f61402f82614019565b915061403a83614019565b9250828201905060ff81111561405357614052613b95565b5b92915050565b5f819050919050565b61406b81614059565b82525050565b61407a81614019565b82525050565b5f6080820190506140935f830187614062565b6140a06020830186614071565b6140ad6040830185614062565b6140ba6060830184614062565b95945050505050565b5f5ffd5b5f5ffd5b5f5ffd5b5f5f833560016020038436030381126140eb576140ea6140c3565b5b80840192508235915067ffffffffffffffff82111561410d5761410c6140c7565b5b602083019250600182023603831315614129576141286140cb565b5b509250929050565b5f6040820190506141445f830185613839565b61415160208301846137bc565b9392505050565b5f60408201905061416b5f8301856137bc565b6141786020830184613839565b9392505050565b7f5a65726f2061637475616c20616d6f756e7400000000000000000000000000005f82015250565b5f6141b3601283613d48565b91506141be8261417f565b602082019050919050565b5f6020820190508181035f8301526141e0816141a7565b9050919050565b5f6080820190506141fa5f830187613505565b6142076020830186613505565b6142146040830185613505565b6142216060830184613505565b95945050505050565b5f61423482613477565b915061423f83613477565b9250828201905065ffffffffffff81111561425d5761425c613b95565b5b92915050565b61426c81613de7565b82525050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f6142a482614272565b6142ae818561427c565b93506142be81856020860161428c565b6142c781613e53565b840191505092915050565b5f60a083015f8301516142e75f86018261365d565b5060208301516142fa602086018261365d565b50604083015161430d604086018261340a565b5060608301516143206060860182614263565b5060808301518482036080860152614338828261429a565b9150508091505092915050565b5f6020820190508181035f83015261435d81846142d2565b905092915050565b5f815190506143738161389f565b92915050565b5f8151905061438781613dfa565b92915050565b5f606082840312156143a2576143a1613e4f565b5b6143ac6060613e94565b90505f6143bb84828501614365565b5f8301525060206143ce84828501614365565b60208301525060406143e284828501614379565b60408301525092915050565b5f606082840312156144035761440261337d565b5b5f6144108482850161438d565b91505092915050565b5f60608201905061442c5f8301866137bc565b61443960208301856137bc565b6144466040830184613505565b949350505050565b7f19457468657265756d205369676e6564204d6573736167653a0a000000000000815250565b5f81905092915050565b5f61448882614272565b6144928185614474565b93506144a281856020860161428c565b80840191505092915050565b5f6144b88261444e565b601a820191506144c8828561447e565b91506144d4828461447e565b91508190509392505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f6020820190506145205f830184614062565b9291505056fea2646970667358221220321e48d0c5365e0abeed725b8e4f7e0b2b681856dad5abc3e6f78ae128f0e54a64736f6c634300081e0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000cb264def50d166d4ae7cf60188ec0038819fb719000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4800000000000000000000000022d54e4eed77f86ab0f19e7586f099ddeee1fe73000000000000000000000000cb264def50d166d4ae7cf60188ec0038819fb719c3e73992d3d34c838709d5864221da4600000000000000000000000000000000
-----Decoded View---------------
Arg [0] : init (tuple):
Arg [1] : safeOwner (address): 0xCB264DEf50D166d4aE7cF60188eC0038819fb719
Arg [2] : usdc (address): 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
Arg [3] : permitSigner (address): 0x22D54E4eED77F86aB0F19E7586f099DDeEe1fE73
Arg [4] : treasury (address): 0xCB264DEf50D166d4aE7cF60188eC0038819fb719
Arg [5] : saleUUID (bytes16): 0xc3e73992d3d34c838709d5864221da46
-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 000000000000000000000000cb264def50d166d4ae7cf60188ec0038819fb719
Arg [1] : 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
Arg [2] : 00000000000000000000000022d54e4eed77f86ab0f19e7586f099ddeee1fe73
Arg [3] : 000000000000000000000000cb264def50d166d4ae7cf60188ec0038819fb719
Arg [4] : c3e73992d3d34c838709d5864221da4600000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.