Source Code
Overview
ETH Balance
0 ETH
Eth Value
$0.00Latest 25 from a total of 41 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Start Auction | 23535549 | 4 days ago | IN | 0 ETH | 0.00009426 | ||||
Take | 23535545 | 4 days ago | IN | 0 ETH | 0.00018866 | ||||
Start Auction | 23533297 | 5 days ago | IN | 0 ETH | 0.00004391 | ||||
Start Auction | 23533296 | 5 days ago | IN | 0 ETH | 0.00001896 | ||||
Start Auction | 23531056 | 5 days ago | IN | 0 ETH | 0.00011934 | ||||
Start Auction | 23528754 | 5 days ago | IN | 0 ETH | 0.00002857 | ||||
Start Auction | 23528752 | 5 days ago | IN | 0 ETH | 0.00001456 | ||||
Take | 23528749 | 5 days ago | IN | 0 ETH | 0.00006142 | ||||
Buy Punk | 23526446 | 6 days ago | IN | 0 ETH | 0.00013849 | ||||
Buy Punk | 23526446 | 6 days ago | IN | 0 ETH | 0.00019379 | ||||
Start Auction | 23526419 | 6 days ago | IN | 0 ETH | 0.00028884 | ||||
Start Auction | 23523910 | 6 days ago | IN | 0 ETH | 0.00014132 | ||||
Start Auction | 23521211 | 6 days ago | IN | 0 ETH | 0.00015622 | ||||
Start Auction | 23521206 | 6 days ago | IN | 0 ETH | 0.00005578 | ||||
Start Auction | 23521206 | 6 days ago | IN | 0 ETH | 0.00005578 | ||||
Start Auction | 23521204 | 6 days ago | IN | 0 ETH | 0.00005396 | ||||
Take | 23521199 | 6 days ago | IN | 0 ETH | 0.0002726 | ||||
Buy Punk | 23520970 | 7 days ago | IN | 0 ETH | 0.00011105 | ||||
Buy Punk | 23520969 | 7 days ago | IN | 0 ETH | 0.00005012 | ||||
Buy Punk | 23520969 | 7 days ago | IN | 0 ETH | 0.00006031 | ||||
Buy Punk | 23520969 | 7 days ago | IN | 0 ETH | 0.00005229 | ||||
Buy Punk | 23520961 | 7 days ago | IN | 0 ETH | 0.00004633 | ||||
Buy Punk | 23520944 | 7 days ago | IN | 0 ETH | 0.00004913 | ||||
Buy Punk | 23520878 | 7 days ago | IN | 0 ETH | 0.00006957 | ||||
Buy Punk | 23520803 | 7 days ago | IN | 0 ETH | 0.00006178 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Method | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|---|
Transfer | 23533289 | 5 days ago | 0.01 ETH | ||||
Buy Punk | 23533289 | 5 days ago | 52.07990498 ETH | ||||
Transfer | 23533289 | 5 days ago | 52.08990498 ETH | ||||
Transfer | 23526445 | 6 days ago | 0.01 ETH | ||||
Buy Punk | 23526445 | 6 days ago | 48.48481179 ETH | ||||
Transfer | 23526445 | 6 days ago | 48.49481179 ETH | ||||
Transfer | 23523902 | 6 days ago | 0.01 ETH | ||||
Buy Punk | 23523902 | 6 days ago | 51.98374741 ETH | ||||
Transfer | 23523902 | 6 days ago | 51.99374741 ETH | ||||
Transfer | 23520969 | 7 days ago | 0.01 ETH | ||||
Transfer | 23520967 | 7 days ago | 0.01 ETH | ||||
Buy Punk | 23520967 | 7 days ago | 48.9713782 ETH | ||||
Transfer | 23520967 | 7 days ago | 48.9813782 ETH | ||||
Transfer | 23519694 | 7 days ago | 0.01 ETH | ||||
Transfer | 23519693 | 7 days ago | 0.01 ETH | ||||
Transfer | 23519692 | 7 days ago | 0.01 ETH | ||||
Transfer | 23519692 | 7 days ago | 0.01 ETH | ||||
Transfer | 23519691 | 7 days ago | 0.01 ETH | ||||
Buy Punk | 23519691 | 7 days ago | 50.18631536 ETH | ||||
Transfer | 23519691 | 7 days ago | 50.19631536 ETH | ||||
Transfer | 23519500 | 7 days ago | 0.01 ETH | ||||
Transfer | 23519499 | 7 days ago | 0.01 ETH | ||||
Transfer | 23519498 | 7 days ago | 0.01 ETH | ||||
Buy Punk | 23519498 | 7 days ago | 49.82268801 ETH | ||||
Transfer | 23519498 | 7 days ago | 49.83268801 ETH |
Cross-Chain Transactions
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
PunkStrategy
Compiler Version
v0.8.30+commit.73712a01
Optimization Enabled:
Yes with 1000 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.30; import {IStrategyToken} from "./interfaces/IStrategyToken.sol"; import {IPunks} from "./interfaces/IPunks.sol"; import {AuctionHouse} from "./AuctionHouse.sol"; import {SafeTransferLib} from "solady/utils/SafeTransferLib.sol"; contract PunkStrategy is AuctionHouse { IStrategyToken public token; IPunks public punks; uint256 public constant REWARD = 0.01 ether; error NotPunkOwner(); event PunkBought(uint256 indexed punkId, uint256 price); constructor(address _token, address _punks) { token = IStrategyToken(_token); punks = IPunks(_punks); } function buyPunk(uint256 punkId) external payable { // check if punk for sale and get punk price // Fetch punk offer details (,,, uint256 minValue,) = punks.punksOfferedForSale(punkId); // Calculate required ETH (punk price + reward) uint256 totalRequired = minValue + REWARD; uint256 balance = address(this).balance; // pull needed funds from token contract if (balance < totalRequired) { uint256 needed = totalRequired - balance; token.useSurplus(needed); } // Buy the punk punks.buyPunk{value: minValue}(punkId); require(punks.punkIndexToAddress(punkId) == address(this), "Not punk owner"); emit PunkBought(punkId, minValue); // pay reward to sender SafeTransferLib.safeTransferETH(msg.sender, REWARD); } receive() external payable {} // can receive ETH function _prepareAuction(uint256 punkId) internal view override { require(punks.punkIndexToAddress(punkId) == address(this), "Not punk owner"); } function _settleAuction(uint256 punkId, address buyer, uint256 price) internal override { token.lock(price, buyer); punks.transferPunk(buyer, punkId); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.30; interface IStrategyToken { // === SURPLUS MANAGEMENT === function surplus() external view returns (uint256); function useSurplus(uint256 amount) external; // === TOKEN SUPPLY STATE === function totalSupply() external view returns (uint256); function effectiveSupply() external view returns (uint256); function lockedSupply() external view returns (uint256); // === TOKEN LOCKING === function lock(uint256 amount, address from) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.30; interface IPunks { function buyPunk(uint256 punkIndex) external payable; function transferPunk(address to, uint256 punkIndex) external; function offerPunkForSale(uint256 punkIndex, uint256 minSalePriceInWei) external; function punksOfferedForSale(uint256 punkId) external view returns ( bool isForSale, uint256 punkIndex, address seller, uint256 minValue, address onlySellTo ); function balanceOf(address owner) external view returns (uint256); function punkIndexToAddress(uint256 punkIndex) external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.30; import {FixedPointMathLib} from "solady/utils/FixedPointMathLib.sol"; abstract contract AuctionHouse { uint256 public constant AUCTION_START_PRICE = 21_000_000 * 1e17; // 10% of total supply uint256 public constant AUCTION_DECAY_RATE = 1e14; event AuctionStarted(uint256 indexed auctionId, uint256 indexed punkId); event AuctionSettled( uint256 indexed auctionId, uint256 indexed punkId, address indexed buyer, uint256 price ); Auction public auction; uint256 public _nextAuctionId; struct Auction { bool active; uint256 auctionId; uint256 punkId; uint256 startTime; } modifier whenAuctionActive() { require(auction.active, "Auction not active"); _; } modifier whenAuctionNotActive() { require(!auction.active, "Auction already active"); _; } function startAuction(uint256 punkId) external whenAuctionNotActive returns (uint256 auctionId) { _prepareAuction(punkId); auctionId = _nextAuctionId++; auction = Auction({ active: true, auctionId: auctionId, punkId: punkId, startTime: block.timestamp }); emit AuctionStarted(auctionId, punkId); } function take(uint256 maxPrice) external whenAuctionActive { uint256 price = currentAuctionPrice(); require(price <= maxPrice, "Price too high"); auction.active = false; uint256 punkId = auction.punkId; uint256 auctionId = auction.auctionId; _settleAuction(punkId, msg.sender, price); emit AuctionSettled(auctionId, punkId, msg.sender, price); } function currentAuction() external view returns (Auction memory) { return auction; } function isAuctionActive() external view returns (bool) { return auction.active; } function currentAuctionPrice() public view returns (uint256) { if (!auction.active) return 0; return _priceAt(block.timestamp - auction.startTime); } function _priceAt(uint256 t) internal pure virtual returns (uint256 price) { int256 exp = -int256(AUCTION_DECAY_RATE) * int256(t); uint256 ratio = uint256(FixedPointMathLib.expWad(exp)); if (ratio == 0) return 1; price = FixedPointMathLib.mulWadUp(AUCTION_START_PRICE, ratio); } function _prepareAuction(uint256 punkId) internal virtual; function _settleAuction(uint256 punkId, address buyer, uint256 price) internal virtual; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol) /// /// @dev Note: /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection. library SafeTransferLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ETH transfer has failed. error ETHTransferFailed(); /// @dev The ERC20 `transferFrom` has failed. error TransferFromFailed(); /// @dev The ERC20 `transfer` has failed. error TransferFailed(); /// @dev The ERC20 `approve` has failed. error ApproveFailed(); /// @dev The ERC20 `totalSupply` query has failed. error TotalSupplyQueryFailed(); /// @dev The Permit2 operation has failed. error Permit2Failed(); /// @dev The Permit2 amount must be less than `2**160 - 1`. error Permit2AmountOverflow(); /// @dev The Permit2 approve operation has failed. error Permit2ApproveFailed(); /// @dev The Permit2 lockdown operation has failed. error Permit2LockdownFailed(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes. uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300; /// @dev Suggested gas stipend for contract receiving ETH to perform a few /// storage reads and writes, but low enough to prevent griefing. uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000; /// @dev The unique EIP-712 domain separator for the DAI token contract. bytes32 internal constant DAI_DOMAIN_SEPARATOR = 0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7; /// @dev The address for the WETH9 contract on Ethereum mainnet. address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; /// @dev The canonical Permit2 address. /// [Github](https://github.com/Uniswap/permit2) /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3) address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3; /// @dev The canonical address of the `SELFDESTRUCT` ETH mover. /// See: https://gist.github.com/Vectorized/1cb8ad4cf393b1378e08f23f79bd99fa /// [Etherscan](https://etherscan.io/address/0x00000000000073c48c8055bD43D1A53799176f0D) address internal constant ETH_MOVER = 0x00000000000073c48c8055bD43D1A53799176f0D; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ETH OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants. // // The regular variants: // - Forwards all remaining gas to the target. // - Reverts if the target reverts. // - Reverts if the current contract has insufficient balance. // // The force variants: // - Forwards with an optional gas stipend // (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases). // - If the target reverts, or if the gas stipend is exhausted, // creates a temporary contract to force send the ETH via `SELFDESTRUCT`. // Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758. // - Reverts if the current contract has insufficient balance. // // The try variants: // - Forwards with a mandatory gas stipend. // - Instead of reverting, returns whether the transfer succeeded. /// @dev Sends `amount` (in wei) ETH to `to`. function safeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Sends all the ETH in the current contract to `to`. function safeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // Transfer all the ETH and check if it succeeded or not. if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`. function forceSafeTransferAllETH(address to, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // forgefmt: disable-next-item if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00) } } /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`. function trySafeTransferAllETH(address to, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00) } } /// @dev Force transfers ETH to `to`, without triggering the fallback (if any). /// This method attempts to use a separate contract to send via `SELFDESTRUCT`, /// and upon failure, deploys a minimal vault to accrue the ETH. function safeMoveETH(address to, uint256 amount) internal returns (address vault) { /// @solidity memory-safe-assembly assembly { to := shr(96, shl(96, to)) // Clean upper 96 bits. for { let mover := ETH_MOVER } iszero(eq(to, address())) {} { let selfBalanceBefore := selfbalance() if or(lt(selfBalanceBefore, amount), eq(to, mover)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if extcodesize(mover) { let balanceBefore := balance(to) // Check via delta, in case `SELFDESTRUCT` is bricked. mstore(0x00, to) pop(call(gas(), mover, amount, 0x00, 0x20, codesize(), 0x00)) // If `address(to).balance >= amount + balanceBefore`, skip vault workflow. if iszero(lt(balance(to), add(amount, balanceBefore))) { break } // Just in case `SELFDESTRUCT` is changed to not revert and do nothing. if lt(selfBalanceBefore, selfbalance()) { invalid() } } let m := mload(0x40) // If the mover is missing or bricked, deploy a minimal vault // that withdraws all ETH to `to` when being called only by `to`. // forgefmt: disable-next-item mstore(add(m, 0x20), 0x33146025575b600160005260206000f35b3d3d3d3d47335af1601a5760003dfd) mstore(m, or(to, shl(160, 0x6035600b3d3960353df3fe73))) // Compute and store the bytecode hash. mstore8(0x00, 0xff) // Write the prefix. mstore(0x35, keccak256(m, 0x40)) mstore(0x01, shl(96, address())) // Deployer. mstore(0x15, 0) // Salt. vault := keccak256(0x00, 0x55) pop(call(gas(), vault, amount, codesize(), 0x00, codesize(), 0x00)) // The vault returns a single word on success. Failure reverts with empty data. if iszero(returndatasize()) { if iszero(create2(0, m, 0x40, 0)) { revert(codesize(), codesize()) } // For gas estimation. } mstore(0x40, m) // Restore the free memory pointer. break } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for /// the current contract to manage. function safeTransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) if iszero(and(eq(mload(0x00), 1), success)) { if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// /// The `from` account must have at least `amount` approved for the current contract to manage. function trySafeTransferFrom(address token, address from, address to, uint256 amount) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) if iszero(and(eq(mload(0x00), 1), success)) { success := lt(or(iszero(extcodesize(token)), returndatasize()), success) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends all of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have their entire balance approved for the current contract to manage. function safeTransferAllFrom(address token, address from, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`. amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it. // Perform the transfer, reverting upon failure. let success := call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) if iszero(and(eq(mload(0x00), 1), success)) { if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransfer(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) if iszero(and(eq(mload(0x00), 1), success)) { if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sends all of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransferAll(address token, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`. mstore(0x20, address()) // Store the address of the current contract. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x14, to) // Store the `to` argument. amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) if iszero(and(eq(mload(0x00), 1), success)) { if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// Reverts upon failure. function safeApprove(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) if iszero(and(eq(mload(0x00), 1), success)) { if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// If the initial attempt to approve fails, attempts to reset the approved amount to zero, /// then retries the approval again (some tokens, e.g. USDT, requires this). /// Reverts upon failure. function safeApproveWithRetry(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, retrying upon failure. let success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) if iszero(and(eq(mload(0x00), 1), success)) { if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) { mstore(0x34, 0) // Store 0 for the `amount`. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval. mstore(0x34, amount) // Store back the original `amount`. // Retry the approval, reverting upon failure. success := call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) if iszero(and(eq(mload(0x00), 1), success)) { // Check the `extcodesize` again just in case the token selfdestructs lol. if iszero(lt(or(iszero(extcodesize(token)), returndatasize()), success)) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } } } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Returns the amount of ERC20 `token` owned by `account`. /// Returns zero if the `token` does not exist. function balanceOf(address token, address account) internal view returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x14, account) // Store the `account` argument. mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`. amount := mul( // The arguments of `mul` are evaluated from right to left. mload(0x20), and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20) ) ) } } /// @dev Performs a `token.balanceOf(account)` check. /// `implemented` denotes whether the `token` does not implement `balanceOf`. /// `amount` is zero if the `token` does not implement `balanceOf`. function checkBalanceOf(address token, address account) internal view returns (bool implemented, uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x14, account) // Store the `account` argument. mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`. implemented := and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20) ) amount := mul(mload(0x20), implemented) } } /// @dev Returns the total supply of the `token`. /// Reverts if the token does not exist or does not implement `totalSupply()`. function totalSupply(address token) internal view returns (uint256 result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x18160ddd) // `totalSupply()`. if iszero( and(gt(returndatasize(), 0x1f), staticcall(gas(), token, 0x1c, 0x04, 0x00, 0x20)) ) { mstore(0x00, 0x54cd9435) // `TotalSupplyQueryFailed()`. revert(0x1c, 0x04) } result := mload(0x00) } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// If the initial attempt fails, try to use Permit2 to transfer the token. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for the current contract to manage. function safeTransferFrom2(address token, address from, address to, uint256 amount) internal { if (!trySafeTransferFrom(token, from, to, amount)) { permit2TransferFrom(token, from, to, amount); } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2. /// Reverts upon failure. function permit2TransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(add(m, 0x74), shr(96, shl(96, token))) mstore(add(m, 0x54), amount) mstore(add(m, 0x34), to) mstore(add(m, 0x20), shl(96, from)) // `transferFrom(address,address,uint160,address)`. mstore(m, 0x36c78516000000000000000000000000) let p := PERMIT2 let exists := eq(chainid(), 1) if iszero(exists) { exists := iszero(iszero(extcodesize(p))) } if iszero( and( call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00), lt(iszero(extcodesize(token)), exists) // Token has code and Permit2 exists. ) ) { mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`. revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04) } } } /// @dev Permit a user to spend a given amount of /// another user's tokens via native EIP-2612 permit if possible, falling /// back to Permit2 if native permit fails or is not implemented on the token. function permit2( address token, address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { bool success; /// @solidity memory-safe-assembly assembly { for {} shl(96, xor(token, WETH9)) {} { mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`. if iszero( and( // The arguments of `and` are evaluated from right to left. lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word. // Gas stipend to limit gas burn for tokens that don't refund gas when // an non-existing function is called. 5K should be enough for a SLOAD. staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20) ) ) { break } // After here, we can be sure that token is a contract. let m := mload(0x40) mstore(add(m, 0x34), spender) mstore(add(m, 0x20), shl(96, owner)) mstore(add(m, 0x74), deadline) if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) { mstore(0x14, owner) mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`. mstore( add(m, 0x94), lt(iszero(amount), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20)) ) mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`. // `nonces` is already at `add(m, 0x54)`. // `amount != 0` is already stored at `add(m, 0x94)`. mstore(add(m, 0xb4), and(0xff, v)) mstore(add(m, 0xd4), r) mstore(add(m, 0xf4), s) success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00) break } mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`. mstore(add(m, 0x54), amount) mstore(add(m, 0x94), and(0xff, v)) mstore(add(m, 0xb4), r) mstore(add(m, 0xd4), s) success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00) break } } if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s); } /// @dev Simple permit on the Permit2 contract. function simplePermit2( address token, address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(m, 0x927da105) // `allowance(address,address,address)`. { let addressMask := shr(96, not(0)) mstore(add(m, 0x20), and(addressMask, owner)) mstore(add(m, 0x40), and(addressMask, token)) mstore(add(m, 0x60), and(addressMask, spender)) mstore(add(m, 0xc0), and(addressMask, spender)) } let p := mul(PERMIT2, iszero(shr(160, amount))) if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`. staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60) ) ) { mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`. revert(add(0x18, shl(2, iszero(p))), 0x04) } mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant). // `owner` is already `add(m, 0x20)`. // `token` is already at `add(m, 0x40)`. mstore(add(m, 0x60), amount) mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`. // `nonce` is already at `add(m, 0xa0)`. // `spender` is already at `add(m, 0xc0)`. mstore(add(m, 0xe0), deadline) mstore(add(m, 0x100), 0x100) // `signature` offset. mstore(add(m, 0x120), 0x41) // `signature` length. mstore(add(m, 0x140), r) mstore(add(m, 0x160), s) mstore(add(m, 0x180), shl(248, v)) if iszero( // Revert if token does not have code, or if the call fails. mul(extcodesize(token), call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00))) { mstore(0x00, 0x6b836e6b) // `Permit2Failed()`. revert(0x1c, 0x04) } } } /// @dev Approves `spender` to spend `amount` of `token` for `address(this)`. function permit2Approve(address token, address spender, uint160 amount, uint48 expiration) internal { /// @solidity memory-safe-assembly assembly { let addressMask := shr(96, not(0)) let m := mload(0x40) mstore(m, 0x87517c45) // `approve(address,address,uint160,uint48)`. mstore(add(m, 0x20), and(addressMask, token)) mstore(add(m, 0x40), and(addressMask, spender)) mstore(add(m, 0x60), and(addressMask, amount)) mstore(add(m, 0x80), and(0xffffffffffff, expiration)) if iszero(call(gas(), PERMIT2, 0, add(m, 0x1c), 0xa0, codesize(), 0x00)) { mstore(0x00, 0x324f14ae) // `Permit2ApproveFailed()`. revert(0x1c, 0x04) } } } /// @dev Revokes an approval for `token` and `spender` for `address(this)`. function permit2Lockdown(address token, address spender) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(m, 0xcc53287f) // `Permit2.lockdown`. mstore(add(m, 0x20), 0x20) // Offset of the `approvals`. mstore(add(m, 0x40), 1) // `approvals.length`. mstore(add(m, 0x60), shr(96, shl(96, token))) mstore(add(m, 0x80), shr(96, shl(96, spender))) if iszero(call(gas(), PERMIT2, 0, add(m, 0x1c), 0xa0, codesize(), 0x00)) { mstore(0x00, 0x96b3de23) // `Permit2LockdownFailed()`. revert(0x1c, 0x04) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an overflow. error RPowOverflow(); /// @dev The mantissa is too big to fit. error MantissaOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, due to an multiplication overflow. error SMulWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error SDivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /// @dev The input outside the acceptable domain. error OutOfDomain(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if gt(x, div(not(0), y)) { if y { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down. function sMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`. if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) { mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if iszero(eq(div(z, y), x)) { if y { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } } z := add(iszero(iszero(mod(z, WAD))), div(z, WAD)) } } /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks. function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`. if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function sDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, WAD) // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`. if iszero(mul(y, eq(sdiv(z, WAD), x))) { mstore(0x00, 0x5c43740d) // `SDivWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`. if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks. function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. /// Note: This function is an approximation. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln /// Note: This function is an approximation. Monotonically increasing. function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is less than 0.5 we return zero. // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`. if (x <= -41446531673892822313) return r; /// @solidity memory-safe-assembly assembly { // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96` // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // `k` is in the range `[-61, 195]`. // Evaluate using a (6, 7)-term rational approximation. // `p` is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already `2**96` too large. r := sdiv(p, q) } // r should be in the range `(0.09, 0.25) * 2**96`. // We now need to multiply r by: // - The scale factor `s ≈ 6.031367120`. // - The `2**k` factor from the range reduction. // - The `1e18 / 2**96` factor for base conversion. // We do this all at once, with an intermediate result in `2**213` // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln /// Note: This function is an approximation. Monotonically increasing. function lnWad(int256 x) internal pure returns (int256 r) { /// @solidity memory-safe-assembly assembly { // We want to convert `x` from `10**18` fixed point to `2**96` fixed point. // We do this by multiplying by `2**96 / 10**18`. But since // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here // and add `ln(2**96 / 10**18)` at the end. // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`. r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // We place the check here for more optimal stack operations. if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } // forgefmt: disable-next-item r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)) // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x := shr(159, shl(r, x)) // Evaluate using a (8, 8)-term rational approximation. // `p` is made monic, we will multiply by a scale factor later. // forgefmt: disable-next-item let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir. sar(96, mul(add(43456485725739037958740375743393, sar(96, mul(add(24828157081833163892658089445524, sar(96, mul(add(3273285459638523848632254066296, x), x))), x))), x)), 11111509109440967052023855526967) p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857) p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526) p := sub(mul(p, x), shl(96, 795164235651350426258249787498)) // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. // `q` is monic by convention. let q := add(5573035233440673466300451813936, x) q := add(71694874799317883764090561454958, sar(96, mul(x, q))) q := add(283447036172924575727196451306956, sar(96, mul(x, q))) q := add(401686690394027663651624208769553, sar(96, mul(x, q))) q := add(204048457590392012362485061816622, sar(96, mul(x, q))) q := add(31853899698501571402653359427138, sar(96, mul(x, q))) q := add(909429971244387300277376558375, sar(96, mul(x, q))) // `p / q` is in the range `(0, 0.125) * 2**96`. // Finalization, we need to: // - Multiply by the scale factor `s = 5.549…`. // - Add `ln(2**96 / 10**18)`. // - Add `k * ln(2)`. // - Multiply by `10**18 / 2**96 = 5**18 >> 78`. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already `2**96` too large. p := sdiv(p, q) // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`. p := mul(1677202110996718588342820967067443963516166, p) // Add `ln(2) * k * 5**18 * 2**192`. // forgefmt: disable-next-item p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p) // Add `ln(2**96 / 10**18) * 5**18 * 2**192`. p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p) // Base conversion: mul `2**18 / 2**192`. r := sar(174, p) } } /// @dev Returns `W_0(x)`, denominated in `WAD`. /// See: https://en.wikipedia.org/wiki/Lambert_W_function /// a.k.a. Product log function. This is an approximation of the principal branch. /// Note: This function is an approximation. Monotonically increasing. function lambertW0Wad(int256 x) internal pure returns (int256 w) { // forgefmt: disable-next-item unchecked { if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`. (int256 wad, int256 p) = (int256(WAD), x); uint256 c; // Whether we need to avoid catastrophic cancellation. uint256 i = 4; // Number of iterations. if (w <= 0x1ffffffffffff) { if (-0x4000000000000 <= w) { i = 1; // Inputs near zero only take one step to converge. } else if (w <= -0x3ffffffffffffff) { i = 32; // Inputs near `-1/e` take very long to converge. } } else if (uint256(w >> 63) == uint256(0)) { /// @solidity memory-safe-assembly assembly { // Inline log2 for more performance, since the range is small. let v := shr(49, w) let l := shl(3, lt(0xff, v)) l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)), 49) w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13)) c := gt(l, 60) i := add(2, add(gt(l, 53), c)) } } else { int256 ll = lnWad(w = lnWad(w)); /// @solidity memory-safe-assembly assembly { // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`. w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll)) i := add(3, iszero(shr(68, x))) c := iszero(shr(143, x)) } if (c == uint256(0)) { do { // If `x` is big, use Newton's so that intermediate values won't overflow. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := mul(w, div(e, wad)) w := sub(w, sdiv(sub(t, x), div(add(e, t), wad))) } if (p <= w) break; p = w; } while (--i != uint256(0)); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } return w; } } do { // Otherwise, use Halley's for faster convergence. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := add(w, wad) let s := sub(mul(w, e), mul(x, wad)) w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t))))) } if (p <= w) break; p = w; } while (--i != c); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation. if (c == uint256(0)) return w; int256 t = w | 1; /// @solidity memory-safe-assembly assembly { x := sdiv(mul(x, wad), t) } x = (t * (wad + lnWad(x))); /// @solidity memory-safe-assembly assembly { w := sdiv(x, add(wad, t)) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `a * b == x * y`, with full precision. function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0)))) } } /// @dev Calculates `floor(x * y / d)` with full precision. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // 512-bit multiply `[p1 p0] = x * y`. // Compute the product mod `2**256` and mod `2**256 - 1` // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that `product = p1 * 2**256 + p0`. // Temporarily use `z` as `p0` to save gas. z := mul(x, y) // Lower 256 bits of `x * y`. for {} 1 {} { // If overflows. if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) { let mm := mulmod(x, y, not(0)) let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`. /*------------------- 512 by 256 division --------------------*/ // Make division exact by subtracting the remainder from `[p1 p0]`. let r := mulmod(x, y, d) // Compute remainder using mulmod. let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`. // Make sure `z` is less than `2**256`. Also prevents `d == 0`. // Placing the check here seems to give more optimal stack operations. if iszero(gt(d, p1)) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } d := div(d, t) // Divide `d` by `t`, which is a power of two. // Invert `d mod 2**256` // Now that `d` is an odd number, it has an inverse // modulo `2**256` such that `d * inv = 1 mod 2**256`. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, `d * inv = 1 mod 2**4`. let inv := xor(2, mul(3, d)) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128 z := mul( // Divide [p1 p0] by the factors of two. // Shift in bits from `p1` into `p0`. For this we need // to flip `t` such that it is `2**256 / t`. or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)), mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256 ) break } z := div(z, d) break } } } /// @dev Calculates `floor(x * y / d)` with full precision. /// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits. /// Performs the full 512 bit calculation regardless. function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) let mm := mulmod(x, y, not(0)) let p1 := sub(mm, add(z, lt(mm, z))) let t := and(d, sub(0, d)) let r := mulmod(x, y, d) d := div(d, t) let inv := xor(2, mul(3, d)) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) inv := mul(inv, sub(2, mul(d, inv))) z := mul( or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)), mul(sub(2, mul(d, inv)), inv) ) } } /// @dev Calculates `floor(x * y / d)` with full precision, rounded up. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { z = fullMulDiv(x, y, d); /// @solidity memory-safe-assembly assembly { if mulmod(x, y, d) { z := add(z, 1) if iszero(z) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } } } } /// @dev Calculates `floor(x * y / 2 ** n)` with full precision. /// Throws if result overflows a uint256. /// Credit to Philogy under MIT license: /// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Temporarily use `z` as `p0` to save gas. z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`. for {} 1 {} { if iszero(or(iszero(x), eq(div(z, x), y))) { let k := and(n, 0xff) // `n`, cleaned. let mm := mulmod(x, y, not(0)) let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`. // | p1 | z | // Before: | p1_0 ¦ p1_1 | z_0 ¦ z_1 | // Final: | 0 ¦ p1_0 | p1_1 ¦ z_0 | // Check that final `z` doesn't overflow by checking that p1_0 = 0. if iszero(shr(k, p1)) { z := add(shl(sub(256, k), p1), shr(k, z)) break } mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } z := shr(and(n, 0xff), z) break } } } /// @dev Returns `floor(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`. if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := div(z, d) } } /// @dev Returns `ceil(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`. if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(z, d))), div(z, d)) } } /// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`. function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) { /// @solidity memory-safe-assembly assembly { let g := n let r := mod(a, n) for { let y := 1 } 1 {} { let q := div(g, r) let t := g g := r r := sub(t, mul(r, q)) let u := x x := y y := sub(u, mul(y, q)) if iszero(r) { break } } x := mul(eq(g, 1), add(x, mul(slt(x, 0), n))) } } /// @dev Returns `ceil(x / d)`. /// Reverts if `d` is zero. function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(d) { mstore(0x00, 0x65244e4e) // `DivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, d))), div(x, d)) } } /// @dev Returns `max(0, x - y)`. Alias for `saturatingSub`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Returns `max(0, x - y)`. function saturatingSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Returns `min(2 ** 256 - 1, x + y)`. function saturatingAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := or(sub(0, lt(add(x, y), x)), add(x, y)) } } /// @dev Returns `min(2 ** 256 - 1, x * y)`. function saturatingMul(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := or(sub(or(iszero(x), eq(div(mul(x, y), x), y)), 1), mul(x, y)) } } /// @dev Returns `condition ? x : y`, without branching. function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), iszero(condition))) } } /// @dev Returns `condition ? x : y`, without branching. function ternary(bool condition, bytes32 x, bytes32 y) internal pure returns (bytes32 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), iszero(condition))) } } /// @dev Returns `condition ? x : y`, without branching. function ternary(bool condition, address x, address y) internal pure returns (address z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), iszero(condition))) } } /// @dev Returns `x != 0 ? x : y`, without branching. function coalesce(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := or(x, mul(y, iszero(x))) } } /// @dev Returns `x != bytes32(0) ? x : y`, without branching. function coalesce(bytes32 x, bytes32 y) internal pure returns (bytes32 z) { /// @solidity memory-safe-assembly assembly { z := or(x, mul(y, iszero(x))) } } /// @dev Returns `x != address(0) ? x : y`, without branching. function coalesce(address x, address y) internal pure returns (address z) { /// @solidity memory-safe-assembly assembly { z := or(x, mul(y, iszero(shl(96, x)))) } } /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`. /// Reverts if the computation overflows. function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`. if x { z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x` let half := shr(1, b) // Divide `b` by 2. // Divide `y` by 2 every iteration. for { y := shr(1, y) } y { y := shr(1, y) } { let xx := mul(x, x) // Store x squared. let xxRound := add(xx, half) // Round to the nearest number. // Revert if `xx + half` overflowed, or if `x ** 2` overflows. if or(lt(xxRound, xx), shr(128, x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } x := div(xxRound, b) // Set `x` to scaled `xxRound`. // If `y` is odd: if and(y, 1) { let zx := mul(z, x) // Compute `z * x`. let zxRound := add(zx, half) // Round to the nearest number. // If `z * x` overflowed or `zx + half` overflowed: if or(xor(div(zx, x), z), lt(zxRound, zx)) { // Revert if `x` is non-zero. if x { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } } z := div(zxRound, b) // Return properly scaled `zxRound`. } } } } } /// @dev Returns the square root of `x`, rounded down. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the cube root of `x`, rounded down. /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license: /// https://github.com/pcaversaccio/snekmate/blob/main/src/snekmate/utils/math.vy /// Formally verified by xuwinnie: /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf function cbrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // Makeshift lookup table to nudge the approximate log2 result. z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3))) // Newton-Raphson's. z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) // Round down. z := sub(z, lt(div(x, mul(z, z)), z)) } } /// @dev Returns the square root of `x`, denominated in `WAD`, rounded down. function sqrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18); z = (1 + sqrt(x)) * 10 ** 9; z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1; } /// @solidity memory-safe-assembly assembly { z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down. } } /// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down. /// Formally verified by xuwinnie: /// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf function cbrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36); z = (1 + cbrt(x)) * 10 ** 12; z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3; } /// @solidity memory-safe-assembly assembly { let p := x for {} 1 {} { if iszero(shr(229, p)) { if iszero(shr(199, p)) { p := mul(p, 100000000000000000) // 10 ** 17. break } p := mul(p, 100000000) // 10 ** 8. break } if iszero(shr(249, p)) { p := mul(p, 100) } break } let t := mulmod(mul(z, z), z, p) z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down. } } /// @dev Returns `sqrt(x * y)`. Also called the geometric mean. function mulSqrt(uint256 x, uint256 y) internal pure returns (uint256 z) { if (x == y) return x; uint256 p = rawMul(x, y); if (y == rawDiv(p, x)) return sqrt(p); for (z = saturatingMul(rawAdd(sqrt(x), 1), rawAdd(sqrt(y), 1));; z = avg(z, p)) { if ((p = fullMulDivUnchecked(x, y, z)) >= z) break; } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := 1 if iszero(lt(x, 58)) { mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`. revert(0x1c, 0x04) } for {} x { x := sub(x, 1) } { z := mul(z, x) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. /// Returns 0 if `x` is zero. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)) } } /// @dev Returns the log2 of `x`, rounded up. /// Returns 0 if `x` is zero. function log2Up(uint256 x) internal pure returns (uint256 r) { r = log2(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(r, 1), x)) } } /// @dev Returns the log10 of `x`. /// Returns 0 if `x` is zero. function log10(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 100000000000000000000000000000000000000)) { x := div(x, 100000000000000000000000000000000000000) r := 38 } if iszero(lt(x, 100000000000000000000)) { x := div(x, 100000000000000000000) r := add(r, 20) } if iszero(lt(x, 10000000000)) { x := div(x, 10000000000) r := add(r, 10) } if iszero(lt(x, 100000)) { x := div(x, 100000) r := add(r, 5) } r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999))))) } } /// @dev Returns the log10 of `x`, rounded up. /// Returns 0 if `x` is zero. function log10Up(uint256 x) internal pure returns (uint256 r) { r = log10(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(exp(10, r), x)) } } /// @dev Returns the log256 of `x`. /// Returns 0 if `x` is zero. function log256(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(shr(3, r), lt(0xff, shr(r, x))) } } /// @dev Returns the log256 of `x`, rounded up. /// Returns 0 if `x` is zero. function log256Up(uint256 x) internal pure returns (uint256 r) { r = log256(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(shl(3, r), 1), x)) } } /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`. /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent). function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) { /// @solidity memory-safe-assembly assembly { mantissa := x if mantissa { if iszero(mod(mantissa, 1000000000000000000000000000000000)) { mantissa := div(mantissa, 1000000000000000000000000000000000) exponent := 33 } if iszero(mod(mantissa, 10000000000000000000)) { mantissa := div(mantissa, 10000000000000000000) exponent := add(exponent, 19) } if iszero(mod(mantissa, 1000000000000)) { mantissa := div(mantissa, 1000000000000) exponent := add(exponent, 12) } if iszero(mod(mantissa, 1000000)) { mantissa := div(mantissa, 1000000) exponent := add(exponent, 6) } if iszero(mod(mantissa, 10000)) { mantissa := div(mantissa, 10000) exponent := add(exponent, 4) } if iszero(mod(mantissa, 100)) { mantissa := div(mantissa, 100) exponent := add(exponent, 2) } if iszero(mod(mantissa, 10)) { mantissa := div(mantissa, 10) exponent := add(exponent, 1) } } } } /// @dev Convenience function for packing `x` into a smaller number using `sci`. /// The `mantissa` will be in bits [7..255] (the upper 249 bits). /// The `exponent` will be in bits [0..6] (the lower 7 bits). /// Use `SafeCastLib` to safely ensure that the `packed` number is small /// enough to fit in the desired unsigned integer type: /// ``` /// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether)); /// ``` function packSci(uint256 x) internal pure returns (uint256 packed) { (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`. /// @solidity memory-safe-assembly assembly { if shr(249, x) { mstore(0x00, 0xce30380c) // `MantissaOverflow()`. revert(0x1c, 0x04) } packed := or(shl(7, x), packed) } } /// @dev Convenience function for unpacking a packed number from `packSci`. function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) { unchecked { unpacked = (packed >> 7) * 10 ** (packed & 0x7f); } } /// @dev Returns the average of `x` and `y`. Rounds towards zero. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = (x & y) + ((x ^ y) >> 1); } } /// @dev Returns the average of `x` and `y`. Rounds towards negative infinity. function avg(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { unchecked { z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255); } } /// @dev Returns the absolute distance between `x` and `y`. function dist(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y)) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the minimum of `x` and `y`. function min(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), sgt(y, x))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), gt(minValue, x))) z := xor(z, mul(xor(z, maxValue), lt(maxValue, z))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), sgt(minValue, x))) z := xor(z, mul(xor(z, maxValue), slt(maxValue, z))) } } /// @dev Returns greatest common divisor of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`, /// with `t` clamped between `begin` and `end` (inclusive). /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`). /// If `begins == end`, returns `t <= begin ? a : b`. function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end) internal pure returns (uint256) { if (begin > end) (t, begin, end) = (~t, ~begin, ~end); if (t <= begin) return a; if (t >= end) return b; unchecked { if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin); return a - fullMulDiv(a - b, t - begin, end - begin); } } /// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`. /// with `t` clamped between `begin` and `end` (inclusive). /// Agnostic to the order of (`a`, `b`) and (`end`, `begin`). /// If `begins == end`, returns `t <= begin ? a : b`. function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end) internal pure returns (int256) { if (begin > end) (t, begin, end) = (~t, ~begin, ~end); if (t <= begin) return a; if (t >= end) return b; // forgefmt: disable-next-item unchecked { if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a), uint256(t - begin), uint256(end - begin))); return int256(uint256(a) - fullMulDiv(uint256(a - b), uint256(t - begin), uint256(end - begin))); } } /// @dev Returns if `x` is an even number. Some people may need this. function isEven(uint256 x) internal pure returns (bool) { return x & uint256(1) == uint256(0); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RAW NUMBER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `x + y`, without checking for overflow. function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x + y; } } /// @dev Returns `x + y`, without checking for overflow. function rawAdd(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x + y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x - y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x - y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x * y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x * y; } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawSMod(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := smod(x, y) } } /// @dev Returns `(x + y) % d`, return 0 if `d` if zero. function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := addmod(x, y, d) } } /// @dev Returns `(x * y) % d`, return 0 if `d` if zero. function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mulmod(x, y, d) } } }
{ "remappings": [ "forge-std/=lib/forge-std/src/", "solady/=lib/solady/src/" ], "optimizer": { "enabled": true, "runs": 1000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "prague", "viaIR": false }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_token","type":"address"},{"internalType":"address","name":"_punks","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"NotPunkOwner","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"auctionId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"punkId","type":"uint256"},{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"price","type":"uint256"}],"name":"AuctionSettled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"auctionId","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"punkId","type":"uint256"}],"name":"AuctionStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"punkId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"price","type":"uint256"}],"name":"PunkBought","type":"event"},{"inputs":[],"name":"AUCTION_DECAY_RATE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"AUCTION_START_PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"REWARD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_nextAuctionId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"auction","outputs":[{"internalType":"bool","name":"active","type":"bool"},{"internalType":"uint256","name":"auctionId","type":"uint256"},{"internalType":"uint256","name":"punkId","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"punkId","type":"uint256"}],"name":"buyPunk","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"currentAuction","outputs":[{"components":[{"internalType":"bool","name":"active","type":"bool"},{"internalType":"uint256","name":"auctionId","type":"uint256"},{"internalType":"uint256","name":"punkId","type":"uint256"},{"internalType":"uint256","name":"startTime","type":"uint256"}],"internalType":"struct AuctionHouse.Auction","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"currentAuctionPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isAuctionActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"punks","outputs":[{"internalType":"contract IPunks","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"punkId","type":"uint256"}],"name":"startAuction","outputs":[{"internalType":"uint256","name":"auctionId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxPrice","type":"uint256"}],"name":"take","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IStrategyToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6080604052348015600e575f5ffd5b50604051610e2b380380610e2b833981016040819052602b916075565b600580546001600160a01b039384166001600160a01b0319918216179091556006805492909316911617905560a1565b80516001600160a01b03811681146070575f5ffd5b919050565b5f5f604083850312156085575f5ffd5b608c83605b565b9150609860208401605b565b90509250929050565b610d7d806100ae5f395ff3fe6080604052600436106100d1575f3560e01c80637d9f6db51161007c578063d1b4b9a311610057578063d1b4b9a314610236578063dfe0a88914610257578063fbd5ba1d1461028e578063fc0c546a146102a3575f5ffd5b80637d9f6db5146101c35780638264fe9814610209578063cab34c081461021c575f5ffd5b80634fd9efc4116100ac5780634fd9efc41461016b5780636a5838461461018c5780637a1c4a56146101a5575f5ffd5b8063065de74c146100dc57806308fe6bb41461010e578063496a698d14610122575f5ffd5b366100d857005b5f5ffd5b3480156100e7575f5ffd5b506100fb6100f6366004610be0565b6102c2565b6040519081526020015b60405180910390f35b348015610119575f5ffd5b506100fb6103a6565b34801561012d575f5ffd5b506101366103d0565b604051610105919081511515815260208083015190820152604080830151908201526060918201519181019190915260800190565b348015610176575f5ffd5b5061018a610185366004610be0565b61042a565b005b348015610197575f5ffd5b506100fb655af3107a400081565b3480156101b0575f5ffd5b506100fb6a01bcb13a657b263880000081565b3480156101ce575f5ffd5b505f546001546002546003546101e79360ff1692919084565b6040805194151585526020850193909352918301526060820152608001610105565b61018a610217366004610be0565b61053b565b348015610227575f5ffd5b506100fb662386f26fc1000081565b348015610241575f5ffd5b505f5460ff166040519015158152602001610105565b348015610262575f5ffd5b50600654610276906001600160a01b031681565b6040516001600160a01b039091168152602001610105565b348015610299575f5ffd5b506100fb60045481565b3480156102ae575f5ffd5b50600554610276906001600160a01b031681565b5f805460ff161561031a5760405162461bcd60e51b815260206004820152601660248201527f41756374696f6e20616c7265616479206163746976650000000000000000000060448201526064015b60405180910390fd5b610323826107ed565b60048054905f61033283610c24565b90915550604080516080810182526001808252602082018490528183018690524260609092018290525f805460ff1916821781559084905560028690556003919091559051919250839183917ff8910119ddbef5440c54532457dfe8250a10ed39e583292818f44724b9e1344c91a3919050565b5f805460ff166103b557505f90565b6003546103cb906103c69042610c3c565b6108b1565b905090565b6103f960405180608001604052805f151581526020015f81526020015f81526020015f81525090565b50604080516080810182525f5460ff1615158152600154602082015260025491810191909152600354606082015290565b5f5460ff1661047b5760405162461bcd60e51b815260206004820152601260248201527f41756374696f6e206e6f742061637469766500000000000000000000000000006044820152606401610311565b5f6104846103a6565b9050818111156104d65760405162461bcd60e51b815260206004820152600e60248201527f507269636520746f6f20686967680000000000000000000000000000000000006044820152606401610311565b5f805460ff191690556002546001546104f0823385610909565b336001600160a01b031682827fa3f81c0e157dc1e05cb31e254314bbde8e3878d9ff78b10ef6abfe316492bfbe8660405161052d91815260200190565b60405180910390a450505050565b6006546040517f088f11f3000000000000000000000000000000000000000000000000000000008152600481018390525f916001600160a01b03169063088f11f39060240160a060405180830381865afa15801561059b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105bf9190610c70565b5093505050505f662386f26fc10000826105d99190610ccb565b90504781811015610664575f6105ef8284610c3c565b6005546040517fcf7ce1bb000000000000000000000000000000000000000000000000000000008152600481018390529192506001600160a01b03169063cf7ce1bb906024015f604051808303815f87803b15801561064c575f5ffd5b505af115801561065e573d5f5f3e3d5ffd5b50505050505b6006546040517f8264fe98000000000000000000000000000000000000000000000000000000008152600481018690526001600160a01b0390911690638264fe989085906024015f604051808303818588803b1580156106c2575f5ffd5b505af11580156106d4573d5f5f3e3d5ffd5b5050600654604051630b02f02d60e31b8152600481018990523094506001600160a01b03909116925063581781689150602401602060405180830381865afa158015610722573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107469190610cde565b6001600160a01b03161461079c5760405162461bcd60e51b815260206004820152600e60248201527f4e6f742070756e6b206f776e65720000000000000000000000000000000000006044820152606401610311565b837f33533924edf1167ae8a89297cd7243836aa616927637fcf50d24a1d3ddd78b7d846040516107ce91815260200190565b60405180910390a26107e733662386f26fc10000610a02565b50505050565b600654604051630b02f02d60e31b81526004810183905230916001600160a01b031690635817816890602401602060405180830381865afa158015610834573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108589190610cde565b6001600160a01b0316146108ae5760405162461bcd60e51b815260206004820152600e60248201527f4e6f742070756e6b206f776e65720000000000000000000000000000000000006044820152606401610311565b50565b5f80826108c3655af3107a4000610cfe565b6108cd9190610d18565b90505f6108d982610a1f565b9050805f036108ec575060019392505050565b6109016a01bcb13a657b263880000082610baa565b949350505050565b6005546040517f66dfbfb4000000000000000000000000000000000000000000000000000000008152600481018390526001600160a01b038481166024830152909116906366dfbfb4906044015f604051808303815f87803b15801561096d575f5ffd5b505af115801561097f573d5f5f3e3d5ffd5b50506006546040517f8b72a2ec0000000000000000000000000000000000000000000000000000000081526001600160a01b038681166004830152602482018890529091169250638b72a2ec91506044015f604051808303815f87803b1580156109e7575f5ffd5b505af11580156109f9573d5f5f3e3d5ffd5b50505050505050565b5f385f3884865af1610a1b5763b12d13eb5f526004601cfd5b5050565b5f68023f2fa8f6da5b9d28198213610a3657919050565b680755bf798b4a1bf1e58212610a535763a37bfec95f526004601cfd5b6503782dace9d9604e83901b0591505f60606bb17217f7d1cf79abc9e3b39884821b056b80000000000000000000000001901d6bb17217f7d1cf79abc9e3b39881029093036c240c330e9fb2d9cbaf0fd5aafb1981018102606090811d6d0277594991cfc85f6e2461837cd9018202811d6d1a521255e34f6a5061b25ef1c9c319018202811d6db1bbb201f443cf962f1a1d3db4a5018202811d6e02c72388d9f74f51a9331fed693f1419018202811d6e05180bb14799ab47a8a8cb2a527d57016d02d16720577bd19bf614176fe9ea6c10fe68e7fd37d0007b713f765084018402831d9081019084016d01d3967ed30fc4f89c02bab5708119010290911d6e0587f503bb6ea29d25fcb7401964500190910279d835ebba824c98fb31b83b2ca45c000000000000000000000000010574029d9dc38563c32e5c2f6dc192ee70ef65f9978af30260c3939093039290921c92915050565b8181028181048314610bc9578115610bc95763bac65e5b5f526004601cfd5b670de0b6b3a7640000808206151591040192915050565b5f60208284031215610bf0575f5ffd5b5035919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f60018201610c3557610c35610bf7565b5060010190565b81810381811115610c4f57610c4f610bf7565b92915050565b80516001600160a01b0381168114610c6b575f5ffd5b919050565b5f5f5f5f5f60a08688031215610c84575f5ffd5b85518015158114610c93575f5ffd5b60208701519095509350610ca960408701610c55565b60608701519093509150610cbf60808701610c55565b90509295509295909350565b80820180821115610c4f57610c4f610bf7565b5f60208284031215610cee575f5ffd5b610cf782610c55565b9392505050565b5f600160ff1b8203610d1257610d12610bf7565b505f0390565b8082025f8212600160ff1b84141615610d3357610d33610bf7565b8181058314821517610c4f57610c4f610bf756fea2646970667358221220195b70317441a40ccf47449766f3dbe50e50f18a1e36dc5b963fd16653cb75f964736f6c634300081e003300000000000000000000000038778e6d4d0dbe9becef3ae8b938570209efa48b000000000000000000000000b47e3cd837ddf8e4c57f05d70ab865de6e193bbb
Deployed Bytecode
0x6080604052600436106100d1575f3560e01c80637d9f6db51161007c578063d1b4b9a311610057578063d1b4b9a314610236578063dfe0a88914610257578063fbd5ba1d1461028e578063fc0c546a146102a3575f5ffd5b80637d9f6db5146101c35780638264fe9814610209578063cab34c081461021c575f5ffd5b80634fd9efc4116100ac5780634fd9efc41461016b5780636a5838461461018c5780637a1c4a56146101a5575f5ffd5b8063065de74c146100dc57806308fe6bb41461010e578063496a698d14610122575f5ffd5b366100d857005b5f5ffd5b3480156100e7575f5ffd5b506100fb6100f6366004610be0565b6102c2565b6040519081526020015b60405180910390f35b348015610119575f5ffd5b506100fb6103a6565b34801561012d575f5ffd5b506101366103d0565b604051610105919081511515815260208083015190820152604080830151908201526060918201519181019190915260800190565b348015610176575f5ffd5b5061018a610185366004610be0565b61042a565b005b348015610197575f5ffd5b506100fb655af3107a400081565b3480156101b0575f5ffd5b506100fb6a01bcb13a657b263880000081565b3480156101ce575f5ffd5b505f546001546002546003546101e79360ff1692919084565b6040805194151585526020850193909352918301526060820152608001610105565b61018a610217366004610be0565b61053b565b348015610227575f5ffd5b506100fb662386f26fc1000081565b348015610241575f5ffd5b505f5460ff166040519015158152602001610105565b348015610262575f5ffd5b50600654610276906001600160a01b031681565b6040516001600160a01b039091168152602001610105565b348015610299575f5ffd5b506100fb60045481565b3480156102ae575f5ffd5b50600554610276906001600160a01b031681565b5f805460ff161561031a5760405162461bcd60e51b815260206004820152601660248201527f41756374696f6e20616c7265616479206163746976650000000000000000000060448201526064015b60405180910390fd5b610323826107ed565b60048054905f61033283610c24565b90915550604080516080810182526001808252602082018490528183018690524260609092018290525f805460ff1916821781559084905560028690556003919091559051919250839183917ff8910119ddbef5440c54532457dfe8250a10ed39e583292818f44724b9e1344c91a3919050565b5f805460ff166103b557505f90565b6003546103cb906103c69042610c3c565b6108b1565b905090565b6103f960405180608001604052805f151581526020015f81526020015f81526020015f81525090565b50604080516080810182525f5460ff1615158152600154602082015260025491810191909152600354606082015290565b5f5460ff1661047b5760405162461bcd60e51b815260206004820152601260248201527f41756374696f6e206e6f742061637469766500000000000000000000000000006044820152606401610311565b5f6104846103a6565b9050818111156104d65760405162461bcd60e51b815260206004820152600e60248201527f507269636520746f6f20686967680000000000000000000000000000000000006044820152606401610311565b5f805460ff191690556002546001546104f0823385610909565b336001600160a01b031682827fa3f81c0e157dc1e05cb31e254314bbde8e3878d9ff78b10ef6abfe316492bfbe8660405161052d91815260200190565b60405180910390a450505050565b6006546040517f088f11f3000000000000000000000000000000000000000000000000000000008152600481018390525f916001600160a01b03169063088f11f39060240160a060405180830381865afa15801561059b573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105bf9190610c70565b5093505050505f662386f26fc10000826105d99190610ccb565b90504781811015610664575f6105ef8284610c3c565b6005546040517fcf7ce1bb000000000000000000000000000000000000000000000000000000008152600481018390529192506001600160a01b03169063cf7ce1bb906024015f604051808303815f87803b15801561064c575f5ffd5b505af115801561065e573d5f5f3e3d5ffd5b50505050505b6006546040517f8264fe98000000000000000000000000000000000000000000000000000000008152600481018690526001600160a01b0390911690638264fe989085906024015f604051808303818588803b1580156106c2575f5ffd5b505af11580156106d4573d5f5f3e3d5ffd5b5050600654604051630b02f02d60e31b8152600481018990523094506001600160a01b03909116925063581781689150602401602060405180830381865afa158015610722573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107469190610cde565b6001600160a01b03161461079c5760405162461bcd60e51b815260206004820152600e60248201527f4e6f742070756e6b206f776e65720000000000000000000000000000000000006044820152606401610311565b837f33533924edf1167ae8a89297cd7243836aa616927637fcf50d24a1d3ddd78b7d846040516107ce91815260200190565b60405180910390a26107e733662386f26fc10000610a02565b50505050565b600654604051630b02f02d60e31b81526004810183905230916001600160a01b031690635817816890602401602060405180830381865afa158015610834573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108589190610cde565b6001600160a01b0316146108ae5760405162461bcd60e51b815260206004820152600e60248201527f4e6f742070756e6b206f776e65720000000000000000000000000000000000006044820152606401610311565b50565b5f80826108c3655af3107a4000610cfe565b6108cd9190610d18565b90505f6108d982610a1f565b9050805f036108ec575060019392505050565b6109016a01bcb13a657b263880000082610baa565b949350505050565b6005546040517f66dfbfb4000000000000000000000000000000000000000000000000000000008152600481018390526001600160a01b038481166024830152909116906366dfbfb4906044015f604051808303815f87803b15801561096d575f5ffd5b505af115801561097f573d5f5f3e3d5ffd5b50506006546040517f8b72a2ec0000000000000000000000000000000000000000000000000000000081526001600160a01b038681166004830152602482018890529091169250638b72a2ec91506044015f604051808303815f87803b1580156109e7575f5ffd5b505af11580156109f9573d5f5f3e3d5ffd5b50505050505050565b5f385f3884865af1610a1b5763b12d13eb5f526004601cfd5b5050565b5f68023f2fa8f6da5b9d28198213610a3657919050565b680755bf798b4a1bf1e58212610a535763a37bfec95f526004601cfd5b6503782dace9d9604e83901b0591505f60606bb17217f7d1cf79abc9e3b39884821b056b80000000000000000000000001901d6bb17217f7d1cf79abc9e3b39881029093036c240c330e9fb2d9cbaf0fd5aafb1981018102606090811d6d0277594991cfc85f6e2461837cd9018202811d6d1a521255e34f6a5061b25ef1c9c319018202811d6db1bbb201f443cf962f1a1d3db4a5018202811d6e02c72388d9f74f51a9331fed693f1419018202811d6e05180bb14799ab47a8a8cb2a527d57016d02d16720577bd19bf614176fe9ea6c10fe68e7fd37d0007b713f765084018402831d9081019084016d01d3967ed30fc4f89c02bab5708119010290911d6e0587f503bb6ea29d25fcb7401964500190910279d835ebba824c98fb31b83b2ca45c000000000000000000000000010574029d9dc38563c32e5c2f6dc192ee70ef65f9978af30260c3939093039290921c92915050565b8181028181048314610bc9578115610bc95763bac65e5b5f526004601cfd5b670de0b6b3a7640000808206151591040192915050565b5f60208284031215610bf0575f5ffd5b5035919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f60018201610c3557610c35610bf7565b5060010190565b81810381811115610c4f57610c4f610bf7565b92915050565b80516001600160a01b0381168114610c6b575f5ffd5b919050565b5f5f5f5f5f60a08688031215610c84575f5ffd5b85518015158114610c93575f5ffd5b60208701519095509350610ca960408701610c55565b60608701519093509150610cbf60808701610c55565b90509295509295909350565b80820180821115610c4f57610c4f610bf7565b5f60208284031215610cee575f5ffd5b610cf782610c55565b9392505050565b5f600160ff1b8203610d1257610d12610bf7565b505f0390565b8082025f8212600160ff1b84141615610d3357610d33610bf7565b8181058314821517610c4f57610c4f610bf756fea2646970667358221220195b70317441a40ccf47449766f3dbe50e50f18a1e36dc5b963fd16653cb75f964736f6c634300081e0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000038778e6d4d0dbe9becef3ae8b938570209efa48b000000000000000000000000b47e3cd837ddf8e4c57f05d70ab865de6e193bbb
-----Decoded View---------------
Arg [0] : _token (address): 0x38778E6d4d0dbE9bEceF3aE8B938570209efa48B
Arg [1] : _punks (address): 0xb47e3cd837dDF8e4c57F05d70Ab865de6e193BBB
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 00000000000000000000000038778e6d4d0dbe9becef3ae8b938570209efa48b
Arg [1] : 000000000000000000000000b47e3cd837ddf8e4c57f05d70ab865de6e193bbb
Loading...
Loading
Loading...
Loading

Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.