Source Code
Overview
ETH Balance
0 ETH
Eth Value
$0.00View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
AllocationVoting
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 1000 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";
import {IFarm} from "@interfaces/IFarm.sol";
import {EpochLib} from "@libraries/EpochLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {FarmTypes} from "@libraries/FarmTypes.sol";
import {FarmRegistry} from "@integrations/FarmRegistry.sol";
import {IMaturityFarm} from "@interfaces/IMaturityFarm.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {LockingController} from "@locking/LockingController.sol";
import {LockedPositionToken} from "@tokens/LockedPositionToken.sol";
/// @notice Allocation voting contract
/// In this contract, locked users can vote for the farms where they want the protocol to allocate
/// their assets. Liquid farm & Illiquid farm votes are treated separately: liquid votes are used
/// to rebalance capital to the desired allocation (vote result) at every epoch, while illiquid votes
/// are only deciding where funds are allocated on a given week (in an additive manner, there is no
/// rebalancing between farms on the illiquid side).
/// Votes on a given epoch are only applying on the next epoch, leaving users with a full epoch
/// to cast their votes. Votes should be performed every week, or they will be considered outdated.
/// This means that a farm with 0 votes on a given epoch will not persist its weight on the next
/// epoch, its weight will become 0 on the next epoch.
contract AllocationVoting is CoreControlled {
using EpochLib for uint256;
using FixedPointMathLib for uint256;
error InvalidAsset(address _asset);
error AlreadyVoted(address _user, uint32 _unwindingEpochs);
error NoVotingPower(address _user, uint32 _unwindingEpochs);
error UnknownFarm(address farm, bool liquid);
error InvalidWeights(uint256 _expectedPower, uint256 _actualPower);
error InvalidTargetBucket(address _farm, uint256 _maturity, uint256 _userUnbondingTimestamp);
event FarmVoteRegistered(
uint256 indexed timestamp,
uint256 indexed epoch,
address indexed user,
uint32 unwindingEpochs,
AllocationVote[] liquidVotes,
AllocationVote[] illiquidVotes,
uint256 userWeight
);
struct AllocationVote {
address farm;
uint96 weight;
}
struct FarmWeightData {
// epoch of the last vote
uint32 epoch;
// weight returned if the current epoch is exactly equal to `epoch`
uint112 currentWeight;
// weight updated on votes, committed to the `currentWeight` when a vote is cast
// on an epoch that is later than the stored epoch.
uint112 nextWeight;
}
address public lockingController;
address public farmRegistry;
mapping(address farm => FarmWeightData) public farmWeightData;
mapping(address user => mapping(uint32 unwindingEpochs => uint32 epoch)) public lastVoteEpoch;
constructor(address _core, address _lockingController, address _farmRegistry) CoreControlled(_core) {
lockingController = _lockingController;
farmRegistry = _farmRegistry;
}
/// @notice Returns the weight of the farm for the given epoch
/// @param _farm The address of the farm
/// @return uint256 The weight of the farm for the given epoch
function getVote(address _farm) external view returns (uint256) {
return _getFarmWeight(farmWeightData[_farm], uint32(block.timestamp.epoch()));
}
/// @notice Returns the vote weights for the given farm type (liquid or illiquid)
/// @param _farmType Determine for which farm type subset to return votes for
/// @return address[] farms
/// @return uint256[] farms percentage
/// @return uint256 total power
function getVoteWeights(uint256 _farmType) external view returns (address[] memory, uint256[] memory, uint256) {
address[] memory farms = FarmRegistry(farmRegistry).getTypeFarms(_farmType);
(uint256[] memory weights, uint256 totalPower) = _getVoteWeights(farms);
return (farms, weights, totalPower);
}
function getAssetVoteWeights(address _asset, uint256 _farmType)
external
view
returns (address[] memory, uint256[] memory, uint256)
{
address[] memory farms = FarmRegistry(farmRegistry).getAssetTypeFarms(_asset, _farmType);
(uint256[] memory weights, uint256 totalPower) = _getVoteWeights(farms);
return (farms, weights, totalPower);
}
/// @notice Casts a vote for the given farm
/// @param _asset to which asset do these farms belong to
/// @param _unwindingEpochs The number of epochs to unwind of the user
/// @param _liquidVotes The liquid votes
/// @param _illiquidVotes The illiquid votes
function vote(
address _user,
address _asset,
uint32 _unwindingEpochs,
AllocationVote[] calldata _liquidVotes,
AllocationVote[] calldata _illiquidVotes
) external whenNotPaused onlyCoreRole(CoreRoles.ENTRY_POINT) {
require(FarmRegistry(farmRegistry).isAssetEnabled(_asset), InvalidAsset(_asset));
uint32 epoch = uint32(block.timestamp.epoch());
require(lastVoteEpoch[_user][_unwindingEpochs] < epoch, AlreadyVoted(_user, _unwindingEpochs));
lastVoteEpoch[_user][_unwindingEpochs] = epoch;
uint256 weight = LockingController(lockingController).rewardWeightForUnwindingEpochs(_user, _unwindingEpochs);
require(weight > 0, NoVotingPower(_user, _unwindingEpochs));
if (_illiquidVotes.length > 0) {
_storeUserVotes(_asset, _unwindingEpochs, epoch, weight, _illiquidVotes, false);
}
if (_liquidVotes.length > 0) {
_storeUserVotes(_asset, _unwindingEpochs, epoch, weight, _liquidVotes, true);
}
// restrict transfer until the next epoch after voting
address shareToken = LockingController(lockingController).shareToken(_unwindingEpochs);
LockedPositionToken(shareToken).restrictTransferUntilNextEpoch(_user);
emit FarmVoteRegistered(block.timestamp, epoch, _user, _unwindingEpochs, _liquidVotes, _illiquidVotes, weight);
}
/// -----------------------------------------------------------------------------------------------
/// Internal helpers
/// -----------------------------------------------------------------------------------------------
/// @notice Returns the weight of the farm for the given epoch
/// @param _data The farm weight data
/// @param _epoch The epoch of the vote
/// @return uint256 The weight of the farm for the given epoch
function _getFarmWeight(FarmWeightData memory _data, uint32 _epoch) internal pure returns (uint256) {
// if last vote was in current epoch, return the currentWeight
if (_data.epoch == _epoch) {
return _data.currentWeight;
}
// if last vote was in previous epoch, return the nextWeight
if (_data.epoch == _epoch - 1) {
return _data.nextWeight;
}
// otherwise, return 0 (do not persist votes if they are older than 1 epoch ago)
return 0;
}
/// @notice Stores the user's votes for the given farms
/// @param _unwindingEpochs The number of epochs to unwind of the user
/// @param _epoch The epoch of the vote
/// @param _userWeight The weight of the user
/// @param _votes The votes to store
/// @param _liquid Whether the farms are liquid or illiquid
function _storeUserVotes(
address _asset,
uint32 _unwindingEpochs,
uint32 _epoch,
uint256 _userWeight,
AllocationVote[] calldata _votes,
bool _liquid
) internal {
uint256 weightAllocated = 0;
for (uint256 i = 0; i < _votes.length; i++) {
address farm = _votes[i].farm;
if (_liquid) {
_validateAssetAndType(_asset, farm, FarmTypes.LIQUID);
} else {
_validateAssetAndType(_asset, farm, FarmTypes.MATURITY);
_validateFarmBucket(farm, _unwindingEpochs);
}
FarmWeightData memory data = farmWeightData[farm];
if (data.epoch != _epoch) {
// roll over pending weight votes that are in "nextWeight" into "currentWeight"
// when a new epoch starts and a vote is cast
if (data.epoch == _epoch - 1) {
data = FarmWeightData({epoch: _epoch, currentWeight: data.nextWeight, nextWeight: 0});
} else {
data = FarmWeightData({epoch: _epoch, currentWeight: 0, nextWeight: 0});
}
}
data.nextWeight += uint112(_userWeight.mulWadDown(_votes[i].weight));
farmWeightData[farm] = data;
weightAllocated += _votes[i].weight;
}
// user must allocate all of their voting power when casting a vote
// or not vote for a particular farm type at all
// for example, user can choose to vote only for liquid farms, or only for maturity farms
require(
weightAllocated == FixedPointMathLib.WAD || weightAllocated == 0,
InvalidWeights(FixedPointMathLib.WAD, weightAllocated)
);
}
function _getVoteWeights(address[] memory _farms) internal view returns (uint256[] memory, uint256) {
uint32 epoch = uint32(block.timestamp.epoch());
uint256[] memory weights = new uint256[](_farms.length);
uint256 totalPower = 0;
for (uint256 i = 0; i < _farms.length; i++) {
weights[i] = _getFarmWeight(farmWeightData[_farms[i]], epoch);
totalPower += weights[i];
}
return (weights, totalPower);
}
function _validateAssetAndType(address _asset, address _farm, uint256 _type) internal view {
FarmRegistry _farmRegistry = FarmRegistry(farmRegistry);
require(_farmRegistry.isFarmOfType(_farm, uint256(_type)), UnknownFarm(_farm, true));
require(_farmRegistry.isFarmOfAsset(_farm, _asset), InvalidAsset(_asset));
}
function _validateFarmBucket(address _farm, uint32 _unwindingEpochs) internal view {
uint256 maturity = IMaturityFarm(_farm).maturity();
uint256 userUnwindingTimestamp = (block.timestamp.nextEpoch() + _unwindingEpochs).epochToTimestamp();
require(maturity <= userUnwindingTimestamp, InvalidTargetBucket(_farm, maturity, userUnwindingTimestamp));
}
}// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
/*//////////////////////////////////////////////////////////////
SIMPLIFIED FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
uint256 internal constant MAX_UINT256 = 2**256 - 1;
uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.
function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
}
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
}
function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
}
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
}
/*//////////////////////////////////////////////////////////////
LOW LEVEL FIXED POINT OPERATIONS
//////////////////////////////////////////////////////////////*/
function mulDivDown(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// Divide x * y by the denominator.
z := div(mul(x, y), denominator)
}
}
function mulDivUp(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
revert(0, 0)
}
// If x * y modulo the denominator is strictly greater than 0,
// 1 is added to round up the division of x * y by the denominator.
z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
}
}
function rpow(
uint256 x,
uint256 n,
uint256 scalar
) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
switch x
case 0 {
switch n
case 0 {
// 0 ** 0 = 1
z := scalar
}
default {
// 0 ** n = 0
z := 0
}
}
default {
switch mod(n, 2)
case 0 {
// If n is even, store scalar in z for now.
z := scalar
}
default {
// If n is odd, store x in z for now.
z := x
}
// Shifting right by 1 is like dividing by 2.
let half := shr(1, scalar)
for {
// Shift n right by 1 before looping to halve it.
n := shr(1, n)
} n {
// Shift n right by 1 each iteration to halve it.
n := shr(1, n)
} {
// Revert immediately if x ** 2 would overflow.
// Equivalent to iszero(eq(div(xx, x), x)) here.
if shr(128, x) {
revert(0, 0)
}
// Store x squared.
let xx := mul(x, x)
// Round to the nearest number.
let xxRound := add(xx, half)
// Revert if xx + half overflowed.
if lt(xxRound, xx) {
revert(0, 0)
}
// Set x to scaled xxRound.
x := div(xxRound, scalar)
// If n is even:
if mod(n, 2) {
// Compute z * x.
let zx := mul(z, x)
// If z * x overflowed:
if iszero(eq(div(zx, x), z)) {
// Revert if x is non-zero.
if iszero(iszero(x)) {
revert(0, 0)
}
}
// Round to the nearest number.
let zxRound := add(zx, half)
// Revert if zx + half overflowed.
if lt(zxRound, zx) {
revert(0, 0)
}
// Return properly scaled zxRound.
z := div(zxRound, scalar)
}
}
}
}
}
/*//////////////////////////////////////////////////////////////
GENERAL NUMBER UTILITIES
//////////////////////////////////////////////////////////////*/
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let y := x // We start y at x, which will help us make our initial estimate.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// We check y >= 2^(k + 8) but shift right by k bits
// each branch to ensure that if x >= 256, then y >= 256.
if iszero(lt(y, 0x10000000000000000000000000000000000)) {
y := shr(128, y)
z := shl(64, z)
}
if iszero(lt(y, 0x1000000000000000000)) {
y := shr(64, y)
z := shl(32, z)
}
if iszero(lt(y, 0x10000000000)) {
y := shr(32, y)
z := shl(16, z)
}
if iszero(lt(y, 0x1000000)) {
y := shr(16, y)
z := shl(8, z)
}
// Goal was to get z*z*y within a small factor of x. More iterations could
// get y in a tighter range. Currently, we will have y in [256, 256*2^16).
// We ensured y >= 256 so that the relative difference between y and y+1 is small.
// That's not possible if x < 256 but we can just verify those cases exhaustively.
// Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
// Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
// Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.
// For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
// (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.
// Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
// sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.
// There is no overflow risk here since y < 2^136 after the first branch above.
z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If x+1 is a perfect square, the Babylonian method cycles between
// floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
// Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
// If you don't care whether the floor or ceil square root is returned, you can remove this statement.
z := sub(z, lt(div(x, z), z))
}
}
function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Mod x by y. Note this will return
// 0 instead of reverting if y is zero.
z := mod(x, y)
}
}
function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Divide x by y. Note this will return
// 0 instead of reverting if y is zero.
r := div(x, y)
}
}
function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Add 1 to x * y if x % y > 0. Note this will
// return 0 instead of reverting if y is zero.
z := add(gt(mod(x, y), 0), div(x, y))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
/// @notice Interface for an InfiniFi Farm contract
interface IFarm {
/// @notice emitted when there is a deposit of withdrawal from the farm
event AssetsUpdated(uint256 timestamp, uint256 assetsBefore, uint256 assetsAfter);
// --------------------------------------------------------------------
// Accounting
// --------------------------------------------------------------------
/// @notice the cap of the farm
function cap() external view returns (uint256);
/// @notice the asset used by deposits and withdrawals in the farm
function assetToken() external view returns (address);
/// @notice the total assets in the farm, reported as a balance of asset()
function assets() external view returns (uint256);
// --------------------------------------------------------------------
// Adapter logic
// --------------------------------------------------------------------
/// @notice deposit all asset() held by the contract into the farm
function deposit() external;
/// @notice Returns the max deposit amount for the underlying protocol
function maxDeposit() external view returns (uint256);
/// @notice withdraw an amount of the asset() from the farm
/// @param amount Amount of assets to withdraw
/// @param to Address to receive the withdrawn assets
function withdraw(uint256 amount, address to) external;
/// @notice available number of assetToken() withdrawable instantly from the farm
function liquidity() external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
library EpochLib {
uint256 internal constant EPOCH = 1 weeks;
uint256 internal constant EPOCH_OFFSET = 3 days;
/// @notice epoch start (start of the epoch) for a given timestamp
function epoch(uint256 _timestamp) public pure returns (uint256) {
return (_timestamp - EPOCH_OFFSET) / EPOCH;
}
/// @notice epoch end (end of the epoch) for a given timestamp
function nextEpoch(uint256 _timestamp) public pure returns (uint256) {
return epoch(_timestamp) + 1;
}
/// @notice Convert epoch to timestamp taking into account the epoch offset
function epochToTimestamp(uint256 _epoch) public pure returns (uint256) {
return _epoch * EPOCH + EPOCH_OFFSET;
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
/// @notice Holds a complete list of all roles which can be held by contracts inside the InfiniFi protocol.
library CoreRoles {
/// ----------- Core roles for access control --------------
/// @notice the all-powerful role. Controls all other roles and protocol functionality.
bytes32 internal constant GOVERNOR = keccak256("GOVERNOR");
/// @notice Can pause contracts in an emergency.
bytes32 internal constant PAUSE = keccak256("PAUSE");
/// @notice Can unpause contracts after an emergency.
bytes32 internal constant UNPAUSE = keccak256("UNPAUSE");
/// @notice can tweak protocol parameters
bytes32 internal constant PROTOCOL_PARAMETERS = keccak256("PROTOCOL_PARAMETERS");
/// @notice can manage minor roles
bytes32 internal constant MINOR_ROLES_MANAGER = keccak256("MINOR_ROLES_MANAGER");
/// ----------- User Flow Management -----------------------
/// @notice Granted to the user entry point of the system
bytes32 internal constant ENTRY_POINT = keccak256("ENTRY_POINT");
/// ----------- Token Management ---------------------------
/// @notice can mint DebtToken arbitrarily
bytes32 internal constant RECEIPT_TOKEN_MINTER = keccak256("RECEIPT_TOKEN_MINTER");
/// @notice can burn DebtToken tokens
bytes32 internal constant RECEIPT_TOKEN_BURNER = keccak256("RECEIPT_TOKEN_BURNER");
/// @notice can mint arbitrarily & burn held LockedPositionToken
bytes32 internal constant LOCKED_TOKEN_MANAGER = keccak256("LOCKED_TOKEN_MANAGER");
/// @notice can prevent transfers of LockedPositionToken
bytes32 internal constant TRANSFER_RESTRICTOR = keccak256("TRANSFER_RESTRICTOR");
/// ----------- Funds Management & Accounting --------------
/// @notice contract that can allocate funds between farms
bytes32 internal constant FARM_MANAGER = keccak256("FARM_MANAGER");
/// @notice addresses who can use the manual rebalancer
bytes32 internal constant MANUAL_REBALANCER = keccak256("MANUAL_REBALANCER");
/// @notice addresses who can use the periodic rebalancer
bytes32 internal constant PERIODIC_REBALANCER = keccak256("PERIODIC_REBALANCER");
/// @notice addresses who can move funds from farms to a safe address
bytes32 internal constant EMERGENCY_WITHDRAWAL = keccak256("EMERGENCY_WITHDRAWAL");
/// @notice addresses who can trigger swaps in Farms
bytes32 internal constant FARM_SWAP_CALLER = keccak256("FARM_SWAP_CALLER");
/// @notice can set oracles references within the system
bytes32 internal constant ORACLE_MANAGER = keccak256("ORACLE_MANAGER");
/// @notice trusted to report profit and losses in the system.
/// This role can be used to slash depositors in case of losses, and
/// can also deposit profits for distribution to end users.
bytes32 internal constant FINANCE_MANAGER = keccak256("FINANCE_MANAGER");
/// ----------- Timelock management ------------------------
/// The hashes are the same as OpenZeppelins's roles in TimelockController
/// @notice can propose new actions in timelocks
bytes32 internal constant PROPOSER_ROLE = keccak256("PROPOSER_ROLE");
/// @notice can execute actions in timelocks after their delay
bytes32 internal constant EXECUTOR_ROLE = keccak256("EXECUTOR_ROLE");
/// @notice can cancel actions in timelocks
bytes32 internal constant CANCELLER_ROLE = keccak256("CANCELLER_ROLE");
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
library FarmTypes {
/// @notice indicates farm type that is not generating any yield but is capable of storing funds
uint256 internal constant PROTOCOL = 0;
/// @notice farm type that has instant principal withdrawals. (eg AAVE)
uint256 internal constant LIQUID = 1;
/// @notice (illiquid farm) has a maturity until when the principal value is locked
uint256 internal constant MATURITY = 2;
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {IFarm} from "@interfaces/IFarm.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
/// @notice InfiniFi Farm registry
contract FarmRegistry is CoreControlled {
error FarmAlreadyAdded(address farm);
error FarmNotFound(address farm);
error AssetNotEnabled(address farm, address asset);
error AssetAlreadyEnabled(address asset);
error AssetNotFound(address asset);
event AssetEnabled(uint256 indexed timestamp, address asset);
event AssetDisabled(uint256 indexed timestamp, address asset);
event FarmsAdded(uint256 indexed timestamp, uint256 farmType, address[] indexed farms);
event FarmsRemoved(uint256 indexed timestamp, uint256 farmType, address[] indexed farms);
using EnumerableSet for EnumerableSet.AddressSet;
EnumerableSet.AddressSet private assets;
EnumerableSet.AddressSet private farms;
mapping(uint256 _type => EnumerableSet.AddressSet _farms) private typeFarms;
mapping(address _asset => EnumerableSet.AddressSet _farms) private assetFarms;
mapping(address _asset => mapping(uint256 _type => EnumerableSet.AddressSet _farms)) private assetTypeFarms;
constructor(address _core) CoreControlled(_core) {}
/// ----------------------------------------------------------------------------
/// READ METHODS
/// ----------------------------------------------------------------------------
function getEnabledAssets() external view returns (address[] memory) {
return assets.values();
}
function isAssetEnabled(address _asset) external view returns (bool) {
return assets.contains(_asset);
}
function getFarms() external view returns (address[] memory) {
return farms.values();
}
function getTypeFarms(uint256 _type) external view returns (address[] memory) {
return typeFarms[_type].values();
}
function getAssetFarms(address _asset) external view returns (address[] memory) {
return assetFarms[_asset].values();
}
function getAssetTypeFarms(address _asset, uint256 _type) external view returns (address[] memory) {
return assetTypeFarms[_asset][_type].values();
}
function isFarm(address _farm) external view returns (bool) {
return farms.contains(_farm);
}
function isFarmOfAsset(address _farm, address _asset) external view returns (bool) {
return assetFarms[_asset].contains(_farm);
}
function isFarmOfType(address _farm, uint256 _type) external view returns (bool) {
return typeFarms[_type].contains(_farm);
}
/// ----------------------------------------------------------------------------
/// WRITE METHODS
/// ----------------------------------------------------------------------------
function enableAsset(address _asset) external onlyCoreRole(CoreRoles.GOVERNOR) {
require(assets.add(_asset), AssetAlreadyEnabled(_asset));
emit AssetEnabled(block.timestamp, _asset);
}
function disableAsset(address _asset) external onlyCoreRole(CoreRoles.GOVERNOR) {
require(assets.remove(_asset), AssetNotFound(_asset));
emit AssetDisabled(block.timestamp, _asset);
}
function addFarms(uint256 _type, address[] calldata _list) external onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS) {
_addFarms(_type, _list);
emit FarmsAdded(block.timestamp, _type, _list);
}
function removeFarms(uint256 _type, address[] calldata _list)
external
onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS)
{
_removeFarms(_type, _list);
emit FarmsRemoved(block.timestamp, _type, _list);
}
/// ----------------------------------------------------------------------------
/// INTERNAL METHODS
/// ----------------------------------------------------------------------------
function _addFarms(uint256 _type, address[] calldata _list) internal {
for (uint256 i = 0; i < _list.length; i++) {
address farmAsset = IFarm(_list[i]).assetToken();
require(assets.contains(farmAsset), AssetNotEnabled(_list[i], farmAsset));
require(farms.add(_list[i]), FarmAlreadyAdded(_list[i]));
require(typeFarms[_type].add(_list[i]), FarmAlreadyAdded(_list[i]));
require(assetFarms[farmAsset].add(_list[i]), FarmAlreadyAdded(_list[i]));
require(assetTypeFarms[farmAsset][_type].add(_list[i]), FarmAlreadyAdded(_list[i]));
}
}
function _removeFarms(uint256 _type, address[] calldata _list) internal {
for (uint256 i = 0; i < _list.length; i++) {
address farmAsset = IFarm(_list[i]).assetToken();
require(farms.remove(_list[i]), FarmNotFound(_list[i]));
require(typeFarms[_type].remove(_list[i]), FarmNotFound(_list[i]));
require(assetFarms[farmAsset].remove(_list[i]), FarmNotFound(_list[i]));
require(assetTypeFarms[farmAsset][_type].remove(_list[i]), FarmNotFound(_list[i]));
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {IFarm} from "@interfaces/IFarm.sol";
/// @notice Interface for an InfiniFi Farm contract that has a maturity date
/// @dev These farms represent illiquid farm/asset class
interface IMaturityFarm is IFarm {
/// @notice timestamp at which more funds can be made available for withdrawal
function maturity() external view returns (uint256);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {InfiniFiCore} from "@core/InfiniFiCore.sol";
/// @notice Defines some modifiers and utilities around interacting with Core
abstract contract CoreControlled is Pausable {
error UnderlyingCallReverted(bytes returnData);
/// @notice emitted when the reference to core is updated
event CoreUpdate(address indexed oldCore, address indexed newCore);
/// @notice reference to Core
InfiniFiCore private _core;
constructor(address coreAddress) {
_core = InfiniFiCore(coreAddress);
}
/// @notice named onlyCoreRole to prevent collision with OZ onlyRole modifier
modifier onlyCoreRole(bytes32 role) {
require(_core.hasRole(role, msg.sender), "UNAUTHORIZED");
_;
}
/// @notice address of the Core contract referenced
function core() public view returns (InfiniFiCore) {
return _core;
}
/// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
/// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
/// @notice set new reference to core
/// only callable by governor
/// @param newCore to reference
function setCore(address newCore) external onlyCoreRole(CoreRoles.GOVERNOR) {
_setCore(newCore);
}
/// @notice WARNING CALLING THIS FUNCTION CAN POTENTIALLY
/// BRICK A CONTRACT IF CORE IS SET INCORRECTLY
/// @notice set new reference to core
/// @param newCore to reference
function _setCore(address newCore) internal {
address oldCore = address(_core);
_core = InfiniFiCore(newCore);
emit CoreUpdate(oldCore, newCore);
}
/// @notice set pausable methods to paused
function pause() public onlyCoreRole(CoreRoles.PAUSE) {
_pause();
}
/// @notice set pausable methods to unpaused
function unpause() public onlyCoreRole(CoreRoles.UNPAUSE) {
_unpause();
}
/// ------------------------------------------
/// ------------ Emergency Action ------------
/// ------------------------------------------
/// inspired by MakerDAO Multicall:
/// https://github.com/makerdao/multicall/blob/master/src/Multicall.sol
/// @notice struct to pack calldata and targets for an emergency action
struct Call {
/// @notice target address to call
address target;
/// @notice amount of eth to send with the call
uint256 value;
/// @notice payload to send to target
bytes callData;
}
/// @notice due to inflexibility of current smart contracts,
/// add this ability to be able to execute arbitrary calldata
/// against arbitrary addresses.
/// callable only by governor
function emergencyAction(Call[] calldata calls)
external
payable
virtual
onlyCoreRole(CoreRoles.GOVERNOR)
returns (bytes[] memory returnData)
{
returnData = new bytes[](calls.length);
for (uint256 i = 0; i < calls.length; i++) {
address payable target = payable(calls[i].target);
uint256 value = calls[i].value;
bytes calldata callData = calls[i].callData;
(bool success, bytes memory returned) = target.call{value: value}(callData);
require(success, UnderlyingCallReverted(returned));
returnData[i] = returned;
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {UnwindingModule} from "@locking/UnwindingModule.sol";
import {LockedPositionToken} from "@tokens/LockedPositionToken.sol";
contract LockingController is CoreControlled {
using FixedPointMathLib for uint256;
/// @notice address of the locked token
address public immutable receiptToken;
/// @notice address of the unwinding module
address public immutable unwindingModule;
/// ----------------------------------------------------------------------------
/// STRUCTS, ERRORS, AND EVENTS
/// ----------------------------------------------------------------------------
struct BucketData {
address shareToken;
uint256 totalReceiptTokens;
uint256 multiplier;
}
error TransferFailed();
error InvalidBucket(uint32 unwindingEpochs);
error InvalidUnwindingEpochs(uint32 unwindingEpochs);
error BucketMustBeLongerDuration(uint32 oldValue, uint32 newValue);
error UnwindingInProgress();
error InvalidMaxLossPercentage(uint256 maxLossPercentage);
event PositionCreated(
uint256 indexed timestamp, address indexed user, uint256 amount, uint32 indexed unwindingEpochs
);
event PositionRemoved(
uint256 indexed timestamp, address indexed user, uint256 amount, uint32 indexed unwindingEpochs
);
event RewardsDeposited(uint256 indexed timestamp, uint256 amount);
event LossesApplied(uint256 indexed timestamp, uint256 amount);
event BucketEnabled(uint256 indexed timestamp, uint256 bucket, address shareToken, uint256 multiplier);
event BucketMultiplierUpdated(uint256 indexed timestamp, uint256 bucket, uint256 multiplier);
event MaxLossPercentageUpdated(uint256 indexed timestamp, uint256 maxLossPercentage);
/// ----------------------------------------------------------------------------
/// STATE
/// ----------------------------------------------------------------------------
/// @notice array of all enabled unwinding epochs
/// @dev example, this array will contain [2, 4, 6] if users are allowed to
/// lock for 2, 4 and 6 weeks respectively
uint32[] public enabledBuckets;
/// @notice mapping of unwinding epochs data
mapping(uint32 _unwindingEpochs => BucketData data) public buckets;
uint256 public globalReceiptToken;
uint256 public globalRewardWeight;
/// @notice maximum loss percentage for the locking module in WAD (18 decimals)
uint256 public maxLossPercentage = 0.999999e18;
/// ----------------------------------------------------------------------------
/// CONSTRUCTOR
/// ----------------------------------------------------------------------------
constructor(address _core, address _receiptToken, address _unwindingModule) CoreControlled(_core) {
receiptToken = _receiptToken;
unwindingModule = _unwindingModule;
}
/// ----------------------------------------------------------------------------
/// ADMINISTRATION METHODS
/// ----------------------------------------------------------------------------
/// @notice enable a new unwinding epochs duration
function enableBucket(uint32 _unwindingEpochs, address _shareToken, uint256 _multiplier)
external
onlyCoreRole(CoreRoles.GOVERNOR)
{
require(buckets[_unwindingEpochs].shareToken == address(0), InvalidBucket(_unwindingEpochs));
require(_unwindingEpochs > 0, InvalidUnwindingEpochs(_unwindingEpochs));
require(_unwindingEpochs <= 100, InvalidUnwindingEpochs(_unwindingEpochs));
buckets[_unwindingEpochs].shareToken = _shareToken;
buckets[_unwindingEpochs].multiplier = _multiplier;
enabledBuckets.push(_unwindingEpochs);
emit BucketEnabled(block.timestamp, _unwindingEpochs, _shareToken, _multiplier);
}
/// @notice update the multiplier of a given bucket
/// @dev note that this won't affect the unwinding users, unless they cancel their unwinding
function setBucketMultiplier(uint32 _unwindingEpochs, uint256 _multiplier)
external
onlyCoreRole(CoreRoles.PROTOCOL_PARAMETERS)
{
BucketData memory data = buckets[_unwindingEpochs];
require(data.shareToken != address(0), InvalidBucket(_unwindingEpochs));
uint256 oldRewardWeight = data.totalReceiptTokens.mulWadDown(data.multiplier);
uint256 newRewardWeight = data.totalReceiptTokens.mulWadDown(_multiplier);
globalRewardWeight = globalRewardWeight + newRewardWeight - oldRewardWeight;
buckets[_unwindingEpochs].multiplier = _multiplier;
emit BucketMultiplierUpdated(block.timestamp, _unwindingEpochs, _multiplier);
}
function setMaxLossPercentage(uint256 _maxLossPercentage) external onlyCoreRole(CoreRoles.GOVERNOR) {
require(_maxLossPercentage <= FixedPointMathLib.WAD, InvalidMaxLossPercentage(_maxLossPercentage));
maxLossPercentage = _maxLossPercentage;
emit MaxLossPercentageUpdated(block.timestamp, _maxLossPercentage);
}
/// ----------------------------------------------------------------------------
/// READ METHODS
/// ----------------------------------------------------------------------------
/// @notice get the enabled unwinding epochs
function getEnabledBuckets() external view returns (uint32[] memory) {
return enabledBuckets;
}
/// @notice get the balance of a user by looping through all the enabled unwinding epochs
/// and looking at how many share tokens the user has, then multiplying for each of them
/// by the current share price.
/// @dev Balance is expressed in receipt tokens.
function balanceOf(address _user) external view returns (uint256) {
return _userSumAcrossUnwindingEpochs(_user, _totalReceiptTokensGetter);
}
/// @notice get the reward weight of a user by looping through all the enabled unwinding epochs
/// and looking at how many share tokens the user has, then multiplying for each of them
/// by the current reward weight of these shares.
/// @dev Reward weight is expressed in "virtual receipt tokens" and is used to compute the
/// rewards earned during yield distribution.
function rewardWeight(address _user) external view returns (uint256) {
return _userSumAcrossUnwindingEpochs(_user, _bucketRewardWeightGetter);
}
/// @notice get the reward weight of a user
function rewardWeightForUnwindingEpochs(address _user, uint32 _unwindingEpochs) external view returns (uint256) {
BucketData memory data = buckets[_unwindingEpochs];
uint256 userShares = IERC20(data.shareToken).balanceOf(_user);
uint256 totalShares = IERC20(data.shareToken).totalSupply();
if (totalShares == 0) return 0;
uint256 bucketRewardWeight = data.totalReceiptTokens.mulWadDown(data.multiplier);
return userShares.mulDivDown(bucketRewardWeight, totalShares);
}
/// @notice get the shares of a user for a given unwindingEpochs
function shares(address _user, uint32 _unwindingEpochs) external view returns (uint256) {
BucketData memory data = buckets[_unwindingEpochs];
if (data.shareToken == address(0)) return 0;
return IERC20(data.shareToken).balanceOf(_user);
}
/// @notice get the shares token of a given unwindingEpochs, 0 if not enabled
function shareToken(uint32 _unwindingEpochs) external view returns (address) {
return buckets[_unwindingEpochs].shareToken;
}
/// @notice get the current exchange rate between the receiptToken and a given shareToken.
/// This function is here for convenience, to help share token holders estimate the value of their tokens.
/// @dev returns 0 if the _unwindingEpochs is not valid or if there are no locks for this duration
function exchangeRate(uint32 _unwindingEpochs) external view returns (uint256) {
BucketData memory data = buckets[_unwindingEpochs];
if (data.shareToken == address(0)) return 0;
uint256 totalShares = IERC20(data.shareToken).totalSupply();
if (totalShares == 0) return 0;
return data.totalReceiptTokens.divWadDown(totalShares);
}
/// @notice returns true if the given unwinding epochs is enabled for locking
function unwindingEpochsEnabled(uint32 _unwindingEpochs) external view returns (bool) {
return buckets[_unwindingEpochs].shareToken != address(0);
}
/// @notice total balance of receipt tokens in the module
/// @dev note that due to rounding down in the protocol's favor, this might be slightly
/// above the sum of the balanceOf() of all users.
function totalBalance() public view returns (uint256) {
return globalReceiptToken + UnwindingModule(unwindingModule).totalReceiptTokens();
}
/// @notice multiplier to apply to totalBalance() for computing rewards in profit distribution,
/// Expressed as a WAD (18 decimals). Should be between [1.0e18, 2.0e18] realistically.
function rewardMultiplier() external view returns (uint256) {
uint256 totalWeight = globalRewardWeight + UnwindingModule(unwindingModule).totalRewardWeight();
if (totalWeight == 0) return FixedPointMathLib.WAD; // defaults to 1.0
return totalWeight.divWadDown(totalBalance());
}
/// ----------------------------------------------------------------------------
/// POSITION MANAGEMENT WRITE METHODS
/// ----------------------------------------------------------------------------
/// @notice Enter a locked position
function createPosition(uint256 _amount, uint32 _unwindingEpochs, address _recipient) external whenNotPaused {
if (msg.sender != unwindingModule) {
// special case for access control here, the unwindingModule can reenter createPosition()
// after being called by this contract's cancelUnwinding() function.
// this exception is preferable to granting ENTRY_POINT role to the unwindingModule.
require(core().hasRole(CoreRoles.ENTRY_POINT, msg.sender), "UNAUTHORIZED");
}
BucketData memory data = buckets[_unwindingEpochs];
require(data.shareToken != address(0), InvalidBucket(_unwindingEpochs));
require(IERC20(receiptToken).transferFrom(msg.sender, address(this), _amount), TransferFailed());
uint256 totalShares = IERC20(data.shareToken).totalSupply();
uint256 newShares = totalShares == 0 ? _amount : _amount.mulDivDown(totalShares, data.totalReceiptTokens);
uint256 bucketRewardWeightBefore = data.totalReceiptTokens.mulWadDown(data.multiplier);
data.totalReceiptTokens += _amount;
globalReceiptToken += _amount;
buckets[_unwindingEpochs] = data;
uint256 bucketRewardWeightAfter = data.totalReceiptTokens.mulWadDown(data.multiplier);
globalRewardWeight += bucketRewardWeightAfter - bucketRewardWeightBefore;
LockedPositionToken(data.shareToken).mint(_recipient, newShares);
emit PositionCreated(block.timestamp, _recipient, _amount, _unwindingEpochs);
}
/// @notice Start unwinding a locked position
function startUnwinding(uint256 _shares, uint32 _unwindingEpochs, address _recipient)
external
whenNotPaused
onlyCoreRole(CoreRoles.ENTRY_POINT)
{
BucketData memory data = buckets[_unwindingEpochs];
require(data.shareToken != address(0), InvalidBucket(_unwindingEpochs));
uint256 totalShares = IERC20(data.shareToken).totalSupply();
uint256 userReceiptToken = _shares.mulDivDown(data.totalReceiptTokens, totalShares);
require(IERC20(data.shareToken).transferFrom(msg.sender, address(this), _shares), TransferFailed());
LockedPositionToken(data.shareToken).burn(_shares);
UnwindingModule(unwindingModule).startUnwinding(
_recipient, userReceiptToken, _unwindingEpochs, userReceiptToken.mulWadDown(data.multiplier)
);
IERC20(receiptToken).transfer(unwindingModule, userReceiptToken);
buckets[_unwindingEpochs].totalReceiptTokens = data.totalReceiptTokens - userReceiptToken;
uint256 bucketRewardWeightBefore = data.totalReceiptTokens.mulWadDown(data.multiplier);
uint256 bucketRewardWeightAfter = (data.totalReceiptTokens - userReceiptToken).mulWadDown(data.multiplier);
uint256 rewardWeightDecrease = bucketRewardWeightBefore - bucketRewardWeightAfter;
globalRewardWeight -= rewardWeightDecrease;
globalReceiptToken -= userReceiptToken;
emit PositionRemoved(block.timestamp, _recipient, userReceiptToken, _unwindingEpochs);
}
/// @notice Increase the unwinding period of a position
function increaseUnwindingEpochs(
uint256 _shares,
uint32 _oldUnwindingEpochs,
uint32 _newUnwindingEpochs,
address _recipient
) external whenNotPaused onlyCoreRole(CoreRoles.ENTRY_POINT) {
require(
_newUnwindingEpochs > _oldUnwindingEpochs,
BucketMustBeLongerDuration(_oldUnwindingEpochs, _newUnwindingEpochs)
);
BucketData memory oldData = buckets[_oldUnwindingEpochs];
BucketData memory newData = buckets[_newUnwindingEpochs];
require(newData.shareToken != address(0), InvalidBucket(_newUnwindingEpochs));
// burn position in old share tokens
if (_shares == 0) return;
uint256 oldTotalSupply = IERC20(oldData.shareToken).totalSupply();
uint256 receiptTokens = _shares.mulDivDown(oldData.totalReceiptTokens, oldTotalSupply);
if (receiptTokens == 0) return;
// compute global reward weight change
{
uint256 oldBucketRewardWeightBefore = oldData.totalReceiptTokens.mulWadDown(oldData.multiplier);
uint256 oldBucketRewardWeightAfter =
(oldData.totalReceiptTokens - receiptTokens).mulWadDown(oldData.multiplier);
uint256 newBucketRewardWeightBefore = newData.totalReceiptTokens.mulWadDown(newData.multiplier);
uint256 newBucketRewardWeightAfter =
(newData.totalReceiptTokens + receiptTokens).mulWadDown(newData.multiplier);
uint256 _globalRewardWeight = globalRewardWeight;
_globalRewardWeight = _globalRewardWeight - oldBucketRewardWeightBefore + oldBucketRewardWeightAfter;
_globalRewardWeight = _globalRewardWeight - newBucketRewardWeightBefore + newBucketRewardWeightAfter;
globalRewardWeight = _globalRewardWeight;
}
ERC20Burnable(oldData.shareToken).burnFrom(msg.sender, _shares);
oldData.totalReceiptTokens -= receiptTokens;
buckets[_oldUnwindingEpochs] = oldData;
// mint position in new share tokens
uint256 newTotalSupply = IERC20(newData.shareToken).totalSupply();
uint256 newShares =
newTotalSupply == 0 ? receiptTokens : receiptTokens.mulDivDown(newTotalSupply, newData.totalReceiptTokens);
LockedPositionToken(newData.shareToken).mint(_recipient, newShares);
newData.totalReceiptTokens += receiptTokens;
buckets[_newUnwindingEpochs] = newData;
emit PositionRemoved(block.timestamp, _recipient, receiptTokens, _oldUnwindingEpochs);
emit PositionCreated(block.timestamp, _recipient, receiptTokens, _newUnwindingEpochs);
}
/// @notice Cancel an ongoing unwinding. All checks are performed by the Unwinding module.
function cancelUnwinding(address _user, uint256 _unwindingTimestamp, uint32 _newUnwindingEpochs)
external
whenNotPaused
onlyCoreRole(CoreRoles.ENTRY_POINT)
{
UnwindingModule(unwindingModule).cancelUnwinding(_user, _unwindingTimestamp, _newUnwindingEpochs);
}
/// @notice Withdraw after an unwinding period has completed
function withdraw(address _user, uint256 _unwindingTimestamp)
external
whenNotPaused
onlyCoreRole(CoreRoles.ENTRY_POINT)
{
UnwindingModule(unwindingModule).withdraw(_unwindingTimestamp, _user);
}
/// ----------------------------------------------------------------------------
/// INTERNAL UTILS
/// ----------------------------------------------------------------------------
function _userSumAcrossUnwindingEpochs(address _user, function(BucketData memory) view returns (uint256) _getter)
internal
view
returns (uint256)
{
uint256 weight;
uint256 nBuckets = enabledBuckets.length;
for (uint256 i = 0; i < nBuckets; i++) {
uint32 unwindingEpochs = enabledBuckets[i];
BucketData memory data = buckets[unwindingEpochs];
uint256 userShares = IERC20(data.shareToken).balanceOf(_user);
if (userShares == 0) continue;
uint256 totalShares = IERC20(data.shareToken).totalSupply();
if (totalShares == 0) continue;
weight += userShares.mulDivDown(_getter(data), totalShares);
}
return weight;
}
function _bucketRewardWeightGetter(BucketData memory data) internal pure returns (uint256) {
return data.totalReceiptTokens.mulWadDown(data.multiplier);
}
function _totalReceiptTokensGetter(BucketData memory data) internal pure returns (uint256) {
return data.totalReceiptTokens;
}
function _min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/// ----------------------------------------------------------------------------
/// REWARDS MANAGEMENT WRITE METHODS
/// ----------------------------------------------------------------------------
/// @notice Deposit rewards into the locking module
function depositRewards(uint256 _amount) external onlyCoreRole(CoreRoles.FINANCE_MANAGER) {
if (_amount == 0) return;
emit RewardsDeposited(block.timestamp, _amount);
require(IERC20(receiptToken).transferFrom(msg.sender, address(this), _amount), TransferFailed());
// compute split between locking users & unwinding users
uint256 _globalRewardWeight = globalRewardWeight;
uint256 unwindingRewardWeight = UnwindingModule(unwindingModule).totalRewardWeight();
uint256 unwindingRewards =
_amount.mulDivDown(unwindingRewardWeight, _globalRewardWeight + unwindingRewardWeight);
if (unwindingRewards > 0) {
UnwindingModule(unwindingModule).depositRewards(unwindingRewards);
require(IERC20(receiptToken).transfer(unwindingModule, unwindingRewards), TransferFailed());
_amount -= unwindingRewards;
// if there are no rewards to distribute, do nothing
if (_amount == 0) return;
}
// if there are no recipients, receiptTokens are pulled to this contract
// but won't be claimable by anyone
// this happens only if the ProfitManager sends rewards to the locking module
// even though no one is locked, which should never happen.
if (_globalRewardWeight == 0) return;
uint256 _newGlobalRewardWeight = 0;
uint256 _receiptTokensIncrement = 0;
uint256 nBuckets = enabledBuckets.length;
for (uint256 i = 0; i < nBuckets; i++) {
BucketData storage data = buckets[enabledBuckets[i]];
// increase total locked tokens
uint256 epochTotalReceiptToken = data.totalReceiptTokens;
uint256 bucketRewardWeight = epochTotalReceiptToken.mulWadDown(data.multiplier);
uint256 allocation = _amount.mulDivDown(bucketRewardWeight, _globalRewardWeight);
data.totalReceiptTokens = epochTotalReceiptToken + allocation;
_receiptTokensIncrement += allocation;
_newGlobalRewardWeight += (epochTotalReceiptToken + allocation).mulWadDown(data.multiplier);
}
globalReceiptToken += _receiptTokensIncrement;
globalRewardWeight = _newGlobalRewardWeight;
}
/// @notice Apply losses to the locking module
function applyLosses(uint256 _amount) external onlyCoreRole(CoreRoles.FINANCE_MANAGER) {
if (_amount == 0) return;
emit LossesApplied(block.timestamp, _amount);
// compute split between locking users & unwinding users
uint256 unwindingBalance = UnwindingModule(unwindingModule).totalReceiptTokens();
uint256 _globalReceiptToken = globalReceiptToken;
uint256 _totalBalance = _globalReceiptToken + unwindingBalance;
// if the amount to apply is greater than the maximum allowed loss,
// we need to apply all the losses and pause the contract
{
uint256 maximumAllowedLoss = _totalBalance.mulDivDown(maxLossPercentage, 1e18);
if (_amount > maximumAllowedLoss) {
UnwindingModule(unwindingModule).applyLosses(unwindingBalance);
ERC20Burnable(receiptToken).burn(_globalReceiptToken);
globalReceiptToken = 0;
globalRewardWeight = 0;
for (uint256 i = 0; i < enabledBuckets.length; i++) {
buckets[enabledBuckets[i]].totalReceiptTokens = 0;
}
_pause();
return;
}
}
// apply losses to the unwinding module
uint256 amountToUnwinding = _amount.mulDivUp(unwindingBalance, _totalBalance);
amountToUnwinding = _min(amountToUnwinding, unwindingBalance);
UnwindingModule(unwindingModule).applyLosses(amountToUnwinding);
_amount -= amountToUnwinding;
// No more losses to apply, and the UnwindingModule is not slashed
// So we can safely exit the function
if (_amount == 0) return;
_amount = _min(_amount, _globalReceiptToken);
ERC20Burnable(receiptToken).burn(_amount);
uint256 nBuckets = enabledBuckets.length;
uint256 newGlobalRewardWeight = 0;
uint256 globalReceiptTokenDecrement = 0;
for (uint256 i = 0; i < nBuckets; i++) {
BucketData storage data = buckets[enabledBuckets[i]];
// slash principal
uint256 epochTotalReceiptToken = data.totalReceiptTokens;
if (epochTotalReceiptToken == 0) continue;
uint256 allocation = epochTotalReceiptToken.mulDivUp(_amount, _globalReceiptToken);
allocation = _min(allocation, epochTotalReceiptToken); // up rounding could cause underflows
data.totalReceiptTokens = epochTotalReceiptToken - allocation;
globalReceiptTokenDecrement += allocation;
newGlobalRewardWeight += (epochTotalReceiptToken - allocation).mulWadDown(data.multiplier);
}
globalReceiptToken = _globalReceiptToken - globalReceiptTokenDecrement;
globalRewardWeight = newGlobalRewardWeight;
{
// if a full slashing occurred either in UnwindingModule due to rounding errors,
// pause the contract to prevent any further operations.
// Resolving the situation will require a protocol upgrade,
// as the slashIndex in the UnwindingModule is now 0.
uint256 slashIndex = UnwindingModule(unwindingModule).slashIndex();
bool unwindingWipedOut = amountToUnwinding > 0 && slashIndex == 0;
if (unwindingWipedOut) _pause();
}
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {EpochLib} from "@libraries/EpochLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
/// @notice InfiniFi Locked Position Token.
contract LockedPositionToken is CoreControlled, ERC20Permit, ERC20Burnable {
/// @notice thrown when a user with transfer restrictions tries to transfer
error TransferRestrictedUntil(address user, uint256 timestamp);
/// @notice mapping of transfer restrictions: from address to timestamp after which transfers/redemptions are allowed
mapping(address => uint256) public transferRestrictions;
constructor(address _core, string memory _name, string memory _symbol)
CoreControlled(_core)
ERC20(_name, _symbol)
ERC20Permit(_name)
{}
function mint(address _to, uint256 _amount) external onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
_mint(_to, _amount);
}
function burn(uint256 _value) public override onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
_burn(_msgSender(), _value);
}
function burnFrom(address _account, uint256 _value) public override onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
_spendAllowance(_account, _msgSender(), _value);
_burn(_account, _value);
}
/// @notice restricts transfers until the next epoch
function restrictTransferUntilNextEpoch(address _user) external onlyCoreRole(CoreRoles.TRANSFER_RESTRICTOR) {
transferRestrictions[_user] = EpochLib.epochToTimestamp(EpochLib.nextEpoch(block.timestamp));
}
/// ---------------------------------------------------------------------------
/// Transfer restrictions
/// ---------------------------------------------------------------------------
function _update(address _from, address _to, uint256 _value) internal override {
uint256 restriction = transferRestrictions[_from];
// if it's 0, storage is unset so user has no transfer restriction
if (restriction > 0) {
require(block.timestamp >= restriction, TransferRestrictedUntil(_from, restriction));
}
return ERC20._update(_from, _to, _value);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.20;
import {Arrays} from "../Arrays.sol";
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
* - Set can be cleared (all elements removed) in O(n).
*
* ```solidity
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSet {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position is the index of the value in the `values` array plus 1.
// Position 0 is used to mean a value is not in the set.
mapping(bytes32 value => uint256) _positions;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._positions[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We cache the value's position to prevent multiple reads from the same storage slot
uint256 position = set._positions[value];
if (position != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 valueIndex = position - 1;
uint256 lastIndex = set._values.length - 1;
if (valueIndex != lastIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the lastValue to the index where the value to delete is
set._values[valueIndex] = lastValue;
// Update the tracked position of the lastValue (that was just moved)
set._positions[lastValue] = position;
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the tracked position for the deleted slot
delete set._positions[value];
return true;
} else {
return false;
}
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function _clear(Set storage set) private {
uint256 len = _length(set);
for (uint256 i = 0; i < len; ++i) {
delete set._positions[set._values[i]];
}
Arrays.unsafeSetLength(set._values, 0);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value) private view returns (bool) {
return set._positions[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index) private view returns (bytes32) {
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
return _remove(set._inner, value);
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(Bytes32Set storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value) internal returns (bool) {
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value) internal returns (bool) {
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(AddressSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value) internal view returns (bool) {
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index) internal view returns (address) {
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set) internal view returns (address[] memory) {
bytes32[] memory store = _values(set._inner);
address[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value) internal returns (bool) {
return _remove(set._inner, bytes32(value));
}
/**
* @dev Removes all the values from a set. O(n).
*
* WARNING: Developers should keep in mind that this function has an unbounded cost and using it may render the
* function uncallable if the set grows to the point where clearing it consumes too much gas to fit in a block.
*/
function clear(UintSet storage set) internal {
_clear(set._inner);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value) internal view returns (bool) {
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index) internal view returns (uint256) {
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set) internal view returns (uint256[] memory) {
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
assembly ("memory-safe") {
result := store
}
return result;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {AccessControlEnumerable} from "@openzeppelin/contracts/access/extensions/AccessControlEnumerable.sol";
/// @notice Maintains roles and access control
contract InfiniFiCore is AccessControlEnumerable {
error RoleAlreadyExists(bytes32 role);
error RoleDoesNotExist(bytes32 role);
error LengthMismatch(uint256 expected, uint256 actual);
/// @notice construct Core
constructor() {
// For initial setup before going live, deployer can then call
// renounceRole(bytes32 role, address account)
_grantRole(CoreRoles.GOVERNOR, msg.sender);
// Initial roles setup: direct hierarchy, everything under governor
_setRoleAdmin(CoreRoles.GOVERNOR, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.PAUSE, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.UNPAUSE, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.PROTOCOL_PARAMETERS, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.MINOR_ROLES_MANAGER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.ENTRY_POINT, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.RECEIPT_TOKEN_MINTER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.RECEIPT_TOKEN_BURNER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.LOCKED_TOKEN_MANAGER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.TRANSFER_RESTRICTOR, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.FARM_MANAGER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.MANUAL_REBALANCER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.PERIODIC_REBALANCER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.EMERGENCY_WITHDRAWAL, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.FARM_SWAP_CALLER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.ORACLE_MANAGER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.FINANCE_MANAGER, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.PROPOSER_ROLE, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.EXECUTOR_ROLE, CoreRoles.GOVERNOR);
_setRoleAdmin(CoreRoles.CANCELLER_ROLE, CoreRoles.GOVERNOR);
}
/// @notice creates a new role to be maintained
/// @param role the new role id
/// @param adminRole the admin role id for `role`
function createRole(bytes32 role, bytes32 adminRole) external onlyRole(CoreRoles.GOVERNOR) {
require(getRoleAdmin(role) == bytes32(0), RoleAlreadyExists(role));
_setRoleAdmin(role, adminRole);
}
/// @notice override admin role of an existing role
/// @param role the role id
/// @param adminRole the admin role id
function setRoleAdmin(bytes32 role, bytes32 adminRole) external onlyRole(CoreRoles.GOVERNOR) {
require(getRoleAdmin(role) != bytes32(0), RoleDoesNotExist(role));
_setRoleAdmin(role, adminRole);
}
/// @notice batch granting of roles to various addresses
/// @dev if msg.sender does not have admin role needed to grant any of the
/// granted roles, the whole transaction reverts.
function grantRoles(bytes32[] calldata roles, address[] calldata accounts) external {
require(roles.length == accounts.length, LengthMismatch(roles.length, accounts.length));
for (uint256 i = 0; i < roles.length; i++) {
_checkRole(getRoleAdmin(roles[i]));
_grantRole(roles[i], accounts[i]);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)
pragma solidity ^0.8.20;
import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";
/**
* @dev Extension of {ERC20} that allows token holders to destroy both their own
* tokens and those that they have an allowance for, in a way that can be
* recognized off-chain (via event analysis).
*/
abstract contract ERC20Burnable is Context, ERC20 {
/**
* @dev Destroys a `value` amount of tokens from the caller.
*
* See {ERC20-_burn}.
*/
function burn(uint256 value) public virtual {
_burn(_msgSender(), value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, deducting from
* the caller's allowance.
*
* See {ERC20-_burn} and {ERC20-allowance}.
*
* Requirements:
*
* - the caller must have allowance for ``accounts``'s tokens of at least
* `value`.
*/
function burnFrom(address account, uint256 value) public virtual {
_spendAllowance(account, _msgSender(), value);
_burn(account, value);
}
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.28;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {FixedPointMathLib} from "@solmate/src/utils/FixedPointMathLib.sol";
import {EpochLib} from "@libraries/EpochLib.sol";
import {CoreRoles} from "@libraries/CoreRoles.sol";
import {CoreControlled} from "@core/CoreControlled.sol";
import {LockingController} from "@locking/LockingController.sol";
struct UnwindingPosition {
uint256 shares; // shares of receiptTokens of the position
uint32 fromEpoch; // epoch when the position started unwinding
uint32 toEpoch; // epoch when the position will end unwinding
uint256 fromRewardWeight; // reward weight at the start of the unwinding
uint256 rewardWeightDecrease; // reward weight decrease per epoch between fromEpoch and toEpoch
}
struct GlobalPoint {
uint32 epoch; // epoch of the global point
uint256 totalRewardWeight; // total reward weight in the contract
uint256 totalRewardWeightDecrease; // total reward weight decrease per epoch
uint256 rewardShares; // number of receiptTokens rewards distributed on the epoch (stored as shares)
}
contract UnwindingModule is CoreControlled {
using EpochLib for uint256;
using FixedPointMathLib for uint256;
error TransferFailed();
error UserNotUnwinding();
error UserUnwindingNotStarted();
error UserUnwindingInprogress();
error InvalidUnwindingEpochs(uint32 value);
event UnwindingStarted(
uint256 indexed timestamp, address user, uint256 receiptTokens, uint32 unwindingEpochs, uint256 rewardWeight
);
event UnwindingCanceled(
uint256 indexed timestamp, address user, uint256 startUnwindingTimestamp, uint32 newUnwindingEpochs
);
event Withdrawal(uint256 indexed timestamp, uint256 startUnwindingTimestamp, address user);
event GlobalPointUpdated(uint256 indexed timestamp, GlobalPoint);
event CriticalLoss(uint256 indexed timestamp, uint256 amount);
/// @notice address of the receipt token
address public immutable receiptToken;
/// ----------------------------------------------------------------------------
/// STATE
/// ----------------------------------------------------------------------------
/// @notice total shares of locked tokens in the contract
uint256 public totalShares;
/// @notice total amount of receipt tokens in the contract, excluding donations
uint256 public totalReceiptTokens;
/// @notice slashing index, starts at 1e18 and decreases every time there is a slash
uint256 public slashIndex = FixedPointMathLib.WAD;
/// @notice mapping of unwinding positions
mapping(bytes32 id => UnwindingPosition position) public positions;
/// @notice last global point's epoch for direct access
uint32 public lastGlobalPointEpoch;
/// @notice mapping of epoch to global point
mapping(uint32 epoch => GlobalPoint point) public globalPoints;
/// @notice mapping of epoch to positive bias changes
mapping(uint32 epoch => uint256 increase) public rewardWeightBiasIncreases;
/// @notice mapping of epoch to positive slope changes
mapping(uint32 epoch => uint256 increase) public rewardWeightIncreases;
/// @notice mapping of epoch to negative slope changes
mapping(uint32 epoch => uint256 decrease) public rewardWeightDecreases;
/// ----------------------------------------------------------------------------
/// CONSTRUCTOR
/// ----------------------------------------------------------------------------
constructor(address _core, address _receiptToken) CoreControlled(_core) {
receiptToken = _receiptToken;
uint32 currentEpoch = uint32(block.timestamp.epoch());
lastGlobalPointEpoch = currentEpoch;
globalPoints[currentEpoch] =
GlobalPoint({epoch: currentEpoch, totalRewardWeight: 0, totalRewardWeightDecrease: 0, rewardShares: 0});
}
/// ----------------------------------------------------------------------------
/// READ METHODS
/// ----------------------------------------------------------------------------
/// @notice returns the current reward weight
function totalRewardWeight() external view returns (uint256) {
GlobalPoint memory point = _getLastGlobalPoint();
return point.totalRewardWeight.mulWadUp(slashIndex);
}
/// @notice returns the balance of a user
function balanceOf(address _user, uint256 _startUnwindingTimestamp) external view returns (uint256) {
return _sharesToAmount(_userShares(_user, _startUnwindingTimestamp));
}
/// @notice returns number of share of a user
function _userShares(address _user, uint256 _startUnwindingTimestamp) internal view returns (uint256) {
UnwindingPosition memory position = positions[_unwindingId(_user, _startUnwindingTimestamp)];
if (position.fromEpoch == 0) return 0;
// apply rewards
GlobalPoint memory globalPoint;
uint256 userRewardWeight = position.fromRewardWeight;
uint256 userShares = position.shares;
uint256 currentEpoch = block.timestamp.epoch();
for (uint32 epoch = position.fromEpoch - 1; epoch <= currentEpoch; epoch++) {
// if a real global point exists, use it
// there is always a real global point for the position.fromEpoch,
// because a global point is saved to storage when a position starts unwinding.
GlobalPoint memory epochGlobalPoint = globalPoints[epoch];
if (epochGlobalPoint.epoch != 0) globalPoint = epochGlobalPoint;
// add shares to the user for their earned rewards
// note that the userRewardWeight is not increased proportionally to the rewards
// received, which means that rewards are not compounding during unwinding.
if (epoch >= position.fromEpoch) {
// do not distribute rewards at the epoch where the user started unwinding,
// because the global reward weight is not updated yet and the user should not
// earn rewards before the start of their unwinding period (and the start of their
// unwinding is the next epoch after they called startUnwinding).
userShares += globalPoint.rewardShares.mulDivDown(userRewardWeight, globalPoint.totalRewardWeight);
}
// prepare a virtual global point for the next iteration
// slope changes
globalPoint.totalRewardWeightDecrease -= rewardWeightIncreases[epoch];
globalPoint.totalRewardWeightDecrease += rewardWeightDecreases[epoch];
// bias changes
globalPoint.totalRewardWeight += rewardWeightBiasIncreases[epoch];
// apply slope changes
globalPoint.totalRewardWeight -= globalPoint.totalRewardWeightDecrease;
// update epoch
globalPoint.epoch = epoch + 1;
// reset rewards
globalPoint.rewardShares = 0;
// if during the position's unwinding period, the reward weight should decrease
if (epoch >= position.fromEpoch && epoch < position.toEpoch) {
userRewardWeight -= position.rewardWeightDecrease;
}
}
return userShares;
}
/// @notice returns the reward weight of a user
function rewardWeight(address _user, uint256 _startUnwindingTimestamp) public view returns (uint256) {
UnwindingPosition memory position = positions[_unwindingId(_user, _startUnwindingTimestamp)];
if (position.fromEpoch == 0) return 0;
uint256 userRewardWeight = position.fromRewardWeight;
uint256 currentEpoch = block.timestamp.epoch();
if (currentEpoch < position.fromEpoch) return 0;
for (uint32 epoch = position.fromEpoch + 1; epoch <= currentEpoch && epoch <= position.toEpoch; epoch++) {
userRewardWeight -= position.rewardWeightDecrease;
}
return userRewardWeight.mulWadDown(slashIndex);
}
/// ----------------------------------------------------------------------------
/// WRITE METHODS
/// ----------------------------------------------------------------------------
/// @notice Start unwinding a locked position
function startUnwinding(address _user, uint256 _receiptTokens, uint32 _unwindingEpochs, uint256 _rewardWeight)
external
onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER)
{
bytes32 id = _unwindingId(_user, block.timestamp);
require(positions[id].fromEpoch == 0, UserUnwindingInprogress());
uint256 userRewardWeight = _rewardWeight.divWadDown(slashIndex);
uint256 targetRewardWeight = _receiptTokens.divWadDown(slashIndex);
uint256 totalDecrease = userRewardWeight - targetRewardWeight;
uint256 rewardWeightDecrease = totalDecrease / uint256(_unwindingEpochs);
uint256 roundingLoss = totalDecrease - (rewardWeightDecrease * uint256(_unwindingEpochs));
userRewardWeight -= roundingLoss;
uint32 nextEpoch = uint32(block.timestamp.nextEpoch());
uint32 endEpoch = nextEpoch + _unwindingEpochs;
{
uint256 newShares = _amountToShares(_receiptTokens);
positions[id] = UnwindingPosition({
shares: newShares,
fromEpoch: nextEpoch,
toEpoch: endEpoch,
fromRewardWeight: userRewardWeight,
rewardWeightDecrease: rewardWeightDecrease
});
totalShares += newShares;
}
totalReceiptTokens += _receiptTokens;
GlobalPoint memory point = _getLastGlobalPoint();
_updateGlobalPoint(point);
rewardWeightBiasIncreases[uint32(block.timestamp.epoch())] += userRewardWeight;
rewardWeightDecreases[nextEpoch] += rewardWeightDecrease;
rewardWeightIncreases[endEpoch] += rewardWeightDecrease;
emit UnwindingStarted(block.timestamp, _user, _receiptTokens, _unwindingEpochs, userRewardWeight);
}
/// @notice Cancel an ongoing unwinding
function cancelUnwinding(address _user, uint256 _startUnwindingTimestamp, uint32 _newUnwindingEpochs)
external
onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER)
{
uint32 currentEpoch = uint32(block.timestamp.epoch());
bytes32 id = _unwindingId(_user, _startUnwindingTimestamp);
UnwindingPosition memory position = positions[id];
require(position.toEpoch > 0 && currentEpoch < position.toEpoch, UserNotUnwinding());
require(currentEpoch >= position.fromEpoch, UserUnwindingNotStarted());
uint256 userShares = _userShares(_user, _startUnwindingTimestamp);
uint256 userBalance = _sharesToAmount(userShares);
uint256 elapsedEpochs = currentEpoch - position.fromEpoch;
uint256 userRewardWeight = position.fromRewardWeight - elapsedEpochs * position.rewardWeightDecrease;
{
// scope some state writing to avoid stack too deep
GlobalPoint memory point = _getLastGlobalPoint();
if (currentEpoch == position.fromEpoch) {
// if cancelling unwinding on the first epoch, the reward weight has not started
// decreasing yet, so we do not need to update the global point's slope
// instead, we cancel the slope change that will happen in the next epoch
rewardWeightDecreases[currentEpoch] -= position.rewardWeightDecrease;
} else {
// if cancelling unwinding after the first epoch, we correct the global point's slope
point.totalRewardWeightDecrease -= position.rewardWeightDecrease;
}
uint256 rewardSharesToDecrement = point.rewardShares.mulDivDown(userRewardWeight, point.totalRewardWeight);
point.rewardShares -= rewardSharesToDecrement;
point.totalRewardWeight -= userRewardWeight;
_updateGlobalPoint(point);
// cancel slope change that would have happened at the end of unwinding
rewardWeightIncreases[position.toEpoch] -= position.rewardWeightDecrease;
delete positions[id];
totalShares -= userShares;
totalReceiptTokens -= userBalance;
}
uint32 remainingEpochs = position.toEpoch - currentEpoch;
require(_newUnwindingEpochs >= remainingEpochs, InvalidUnwindingEpochs(_newUnwindingEpochs));
IERC20(receiptToken).approve(msg.sender, userBalance);
LockingController(msg.sender).createPosition(userBalance, _newUnwindingEpochs, _user);
emit UnwindingCanceled(block.timestamp, _user, _startUnwindingTimestamp, _newUnwindingEpochs);
}
/// @notice Withdraw after an unwinding period has completed
function withdraw(uint256 _startUnwindingTimestamp, address _owner)
external
onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER)
{
uint32 currentEpoch = uint32(block.timestamp.epoch());
bytes32 id = _unwindingId(_owner, _startUnwindingTimestamp);
UnwindingPosition memory position = positions[id];
require(position.toEpoch > 0, UserNotUnwinding());
require(currentEpoch >= position.toEpoch, UserUnwindingInprogress());
uint256 userShares = _userShares(_owner, _startUnwindingTimestamp);
uint256 userBalance = _sharesToAmount(userShares);
uint256 userRewardWeight =
position.fromRewardWeight - (position.toEpoch - position.fromEpoch) * position.rewardWeightDecrease;
delete positions[id];
GlobalPoint memory point = _getLastGlobalPoint();
uint256 rewardSharesToDecrement = point.rewardShares.mulDivDown(userRewardWeight, point.totalRewardWeight);
point.rewardShares -= rewardSharesToDecrement;
point.totalRewardWeight -= userRewardWeight;
_updateGlobalPoint(point);
totalShares -= userShares;
totalReceiptTokens -= userBalance;
require(IERC20(receiptToken).transfer(_owner, userBalance), TransferFailed());
emit Withdrawal(block.timestamp, _startUnwindingTimestamp, _owner);
}
/// ----------------------------------------------------------------------------
/// INTERNAL UTILS
/// ----------------------------------------------------------------------------
function _unwindingId(address _user, uint256 _blockTimestamp) internal pure returns (bytes32) {
return keccak256(abi.encode(_user, _blockTimestamp));
}
function _amountToShares(uint256 _amount) internal view returns (uint256) {
uint256 _totalReceiptTokens = totalReceiptTokens;
return _totalReceiptTokens == 0 ? _amount : _amount.mulDivDown(totalShares, _totalReceiptTokens);
}
function _sharesToAmount(uint256 _shares) internal view returns (uint256) {
if (_shares == 0) return 0;
return _shares.mulDivDown(totalReceiptTokens, totalShares);
}
function _getLastGlobalPoint() internal view returns (GlobalPoint memory) {
GlobalPoint memory point = globalPoints[lastGlobalPointEpoch];
uint32 currentEpoch = uint32(block.timestamp.epoch());
// apply slope & bias changes if the current point
// must be extrapolated from a past global point
for (uint32 epoch = point.epoch; epoch < currentEpoch; epoch++) {
point.totalRewardWeightDecrease -= rewardWeightIncreases[epoch];
point.totalRewardWeightDecrease += rewardWeightDecreases[epoch];
point.totalRewardWeight += rewardWeightBiasIncreases[epoch];
point.totalRewardWeight -= point.totalRewardWeightDecrease;
point.epoch = epoch + 1;
point.rewardShares = 0;
}
return point;
}
function _updateGlobalPoint(GlobalPoint memory point) internal {
globalPoints[point.epoch] = point;
lastGlobalPointEpoch = point.epoch;
emit GlobalPointUpdated(block.timestamp, point);
}
/// ----------------------------------------------------------------------------
/// REWARDS MANAGEMENT WRITE METHODS
/// ----------------------------------------------------------------------------
function depositRewards(uint256 _amount) external onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
if (_amount == 0) return;
GlobalPoint memory point = _getLastGlobalPoint();
uint256 rewardShares = _amountToShares(_amount);
point.rewardShares += rewardShares;
_updateGlobalPoint(point);
totalShares += rewardShares;
totalReceiptTokens += _amount;
}
function applyLosses(uint256 _amount) external onlyCoreRole(CoreRoles.LOCKED_TOKEN_MANAGER) {
if (_amount == 0) return;
// protect against underflow
if (_amount > totalReceiptTokens) {
_amount = totalReceiptTokens;
emit CriticalLoss(block.timestamp, _amount);
}
uint256 _totalReceiptTokens = totalReceiptTokens;
ERC20Burnable(receiptToken).burn(_amount);
slashIndex = slashIndex.mulDivDown(_totalReceiptTokens - _amount, _totalReceiptTokens);
totalReceiptTokens = _totalReceiptTokens - _amount;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
*
* TIP: For a detailed writeup see our guide
* https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* The default value of {decimals} is 18. To change this, you should override
* this function so it returns a different value.
*
* We have followed general OpenZeppelin Contracts guidelines: functions revert
* instead returning `false` on failure. This behavior is nonetheless
* conventional and does not conflict with the expectations of ERC-20
* applications.
*/
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
mapping(address account => uint256) private _balances;
mapping(address account => mapping(address spender => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* Both values are immutable: they can only be set once during construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5.05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the default value returned by this function, unless
* it's overridden.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view virtual returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - the caller must have a balance of at least `value`.
*/
function transfer(address to, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_transfer(owner, to, value);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
* `transferFrom`. This is semantically equivalent to an infinite approval.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 value) public virtual returns (bool) {
address owner = _msgSender();
_approve(owner, spender, value);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Skips emitting an {Approval} event indicating an allowance update. This is not
* required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
*
* NOTE: Does not update the allowance if the current allowance
* is the maximum `uint256`.
*
* Requirements:
*
* - `from` and `to` cannot be the zero address.
* - `from` must have a balance of at least `value`.
* - the caller must have allowance for ``from``'s tokens of at least
* `value`.
*/
function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
address spender = _msgSender();
_spendAllowance(from, spender, value);
_transfer(from, to, value);
return true;
}
/**
* @dev Moves a `value` amount of tokens from `from` to `to`.
*
* This internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _transfer(address from, address to, uint256 value) internal {
if (from == address(0)) {
revert ERC20InvalidSender(address(0));
}
if (to == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(from, to, value);
}
/**
* @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
* (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
* this function.
*
* Emits a {Transfer} event.
*/
function _update(address from, address to, uint256 value) internal virtual {
if (from == address(0)) {
// Overflow check required: The rest of the code assumes that totalSupply never overflows
_totalSupply += value;
} else {
uint256 fromBalance = _balances[from];
if (fromBalance < value) {
revert ERC20InsufficientBalance(from, fromBalance, value);
}
unchecked {
// Overflow not possible: value <= fromBalance <= totalSupply.
_balances[from] = fromBalance - value;
}
}
if (to == address(0)) {
unchecked {
// Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
_totalSupply -= value;
}
} else {
unchecked {
// Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
_balances[to] += value;
}
}
emit Transfer(from, to, value);
}
/**
* @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
* Relies on the `_update` mechanism
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead.
*/
function _mint(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidReceiver(address(0));
}
_update(address(0), account, value);
}
/**
* @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
* Relies on the `_update` mechanism.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* NOTE: This function is not virtual, {_update} should be overridden instead
*/
function _burn(address account, uint256 value) internal {
if (account == address(0)) {
revert ERC20InvalidSender(address(0));
}
_update(account, address(0), value);
}
/**
* @dev Sets `value` as the allowance of `spender` over the `owner`'s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*
* Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
*/
function _approve(address owner, address spender, uint256 value) internal {
_approve(owner, spender, value, true);
}
/**
* @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
*
* By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
* `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
* `Approval` event during `transferFrom` operations.
*
* Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
* true using the following override:
*
* ```solidity
* function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
* super._approve(owner, spender, value, true);
* }
* ```
*
* Requirements are the same as {_approve}.
*/
function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
if (owner == address(0)) {
revert ERC20InvalidApprover(address(0));
}
if (spender == address(0)) {
revert ERC20InvalidSpender(address(0));
}
_allowances[owner][spender] = value;
if (emitEvent) {
emit Approval(owner, spender, value);
}
}
/**
* @dev Updates `owner`'s allowance for `spender` based on spent `value`.
*
* Does not update the allowance value in case of infinite allowance.
* Revert if not enough allowance is available.
*
* Does not emit an {Approval} event.
*/
function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
uint256 currentAllowance = allowance(owner, spender);
if (currentAllowance < type(uint256).max) {
if (currentAllowance < value) {
revert ERC20InsufficientAllowance(spender, currentAllowance, value);
}
unchecked {
_approve(owner, spender, currentAllowance - value, false);
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)
pragma solidity ^0.8.20;
import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";
/**
* @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
bytes32 private constant PERMIT_TYPEHASH =
keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
/**
* @dev Permit deadline has expired.
*/
error ERC2612ExpiredSignature(uint256 deadline);
/**
* @dev Mismatched signature.
*/
error ERC2612InvalidSigner(address signer, address owner);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC-20 token name.
*/
constructor(string memory name) EIP712(name, "1") {}
/**
* @inheritdoc IERC20Permit
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
if (block.timestamp > deadline) {
revert ERC2612ExpiredSignature(deadline);
}
bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));
bytes32 hash = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(hash, v, r, s);
if (signer != owner) {
revert ERC2612InvalidSigner(signer, owner);
}
_approve(owner, spender, value);
}
/**
* @inheritdoc IERC20Permit
*/
function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
return super.nonces(owner);
}
/**
* @inheritdoc IERC20Permit
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
return _domainSeparatorV4();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using SlotDerivation for bytes32;
using StorageSlot for bytes32;
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
/**
* @dev Sort an array of address (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
* at end (exclusive). Sorting follows the `comp` comparator.
*
* Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
*
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
for (uint256 it = begin + 0x20; it < end; it += 0x20) {
if (comp(_mload(it), pivot)) {
// If the value stored at the iterator's position comes before the pivot, we increment the
// position of the pivot and move the value there.
pos += 0x20;
_swap(pos, it);
}
}
_swap(begin, pos); // Swap pivot into place
_quickSort(begin, pos, comp); // Sort the left side of the pivot
_quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
}
}
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
assembly ("memory-safe") {
ptr := add(array, 0x20)
}
}
/**
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
}
/**
* @dev Swaps the elements memory location `ptr1` and `ptr2`.
*/
function _swap(uint256 ptr1, uint256 ptr2) private pure {
assembly {
let value1 := mload(ptr1)
let value2 := mload(ptr2)
mstore(ptr1, value2)
mstore(ptr2, value1)
}
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* NOTE: The `array` is expected to be sorted in ascending order, and to
* contain no repeated elements.
*
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
* support for repeated elements in the array. The {lowerBound} function should
* be used instead.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value greater or equal than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
*/
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value strictly greater than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
*/
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Same as {lowerBound}, but with an array in memory.
*/
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Same as {upperBound}, but with an array in memory.
*/
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes[] storage arr, uint256 pos) internal pure returns (StorageSlot.BytesSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytesSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(string[] storage arr, uint256 pos) internal pure returns (StorageSlot.StringSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getStringSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes[] memory arr, uint256 pos) internal pure returns (bytes memory res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(string[] memory arr, uint256 pos) internal pure returns (string memory res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(address[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(uint256[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(string[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/extensions/AccessControlEnumerable.sol)
pragma solidity ^0.8.20;
import {IAccessControlEnumerable} from "./IAccessControlEnumerable.sol";
import {AccessControl} from "../AccessControl.sol";
import {EnumerableSet} from "../../utils/structs/EnumerableSet.sol";
/**
* @dev Extension of {AccessControl} that allows enumerating the members of each role.
*/
abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {
using EnumerableSet for EnumerableSet.AddressSet;
mapping(bytes32 role => EnumerableSet.AddressSet) private _roleMembers;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) public view virtual returns (address) {
return _roleMembers[role].at(index);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) public view virtual returns (uint256) {
return _roleMembers[role].length();
}
/**
* @dev Return all accounts that have `role`
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function getRoleMembers(bytes32 role) public view virtual returns (address[] memory) {
return _roleMembers[role].values();
}
/**
* @dev Overload {AccessControl-_grantRole} to track enumerable memberships
*/
function _grantRole(bytes32 role, address account) internal virtual override returns (bool) {
bool granted = super._grantRole(role, account);
if (granted) {
_roleMembers[role].add(account);
}
return granted;
}
/**
* @dev Overload {AccessControl-_revokeRole} to track enumerable memberships
*/
function _revokeRole(bytes32 role, address account) internal virtual override returns (bool) {
bool revoked = super._revokeRole(role, account);
if (revoked) {
_roleMembers[role].remove(account);
}
return revoked;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)
pragma solidity ^0.8.20;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(buffer, add(0x20, offset)))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* ==== Security Considerations
*
* There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
* expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
* considered as an intention to spend the allowance in any specific way. The second is that because permits have
* built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
* take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
* generally recommended is:
*
* ```solidity
* function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
* try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
* doThing(..., value);
* }
*
* function doThing(..., uint256 value) public {
* token.safeTransferFrom(msg.sender, address(this), value);
* ...
* }
* ```
*
* Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
* `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
* {SafeERC20-safeTransferFrom}).
*
* Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
* contracts should have entry points that don't rely on permit.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*
* CAUTION: See Security Considerations above.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature derives the `address(0)`.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.20;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/**
* @inheritdoc IERC5267
*/
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides tracking nonces for addresses. Nonces will only increment.
*/
abstract contract Nonces {
/**
* @dev The nonce used for an `account` is not the expected current nonce.
*/
error InvalidAccountNonce(address account, uint256 currentNonce);
mapping(address account => uint256) private _nonces;
/**
* @dev Returns the next unused nonce for an address.
*/
function nonces(address owner) public view virtual returns (uint256) {
return _nonces[owner];
}
/**
* @dev Consumes a nonce.
*
* Returns the current value and increments nonce.
*/
function _useNonce(address owner) internal virtual returns (uint256) {
// For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
// decremented or reset. This guarantees that the nonce never overflows.
unchecked {
// It is important to do x++ and not ++x here.
return _nonces[owner]++;
}
}
/**
* @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
*/
function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
uint256 current = _useNonce(owner);
if (nonce != current) {
revert InvalidAccountNonce(owner, current);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to compare values.
*
* _Available since v5.1._
*/
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/extensions/IAccessControlEnumerable.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "../IAccessControl.sol";
/**
* @dev External interface of AccessControlEnumerable declared to support ERC-165 detection.
*/
interface IAccessControlEnumerable is IAccessControl {
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index) external view returns (address);
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) external view returns (uint256);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.20;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 31) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(32);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 31) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 32) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)
pragma solidity ^0.8.20;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (access/IAccessControl.sol)
pragma solidity ^0.8.20;
/**
* @dev External interface of AccessControl declared to support ERC-165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted to signal this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
* Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}{
"remappings": [
"@openzeppelin/=lib/openzeppelin-contracts/",
"@forge-std/=lib/forge-std/src/",
"@solmate/=lib/solmate/",
"@cowprotocol/=lib/cowprotocol/src/",
"@core/=src/core/",
"@tokens/=src/tokens/",
"@locking/=src/locking/",
"@funding/=src/funding/",
"@gateway/=src/gateway/",
"@finance/=src/finance/",
"@libraries/=src/libraries/",
"@interfaces/=src/interfaces/",
"@governance/=src/governance/",
"@integrations/=src/integrations/",
"@test/=test/",
"@deployment/=deployment/",
"cowprotocol/=lib/cowprotocol/src/",
"ds-test/=lib/solmate/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"solmate/=lib/solmate/src/"
],
"optimizer": {
"enabled": true,
"runs": 1000
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {
"src/libraries/EpochLib.sol": {
"EpochLib": "0x4e7b4a37cB9d88e555DaEa7503dC942954FF742E"
}
}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_core","type":"address"},{"internalType":"address","name":"_lockingController","type":"address"},{"internalType":"address","name":"_farmRegistry","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint32","name":"_unwindingEpochs","type":"uint32"}],"name":"AlreadyVoted","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[{"internalType":"address","name":"_asset","type":"address"}],"name":"InvalidAsset","type":"error"},{"inputs":[{"internalType":"address","name":"_farm","type":"address"},{"internalType":"uint256","name":"_maturity","type":"uint256"},{"internalType":"uint256","name":"_userUnbondingTimestamp","type":"uint256"}],"name":"InvalidTargetBucket","type":"error"},{"inputs":[{"internalType":"uint256","name":"_expectedPower","type":"uint256"},{"internalType":"uint256","name":"_actualPower","type":"uint256"}],"name":"InvalidWeights","type":"error"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"uint32","name":"_unwindingEpochs","type":"uint32"}],"name":"NoVotingPower","type":"error"},{"inputs":[{"internalType":"bytes","name":"returnData","type":"bytes"}],"name":"UnderlyingCallReverted","type":"error"},{"inputs":[{"internalType":"address","name":"farm","type":"address"},{"internalType":"bool","name":"liquid","type":"bool"}],"name":"UnknownFarm","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldCore","type":"address"},{"indexed":true,"internalType":"address","name":"newCore","type":"address"}],"name":"CoreUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"timestamp","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"epoch","type":"uint256"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint32","name":"unwindingEpochs","type":"uint32"},{"components":[{"internalType":"address","name":"farm","type":"address"},{"internalType":"uint96","name":"weight","type":"uint96"}],"indexed":false,"internalType":"struct AllocationVoting.AllocationVote[]","name":"liquidVotes","type":"tuple[]"},{"components":[{"internalType":"address","name":"farm","type":"address"},{"internalType":"uint96","name":"weight","type":"uint96"}],"indexed":false,"internalType":"struct AllocationVoting.AllocationVote[]","name":"illiquidVotes","type":"tuple[]"},{"indexed":false,"internalType":"uint256","name":"userWeight","type":"uint256"}],"name":"FarmVoteRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"core","outputs":[{"internalType":"contract InfiniFiCore","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"callData","type":"bytes"}],"internalType":"struct CoreControlled.Call[]","name":"calls","type":"tuple[]"}],"name":"emergencyAction","outputs":[{"internalType":"bytes[]","name":"returnData","type":"bytes[]"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"farmRegistry","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"farm","type":"address"}],"name":"farmWeightData","outputs":[{"internalType":"uint32","name":"epoch","type":"uint32"},{"internalType":"uint112","name":"currentWeight","type":"uint112"},{"internalType":"uint112","name":"nextWeight","type":"uint112"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_asset","type":"address"},{"internalType":"uint256","name":"_farmType","type":"uint256"}],"name":"getAssetVoteWeights","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_farm","type":"address"}],"name":"getVote","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_farmType","type":"uint256"}],"name":"getVoteWeights","outputs":[{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint32","name":"unwindingEpochs","type":"uint32"}],"name":"lastVoteEpoch","outputs":[{"internalType":"uint32","name":"epoch","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockingController","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newCore","type":"address"}],"name":"setCore","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"},{"internalType":"address","name":"_asset","type":"address"},{"internalType":"uint32","name":"_unwindingEpochs","type":"uint32"},{"components":[{"internalType":"address","name":"farm","type":"address"},{"internalType":"uint96","name":"weight","type":"uint96"}],"internalType":"struct AllocationVoting.AllocationVote[]","name":"_liquidVotes","type":"tuple[]"},{"components":[{"internalType":"address","name":"farm","type":"address"},{"internalType":"uint96","name":"weight","type":"uint96"}],"internalType":"struct AllocationVoting.AllocationVote[]","name":"_illiquidVotes","type":"tuple[]"}],"name":"vote","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
6080604052348015600e575f5ffd5b5060405161213a38038061213a833981016040819052602b91608e565b5f80546001600160a01b0394851661010002610100600160a81b0319909116179055600180549284166001600160a01b03199384161790556002805491909316911617905560c7565b80516001600160a01b03811681146089575f5ffd5b919050565b5f5f5f60608486031215609f575f5ffd5b60a6846074565b925060b2602085016074565b915060be604085016074565b90509250925092565b612066806100d45f395ff3fe6080604052600436106100d9575f3560e01c80638456cb591161007c5780638d337b81116100575780638d337b81146102bb5780639a957be8146102e8578063bae4182914610307578063f2f4eb2614610326575f5ffd5b80638456cb591461024257806386644ac71461025657806387418e4a14610284575f5ffd5b80635c975abb116100b75780635c975abb146101915780637df3927e146101b257806380009630146101d25780638359f1fb146101f1575f5ffd5b806313527eda146100dd5780632610409b1461015c5780633f4ba83a1461017d575b5f5ffd5b3480156100e8575f5ffd5b5061012b6100f73660046119f6565b60036020525f908152604090205463ffffffff8116906001600160701b036401000000008204811691600160901b90041683565b6040805163ffffffff90941684526001600160701b0392831660208501529116908201526060015b60405180910390f35b348015610167575f5ffd5b5061017b610176366004611a71565b610347565b005b348015610188575f5ffd5b5061017b61086c565b34801561019c575f5ffd5b505f5460ff166040519015158152602001610153565b6101c56101c0366004611b15565b610947565b6040516101539190611bb4565b3480156101dd575f5ffd5b5061017b6101ec3660046119f6565b610be2565b3480156101fc575f5ffd5b5061022d61020b366004611c17565b600460209081525f928352604080842090915290825290205463ffffffff1681565b60405163ffffffff9091168152602001610153565b34801561024d575f5ffd5b5061017b610cbf565b348015610261575f5ffd5b50610275610270366004611c4a565b610d97565b60405161015393929190611c74565b34801561028f575f5ffd5b506002546102a3906001600160a01b031681565b6040516001600160a01b039091168152602001610153565b3480156102c6575f5ffd5b506102da6102d53660046119f6565b610e48565b604051908152602001610153565b3480156102f3575f5ffd5b50610275610302366004611d05565b610f1b565b348015610312575f5ffd5b506001546102a3906001600160a01b031681565b348015610331575f5ffd5b505f5461010090046001600160a01b03166102a3565b61034f610fc7565b5f54604051632474521560e21b81527f276ea66e969b021a947c47a128f4d53c55387336443ef7a5391a75f0d2e48d25600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa1580156103c0573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103e49190611d1c565b6104245760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b60448201526064015b60405180910390fd5b6002546040517f114cb92f0000000000000000000000000000000000000000000000000000000081526001600160a01b0389811660048301529091169063114cb92f90602401602060405180830381865afa158015610485573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104a99190611d1c565b87906104d4576040516337bce3c560e11b81526001600160a01b03909116600482015260240161041b565b50604051635487c57760e01b81524260048201525f90734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c57790602401602060405180830381865af4158015610524573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105489190611d3b565b6001600160a01b038a165f90815260046020908152604080832063ffffffff8c811685529252909120549192508a9189918085169116106105cc576040517f5897763b0000000000000000000000000000000000000000000000000000000081526001600160a01b03909216600483015263ffffffff16602482015260440161041b565b50506001600160a01b038981165f81815260046020818152604080842063ffffffff8e811680875291909352818520805463ffffffff19169389169390931790925560015490517f5be7d3c800000000000000000000000000000000000000000000000000000000815292830194909452602482015290929190911690635be7d3c890604401602060405180830381865afa15801561066d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106919190611d3b565b90508988826106e3576040517f7f2355dd0000000000000000000000000000000000000000000000000000000081526001600160a01b03909216600483015263ffffffff16602482015260440161041b565b505083156106fa576106fa8989848489895f611005565b851561071057610710898984848b8b6001611005565b6001546040517fe7dda2eb00000000000000000000000000000000000000000000000000000000815263ffffffff8a1660048201525f916001600160a01b03169063e7dda2eb90602401602060405180830381865afa158015610775573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107999190611d5d565b6040517faf4c8de10000000000000000000000000000000000000000000000000000000081526001600160a01b038d811660048301529192509082169063af4c8de1906024015f604051808303815f87803b1580156107f6575f5ffd5b505af1158015610808573d5f5f3e3d5ffd5b505050508a6001600160a01b03168363ffffffff16427fbbd11426a9a704850f29cfe15773b80a70d18908735d36e0234021efefce83698c8c8c8c8c8a60405161085796959493929190611dfa565b60405180910390a45050505050505050505050565b5f54604051632474521560e21b81527fe7276a2a84d8de556657ec9cf93a55a7d66f096e529d0582ed08e9e2208b92b5600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa1580156108dd573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109019190611d1c565b61093c5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161041b565b6109446112e3565b50565b5f54604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a6004820181905233602483015260609290916101009091046001600160a01b0316906391d1485490604401602060405180830381865afa1580156109bd573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109e19190611d1c565b610a1c5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161041b565b8267ffffffffffffffff811115610a3557610a35611e40565b604051908082528060200260200182016040528015610a6857816020015b6060815260200190600190039081610a535790505b5091505f5b83811015610bda575f858583818110610a8857610a88611e54565b9050602002810190610a9a9190611e68565b610aa89060208101906119f6565b90505f868684818110610abd57610abd611e54565b9050602002810190610acf9190611e68565b602001359050365f888886818110610ae957610ae9611e54565b9050602002810190610afb9190611e68565b610b09906040810190611e86565b915091505f5f856001600160a01b0316858585604051610b2a929190611ec9565b5f6040518083038185875af1925050503d805f8114610b64576040519150601f19603f3d011682016040523d82523d5f602084013e610b69565b606091505b5091509150818190610ba8576040517f4ad176bb00000000000000000000000000000000000000000000000000000000815260040161041b9190611ed8565b5080898881518110610bbc57610bbc611e54565b60200260200101819052505050505050508080600101915050610a6d565b505092915050565b5f54604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015610c53573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c779190611d1c565b610cb25760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161041b565b610cbb82611334565b5050565b5f54604051632474521560e21b81527ffcb9fcbfa83b897fb2d5cf4b58962164105c1e71489a37ef3ae0db3fdce576f6600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015610d30573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d549190611d1c565b610d8f5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161041b565b6109446113a3565b6002546040517edb56450000000000000000000000000000000000000000000000000000000081526001600160a01b0384811660048301526024820184905260609283925f928392169062db5645906044015f60405180830381865afa158015610e03573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610e2a9190810190611eea565b90505f5f610e37836113df565b939650945091925050509250925092565b6001600160a01b0381165f9081526003602090815260408083208151606081018352905463ffffffff811682526001600160701b036401000000008204811694830194909452600160901b90049092168282015251635487c57760e01b8152426004820152610f159190734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c57790602401602060405180830381865af4158015610eec573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f109190611d3b565b611582565b92915050565b6002546040517fc108e2c40000000000000000000000000000000000000000000000000000000081526004810183905260609182915f9182916001600160a01b039091169063c108e2c4906024015f60405180830381865afa158015610f83573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610faa9190810190611eea565b90505f5f610fb7836113df565b9398909750929550919350505050565b5f5460ff1615611003576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f805b83811015611277575f85858381811061102357611023611e54565b61103992602060409092020190810191506119f6565b905083156110525761104d8a8260016115e9565b611068565b61105e8a8260026115e9565b611068818a611782565b6001600160a01b0381165f908152600360209081526040918290208251606081018452905463ffffffff8082168084526001600160701b036401000000008404811695850195909552600160901b9092049093169382019390935291908a161461113f576110d760018a611fc9565b63ffffffff16815f015163ffffffff160361111b576040805160608101825263ffffffff8b168152918101516001600160701b031660208301525f9082015261113f565b506040805160608101825263ffffffff8a1681525f60208201819052918101919091525b61118187878581811061115457611154611e54565b905060400201602001602081019061116c9190611fe5565b89906bffffffffffffffffffffffff16611971565b816040018181516111929190611ffe565b6001600160701b039081169091526001600160a01b0384165f908152600360209081526040918290208551815492870151938701518516600160901b0271ffffffffffffffffffffffffffffffffffff94909516640100000000027fffffffffffffffffffffffffffff00000000000000000000000000000000000090931663ffffffff9091161791909117919091169190911790555086868481811061123b5761123b611e54565b90506040020160200160208101906112539190611fe5565b61126b906bffffffffffffffffffffffff168561201d565b93505050600101611008565b50670de0b6b3a764000081148061128c575080155b670de0b6b3a76400008290916112d7576040517ff57d5b320000000000000000000000000000000000000000000000000000000081526004810192909252602482015260440161041b565b50505050505050505050565b6112eb61198c565b5f805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b5f80546001600160a01b038381166101008181027fffffffffffffffffffffff0000000000000000000000000000000000000000ff851617855560405193049190911692909183917f9209b7c8c06dcfd261686a663e7c55989337b18d59da5433c6f2835fb697092091a35050565b6113ab610fc7565b5f805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586113173390565b604051635487c57760e01b81524260048201526060905f908190734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c57790602401602060405180830381865af4158015611433573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114579190611d3b565b90505f845167ffffffffffffffff81111561147457611474611e40565b60405190808252806020026020018201604052801561149d578160200160208202803683370190505b5090505f805b86518110156115765761152960035f8984815181106114c4576114c4611e54565b6020908102919091018101516001600160a01b031682528181019290925260409081015f208151606081018352905463ffffffff811682526001600160701b036401000000008204811694830194909452600160901b90049092169082015285611582565b83828151811061153b5761153b611e54565b60200260200101818152505082818151811061155957611559611e54565b60200260200101518261156c919061201d565b91506001016114a3565b50909590945092505050565b5f8163ffffffff16835f015163ffffffff16036115ad575060208201516001600160701b0316610f15565b6115b8600183611fc9565b63ffffffff16835f015163ffffffff16036115e1575060408201516001600160701b0316610f15565b505f92915050565b6002546040517fbf0f013e0000000000000000000000000000000000000000000000000000000081526001600160a01b0384811660048301526024820184905290911690819063bf0f013e90604401602060405180830381865afa158015611653573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116779190611d1c565b83600190916116c5576040517fc8cf6f410000000000000000000000000000000000000000000000000000000081526001600160a01b0390921660048301521515602482015260440161041b565b50506040517f88f290830000000000000000000000000000000000000000000000000000000081526001600160a01b03848116600483015285811660248301528216906388f2908390604401602060405180830381865afa15801561172c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117509190611d1c565b849061177b576040516337bce3c560e11b81526001600160a01b03909116600482015260240161041b565b5050505050565b5f826001600160a01b031663204f83f96040518163ffffffff1660e01b8152600401602060405180830381865afa1580156117bf573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117e39190611d3b565b6040517f342a7b010000000000000000000000000000000000000000000000000000000081524260048201529091505f9063ffffffff841690734e7b4a37cb9d88e555daea7503dc942954ff742e9063342a7b0190602401602060405180830381865af4158015611856573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061187a9190611d3b565b611884919061201d565b6040517f72b864890000000000000000000000000000000000000000000000000000000081526004810191909152734e7b4a37cb9d88e555daea7503dc942954ff742e906372b8648990602401602060405180830381865af41580156118ec573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119109190611d3b565b905083828280821115611968576040517fe86011220000000000000000000000000000000000000000000000000000000081526001600160a01b0390931660048401526024830191909152604482015260640161041b565b50505050505050565b5f6119858383670de0b6b3a76400006119c7565b9392505050565b5f5460ff16611003576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f825f1904841183021582026119db575f5ffd5b5091020490565b6001600160a01b0381168114610944575f5ffd5b5f60208284031215611a06575f5ffd5b8135611985816119e2565b803563ffffffff81168114611a24575f5ffd5b919050565b5f5f83601f840112611a39575f5ffd5b50813567ffffffffffffffff811115611a50575f5ffd5b6020830191508360208260061b8501011115611a6a575f5ffd5b9250929050565b5f5f5f5f5f5f5f60a0888a031215611a87575f5ffd5b8735611a92816119e2565b96506020880135611aa2816119e2565b9550611ab060408901611a11565b9450606088013567ffffffffffffffff811115611acb575f5ffd5b611ad78a828b01611a29565b909550935050608088013567ffffffffffffffff811115611af6575f5ffd5b611b028a828b01611a29565b989b979a50959850939692959293505050565b5f5f60208385031215611b26575f5ffd5b823567ffffffffffffffff811115611b3c575f5ffd5b8301601f81018513611b4c575f5ffd5b803567ffffffffffffffff811115611b62575f5ffd5b8560208260051b8401011115611b76575f5ffd5b6020919091019590945092505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f602082016020835280845180835260408501915060408160051b8601019250602086015f5b82811015611c0b57603f19878603018452611bf6858351611b86565b94506020938401939190910190600101611bda565b50929695505050505050565b5f5f60408385031215611c28575f5ffd5b8235611c33816119e2565b9150611c4160208401611a11565b90509250929050565b5f5f60408385031215611c5b575f5ffd5b8235611c66816119e2565b946020939093013593505050565b606080825284519082018190525f9060208601906080840190835b81811015611cb65783516001600160a01b0316835260209384019390920191600101611c8f565b5050838103602080860191909152865180835291810192508601905f5b81811015611cf1578251845260209384019390920191600101611cd3565b505050604092909201929092529392505050565b5f60208284031215611d15575f5ffd5b5035919050565b5f60208284031215611d2c575f5ffd5b81518015158114611985575f5ffd5b5f60208284031215611d4b575f5ffd5b5051919050565b8051611a24816119e2565b5f60208284031215611d6d575f5ffd5b8151611985816119e2565b80356bffffffffffffffffffffffff81168114611a24575f5ffd5b8183526020830192505f815f5b84811015611df0578135611db3816119e2565b6001600160a01b031686526bffffffffffffffffffffffff611dd760208401611d78565b1660208701526040958601959190910190600101611da0565b5093949350505050565b63ffffffff87168152608060208201525f611e19608083018789611d93565b8281036040840152611e2c818688611d93565b915050826060830152979650505050505050565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b5f8235605e19833603018112611e7c575f5ffd5b9190910192915050565b5f5f8335601e19843603018112611e9b575f5ffd5b83018035915067ffffffffffffffff821115611eb5575f5ffd5b602001915036819003821315611a6a575f5ffd5b818382375f9101908152919050565b602081525f6119856020830184611b86565b5f60208284031215611efa575f5ffd5b815167ffffffffffffffff811115611f10575f5ffd5b8201601f81018413611f20575f5ffd5b805167ffffffffffffffff811115611f3a57611f3a611e40565b8060051b604051601f19603f830116810181811067ffffffffffffffff82111715611f6757611f67611e40565b604052918252602081840181019290810187841115611f84575f5ffd5b6020850194505b83851015611faa57611f9c85611d52565b815260209485019401611f8b565b509695505050505050565b634e487b7160e01b5f52601160045260245ffd5b63ffffffff8281168282160390811115610f1557610f15611fb5565b5f60208284031215611ff5575f5ffd5b61198582611d78565b6001600160701b038181168382160190811115610f1557610f15611fb5565b80820180821115610f1557610f15611fb556fea2646970667358221220c3a25d1829d5fbfeef1de95e207d685b06745f4a732f62faa356f1cb0a25014c64736f6c634300081c0033000000000000000000000000f6d48735eccf12bdc1df2674b1ce3fcb3bd254900000000000000000000000001d95cc100d6cd9c7bbdbd7cb328d99b3d6037ff7000000000000000000000000f5f2718708f471e43968271956cc01aaa8c46119
Deployed Bytecode
0x6080604052600436106100d9575f3560e01c80638456cb591161007c5780638d337b81116100575780638d337b81146102bb5780639a957be8146102e8578063bae4182914610307578063f2f4eb2614610326575f5ffd5b80638456cb591461024257806386644ac71461025657806387418e4a14610284575f5ffd5b80635c975abb116100b75780635c975abb146101915780637df3927e146101b257806380009630146101d25780638359f1fb146101f1575f5ffd5b806313527eda146100dd5780632610409b1461015c5780633f4ba83a1461017d575b5f5ffd5b3480156100e8575f5ffd5b5061012b6100f73660046119f6565b60036020525f908152604090205463ffffffff8116906001600160701b036401000000008204811691600160901b90041683565b6040805163ffffffff90941684526001600160701b0392831660208501529116908201526060015b60405180910390f35b348015610167575f5ffd5b5061017b610176366004611a71565b610347565b005b348015610188575f5ffd5b5061017b61086c565b34801561019c575f5ffd5b505f5460ff166040519015158152602001610153565b6101c56101c0366004611b15565b610947565b6040516101539190611bb4565b3480156101dd575f5ffd5b5061017b6101ec3660046119f6565b610be2565b3480156101fc575f5ffd5b5061022d61020b366004611c17565b600460209081525f928352604080842090915290825290205463ffffffff1681565b60405163ffffffff9091168152602001610153565b34801561024d575f5ffd5b5061017b610cbf565b348015610261575f5ffd5b50610275610270366004611c4a565b610d97565b60405161015393929190611c74565b34801561028f575f5ffd5b506002546102a3906001600160a01b031681565b6040516001600160a01b039091168152602001610153565b3480156102c6575f5ffd5b506102da6102d53660046119f6565b610e48565b604051908152602001610153565b3480156102f3575f5ffd5b50610275610302366004611d05565b610f1b565b348015610312575f5ffd5b506001546102a3906001600160a01b031681565b348015610331575f5ffd5b505f5461010090046001600160a01b03166102a3565b61034f610fc7565b5f54604051632474521560e21b81527f276ea66e969b021a947c47a128f4d53c55387336443ef7a5391a75f0d2e48d25600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa1580156103c0573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103e49190611d1c565b6104245760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b60448201526064015b60405180910390fd5b6002546040517f114cb92f0000000000000000000000000000000000000000000000000000000081526001600160a01b0389811660048301529091169063114cb92f90602401602060405180830381865afa158015610485573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104a99190611d1c565b87906104d4576040516337bce3c560e11b81526001600160a01b03909116600482015260240161041b565b50604051635487c57760e01b81524260048201525f90734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c57790602401602060405180830381865af4158015610524573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105489190611d3b565b6001600160a01b038a165f90815260046020908152604080832063ffffffff8c811685529252909120549192508a9189918085169116106105cc576040517f5897763b0000000000000000000000000000000000000000000000000000000081526001600160a01b03909216600483015263ffffffff16602482015260440161041b565b50506001600160a01b038981165f81815260046020818152604080842063ffffffff8e811680875291909352818520805463ffffffff19169389169390931790925560015490517f5be7d3c800000000000000000000000000000000000000000000000000000000815292830194909452602482015290929190911690635be7d3c890604401602060405180830381865afa15801561066d573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106919190611d3b565b90508988826106e3576040517f7f2355dd0000000000000000000000000000000000000000000000000000000081526001600160a01b03909216600483015263ffffffff16602482015260440161041b565b505083156106fa576106fa8989848489895f611005565b851561071057610710898984848b8b6001611005565b6001546040517fe7dda2eb00000000000000000000000000000000000000000000000000000000815263ffffffff8a1660048201525f916001600160a01b03169063e7dda2eb90602401602060405180830381865afa158015610775573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107999190611d5d565b6040517faf4c8de10000000000000000000000000000000000000000000000000000000081526001600160a01b038d811660048301529192509082169063af4c8de1906024015f604051808303815f87803b1580156107f6575f5ffd5b505af1158015610808573d5f5f3e3d5ffd5b505050508a6001600160a01b03168363ffffffff16427fbbd11426a9a704850f29cfe15773b80a70d18908735d36e0234021efefce83698c8c8c8c8c8a60405161085796959493929190611dfa565b60405180910390a45050505050505050505050565b5f54604051632474521560e21b81527fe7276a2a84d8de556657ec9cf93a55a7d66f096e529d0582ed08e9e2208b92b5600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa1580156108dd573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109019190611d1c565b61093c5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161041b565b6109446112e3565b50565b5f54604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a6004820181905233602483015260609290916101009091046001600160a01b0316906391d1485490604401602060405180830381865afa1580156109bd573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109e19190611d1c565b610a1c5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161041b565b8267ffffffffffffffff811115610a3557610a35611e40565b604051908082528060200260200182016040528015610a6857816020015b6060815260200190600190039081610a535790505b5091505f5b83811015610bda575f858583818110610a8857610a88611e54565b9050602002810190610a9a9190611e68565b610aa89060208101906119f6565b90505f868684818110610abd57610abd611e54565b9050602002810190610acf9190611e68565b602001359050365f888886818110610ae957610ae9611e54565b9050602002810190610afb9190611e68565b610b09906040810190611e86565b915091505f5f856001600160a01b0316858585604051610b2a929190611ec9565b5f6040518083038185875af1925050503d805f8114610b64576040519150601f19603f3d011682016040523d82523d5f602084013e610b69565b606091505b5091509150818190610ba8576040517f4ad176bb00000000000000000000000000000000000000000000000000000000815260040161041b9190611ed8565b5080898881518110610bbc57610bbc611e54565b60200260200101819052505050505050508080600101915050610a6d565b505092915050565b5f54604051632474521560e21b81527f1a6838efa4183e08fe3607359d1259272af9d4716f65e1a7b5921f78fd5a3c6a600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015610c53573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c779190611d1c565b610cb25760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161041b565b610cbb82611334565b5050565b5f54604051632474521560e21b81527ffcb9fcbfa83b897fb2d5cf4b58962164105c1e71489a37ef3ae0db3fdce576f6600482018190523360248301529161010090046001600160a01b0316906391d1485490604401602060405180830381865afa158015610d30573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d549190611d1c565b610d8f5760405162461bcd60e51b815260206004820152600c60248201526b15539055551213d49256915160a21b604482015260640161041b565b6109446113a3565b6002546040517edb56450000000000000000000000000000000000000000000000000000000081526001600160a01b0384811660048301526024820184905260609283925f928392169062db5645906044015f60405180830381865afa158015610e03573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610e2a9190810190611eea565b90505f5f610e37836113df565b939650945091925050509250925092565b6001600160a01b0381165f9081526003602090815260408083208151606081018352905463ffffffff811682526001600160701b036401000000008204811694830194909452600160901b90049092168282015251635487c57760e01b8152426004820152610f159190734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c57790602401602060405180830381865af4158015610eec573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f109190611d3b565b611582565b92915050565b6002546040517fc108e2c40000000000000000000000000000000000000000000000000000000081526004810183905260609182915f9182916001600160a01b039091169063c108e2c4906024015f60405180830381865afa158015610f83573d5f5f3e3d5ffd5b505050506040513d5f823e601f3d908101601f19168201604052610faa9190810190611eea565b90505f5f610fb7836113df565b9398909750929550919350505050565b5f5460ff1615611003576040517fd93c066500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b565b5f805b83811015611277575f85858381811061102357611023611e54565b61103992602060409092020190810191506119f6565b905083156110525761104d8a8260016115e9565b611068565b61105e8a8260026115e9565b611068818a611782565b6001600160a01b0381165f908152600360209081526040918290208251606081018452905463ffffffff8082168084526001600160701b036401000000008404811695850195909552600160901b9092049093169382019390935291908a161461113f576110d760018a611fc9565b63ffffffff16815f015163ffffffff160361111b576040805160608101825263ffffffff8b168152918101516001600160701b031660208301525f9082015261113f565b506040805160608101825263ffffffff8a1681525f60208201819052918101919091525b61118187878581811061115457611154611e54565b905060400201602001602081019061116c9190611fe5565b89906bffffffffffffffffffffffff16611971565b816040018181516111929190611ffe565b6001600160701b039081169091526001600160a01b0384165f908152600360209081526040918290208551815492870151938701518516600160901b0271ffffffffffffffffffffffffffffffffffff94909516640100000000027fffffffffffffffffffffffffffff00000000000000000000000000000000000090931663ffffffff9091161791909117919091169190911790555086868481811061123b5761123b611e54565b90506040020160200160208101906112539190611fe5565b61126b906bffffffffffffffffffffffff168561201d565b93505050600101611008565b50670de0b6b3a764000081148061128c575080155b670de0b6b3a76400008290916112d7576040517ff57d5b320000000000000000000000000000000000000000000000000000000081526004810192909252602482015260440161041b565b50505050505050505050565b6112eb61198c565b5f805460ff191690557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a1565b5f80546001600160a01b038381166101008181027fffffffffffffffffffffff0000000000000000000000000000000000000000ff851617855560405193049190911692909183917f9209b7c8c06dcfd261686a663e7c55989337b18d59da5433c6f2835fb697092091a35050565b6113ab610fc7565b5f805460ff191660011790557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a2586113173390565b604051635487c57760e01b81524260048201526060905f908190734e7b4a37cb9d88e555daea7503dc942954ff742e90635487c57790602401602060405180830381865af4158015611433573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906114579190611d3b565b90505f845167ffffffffffffffff81111561147457611474611e40565b60405190808252806020026020018201604052801561149d578160200160208202803683370190505b5090505f805b86518110156115765761152960035f8984815181106114c4576114c4611e54565b6020908102919091018101516001600160a01b031682528181019290925260409081015f208151606081018352905463ffffffff811682526001600160701b036401000000008204811694830194909452600160901b90049092169082015285611582565b83828151811061153b5761153b611e54565b60200260200101818152505082818151811061155957611559611e54565b60200260200101518261156c919061201d565b91506001016114a3565b50909590945092505050565b5f8163ffffffff16835f015163ffffffff16036115ad575060208201516001600160701b0316610f15565b6115b8600183611fc9565b63ffffffff16835f015163ffffffff16036115e1575060408201516001600160701b0316610f15565b505f92915050565b6002546040517fbf0f013e0000000000000000000000000000000000000000000000000000000081526001600160a01b0384811660048301526024820184905290911690819063bf0f013e90604401602060405180830381865afa158015611653573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116779190611d1c565b83600190916116c5576040517fc8cf6f410000000000000000000000000000000000000000000000000000000081526001600160a01b0390921660048301521515602482015260440161041b565b50506040517f88f290830000000000000000000000000000000000000000000000000000000081526001600160a01b03848116600483015285811660248301528216906388f2908390604401602060405180830381865afa15801561172c573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117509190611d1c565b849061177b576040516337bce3c560e11b81526001600160a01b03909116600482015260240161041b565b5050505050565b5f826001600160a01b031663204f83f96040518163ffffffff1660e01b8152600401602060405180830381865afa1580156117bf573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906117e39190611d3b565b6040517f342a7b010000000000000000000000000000000000000000000000000000000081524260048201529091505f9063ffffffff841690734e7b4a37cb9d88e555daea7503dc942954ff742e9063342a7b0190602401602060405180830381865af4158015611856573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061187a9190611d3b565b611884919061201d565b6040517f72b864890000000000000000000000000000000000000000000000000000000081526004810191909152734e7b4a37cb9d88e555daea7503dc942954ff742e906372b8648990602401602060405180830381865af41580156118ec573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906119109190611d3b565b905083828280821115611968576040517fe86011220000000000000000000000000000000000000000000000000000000081526001600160a01b0390931660048401526024830191909152604482015260640161041b565b50505050505050565b5f6119858383670de0b6b3a76400006119c7565b9392505050565b5f5460ff16611003576040517f8dfc202b00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f825f1904841183021582026119db575f5ffd5b5091020490565b6001600160a01b0381168114610944575f5ffd5b5f60208284031215611a06575f5ffd5b8135611985816119e2565b803563ffffffff81168114611a24575f5ffd5b919050565b5f5f83601f840112611a39575f5ffd5b50813567ffffffffffffffff811115611a50575f5ffd5b6020830191508360208260061b8501011115611a6a575f5ffd5b9250929050565b5f5f5f5f5f5f5f60a0888a031215611a87575f5ffd5b8735611a92816119e2565b96506020880135611aa2816119e2565b9550611ab060408901611a11565b9450606088013567ffffffffffffffff811115611acb575f5ffd5b611ad78a828b01611a29565b909550935050608088013567ffffffffffffffff811115611af6575f5ffd5b611b028a828b01611a29565b989b979a50959850939692959293505050565b5f5f60208385031215611b26575f5ffd5b823567ffffffffffffffff811115611b3c575f5ffd5b8301601f81018513611b4c575f5ffd5b803567ffffffffffffffff811115611b62575f5ffd5b8560208260051b8401011115611b76575f5ffd5b6020919091019590945092505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b5f602082016020835280845180835260408501915060408160051b8601019250602086015f5b82811015611c0b57603f19878603018452611bf6858351611b86565b94506020938401939190910190600101611bda565b50929695505050505050565b5f5f60408385031215611c28575f5ffd5b8235611c33816119e2565b9150611c4160208401611a11565b90509250929050565b5f5f60408385031215611c5b575f5ffd5b8235611c66816119e2565b946020939093013593505050565b606080825284519082018190525f9060208601906080840190835b81811015611cb65783516001600160a01b0316835260209384019390920191600101611c8f565b5050838103602080860191909152865180835291810192508601905f5b81811015611cf1578251845260209384019390920191600101611cd3565b505050604092909201929092529392505050565b5f60208284031215611d15575f5ffd5b5035919050565b5f60208284031215611d2c575f5ffd5b81518015158114611985575f5ffd5b5f60208284031215611d4b575f5ffd5b5051919050565b8051611a24816119e2565b5f60208284031215611d6d575f5ffd5b8151611985816119e2565b80356bffffffffffffffffffffffff81168114611a24575f5ffd5b8183526020830192505f815f5b84811015611df0578135611db3816119e2565b6001600160a01b031686526bffffffffffffffffffffffff611dd760208401611d78565b1660208701526040958601959190910190600101611da0565b5093949350505050565b63ffffffff87168152608060208201525f611e19608083018789611d93565b8281036040840152611e2c818688611d93565b915050826060830152979650505050505050565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b5f8235605e19833603018112611e7c575f5ffd5b9190910192915050565b5f5f8335601e19843603018112611e9b575f5ffd5b83018035915067ffffffffffffffff821115611eb5575f5ffd5b602001915036819003821315611a6a575f5ffd5b818382375f9101908152919050565b602081525f6119856020830184611b86565b5f60208284031215611efa575f5ffd5b815167ffffffffffffffff811115611f10575f5ffd5b8201601f81018413611f20575f5ffd5b805167ffffffffffffffff811115611f3a57611f3a611e40565b8060051b604051601f19603f830116810181811067ffffffffffffffff82111715611f6757611f67611e40565b604052918252602081840181019290810187841115611f84575f5ffd5b6020850194505b83851015611faa57611f9c85611d52565b815260209485019401611f8b565b509695505050505050565b634e487b7160e01b5f52601160045260245ffd5b63ffffffff8281168282160390811115610f1557610f15611fb5565b5f60208284031215611ff5575f5ffd5b61198582611d78565b6001600160701b038181168382160190811115610f1557610f15611fb5565b80820180821115610f1557610f15611fb556fea2646970667358221220c3a25d1829d5fbfeef1de95e207d685b06745f4a732f62faa356f1cb0a25014c64736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000f6d48735eccf12bdc1df2674b1ce3fcb3bd254900000000000000000000000001d95cc100d6cd9c7bbdbd7cb328d99b3d6037ff7000000000000000000000000f5f2718708f471e43968271956cc01aaa8c46119
-----Decoded View---------------
Arg [0] : _core (address): 0xF6d48735EcCf12bDC1DF2674b1ce3fcb3bD25490
Arg [1] : _lockingController (address): 0x1d95cC100D6Cd9C7BbDbD7Cb328d99b3D6037fF7
Arg [2] : _farmRegistry (address): 0xF5f2718708f471e43968271956CC01aaA8c46119
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000f6d48735eccf12bdc1df2674b1ce3fcb3bd25490
Arg [1] : 0000000000000000000000001d95cc100d6cd9c7bbdbd7cb328d99b3d6037ff7
Arg [2] : 000000000000000000000000f5f2718708f471e43968271956cc01aaa8c46119
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.