ETH Price: $2,719.70 (+12.27%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
146507912022-04-25 1:01:01926 days ago1650848461  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0xf864f92e88054aa05639324090b411c1d55b4a5b

Contract Name:
Strategy

Compiler Version
v0.6.12+commit.27d51765

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, GNU AGPLv3 license

Contract Source Code (Solidity)

Decompile Bytecode Similar Contracts
/**
 *Submitted for verification at Etherscan.io on 2022-03-22
*/

pragma experimental ABIEncoderV2;

// File: Address.sol

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
        // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
        // for accounts without code, i.e. `keccak256('')`
        bytes32 codehash;
        bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
        // solhint-disable-next-line no-inline-assembly
        assembly { codehash := extcodehash(account) }
        return (codehash != accountHash && codehash != 0x0);
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return _functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        return _functionCallWithValue(target, data, value, errorMessage);
    }

    function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// File: Context.sol

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

// File: IERC165.sol

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// File: IERC20.sol

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// File: IERC721Receiver.sol

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
     *
     * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
     */
    function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data)
    external returns (bytes4);
}

// File: Math.sol

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow, so we distribute
        return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
    }
}

// File: SafeMath.sol

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// File: ERC20.sol

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;
    using Address for address;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name, string memory symbol) public {
        _name = name;
        _symbol = symbol;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20};
     *
     * Requirements:
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
     *
     * This is internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}

// File: IERC721.sol

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transfered from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);

    /**
      * @dev Safely transfers `tokenId` token from `from` to `to`.
      *
      * Requirements:
      *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
      * - `tokenId` token must exist and be owned by `from`.
      * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
      * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
      *
      * Emits a {Transfer} event.
      */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
}

// File: SafeERC20.sol

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// File: BaseStrategy.sol

struct StrategyParams {
    uint256 performanceFee;
    uint256 activation;
    uint256 debtRatio;
    uint256 minDebtPerHarvest;
    uint256 maxDebtPerHarvest;
    uint256 lastReport;
    uint256 totalDebt;
    uint256 totalGain;
    uint256 totalLoss;
}

interface VaultAPI is IERC20 {
    function name() external view returns (string calldata);

    function symbol() external view returns (string calldata);

    function decimals() external view returns (uint256);

    function apiVersion() external pure returns (string memory);

    function permit(
        address owner,
        address spender,
        uint256 amount,
        uint256 expiry,
        bytes calldata signature
    ) external returns (bool);

    // NOTE: Vyper produces multiple signatures for a given function with "default" args
    function deposit() external returns (uint256);

    function deposit(uint256 amount) external returns (uint256);

    function deposit(uint256 amount, address recipient) external returns (uint256);

    // NOTE: Vyper produces multiple signatures for a given function with "default" args
    function withdraw() external returns (uint256);

    function withdraw(uint256 maxShares) external returns (uint256);

    function withdraw(uint256 maxShares, address recipient) external returns (uint256);

    function token() external view returns (address);

    function strategies(address _strategy) external view returns (StrategyParams memory);

    function pricePerShare() external view returns (uint256);

    function totalAssets() external view returns (uint256);

    function depositLimit() external view returns (uint256);

    function maxAvailableShares() external view returns (uint256);

    /**
     * View how much the Vault would increase this Strategy's borrow limit,
     * based on its present performance (since its last report). Can be used to
     * determine expectedReturn in your Strategy.
     */
    function creditAvailable() external view returns (uint256);

    /**
     * View how much the Vault would like to pull back from the Strategy,
     * based on its present performance (since its last report). Can be used to
     * determine expectedReturn in your Strategy.
     */
    function debtOutstanding() external view returns (uint256);

    /**
     * View how much the Vault expect this Strategy to return at the current
     * block, based on its present performance (since its last report). Can be
     * used to determine expectedReturn in your Strategy.
     */
    function expectedReturn() external view returns (uint256);

    /**
     * This is the main contact point where the Strategy interacts with the
     * Vault. It is critical that this call is handled as intended by the
     * Strategy. Therefore, this function will be called by BaseStrategy to
     * make sure the integration is correct.
     */
    function report(
        uint256 _gain,
        uint256 _loss,
        uint256 _debtPayment
    ) external returns (uint256);

    /**
     * This function should only be used in the scenario where the Strategy is
     * being retired but no migration of the positions are possible, or in the
     * extreme scenario that the Strategy needs to be put into "Emergency Exit"
     * mode in order for it to exit as quickly as possible. The latter scenario
     * could be for any reason that is considered "critical" that the Strategy
     * exits its position as fast as possible, such as a sudden change in
     * market conditions leading to losses, or an imminent failure in an
     * external dependency.
     */
    function revokeStrategy() external;

    /**
     * View the governance address of the Vault to assert privileged functions
     * can only be called by governance. The Strategy serves the Vault, so it
     * is subject to governance defined by the Vault.
     */
    function governance() external view returns (address);

    /**
     * View the management address of the Vault to assert privileged functions
     * can only be called by management. The Strategy serves the Vault, so it
     * is subject to management defined by the Vault.
     */
    function management() external view returns (address);

    /**
     * View the guardian address of the Vault to assert privileged functions
     * can only be called by guardian. The Strategy serves the Vault, so it
     * is subject to guardian defined by the Vault.
     */
    function guardian() external view returns (address);
}

/**
 * This interface is here for the keeper bot to use.
 */
interface StrategyAPI {
    function name() external view returns (string memory);

    function vault() external view returns (address);

    function want() external view returns (address);

    function apiVersion() external pure returns (string memory);

    function keeper() external view returns (address);

    function isActive() external view returns (bool);

    function delegatedAssets() external view returns (uint256);

    function estimatedTotalAssets() external view returns (uint256);

    function tendTrigger(uint256 callCost) external view returns (bool);

    function tend() external;

    function harvestTrigger(uint256 callCost) external view returns (bool);

    function harvest() external;

    event Harvested(uint256 profit, uint256 loss, uint256 debtPayment, uint256 debtOutstanding);
}

interface HealthCheck {
    function check(
        uint256 profit,
        uint256 loss,
        uint256 debtPayment,
        uint256 debtOutstanding,
        uint256 totalDebt
    ) external view returns (bool);
}

/**
 * @title Yearn Base Strategy
 * @author yearn.finance
 * @notice
 *  BaseStrategy implements all of the required functionality to interoperate
 *  closely with the Vault contract. This contract should be inherited and the
 *  abstract methods implemented to adapt the Strategy to the particular needs
 *  it has to create a return.
 *
 *  Of special interest is the relationship between `harvest()` and
 *  `vault.report()'. `harvest()` may be called simply because enough time has
 *  elapsed since the last report, and not because any funds need to be moved
 *  or positions adjusted. This is critical so that the Vault may maintain an
 *  accurate picture of the Strategy's performance. See  `vault.report()`,
 *  `harvest()`, and `harvestTrigger()` for further details.
 */

abstract contract BaseStrategy {
    using SafeMath for uint256;
    using SafeERC20 for IERC20;
    string public metadataURI;

    // health checks
    bool public doHealthCheck;
    address public healthCheck;

    /**
     * @notice
     *  Used to track which version of `StrategyAPI` this Strategy
     *  implements.
     * @dev The Strategy's version must match the Vault's `API_VERSION`.
     * @return A string which holds the current API version of this contract.
     */
    function apiVersion() public pure returns (string memory) {
        return "0.4.3";
    }

    /**
     * @notice This Strategy's name.
     * @dev
     *  You can use this field to manage the "version" of this Strategy, e.g.
     *  `StrategySomethingOrOtherV1`. However, "API Version" is managed by
     *  `apiVersion()` function above.
     * @return This Strategy's name.
     */
    function name() external view virtual returns (string memory);

    /**
     * @notice
     *  The amount (priced in want) of the total assets managed by this strategy should not count
     *  towards Yearn's TVL calculations.
     * @dev
     *  You can override this field to set it to a non-zero value if some of the assets of this
     *  Strategy is somehow delegated inside another part of of Yearn's ecosystem e.g. another Vault.
     *  Note that this value must be strictly less than or equal to the amount provided by
     *  `estimatedTotalAssets()` below, as the TVL calc will be total assets minus delegated assets.
     *  Also note that this value is used to determine the total assets under management by this
     *  strategy, for the purposes of computing the management fee in `Vault`
     * @return
     *  The amount of assets this strategy manages that should not be included in Yearn's Total Value
     *  Locked (TVL) calculation across it's ecosystem.
     */
    function delegatedAssets() external view virtual returns (uint256) {
        return 0;
    }

    VaultAPI public vault;
    address public strategist;
    address public rewards;
    address public keeper;

    IERC20 public want;

    // So indexers can keep track of this
    event Harvested(uint256 profit, uint256 loss, uint256 debtPayment, uint256 debtOutstanding);

    event UpdatedStrategist(address newStrategist);

    event UpdatedKeeper(address newKeeper);

    event UpdatedRewards(address rewards);

    event UpdatedMinReportDelay(uint256 delay);

    event UpdatedMaxReportDelay(uint256 delay);

    event UpdatedProfitFactor(uint256 profitFactor);

    event UpdatedDebtThreshold(uint256 debtThreshold);

    event EmergencyExitEnabled();

    event UpdatedMetadataURI(string metadataURI);

    // The minimum number of seconds between harvest calls. See
    // `setMinReportDelay()` for more details.
    uint256 public minReportDelay;

    // The maximum number of seconds between harvest calls. See
    // `setMaxReportDelay()` for more details.
    uint256 public maxReportDelay;

    // The minimum multiple that `callCost` must be above the credit/profit to
    // be "justifiable". See `setProfitFactor()` for more details.
    uint256 public profitFactor;

    // Use this to adjust the threshold at which running a debt causes a
    // harvest trigger. See `setDebtThreshold()` for more details.
    uint256 public debtThreshold;

    // See note on `setEmergencyExit()`.
    bool public emergencyExit;

    // modifiers
    modifier onlyAuthorized() {
        require(msg.sender == strategist || msg.sender == governance(), "!authorized");
        _;
    }

    modifier onlyEmergencyAuthorized() {
        require(
            msg.sender == strategist || msg.sender == governance() || msg.sender == vault.guardian() || msg.sender == vault.management(),
            "!authorized"
        );
        _;
    }

    modifier onlyStrategist() {
        require(msg.sender == strategist, "!strategist");
        _;
    }

    modifier onlyGovernance() {
        require(msg.sender == governance(), "!authorized");
        _;
    }

    modifier onlyKeepers() {
        require(
            msg.sender == keeper ||
                msg.sender == strategist ||
                msg.sender == governance() ||
                msg.sender == vault.guardian() ||
                msg.sender == vault.management(),
            "!authorized"
        );
        _;
    }

    modifier onlyVaultManagers() {
        require(msg.sender == vault.management() || msg.sender == governance(), "!authorized");
        _;
    }

    constructor(address _vault) public {
        _initialize(_vault, msg.sender, msg.sender, msg.sender);
    }

    /**
     * @notice
     *  Initializes the Strategy, this is called only once, when the
     *  contract is deployed.
     * @dev `_vault` should implement `VaultAPI`.
     * @param _vault The address of the Vault responsible for this Strategy.
     * @param _strategist The address to assign as `strategist`.
     * The strategist is able to change the reward address
     * @param _rewards  The address to use for pulling rewards.
     * @param _keeper The adddress of the _keeper. _keeper
     * can harvest and tend a strategy.
     */
    function _initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) internal {
        require(address(want) == address(0), "Strategy already initialized");

        vault = VaultAPI(_vault);
        want = IERC20(vault.token());
        want.safeApprove(_vault, uint256(-1)); // Give Vault unlimited access (might save gas)
        strategist = _strategist;
        rewards = _rewards;
        keeper = _keeper;

        // initialize variables
        minReportDelay = 0;
        maxReportDelay = 86400;
        profitFactor = 100;
        debtThreshold = 0;

        vault.approve(rewards, uint256(-1)); // Allow rewards to be pulled
    }

    function setHealthCheck(address _healthCheck) external onlyVaultManagers {
        healthCheck = _healthCheck;
    }

    function setDoHealthCheck(bool _doHealthCheck) external onlyVaultManagers {
        doHealthCheck = _doHealthCheck;
    }

    /**
     * @notice
     *  Used to change `strategist`.
     *
     *  This may only be called by governance or the existing strategist.
     * @param _strategist The new address to assign as `strategist`.
     */
    function setStrategist(address _strategist) external onlyAuthorized {
        require(_strategist != address(0));
        strategist = _strategist;
        emit UpdatedStrategist(_strategist);
    }

    /**
     * @notice
     *  Used to change `keeper`.
     *
     *  `keeper` is the only address that may call `tend()` or `harvest()`,
     *  other than `governance()` or `strategist`. However, unlike
     *  `governance()` or `strategist`, `keeper` may *only* call `tend()`
     *  and `harvest()`, and no other authorized functions, following the
     *  principle of least privilege.
     *
     *  This may only be called by governance or the strategist.
     * @param _keeper The new address to assign as `keeper`.
     */
    function setKeeper(address _keeper) external onlyAuthorized {
        require(_keeper != address(0));
        keeper = _keeper;
        emit UpdatedKeeper(_keeper);
    }

    /**
     * @notice
     *  Used to change `rewards`. EOA or smart contract which has the permission
     *  to pull rewards from the vault.
     *
     *  This may only be called by the strategist.
     * @param _rewards The address to use for pulling rewards.
     */
    function setRewards(address _rewards) external onlyStrategist {
        require(_rewards != address(0));
        vault.approve(rewards, 0);
        rewards = _rewards;
        vault.approve(rewards, uint256(-1));
        emit UpdatedRewards(_rewards);
    }

    /**
     * @notice
     *  Used to change `minReportDelay`. `minReportDelay` is the minimum number
     *  of blocks that should pass for `harvest()` to be called.
     *
     *  For external keepers (such as the Keep3r network), this is the minimum
     *  time between jobs to wait. (see `harvestTrigger()`
     *  for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _delay The minimum number of seconds to wait between harvests.
     */
    function setMinReportDelay(uint256 _delay) external onlyAuthorized {
        minReportDelay = _delay;
        emit UpdatedMinReportDelay(_delay);
    }

    /**
     * @notice
     *  Used to change `maxReportDelay`. `maxReportDelay` is the maximum number
     *  of blocks that should pass for `harvest()` to be called.
     *
     *  For external keepers (such as the Keep3r network), this is the maximum
     *  time between jobs to wait. (see `harvestTrigger()`
     *  for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _delay The maximum number of seconds to wait between harvests.
     */
    function setMaxReportDelay(uint256 _delay) external onlyAuthorized {
        maxReportDelay = _delay;
        emit UpdatedMaxReportDelay(_delay);
    }

    /**
     * @notice
     *  Used to change `profitFactor`. `profitFactor` is used to determine
     *  if it's worthwhile to harvest, given gas costs. (See `harvestTrigger()`
     *  for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _profitFactor A ratio to multiply anticipated
     * `harvest()` gas cost against.
     */
    function setProfitFactor(uint256 _profitFactor) external onlyAuthorized {
        profitFactor = _profitFactor;
        emit UpdatedProfitFactor(_profitFactor);
    }

    /**
     * @notice
     *  Sets how far the Strategy can go into loss without a harvest and report
     *  being required.
     *
     *  By default this is 0, meaning any losses would cause a harvest which
     *  will subsequently report the loss to the Vault for tracking. (See
     *  `harvestTrigger()` for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _debtThreshold How big of a loss this Strategy may carry without
     * being required to report to the Vault.
     */
    function setDebtThreshold(uint256 _debtThreshold) external onlyAuthorized {
        debtThreshold = _debtThreshold;
        emit UpdatedDebtThreshold(_debtThreshold);
    }

    /**
     * @notice
     *  Used to change `metadataURI`. `metadataURI` is used to store the URI
     * of the file describing the strategy.
     *
     *  This may only be called by governance or the strategist.
     * @param _metadataURI The URI that describe the strategy.
     */
    function setMetadataURI(string calldata _metadataURI) external onlyAuthorized {
        metadataURI = _metadataURI;
        emit UpdatedMetadataURI(_metadataURI);
    }

    /**
     * Resolve governance address from Vault contract, used to make assertions
     * on protected functions in the Strategy.
     */
    function governance() internal view returns (address) {
        return vault.governance();
    }

    /**
     * @notice
     *  Provide an accurate conversion from `_amtInWei` (denominated in wei)
     *  to `want` (using the native decimal characteristics of `want`).
     * @dev
     *  Care must be taken when working with decimals to assure that the conversion
     *  is compatible. As an example:
     *
     *      given 1e17 wei (0.1 ETH) as input, and want is USDC (6 decimals),
     *      with USDC/ETH = 1800, this should give back 1800000000 (180 USDC)
     *
     * @param _amtInWei The amount (in wei/1e-18 ETH) to convert to `want`
     * @return The amount in `want` of `_amtInEth` converted to `want`
     **/
    function ethToWant(uint256 _amtInWei) public view virtual returns (uint256);

    /**
     * @notice
     *  Provide an accurate estimate for the total amount of assets
     *  (principle + return) that this Strategy is currently managing,
     *  denominated in terms of `want` tokens.
     *
     *  This total should be "realizable" e.g. the total value that could
     *  *actually* be obtained from this Strategy if it were to divest its
     *  entire position based on current on-chain conditions.
     * @dev
     *  Care must be taken in using this function, since it relies on external
     *  systems, which could be manipulated by the attacker to give an inflated
     *  (or reduced) value produced by this function, based on current on-chain
     *  conditions (e.g. this function is possible to influence through
     *  flashloan attacks, oracle manipulations, or other DeFi attack
     *  mechanisms).
     *
     *  It is up to governance to use this function to correctly order this
     *  Strategy relative to its peers in the withdrawal queue to minimize
     *  losses for the Vault based on sudden withdrawals. This value should be
     *  higher than the total debt of the Strategy and higher than its expected
     *  value to be "safe".
     * @return The estimated total assets in this Strategy.
     */
    function estimatedTotalAssets() public view virtual returns (uint256);

    /*
     * @notice
     *  Provide an indication of whether this strategy is currently "active"
     *  in that it is managing an active position, or will manage a position in
     *  the future. This should correlate to `harvest()` activity, so that Harvest
     *  events can be tracked externally by indexing agents.
     * @return True if the strategy is actively managing a position.
     */
    function isActive() public view returns (bool) {
        return vault.strategies(address(this)).debtRatio > 0 || estimatedTotalAssets() > 0;
    }

    /**
     * Perform any Strategy unwinding or other calls necessary to capture the
     * "free return" this Strategy has generated since the last time its core
     * position(s) were adjusted. Examples include unwrapping extra rewards.
     * This call is only used during "normal operation" of a Strategy, and
     * should be optimized to minimize losses as much as possible.
     *
     * This method returns any realized profits and/or realized losses
     * incurred, and should return the total amounts of profits/losses/debt
     * payments (in `want` tokens) for the Vault's accounting (e.g.
     * `want.balanceOf(this) >= _debtPayment + _profit`).
     *
     * `_debtOutstanding` will be 0 if the Strategy is not past the configured
     * debt limit, otherwise its value will be how far past the debt limit
     * the Strategy is. The Strategy's debt limit is configured in the Vault.
     *
     * NOTE: `_debtPayment` should be less than or equal to `_debtOutstanding`.
     *       It is okay for it to be less than `_debtOutstanding`, as that
     *       should only used as a guide for how much is left to pay back.
     *       Payments should be made to minimize loss from slippage, debt,
     *       withdrawal fees, etc.
     *
     * See `vault.debtOutstanding()`.
     */
    function prepareReturn(uint256 _debtOutstanding)
        internal
        virtual
        returns (
            uint256 _profit,
            uint256 _loss,
            uint256 _debtPayment
        );

    /**
     * Perform any adjustments to the core position(s) of this Strategy given
     * what change the Vault made in the "investable capital" available to the
     * Strategy. Note that all "free capital" in the Strategy after the report
     * was made is available for reinvestment. Also note that this number
     * could be 0, and you should handle that scenario accordingly.
     *
     * See comments regarding `_debtOutstanding` on `prepareReturn()`.
     */
    function adjustPosition(uint256 _debtOutstanding) internal virtual;

    /**
     * Liquidate up to `_amountNeeded` of `want` of this strategy's positions,
     * irregardless of slippage. Any excess will be re-invested with `adjustPosition()`.
     * This function should return the amount of `want` tokens made available by the
     * liquidation. If there is a difference between them, `_loss` indicates whether the
     * difference is due to a realized loss, or if there is some other sitution at play
     * (e.g. locked funds) where the amount made available is less than what is needed.
     *
     * NOTE: The invariant `_liquidatedAmount + _loss <= _amountNeeded` should always be maintained
     */
    function liquidatePosition(uint256 _amountNeeded) internal virtual returns (uint256 _liquidatedAmount, uint256 _loss);

    /**
     * Liquidate everything and returns the amount that got freed.
     * This function is used during emergency exit instead of `prepareReturn()` to
     * liquidate all of the Strategy's positions back to the Vault.
     */

    function liquidateAllPositions() internal virtual returns (uint256 _amountFreed);

    /**
     * @notice
     *  Provide a signal to the keeper that `tend()` should be called. The
     *  keeper will provide the estimated gas cost that they would pay to call
     *  `tend()`, and this function should use that estimate to make a
     *  determination if calling it is "worth it" for the keeper. This is not
     *  the only consideration into issuing this trigger, for example if the
     *  position would be negatively affected if `tend()` is not called
     *  shortly, then this can return `true` even if the keeper might be
     *  "at a loss" (keepers are always reimbursed by Yearn).
     * @dev
     *  `callCostInWei` must be priced in terms of `wei` (1e-18 ETH).
     *
     *  This call and `harvestTrigger()` should never return `true` at the same
     *  time.
     * @param callCostInWei The keeper's estimated gas cost to call `tend()` (in wei).
     * @return `true` if `tend()` should be called, `false` otherwise.
     */
    function tendTrigger(uint256 callCostInWei) public view virtual returns (bool) {
        // We usually don't need tend, but if there are positions that need
        // active maintainence, overriding this function is how you would
        // signal for that.
        // If your implementation uses the cost of the call in want, you can
        // use uint256 callCost = ethToWant(callCostInWei);

        return false;
    }

    /**
     * @notice
     *  Adjust the Strategy's position. The purpose of tending isn't to
     *  realize gains, but to maximize yield by reinvesting any returns.
     *
     *  See comments on `adjustPosition()`.
     *
     *  This may only be called by governance, the strategist, or the keeper.
     */
    function tend() external onlyKeepers {
        // Don't take profits with this call, but adjust for better gains
        adjustPosition(vault.debtOutstanding());
    }

    /**
     * @notice
     *  Provide a signal to the keeper that `harvest()` should be called. The
     *  keeper will provide the estimated gas cost that they would pay to call
     *  `harvest()`, and this function should use that estimate to make a
     *  determination if calling it is "worth it" for the keeper. This is not
     *  the only consideration into issuing this trigger, for example if the
     *  position would be negatively affected if `harvest()` is not called
     *  shortly, then this can return `true` even if the keeper might be "at a
     *  loss" (keepers are always reimbursed by Yearn).
     * @dev
     *  `callCostInWei` must be priced in terms of `wei` (1e-18 ETH).
     *
     *  This call and `tendTrigger` should never return `true` at the
     *  same time.
     *
     *  See `min/maxReportDelay`, `profitFactor`, `debtThreshold` to adjust the
     *  strategist-controlled parameters that will influence whether this call
     *  returns `true` or not. These parameters will be used in conjunction
     *  with the parameters reported to the Vault (see `params`) to determine
     *  if calling `harvest()` is merited.
     *
     *  It is expected that an external system will check `harvestTrigger()`.
     *  This could be a script run off a desktop or cloud bot (e.g.
     *  https://github.com/iearn-finance/yearn-vaults/blob/main/scripts/keep.py),
     *  or via an integration with the Keep3r network (e.g.
     *  https://github.com/Macarse/GenericKeep3rV2/blob/master/contracts/keep3r/GenericKeep3rV2.sol).
     * @param callCostInWei The keeper's estimated gas cost to call `harvest()` (in wei).
     * @return `true` if `harvest()` should be called, `false` otherwise.
     */
    function harvestTrigger(uint256 callCostInWei) public view virtual returns (bool) {
        uint256 callCost = ethToWant(callCostInWei);
        StrategyParams memory params = vault.strategies(address(this));

        // Should not trigger if Strategy is not activated
        if (params.activation == 0) return false;

        // Should not trigger if we haven't waited long enough since previous harvest
        if (block.timestamp.sub(params.lastReport) < minReportDelay) return false;

        // Should trigger if hasn't been called in a while
        if (block.timestamp.sub(params.lastReport) >= maxReportDelay) return true;

        // If some amount is owed, pay it back
        // NOTE: Since debt is based on deposits, it makes sense to guard against large
        //       changes to the value from triggering a harvest directly through user
        //       behavior. This should ensure reasonable resistance to manipulation
        //       from user-initiated withdrawals as the outstanding debt fluctuates.
        uint256 outstanding = vault.debtOutstanding();
        if (outstanding > debtThreshold) return true;

        // Check for profits and losses
        uint256 total = estimatedTotalAssets();
        // Trigger if we have a loss to report
        if (total.add(debtThreshold) < params.totalDebt) return true;

        uint256 profit = 0;
        if (total > params.totalDebt) profit = total.sub(params.totalDebt); // We've earned a profit!

        // Otherwise, only trigger if it "makes sense" economically (gas cost
        // is <N% of value moved)
        uint256 credit = vault.creditAvailable();
        return (profitFactor.mul(callCost) < credit.add(profit));
    }

    /**
     * @notice
     *  Harvests the Strategy, recognizing any profits or losses and adjusting
     *  the Strategy's position.
     *
     *  In the rare case the Strategy is in emergency shutdown, this will exit
     *  the Strategy's position.
     *
     *  This may only be called by governance, the strategist, or the keeper.
     * @dev
     *  When `harvest()` is called, the Strategy reports to the Vault (via
     *  `vault.report()`), so in some cases `harvest()` must be called in order
     *  to take in profits, to borrow newly available funds from the Vault, or
     *  otherwise adjust its position. In other cases `harvest()` must be
     *  called to report to the Vault on the Strategy's position, especially if
     *  any losses have occurred.
     */
    function harvest() external onlyKeepers {
        uint256 profit = 0;
        uint256 loss = 0;
        uint256 debtOutstanding = vault.debtOutstanding();
        uint256 debtPayment = 0;
        if (emergencyExit) {
            // Free up as much capital as possible
            uint256 amountFreed = liquidateAllPositions();
            if (amountFreed < debtOutstanding) {
                loss = debtOutstanding.sub(amountFreed);
            } else if (amountFreed > debtOutstanding) {
                profit = amountFreed.sub(debtOutstanding);
            }
            debtPayment = debtOutstanding.sub(loss);
        } else {
            // Free up returns for Vault to pull
            (profit, loss, debtPayment) = prepareReturn(debtOutstanding);
        }

        // Allow Vault to take up to the "harvested" balance of this contract,
        // which is the amount it has earned since the last time it reported to
        // the Vault.
        uint256 totalDebt = vault.strategies(address(this)).totalDebt;
        debtOutstanding = vault.report(profit, loss, debtPayment);

        // Check if free returns are left, and re-invest them
        adjustPosition(debtOutstanding);

        // call healthCheck contract
        if (doHealthCheck && healthCheck != address(0)) {
            require(HealthCheck(healthCheck).check(profit, loss, debtPayment, debtOutstanding, totalDebt), "!healthcheck");
        } else {
            doHealthCheck = true;
        }

        emit Harvested(profit, loss, debtPayment, debtOutstanding);
    }

    /**
     * @notice
     *  Withdraws `_amountNeeded` to `vault`.
     *
     *  This may only be called by the Vault.
     * @param _amountNeeded How much `want` to withdraw.
     * @return _loss Any realized losses
     */
    function withdraw(uint256 _amountNeeded) external returns (uint256 _loss) {
        require(msg.sender == address(vault), "!vault");
        // Liquidate as much as possible to `want`, up to `_amountNeeded`
        uint256 amountFreed;
        (amountFreed, _loss) = liquidatePosition(_amountNeeded);
        // Send it directly back (NOTE: Using `msg.sender` saves some gas here)
        want.safeTransfer(msg.sender, amountFreed);
        // NOTE: Reinvest anything leftover on next `tend`/`harvest`
    }

    /**
     * Do anything necessary to prepare this Strategy for migration, such as
     * transferring any reserve or LP tokens, CDPs, or other tokens or stores of
     * value.
     */
    function prepareMigration(address _newStrategy) internal virtual;

    /**
     * @notice
     *  Transfers all `want` from this Strategy to `_newStrategy`.
     *
     *  This may only be called by the Vault.
     * @dev
     * The new Strategy's Vault must be the same as this Strategy's Vault.
     *  The migration process should be carefully performed to make sure all
     * the assets are migrated to the new address, which should have never
     * interacted with the vault before.
     * @param _newStrategy The Strategy to migrate to.
     */
    function migrate(address _newStrategy) external {
        require(msg.sender == address(vault));
        require(BaseStrategy(_newStrategy).vault() == vault);
        prepareMigration(_newStrategy);
        want.safeTransfer(_newStrategy, want.balanceOf(address(this)));
    }

    /**
     * @notice
     *  Activates emergency exit. Once activated, the Strategy will exit its
     *  position upon the next harvest, depositing all funds into the Vault as
     *  quickly as is reasonable given on-chain conditions.
     *
     *  This may only be called by governance or the strategist.
     * @dev
     *  See `vault.setEmergencyShutdown()` and `harvest()` for further details.
     */
    function setEmergencyExit() external onlyEmergencyAuthorized {
        emergencyExit = true;
        vault.revokeStrategy();

        emit EmergencyExitEnabled();
    }

    /**
     * Override this to add all tokens/tokenized positions this contract
     * manages on a *persistent* basis (e.g. not just for swapping back to
     * want ephemerally).
     *
     * NOTE: Do *not* include `want`, already included in `sweep` below.
     *
     * Example:
     * ```
     *    function protectedTokens() internal override view returns (address[] memory) {
     *      address[] memory protected = new address[](3);
     *      protected[0] = tokenA;
     *      protected[1] = tokenB;
     *      protected[2] = tokenC;
     *      return protected;
     *    }
     * ```
     */
    function protectedTokens() internal view virtual returns (address[] memory);

    /**
     * @notice
     *  Removes tokens from this Strategy that are not the type of tokens
     *  managed by this Strategy. This may be used in case of accidentally
     *  sending the wrong kind of token to this Strategy.
     *
     *  Tokens will be sent to `governance()`.
     *
     *  This will fail if an attempt is made to sweep `want`, or any tokens
     *  that are protected by this Strategy.
     *
     *  This may only be called by governance.
     * @dev
     *  Implement `protectedTokens()` to specify any additional tokens that
     *  should be protected from sweeping in addition to `want`.
     * @param _token The token to transfer out of this vault.
     */
    function sweep(address _token) external onlyGovernance {
        require(_token != address(want), "!want");
        require(_token != address(vault), "!shares");

        address[] memory _protectedTokens = protectedTokens();
        for (uint256 i; i < _protectedTokens.length; i++) require(_token != _protectedTokens[i], "!protected");

        IERC20(_token).safeTransfer(governance(), IERC20(_token).balanceOf(address(this)));
    }
}

abstract contract BaseStrategyInitializable is BaseStrategy {
    bool public isOriginal = true;
    event Cloned(address indexed clone);

    constructor(address _vault) public BaseStrategy(_vault) {}

    function initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) external virtual {
        _initialize(_vault, _strategist, _rewards, _keeper);
    }

    function clone(address _vault) external returns (address) {
        require(isOriginal, "!clone");
        return this.clone(_vault, msg.sender, msg.sender, msg.sender);
    }

    function clone(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) external returns (address newStrategy) {
        // Copied from https://github.com/optionality/clone-factory/blob/master/contracts/CloneFactory.sol
        bytes20 addressBytes = bytes20(address(this));

        assembly {
            // EIP-1167 bytecode
            let clone_code := mload(0x40)
            mstore(clone_code, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(clone_code, 0x14), addressBytes)
            mstore(add(clone_code, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            newStrategy := create(0, clone_code, 0x37)
        }

        BaseStrategyInitializable(newStrategy).initialize(_vault, _strategist, _rewards, _keeper);

        emit Cloned(newStrategy);
    }
}

// File: Mph.sol

interface IVesting {
    struct Vest {
        address pool;
        uint64 depositID;
        uint64 lastUpdateTimestamp;
        uint256 accumulatedAmount;
        uint256 withdrawnAmount;
        uint256 vestAmountPerStablecoinPerSecond;
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) external;

    function depositIDToVestID(address _owner, uint64 _depositId)
        external
        view
        returns (uint64 _vestId);

    function getVestWithdrawableAmount(uint64 vestID)
        external
        view
        returns (uint256);

    function getVest(uint64 vestID) external view returns (Vest memory);

    function withdraw(uint64 vestID) external returns (uint256 withdrawnAmount);

    function token() external view returns (address);

    function ownerOf(uint256 vestId) external view returns (address);
}

interface IMphMinter {
    function vesting02() external view returns (address);
}

interface IDInterest {
    struct Deposit {
        uint256 virtualTokenTotalSupply; // depositAmount + interestAmount, behaves like a zero coupon bond
        uint256 interestRate; // interestAmount = interestRate * depositAmount
        uint256 feeRate; // feeAmount = feeRate * depositAmount
        uint256 averageRecordedIncomeIndex; // Average income index at time of deposit, used for computing deposit surplus
        uint64 maturationTimestamp; // Unix timestamp after which the deposit may be withdrawn, in seconds
        uint64 fundingID; // The ID of the associated Funding struct. 0 if not funded.
    }

    function feeModel() external view returns (address);

    function mphMinter() external view returns (address);

    function stablecoin() external view returns (address);

    function depositNFT() external view returns (address);

    /**
        @notice Create a deposit using `depositAmount` stablecoin that matures at timestamp `maturationTimestamp`.
        @dev The ERC-721 NFT representing deposit ownership is given to msg.sender
        @param depositAmount The amount of deposit, in stablecoin
        @param maturationTimestamp The Unix timestamp of maturation, in seconds
        @return depositID The ID of the created deposit
        @return interestAmount The amount of fixed-rate interest
     */
    function deposit(uint256 depositAmount, uint64 maturationTimestamp)
        external
        returns (uint64 depositID, uint256 interestAmount);

    /**
        @notice Create a deposit using `depositAmount` stablecoin that matures at timestamp `maturationTimestamp`.
        @dev The ERC-721 NFT representing deposit ownership is given to msg.sender
        @param depositAmount The amount of deposit, in stablecoin
        @param maturationTimestamp The Unix timestamp of maturation, in seconds
        @param minimumInterestAmount If the interest amount is less than this, revert
        @param uri The metadata URI for the minted NFT
        @return depositID The ID of the created deposit
        @return interestAmount The amount of fixed-rate interest
     */
    function deposit(
        uint256 depositAmount,
        uint64 maturationTimestamp,
        uint256 minimumInterestAmount,
        string calldata uri
    ) external returns (uint64 depositID, uint256 interestAmount);

    /**
    @notice Add `depositAmount` stablecoin to the existing deposit with ID `depositID`.
    @dev The interest rate for the topped up funds will be the current oracle rate.
    @param depositID The deposit to top up
    @param depositAmount The amount to top up, in stablecoin
    @return interestAmount The amount of interest that will be earned by the topped up funds at maturation
 */
    function topupDeposit(uint64 depositID, uint256 depositAmount)
        external
        returns (uint256 interestAmount);

    /**
        @notice Add `depositAmount` stablecoin to the existing deposit with ID `depositID`.
        @dev The interest rate for the topped up funds will be the current oracle rate.
        @param depositID The deposit to top up
        @param depositAmount The amount to top up, in stablecoin
        @param minimumInterestAmount If the interest amount is less than this, revert
        @return interestAmount The amount of interest that will be earned by the topped up funds at maturation
     */
    function topupDeposit(
        uint64 depositID,
        uint256 depositAmount,
        uint256 minimumInterestAmount
    ) external returns (uint256 interestAmount);

    /**
        @notice Withdraw all funds from deposit with ID `depositID` and use them
                to create a new deposit that matures at time `maturationTimestamp`
        @param depositID The deposit to roll over
        @param maturationTimestamp The Unix timestamp of the new deposit, in seconds
        @return newDepositID The ID of the new deposit
     */
    function rolloverDeposit(uint64 depositID, uint64 maturationTimestamp)
        external
        returns (uint256 newDepositID, uint256 interestAmount);

    /**
        @notice Withdraw all funds from deposit with ID `depositID` and use them
                to create a new deposit that matures at time `maturationTimestamp`
        @param depositID The deposit to roll over
        @param maturationTimestamp The Unix timestamp of the new deposit, in seconds
        @param minimumInterestAmount If the interest amount is less than this, revert
        @param uri The metadata URI of the NFT
        @return newDepositID The ID of the new deposit
     */
    function rolloverDeposit(
        uint64 depositID,
        uint64 maturationTimestamp,
        uint256 minimumInterestAmount,
        string calldata uri
    ) external returns (uint256 newDepositID, uint256 interestAmount);

    /**
        @notice Withdraws funds from the deposit with ID `depositID`.
        @dev Virtual tokens behave like zero coupon bonds, after maturation withdrawing 1 virtual token
             yields 1 stablecoin. The total supply is given by deposit.virtualTokenTotalSupply
        @param depositID the deposit to withdraw from
        @param virtualTokenAmount the amount of virtual tokens to withdraw
        @param early True if intend to withdraw before maturation, false otherwise
        @return withdrawnStablecoinAmount the amount of stablecoins withdrawn

        NOTE: @param virtualTokenAmount when premature amount takes into account the interest already. If you want to withdraw 10k amount,
        you must input 10,000 * interest amount. When mature, request exact amount 10k.
     */
    function withdraw(
        uint64 depositID,
        uint256 virtualTokenAmount,
        bool early
    ) external returns (uint256 withdrawnStablecoinAmount);

    /**
        @notice Returns the Deposit struct associated with the deposit with ID
                `depositID`.
        @param depositID The ID of the deposit
        @return The deposit struct
     */
    function getDeposit(uint64 depositID)
        external
        view
        returns (Deposit memory);

    /**
      @notice Computes the amount of fixed-rate interest (before fees) that
              will be given to a deposit of `depositAmount` stablecoins that
              matures in `depositPeriodInSeconds` seconds.
      @param depositAmount The deposit amount, in stablecoins
      @param depositPeriodInSeconds The deposit period, in seconds
      @return interestAmount The amount of fixed-rate interest (before fees)
   */
    function calculateInterestAmount(
        uint256 depositAmount,
        uint256 depositPeriodInSeconds
    ) external returns (uint256 interestAmount);
}

// xMPH.sol
interface IStake is IERC20 {
    /**
    @notice Deposit MPH to get xMPH
    @dev The amount can't be 0
    @param _mphAmount The amount of MPH to deposit
    @return shareAmount The amount of xMPH minted
    */
    function deposit(uint256 _mphAmount) external returns (uint256 shareAmount);

    /**
        @notice Withdraw MPH using xMPH
        @dev The amount can't be 0
        @param _shareAmount The amount of xMPH to burn
        @return mphAmount The amount of MPH withdrawn
     */
    function withdraw(uint256 _shareAmount)
        external
        returns (uint256 mphAmount);

    function getPricePerFullShare() external view returns (uint256);
}

interface INft {
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) external;

    function contractURI() external view returns (string memory);

    function setTokenURI(uint256 tokenId, string calldata newURI) external;
}

interface INftDescriptor {
    struct URIParams {
        uint256 tokenId;
        address owner;
        string name;
        string symbol;
    }

    function constructTokenURI(URIParams memory params)
        external
        pure
        returns (string memory);
}

// File: Strategy.sol

// Feel free to change the license, but this is what we use

// Feel free to change this version of Solidity. We support >=0.6.0 <0.7.0;

// These are the core Yearn libraries

interface ITradeFactory {
    function enable(address, address) external;

    function disable(address, address) external;
}

interface IPercentageFeeModel {
    function getEarlyWithdrawFeeAmount(
        address pool,
        uint64 depositID,
        uint256 withdrawnDepositAmount
    ) external view returns (uint256 feeAmount);
}

contract Strategy is BaseStrategy, IERC721Receiver {
    string internal strategyName;
    // deposit position nft
    INft public depositNft;
    // primary interface for entering/exiting protocol
    IDInterest public pool;
    // nft for redeeming mph that vests linearly
    IVesting public vestNft;
    bytes internal constant DEPOSIT = "deposit";
    bytes internal constant VEST = "vest";
    uint64 public depositId;
    uint64 public maturationPeriod;
    address public oldStrategy;

    // Decimal precision for withdraws
    uint256 public minWithdraw;
    bool public allowEarlyWithdrawFee;

    uint256 internal constant basisMax = 10000;
    IERC20 public reward;
    uint256 private constant max = type(uint256).max;

    address public keep;
    uint256 public keepBips;

    ITradeFactory public tradeFactory;

    constructor(
        address _vault,
        address _pool,
        string memory _strategyName
    )
    public BaseStrategy(_vault) {
        _initializeStrat(_vault, _pool, _strategyName);
    }

    function initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper,
        address _pool,
        string memory _strategyName
    ) external {
        _initialize(_vault, _strategist, _rewards, _keeper);
        _initializeStrat(_vault, _pool, _strategyName);
    }

    function _initializeStrat(
        address _vault,
        address _pool,
        string memory _strategyName
    ) internal {
        strategyName = _strategyName;
        pool = IDInterest(_pool);
        require(address(want) == pool.stablecoin(), "Wrong pool!");
        vestNft = IVesting(IMphMinter(pool.mphMinter()).vesting02());
        reward = IERC20(vestNft.token());
        depositNft = INft(pool.depositNFT());
        healthCheck = address(0xDDCea799fF1699e98EDF118e0629A974Df7DF012);

        // default 5 days
        maturationPeriod = 5 * 24 * 60 * 60;

        want.safeApprove(address(pool), max);

        // 0% to chad by default
        keep = governance();
        keepBips = 0;
    }

    // VAULT OPERATIONS //
    function name() external view override returns (string memory) {
        return strategyName;
    }

    // fixed rate interest only unlocks after deposit has matured
    function estimatedTotalAssets() public view override returns (uint256) {
        return balanceOfWant().add(balanceOfPooled());
    }

    function prepareReturn(uint256 _debtOutstanding)
    internal
    override
    returns (
        uint256 _profit,
        uint256 _loss,
        uint256 _debtPayment
    )
    {
        uint256 totalDebt = vault.strategies(address(this)).totalDebt;
        uint256 totalAssets = estimatedTotalAssets();

        _profit = totalAssets > totalDebt ? totalAssets.sub(totalDebt) : 0;

        uint256 freed;

        if (hasMatured()) {
            freed = liquidateAllPositions();
            _loss = _debtOutstanding > freed ? _debtOutstanding.sub(freed) : 0;
        } else {
            uint256 toLiquidate = _debtOutstanding.add(_profit);
            if (toLiquidate > 0) {
                (freed, _loss) = liquidatePosition(toLiquidate);
            }
        }

        _debtPayment = Math.min(_debtOutstanding, freed);

        // net out PnL
        if (_profit > _loss) {
            _profit = _profit.sub(_loss);
            _loss = 0;
        } else {
            _loss = _loss.sub(_profit);
            _profit = 0;
        }

        if (hasMatured()) {
            depositId = 0;
        }
    }

    // claim vested mph, pool loose wants
    function adjustPosition(uint256 _debtOutstanding) internal override {
        _claim();
        _invest();
    }

    function liquidatePosition(uint256 _amountNeeded)
    internal
    override
    returns (uint256 _liquidatedAmount, uint256 _loss)
    {
        if (_amountNeeded > 0) {
            uint256 loose = balanceOfWant();
            if (_amountNeeded > loose) {
                uint256 toExitAmount = _amountNeeded.sub(loose);
                IDInterest.Deposit memory depositInfo = getDepositInfo();
                uint256 toExitVirtualAmount =
                toExitAmount.mul(depositInfo.interestRate.add(1e18)).div(
                    1e18
                );

                _poolWithdraw(toExitVirtualAmount);

                _liquidatedAmount = Math.min(balanceOfWant(), _amountNeeded);
                _loss = _amountNeeded.sub(_liquidatedAmount);
            } else {
                _liquidatedAmount = _amountNeeded;
                _loss = 0;
            }
        }
    }

    // exit everything
    function liquidateAllPositions() internal override returns (uint256) {
        IDInterest.Deposit memory depositInfo = getDepositInfo();
        _poolWithdraw(depositInfo.virtualTokenTotalSupply);
        return balanceOfWant();
    }

    // transfer both nfts to new strategy
    function prepareMigration(address _newStrategy) internal override {
        depositNft.safeTransferFrom(
            address(this),
            _newStrategy,
            depositId,
            DEPOSIT
        );
        vestNft.safeTransferFrom(address(this), _newStrategy, vestId(), VEST);
    }

    function protectedTokens()
    internal
    view
    override
    returns (address[] memory)
    {}

    function ethToWant(uint256 _amtInWei)
    public
    view
    virtual
    override
    returns (uint256)
    {
        return 0;
    }

    // INTERNAL OPERATIONS //

    function closeEpoch() external onlyEmergencyAuthorized {
        _closeEpoch();
    }

    function _closeEpoch() internal {
        liquidateAllPositions();
    }

    function invest() external onlyVaultManagers {
        _invest();
    }

    // pool wants
    function _invest() internal {
        uint256 loose = balanceOfWant();

        if (depositId != 0) {

            // top up the current deposit aka add more loose to the depositNft position.
            // If matured, no action
            if (loose > 0 && !hasMatured()) {
                uint256 timeLeft = uint256(getDepositInfo().maturationTimestamp).sub(now);
                uint256 futureInterest = pool.calculateInterestAmount(loose, timeLeft);
                if (futureInterest > 0) {
                    pool.topupDeposit(depositId, loose);
                }
            }
        } else {
            // if loose amount is too small to generate interest due to loss of precision, deposits will revert
            uint256 futureInterest = pool.calculateInterestAmount(loose, maturationPeriod);

            // if there's no depositId, we haven't opened a position yet
            if (loose > 0 && futureInterest > 0) {
                // open a position with a fixed period. Fixed-rate yield can be collected after this period.
                (depositId,) = pool.deposit(
                    loose,
                    uint64(now + maturationPeriod)
                );
            }
        }
    }

    function claim() external onlyVaultManagers {
        _claim();
    }

    // claim mph. Make sure this always happens before _pool(), otherwise old depositId's rewards could be lost
    function _claim() internal {
        uint256 _rewardBalanceBeforeClaim = balanceOfReward();
        if (depositId != 0 && balanceOfClaimableReward() > 0) {
            vestNft.withdraw(vestId());

            uint256 _rewardAmountToKeep =
            balanceOfReward()
            .sub(_rewardBalanceBeforeClaim)
            .mul(keepBips)
            .div(basisMax);
            if (_rewardAmountToKeep > 0) {
                reward.safeTransfer(keep, _rewardAmountToKeep);
            }
        }
    }

    function poolWithdraw(uint256 _virtualAmount) external onlyVaultManagers {
        _poolWithdraw(_virtualAmount);
    }

    // withdraw from pool.
    function _poolWithdraw(uint256 _virtualAmount) internal {
        // if early withdraw and we don't allow fees, enforce that there's no fees.
        // This makes sure that we don't get tricked by MPH with empty promises of waived fees.
        // Otherwise we can lose some principal
        if (!hasMatured() && !allowEarlyWithdrawFee) {
            require(getEarlyWithdrawFee() == 0, "!free");
        }
        // ensure that withdraw amount is more than minWithdraw amount, otherwise some protocols will revert
        if (_virtualAmount > minWithdraw) {
            // +1 bc of rounding error sometimes exiting 1 wei less
            _virtualAmount = Math.min(_virtualAmount.add(1), getDepositInfo().virtualTokenTotalSupply);
            pool.withdraw(depositId, _virtualAmount, !hasMatured());
        }
    }

    function overrideDepositId(uint64 _id) external onlyVaultManagers {
        depositId = _id;
    }

    // HELPERS //

    // virtualTokenTotalSupply = deposit + fixed-rate interest. Before maturation, the fixed-rate interest is not withdrawable
    function balanceOfPooled() public view returns (uint256 _amount) {
        if (depositId != 0) {
            uint256 depositWithInterest =
            getDepositInfo().virtualTokenTotalSupply;
            uint256 interestRate = getDepositInfo().interestRate;
            uint256 depositWithoutInterest =
            depositWithInterest.mul(1e18).div(interestRate.add(1e18));
            return hasMatured() ? depositWithInterest : depositWithoutInterest;
        }
    }

    function balanceOfWant() public view returns (uint256 _amount) {
        return want.balanceOf(address(this));
    }

    function balanceOfReward() public view returns (uint256 _amount) {
        return reward.balanceOf(address(this));
    }

    function balanceOfClaimableReward() public view returns (uint256 _amount) {
        return vestNft.getVestWithdrawableAmount(vestId());
    }

    function getDepositInfo()
    public
    view
    returns (IDInterest.Deposit memory _deposit)
    {
        return pool.getDeposit(depositId);
    }

    function getVest() public view returns (IVesting.Vest memory _vest) {
        return vestNft.getVest(vestId());
    }

    function hasMatured() public view returns (bool) {
        return
        depositId != 0 ? now > getDepositInfo().maturationTimestamp : false;
    }

    function vestId() public view returns (uint64 _vestId) {
        return vestNft.depositIDToVestID(address(pool), depositId);
    }

    // fee on full withdrawal
    function getEarlyWithdrawFee() public view returns (uint256 _feeAmount) {
        return
        IPercentageFeeModel(pool.feeModel()).getEarlyWithdrawFeeAmount(
            address(pool),
            depositId,
            estimatedTotalAssets()
        );
    }

    // SETTERS //

    function setTradeFactory(address _tradeFactory) public onlyGovernance {
        _setTradeFactory(_tradeFactory);
    }

    function _setTradeFactory(address _tradeFactory) internal {
        tradeFactory = ITradeFactory(_tradeFactory);
        reward.safeApprove(address(tradeFactory), max);
        tradeFactory.enable(address(reward), address(want));
    }

    function disableTradeFactory() public onlyVaultManagers {
        _disableTradeFactory();
    }

    function _disableTradeFactory() internal {
        delete tradeFactory;
        reward.safeApprove(address(tradeFactory), 0);
        tradeFactory.disable(address(reward), address(want));
    }

    function setMaturationPeriod(uint64 _maturationUnix)
    public
    onlyVaultManagers
    {
        // minimum 1 day
        require(_maturationUnix > 24 * 60 * 60);
        maturationPeriod = _maturationUnix;
    }

    // For migration. This acts as a password so random nft drops won't mess up the depositId
    function setOldStrategy(address _oldStrategy) public onlyVaultManagers {
        oldStrategy = _oldStrategy;
    }

    // Some protocol pools enforce a minimum amount withdraw, like cTokens w/ different decimal places.
    function setMinWithdraw(uint256 _minWithdraw) public onlyVaultManagers {
        minWithdraw = _minWithdraw;
    }

    function setAllowWithdrawFee(bool _allow) public onlyVaultManagers {
        allowEarlyWithdrawFee = _allow;
    }

    function setKeepParams(address _keep, uint256 _keepBips)
    external
    onlyGovernance
    {
        require(keepBips <= basisMax);
        keep = _keep;
        keepBips = _keepBips;
    }

    // only receive nft from oldStrategy otherwise, random nfts will mess up the depositId
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external override returns (bytes4) {
        if (
            msg.sender == address(depositNft) &&
            from == oldStrategy &&
            keccak256(data) == keccak256(DEPOSIT)
        ) {
            depositId = uint64(tokenId);
        }
        return IERC721Receiver.onERC721Received.selector;
    }

    receive() external payable {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_pool","type":"address"},{"internalType":"string","name":"_strategyName","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[],"name":"EmergencyExitEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"profit","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"loss","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"debtPayment","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"debtOutstanding","type":"uint256"}],"name":"Harvested","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"debtThreshold","type":"uint256"}],"name":"UpdatedDebtThreshold","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newKeeper","type":"address"}],"name":"UpdatedKeeper","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"delay","type":"uint256"}],"name":"UpdatedMaxReportDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"metadataURI","type":"string"}],"name":"UpdatedMetadataURI","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"delay","type":"uint256"}],"name":"UpdatedMinReportDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"profitFactor","type":"uint256"}],"name":"UpdatedProfitFactor","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"rewards","type":"address"}],"name":"UpdatedRewards","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newStrategist","type":"address"}],"name":"UpdatedStrategist","type":"event"},{"inputs":[],"name":"allowEarlyWithdrawFee","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"apiVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"balanceOfClaimableReward","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfPooled","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfReward","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfWant","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"closeEpoch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"debtThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"delegatedAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositId","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositNft","outputs":[{"internalType":"contract INft","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"disableTradeFactory","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"doHealthCheck","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergencyExit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"estimatedTotalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amtInWei","type":"uint256"}],"name":"ethToWant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDepositInfo","outputs":[{"components":[{"internalType":"uint256","name":"virtualTokenTotalSupply","type":"uint256"},{"internalType":"uint256","name":"interestRate","type":"uint256"},{"internalType":"uint256","name":"feeRate","type":"uint256"},{"internalType":"uint256","name":"averageRecordedIncomeIndex","type":"uint256"},{"internalType":"uint64","name":"maturationTimestamp","type":"uint64"},{"internalType":"uint64","name":"fundingID","type":"uint64"}],"internalType":"struct IDInterest.Deposit","name":"_deposit","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getEarlyWithdrawFee","outputs":[{"internalType":"uint256","name":"_feeAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVest","outputs":[{"components":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"uint64","name":"depositID","type":"uint64"},{"internalType":"uint64","name":"lastUpdateTimestamp","type":"uint64"},{"internalType":"uint256","name":"accumulatedAmount","type":"uint256"},{"internalType":"uint256","name":"withdrawnAmount","type":"uint256"},{"internalType":"uint256","name":"vestAmountPerStablecoinPerSecond","type":"uint256"}],"internalType":"struct IVesting.Vest","name":"_vest","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"callCostInWei","type":"uint256"}],"name":"harvestTrigger","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hasMatured","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"healthCheck","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_strategist","type":"address"},{"internalType":"address","name":"_rewards","type":"address"},{"internalType":"address","name":"_keeper","type":"address"},{"internalType":"address","name":"_pool","type":"address"},{"internalType":"string","name":"_strategyName","type":"string"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"invest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keep","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keepBips","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keeper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maturationPeriod","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxReportDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadataURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newStrategy","type":"address"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minReportDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"oldStrategy","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"_id","type":"uint64"}],"name":"overrideDepositId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pool","outputs":[{"internalType":"contract IDInterest","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_virtualAmount","type":"uint256"}],"name":"poolWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"profitFactor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"reward","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewards","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"_allow","type":"bool"}],"name":"setAllowWithdrawFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_debtThreshold","type":"uint256"}],"name":"setDebtThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_doHealthCheck","type":"bool"}],"name":"setDoHealthCheck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setEmergencyExit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_healthCheck","type":"address"}],"name":"setHealthCheck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keep","type":"address"},{"internalType":"uint256","name":"_keepBips","type":"uint256"}],"name":"setKeepParams","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keeper","type":"address"}],"name":"setKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"_maturationUnix","type":"uint64"}],"name":"setMaturationPeriod","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_delay","type":"uint256"}],"name":"setMaxReportDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_metadataURI","type":"string"}],"name":"setMetadataURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_delay","type":"uint256"}],"name":"setMinReportDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minWithdraw","type":"uint256"}],"name":"setMinWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_oldStrategy","type":"address"}],"name":"setOldStrategy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_profitFactor","type":"uint256"}],"name":"setProfitFactor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewards","type":"address"}],"name":"setRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_strategist","type":"address"}],"name":"setStrategist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_tradeFactory","type":"address"}],"name":"setTradeFactory","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"strategist","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"sweep","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tend","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"callCostInWei","type":"uint256"}],"name":"tendTrigger","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradeFactory","outputs":[{"internalType":"contract ITradeFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"contract VaultAPI","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestId","outputs":[{"internalType":"uint64","name":"_vestId","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestNft","outputs":[{"internalType":"contract IVesting","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"want","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountNeeded","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"_loss","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.