More Info
Private Name Tags
ContractCreator
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
17512365 | 516 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xed102caf9fa613ef654fe0e5df72cc44b7527f87
Contract Name:
StrategyCurveConvex
Compiler Version
v0.8.15+commit.e14f2714
Contract Source Code (Solidity)
/** *Submitted for verification at Etherscan.io on 2023-05-01 */ // SPDX-License-Identifier: MIT // File: @openzeppelin-4/contracts/token/ERC20/IERC20.sol // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // File: @openzeppelin-4/contracts/token/ERC20/extensions/draft-IERC20Permit.sol // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // File: @openzeppelin-4/contracts/utils/Address.sol // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin-4/contracts/token/ERC20/utils/SafeERC20.sol // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // File: contracts/BIFI/interfaces/common/IUniswapRouterETH.sol pragma solidity >=0.6.0 <0.9.0; interface IUniswapRouterETH { function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); } // File: contracts/BIFI/interfaces/common/IWrappedNative.sol pragma solidity >=0.6.0 <0.9.0; interface IWrappedNative { function deposit() external payable; function withdraw(uint256 wad) external; } // File: contracts/BIFI/interfaces/convex/IConvex.sol pragma solidity >=0.6.0 <0.9.0; interface IConvexBooster { function deposit(uint256 pid, uint256 amount, bool stake) external returns (bool); function earmarkRewards(uint256 _pid) external; function poolInfo(uint256 pid) external view returns ( address lptoken, address token, address gauge, address crvRewards, address stash, bool shutdown ); } interface IConvexBoosterL2 { function deposit(uint256 _pid, uint256 _amount) external returns (bool); function poolInfo(uint256 pid) external view returns ( address lptoken, //the curve lp token address gauge, //the curve gauge address rewards, //the main reward/staking contract bool shutdown, //is this pool shutdown? address factory //a reference to the curve factory used to create this pool (needed for minting crv) ); } interface IConvexRewardPool { function balanceOf(address account) external view returns (uint256); function earned(address account) external view returns (uint256); function periodFinish() external view returns (uint256); function getReward() external; function getReward(address _account, bool _claimExtras) external; function getReward(address _account) external; function withdrawAndUnwrap(uint256 _amount, bool claim) external; function withdrawAllAndUnwrap(bool claim) external; // L2 interface function withdraw(uint256 _amount, bool _claim) external; function emergencyWithdraw(uint256 _amount) external; } // File: contracts/BIFI/interfaces/curve/ICurveSwap.sol pragma solidity >=0.6.0; interface ICurveSwap { function remove_liquidity_one_coin(uint256 token_amount, int128 i, uint256 min_amount) external; function calc_withdraw_one_coin(uint256 tokenAmount, int128 i) external view returns (uint256); function coins(uint256 arg0) external view returns (address); function add_liquidity(uint256[2] memory amounts, uint256 min_mint_amount) external payable; function add_liquidity(uint256[2] memory amounts, uint256 min_mint_amount, bool _use_underlying) external; function add_liquidity(address _pool, uint256[2] memory amounts, uint256 min_mint_amount) external; function add_liquidity(uint256[3] memory amounts, uint256 min_mint_amount) external payable; function add_liquidity(uint256[3] memory amounts, uint256 min_mint_amount, bool _use_underlying) external payable; function add_liquidity(address _pool, uint256[3] memory amounts, uint256 min_mint_amount) external payable; function add_liquidity(uint256[4] memory amounts, uint256 min_mint_amount) external payable; function add_liquidity(address _pool, uint256[4] memory amounts, uint256 min_mint_amount) external payable; function add_liquidity(uint256[5] memory amounts, uint256 min_mint_amount) external payable; function add_liquidity(address _pool, uint256[5] memory amounts, uint256 min_mint_amount) external payable; function add_liquidity(uint256[6] memory amounts, uint256 min_mint_amount) external payable; function add_liquidity(address _pool, uint256[6] memory amounts, uint256 min_mint_amount) external payable; function exchange(uint256 i, uint256 j, uint256 dx, uint256 min_dy) external; } // File: contracts/BIFI/interfaces/curve/ICrvMinter.sol pragma solidity >=0.6.0; interface ICrvMinter { function mint(address _gauge) external; } // File: contracts/BIFI/interfaces/curve/ICurveRouter.sol pragma solidity >=0.6.0; interface ICurveRouter { function exchange_multiple( address[9] calldata _route, uint[3][4] calldata _swap_params, uint _amount, uint _expected ) external returns (uint); } // File: contracts/BIFI/interfaces/curve/IRewardsGauge.sol pragma solidity >=0.6.0 <0.9.0; interface IRewardsGauge { function balanceOf(address account) external view returns (uint256); function claimable_reward(address _addr, address _token) external view returns (uint256); function claim_rewards(address _addr) external; function deposit(uint256 _value) external; function withdraw(uint256 _value) external; function reward_contract() external view returns (address); } // File: @openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File: @openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } } // File: @openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // File: @openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // File: @openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // File: contracts/BIFI/interfaces/common/IFeeConfig.sol pragma solidity ^0.8.0; interface IFeeConfig { struct FeeCategory { uint256 total; uint256 beefy; uint256 call; uint256 strategist; string label; bool active; } struct AllFees { FeeCategory performance; uint256 deposit; uint256 withdraw; } function getFees(address strategy) external view returns (FeeCategory memory); function stratFeeId(address strategy) external view returns (uint256); function setStratFeeId(uint256 feeId) external; } // File: contracts/BIFI/strategies/Common/StratFeeManagerInitializable.sol pragma solidity ^0.8.0; contract StratFeeManagerInitializable is OwnableUpgradeable, PausableUpgradeable { struct CommonAddresses { address vault; address unirouter; address keeper; address strategist; address beefyFeeRecipient; address beefyFeeConfig; } // common addresses for the strategy address public vault; address public unirouter; address public keeper; address public strategist; address public beefyFeeRecipient; IFeeConfig public beefyFeeConfig; uint256 constant DIVISOR = 1 ether; uint256 constant public WITHDRAWAL_FEE_CAP = 50; uint256 constant public WITHDRAWAL_MAX = 10000; uint256 internal withdrawalFee; event SetStratFeeId(uint256 feeId); event SetWithdrawalFee(uint256 withdrawalFee); event SetVault(address vault); event SetUnirouter(address unirouter); event SetKeeper(address keeper); event SetStrategist(address strategist); event SetBeefyFeeRecipient(address beefyFeeRecipient); event SetBeefyFeeConfig(address beefyFeeConfig); function __StratFeeManager_init(CommonAddresses calldata _commonAddresses) internal onlyInitializing { __Ownable_init(); __Pausable_init(); vault = _commonAddresses.vault; unirouter = _commonAddresses.unirouter; keeper = _commonAddresses.keeper; strategist = _commonAddresses.strategist; beefyFeeRecipient = _commonAddresses.beefyFeeRecipient; beefyFeeConfig = IFeeConfig(_commonAddresses.beefyFeeConfig); withdrawalFee = 10; } // checks that caller is either owner or keeper. modifier onlyManager() { _checkManager(); _; } function _checkManager() internal view { require(msg.sender == owner() || msg.sender == keeper, "!manager"); } // fetch fees from config contract function getFees() internal view returns (IFeeConfig.FeeCategory memory) { return beefyFeeConfig.getFees(address(this)); } // fetch fees from config contract and dynamic deposit/withdraw fees function getAllFees() external view returns (IFeeConfig.AllFees memory) { return IFeeConfig.AllFees(getFees(), depositFee(), withdrawFee()); } function getStratFeeId() external view returns (uint256) { return beefyFeeConfig.stratFeeId(address(this)); } function setStratFeeId(uint256 _feeId) external onlyManager { beefyFeeConfig.setStratFeeId(_feeId); emit SetStratFeeId(_feeId); } // adjust withdrawal fee function setWithdrawalFee(uint256 _fee) public onlyManager { require(_fee <= WITHDRAWAL_FEE_CAP, "!cap"); withdrawalFee = _fee; emit SetWithdrawalFee(_fee); } // set new vault (only for strategy upgrades) function setVault(address _vault) external onlyOwner { vault = _vault; emit SetVault(_vault); } // set new unirouter function setUnirouter(address _unirouter) external onlyOwner { unirouter = _unirouter; emit SetUnirouter(_unirouter); } // set new keeper to manage strat function setKeeper(address _keeper) external onlyManager { keeper = _keeper; emit SetKeeper(_keeper); } // set new strategist address to receive strat fees function setStrategist(address _strategist) external { require(msg.sender == strategist, "!strategist"); strategist = _strategist; emit SetStrategist(_strategist); } // set new beefy fee address to receive beefy fees function setBeefyFeeRecipient(address _beefyFeeRecipient) external onlyOwner { beefyFeeRecipient = _beefyFeeRecipient; emit SetBeefyFeeRecipient(_beefyFeeRecipient); } // set new fee config address to fetch fees function setBeefyFeeConfig(address _beefyFeeConfig) external onlyOwner { beefyFeeConfig = IFeeConfig(_beefyFeeConfig); emit SetBeefyFeeConfig(_beefyFeeConfig); } function depositFee() public virtual view returns (uint256) { return 0; } function withdrawFee() public virtual view returns (uint256) { return paused() ? 0 : withdrawalFee; } function beforeDeposit() external virtual {} } // File: contracts/BIFI/utils/BytesLib.sol /* * @title Solidity Bytes Arrays Utils * @author Gonçalo Sá <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity >=0.8.0 <0.9.0; library BytesLib { function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore(0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. )) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let mlengthmod := mod(mlength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= _start + 20, "toAddress_outOfBounds"); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) { require(_bytes.length >= _start + 1 , "toUint8_outOfBounds"); uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) { require(_bytes.length >= _start + 2, "toUint16_outOfBounds"); uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint24(bytes memory _bytes, uint256 _start) internal pure returns (uint24) { require(_start + 3 >= _start, 'toUint24_overflow'); require(_bytes.length >= _start + 3, 'toUint24_outOfBounds'); uint24 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x3), _start)) } return tempUint; } function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) { require(_bytes.length >= _start + 4, "toUint32_outOfBounds"); uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) { require(_bytes.length >= _start + 8, "toUint64_outOfBounds"); uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) { require(_bytes.length >= _start + 12, "toUint96_outOfBounds"); uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) { require(_bytes.length >= _start + 16, "toUint128_outOfBounds"); uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= _start + 32, "toUint256_outOfBounds"); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) { require(_bytes.length >= _start + 32, "toBytes32_outOfBounds"); bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equalStorage( bytes storage _preBytes, bytes memory _postBytes ) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) for {} eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } } // File: contracts/BIFI/utils/Path.sol pragma solidity >=0.6.0; /// @title Functions for manipulating path data for multihop swaps library Path { using BytesLib for bytes; /// @dev The length of the bytes encoded address uint256 private constant ADDR_SIZE = 20; /// @dev The length of the bytes encoded fee uint256 private constant FEE_SIZE = 3; /// @dev The offset of a single token address and pool fee uint256 private constant NEXT_OFFSET = ADDR_SIZE + FEE_SIZE; /// @dev The offset of an encoded pool key uint256 private constant POP_OFFSET = NEXT_OFFSET + ADDR_SIZE; /// @dev The minimum length of an encoding that contains 2 or more pools uint256 private constant MULTIPLE_POOLS_MIN_LENGTH = POP_OFFSET + NEXT_OFFSET; /// @notice Returns true iff the path contains two or more pools /// @param path The encoded swap path /// @return True if path contains two or more pools, otherwise false function hasMultiplePools(bytes memory path) internal pure returns (bool) { return path.length >= MULTIPLE_POOLS_MIN_LENGTH; } /// @notice Returns the number of pools in the path /// @param path The encoded swap path /// @return The number of pools in the path function numPools(bytes memory path) internal pure returns (uint256) { // Ignore the first token address. From then on every fee and token offset indicates a pool. return ((path.length - ADDR_SIZE) / NEXT_OFFSET); } /// @notice Decodes the first pool in path /// @param path The bytes encoded swap path /// @return tokenA The first token of the given pool /// @return tokenB The second token of the given pool /// @return fee The fee level of the pool function decodeFirstPool(bytes memory path) internal pure returns ( address tokenA, address tokenB, uint24 fee ) { tokenA = path.toAddress(0); fee = path.toUint24(ADDR_SIZE); tokenB = path.toAddress(NEXT_OFFSET); } /// @notice Gets the segment corresponding to the first pool in the path /// @param path The bytes encoded swap path /// @return The segment containing all data necessary to target the first pool in the path function getFirstPool(bytes memory path) internal pure returns (bytes memory) { return path.slice(0, POP_OFFSET); } /// @notice Skips a token + fee element from the buffer and returns the remainder /// @param path The swap path /// @return The remaining token + fee elements in the path function skipToken(bytes memory path) internal pure returns (bytes memory) { return path.slice(NEXT_OFFSET, path.length - NEXT_OFFSET); } } // File: contracts/BIFI/interfaces/common/IUniswapRouterV3WithDeadline.sol pragma solidity >=0.6.0; pragma experimental ABIEncoderV2; interface IUniswapRouterV3WithDeadline { struct ExactInputSingleParams { address tokenIn; address tokenOut; uint24 fee; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; uint160 sqrtPriceLimitX96; } /// @notice Swaps `amountIn` of one token for as much as possible of another token /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata /// @return amountOut The amount of the received token function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut); struct ExactInputParams { bytes path; address recipient; uint256 deadline; uint256 amountIn; uint256 amountOutMinimum; } /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata /// @return amountOut The amount of the received token function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut); struct ExactOutputSingleParams { address tokenIn; address tokenOut; uint24 fee; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; uint160 sqrtPriceLimitX96; } /// @notice Swaps as little as possible of one token for `amountOut` of another token /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata /// @return amountIn The amount of the input token function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn); struct ExactOutputParams { bytes path; address recipient; uint256 deadline; uint256 amountOut; uint256 amountInMaximum; } /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed) /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata /// @return amountIn The amount of the input token function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn); } // File: contracts/BIFI/utils/UniswapV3Utils.sol pragma solidity ^0.8.0; library UniswapV3Utils { using Path for bytes; // Swap along an encoded path using known amountIn function swap( address _router, bytes memory _path, uint256 _amountIn ) internal returns (uint256 amountOut) { IUniswapRouterV3WithDeadline.ExactInputParams memory params = IUniswapRouterV3WithDeadline.ExactInputParams({ path: _path, recipient: address(this), deadline: block.timestamp, amountIn: _amountIn, amountOutMinimum: 0 }); return IUniswapRouterV3WithDeadline(_router).exactInput(params); } // Swap along a token route using known fees and amountIn function swap( address _router, address[] memory _route, uint24[] memory _fee, uint256 _amountIn ) internal returns (uint256 amountOut) { return swap(_router, routeToPath(_route, _fee), _amountIn); } // Convert encoded path to token route function pathToRoute(bytes memory _path) internal pure returns (address[] memory) { uint256 numPools = _path.numPools(); address[] memory route = new address[](numPools + 1); for (uint256 i; i < numPools; i++) { (address tokenA, address tokenB,) = _path.decodeFirstPool(); route[i] = tokenA; route[i + 1] = tokenB; _path = _path.skipToken(); } return route; } // Convert token route to encoded path // uint24 type for fees so path is packed tightly function routeToPath( address[] memory _route, uint24[] memory _fee ) internal pure returns (bytes memory path) { path = abi.encodePacked(_route[0]); uint256 feeLength = _fee.length; for (uint256 i = 0; i < feeLength; i++) { path = abi.encodePacked(path, _fee[i], _route[i+1]); } } } // File: contracts/BIFI/strategies/Curve/StrategyCurveConvex.sol pragma solidity ^0.8.0; // Curve L1 strategy switchable between Curve and Convex contract StrategyCurveConvex is StratFeeManagerInitializable { using SafeERC20 for IERC20; // this `pid` means we using Curve gauge and not Convex rewardPool uint constant public NO_PID = 42069; // Tokens used address public constant native = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address public constant curveRouter = 0x99a58482BD75cbab83b27EC03CA68fF489b5788f; IConvexBooster public constant booster = IConvexBooster(0xF403C135812408BFbE8713b5A23a04b3D48AAE31); ICrvMinter public constant minter = ICrvMinter(0xd061D61a4d941c39E5453435B6345Dc261C2fcE0); address public want; // curve lpToken address public gauge; // curve gauge address public rewardPool; // convex base reward pool uint public pid; // convex booster poolId struct CurveRoute { address[9] route; uint256[3][4] swapParams; uint minAmount; // minimum amount to be swapped to native } CurveRoute[] public curveRewards; struct RewardV3 { address token; bytes toNativePath; // uniswap path uint minAmount; // minimum amount to be swapped to native } RewardV3[] public rewardsV3; // rewards swapped via unirouter struct RewardV2 { address token; address router; // uniswap v2 router address[] toNativeRoute; // uniswap route uint minAmount; // minimum amount to be swapped to native } RewardV2[] public rewardsV2; // uniV3 path swapped via unirouter, or 0 to skip and use native via depositToWant bytes public nativeToDepositPath; // add liquidity via curveRouter, deposit token should match nativeToDepositPath or be native CurveRoute public depositToWant; bool public isCrvMintable; // if CRV can be minted via Minter (gauge is added to Controller) bool public skipEarmarkRewards; bool public harvestOnDeposit; uint256 public lastHarvest; event StratHarvest(address indexed harvester, uint256 wantHarvested, uint256 tvl); event Deposit(uint256 tvl); event Withdraw(uint256 tvl); event ChargedFees(uint256 callFees, uint256 beefyFees, uint256 strategistFees); function initialize( address _want, address _gauge, uint _pid, bytes calldata _crvToNativePath, bytes calldata _cvxToNativePath, bytes calldata _nativeToDepositPath, CurveRoute calldata _depositToWant, CommonAddresses calldata _commonAddresses ) public initializer { __StratFeeManager_init(_commonAddresses); want = _want; gauge = _gauge; pid = _pid; if (_pid != NO_PID) { (,,, rewardPool,,) = booster.poolInfo(_pid); } if (_crvToNativePath.length > 0) addRewardV3(_crvToNativePath, 1e18); if (_cvxToNativePath.length > 0) addRewardV3(_cvxToNativePath, 1e18); setNativeToDepositPath(_nativeToDepositPath); setDepositToWant(_depositToWant.route, _depositToWant.swapParams, _depositToWant.minAmount); withdrawalFee = 1; _giveAllowances(); } // puts the funds to work function deposit() public whenNotPaused { uint256 wantBal = balanceOfWant(); if (wantBal > 0) { if (rewardPool != address(0)) { booster.deposit(pid, wantBal, true); } else { IRewardsGauge(gauge).deposit(wantBal); } emit Deposit(balanceOf()); } } function withdraw(uint256 _amount) external { require(msg.sender == vault, "!vault"); uint256 wantBal = balanceOfWant(); if (wantBal < _amount) { _withdraw(_amount - wantBal); wantBal = balanceOfWant(); } if (wantBal > _amount) { wantBal = _amount; } if (tx.origin != owner() && !paused()) { uint256 withdrawalFeeAmount = wantBal * withdrawalFee / WITHDRAWAL_MAX; wantBal = wantBal - withdrawalFeeAmount; } IERC20(want).safeTransfer(vault, wantBal); emit Withdraw(balanceOf()); } function _withdraw(uint256 _amount) internal { if (_amount > 0) { if (rewardPool != address(0)) { IConvexRewardPool(rewardPool).withdrawAndUnwrap(_amount, false); } else { IRewardsGauge(gauge).withdraw(_amount); } } } function beforeDeposit() external override { if (harvestOnDeposit) { require(msg.sender == vault, "!vault"); _harvest(tx.origin, true); } } function harvest() external virtual { _harvest(tx.origin, false); } function harvest(address callFeeRecipient) external virtual { _harvest(callFeeRecipient, false); } // compounds earnings and charges performance fee function _harvest(address callFeeRecipient, bool onDeposit) internal whenNotPaused { _claim(); _swapRewardsToNative(); uint256 nativeBal = IERC20(native).balanceOf(address(this)); if (nativeBal > 0) { _chargeFees(callFeeRecipient); _addLiquidity(); uint256 wantHarvested = balanceOfWant(); if (!onDeposit) { deposit(); } lastHarvest = block.timestamp; emit StratHarvest(msg.sender, wantHarvested, balanceOf()); } } function _claim() internal { if (rewardPool != address(0)) { if (!skipEarmarkRewards && IConvexRewardPool(rewardPool).periodFinish() < block.timestamp) { booster.earmarkRewards(pid); } IConvexRewardPool(rewardPool).getReward(); } else { if (isCrvMintable) minter.mint(gauge); IRewardsGauge(gauge).claim_rewards(address(this)); } } function _swapRewardsToNative() internal { for (uint i; i < curveRewards.length; ++i) { uint bal = IERC20(curveRewards[i].route[0]).balanceOf(address(this)); if (bal >= curveRewards[i].minAmount) { ICurveRouter(curveRouter).exchange_multiple(curveRewards[i].route, curveRewards[i].swapParams, bal, 0); } } for (uint i; i < rewardsV2.length; ++i) { uint bal = IERC20(rewardsV2[i].token).balanceOf(address(this)); if (bal >= rewardsV2[i].minAmount) { IUniswapRouterETH(rewardsV2[i].router).swapExactTokensForTokens(bal, 0, rewardsV2[i].toNativeRoute, address(this), block.timestamp); } } for (uint i; i < rewardsV3.length; ++i) { uint bal = IERC20(rewardsV3[i].token).balanceOf(address(this)); if (bal >= rewardsV3[i].minAmount) { UniswapV3Utils.swap(unirouter, rewardsV3[i].toNativePath, bal); } } } // performance fees function _chargeFees(address callFeeRecipient) internal { IFeeConfig.FeeCategory memory fees = getFees(); uint256 nativeBal = IERC20(native).balanceOf(address(this)) * fees.total / DIVISOR; uint256 callFeeAmount = nativeBal * fees.call / DIVISOR; IERC20(native).safeTransfer(callFeeRecipient, callFeeAmount); uint256 beefyFeeAmount = nativeBal * fees.beefy / DIVISOR; IERC20(native).safeTransfer(beefyFeeRecipient, beefyFeeAmount); uint256 strategistFeeAmount = nativeBal * fees.strategist / DIVISOR; IERC20(native).safeTransfer(strategist, strategistFeeAmount); emit ChargedFees(callFeeAmount, beefyFeeAmount, strategistFeeAmount); } // Adds liquidity to AMM and gets more LP tokens. function _addLiquidity() internal { if (nativeToDepositPath.length > 0) { uint nativeBal = IERC20(native).balanceOf(address(this)); UniswapV3Utils.swap(unirouter, nativeToDepositPath, nativeBal); } uint bal = IERC20(depositToWant.route[0]).balanceOf(address(this)); ICurveRouter(curveRouter).exchange_multiple(depositToWant.route, depositToWant.swapParams, bal, 0); } function setConvexPid(uint _pid) external onlyOwner { _withdraw(balanceOfPool()); if (_pid != NO_PID) { (,,,rewardPool,,) = booster.poolInfo(_pid); } else { rewardPool = address(0); } pid = _pid; deposit(); } function setNativeToDepositPath(bytes calldata _nativeToDepositPath) public onlyOwner { if (_nativeToDepositPath.length > 0) { address[] memory route = UniswapV3Utils.pathToRoute(_nativeToDepositPath); require(route[0] == native, "!native"); } nativeToDepositPath = _nativeToDepositPath; } function setDepositToWant(address[9] calldata _route, uint[3][4] calldata _swapParams, uint minAmount) public onlyOwner { address token = _route[0]; require(token != want, "!want"); depositToWant = CurveRoute(_route, _swapParams, minAmount); _approve(token, curveRouter, 0); _approve(token, curveRouter, type(uint).max); } function addReward(address[9] calldata _rewardToNativeRoute, uint[3][4] calldata _swapParams, uint _minAmount) external onlyOwner { address token = _rewardToNativeRoute[0]; require(token != want, "!want"); require(token != native, "!native"); curveRewards.push(CurveRoute(_rewardToNativeRoute, _swapParams, _minAmount)); _approve(token, curveRouter, 0); _approve(token, curveRouter, type(uint).max); } function addRewardV2(address _router, address[] calldata _rewardToNativeRoute, uint _minAmount) external onlyOwner { address token = _rewardToNativeRoute[0]; require(token != want, "!want"); require(token != native, "!native"); rewardsV2.push(RewardV2(token, _router, _rewardToNativeRoute, _minAmount)); IERC20(token).approve(_router, 0); IERC20(token).approve(_router, type(uint).max); } function addRewardV3(bytes calldata _rewardToNativePath, uint _minAmount) public onlyOwner { address[] memory _rewardToNativeRoute = UniswapV3Utils.pathToRoute(_rewardToNativePath); address token = _rewardToNativeRoute[0]; require(token != want, "!want"); require(token != native, "!native"); rewardsV3.push(RewardV3(token, _rewardToNativePath, _minAmount)); _approve(token, unirouter, 0); _approve(token, unirouter, type(uint).max); } function resetCurveRewards() external onlyManager { delete curveRewards; } function resetRewardsV2() external onlyManager { delete rewardsV2; } function resetRewardsV3() external onlyManager { delete rewardsV3; } // calculate the total underlaying 'want' held by the strat. function balanceOf() public view returns (uint256) { return balanceOfWant() + balanceOfPool(); } // it calculates how much 'want' this contract holds. function balanceOfWant() public view returns (uint256) { return IERC20(want).balanceOf(address(this)); } // it calculates how much 'want' the strategy has working in the farm. function balanceOfPool() public view returns (uint256) { if (rewardPool != address(0)) { return IConvexRewardPool(rewardPool).balanceOf(address(this)); } else { return IRewardsGauge(gauge).balanceOf(address(this)); } } function depositToWantRoute() external view returns (address[9] memory, uint256[3][4] memory, uint) { return (depositToWant.route, depositToWant.swapParams, depositToWant.minAmount); } function curveReward(uint i) external view returns (address[9] memory, uint256[3][4] memory, uint) { return (curveRewards[i].route, curveRewards[i].swapParams, curveRewards[i].minAmount); } function curveRewardsLength() external view returns (uint) { return curveRewards.length; } function rewardV3Route(uint i) external view returns (address[] memory) { return UniswapV3Utils.pathToRoute(rewardsV3[i].toNativePath); } function rewardsV3Length() external view returns (uint) { return rewardsV3.length; } function rewardV2(uint i) external view returns (address, address[] memory, uint) { return (rewardsV2[i].router, rewardsV2[i].toNativeRoute, rewardsV2[i].minAmount); } function rewardsV2Length() external view returns (uint) { return rewardsV2.length; } function setCrvMintable(bool _isCrvMintable) external onlyManager { isCrvMintable = _isCrvMintable; } function setSkipEarmarkRewards(bool _skipEarmarkRewards) external onlyManager { skipEarmarkRewards = _skipEarmarkRewards; } function setHarvestOnDeposit(bool _harvestOnDeposit) external onlyManager { harvestOnDeposit = _harvestOnDeposit; if (harvestOnDeposit) { setWithdrawalFee(0); } else { setWithdrawalFee(1); } } function rewardsAvailable() external view returns (uint) { if (rewardPool != address(0)) { return IConvexRewardPool(rewardPool).earned(address(this)); } return 0; } function callReward() external pure returns (uint) { return 0; } // called as part of strat migration. Sends all the available funds back to the vault. function retireStrat() external { require(msg.sender == vault, "!vault"); _withdraw(balanceOfPool()); IERC20(want).transfer(vault, balanceOfWant()); } // pauses deposits and withdraws all funds from third party systems. function panic() public onlyManager { pause(); _withdraw(balanceOfPool()); } function pause() public onlyManager { _pause(); _removeAllowances(); } function unpause() external onlyManager { _unpause(); _giveAllowances(); deposit(); } function _giveAllowances() internal { uint amount = type(uint).max; _approve(want, address(gauge), amount); _approve(want, address(booster), amount); _approve(native, unirouter, amount); } function _removeAllowances() internal { _approve(want, address(gauge), 0); _approve(want, address(booster), 0); _approve(native, unirouter, 0); } function _approve(address _token, address _spender, uint amount) internal { IERC20(_token).approve(_spender, amount); } receive () external payable {} }
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"callFees","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"beefyFees","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"strategistFees","type":"uint256"}],"name":"ChargedFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"tvl","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"beefyFeeConfig","type":"address"}],"name":"SetBeefyFeeConfig","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"beefyFeeRecipient","type":"address"}],"name":"SetBeefyFeeRecipient","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"keeper","type":"address"}],"name":"SetKeeper","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"feeId","type":"uint256"}],"name":"SetStratFeeId","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"strategist","type":"address"}],"name":"SetStrategist","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"unirouter","type":"address"}],"name":"SetUnirouter","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"vault","type":"address"}],"name":"SetVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"withdrawalFee","type":"uint256"}],"name":"SetWithdrawalFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"harvester","type":"address"},{"indexed":false,"internalType":"uint256","name":"wantHarvested","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tvl","type":"uint256"}],"name":"StratHarvest","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"tvl","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"NO_PID","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WITHDRAWAL_FEE_CAP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WITHDRAWAL_MAX","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[9]","name":"_rewardToNativeRoute","type":"address[9]"},{"internalType":"uint256[3][4]","name":"_swapParams","type":"uint256[3][4]"},{"internalType":"uint256","name":"_minAmount","type":"uint256"}],"name":"addReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_router","type":"address"},{"internalType":"address[]","name":"_rewardToNativeRoute","type":"address[]"},{"internalType":"uint256","name":"_minAmount","type":"uint256"}],"name":"addRewardV2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"_rewardToNativePath","type":"bytes"},{"internalType":"uint256","name":"_minAmount","type":"uint256"}],"name":"addRewardV3","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfWant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"beefyFeeConfig","outputs":[{"internalType":"contract IFeeConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"beefyFeeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"beforeDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"booster","outputs":[{"internalType":"contract IConvexBooster","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"callReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"i","type":"uint256"}],"name":"curveReward","outputs":[{"internalType":"address[9]","name":"","type":"address[9]"},{"internalType":"uint256[3][4]","name":"","type":"uint256[3][4]"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"curveRewards","outputs":[{"internalType":"uint256","name":"minAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curveRewardsLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curveRouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositToWant","outputs":[{"internalType":"uint256","name":"minAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"depositToWantRoute","outputs":[{"internalType":"address[9]","name":"","type":"address[9]"},{"internalType":"uint256[3][4]","name":"","type":"uint256[3][4]"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gauge","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllFees","outputs":[{"components":[{"components":[{"internalType":"uint256","name":"total","type":"uint256"},{"internalType":"uint256","name":"beefy","type":"uint256"},{"internalType":"uint256","name":"call","type":"uint256"},{"internalType":"uint256","name":"strategist","type":"uint256"},{"internalType":"string","name":"label","type":"string"},{"internalType":"bool","name":"active","type":"bool"}],"internalType":"struct IFeeConfig.FeeCategory","name":"performance","type":"tuple"},{"internalType":"uint256","name":"deposit","type":"uint256"},{"internalType":"uint256","name":"withdraw","type":"uint256"}],"internalType":"struct IFeeConfig.AllFees","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStratFeeId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"callFeeRecipient","type":"address"}],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"harvestOnDeposit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_want","type":"address"},{"internalType":"address","name":"_gauge","type":"address"},{"internalType":"uint256","name":"_pid","type":"uint256"},{"internalType":"bytes","name":"_crvToNativePath","type":"bytes"},{"internalType":"bytes","name":"_cvxToNativePath","type":"bytes"},{"internalType":"bytes","name":"_nativeToDepositPath","type":"bytes"},{"components":[{"internalType":"address[9]","name":"route","type":"address[9]"},{"internalType":"uint256[3][4]","name":"swapParams","type":"uint256[3][4]"},{"internalType":"uint256","name":"minAmount","type":"uint256"}],"internalType":"struct StrategyCurveConvex.CurveRoute","name":"_depositToWant","type":"tuple"},{"components":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"unirouter","type":"address"},{"internalType":"address","name":"keeper","type":"address"},{"internalType":"address","name":"strategist","type":"address"},{"internalType":"address","name":"beefyFeeRecipient","type":"address"},{"internalType":"address","name":"beefyFeeConfig","type":"address"}],"internalType":"struct StratFeeManagerInitializable.CommonAddresses","name":"_commonAddresses","type":"tuple"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isCrvMintable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keeper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastHarvest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minter","outputs":[{"internalType":"contract ICrvMinter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"native","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nativeToDepositPath","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"panic","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"resetCurveRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"resetRewardsV2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"resetRewardsV3","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"retireStrat","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"i","type":"uint256"}],"name":"rewardV2","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address[]","name":"","type":"address[]"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"i","type":"uint256"}],"name":"rewardV3Route","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsAvailable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardsV2","outputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"router","type":"address"},{"internalType":"uint256","name":"minAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsV2Length","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardsV3","outputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"bytes","name":"toNativePath","type":"bytes"},{"internalType":"uint256","name":"minAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsV3Length","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_beefyFeeConfig","type":"address"}],"name":"setBeefyFeeConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beefyFeeRecipient","type":"address"}],"name":"setBeefyFeeRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_pid","type":"uint256"}],"name":"setConvexPid","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_isCrvMintable","type":"bool"}],"name":"setCrvMintable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[9]","name":"_route","type":"address[9]"},{"internalType":"uint256[3][4]","name":"_swapParams","type":"uint256[3][4]"},{"internalType":"uint256","name":"minAmount","type":"uint256"}],"name":"setDepositToWant","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_harvestOnDeposit","type":"bool"}],"name":"setHarvestOnDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keeper","type":"address"}],"name":"setKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"_nativeToDepositPath","type":"bytes"}],"name":"setNativeToDepositPath","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_skipEarmarkRewards","type":"bool"}],"name":"setSkipEarmarkRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_feeId","type":"uint256"}],"name":"setStratFeeId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_strategist","type":"address"}],"name":"setStrategist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_unirouter","type":"address"}],"name":"setUnirouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"}],"name":"setVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setWithdrawalFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"skipEarmarkRewards","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"strategist","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unirouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"want","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | 100.00% | $1.97 | 0.8139 | $1.6 |
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.