More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 11 internal transactions
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
21463236 | 2 days ago | 3.6242632 ETH | ||||
21463236 | 2 days ago | 3.6242632 ETH | ||||
21463181 | 2 days ago | 4.12374937 ETH | ||||
21463181 | 2 days ago | 4.12374937 ETH | ||||
20450905 | 143 days ago | 50.20624869 ETH | ||||
20450905 | 143 days ago | 50.20624869 ETH | ||||
20435878 | 145 days ago | 5.11009112 ETH | ||||
20435878 | 145 days ago | 5.11009112 ETH | ||||
20435863 | 145 days ago | 5.11009112 ETH | ||||
20435863 | 145 days ago | 5.11009112 ETH | ||||
20358719 | 156 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Reflector
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import "../interfaces/IPAllActionV3.sol"; import "../interfaces/IPReflector.sol"; import "../interfaces/IPMarket.sol"; import "../interfaces/IStandardizedYield.sol"; import "../core/libraries/TokenHelper.sol"; contract Reflector is TokenHelper, IPReflector { using SafeERC20 for IERC20; mapping(address => bool) internal approved; address internal constant ROUTER = 0x888888888889758F76e7103c6CbF23ABbF58F946; receive() external payable {} function reflect(bytes calldata inputData) external returns (bytes memory result) { (uint256 value, bytes memory newCalldata) = _getNewCalldata(inputData); bool success; (success, result) = ROUTER.call{value: value}(newCalldata); if (!success) { assembly { // We use Yul's revert() to bubble up errors from the target contract. revert(add(32, result), mload(result)) } } } function _getNewCalldata(bytes calldata inputData) internal returns (uint256 value, bytes memory newCalldata) { bytes4 selector = bytes4(inputData[:4]); bytes calldata data = inputData[4:]; if ( selector == IPActionAddRemoveLiqV3.addLiquiditySingleToken.selector || selector == IPActionSwapPTV3.swapExactTokenForPt.selector || selector == IPActionSwapYTV3.swapExactTokenForYt.selector ) { ( address v1, address v2, uint256 v3, ApproxParams memory v4, TokenInput memory v5, LimitOrderData memory v6 ) = abi.decode(data, (address, address, uint256, ApproxParams, TokenInput, LimitOrderData)); value = _scaleTokenInputAndGetValue(v5); newCalldata = abi.encodeWithSelector(selector, v1, v2, v3, v4, v5, v6); } else if (selector == IPActionAddRemoveLiqV3.addLiquiditySingleTokenKeepYt.selector) { (address v1, address v2, uint256 v3, uint256 v4, TokenInput memory v5) = abi.decode( data, (address, address, uint256, uint256, TokenInput) ); value = _scaleTokenInputAndGetValue(v5); newCalldata = abi.encodeWithSelector(selector, v1, v2, v3, v4, v5); } else if ( selector == IPActionAddRemoveLiqV3.addLiquiditySingleSy.selector || selector == IPActionSwapPTV3.swapExactSyForPt.selector || selector == IPActionSwapYTV3.swapExactSyForYt.selector ) { (address v1, address v2, , uint256 v4, ApproxParams memory v5, LimitOrderData memory v6) = abi.decode( data, (address, address, uint256, uint256, ApproxParams, LimitOrderData) ); newCalldata = abi.encodeWithSelector(selector, v1, v2, _scaleSyInput(v2), v4, v5, v6); } else if (selector == IPActionAddRemoveLiqV3.addLiquiditySingleSyKeepYt.selector) { (address v1, address v2, , uint256 v4, uint256 v5) = abi.decode( data, (address, address, uint256, uint256, uint256) ); newCalldata = abi.encodeWithSelector(selector, v1, v2, _scaleSyInput(v2), v4, v5); } else { revert("UNSUPPORTED_SELECTOR"); } } function _scaleTokenInputAndGetValue(TokenInput memory inp) internal returns (uint256 ethValue) { if (inp.swapData.swapType != SwapType.NONE && inp.swapData.swapType != SwapType.ETH_WETH) { require(inp.swapData.needScale, "SCALE_IS_REQUIRED"); } inp.netTokenIn = _selfBalance(inp.tokenIn); if (inp.tokenIn == NATIVE) { ethValue = inp.netTokenIn; } else if (!approved[inp.tokenIn]) { IERC20(inp.tokenIn).forceApprove(ROUTER, type(uint256).max); approved[inp.tokenIn] = true; } } function _scaleSyInput(address market) internal returns (uint256 res) { (IStandardizedYield SY, , ) = IPMarket(market).readTokens(); res = SY.balanceOf(address(this)); if (!approved[address(SY)]) { IERC20(address(SY)).forceApprove(ROUTER, type(uint256).max); approved[address(SY)] = true; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library Errors { // BulkSeller error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error BulkNotMaintainer(); error BulkNotAdmin(); error BulkSellerAlreadyExisted(address token, address SY, address bulk); error BulkSellerInvalidToken(address token, address SY); error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps); error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps); // APPROX error ApproxFail(); error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps); error ApproxBinarySearchInputInvalid( uint256 approxGuessMin, uint256 approxGuessMax, uint256 minGuessMin, uint256 maxGuessMax ); // MARKET + MARKET MATH CORE error MarketExpired(); error MarketZeroAmountsInput(); error MarketZeroAmountsOutput(); error MarketZeroLnImpliedRate(); error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount); error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance); error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset); error MarketExchangeRateBelowOne(int256 exchangeRate); error MarketProportionMustNotEqualOne(); error MarketRateScalarBelowZero(int256 rateScalar); error MarketScalarRootBelowZero(int256 scalarRoot); error MarketProportionTooHigh(int256 proportion, int256 maxProportion); error OracleUninitialized(); error OracleTargetTooOld(uint32 target, uint32 oldest); error OracleZeroCardinality(); error MarketFactoryExpiredPt(); error MarketFactoryInvalidPt(); error MarketFactoryMarketExists(); error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot); error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot); error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent); error MarketFactoryZeroTreasury(); error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor); error MFNotPendleMarket(address addr); // ROUTER error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut); error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut); error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut); error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut); error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay); error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay); error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed); error RouterTimeRangeZero(); error RouterCallbackNotPendleMarket(address caller); error RouterInvalidAction(bytes4 selector); error RouterInvalidFacet(address facet); error RouterKyberSwapDataZero(); error SimulationResults(bool success, bytes res); // YIELD CONTRACT error YCExpired(); error YCNotExpired(); error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy); error YCNothingToRedeem(); error YCPostExpiryDataNotSet(); error YCNoFloatingSy(); // YieldFactory error YCFactoryInvalidExpiry(); error YCFactoryYieldContractExisted(); error YCFactoryZeroExpiryDivisor(); error YCFactoryZeroTreasury(); error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate); error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate); // SY error SYInvalidTokenIn(address token); error SYInvalidTokenOut(address token); error SYZeroDeposit(); error SYZeroRedeem(); error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut); error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); // SY-specific error SYQiTokenMintFailed(uint256 errCode); error SYQiTokenRedeemFailed(uint256 errCode); error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1); error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax); error SYCurveInvalidPid(); error SYCurve3crvPoolNotFound(); error SYApeDepositAmountTooSmall(uint256 amountDeposited); error SYBalancerInvalidPid(); error SYInvalidRewardToken(address token); error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable); error SYBalancerReentrancy(); error NotFromTrustedRemote(uint16 srcChainId, bytes path); error ApxETHNotEnoughBuffer(); // Liquidity Mining error VCInactivePool(address pool); error VCPoolAlreadyActive(address pool); error VCZeroVePendle(address user); error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight); error VCEpochNotFinalized(uint256 wTime); error VCPoolAlreadyAddAndRemoved(address pool); error VEInvalidNewExpiry(uint256 newExpiry); error VEExceededMaxLockTime(); error VEInsufficientLockTime(); error VENotAllowedReduceExpiry(); error VEZeroAmountLocked(); error VEPositionNotExpired(); error VEZeroPosition(); error VEZeroSlope(uint128 bias, uint128 slope); error VEReceiveOldSupply(uint256 msgTime); error GCNotPendleMarket(address caller); error GCNotVotingController(address caller); error InvalidWTime(uint256 wTime); error ExpiryInThePast(uint256 expiry); error ChainNotSupported(uint256 chainId); error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount); error FDEpochLengthMismatch(); error FDInvalidPool(address pool); error FDPoolAlreadyExists(address pool); error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch); error FDInvalidStartEpoch(uint256 startEpoch); error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime); error FDFutureFunding(uint256 lastFunded, uint256 currentWTime); error BDInvalidEpoch(uint256 epoch, uint256 startTime); // Cross-Chain error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path); error MsgNotFromReceiveEndpoint(address sender); error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee); error ApproxDstExecutionGasNotSet(); error InvalidRetryData(); // GENERIC MSG error ArrayLengthMismatch(); error ArrayEmpty(); error ArrayOutOfBounds(); error ZeroAddress(); error FailedToSendEther(); error InvalidMerkleProof(); error OnlyLayerZeroEndpoint(); error OnlyYT(); error OnlyYCFactory(); error OnlyWhitelisted(); // Swap Aggregator error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual); error UnsupportedSelector(uint256 aggregatorType, bytes4 selector); }
// SPDX-License-Identifier: GPL-3.0-or-later // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.8.0; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { unchecked { require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent"); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { unchecked { // The real natural logarithm is not defined for negative numbers or zero. require(a > 0, "out of bounds"); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } } /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. require(x < 2 ** 255, "x out of bounds"); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. require(y < MILD_EXPONENT_BOUND, "y out of bounds"); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "product out of bounds" ); return uint256(exp(logx_times_y)); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { unchecked { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { unchecked { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.0; /* solhint-disable private-vars-leading-underscore, reason-string */ library PMath { uint256 internal constant ONE = 1e18; // 18 decimal places int256 internal constant IONE = 1e18; // 18 decimal places function subMax0(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return (a >= b ? a - b : 0); } } function subNoNeg(int256 a, int256 b) internal pure returns (int256) { require(a >= b, "negative"); return a - b; // no unchecked since if b is very negative, a - b might overflow } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; unchecked { return product / ONE; } } function mulDown(int256 a, int256 b) internal pure returns (int256) { int256 product = a * b; unchecked { return product / IONE; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 aInflated = a * ONE; unchecked { return aInflated / b; } } function divDown(int256 a, int256 b) internal pure returns (int256) { int256 aInflated = a * IONE; unchecked { return aInflated / b; } } function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) { return (a + b - 1) / b; } function rawDivUp(int256 a, int256 b) internal pure returns (int256) { return (a + b - 1) / b; } // @author Uniswap function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } function square(uint256 x) internal pure returns (uint256) { return x * x; } function squareDown(uint256 x) internal pure returns (uint256) { return mulDown(x, x); } function abs(int256 x) internal pure returns (uint256) { return uint256(x > 0 ? x : -x); } function neg(int256 x) internal pure returns (int256) { return x * (-1); } function neg(uint256 x) internal pure returns (int256) { return Int(x) * (-1); } function max(uint256 x, uint256 y) internal pure returns (uint256) { return (x > y ? x : y); } function max(int256 x, int256 y) internal pure returns (int256) { return (x > y ? x : y); } function min(uint256 x, uint256 y) internal pure returns (uint256) { return (x < y ? x : y); } function min(int256 x, int256 y) internal pure returns (int256) { return (x < y ? x : y); } /*/////////////////////////////////////////////////////////////// SIGNED CASTS //////////////////////////////////////////////////////////////*/ function Int(uint256 x) internal pure returns (int256) { require(x <= uint256(type(int256).max)); return int256(x); } function Int128(int256 x) internal pure returns (int128) { require(type(int128).min <= x && x <= type(int128).max); return int128(x); } function Int128(uint256 x) internal pure returns (int128) { return Int128(Int(x)); } /*/////////////////////////////////////////////////////////////// UNSIGNED CASTS //////////////////////////////////////////////////////////////*/ function Uint(int256 x) internal pure returns (uint256) { require(x >= 0); return uint256(x); } function Uint32(uint256 x) internal pure returns (uint32) { require(x <= type(uint32).max); return uint32(x); } function Uint64(uint256 x) internal pure returns (uint64) { require(x <= type(uint64).max); return uint64(x); } function Uint112(uint256 x) internal pure returns (uint112) { require(x <= type(uint112).max); return uint112(x); } function Uint96(uint256 x) internal pure returns (uint96) { require(x <= type(uint96).max); return uint96(x); } function Uint128(uint256 x) internal pure returns (uint128) { require(x <= type(uint128).max); return uint128(x); } function Uint192(uint256 x) internal pure returns (uint192) { require(x <= type(uint192).max); return uint192(x); } function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps); } function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a >= b && a <= mulDown(b, ONE + eps); } function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) { return a <= b && a >= mulDown(b, ONE - eps); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library MiniHelpers { function isCurrentlyExpired(uint256 expiry) internal view returns (bool) { return (expiry <= block.timestamp); } function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) { return (expiry <= blockTime); } function isTimeInThePast(uint256 timestamp) internal view returns (bool) { return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "../../interfaces/IWETH.sol"; abstract contract TokenHelper { using SafeERC20 for IERC20; address internal constant NATIVE = address(0); uint256 internal constant LOWER_BOUND_APPROVAL = type(uint96).max / 2; // some tokens use 96 bits for approval function _transferIn(address token, address from, uint256 amount) internal { if (token == NATIVE) require(msg.value == amount, "eth mismatch"); else if (amount != 0) IERC20(token).safeTransferFrom(from, address(this), amount); } function _transferFrom(IERC20 token, address from, address to, uint256 amount) internal { if (amount != 0) token.safeTransferFrom(from, to, amount); } function _transferOut(address token, address to, uint256 amount) internal { if (amount == 0) return; if (token == NATIVE) { (bool success, ) = to.call{value: amount}(""); require(success, "eth send failed"); } else { IERC20(token).safeTransfer(to, amount); } } function _transferOut(address[] memory tokens, address to, uint256[] memory amounts) internal { uint256 numTokens = tokens.length; require(numTokens == amounts.length, "length mismatch"); for (uint256 i = 0; i < numTokens; ) { _transferOut(tokens[i], to, amounts[i]); unchecked { i++; } } } function _selfBalance(address token) internal view returns (uint256) { return (token == NATIVE) ? address(this).balance : IERC20(token).balanceOf(address(this)); } function _selfBalance(IERC20 token) internal view returns (uint256) { return token.balanceOf(address(this)); } /// @notice Approves the stipulated contract to spend the given allowance in the given token /// @dev PLS PAY ATTENTION to tokens that requires the approval to be set to 0 before changing it function _safeApprove(address token, address to, uint256 value) internal { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), "Safe Approve"); } function _safeApproveInf(address token, address to) internal { if (token == NATIVE) return; if (IERC20(token).allowance(address(this), to) < LOWER_BOUND_APPROVAL) { _safeApprove(token, to, 0); _safeApprove(token, to, type(uint256).max); } } function _wrap_unwrap_ETH(address tokenIn, address tokenOut, uint256 netTokenIn) internal { if (tokenIn == NATIVE) IWETH(tokenOut).deposit{value: netTokenIn}(); else IWETH(tokenIn).withdraw(netTokenIn); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../libraries/math/PMath.sol"; import "../libraries/math/LogExpMath.sol"; import "../StandardizedYield/PYIndex.sol"; import "../libraries/MiniHelpers.sol"; import "../libraries/Errors.sol"; struct MarketState { int256 totalPt; int256 totalSy; int256 totalLp; address treasury; /// immutable variables /// int256 scalarRoot; uint256 expiry; /// fee data /// uint256 lnFeeRateRoot; uint256 reserveFeePercent; // base 100 /// last trade data /// uint256 lastLnImpliedRate; } // params that are expensive to compute, therefore we pre-compute them struct MarketPreCompute { int256 rateScalar; int256 totalAsset; int256 rateAnchor; int256 feeRate; } // solhint-disable ordering library MarketMathCore { using PMath for uint256; using PMath for int256; using LogExpMath for int256; using PYIndexLib for PYIndex; int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3; int256 internal constant PERCENTAGE_DECIMALS = 100; uint256 internal constant DAY = 86400; uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY; int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100; using PMath for uint256; using PMath for int256; /*/////////////////////////////////////////////////////////////// UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidity( MarketState memory market, uint256 syDesired, uint256 ptDesired, uint256 blockTime ) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) { (int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore( market, syDesired.Int(), ptDesired.Int(), blockTime ); lpToReserve = _lpToReserve.Uint(); lpToAccount = _lpToAccount.Uint(); syUsed = _syUsed.Uint(); ptUsed = _ptUsed.Uint(); } function removeLiquidity( MarketState memory market, uint256 lpToRemove ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) { (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int()); netSyToAccount = _syToAccount.Uint(); netPtToAccount = _ptToAccount.Uint(); } function swapExactPtForSy( MarketState memory market, PYIndex index, uint256 exactPtToMarket, uint256 blockTime ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToMarket.neg(), blockTime ); netSyToAccount = _netSyToAccount.Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } function swapSyForExactPt( MarketState memory market, PYIndex index, uint256 exactPtToAccount, uint256 blockTime ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToAccount.Int(), blockTime ); netSyToMarket = _netSyToAccount.neg().Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } /*/////////////////////////////////////////////////////////////// CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidityCore( MarketState memory market, int256 syDesired, int256 ptDesired, uint256 blockTime ) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput(); if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ if (market.totalLp == 0) { lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY; lpToReserve = MINIMUM_LIQUIDITY; syUsed = syDesired; ptUsed = ptDesired; } else { int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt; int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy; if (netLpByPt < netLpBySy) { lpToAccount = netLpByPt; ptUsed = ptDesired; syUsed = (market.totalSy * lpToAccount).rawDivUp(market.totalLp); } else { lpToAccount = netLpBySy; syUsed = syDesired; ptUsed = (market.totalPt * lpToAccount).rawDivUp(market.totalLp); } } if (lpToAccount <= 0 || syUsed <= 0 || ptUsed <= 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalSy += syUsed; market.totalPt += ptUsed; market.totalLp += lpToAccount + lpToReserve; } function removeLiquidityCore( MarketState memory market, int256 lpToRemove ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp; netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp; if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalLp = market.totalLp.subNoNeg(lpToRemove); market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount); } function executeTradeCore( MarketState memory market, PYIndex index, int256 netPtToAccount, uint256 blockTime ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); if (market.totalPt <= netPtToAccount) revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime); (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ _setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime); } function getMarketPreCompute( MarketState memory market, PYIndex index, uint256 blockTime ) internal pure returns (MarketPreCompute memory res) { if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); uint256 timeToExpiry = market.expiry - blockTime; res.rateScalar = _getRateScalar(market, timeToExpiry); res.totalAsset = index.syToAsset(market.totalSy); if (market.totalPt == 0 || res.totalAsset == 0) revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset); res.rateAnchor = _getRateAnchor( market.totalPt, market.lastLnImpliedRate, res.totalAsset, res.rateScalar, timeToExpiry ); res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry); } function calcTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { int256 preFeeExchangeRate = _getExchangeRate( market.totalPt, comp.totalAsset, comp.rateScalar, comp.rateAnchor, netPtToAccount ); int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg(); int256 fee = comp.feeRate; if (netPtToAccount > 0) { int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee); if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate); fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee); } else { fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg(); } int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS; int256 netAssetToAccount = preFeeAssetToAccount - fee; netSyToAccount = netAssetToAccount < 0 ? index.assetToSyUp(netAssetToAccount) : index.assetToSy(netAssetToAccount); netSyFee = index.assetToSy(fee); netSyToReserve = index.assetToSy(netAssetToReserve); } function _setNewMarketStateTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount, int256 netSyToAccount, int256 netSyToReserve, uint256 blockTime ) internal pure { uint256 timeToExpiry = market.expiry - blockTime; market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve); market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, index.syToAsset(market.totalSy), comp.rateScalar, comp.rateAnchor, timeToExpiry ); if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate(); } function _getRateAnchor( int256 totalPt, uint256 lastLnImpliedRate, int256 totalAsset, int256 rateScalar, uint256 timeToExpiry ) internal pure returns (int256 rateAnchor) { int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry); if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate); { int256 proportion = totalPt.divDown(totalPt + totalAsset); int256 lnProportion = _logProportion(proportion); rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar); } } /// @notice Calculates the current market implied rate. /// @return lnImpliedRate the implied rate function _getLnImpliedRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, uint256 timeToExpiry ) internal pure returns (uint256 lnImpliedRate) { // This will check for exchange rates < PMath.IONE int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0); // exchangeRate >= 1 so its ln >= 0 uint256 lnRate = exchangeRate.ln().Uint(); lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry; } /// @notice Converts an implied rate to an exchange rate given a time to expiry. The /// formula is E = e^rt function _getExchangeRateFromImpliedRate( uint256 lnImpliedRate, uint256 timeToExpiry ) internal pure returns (int256 exchangeRate) { uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME; exchangeRate = LogExpMath.exp(rt.Int()); } function _getExchangeRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, int256 netPtToAccount ) internal pure returns (int256 exchangeRate) { int256 numerator = totalPt.subNoNeg(netPtToAccount); int256 proportion = (numerator.divDown(totalPt + totalAsset)); if (proportion > MAX_MARKET_PROPORTION) revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION); int256 lnProportion = _logProportion(proportion); exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor; if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate); } function _logProportion(int256 proportion) internal pure returns (int256 res) { if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne(); int256 logitP = proportion.divDown(PMath.IONE - proportion); res = logitP.ln(); } function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) { rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int(); if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar); } function setInitialLnImpliedRate( MarketState memory market, PYIndex index, int256 initialAnchor, uint256 blockTime ) internal pure { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ int256 totalAsset = index.syToAsset(market.totalSy); uint256 timeToExpiry = market.expiry - blockTime; int256 rateScalar = _getRateScalar(market, timeToExpiry); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, totalAsset, rateScalar, initialAnchor, timeToExpiry ); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../../interfaces/IPYieldToken.sol"; import "../../interfaces/IPPrincipalToken.sol"; import "./SYUtils.sol"; import "../libraries/math/PMath.sol"; type PYIndex is uint256; library PYIndexLib { using PMath for uint256; using PMath for int256; function newIndex(IPYieldToken YT) internal returns (PYIndex) { return PYIndex.wrap(YT.pyIndexCurrent()); } function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) { return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount); } function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount); } function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount); } function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) { uint256 _index = PYIndex.unwrap(index); return SYUtils.syToAssetUp(_index, syAmount); } function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) { int256 sign = syAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int(); } function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int(); } function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int(); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; library SYUtils { uint256 internal constant ONE = 1e18; function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate) / ONE; } function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate + ONE - 1) / ONE; } function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE) / exchangeRate; } function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE + exchangeRate - 1) / exchangeRate; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../router/base/MarketApproxLib.sol"; import "./IPAllActionTypeV3.sol"; /* ******************************************************************************************************************* ******************************************************************************************************************* * NOTICE * * Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on * TokenInput, TokenOutput, ApproxParams, LimitOrderData * It's recommended to use Pendle's Hosted SDK to generate the params ******************************************************************************************************************* ******************************************************************************************************************* */ interface IPActionAddRemoveLiqV3 { event AddLiquidityDualSyAndPt( address indexed caller, address indexed market, address indexed receiver, uint256 netSyUsed, uint256 netPtUsed, uint256 netLpOut ); event AddLiquidityDualTokenAndPt( address indexed caller, address indexed market, address indexed tokenIn, address receiver, uint256 netTokenUsed, uint256 netPtUsed, uint256 netLpOut, uint256 netSyInterm ); event AddLiquiditySinglePt( address indexed caller, address indexed market, address indexed receiver, uint256 netPtIn, uint256 netLpOut ); event AddLiquiditySingleSy( address indexed caller, address indexed market, address indexed receiver, uint256 netSyIn, uint256 netLpOut ); event AddLiquiditySingleToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netTokenIn, uint256 netLpOut, uint256 netSyInterm ); event AddLiquiditySingleSyKeepYt( address indexed caller, address indexed market, address indexed receiver, uint256 netSyIn, uint256 netSyMintPy, uint256 netLpOut, uint256 netYtOut ); event AddLiquiditySingleTokenKeepYt( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netTokenIn, uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy, uint256 netSyInterm ); event RemoveLiquidityDualSyAndPt( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netPtOut, uint256 netSyOut ); event RemoveLiquidityDualTokenAndPt( address indexed caller, address indexed market, address indexed tokenOut, address receiver, uint256 netLpToRemove, uint256 netPtOut, uint256 netTokenOut, uint256 netSyInterm ); event RemoveLiquiditySinglePt( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netPtOut ); event RemoveLiquiditySingleSy( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netSyOut ); event RemoveLiquiditySingleToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netLpToRemove, uint256 netTokenOut, uint256 netSyInterm ); function addLiquidityDualTokenAndPt( address receiver, address market, TokenInput calldata input, uint256 netPtDesired, uint256 minLpOut ) external payable returns (uint256 netLpOut, uint256 netPtUsed, uint256 netSyInterm); function addLiquidityDualSyAndPt( address receiver, address market, uint256 netSyDesired, uint256 netPtDesired, uint256 minLpOut ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed); function addLiquiditySinglePt( address receiver, address market, uint256 netPtIn, uint256 minLpOut, ApproxParams calldata guessPtSwapToSy, LimitOrderData calldata limit ) external returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleToken( address receiver, address market, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy, TokenInput calldata input, LimitOrderData calldata limit ) external payable returns (uint256 netLpOut, uint256 netSyFee, uint256 netSyInterm); function addLiquiditySingleSy( address receiver, address market, uint256 netSyIn, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy, LimitOrderData calldata limit ) external returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleTokenKeepYt( address receiver, address market, uint256 minLpOut, uint256 minYtOut, TokenInput calldata input ) external payable returns (uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy, uint256 netSyInterm); function addLiquiditySingleSyKeepYt( address receiver, address market, uint256 netSyIn, uint256 minLpOut, uint256 minYtOut ) external returns (uint256 netLpOut, uint256 netYtOut, uint256 netSyMintPy); function removeLiquidityDualTokenAndPt( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output, uint256 minPtOut ) external returns (uint256 netTokenOut, uint256 netPtOut, uint256 netSyInterm); function removeLiquidityDualSyAndPt( address receiver, address market, uint256 netLpToRemove, uint256 minSyOut, uint256 minPtOut ) external returns (uint256 netSyOut, uint256 netPtOut); function removeLiquiditySinglePt( address receiver, address market, uint256 netLpToRemove, uint256 minPtOut, ApproxParams calldata guessPtReceivedFromSy, LimitOrderData calldata limit ) external returns (uint256 netPtOut, uint256 netSyFee); function removeLiquiditySingleToken( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm); function removeLiquiditySingleSy( address receiver, address market, uint256 netLpToRemove, uint256 minSyOut, LimitOrderData calldata limit ) external returns (uint256 netSyOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "./IPMarketSwapCallback.sol"; import "./IPLimitRouter.sol"; interface IPActionCallbackV3 is IPMarketSwapCallback, IPLimitRouterCallback {}
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../router/base/MarketApproxLib.sol"; import "./IPAllActionTypeV3.sol"; /* ******************************************************************************************************************* ******************************************************************************************************************* * NOTICE * * Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on * TokenInput, TokenOutput, ApproxParams, LimitOrderData * It's recommended to use Pendle's Hosted SDK to generate the params ******************************************************************************************************************* ******************************************************************************************************************* */ interface IPActionMiscV3 { struct Call3 { bool allowFailure; bytes callData; } struct Result { bool success; bytes returnData; } struct ExitPreExpReturnParams { uint256 netPtFromRemove; uint256 netSyFromRemove; uint256 netPyRedeem; uint256 netSyFromRedeem; uint256 netPtSwap; uint256 netYtSwap; uint256 netSyFromSwap; uint256 netSyFee; uint256 totalSyOut; } struct ExitPostExpReturnParams { uint256 netPtFromRemove; uint256 netSyFromRemove; uint256 netPtRedeem; uint256 netSyFromRedeem; uint256 totalSyOut; } event MintSyFromToken( address indexed caller, address indexed tokenIn, address indexed SY, address receiver, uint256 netTokenIn, uint256 netSyOut ); event RedeemSyToToken( address indexed caller, address indexed tokenOut, address indexed SY, address receiver, uint256 netSyIn, uint256 netTokenOut ); event MintPyFromSy( address indexed caller, address indexed receiver, address indexed YT, uint256 netSyIn, uint256 netPyOut ); event RedeemPyToSy( address indexed caller, address indexed receiver, address indexed YT, uint256 netPyIn, uint256 netSyOut ); event MintPyFromToken( address indexed caller, address indexed tokenIn, address indexed YT, address receiver, uint256 netTokenIn, uint256 netPyOut, uint256 netSyInterm ); event RedeemPyToToken( address indexed caller, address indexed tokenOut, address indexed YT, address receiver, uint256 netPyIn, uint256 netTokenOut, uint256 netSyInterm ); event ExitPreExpToToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netLpIn, uint256 totalTokenOut, ExitPreExpReturnParams params ); event ExitPreExpToSy( address indexed caller, address indexed market, address indexed receiver, uint256 netLpIn, ExitPreExpReturnParams params ); event ExitPostExpToToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netLpIn, uint256 totalTokenOut, ExitPostExpReturnParams params ); event ExitPostExpToSy( address indexed caller, address indexed market, address indexed receiver, uint256 netLpIn, ExitPostExpReturnParams params ); function mintSyFromToken( address receiver, address SY, uint256 minSyOut, TokenInput calldata input ) external payable returns (uint256 netSyOut); function redeemSyToToken( address receiver, address SY, uint256 netSyIn, TokenOutput calldata output ) external returns (uint256 netTokenOut); function mintPyFromToken( address receiver, address YT, uint256 minPyOut, TokenInput calldata input ) external payable returns (uint256 netPyOut, uint256 netSyInterm); function redeemPyToToken( address receiver, address YT, uint256 netPyIn, TokenOutput calldata output ) external returns (uint256 netTokenOut, uint256 netSyInterm); function mintPyFromSy( address receiver, address YT, uint256 netSyIn, uint256 minPyOut ) external returns (uint256 netPyOut); function redeemPyToSy( address receiver, address YT, uint256 netPyIn, uint256 minSyOut ) external returns (uint256 netSyOut); function redeemDueInterestAndRewards( address user, address[] calldata sys, address[] calldata yts, address[] calldata markets ) external; function swapTokenToToken( address receiver, uint256 minTokenOut, TokenInput calldata inp ) external payable returns (uint256 netTokenOut); function swapTokenToTokenViaSy( address receiver, address SY, TokenInput calldata input, address tokenRedeemSy, uint256 minTokenOut ) external payable returns (uint256 netTokenOut, uint256 netSyInterm); function exitPreExpToToken( address receiver, address market, uint256 netPtIn, uint256 netYtIn, uint256 netLpIn, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, ExitPreExpReturnParams memory params); function exitPreExpToSy( address receiver, address market, uint256 netPtIn, uint256 netYtIn, uint256 netLpIn, uint256 minSyOut, LimitOrderData calldata limit ) external returns (ExitPreExpReturnParams memory params); function exitPostExpToToken( address receiver, address market, uint256 netPtIn, uint256 netLpIn, TokenOutput calldata output ) external returns (uint256 netTokenOut, ExitPostExpReturnParams memory params); function exitPostExpToSy( address receiver, address market, uint256 netPtIn, uint256 netLpIn, uint256 minSyOut ) external returns (ExitPostExpReturnParams memory params); function callAndReflect( address payable reflector, bytes calldata selfCall1, bytes calldata selfCall2, bytes calldata reflectCall ) external payable returns (bytes memory selfRes1, bytes memory selfRes2, bytes memory reflectRes); function boostMarkets(address[] memory markets) external; function multicall(Call3[] calldata calls) external payable returns (Result[] memory res); function simulate(address target, bytes calldata data) external payable; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPActionStorageV4 { struct SelectorsToFacet { address facet; bytes4[] selectors; } event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); event SelectorToFacetSet(bytes4 indexed selector, address indexed facet); function owner() external view returns (address); function pendingOwner() external view returns (address); function transferOwnership(address newOwner, bool direct, bool renounce) external; function claimOwnership() external; function setSelectorToFacets(SelectorsToFacet[] calldata arr) external; function selectorToFacet(bytes4 selector) external view returns (address); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../router/base/MarketApproxLib.sol"; import "./IPAllActionTypeV3.sol"; /* ******************************************************************************************************************* ******************************************************************************************************************* * NOTICE * * Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on * TokenInput, TokenOutput, ApproxParams, LimitOrderData * It's recommended to use Pendle's Hosted SDK to generate the params ******************************************************************************************************************* ******************************************************************************************************************* */ interface IPActionSwapPTV3 { event SwapPtAndSy( address indexed caller, address indexed market, address indexed receiver, int256 netPtToAccount, int256 netSyToAccount ); event SwapPtAndToken( address indexed caller, address indexed market, address indexed token, address receiver, int256 netPtToAccount, int256 netTokenToAccount, uint256 netSyInterm ); function swapExactTokenForPt( address receiver, address market, uint256 minPtOut, ApproxParams calldata guessPtOut, TokenInput calldata input, LimitOrderData calldata limit ) external payable returns (uint256 netPtOut, uint256 netSyFee, uint256 netSyInterm); function swapExactSyForPt( address receiver, address market, uint256 exactSyIn, uint256 minPtOut, ApproxParams calldata guessPtOut, LimitOrderData calldata limit ) external returns (uint256 netPtOut, uint256 netSyFee); function swapExactPtForToken( address receiver, address market, uint256 exactPtIn, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm); function swapExactPtForSy( address receiver, address market, uint256 exactPtIn, uint256 minSyOut, LimitOrderData calldata limit ) external returns (uint256 netSyOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../router/base/MarketApproxLib.sol"; import "./IPAllActionTypeV3.sol"; /* ******************************************************************************************************************* ******************************************************************************************************************* * NOTICE * * Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on * TokenInput, TokenOutput, ApproxParams, LimitOrderData * It's recommended to use Pendle's Hosted SDK to generate the params ******************************************************************************************************************* ******************************************************************************************************************* */ interface IPActionSwapYTV3 { event SwapYtAndSy( address indexed caller, address indexed market, address indexed receiver, int256 netYtToAccount, int256 netSyToAccount ); event SwapYtAndToken( address indexed caller, address indexed market, address indexed token, address receiver, int256 netYtToAccount, int256 netTokenToAccount, uint256 netSyInterm ); event SwapPtAndYt( address indexed caller, address indexed market, address indexed receiver, int256 netPtToAccount, int256 netYtToAccount ); function swapExactTokenForYt( address receiver, address market, uint256 minYtOut, ApproxParams calldata guessYtOut, TokenInput calldata input, LimitOrderData calldata limit ) external payable returns (uint256 netYtOut, uint256 netSyFee, uint256 netSyInterm); function swapExactSyForYt( address receiver, address market, uint256 exactSyIn, uint256 minYtOut, ApproxParams calldata guessYtOut, LimitOrderData calldata limit ) external returns (uint256 netYtOut, uint256 netSyFee); function swapExactYtForToken( address receiver, address market, uint256 exactYtIn, TokenOutput calldata output, LimitOrderData calldata limit ) external returns (uint256 netTokenOut, uint256 netSyFee, uint256 netSyInterm); function swapExactYtForSy( address receiver, address market, uint256 exactYtIn, uint256 minSyOut, LimitOrderData calldata limit ) external returns (uint256 netSyOut, uint256 netSyFee); function swapExactPtForYt( address receiver, address market, uint256 exactPtIn, uint256 minYtOut, ApproxParams calldata guessTotalPtToSwap ) external returns (uint256 netYtOut, uint256 netSyFee); function swapExactYtForPt( address receiver, address market, uint256 exactYtIn, uint256 minPtOut, ApproxParams calldata guessTotalPtFromSwap ) external returns (uint256 netPtOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../router/swap-aggregator/IPSwapAggregator.sol"; import "./IPLimitRouter.sol"; /* ******************************************************************************************************************* ******************************************************************************************************************* * NOTICE * * Refer to https://docs.pendle.finance/Developers/Contracts/PendleRouter for more information on * TokenInput, TokenOutput, ApproxParams, LimitOrderData * It's recommended to use Pendle's Hosted SDK to generate the params ******************************************************************************************************************* ******************************************************************************************************************* */ struct TokenInput { // TOKEN DATA address tokenIn; uint256 netTokenIn; address tokenMintSy; // AGGREGATOR DATA address pendleSwap; SwapData swapData; } struct TokenOutput { // TOKEN DATA address tokenOut; uint256 minTokenOut; address tokenRedeemSy; // AGGREGATOR DATA address pendleSwap; SwapData swapData; } struct LimitOrderData { address limitRouter; uint256 epsSkipMarket; // only used for swap operations, will be ignored otherwise FillOrderParams[] normalFills; FillOrderParams[] flashFills; bytes optData; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "./IPActionAddRemoveLiqV3.sol"; import "./IPActionSwapPTV3.sol"; import "./IPActionSwapYTV3.sol"; import "./IPActionMiscV3.sol"; import "./IPActionCallbackV3.sol"; import "./IPActionStorageV4.sol"; interface IPAllActionV3 is IPActionAddRemoveLiqV3, IPActionSwapPTV3, IPActionSwapYTV3, IPActionMiscV3, IPActionCallbackV3, IPActionStorageV4 {}
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPGauge { function totalActiveSupply() external view returns (uint256); function activeBalance(address user) external view returns (uint256); // only available for newer factories. please check the verified contracts event RedeemRewards(address indexed user, uint256[] rewardsOut); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPInterestManagerYT { event CollectInterestFee(uint256 amountInterestFee); function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../core/StandardizedYield/PYIndex.sol"; interface IPLimitOrderType { enum OrderType { SY_FOR_PT, PT_FOR_SY, SY_FOR_YT, YT_FOR_SY } // Fixed-size order part with core information struct StaticOrder { uint256 salt; uint256 expiry; uint256 nonce; OrderType orderType; address token; address YT; address maker; address receiver; uint256 makingAmount; uint256 lnImpliedRate; uint256 failSafeRate; } struct FillResults { uint256 totalMaking; uint256 totalTaking; uint256 totalFee; uint256 totalNotionalVolume; uint256[] netMakings; uint256[] netTakings; uint256[] netFees; uint256[] notionalVolumes; } } struct Order { uint256 salt; uint256 expiry; uint256 nonce; IPLimitOrderType.OrderType orderType; address token; address YT; address maker; address receiver; uint256 makingAmount; uint256 lnImpliedRate; uint256 failSafeRate; bytes permit; } struct FillOrderParams { Order order; bytes signature; uint256 makingAmount; } interface IPLimitRouterCallback is IPLimitOrderType { function limitRouterCallback( uint256 actualMaking, uint256 actualTaking, uint256 totalFee, bytes memory data ) external returns (bytes memory); } interface IPLimitRouter is IPLimitOrderType { struct OrderStatus { uint128 filledAmount; uint128 remaining; } event OrderCanceled(address indexed maker, bytes32 indexed orderHash); event OrderFilledV2( bytes32 indexed orderHash, OrderType indexed orderType, address indexed YT, address token, uint256 netInputFromMaker, uint256 netOutputToMaker, uint256 feeAmount, uint256 notionalVolume, address maker, address taker ); // @dev actualMaking, actualTaking are in the SY form function fill( FillOrderParams[] memory params, address receiver, uint256 maxTaking, bytes calldata optData, bytes calldata callback ) external returns (uint256 actualMaking, uint256 actualTaking, uint256 totalFee, bytes memory callbackReturn); function feeRecipient() external view returns (address); function hashOrder(Order memory order) external view returns (bytes32); function cancelSingle(Order calldata order) external; function cancelBatch(Order[] calldata orders) external; function orderStatusesRaw( bytes32[] memory orderHashes ) external view returns (uint256[] memory remainingsRaw, uint256[] memory filledAmounts); function orderStatuses( bytes32[] memory orderHashes ) external view returns (uint256[] memory remainings, uint256[] memory filledAmounts); function DOMAIN_SEPARATOR() external view returns (bytes32); function simulate(address target, bytes calldata data) external payable; /* --- Deprecated events --- */ // deprecate on 7/1/2024, prior to official launch event OrderFilled( bytes32 indexed orderHash, OrderType indexed orderType, address indexed YT, address token, uint256 netInputFromMaker, uint256 netOutputToMaker, uint256 feeAmount, uint256 notionalVolume ); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IPPrincipalToken.sol"; import "./IPYieldToken.sol"; import "./IStandardizedYield.sol"; import "./IPGauge.sol"; import "../core/Market/MarketMathCore.sol"; interface IPMarket is IERC20Metadata, IPGauge { event Mint(address indexed receiver, uint256 netLpMinted, uint256 netSyUsed, uint256 netPtUsed); event Burn( address indexed receiverSy, address indexed receiverPt, uint256 netLpBurned, uint256 netSyOut, uint256 netPtOut ); event Swap( address indexed caller, address indexed receiver, int256 netPtOut, int256 netSyOut, uint256 netSyFee, uint256 netSyToReserve ); event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate); event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); function mint( address receiver, uint256 netSyDesired, uint256 netPtDesired ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed); function burn( address receiverSy, address receiverPt, uint256 netLpToBurn ) external returns (uint256 netSyOut, uint256 netPtOut); function swapExactPtForSy( address receiver, uint256 exactPtIn, bytes calldata data ) external returns (uint256 netSyOut, uint256 netSyFee); function swapSyForExactPt( address receiver, uint256 exactPtOut, bytes calldata data ) external returns (uint256 netSyIn, uint256 netSyFee); function redeemRewards(address user) external returns (uint256[] memory); function readState(address router) external view returns (MarketState memory market); function observe(uint32[] memory secondsAgos) external view returns (uint216[] memory lnImpliedRateCumulative); function increaseObservationsCardinalityNext(uint16 cardinalityNext) external; function readTokens() external view returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT); function getRewardTokens() external view returns (address[] memory); function isExpired() external view returns (bool); function expiry() external view returns (uint256); function observations( uint256 index ) external view returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized); function _storage() external view returns ( int128 totalPt, int128 totalSy, uint96 lastLnImpliedRate, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext ); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPMarketSwapCallback { function swapCallback(int256 ptToAccount, int256 syToAccount, bytes calldata data) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IPPrincipalToken is IERC20Metadata { function burnByYT(address user, uint256 amount) external; function mintByYT(address user, uint256 amount) external; function initialize(address _YT) external; function SY() external view returns (address); function YT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IPReflector { function reflect(bytes calldata inputData) external returns (bytes memory result); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IRewardManager.sol"; import "./IPInterestManagerYT.sol"; interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT { event NewInterestIndex(uint256 indexed newIndex); event Mint( address indexed caller, address indexed receiverPT, address indexed receiverYT, uint256 amountSyToMint, uint256 amountPYOut ); event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut); event RedeemRewards(address indexed user, uint256[] amountRewardsOut); event RedeemInterest(address indexed user, uint256 interestOut); event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee); function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut); function redeemPY(address receiver) external returns (uint256 amountSyOut); function redeemPYMulti( address[] calldata receivers, uint256[] calldata amountPYToRedeems ) external returns (uint256[] memory amountSyOuts); function redeemDueInterestAndRewards( address user, bool redeemInterest, bool redeemRewards ) external returns (uint256 interestOut, uint256[] memory rewardsOut); function rewardIndexesCurrent() external returns (uint256[] memory); function pyIndexCurrent() external returns (uint256); function pyIndexStored() external view returns (uint256); function getRewardTokens() external view returns (address[] memory); function SY() external view returns (address); function PT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); function doCacheIndexSameBlock() external view returns (bool); function pyIndexLastUpdatedBlock() external view returns (uint128); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; interface IRewardManager { function userReward(address token, address user) external view returns (uint128 index, uint128 accrued); }
// SPDX-License-Identifier: GPL-3.0-or-later /* * MIT License * =========== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */ pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IStandardizedYield is IERC20Metadata { /// @dev Emitted when any base tokens is deposited to mint shares event Deposit( address indexed caller, address indexed receiver, address indexed tokenIn, uint256 amountDeposited, uint256 amountSyOut ); /// @dev Emitted when any shares are redeemed for base tokens event Redeem( address indexed caller, address indexed receiver, address indexed tokenOut, uint256 amountSyToRedeem, uint256 amountTokenOut ); /// @dev check `assetInfo()` for more information enum AssetType { TOKEN, LIQUIDITY } /// @dev Emitted when (`user`) claims their rewards event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts); /** * @notice mints an amount of shares by depositing a base token. * @param receiver shares recipient address * @param tokenIn address of the base tokens to mint shares * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`) * @param minSharesOut reverts if amount of shares minted is lower than this * @return amountSharesOut amount of shares minted * @dev Emits a {Deposit} event * * Requirements: * - (`tokenIn`) must be a valid base token. */ function deposit( address receiver, address tokenIn, uint256 amountTokenToDeposit, uint256 minSharesOut ) external payable returns (uint256 amountSharesOut); /** * @notice redeems an amount of base tokens by burning some shares * @param receiver recipient address * @param amountSharesToRedeem amount of shares to be burned * @param tokenOut address of the base token to be redeemed * @param minTokenOut reverts if amount of base token redeemed is lower than this * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender` * @return amountTokenOut amount of base tokens redeemed * @dev Emits a {Redeem} event * * Requirements: * - (`tokenOut`) must be a valid base token. */ function redeem( address receiver, uint256 amountSharesToRedeem, address tokenOut, uint256 minTokenOut, bool burnFromInternalBalance ) external returns (uint256 amountTokenOut); /** * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy he can mint must be X * exchangeRate / 1e18 * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication & division */ function exchangeRate() external view returns (uint256 res); /** * @notice claims reward for (`user`) * @param user the user receiving their rewards * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` * @dev * Emits a `ClaimRewards` event * See {getRewardTokens} for list of reward tokens */ function claimRewards(address user) external returns (uint256[] memory rewardAmounts); /** * @notice get the amount of unclaimed rewards for (`user`) * @param user the user to check for * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` */ function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts); function rewardIndexesCurrent() external returns (uint256[] memory indexes); function rewardIndexesStored() external view returns (uint256[] memory indexes); /** * @notice returns the list of reward token addresses */ function getRewardTokens() external view returns (address[] memory); /** * @notice returns the address of the underlying yield token */ function yieldToken() external view returns (address); /** * @notice returns all tokens that can mint this SY */ function getTokensIn() external view returns (address[] memory res); /** * @notice returns all tokens that can be redeemed by this SY */ function getTokensOut() external view returns (address[] memory res); function isValidTokenIn(address token) external view returns (bool); function isValidTokenOut(address token) external view returns (bool); function previewDeposit( address tokenIn, uint256 amountTokenToDeposit ) external view returns (uint256 amountSharesOut); function previewRedeem( address tokenOut, uint256 amountSharesToRedeem ) external view returns (uint256 amountTokenOut); /** * @notice This function contains information to interpret what the asset is * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens, 2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain) * @return assetAddress the address of the asset * @return assetDecimals the decimals of the asset */ function assetInfo() external view returns (AssetType assetType, address assetAddress, uint8 assetDecimals); }
// SPDX-License-Identifier: GPL-3.0-or-later /* * MIT License * =========== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */ pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IWETH is IERC20 { event Deposit(address indexed dst, uint256 wad); event Withdrawal(address indexed src, uint256 wad); function deposit() external payable; function withdraw(uint256 wad) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; import "../../core/libraries/math/PMath.sol"; import "../../core/Market/MarketMathCore.sol"; struct ApproxParams { uint256 guessMin; uint256 guessMax; uint256 guessOffchain; // pass 0 in to skip this variable uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2 uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set // to 1e15 (1e18/1000 = 0.1%) } /// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out, /// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula /// To approx, the 5 values above will have to be provided, and the approx process will run as follows: /// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out /// netSyNeed = calcSwapSyForExactPt(mid) /// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn /// else guessMin = mid (1) /// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of /// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result /// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result /// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the /// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases /// except in cases that there is a trade in the same market right before the tx library MarketApproxPtInLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using PMath for uint256; using PMath for int256; using LogExpMath for int256; /** * @dev algorithm: * - Bin search the amount of PT to swap in * - Try swapping & get netSyOut * - Stop when netSyOut greater & approx minSyOut * - guess & approx is for netPtIn */ function approxSwapPtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); if (netSyOut >= minSyOut) { if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) { return (guess, netSyOut, netSyFee); } approx.guessMax = guess; } else { approx.guessMin = guess; } } revert("Slippage: APPROX_EXHAUSTED"); } /** * @dev algorithm: * - Bin search the amount of PT to swap in * - Flashswap the corresponding amount of SY out * - Pair those amount with exactSyIn SY to tokenize into PT & YT * - PT to repay the flashswap, YT transferred to user * - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn * - guess & approx is for netYtOut (also netPtIn) */ function approxSwapExactSyForYt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtOut*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, index.syToAsset(exactSyIn)); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); uint256 netSyToTokenizePt = index.assetToSyUp(guess); // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY uint256 netSyToPull = netSyToTokenizePt - netSyOut; if (netSyToPull <= exactSyIn) { if (PMath.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps)) { return (guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert("Slippage: APPROX_EXHAUSTED"); } struct Args5 { MarketState market; PYIndex index; uint256 totalPtIn; uint256 netSyHolding; uint256 blockTime; ApproxParams approx; } /** * @dev algorithm: * - Bin search the amount of PT to swap to SY * - Swap PT to SY * - Pair the remaining PT with the SY to add liquidity * - Stop when the ratio of PT / totalPt & SY / totalSy is approx * - guess & approx is for netPtSwap */ function approxSwapPtToAddLiquidity( MarketState memory _market, PYIndex _index, uint256 _totalPtIn, uint256 _netSyHolding, uint256 _blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtSwap*/ uint256, /*netSyFromSwap*/ uint256 /*netSyFee*/) { Args5 memory a = Args5(_market, _index, _totalPtIn, _netSyHolding, _blockTime, approx); MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(a.market, comp)); approx.guessMax = PMath.min(approx.guessMax, a.totalPtIn); validateApprox(approx); require(a.market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, ) = calcNumerators( a.market, a.index, a.totalPtIn, a.netSyHolding, comp, guess ); if (PMath.isAApproxB(syNumerator, ptNumerator, approx.eps)) { return (guess, netSyOut, netSyFee); } if (syNumerator <= ptNumerator) { // needs more SY --> swap more PT approx.guessMin = guess + 1; } else { // needs less SY --> swap less PT approx.guessMax = guess - 1; } } revert("Slippage: APPROX_EXHAUSTED"); } function calcNumerators( MarketState memory market, PYIndex index, uint256 totalPtIn, uint256 netSyHolding, MarketPreCompute memory comp, uint256 guess ) internal pure returns (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) { (netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess); uint256 newTotalPt = uint256(market.totalPt) + guess; uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve); // it is desired that // (netSyOut + netSyHolding) / newTotalSy = netPtRemaining / newTotalPt // which is equivalent to // (netSyOut + netSyHolding) * newTotalPt = netPtRemaining * newTotalSy syNumerator = (netSyOut + netSyHolding) * newTotalPt; ptNumerator = (totalPtIn - guess) * newTotalSy; } /** * @dev algorithm: * - Bin search the amount of PT to swap to SY * - Flashswap the corresponding amount of SY out * - Tokenize all the SY into PT + YT * - PT to repay the flashswap, YT transferred to user * - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn * - guess & approx is for totalPtToSwap */ function approxSwapExactPtForYt( MarketState memory market, PYIndex index, uint256 exactPtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtOut*/ uint256, /*totalPtToSwap*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, exactPtIn); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); uint256 netAssetOut = index.syToAsset(netSyOut); // guess >= netAssetOut since we are swapping PT to SY uint256 netPtToPull = guess - netAssetOut; if (netPtToPull <= exactPtIn) { if (PMath.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps)) { return (netAssetOut, guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert("Slippage: APPROX_EXHAUSTED"); } //////////////////////////////////////////////////////////////////////////////// function calcSyOut( MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtIn ) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, -int256(netPtIn)); netSyOut = uint256(_netSyOut); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert("Slippage: guessMin > guessMax"); } /// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY /// function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) revert("Internal: INVALID_APPROX_PARAMS"); } function calcMaxPtIn(MarketState memory market, MarketPreCompute memory comp) internal pure returns (uint256) { uint256 low = 0; uint256 hi = uint256(comp.totalAsset) - 1; while (low != hi) { uint256 mid = (low + hi + 1) / 2; if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1; else low = mid; } low = PMath.min( low, (MarketMathCore.MAX_MARKET_PROPORTION.mulDown(market.totalPt + comp.totalAsset) - market.totalPt).Uint() ); return low; } function calcSlope(MarketPreCompute memory comp, int256 totalPt, int256 ptToMarket) internal pure returns (int256) { int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket; int256 sumPt = ptToMarket + totalPt; require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket"); int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown(sumPt * diffAssetPtToMarket); int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln(); int256 part3 = PMath.IONE.divDown(comp.rateScalar); return comp.rateAnchor - (part1 - part2).mulDown(part3); } } library MarketApproxPtOutLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using PMath for uint256; using PMath for int256; using LogExpMath for int256; /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Calculate the amount of SY needed * - Stop when the netSyIn is smaller approx exactSyIn * - guess & approx is for netSyIn */ function approxSwapExactSyForPt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtOut*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); if (netSyIn <= exactSyIn) { if (PMath.isASmallerApproxB(netSyIn, exactSyIn, approx.eps)) { return (guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert("Slippage: APPROX_EXHAUSTED"); } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Flashswap that amount of PT & pair with YT to redeem SY * - Use the SY to repay the flashswap debt and the remaining is transferred to user * - Stop when the netSyOut is greater approx the minSyOut * - guess & approx is for netSyOut */ function approxSwapYtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netYtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); uint256 netAssetToRepay = index.syToAssetUp(netSyOwed); uint256 netSyOut = index.assetToSy(guess - netAssetToRepay); if (netSyOut >= minSyOut) { if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) { return (guess, netSyOut, netSyFee); } approx.guessMax = guess; } else { approx.guessMin = guess + 1; } } revert("Slippage: APPROX_EXHAUSTED"); } struct Args6 { MarketState market; PYIndex index; uint256 totalSyIn; uint256 netPtHolding; uint256 blockTime; ApproxParams approx; } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Swap that amount of PT out * - Pair the remaining PT with the SY to add liquidity * - Stop when the ratio of PT / totalPt & SY / totalSy is approx * - guess & approx is for netPtFromSwap */ function approxSwapSyToAddLiquidity( MarketState memory _market, PYIndex _index, uint256 _totalSyIn, uint256 _netPtHolding, uint256 _blockTime, ApproxParams memory _approx ) internal pure returns (uint256, /*netPtFromSwap*/ uint256, /*netSySwap*/ uint256 /*netSyFee*/) { Args6 memory a = Args6(_market, _index, _totalSyIn, _netPtHolding, _blockTime, _approx); MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime); if (a.approx.guessOffchain == 0) { // no limit on min a.approx.guessMax = PMath.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt)); validateApprox(a.approx); require(a.market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) { uint256 guess = nextGuess(a.approx, iter); (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn(a.market, comp, a.index, guess); if (netSyIn > a.totalSyIn) { a.approx.guessMax = guess - 1; continue; } uint256 syNumerator; uint256 ptNumerator; { uint256 newTotalPt = uint256(a.market.totalPt) - guess; uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve; // it is desired that // (netPtFromSwap + netPtHolding) / newTotalPt = netSyRemaining / netTotalSy // which is equivalent to // (netPtFromSwap + netPtHolding) * netTotalSy = netSyRemaining * newTotalPt ptNumerator = (guess + a.netPtHolding) * netTotalSy; syNumerator = (a.totalSyIn - netSyIn) * newTotalPt; } if (PMath.isAApproxB(ptNumerator, syNumerator, a.approx.eps)) { return (guess, netSyIn, netSyFee); } if (ptNumerator <= syNumerator) { // needs more PT a.approx.guessMin = guess + 1; } else { // needs less PT a.approx.guessMax = guess - 1; } } revert("Slippage: APPROX_EXHAUSTED"); } /** * @dev algorithm: * - Bin search the amount of PT to swapExactOut * - Flashswap that amount of PT out * - Pair all the PT with the YT to redeem SY * - Use the SY to repay the flashswap debt * - Stop when the amount of YT required to pair with PT is approx exactYtIn * - guess & approx is for netPtFromSwap */ function approxSwapExactYtForPt( MarketState memory market, PYIndex index, uint256 exactYtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256, /*netPtOut*/ uint256, /*totalPtSwapped*/ uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = PMath.max(approx.guessMin, exactYtIn); approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); uint256 netYtToPull = index.syToAssetUp(netSyOwed); if (netYtToPull <= exactYtIn) { if (PMath.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps)) { return (guess - netYtToPull, guess, netSyFee); } approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert("Slippage: APPROX_EXHAUSTED"); } //////////////////////////////////////////////////////////////////////////////// function calcSyIn( MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtOut ) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, int256(netPtOut)); // all safe since totalPt and totalSy is int128 netSyIn = uint256(-_netSyIn); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function calcMaxPtOut(MarketPreCompute memory comp, int256 totalPt) internal pure returns (uint256) { int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp(); int256 proportion = logitP.divDown(logitP + PMath.IONE); int256 numerator = proportion.mulDown(totalPt + comp.totalAsset); int256 maxPtOut = totalPt - numerator; // only get 99.9% of the theoretical max to accommodate some precision issues return (uint256(maxPtOut) * 999) / 1000; } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert("Slippage: guessMin > guessMax"); } function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) revert("Internal: INVALID_APPROX_PARAMS"); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.0; struct SwapData { SwapType swapType; address extRouter; bytes extCalldata; bool needScale; } enum SwapType { NONE, KYBERSWAP, ONE_INCH, // ETH_WETH not used in Aggregator ETH_WETH } interface IPSwapAggregator { function swap(address tokenIn, uint256 amountIn, SwapData calldata swapData) external payable; }
{ "optimizer": { "enabled": true, "runs": 1000000 }, "viaIR": true, "evmVersion": "shanghai", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"bytes","name":"inputData","type":"bytes"}],"name":"reflect","outputs":[{"internalType":"bytes","name":"result","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6080806040523461001657611863908161001b8239f35b5f80fdfe6080604052600436101561001a575b3615610018575f80fd5b005b5f3560e01c63ef4093630361000e57346100ae5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ae5767ffffffffffffffff6004358181116100ae57366023820112156100ae5780600401359182116100ae5736602483830101116100ae576100aa91602461009e920161029e565b6040519182918261010e565b0390f35b5f80fd5b91908251928382525f5b8481106100fa5750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f845f6020809697860101520116010190565b6020818301810151848301820152016100bc565b90602061011f9281815201906100b2565b90565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b60a0810190811067ffffffffffffffff82111761016b57604052565b610122565b6060810190811067ffffffffffffffff82111761016b57604052565b6080810190811067ffffffffffffffff82111761016b57604052565b6040810190811067ffffffffffffffff82111761016b57604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761016b57604052565b60405190610180820182811067ffffffffffffffff82111761016b57604052565b604051906102338261014f565b565b67ffffffffffffffff811161016b57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b3d15610299573d9061028082610235565b9161028e60405193846101c4565b82523d5f602084013e565b606090565b6102bd5f92806102b76102b182866106a5565b906106ee565b936106b3565b7fffffffff0000000000000000000000000000000000000000000000000000000083167f12599ac6000000000000000000000000000000000000000000000000000000008114801561067c575b8015610653575b156103d757505f935061039d61032f83610371938796950190610fa4565b9273ffffffffffffffffffffffffffffffffffffffff9895989794979291929861035884611303565b99806040519a8b9960208b01521691166024880161101a565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081018352826101c4565b905b6020825192019073888888888889758f76e7103c6cbf23abbf58f9465af1906103c661026f565b91156103ce57565b50805190602001fd5b7f3dbe1c5500000000000000000000000000000000000000000000000000000000810361045c57505f935061045661041783610371938796950190610e80565b9173ffffffffffffffffffffffffffffffffffffffff9794979693969761043d84611303565b9880604051998a9860208a015216911660248701610f62565b9061039f565b7f58bda475000000000000000000000000000000000000000000000000000000008114801561062a575b8015610601575b156104e957506104565f9492936104ab856103719488970190610a74565b9390925073ffffffffffffffffffffffffffffffffffffffff9794978091166104d3816110f0565b91604051998a9860208a01521660248801610d23565b9193917f844384aa000000000000000000000000000000000000000000000000000000000361059e576104565f9493610529856103719488970190610750565b9290915073ffffffffffffffffffffffffffffffffffffffff969396809116610551816110f0565b916040519889976020890152166024870191959493909260809360a084019773ffffffffffffffffffffffffffffffffffffffff8092168552166020840152604083015260608201520152565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f554e535550504f525445445f53454c4543544f520000000000000000000000006044820152606490fd5b0390fd5b507f7b8b4b9500000000000000000000000000000000000000000000000000000000811461048d565b507f2a50917c000000000000000000000000000000000000000000000000000000008114610486565b507fed48907e000000000000000000000000000000000000000000000000000000008114610311565b507fc81f847a00000000000000000000000000000000000000000000000000000000811461030a565b906004116100ae5790600490565b90929192836004116100ae5783116100ae57600401917ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0190565b7fffffffff00000000000000000000000000000000000000000000000000000000903581811693926004811061072357505050565b60040360031b82901b16169150565b73ffffffffffffffffffffffffffffffffffffffff8116036100ae57565b908160a09103126100ae57803561076681610732565b91602082013561077581610732565b916040810135916080606083013592013590565b91908260a09103126100ae576040516107a18161014f565b6080808294803584526020810135602085015260408101356040850152606081013560608501520135910152565b359061023382610732565b600411156100ae57565b3590610233826107da565b81601f820112156100ae5780359061080682610235565b9261081460405194856101c4565b828452602083830101116100ae57815f926020809301838601378301015290565b9080601f830112156100ae5781359160209167ffffffffffffffff80851161016b578460051b90604080519661086d878501896101c4565b87528580880193860101948486116100ae57868101935b86851061089657505050505050505090565b84358481116100ae578201906060907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08281858b0301126100ae578551906108dd82610170565b8b8501358881116100ae578501906101808091838d0301126100ae57610901610205565b8d8301358152888301358e8201528583013589820152916080916109268383016107e4565b8785015260a0926109388484016107cf565b9085015260c09261094a8484016107cf565b9085015260e09261095c8484016107cf565b908501526101009261096f8484016107cf565b908501526101209283830135908501526101409283830135908501526101609283830135908501528101358a81116100ae578e8d916109af9301016107ef565b90820152815285840135928784116100ae57846109d38b8e809897819801016107ef565b85840152013586820152815201940193610884565b91909160a0818403126100ae576109fd610226565b92610a07826107cf565b845260208201356020850152604082013567ffffffffffffffff908181116100ae5782610a35918501610835565b604086015260608301358181116100ae5782610a52918501610835565b606086015260808301359081116100ae57610a6d92016107ef565b6080830152565b91610140838303126100ae578235610a8b81610732565b926020810135610a9a81610732565b92604082013592606083013592610ab48360808301610789565b9261012082013567ffffffffffffffff81116100ae5761011f92016109e8565b60041115610ade57565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b90610b1582610ad4565b52565b908082519081815260208091019281808460051b8301019501935f915b848310610b455750505050505090565b9091929394958480827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0856001950301865289519060608251818352805182840152610ca4610c9486830151608090818701526040948486809601519160a092838a015281015192610bbc60c094858b0190610b0b565b81015191610be460e093848b019073ffffffffffffffffffffffffffffffffffffffff169052565b81015192610c0d61010094858b019073ffffffffffffffffffffffffffffffffffffffff169052565b81015191610c3661012093848b019073ffffffffffffffffffffffffffffffffffffffff169052565b81015192610c5f61014094858b019073ffffffffffffffffffffffffffffffffffffffff169052565b8101519161016092838a01528101519261018093848a01528101516101a08901520151906101c08701526101e08601906100b2565b86860151858203888701526100b2565b9301519101529801930193019194939290610b35565b61011f9173ffffffffffffffffffffffffffffffffffffffff8251168152602082015160208201526080610d12610d00604085015160a0604086015260a0850190610b18565b60608501518482036060860152610b18565b9201519060808184039101526100b2565b9293610d90929461011f9796926101409673ffffffffffffffffffffffffffffffffffffffff809216875216602086015260408501526060840152608083019060808091805184526020810151602085015260408101516040850152606081015160608501520151910152565b816101208201520190610cba565b801515036100ae57565b91909160a0818403126100ae576040908151610dc38161014f565b80948235610dd081610732565b82526020830135602083015283830135610de981610732565b848301526060830135610dfb81610732565b6060830152608083013567ffffffffffffffff938482116100ae57016080818303126100ae57845194610e2d8661018c565b8135610e38816107da565b86526020820135610e4881610732565b6020870152808201359485116100ae57610e6860609360809684016107ef565b908601520135610e7781610d9e565b60608401520152565b91909160a0818403126100ae578035610e9881610732565b926020820135610ea781610732565b92604083013592606081013592608082013567ffffffffffffffff81116100ae5761011f9201610da8565b90608073ffffffffffffffffffffffffffffffffffffffff928381511683526020810151602084015283604082015116604084015283606082015116606084015201519160a060808301528251610f2881610ad4565b60a083015260208301511660c08201526101006060610f576040850151608060e08601526101208501906100b2565b930151151591015290565b919261011f95949160a09473ffffffffffffffffffffffffffffffffffffffff8092168552166020840152604083015260608201528160808201520190610ed2565b91610140838303126100ae578235610fbb81610732565b926020810135610fca81610732565b92604082013592610fde8260608501610789565b9267ffffffffffffffff926101008201358481116100ae5781611002918401610da8565b936101208301359081116100ae5761011f92016109e8565b94919061011f969461109494611085926101409473ffffffffffffffffffffffffffffffffffffffff8092168a521660208901526040880152606087019060808091805184526020810151602085015260408101516040850152606081015160608501520151910152565b80610100860152840190610ed2565b91610120818403910152610cba565b908160609103126100ae5780516110b981610732565b91604060208301516110ca81610732565b92015161011f81610732565b6040513d5f823e3d90fd5b908160209103126100ae575190565b60609073ffffffffffffffffffffffffffffffffffffffff9182916004604051809481937f2c8ce6bc000000000000000000000000000000000000000000000000000000008352165afa90811561125e575f91611263575b506040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015291169190602081602481865afa90811561125e575f9161122f575b50916111ca6111c66111bf8373ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f2090565b5460ff1690565b1590565b6111d15750565b611204816111e161023393611469565b73ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f2090565b60017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00825416179055565b611251915060203d602011611257575b61124981836101c4565b8101906110e1565b5f611190565b503d61123f565b6110d6565b611285915060603d60601161128d575b61127d81836101c4565b8101906110a3565b50505f611148565b503d611273565b5161011f81610ad4565b156112a557565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601160248201527f5343414c455f49535f52455155495245440000000000000000000000000000006044820152fd5b5f608082016113128151611294565b61131b81610ad4565b15158061144c575b611436575b5061134f61134a835173ffffffffffffffffffffffffffffffffffffffff1690565b6115ac565b9160208101928352611375815173ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff8116611397575050505190565b6113c991929493506111bf6111c69173ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f2090565b6113d05750565b6112046111e18261141c6114176113fe610233965173ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1690565b611469565b5173ffffffffffffffffffffffffffffffffffffffff1690565b516060015161144690151561129e565b5f611328565b5060036114598251611294565b61146281610ad4565b1415611323565b60405160208101917f095ea7b3000000000000000000000000000000000000000000000000000000009283815273888888888889758f76e7103c6cbf23abbf58f94660248401527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6044840152604483526114e38361018c565b5f8073ffffffffffffffffffffffffffffffffffffffff84169285519082855af19061150d61026f565b8261157a575b508161156f575b501561152557505050565b61156a610233936040519060208201526115648161037160248201905f6020604084019373888888888889758f76e7103c6cbf23abbf58f94681520152565b82611642565b611642565b90503b15155f61151a565b80519192508115918215611592575b5050905f611513565b6115a5925060208091830101910161162d565b5f80611589565b73ffffffffffffffffffffffffffffffffffffffff16806115cc57504790565b6020602491604051928380927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa90811561125e575f91611614575090565b61011f915060203d6020116112575761124981836101c4565b908160209103126100ae575161011f81610d9e565b6040516116ac9173ffffffffffffffffffffffffffffffffffffffff16611668826101a8565b5f806020958685527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656487860152868151910182855af16116a661026f565b91611761565b805190828215928315611749575b505050156116c55750565b608490604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b611759935082018101910161162d565b5f82816116ba565b919290156117dc5750815115611775575090565b3b1561177e5790565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b8251909150156117ef5750805190602001fd5b6105fd906040519182917f08c379a00000000000000000000000000000000000000000000000000000000083526020600484015260248301906100b256fea26469706673582212201fc965a93d0ac884b18ea197f3e9eb942ae0bdcb1b2b82321e55cced5a02c58264736f6c63430008180033
Deployed Bytecode
0x6080604052600436101561001a575b3615610018575f80fd5b005b5f3560e01c63ef4093630361000e57346100ae5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100ae5767ffffffffffffffff6004358181116100ae57366023820112156100ae5780600401359182116100ae5736602483830101116100ae576100aa91602461009e920161029e565b6040519182918261010e565b0390f35b5f80fd5b91908251928382525f5b8481106100fa5750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f845f6020809697860101520116010190565b6020818301810151848301820152016100bc565b90602061011f9281815201906100b2565b90565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b60a0810190811067ffffffffffffffff82111761016b57604052565b610122565b6060810190811067ffffffffffffffff82111761016b57604052565b6080810190811067ffffffffffffffff82111761016b57604052565b6040810190811067ffffffffffffffff82111761016b57604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761016b57604052565b60405190610180820182811067ffffffffffffffff82111761016b57604052565b604051906102338261014f565b565b67ffffffffffffffff811161016b57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b3d15610299573d9061028082610235565b9161028e60405193846101c4565b82523d5f602084013e565b606090565b6102bd5f92806102b76102b182866106a5565b906106ee565b936106b3565b7fffffffff0000000000000000000000000000000000000000000000000000000083167f12599ac6000000000000000000000000000000000000000000000000000000008114801561067c575b8015610653575b156103d757505f935061039d61032f83610371938796950190610fa4565b9273ffffffffffffffffffffffffffffffffffffffff9895989794979291929861035884611303565b99806040519a8b9960208b01521691166024880161101a565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081018352826101c4565b905b6020825192019073888888888889758f76e7103c6cbf23abbf58f9465af1906103c661026f565b91156103ce57565b50805190602001fd5b7f3dbe1c5500000000000000000000000000000000000000000000000000000000810361045c57505f935061045661041783610371938796950190610e80565b9173ffffffffffffffffffffffffffffffffffffffff9794979693969761043d84611303565b9880604051998a9860208a015216911660248701610f62565b9061039f565b7f58bda475000000000000000000000000000000000000000000000000000000008114801561062a575b8015610601575b156104e957506104565f9492936104ab856103719488970190610a74565b9390925073ffffffffffffffffffffffffffffffffffffffff9794978091166104d3816110f0565b91604051998a9860208a01521660248801610d23565b9193917f844384aa000000000000000000000000000000000000000000000000000000000361059e576104565f9493610529856103719488970190610750565b9290915073ffffffffffffffffffffffffffffffffffffffff969396809116610551816110f0565b916040519889976020890152166024870191959493909260809360a084019773ffffffffffffffffffffffffffffffffffffffff8092168552166020840152604083015260608201520152565b6040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601460248201527f554e535550504f525445445f53454c4543544f520000000000000000000000006044820152606490fd5b0390fd5b507f7b8b4b9500000000000000000000000000000000000000000000000000000000811461048d565b507f2a50917c000000000000000000000000000000000000000000000000000000008114610486565b507fed48907e000000000000000000000000000000000000000000000000000000008114610311565b507fc81f847a00000000000000000000000000000000000000000000000000000000811461030a565b906004116100ae5790600490565b90929192836004116100ae5783116100ae57600401917ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0190565b7fffffffff00000000000000000000000000000000000000000000000000000000903581811693926004811061072357505050565b60040360031b82901b16169150565b73ffffffffffffffffffffffffffffffffffffffff8116036100ae57565b908160a09103126100ae57803561076681610732565b91602082013561077581610732565b916040810135916080606083013592013590565b91908260a09103126100ae576040516107a18161014f565b6080808294803584526020810135602085015260408101356040850152606081013560608501520135910152565b359061023382610732565b600411156100ae57565b3590610233826107da565b81601f820112156100ae5780359061080682610235565b9261081460405194856101c4565b828452602083830101116100ae57815f926020809301838601378301015290565b9080601f830112156100ae5781359160209167ffffffffffffffff80851161016b578460051b90604080519661086d878501896101c4565b87528580880193860101948486116100ae57868101935b86851061089657505050505050505090565b84358481116100ae578201906060907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08281858b0301126100ae578551906108dd82610170565b8b8501358881116100ae578501906101808091838d0301126100ae57610901610205565b8d8301358152888301358e8201528583013589820152916080916109268383016107e4565b8785015260a0926109388484016107cf565b9085015260c09261094a8484016107cf565b9085015260e09261095c8484016107cf565b908501526101009261096f8484016107cf565b908501526101209283830135908501526101409283830135908501526101609283830135908501528101358a81116100ae578e8d916109af9301016107ef565b90820152815285840135928784116100ae57846109d38b8e809897819801016107ef565b85840152013586820152815201940193610884565b91909160a0818403126100ae576109fd610226565b92610a07826107cf565b845260208201356020850152604082013567ffffffffffffffff908181116100ae5782610a35918501610835565b604086015260608301358181116100ae5782610a52918501610835565b606086015260808301359081116100ae57610a6d92016107ef565b6080830152565b91610140838303126100ae578235610a8b81610732565b926020810135610a9a81610732565b92604082013592606083013592610ab48360808301610789565b9261012082013567ffffffffffffffff81116100ae5761011f92016109e8565b60041115610ade57565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffd5b90610b1582610ad4565b52565b908082519081815260208091019281808460051b8301019501935f915b848310610b455750505050505090565b9091929394958480827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0856001950301865289519060608251818352805182840152610ca4610c9486830151608090818701526040948486809601519160a092838a015281015192610bbc60c094858b0190610b0b565b81015191610be460e093848b019073ffffffffffffffffffffffffffffffffffffffff169052565b81015192610c0d61010094858b019073ffffffffffffffffffffffffffffffffffffffff169052565b81015191610c3661012093848b019073ffffffffffffffffffffffffffffffffffffffff169052565b81015192610c5f61014094858b019073ffffffffffffffffffffffffffffffffffffffff169052565b8101519161016092838a01528101519261018093848a01528101516101a08901520151906101c08701526101e08601906100b2565b86860151858203888701526100b2565b9301519101529801930193019194939290610b35565b61011f9173ffffffffffffffffffffffffffffffffffffffff8251168152602082015160208201526080610d12610d00604085015160a0604086015260a0850190610b18565b60608501518482036060860152610b18565b9201519060808184039101526100b2565b9293610d90929461011f9796926101409673ffffffffffffffffffffffffffffffffffffffff809216875216602086015260408501526060840152608083019060808091805184526020810151602085015260408101516040850152606081015160608501520151910152565b816101208201520190610cba565b801515036100ae57565b91909160a0818403126100ae576040908151610dc38161014f565b80948235610dd081610732565b82526020830135602083015283830135610de981610732565b848301526060830135610dfb81610732565b6060830152608083013567ffffffffffffffff938482116100ae57016080818303126100ae57845194610e2d8661018c565b8135610e38816107da565b86526020820135610e4881610732565b6020870152808201359485116100ae57610e6860609360809684016107ef565b908601520135610e7781610d9e565b60608401520152565b91909160a0818403126100ae578035610e9881610732565b926020820135610ea781610732565b92604083013592606081013592608082013567ffffffffffffffff81116100ae5761011f9201610da8565b90608073ffffffffffffffffffffffffffffffffffffffff928381511683526020810151602084015283604082015116604084015283606082015116606084015201519160a060808301528251610f2881610ad4565b60a083015260208301511660c08201526101006060610f576040850151608060e08601526101208501906100b2565b930151151591015290565b919261011f95949160a09473ffffffffffffffffffffffffffffffffffffffff8092168552166020840152604083015260608201528160808201520190610ed2565b91610140838303126100ae578235610fbb81610732565b926020810135610fca81610732565b92604082013592610fde8260608501610789565b9267ffffffffffffffff926101008201358481116100ae5781611002918401610da8565b936101208301359081116100ae5761011f92016109e8565b94919061011f969461109494611085926101409473ffffffffffffffffffffffffffffffffffffffff8092168a521660208901526040880152606087019060808091805184526020810151602085015260408101516040850152606081015160608501520151910152565b80610100860152840190610ed2565b91610120818403910152610cba565b908160609103126100ae5780516110b981610732565b91604060208301516110ca81610732565b92015161011f81610732565b6040513d5f823e3d90fd5b908160209103126100ae575190565b60609073ffffffffffffffffffffffffffffffffffffffff9182916004604051809481937f2c8ce6bc000000000000000000000000000000000000000000000000000000008352165afa90811561125e575f91611263575b506040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015291169190602081602481865afa90811561125e575f9161122f575b50916111ca6111c66111bf8373ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f2090565b5460ff1690565b1590565b6111d15750565b611204816111e161023393611469565b73ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f2090565b60017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00825416179055565b611251915060203d602011611257575b61124981836101c4565b8101906110e1565b5f611190565b503d61123f565b6110d6565b611285915060603d60601161128d575b61127d81836101c4565b8101906110a3565b50505f611148565b503d611273565b5161011f81610ad4565b156112a557565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601160248201527f5343414c455f49535f52455155495245440000000000000000000000000000006044820152fd5b5f608082016113128151611294565b61131b81610ad4565b15158061144c575b611436575b5061134f61134a835173ffffffffffffffffffffffffffffffffffffffff1690565b6115ac565b9160208101928352611375815173ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff8116611397575050505190565b6113c991929493506111bf6111c69173ffffffffffffffffffffffffffffffffffffffff165f525f60205260405f2090565b6113d05750565b6112046111e18261141c6114176113fe610233965173ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1690565b611469565b5173ffffffffffffffffffffffffffffffffffffffff1690565b516060015161144690151561129e565b5f611328565b5060036114598251611294565b61146281610ad4565b1415611323565b60405160208101917f095ea7b3000000000000000000000000000000000000000000000000000000009283815273888888888889758f76e7103c6cbf23abbf58f94660248401527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6044840152604483526114e38361018c565b5f8073ffffffffffffffffffffffffffffffffffffffff84169285519082855af19061150d61026f565b8261157a575b508161156f575b501561152557505050565b61156a610233936040519060208201526115648161037160248201905f6020604084019373888888888889758f76e7103c6cbf23abbf58f94681520152565b82611642565b611642565b90503b15155f61151a565b80519192508115918215611592575b5050905f611513565b6115a5925060208091830101910161162d565b5f80611589565b73ffffffffffffffffffffffffffffffffffffffff16806115cc57504790565b6020602491604051928380927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa90811561125e575f91611614575090565b61011f915060203d6020116112575761124981836101c4565b908160209103126100ae575161011f81610d9e565b6040516116ac9173ffffffffffffffffffffffffffffffffffffffff16611668826101a8565b5f806020958685527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656487860152868151910182855af16116a661026f565b91611761565b805190828215928315611749575b505050156116c55750565b608490604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b611759935082018101910161162d565b5f82816116ba565b919290156117dc5750815115611775575090565b3b1561177e5790565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b8251909150156117ef5750805190602001fd5b6105fd906040519182917f08c379a00000000000000000000000000000000000000000000000000000000083526020600484015260248301906100b256fea26469706673582212201fc965a93d0ac884b18ea197f3e9eb942ae0bdcb1b2b82321e55cced5a02c58264736f6c63430008180033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.