ETH Price: $3,376.91 (-2.04%)
Gas: 3 Gwei

Contract

0x59114182500d834b8E41A397314C97EeE96Ee9bD
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Value
0x60806040188711262023-12-26 16:41:23189 days ago1703608883IN
 Create: cToken
0 ETH0.0313926224.89308669

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
cToken

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
File 1 of 32 : cToken.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PausableUpgradeable.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";

import "./Configurable.sol";
import "./interfaces/ICToken.sol";

/**
 * @title Staked token.
 * @author GenesisLRT
 * @notice cToken accumulates interest through their exchange ratio — over time, cToken becomes convertible into an increasing
 * amount of ETH, even while the number of cTokens in your wallet stays the same.
 *
 * This contract allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for
 * ETH. This contract extends the ERC20 standard.
 */
contract cToken is Configurable, ERC20PausableUpgradeable, ICToken {
    using Math for uint256;

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;

    /*******************************************************************************
                        CONSTRUCTOR
    *******************************************************************************/

    /// @dev https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    function initialize(
        IProtocolConfig config,
        string memory name,
        string memory symbol
    ) external initializer {
        __Configurable_init(config);
        __ERC20_init(name, symbol);
        __Pausable_init();
        __ERC20Pausable_init();
        __cToken_init();
    }

    function __cToken_init() internal {}

    /*******************************************************************************
                        WRITE FUNCTIONS
    *******************************************************************************/

    /**
     * @notice Mints exactly `shares` to `account`.
     * - emit the Transfer event from zero address.
     */
    function mint(
        address account,
        uint256 shares
    ) external override whenNotPaused onlyRestakingPool {
        _mint(account, shares);
    }

    /**
     * @notice Burns exactly `shares` from `account`.
     * - emit the Transfer event to zero address.
     * - revert if all of shares cannot be burned (due to the owner not having enough shares).
     */
    function burn(
        address account,
        uint256 shares
    ) external override whenNotPaused onlyRestakingPool {
        _burn(account, shares);
    }

    /*******************************************************************************
                        READ FUNCTIONS
    *******************************************************************************/

    /**
     * @notice Returns the `amount` of ETH that the cToken would exchange for the amount of `shares` provided, in an ideal
     * scenario where all the conditions are met.
     */
    function convertToAmount(
        uint256 shares
    ) public view override returns (uint256) {
        return shares.mulDiv(1 ether, ratio(), Math.Rounding.Ceil);
    }

    /**
     * @notice Returns the amount of `shares` that the cToken would exchange for the `amount` of ETH provided, in an ideal
     * scenario where all the conditions are met.
     */
    function convertToShares(
        uint256 amount
    ) public view override returns (uint256) {
        return amount.mulDiv(ratio(), 1 ether, Math.Rounding.Floor);
    }

    /**
     * @notice Returns ratio of cToken from ratio feed
     */
    function ratio() public view override returns (uint256) {
        return config().getRatioFeed().getRatio(address(this));
    }

    /**
     * @dev Returns the total amount of the ETH that is “managed” by Genesis.
     * @return totalManagedEth Total ETH amount into Genesis protocol.
     */
    function totalAssets()
        external
        view
        override
        returns (uint256 totalManagedEth)
    {
        return convertToAmount(totalSupply());
    }

    /*******************************************************************************
                        GOVERNANCE FUNCTIONS
    *******************************************************************************/

    /**
     * @dev Reimplemented to apply {onlyGovernance} modifier.
     */
    function pause() external virtual onlyGovernance {
        _pause();
    }

    /**
     * @dev Reimplemented to apply {onlyGovernance} modifier.
     */
    function unpause() external virtual onlyGovernance {
        _unpause();
    }
}

File 2 of 32 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

File 3 of 32 : ERC20Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
    /// @custom:storage-location erc7201:openzeppelin.storage.ERC20
    struct ERC20Storage {
        mapping(address account => uint256) _balances;

        mapping(address account => mapping(address spender => uint256)) _allowances;

        uint256 _totalSupply;

        string _name;
        string _symbol;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;

    function _getERC20Storage() private pure returns (ERC20Storage storage $) {
        assembly {
            $.slot := ERC20StorageLocation
        }
    }

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
        __ERC20_init_unchained(name_, symbol_);
    }

    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
        ERC20Storage storage $ = _getERC20Storage();
        $._name = name_;
        $._symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        ERC20Storage storage $ = _getERC20Storage();
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            $._totalSupply += value;
        } else {
            uint256 fromBalance = $._balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                $._balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                $._totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                $._balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        ERC20Storage storage $ = _getERC20Storage();
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        $._allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 4 of 32 : ERC20PausableUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Pausable.sol)

pragma solidity ^0.8.20;

import {ERC20Upgradeable} from "../ERC20Upgradeable.sol";
import {PausableUpgradeable} from "../../../utils/PausableUpgradeable.sol";
import {Initializable} from "../../../proxy/utils/Initializable.sol";

/**
 * @dev ERC20 token with pausable token transfers, minting and burning.
 *
 * Useful for scenarios such as preventing trades until the end of an evaluation
 * period, or having an emergency switch for freezing all token transfers in the
 * event of a large bug.
 *
 * IMPORTANT: This contract does not include public pause and unpause functions. In
 * addition to inheriting this contract, you must define both functions, invoking the
 * {Pausable-_pause} and {Pausable-_unpause} internal functions, with appropriate
 * access control, e.g. using {AccessControl} or {Ownable}. Not doing so will
 * make the contract pause mechanism of the contract unreachable, and thus unusable.
 */
abstract contract ERC20PausableUpgradeable is Initializable, ERC20Upgradeable, PausableUpgradeable {
    function __ERC20Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __ERC20Pausable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev See {ERC20-_update}.
     *
     * Requirements:
     *
     * - the contract must not be paused.
     */
    function _update(address from, address to, uint256 value) internal virtual override whenNotPaused {
        super._update(from, to, value);
    }
}

File 5 of 32 : ContextUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 6 of 32 : PausableUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
    struct PausableStorage {
        bool _paused;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;

    function _getPausableStorage() private pure returns (PausableStorage storage $) {
        assembly {
            $.slot := PausableStorageLocation
        }
    }

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        PausableStorage storage $ = _getPausableStorage();
        return $._paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
        emit Unpaused(_msgSender());
    }
}

File 7 of 32 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 8 of 32 : IBeacon.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

File 9 of 32 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 10 of 32 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 11 of 32 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 12 of 32 : Configurable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
import "./interfaces/IProtocolConfig.sol";

/**
 * @title Basic layout with common variables and modifiers from config
 * @author GenesisLRT
 */
abstract contract Configurable is Initializable, ContextUpgradeable {
    error OnlyGovernanceAllowed();
    error OnlyOperatorAllowed();
    error OnlyRestakingPoolAllowed();

    IProtocolConfig private _config;
    uint256[50 - 1] private __reserved;

    modifier onlyGovernance() virtual {
        if (_msgSender() != _config.getGovernance()) {
            revert OnlyGovernanceAllowed();
        }
        _;
    }

    modifier onlyOperator() virtual {
        if (_msgSender() != _config.getOperator()) {
            revert OnlyOperatorAllowed();
        }
        _;
    }

    modifier onlyRestakingPool() virtual {
        if (_msgSender() != address(_config.getRestakingPool())) {
            revert OnlyRestakingPoolAllowed();
        }
        _;
    }

    function __Configurable_init(
        IProtocolConfig config_
    ) internal onlyInitializing {
        _config = config_;
    }

    function config() public view virtual returns (IProtocolConfig) {
        return _config;
    }
}

File 13 of 32 : IBeaconChainOracle.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

/**
 * @title Interface for the BeaconStateOracle contract.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 */
interface IBeaconChainOracle {
    /// @notice The block number to state root mapping.
    function timestampToBlockRoot(
        uint256 timestamp
    ) external view returns (bytes32);
}

File 14 of 32 : ICToken.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @dev Interface of the cToken.
 */
interface ICToken is IERC20 {
    /* errors */

    /* functions */

    function convertToShares(
        uint256 amount
    ) external view returns (uint256 shares);

    function convertToAmount(
        uint256 shares
    ) external view returns (uint256 amount);

    function mint(address account, uint256 amount) external;

    function burn(address account, uint256 amount) external;

    function ratio() external view returns (uint256);

    function totalAssets() external view returns (uint256 totalManagedEth);
}

File 15 of 32 : IDelegationManager.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "./IStrategy.sol";
import "./ISignatureUtils.sol";
import "./IStakeRegistryStub.sol";
import "./IStrategyManager.sol";

/**
 * @title DelegationManager
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice  This is the contract for delegation in EigenLayer. The main functionalities of this contract are
 * - enabling anyone to register as an operator in EigenLayer
 * - allowing operators to specify parameters related to stakers who delegate to them
 * - enabling any staker to delegate its stake to the operator of its choice (a given staker can only delegate to a single operator at a time)
 * - enabling a staker to undelegate its assets from the operator it is delegated to (performed as part of the withdrawal process, initiated through the StrategyManager)
 */
interface IDelegationManager is ISignatureUtils {
    // @notice Struct used for storing information about a single operator who has registered with EigenLayer
    struct OperatorDetails {
        // @notice address to receive the rewards that the operator earns via serving applications built on EigenLayer.
        address earningsReceiver;
        /**
         * @notice Address to verify signatures when a staker wishes to delegate to the operator, as well as controlling "forced undelegations".
         * @dev Signature verification follows these rules:
         * 1) If this address is left as address(0), then any staker will be free to delegate to the operator, i.e. no signature verification will be performed.
         * 2) If this address is an EOA (i.e. it has no code), then we follow standard ECDSA signature verification for delegations to the operator.
         * 3) If this address is a contract (i.e. it has code) then we forward a call to the contract and verify that it returns the correct EIP-1271 "magic value".
         */
        address delegationApprover;
        /**
         * @notice A minimum delay -- measured in blocks -- enforced between:
         * 1) the operator signalling their intent to register for a service, via calling `Slasher.optIntoSlashing`
         * and
         * 2) the operator completing registration for the service, via the service ultimately calling `Slasher.recordFirstStakeUpdate`
         * @dev note that for a specific operator, this value *cannot decrease*, i.e. if the operator wishes to modify their OperatorDetails,
         * then they are only allowed to either increase this value or keep it the same.
         */
        uint32 stakerOptOutWindowBlocks;
    }

    /**
     * @notice Abstract struct used in calculating an EIP712 signature for a staker to approve that they (the staker themselves) delegate to a specific operator.
     * @dev Used in computing the `STAKER_DELEGATION_TYPEHASH` and as a reference in the computation of the stakerDigestHash in the `delegateToBySignature` function.
     */
    struct StakerDelegation {
        // the staker who is delegating
        address staker;
        // the operator being delegated to
        address operator;
        // the staker's nonce
        uint256 nonce;
        // the expiration timestamp (UTC) of the signature
        uint256 expiry;
    }

    /**
     * @notice Abstract struct used in calculating an EIP712 signature for an operator's delegationApprover to approve that a specific staker delegate to the operator.
     * @dev Used in computing the `DELEGATION_APPROVAL_TYPEHASH` and as a reference in the computation of the approverDigestHash in the `_delegate` function.
     */
    struct DelegationApproval {
        // the staker who is delegating
        address staker;
        // the operator being delegated to
        address operator;
        // the operator's provided salt
        bytes32 salt;
        // the expiration timestamp (UTC) of the signature
        uint256 expiry;
    }

    /// @notice Emitted when the StakeRegistry is set
    event StakeRegistrySet(IStakeRegistryStub stakeRegistry);

    /**
     * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored.
     * In functions that operate on existing queued withdrawals -- e.g. completeQueuedWithdrawal`, the data is resubmitted and the hash of the submitted
     * data is computed by `calculateWithdrawalRoot` and checked against the stored hash in order to confirm the integrity of the submitted data.
     */
    struct Withdrawal {
        // The address that originated the Withdrawal
        address staker;
        // The address that the staker was delegated to at the time that the Withdrawal was created
        address delegatedTo;
        // The address that can complete the Withdrawal + will receive funds when completing the withdrawal
        address withdrawer;
        // Nonce used to guarantee that otherwise identical withdrawals have unique hashes
        uint256 nonce;
        // Block number when the Withdrawal was created
        uint32 startBlock;
        // Array of strategies that the Withdrawal contains
        IStrategy[] strategies;
        // Array containing the amount of shares in each Strategy in the `strategies` array
        uint256[] shares;
    }

    struct QueuedWithdrawalParams {
        // Array of strategies that the QueuedWithdrawal contains
        IStrategy[] strategies;
        // Array containing the amount of shares in each Strategy in the `strategies` array
        uint256[] shares;
        // The address of the withdrawer
        address withdrawer;
    }

    // @notice Emitted when a new operator registers in EigenLayer and provides their OperatorDetails.
    event OperatorRegistered(
        address indexed operator,
        OperatorDetails operatorDetails
    );

    /// @notice Emitted when an operator updates their OperatorDetails to @param newOperatorDetails
    event OperatorDetailsModified(
        address indexed operator,
        OperatorDetails newOperatorDetails
    );

    /**
     * @notice Emitted when @param operator indicates that they are updating their MetadataURI string
     * @dev Note that these strings are *never stored in storage* and are instead purely emitted in events for off-chain indexing
     */
    event OperatorMetadataURIUpdated(
        address indexed operator,
        string metadataURI
    );

    /// @notice Emitted whenever an operator's shares are increased for a given strategy. Note that shares is the delta in the operator's shares.
    event OperatorSharesIncreased(
        address indexed operator,
        address staker,
        IStrategy strategy,
        uint256 shares
    );

    /// @notice Emitted whenever an operator's shares are decreased for a given strategy. Note that shares is the delta in the operator's shares.
    event OperatorSharesDecreased(
        address indexed operator,
        address staker,
        IStrategy strategy,
        uint256 shares
    );

    /// @notice Emitted when @param staker delegates to @param operator.
    event StakerDelegated(address indexed staker, address indexed operator);

    /// @notice Emitted when @param staker undelegates from @param operator.
    event StakerUndelegated(address indexed staker, address indexed operator);

    /// @notice Emitted when @param staker is undelegated via a call not originating from the staker themself
    event StakerForceUndelegated(
        address indexed staker,
        address indexed operator
    );

    /**
     * @notice Emitted when a new withdrawal is queued.
     * @param withdrawalRoot Is the hash of the `withdrawal`.
     * @param withdrawal Is the withdrawal itself.
     */
    event WithdrawalQueued(bytes32 withdrawalRoot, Withdrawal withdrawal);

    /// @notice Emitted when a queued withdrawal is completed
    event WithdrawalCompleted(bytes32 withdrawalRoot);

    /// @notice Emitted when a queued withdrawal is *migrated* from the StrategyManager to the DelegationManager
    event WithdrawalMigrated(
        bytes32 oldWithdrawalRoot,
        bytes32 newWithdrawalRoot
    );

    /// @notice Emitted when the `withdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`.
    event WithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue);

    /**
     * @notice Caller delegates their stake to an operator.
     * @param operator The account (`msg.sender`) is delegating its assets to for use in serving applications built on EigenLayer.
     * @param approverSignatureAndExpiry Verifies the operator approves of this delegation
     * @param approverSalt A unique single use value tied to an individual signature.
     * @dev The approverSignatureAndExpiry is used in the event that:
     *          1) the operator's `delegationApprover` address is set to a non-zero value.
     *                  AND
     *          2) neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator
     *             or their delegationApprover is the `msg.sender`, then approval is assumed.
     * @dev In the event that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input
     * in this case to save on complexity + gas costs
     */
    function delegateTo(
        address operator,
        SignatureWithExpiry memory approverSignatureAndExpiry,
        bytes32 approverSalt
    ) external;

    /**
     * @notice Caller delegates a staker's stake to an operator with valid signatures from both parties.
     * @param staker The account delegating stake to an `operator` account
     * @param operator The account (`staker`) is delegating its assets to for use in serving applications built on EigenLayer.
     * @param stakerSignatureAndExpiry Signed data from the staker authorizing delegating stake to an operator
     * @param approverSignatureAndExpiry is a parameter that will be used for verifying that the operator approves of this delegation action in the event that:
     * @param approverSalt Is a salt used to help guarantee signature uniqueness. Each salt can only be used once by a given approver.
     *
     * @dev If `staker` is an EOA, then `stakerSignature` is verified to be a valid ECDSA stakerSignature from `staker`, indicating their intention for this action.
     * @dev If `staker` is a contract, then `stakerSignature` will be checked according to EIP-1271.
     * @dev the operator's `delegationApprover` address is set to a non-zero value.
     * @dev neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator or their delegationApprover
     * is the `msg.sender`, then approval is assumed.
     * @dev This function will revert if the current `block.timestamp` is equal to or exceeds the expiry
     * @dev In the case that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input
     * in this case to save on complexity + gas costs
     */
    function delegateToBySignature(
        address staker,
        address operator,
        SignatureWithExpiry memory stakerSignatureAndExpiry,
        SignatureWithExpiry memory approverSignatureAndExpiry,
        bytes32 approverSalt
    ) external;

    /**
     * @notice Undelegates the staker from the operator who they are delegated to. Puts the staker into the "undelegation limbo" mode of the EigenPodManager
     * and queues a withdrawal of all of the staker's shares in the StrategyManager (to the staker), if necessary.
     * @param staker The account to be undelegated.
     * @return withdrawalRoot The root of the newly queued withdrawal, if a withdrawal was queued. Otherwise just bytes32(0).
     *
     * @dev Reverts if the `staker` is also an operator, since operators are not allowed to undelegate from themselves.
     * @dev Reverts if the caller is not the staker, nor the operator who the staker is delegated to, nor the operator's specified "delegationApprover"
     * @dev Reverts if the `staker` is already undelegated.
     */
    function undelegate(
        address staker
    ) external returns (bytes32 withdrawalRoot);

    /**
     * Allows a staker to withdraw some shares. Withdrawn shares/strategies are immediately removed
     * from the staker. If the staker is delegated, withdrawn shares/strategies are also removed from
     * their operator.
     *
     * All withdrawn shares/strategies are placed in a queue and can be fully withdrawn after a delay.
     */
    function queueWithdrawals(
        QueuedWithdrawalParams[] calldata queuedWithdrawalParams
    ) external returns (bytes32[] memory);

    /**
     * @notice Used to complete the specified `withdrawal`. The caller must match `withdrawal.withdrawer`
     * @param withdrawal The Withdrawal to complete.
     * @param tokens Array in which the i-th entry specifies the `token` input to the 'withdraw' function of the i-th Strategy in the `withdrawal.strategies` array.
     * This input can be provided with zero length if `receiveAsTokens` is set to 'false' (since in that case, this input will be unused)
     * @param middlewareTimesIndex is the index in the operator that the staker who triggered the withdrawal was delegated to's middleware times array
     * @param receiveAsTokens If true, the shares specified in the withdrawal will be withdrawn from the specified strategies themselves
     * and sent to the caller, through calls to `withdrawal.strategies[i].withdraw`. If false, then the shares in the specified strategies
     * will simply be transferred to the caller directly.
     * @dev middlewareTimesIndex should be calculated off chain before calling this function by finding the first index that satisfies `slasher.canWithdraw`
     * @dev beaconChainETHStrategy shares are non-transferrable, so if `receiveAsTokens = false` and `withdrawal.withdrawer != withdrawal.staker`, note that
     * any beaconChainETHStrategy shares in the `withdrawal` will be _returned to the staker_, rather than transferred to the withdrawer, unlike shares in
     * any other strategies, which will be transferred to the withdrawer.
     */
    function completeQueuedWithdrawal(
        Withdrawal calldata withdrawal,
        IERC20[] calldata tokens,
        uint256 middlewareTimesIndex,
        bool receiveAsTokens
    ) external;

    /**
     * @notice Array-ified version of `completeQueuedWithdrawal`.
     * Used to complete the specified `withdrawals`. The function caller must match `withdrawals[...].withdrawer`
     * @param withdrawals The Withdrawals to complete.
     * @param tokens Array of tokens for each Withdrawal. See `completeQueuedWithdrawal` for the usage of a single array.
     * @param middlewareTimesIndexes One index to reference per Withdrawal. See `completeQueuedWithdrawal` for the usage of a single index.
     * @param receiveAsTokens Whether or not to complete each withdrawal as tokens. See `completeQueuedWithdrawal` for the usage of a single boolean.
     * @dev See `completeQueuedWithdrawal` for relevant dev tags
     */
    function completeQueuedWithdrawals(
        Withdrawal[] calldata withdrawals,
        IERC20[][] calldata tokens,
        uint256[] calldata middlewareTimesIndexes,
        bool[] calldata receiveAsTokens
    ) external;

    /// @notice the address of the StakeRegistry contract to call for stake updates when operator shares are changed
    function stakeRegistry() external view returns (IStakeRegistryStub);

    /**
     * @notice returns the address of the operator that `staker` is delegated to.
     * @notice Mapping: staker => operator whom the staker is currently delegated to.
     * @dev Note that returning address(0) indicates that the staker is not actively delegated to any operator.
     */
    function delegatedTo(address staker) external view returns (address);

    /**
     * @notice Returns the OperatorDetails struct associated with an `operator`.
     */
    function operatorDetails(
        address operator
    ) external view returns (OperatorDetails memory);

    /*
     * @notice Returns the earnings receiver address for an operator
     */
    function earningsReceiver(address operator) external view returns (address);

    /**
     * @notice Returns the delegationApprover account for an operator
     */
    function delegationApprover(
        address operator
    ) external view returns (address);

    /**
     * @notice Returns the stakerOptOutWindowBlocks for an operator
     */
    function stakerOptOutWindowBlocks(
        address operator
    ) external view returns (uint256);

    /**
     * @notice returns the total number of shares in `strategy` that are delegated to `operator`.
     * @notice Mapping: operator => strategy => total number of shares in the strategy delegated to the operator.
     * @dev By design, the following invariant should hold for each Strategy:
     * (operator's shares in delegation manager) = sum (shares above zero of all stakers delegated to operator)
     * = sum (delegateable shares of all stakers delegated to the operator)
     */
    function operatorShares(
        address operator,
        IStrategy strategy
    ) external view returns (uint256);

    /**
     * @notice Returns 'true' if `staker` *is* actively delegated, and 'false' otherwise.
     */
    function isDelegated(address staker) external view returns (bool);

    /**
     * @notice Returns true is an operator has previously registered for delegation.
     */
    function isOperator(address operator) external view returns (bool);

    /// @notice Mapping: staker => number of signed delegation nonces (used in `delegateToBySignature`) from the staker that the contract has already checked
    function stakerNonce(address staker) external view returns (uint256);

    /**
     * @notice Mapping: delegationApprover => 32-byte salt => whether or not the salt has already been used by the delegationApprover.
     * @dev Salts are used in the `delegateTo` and `delegateToBySignature` functions. Note that these functions only process the delegationApprover's
     * signature + the provided salt if the operator being delegated to has specified a nonzero address as their `delegationApprover`.
     */
    function delegationApproverSaltIsSpent(
        address _delegationApprover,
        bytes32 salt
    ) external view returns (bool);

    /**
     * @notice Calculates the digestHash for a `staker` to sign to delegate to an `operator`
     * @param staker The signing staker
     * @param operator The operator who is being delegated to
     * @param expiry The desired expiry time of the staker's signature
     */
    function calculateCurrentStakerDelegationDigestHash(
        address staker,
        address operator,
        uint256 expiry
    ) external view returns (bytes32);

    /**
     * @notice Calculates the digest hash to be signed and used in the `delegateToBySignature` function
     * @param staker The signing staker
     * @param _stakerNonce The nonce of the staker. In practice we use the staker's current nonce, stored at `stakerNonce[staker]`
     * @param operator The operator who is being delegated to
     * @param expiry The desired expiry time of the staker's signature
     */
    function calculateStakerDelegationDigestHash(
        address staker,
        uint256 _stakerNonce,
        address operator,
        uint256 expiry
    ) external view returns (bytes32);

    /**
     * @notice Calculates the digest hash to be signed by the operator's delegationApprove and used in the `delegateTo` and `delegateToBySignature` functions.
     * @param staker The account delegating their stake
     * @param operator The account receiving delegated stake
     * @param _delegationApprover the operator's `delegationApprover` who will be signing the delegationHash (in general)
     * @param approverSalt A unique and single use value associated with the approver signature.
     * @param expiry Time after which the approver's signature becomes invalid
     */
    function calculateDelegationApprovalDigestHash(
        address staker,
        address operator,
        address _delegationApprover,
        bytes32 approverSalt,
        uint256 expiry
    ) external view returns (bytes32);

    /// @notice The EIP-712 typehash for the contract's domain
    function DOMAIN_TYPEHASH() external view returns (bytes32);

    /// @notice The EIP-712 typehash for the StakerDelegation struct used by the contract
    function STAKER_DELEGATION_TYPEHASH() external view returns (bytes32);

    /// @notice The EIP-712 typehash for the DelegationApproval struct used by the contract
    function DELEGATION_APPROVAL_TYPEHASH() external view returns (bytes32);

    /**
     * @notice Getter function for the current EIP-712 domain separator for this contract.
     *
     * @dev The domain separator will change in the event of a fork that changes the ChainID.
     * @dev By introducing a domain separator the DApp developers are guaranteed that there can be no signature collision.
     * for more detailed information please read EIP-712.
     */
    function domainSeparator() external view returns (bytes32);

    /// @notice Mapping: staker => cumulative number of queued withdrawals they have ever initiated.
    /// @dev This only increments (doesn't decrement), and is used to help ensure that otherwise identical withdrawals have unique hashes.
    function cumulativeWithdrawalsQueued(
        address staker
    ) external view returns (uint256);

    /// @notice Returns the keccak256 hash of `withdrawal`.
    function calculateWithdrawalRoot(
        Withdrawal memory withdrawal
    ) external pure returns (bytes32);

    function migrateQueuedWithdrawals(
        IStrategyManager.DeprecatedStruct_QueuedWithdrawal[]
            memory withdrawalsToQueue
    ) external;
}

File 16 of 32 : IEigenPod.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "../libraries/BeaconChainProofs.sol";
import "./IEigenPodManager.sol";
import "./IBeaconChainOracle.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title The implementation contract used for restaking beacon chain ETH on EigenLayer
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice The main functionalities are:
 * - creating new ETH validators with their withdrawal credentials pointed to this contract
 * - proving from beacon chain state roots that withdrawal credentials are pointed to this contract
 * - proving from beacon chain state roots the balances of ETH validators with their withdrawal credentials
 *   pointed to this contract
 * - updating aggregate balances in the EigenPodManager
 * - withdrawing eth when withdrawals are initiated
 * @dev Note that all beacon chain balances are stored as gwei within the beacon chain datastructures. We choose
 *   to account balances in terms of gwei in the EigenPod contract and convert to wei when making calls to other contracts
 */
interface IEigenPod {
    enum VALIDATOR_STATUS {
        INACTIVE, // doesnt exist
        ACTIVE, // staked on ethpos and withdrawal credentials are pointed to the EigenPod
        WITHDRAWN // withdrawn from the Beacon Chain
    }

    struct ValidatorInfo {
        // index of the validator in the beacon chain
        uint64 validatorIndex;
        // amount of beacon chain ETH restaked on EigenLayer in gwei
        uint64 restakedBalanceGwei;
        //timestamp of the validator's most recent balance update
        uint64 mostRecentBalanceUpdateTimestamp;
        // status of the validator
        VALIDATOR_STATUS status;
    }

    /**
     * @notice struct used to store amounts related to proven withdrawals in memory. Used to help
     * manage stack depth and optimize the number of external calls, when batching withdrawal operations.
     */
    struct VerifiedWithdrawal {
        // amount to send to a podOwner from a proven withdrawal
        uint256 amountToSendGwei;
        // difference in shares to be recorded in the eigenPodManager, as a result of the withdrawal
        int256 sharesDeltaGwei;
    }

    enum PARTIAL_WITHDRAWAL_CLAIM_STATUS {
        REDEEMED,
        PENDING,
        FAILED
    }

    /// @notice Emitted when an ETH validator stakes via this eigenPod
    event EigenPodStaked(bytes pubkey);

    /// @notice Emitted when an ETH validator's withdrawal credentials are successfully verified to be pointed to this eigenPod
    event ValidatorRestaked(uint40 validatorIndex);

    /// @notice Emitted when an ETH validator's  balance is proven to be updated.  Here newValidatorBalanceGwei
    //  is the validator's balance that is credited on EigenLayer.
    event ValidatorBalanceUpdated(
        uint40 validatorIndex,
        uint64 balanceTimestamp,
        uint64 newValidatorBalanceGwei
    );

    /// @notice Emitted when an ETH validator is prove to have withdrawn from the beacon chain
    event FullWithdrawalRedeemed(
        uint40 validatorIndex,
        uint64 withdrawalTimestamp,
        address indexed recipient,
        uint64 withdrawalAmountGwei
    );

    /// @notice Emitted when a partial withdrawal claim is successfully redeemed
    event PartialWithdrawalRedeemed(
        uint40 validatorIndex,
        uint64 withdrawalTimestamp,
        address indexed recipient,
        uint64 partialWithdrawalAmountGwei
    );

    /// @notice Emitted when restaked beacon chain ETH is withdrawn from the eigenPod.
    event RestakedBeaconChainETHWithdrawn(
        address indexed recipient,
        uint256 amount
    );

    /// @notice Emitted when podOwner enables restaking
    event RestakingActivated(address indexed podOwner);

    /// @notice Emitted when ETH is received via the `receive` fallback
    event NonBeaconChainETHReceived(uint256 amountReceived);

    /// @notice Emitted when ETH that was previously received via the `receive` fallback is withdrawn
    event NonBeaconChainETHWithdrawn(
        address indexed recipient,
        uint256 amountWithdrawn
    );

    /// @notice The max amount of eth, in gwei, that can be restaked per validator
    function MAX_RESTAKED_BALANCE_GWEI_PER_VALIDATOR()
        external
        view
        returns (uint64);

    /// @notice the amount of execution layer ETH in this contract that is staked in EigenLayer (i.e. withdrawn from beaconchain but not EigenLayer),
    function withdrawableRestakedExecutionLayerGwei()
        external
        view
        returns (uint64);

    /// @notice any ETH deposited into the EigenPod contract via the `receive` fallback function
    function nonBeaconChainETHBalanceWei() external view returns (uint256);

    /// @notice The single EigenPodManager for EigenLayer
    function eigenPodManager() external view returns (IEigenPodManager);

    /// @notice The owner of this EigenPod
    function podOwner() external view returns (address);

    /// @notice an indicator of whether or not the podOwner has ever "fully restaked" by successfully calling `verifyCorrectWithdrawalCredentials`.
    function hasRestaked() external view returns (bool);

    /**
     * @notice The latest timestamp at which the pod owner withdrew the balance of the pod, via calling `withdrawBeforeRestaking`.
     * @dev This variable is only updated when the `withdrawBeforeRestaking` function is called, which can only occur before `hasRestaked` is set to true for this pod.
     * Proofs for this pod are only valid against Beacon Chain state roots corresponding to timestamps after the stored `mostRecentWithdrawalTimestamp`.
     */
    function mostRecentWithdrawalTimestamp() external view returns (uint64);

    /// @notice Returns the validatorInfo struct for the provided pubkeyHash
    function validatorPubkeyHashToInfo(
        bytes32 validatorPubkeyHash
    ) external view returns (ValidatorInfo memory);

    ///@notice mapping that tracks proven withdrawals
    function provenWithdrawal(
        bytes32 validatorPubkeyHash,
        uint64 slot
    ) external view returns (bool);

    /// @notice This returns the status of a given validator
    function validatorStatus(
        bytes32 pubkeyHash
    ) external view returns (VALIDATOR_STATUS);

    /**
     * @notice This function verifies that the withdrawal credentials of validator(s) owned by the podOwner are pointed to
     * this contract. It also verifies the effective balance  of the validator.  It verifies the provided proof of the ETH validator against the beacon chain state
     * root, marks the validator as 'active' in EigenLayer, and credits the restaked ETH in Eigenlayer.
     * @param oracleTimestamp is the Beacon Chain timestamp whose state root the `proof` will be proven against.
     * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs
     * @param withdrawalCredentialProofs is an array of proofs, where each proof proves each ETH validator's balance and withdrawal credentials
     * against a beacon chain state root
     * @param validatorFields are the fields of the "Validator Container", refer to consensus specs
     * for details: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
     */
    function verifyWithdrawalCredentials(
        uint64 oracleTimestamp,
        BeaconChainProofs.StateRootProof calldata stateRootProof,
        uint40[] calldata validatorIndices,
        bytes[] calldata withdrawalCredentialProofs,
        bytes32[][] calldata validatorFields
    ) external;

    /**
     * @notice This function records an update (either increase or decrease) in the pod's balance in the StrategyManager.  
               It also verifies a merkle proof of the validator's current beacon chain balance.  
     * @param oracleTimestamp The oracleTimestamp whose state root the `proof` will be proven against.
     *        Must be within `VERIFY_BALANCE_UPDATE_WINDOW_SECONDS` of the current block.
     * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs 
     * @param balanceUpdateProofs is the proof of the validator's balance and validatorFields in the balance tree and the balanceRoot to prove for
     *                                    the StrategyManager in case it must be removed from the list of the podOwner's strategies
     * @param validatorFields are the fields of the "Validator Container", refer to consensus specs
     * @dev For more details on the Beacon Chain spec, see: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
     */
    function verifyBalanceUpdates(
        uint64 oracleTimestamp,
        uint40[] calldata validatorIndices,
        BeaconChainProofs.StateRootProof calldata stateRootProof,
        BeaconChainProofs.BalanceUpdateProof[] calldata balanceUpdateProofs,
        bytes32[][] calldata validatorFields
    ) external;

    /**
     * @notice This function records full and partial withdrawals on behalf of one of the Ethereum validators for this EigenPod
     * @param oracleTimestamp is the timestamp of the oracle slot that the withdrawal is being proven against
     * @param withdrawalProofs is the information needed to check the veracity of the block numbers and withdrawals being proven
     * @param validatorFieldsProofs is the proof of the validator's fields' in the validator tree
     * @param withdrawalFields are the fields of the withdrawals being proven
     * @param validatorFields are the fields of the validators being proven
     */
    function verifyAndProcessWithdrawals(
        uint64 oracleTimestamp,
        BeaconChainProofs.StateRootProof calldata stateRootProof,
        BeaconChainProofs.WithdrawalProof[] calldata withdrawalProofs,
        bytes[] calldata validatorFieldsProofs,
        bytes32[][] calldata validatorFields,
        bytes32[][] calldata withdrawalFields
    ) external;

    /**
     * @notice Called by the pod owner to activate restaking by withdrawing
     * all existing ETH from the pod and preventing further withdrawals via
     * "withdrawBeforeRestaking()"
     */
    function activateRestaking() external;

    /// @notice Called by the pod owner to withdraw the balance of the pod when `hasRestaked` is set to false
    function withdrawBeforeRestaking() external;

    /// @notice Called by the pod owner to withdraw the nonBeaconChainETHBalanceWei
    function withdrawNonBeaconChainETHBalanceWei(
        address recipient,
        uint256 amountToWithdraw
    ) external;

    /// @notice called by owner of a pod to remove any ERC20s deposited in the pod
    function recoverTokens(
        IERC20[] memory tokenList,
        uint256[] memory amountsToWithdraw,
        address recipient
    ) external;

    function initialize(address _podOwner) external;
}

File 17 of 32 : IEigenPodManager.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "@openzeppelin/contracts/proxy/beacon/IBeacon.sol";
import "./IETHPOSDeposit.sol";
import "./IStrategyManager.sol";
import "./IEigenPod.sol";
import "./IBeaconChainOracle.sol";
import "./ISlasher.sol";
import "./IStrategy.sol";

/**
 * @title Interface for factory that creates and manages solo staking pods that have their withdrawal credentials pointed to EigenLayer.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 */

interface IEigenPodManager {
    /// @notice Emitted to notify the update of the beaconChainOracle address
    event BeaconOracleUpdated(address indexed newOracleAddress);

    /// @notice Emitted to notify the deployment of an EigenPod
    event PodDeployed(address indexed eigenPod, address indexed podOwner);

    /// @notice Emitted to notify a deposit of beacon chain ETH recorded in the strategy manager
    event BeaconChainETHDeposited(address indexed podOwner, uint256 amount);

    /// @notice Emitted when `maxPods` value is updated from `previousValue` to `newValue`
    event MaxPodsUpdated(uint256 previousValue, uint256 newValue);

    /// @notice Emitted when a withdrawal of beacon chain ETH is completed
    event BeaconChainETHWithdrawalCompleted(
        address indexed podOwner,
        uint256 shares,
        uint96 nonce,
        address delegatedAddress,
        address withdrawer,
        bytes32 withdrawalRoot
    );

    /**
     * @notice Creates an EigenPod for the sender.
     * @dev Function will revert if the `msg.sender` already has an EigenPod.
     * @dev Returns EigenPod address
     */
    function createPod() external returns (address);

    /**
     * @notice Stakes for a new beacon chain validator on the sender's EigenPod.
     * Also creates an EigenPod for the sender if they don't have one already.
     * @param pubkey The 48 bytes public key of the beacon chain validator.
     * @param signature The validator's signature of the deposit data.
     * @param depositDataRoot The root/hash of the deposit data for the validator's deposit.
     */
    function stake(
        bytes calldata pubkey,
        bytes calldata signature,
        bytes32 depositDataRoot
    ) external payable;

    /// @notice Returns the address of the `podOwner`'s EigenPod if it has been deployed.
    function ownerToPod(address podOwner) external view returns (IEigenPod);

    /// @notice Returns the address of the `podOwner`'s EigenPod (whether it is deployed yet or not).
    function getPod(address podOwner) external view returns (IEigenPod);

    /// @notice The ETH2 Deposit Contract
    function ethPOS() external view returns (IETHPOSDeposit);

    /// @notice Beacon proxy to which the EigenPods point
    function eigenPodBeacon() external view returns (IBeacon);

    /// @notice Oracle contract that provides updates to the beacon chain's state
    function beaconChainOracle() external view returns (IBeaconChainOracle);

    /// @notice Returns the beacon block root at `timestamp`. Reverts if the Beacon block root at `timestamp` has not yet been finalized.
    function getBlockRootAtTimestamp(
        uint64 timestamp
    ) external view returns (bytes32);

    /// @notice EigenLayer's StrategyManager contract
    function strategyManager() external view returns (IStrategyManager);

    /// @notice EigenLayer's Slasher contract
    function slasher() external view returns (ISlasher);

    /// @notice Returns 'true' if the `podOwner` has created an EigenPod, and 'false' otherwise.
    function hasPod(address podOwner) external view returns (bool);

    /// @notice Returns the number of EigenPods that have been created
    function numPods() external view returns (uint256);

    /// @notice Returns the maximum number of EigenPods that can be created
    function maxPods() external view returns (uint256);

    /**
     * @notice Mapping from Pod owner owner to the number of shares they have in the virtual beacon chain ETH strategy.
     * @dev The share amount can become negative. This is necessary to accommodate the fact that a pod owner's virtual beacon chain ETH shares can
     * decrease between the pod owner queuing and completing a withdrawal.
     * When the pod owner's shares would otherwise increase, this "deficit" is decreased first _instead_.
     * Likewise, when a withdrawal is completed, this "deficit" is decreased and the withdrawal amount is decreased; We can think of this
     * as the withdrawal "paying off the deficit".
     */
    function podOwnerShares(address podOwner) external view returns (int256);

    /// @notice returns canonical, virtual beaconChainETH strategy
    function beaconChainETHStrategy() external view returns (IStrategy);
}

File 18 of 32 : IETHPOSDeposit.sol
// ┏━━━┓━┏┓━┏┓━━┏━━━┓━━┏━━━┓━━━━┏━━━┓━━━━━━━━━━━━━━━━━━━┏┓━━━━━┏━━━┓━━━━━━━━━┏┓━━━━━━━━━━━━━━┏┓━
// ┃┏━━┛┏┛┗┓┃┃━━┃┏━┓┃━━┃┏━┓┃━━━━┗┓┏┓┃━━━━━━━━━━━━━━━━━━┏┛┗┓━━━━┃┏━┓┃━━━━━━━━┏┛┗┓━━━━━━━━━━━━┏┛┗┓
// ┃┗━━┓┗┓┏┛┃┗━┓┗┛┏┛┃━━┃┃━┃┃━━━━━┃┃┃┃┏━━┓┏━━┓┏━━┓┏━━┓┏┓┗┓┏┛━━━━┃┃━┗┛┏━━┓┏━┓━┗┓┏┛┏━┓┏━━┓━┏━━┓┗┓┏┛
// ┃┏━━┛━┃┃━┃┏┓┃┏━┛┏┛━━┃┃━┃┃━━━━━┃┃┃┃┃┏┓┃┃┏┓┃┃┏┓┃┃━━┫┣┫━┃┃━━━━━┃┃━┏┓┃┏┓┃┃┏┓┓━┃┃━┃┏┛┗━┓┃━┃┏━┛━┃┃━
// ┃┗━━┓━┃┗┓┃┃┃┃┃┃┗━┓┏┓┃┗━┛┃━━━━┏┛┗┛┃┃┃━┫┃┗┛┃┃┗┛┃┣━━┃┃┃━┃┗┓━━━━┃┗━┛┃┃┗┛┃┃┃┃┃━┃┗┓┃┃━┃┗┛┗┓┃┗━┓━┃┗┓
// ┗━━━┛━┗━┛┗┛┗┛┗━━━┛┗┛┗━━━┛━━━━┗━━━┛┗━━┛┃┏━┛┗━━┛┗━━┛┗┛━┗━┛━━━━┗━━━┛┗━━┛┗┛┗┛━┗━┛┗┛━┗━━━┛┗━━┛━┗━┛
// ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
// ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┗┛━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

// SPDX-License-Identifier: CC0-1.0

pragma solidity >=0.5.0;

// This interface is designed to be compatible with the Vyper version.
/// @notice This is the Ethereum 2.0 deposit contract interface.
/// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs
interface IETHPOSDeposit {
    /// @notice A processed deposit event.
    event DepositEvent(
        bytes pubkey,
        bytes withdrawal_credentials,
        bytes amount,
        bytes signature,
        bytes index
    );

    /// @notice Submit a Phase 0 DepositData object.
    /// @param pubkey A BLS12-381 public key.
    /// @param withdrawal_credentials Commitment to a public key for withdrawals.
    /// @param signature A BLS12-381 signature.
    /// @param deposit_data_root The SHA-256 hash of the SSZ-encoded DepositData object.
    /// Used as a protection against malformed input.
    function deposit(
        bytes calldata pubkey,
        bytes calldata withdrawal_credentials,
        bytes calldata signature,
        bytes32 deposit_data_root
    ) external payable;

    /// @notice Query the current deposit root hash.
    /// @return The deposit root hash.
    function get_deposit_root() external view returns (bytes32);

    /// @notice Query the current deposit count.
    /// @return The deposit count encoded as a little endian 64-bit number.
    function get_deposit_count() external view returns (bytes memory);
}

File 19 of 32 : IProtocolConfig.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "./IRatioFeed.sol";
import "./ICToken.sol";
import "./IRestakingPool.sol";
import "./IEigenPodManager.sol";
import "../restaker/IRestakerDeployer.sol";

interface IProtocolConfig {
    /* errors */

    error OnlyGovernanceAllowed();
    error ZeroAddress();

    /* events */
    event OperatorChanged(address prevValue, address newValue);
    event GovernanceChanged(address prevValue, address newValue);
    event TreasuryChanged(address prevValue, address newValue);
    event RatioFeedChanged(IRatioFeed prevValue, IRatioFeed newValue);
    event CTokenChanged(ICToken prevValue, ICToken newValue);
    event RestakingPoolChanged(
        IRestakingPool prevValue,
        IRestakingPool newValue
    );
    event EigenManagerChanged(
        IEigenPodManager prevValue,
        IEigenPodManager newValue
    );
    event RestakerDeployerChanged(
        IRestakerDeployer prevValue,
        IRestakerDeployer newValue
    );

    /* functions */

    function getGovernance() external view returns (address governance);

    function getTreasury() external view returns (address treasury);

    function getOperator() external view returns (address operator);

    function getCToken() external view returns (ICToken token);

    function getRatioFeed() external view returns (IRatioFeed feed);

    function getRestakingPool() external view returns (IRestakingPool pool);

    function getRestakerDeployer()
        external
        view
        returns (IRestakerDeployer deployer);
}

File 20 of 32 : IRatioFeed.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

interface IRatioFeed {
    enum RatioError {
        NoError,
        TooOften, // ratio was updated less than 12 hours ago
        GreaterThanPrevious, // new ratio cannot be greater than old
        NotInThreshold, // new ratio too low, not in threshold range
        GreaterThanInitial // new ratio is greater than {INITIAL_RATIO}
    }

    struct HistoricalRatios {
        uint64[9] historicalRatios;
        uint40 lastUpdate;
    }

    /* errors */

    error RatioNotUpdated(RatioError);
    error RatioThresholdNotInRange();

    /* events */

    event RatioThresholdChanged(uint256 oldValue, uint256 newValue);
    event RatioUpdated(
        address indexed tokenAddress,
        uint256 oldRatio,
        uint256 newRatio
    );

    /* functions */

    function updateRatio(address token, uint256 ratio) external;
    function getRatio(address token) external view returns (uint256 ratio);
}

File 21 of 32 : IRestakingPool.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.7;

interface IRestakingPool {
    /* structs */

    struct Unstake {
        address recipient;
        uint256 amount;
    }

    /* errors */

    error PoolZeroAmount();
    error PoolZeroAddress();
    error PoolRestakerExists();
    error PoolRestakerNotExists();
    error PoolInsufficientBalance();
    error PoolWrongInputLength();

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error PoolFailedInnerCall();

    error PoolDistributeGasLimitNotInRange(uint64 max);
    error PoolDistributeGasLimitNotSet();

    error PoolStakeAmLessThanMin();
    error PoolStakeAmGreaterThanAvailable();
    error PoolUnstakeAmLessThanMin();

    /* events */

    event Received(address indexed sender, uint256 amount);

    event Staked(address indexed staker, uint256 amount, uint256 shares);

    event Unstaked(
        address indexed from,
        address indexed to,
        uint256 amount,
        uint256 shares
    );

    event Deposited(string indexed provider, bytes[] pubkeys);

    event DistributeGasLimitChanged(uint32 prevValue, uint32 newValue);

    event MinStakeChanged(uint256 prevValue, uint256 newValue);

    event MinUntakeChanged(uint256 prevValue, uint256 newValue);

    event MaxTVLChanged(uint256 prevValue, uint256 newValue);

    event PendingUnstake(
        address indexed ownerAddress,
        address indexed receiverAddress,
        uint256 amount,
        uint256 shares
    );

    event UnstakesDistributed(Unstake[] unstakes);

    event ClaimExpected(address indexed claimer, uint256 value);

    event UnstakeClaimed(
        address indexed claimer,
        address indexed caller,
        uint256 value
    );

    event FeeClaimed(address indexed treasury, uint256 amount);

    event RestakerAdded(string indexed provider, address restaker);

    /* functions */

    function getMinStake() external view returns (uint256);

    function getMinUnstake() external view returns (uint256);
}

File 22 of 32 : ISignatureUtils.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

/**
 * @title The interface for common signature utilities.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 */
interface ISignatureUtils {
    // @notice Struct that bundles together a signature and an expiration time for the signature. Used primarily for stack management.
    struct SignatureWithExpiry {
        // the signature itself, formatted as a single bytes object
        bytes signature;
        // the expiration timestamp (UTC) of the signature
        uint256 expiry;
    }

    // @notice Struct that bundles together a signature, a salt for uniqueness, and an expiration time for the signature. Used primarily for stack management.
    struct SignatureWithSaltAndExpiry {
        // the signature itself, formatted as a single bytes object
        bytes signature;
        // the salt used to generate the signature
        bytes32 salt;
        // the expiration timestamp (UTC) of the signature
        uint256 expiry;
    }
}

File 23 of 32 : ISlasher.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "./IStrategyManager.sol";
import "./IDelegationManager.sol";

/**
 * @title Interface for the primary 'slashing' contract for EigenLayer.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice See the `Slasher` contract itself for implementation details.
 */
interface ISlasher {
    // struct used to store information about the current state of an operator's obligations to middlewares they are serving
    struct MiddlewareTimes {
        // The update block for the middleware whose most recent update was earliest, i.e. the 'stalest' update out of all middlewares the operator is serving
        uint32 stalestUpdateBlock;
        // The latest 'serveUntilBlock' from all of the middleware that the operator is serving
        uint32 latestServeUntilBlock;
    }

    // struct used to store details relevant to a single middleware that an operator has opted-in to serving
    struct MiddlewareDetails {
        // the block at which the contract begins being able to finalize the operator's registration with the service via calling `recordFirstStakeUpdate`
        uint32 registrationMayBeginAtBlock;
        // the block before which the contract is allowed to slash the user
        uint32 contractCanSlashOperatorUntilBlock;
        // the block at which the middleware's view of the operator's stake was most recently updated
        uint32 latestUpdateBlock;
    }

    /// @notice Emitted when a middleware times is added to `operator`'s array.
    event MiddlewareTimesAdded(
        address operator,
        uint256 index,
        uint32 stalestUpdateBlock,
        uint32 latestServeUntilBlock
    );

    /// @notice Emitted when `operator` begins to allow `contractAddress` to slash them.
    event OptedIntoSlashing(
        address indexed operator,
        address indexed contractAddress
    );

    /// @notice Emitted when `contractAddress` signals that it will no longer be able to slash `operator` after the `contractCanSlashOperatorUntilBlock`.
    event SlashingAbilityRevoked(
        address indexed operator,
        address indexed contractAddress,
        uint32 contractCanSlashOperatorUntilBlock
    );

    /**
     * @notice Emitted when `slashingContract` 'freezes' the `slashedOperator`.
     * @dev The `slashingContract` must have permission to slash the `slashedOperator`, i.e. `canSlash(slasherOperator, slashingContract)` must return 'true'.
     */
    event OperatorFrozen(
        address indexed slashedOperator,
        address indexed slashingContract
    );

    /// @notice Emitted when `previouslySlashedAddress` is 'unfrozen', allowing them to again move deposited funds within EigenLayer.
    event FrozenStatusReset(address indexed previouslySlashedAddress);

    /**
     * @notice Gives the `contractAddress` permission to slash the funds of the caller.
     * @dev Typically, this function must be called prior to registering for a middleware.
     */
    function optIntoSlashing(address contractAddress) external;

    /**
     * @notice Used for 'slashing' a certain operator.
     * @param toBeFrozen The operator to be frozen.
     * @dev Technically the operator is 'frozen' (hence the name of this function), and then subject to slashing pending a decision by a human-in-the-loop.
     * @dev The operator must have previously given the caller (which should be a contract) the ability to slash them, through a call to `optIntoSlashing`.
     */
    function freezeOperator(address toBeFrozen) external;

    /**
     * @notice Removes the 'frozen' status from each of the `frozenAddresses`
     * @dev Callable only by the contract owner (i.e. governance).
     */
    function resetFrozenStatus(address[] calldata frozenAddresses) external;

    /**
     * @notice this function is a called by middlewares during an operator's registration to make sure the operator's stake at registration
     *         is slashable until serveUntil
     * @param operator the operator whose stake update is being recorded
     * @param serveUntilBlock the block until which the operator's stake at the current block is slashable
     * @dev adds the middleware's slashing contract to the operator's linked list
     */
    function recordFirstStakeUpdate(
        address operator,
        uint32 serveUntilBlock
    ) external;

    /**
     * @notice this function is a called by middlewares during a stake update for an operator (perhaps to free pending withdrawals)
     *         to make sure the operator's stake at updateBlock is slashable until serveUntil
     * @param operator the operator whose stake update is being recorded
     * @param updateBlock the block for which the stake update is being recorded
     * @param serveUntilBlock the block until which the operator's stake at updateBlock is slashable
     * @param insertAfter the element of the operators linked list that the currently updating middleware should be inserted after
     * @dev insertAfter should be calculated offchain before making the transaction that calls this. this is subject to race conditions,
     *      but it is anticipated to be rare and not detrimental.
     */
    function recordStakeUpdate(
        address operator,
        uint32 updateBlock,
        uint32 serveUntilBlock,
        uint256 insertAfter
    ) external;

    /**
     * @notice this function is a called by middlewares during an operator's deregistration to make sure the operator's stake at deregistration
     *         is slashable until serveUntil
     * @param operator the operator whose stake update is being recorded
     * @param serveUntilBlock the block until which the operator's stake at the current block is slashable
     * @dev removes the middleware's slashing contract to the operator's linked list and revokes the middleware's (i.e. caller's) ability to
     * slash `operator` once `serveUntil` is reached
     */
    function recordLastStakeUpdateAndRevokeSlashingAbility(
        address operator,
        uint32 serveUntilBlock
    ) external;

    /// @notice The StrategyManager contract of EigenLayer
    function strategyManager() external view returns (IStrategyManager);

    /// @notice The DelegationManager contract of EigenLayer
    function delegation() external view returns (IDelegationManager);

    /**
     * @notice Used to determine whether `staker` is actively 'frozen'. If a staker is frozen, then they are potentially subject to
     * slashing of their funds, and cannot cannot deposit or withdraw from the strategyManager until the slashing process is completed
     * and the staker's status is reset (to 'unfrozen').
     * @param staker The staker of interest.
     * @return Returns 'true' if `staker` themselves has their status set to frozen, OR if the staker is delegated
     * to an operator who has their status set to frozen. Otherwise returns 'false'.
     */
    function isFrozen(address staker) external view returns (bool);

    /// @notice Returns true if `slashingContract` is currently allowed to slash `toBeSlashed`.
    function canSlash(
        address toBeSlashed,
        address slashingContract
    ) external view returns (bool);

    /// @notice Returns the block until which `serviceContract` is allowed to slash the `operator`.
    function contractCanSlashOperatorUntilBlock(
        address operator,
        address serviceContract
    ) external view returns (uint32);

    /// @notice Returns the block at which the `serviceContract` last updated its view of the `operator`'s stake
    function latestUpdateBlock(
        address operator,
        address serviceContract
    ) external view returns (uint32);

    /// @notice A search routine for finding the correct input value of `insertAfter` to `recordStakeUpdate` / `_updateMiddlewareList`.
    function getCorrectValueForInsertAfter(
        address operator,
        uint32 updateBlock
    ) external view returns (uint256);

    /**
     * @notice Returns 'true' if `operator` can currently complete a withdrawal started at the `withdrawalStartBlock`, with `middlewareTimesIndex` used
     * to specify the index of a `MiddlewareTimes` struct in the operator's list (i.e. an index in `operatorToMiddlewareTimes[operator]`). The specified
     * struct is consulted as proof of the `operator`'s ability (or lack thereof) to complete the withdrawal.
     * This function will return 'false' if the operator cannot currently complete a withdrawal started at the `withdrawalStartBlock`, *or* in the event
     * that an incorrect `middlewareTimesIndex` is supplied, even if one or more correct inputs exist.
     * @param operator Either the operator who queued the withdrawal themselves, or if the withdrawing party is a staker who delegated to an operator,
     * this address is the operator *who the staker was delegated to* at the time of the `withdrawalStartBlock`.
     * @param withdrawalStartBlock The block number at which the withdrawal was initiated.
     * @param middlewareTimesIndex Indicates an index in `operatorToMiddlewareTimes[operator]` to consult as proof of the `operator`'s ability to withdraw
     * @dev The correct `middlewareTimesIndex` input should be computable off-chain.
     */
    function canWithdraw(
        address operator,
        uint32 withdrawalStartBlock,
        uint256 middlewareTimesIndex
    ) external returns (bool);

    /**
     * operator =>
     *  [
     *      (
     *          the least recent update block of all of the middlewares it's serving/served,
     *          latest time that the stake bonded at that update needed to serve until
     *      )
     *  ]
     */
    function operatorToMiddlewareTimes(
        address operator,
        uint256 arrayIndex
    ) external view returns (MiddlewareTimes memory);

    /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator].length`
    function middlewareTimesLength(
        address operator
    ) external view returns (uint256);

    /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].stalestUpdateBlock`.
    function getMiddlewareTimesIndexStalestUpdateBlock(
        address operator,
        uint32 index
    ) external view returns (uint32);

    /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].latestServeUntil`.
    function getMiddlewareTimesIndexServeUntilBlock(
        address operator,
        uint32 index
    ) external view returns (uint32);

    /// @notice Getter function for fetching `_operatorToWhitelistedContractsByUpdate[operator].size`.
    function operatorWhitelistedContractsLinkedListSize(
        address operator
    ) external view returns (uint256);

    /// @notice Getter function for fetching a single node in the operator's linked list (`_operatorToWhitelistedContractsByUpdate[operator]`).
    function operatorWhitelistedContractsLinkedListEntry(
        address operator,
        address node
    ) external view returns (bool, uint256, uint256);
}

File 24 of 32 : IStakeRegistryStub.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "./IStakeRegistryStub.sol";

// @notice Stub interface to avoid circular-ish inheritance, where core contracts rely on middleware interfaces
interface IStakeRegistryStub {
    /**
     * @notice Used for updating information on deposits of nodes.
     * @param operators are the addresses of the operators whose stake information is getting updated
     */
    function updateStakes(address[] memory operators) external;
}

File 25 of 32 : IStrategy.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title Minimal interface for an `Strategy` contract.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice Custom `Strategy` implementations may expand extensively on this interface.
 */
interface IStrategy {
    /**
     * @notice Used to deposit tokens into this Strategy
     * @param token is the ERC20 token being deposited
     * @param amount is the amount of token being deposited
     * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's
     * `depositIntoStrategy` function, and individual share balances are recorded in the strategyManager as well.
     * @return newShares is the number of new shares issued at the current exchange ratio.
     */
    function deposit(IERC20 token, uint256 amount) external returns (uint256);

    /**
     * @notice Used to withdraw tokens from this Strategy, to the `recipient`'s address
     * @param recipient is the address to receive the withdrawn funds
     * @param token is the ERC20 token being transferred out
     * @param amountShares is the amount of shares being withdrawn
     * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's
     * other functions, and individual share balances are recorded in the strategyManager as well.
     */
    function withdraw(
        address recipient,
        IERC20 token,
        uint256 amountShares
    ) external;

    /**
     * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy.
     * @notice In contrast to `sharesToUnderlyingView`, this function **may** make state modifications
     * @param amountShares is the amount of shares to calculate its conversion into the underlying token
     * @return The amount of underlying tokens corresponding to the input `amountShares`
     * @dev Implementation for these functions in particular may vary significantly for different strategies
     */
    function sharesToUnderlying(
        uint256 amountShares
    ) external returns (uint256);

    /**
     * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy.
     * @notice In contrast to `underlyingToSharesView`, this function **may** make state modifications
     * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares
     * @return The amount of underlying tokens corresponding to the input `amountShares`
     * @dev Implementation for these functions in particular may vary significantly for different strategies
     */
    function underlyingToShares(
        uint256 amountUnderlying
    ) external returns (uint256);

    /**
     * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in
     * this strategy. In contrast to `userUnderlyingView`, this function **may** make state modifications
     */
    function userUnderlying(address user) external returns (uint256);

    /**
     * @notice convenience function for fetching the current total shares of `user` in this strategy, by
     * querying the `strategyManager` contract
     */
    function shares(address user) external view returns (uint256);

    /**
     * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy.
     * @notice In contrast to `sharesToUnderlying`, this function guarantees no state modifications
     * @param amountShares is the amount of shares to calculate its conversion into the underlying token
     * @return The amount of shares corresponding to the input `amountUnderlying`
     * @dev Implementation for these functions in particular may vary significantly for different strategies
     */
    function sharesToUnderlyingView(
        uint256 amountShares
    ) external view returns (uint256);

    /**
     * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy.
     * @notice In contrast to `underlyingToShares`, this function guarantees no state modifications
     * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares
     * @return The amount of shares corresponding to the input `amountUnderlying`
     * @dev Implementation for these functions in particular may vary significantly for different strategies
     */
    function underlyingToSharesView(
        uint256 amountUnderlying
    ) external view returns (uint256);

    /**
     * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in
     * this strategy. In contrast to `userUnderlying`, this function guarantees no state modifications
     */
    function userUnderlyingView(address user) external view returns (uint256);

    /// @notice The underlying token for shares in this Strategy
    function underlyingToken() external view returns (IERC20);

    /// @notice The total number of extant shares in this Strategy
    function totalShares() external view returns (uint256);

    /// @notice Returns either a brief string explaining the strategy's goal & purpose, or a link to metadata that explains in more detail.
    function explanation() external view returns (string memory);
}

File 26 of 32 : IStrategyManager.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity >=0.5.0;

import "./IStrategy.sol";
import "./ISlasher.sol";
import "./IDelegationManager.sol";
import "./IEigenPodManager.sol";

/**
 * @title Interface for the primary entrypoint for funds into EigenLayer.
 * @author Layr Labs, Inc.
 * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
 * @notice See the `StrategyManager` contract itself for implementation details.
 */
interface IStrategyManager {
    /**
     * @notice Emitted when a new deposit occurs on behalf of `staker`.
     * @param staker Is the staker who is depositing funds into EigenLayer.
     * @param strategy Is the strategy that `staker` has deposited into.
     * @param token Is the token that `staker` deposited.
     * @param shares Is the number of new shares `staker` has been granted in `strategy`.
     */
    event Deposit(
        address staker,
        IERC20 token,
        IStrategy strategy,
        uint256 shares
    );

    /// @notice Emitted when the `strategyWhitelister` is changed
    event StrategyWhitelisterChanged(
        address previousAddress,
        address newAddress
    );

    /// @notice Emitted when a strategy is added to the approved list of strategies for deposit
    event StrategyAddedToDepositWhitelist(IStrategy strategy);

    /// @notice Emitted when a strategy is removed from the approved list of strategies for deposit
    event StrategyRemovedFromDepositWhitelist(IStrategy strategy);

    /**
     * @notice Deposits `amount` of `token` into the specified `strategy`, with the resultant shares credited to `msg.sender`
     * @param strategy is the specified strategy where deposit is to be made,
     * @param token is the denomination in which the deposit is to be made,
     * @param amount is the amount of token to be deposited in the strategy by the staker
     * @return shares The amount of new shares in the `strategy` created as part of the action.
     * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf.
     * @dev Cannot be called by an address that is 'frozen' (this function will revert if the `msg.sender` is frozen).
     *
     * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended.  This can lead to attack vectors
     *          where the token balance and corresponding strategy shares are not in sync upon reentrancy.
     */
    function depositIntoStrategy(
        IStrategy strategy,
        IERC20 token,
        uint256 amount
    ) external returns (uint256 shares);

    /**
     * @notice Used for depositing an asset into the specified strategy with the resultant shares credited to `staker`,
     * who must sign off on the action.
     * Note that the assets are transferred out/from the `msg.sender`, not from the `staker`; this function is explicitly designed
     * purely to help one address deposit 'for' another.
     * @param strategy is the specified strategy where deposit is to be made,
     * @param token is the denomination in which the deposit is to be made,
     * @param amount is the amount of token to be deposited in the strategy by the staker
     * @param staker the staker that the deposited assets will be credited to
     * @param expiry the timestamp at which the signature expires
     * @param signature is a valid signature from the `staker`. either an ECDSA signature if the `staker` is an EOA, or data to forward
     * following EIP-1271 if the `staker` is a contract
     * @return shares The amount of new shares in the `strategy` created as part of the action.
     * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf.
     * @dev A signature is required for this function to eliminate the possibility of griefing attacks, specifically those
     * targeting stakers who may be attempting to undelegate.
     * @dev Cannot be called on behalf of a staker that is 'frozen' (this function will revert if the `staker` is frozen).
     *
     *  WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended.  This can lead to attack vectors
     *          where the token balance and corresponding strategy shares are not in sync upon reentrancy
     */
    function depositIntoStrategyWithSignature(
        IStrategy strategy,
        IERC20 token,
        uint256 amount,
        address staker,
        uint256 expiry,
        bytes memory signature
    ) external returns (uint256 shares);

    /// @notice Used by the DelegationManager to remove a Staker's shares from a particular strategy when entering the withdrawal queue
    function removeShares(
        address staker,
        IStrategy strategy,
        uint256 shares
    ) external;

    /// @notice Used by the DelegationManager to award a Staker some shares that have passed through the withdrawal queue
    function addShares(
        address staker,
        IStrategy strategy,
        uint256 shares
    ) external;

    /// @notice Used by the DelegationManager to convert withdrawn shares to tokens and send them to a recipient
    function withdrawSharesAsTokens(
        address recipient,
        IStrategy strategy,
        uint256 shares,
        IERC20 token
    ) external;

    /// @notice Returns the current shares of `user` in `strategy`
    function stakerStrategyShares(
        address user,
        IStrategy strategy
    ) external view returns (uint256 shares);

    /**
     * @notice Get all details on the staker's deposits and corresponding shares
     * @return (staker's strategies, shares in these strategies)
     */
    function getDeposits(
        address staker
    ) external view returns (IStrategy[] memory, uint256[] memory);

    /// @notice Simple getter function that returns `stakerStrategyList[staker].length`.
    function stakerStrategyListLength(
        address staker
    ) external view returns (uint256);

    /**
     * @notice Owner-only function that adds the provided Strategies to the 'whitelist' of strategies that stakers can deposit into
     * @param strategiesToWhitelist Strategies that will be added to the `strategyIsWhitelistedForDeposit` mapping (if they aren't in it already)
     */
    function addStrategiesToDepositWhitelist(
        IStrategy[] calldata strategiesToWhitelist
    ) external;

    /**
     * @notice Owner-only function that removes the provided Strategies from the 'whitelist' of strategies that stakers can deposit into
     * @param strategiesToRemoveFromWhitelist Strategies that will be removed to the `strategyIsWhitelistedForDeposit` mapping (if they are in it)
     */
    function removeStrategiesFromDepositWhitelist(
        IStrategy[] calldata strategiesToRemoveFromWhitelist
    ) external;

    /// @notice Returns the single, central Delegation contract of EigenLayer
    function delegation() external view returns (IDelegationManager);

    /// @notice Returns the single, central Slasher contract of EigenLayer
    function slasher() external view returns (ISlasher);

    /// @notice Returns the EigenPodManager contract of EigenLayer
    function eigenPodManager() external view returns (IEigenPodManager);

    /// @notice Returns the address of the `strategyWhitelister`
    function strategyWhitelister() external view returns (address);

    // LIMITED BACKWARDS-COMPATIBILITY FOR DEPRECATED FUNCTIONALITY
    // packed struct for queued withdrawals; helps deal with stack-too-deep errors
    struct DeprecatedStruct_WithdrawerAndNonce {
        address withdrawer;
        uint96 nonce;
    }

    /**
     * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored.
     * In functions that operate on existing queued withdrawals -- e.g. `startQueuedWithdrawalWaitingPeriod` or `completeQueuedWithdrawal`,
     * the data is resubmitted and the hash of the submitted data is computed by `calculateWithdrawalRoot` and checked against the
     * stored hash in order to confirm the integrity of the submitted data.
     */
    struct DeprecatedStruct_QueuedWithdrawal {
        IStrategy[] strategies;
        uint256[] shares;
        address staker;
        DeprecatedStruct_WithdrawerAndNonce withdrawerAndNonce;
        uint32 withdrawalStartBlock;
        address delegatedAddress;
    }

    function migrateQueuedWithdrawal(
        DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal
    ) external returns (bool, bytes32);

    function calculateWithdrawalRoot(
        DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal
    ) external pure returns (bytes32);
}

File 27 of 32 : BeaconChainProofs.sol
// SPDX-License-Identifier: BUSL-1.1

pragma solidity ^0.8.0;

import "./Merkle.sol";
import "../libraries/Endian.sol";

//Utility library for parsing and PHASE0 beacon chain block headers
//SSZ Spec: https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization
//BeaconBlockHeader Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader
//BeaconState Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
library BeaconChainProofs {
    // constants are the number of fields and the heights of the different merkle trees used in merkleizing beacon chain containers
    uint256 internal constant NUM_BEACON_BLOCK_HEADER_FIELDS = 5;
    uint256 internal constant BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT = 3;

    uint256 internal constant NUM_BEACON_BLOCK_BODY_FIELDS = 11;
    uint256 internal constant BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT = 4;

    uint256 internal constant NUM_BEACON_STATE_FIELDS = 21;
    uint256 internal constant BEACON_STATE_FIELD_TREE_HEIGHT = 5;

    uint256 internal constant NUM_ETH1_DATA_FIELDS = 3;
    uint256 internal constant ETH1_DATA_FIELD_TREE_HEIGHT = 2;

    uint256 internal constant NUM_VALIDATOR_FIELDS = 8;
    uint256 internal constant VALIDATOR_FIELD_TREE_HEIGHT = 3;

    uint256 internal constant NUM_EXECUTION_PAYLOAD_HEADER_FIELDS = 15;
    uint256 internal constant EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT = 4;

    uint256 internal constant NUM_EXECUTION_PAYLOAD_FIELDS = 15;
    uint256 internal constant EXECUTION_PAYLOAD_FIELD_TREE_HEIGHT = 4;

    // HISTORICAL_ROOTS_LIMIT	 = 2**24, so tree height is 24
    uint256 internal constant HISTORICAL_ROOTS_TREE_HEIGHT = 24;

    // HISTORICAL_BATCH is root of state_roots and block_root, so number of leaves =  2^1
    uint256 internal constant HISTORICAL_BATCH_TREE_HEIGHT = 1;

    // SLOTS_PER_HISTORICAL_ROOT = 2**13, so tree height is 13
    uint256 internal constant STATE_ROOTS_TREE_HEIGHT = 13;
    uint256 internal constant BLOCK_ROOTS_TREE_HEIGHT = 13;

    //HISTORICAL_ROOTS_LIMIT = 2**24, so tree height is 24
    uint256 internal constant HISTORICAL_SUMMARIES_TREE_HEIGHT = 24;

    //Index of block_summary_root in historical_summary container
    uint256 internal constant BLOCK_SUMMARY_ROOT_INDEX = 0;

    uint256 internal constant NUM_WITHDRAWAL_FIELDS = 4;
    // tree height for hash tree of an individual withdrawal container
    uint256 internal constant WITHDRAWAL_FIELD_TREE_HEIGHT = 2;

    uint256 internal constant VALIDATOR_TREE_HEIGHT = 40;
    //refer to the eigenlayer-cli proof library.  Despite being the same dimensions as the validator tree, the balance tree is merkleized differently
    uint256 internal constant BALANCE_TREE_HEIGHT = 38;

    // MAX_WITHDRAWALS_PER_PAYLOAD = 2**4, making tree height = 4
    uint256 internal constant WITHDRAWALS_TREE_HEIGHT = 4;

    //in beacon block body https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconblockbody
    uint256 internal constant EXECUTION_PAYLOAD_INDEX = 9;

    // in beacon block header https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader
    uint256 internal constant SLOT_INDEX = 0;
    uint256 internal constant PROPOSER_INDEX_INDEX = 1;
    uint256 internal constant STATE_ROOT_INDEX = 3;
    uint256 internal constant BODY_ROOT_INDEX = 4;
    // in beacon state https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconstate
    uint256 internal constant HISTORICAL_BATCH_STATE_ROOT_INDEX = 1;
    uint256 internal constant BEACON_STATE_SLOT_INDEX = 2;
    uint256 internal constant LATEST_BLOCK_HEADER_ROOT_INDEX = 4;
    uint256 internal constant BLOCK_ROOTS_INDEX = 5;
    uint256 internal constant STATE_ROOTS_INDEX = 6;
    uint256 internal constant HISTORICAL_ROOTS_INDEX = 7;
    uint256 internal constant ETH_1_ROOT_INDEX = 8;
    uint256 internal constant VALIDATOR_TREE_ROOT_INDEX = 11;
    uint256 internal constant BALANCE_INDEX = 12;
    uint256 internal constant EXECUTION_PAYLOAD_HEADER_INDEX = 24;
    uint256 internal constant HISTORICAL_SUMMARIES_INDEX = 27;

    // in validator https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
    uint256 internal constant VALIDATOR_PUBKEY_INDEX = 0;
    uint256 internal constant VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX = 1;
    uint256 internal constant VALIDATOR_BALANCE_INDEX = 2;
    uint256 internal constant VALIDATOR_SLASHED_INDEX = 3;
    uint256 internal constant VALIDATOR_WITHDRAWABLE_EPOCH_INDEX = 7;

    // in execution payload header
    uint256 internal constant TIMESTAMP_INDEX = 9;
    uint256 internal constant WITHDRAWALS_ROOT_INDEX = 14;

    //in execution payload
    uint256 internal constant WITHDRAWALS_INDEX = 14;

    // in withdrawal
    uint256 internal constant WITHDRAWAL_VALIDATOR_INDEX_INDEX = 1;
    uint256 internal constant WITHDRAWAL_VALIDATOR_AMOUNT_INDEX = 3;

    //In historicalBatch
    uint256 internal constant HISTORICALBATCH_STATEROOTS_INDEX = 1;

    //Misc Constants

    /// @notice The number of slots each epoch in the beacon chain
    uint64 internal constant SLOTS_PER_EPOCH = 32;

    /// @notice The number of seconds in a slot in the beacon chain
    uint64 internal constant SECONDS_PER_SLOT = 12;

    /// @notice Number of seconds per epoch: 384 == 32 slots/epoch * 12 seconds/slot
    uint64 internal constant SECONDS_PER_EPOCH =
        SLOTS_PER_EPOCH * SECONDS_PER_SLOT;

    bytes8 internal constant UINT64_MASK = 0xffffffffffffffff;

    /// @notice This struct contains the merkle proofs and leaves needed to verify a partial/full withdrawal
    struct WithdrawalProof {
        bytes withdrawalProof;
        bytes slotProof;
        bytes executionPayloadProof;
        bytes timestampProof;
        bytes historicalSummaryBlockRootProof;
        uint64 blockRootIndex;
        uint64 historicalSummaryIndex;
        uint64 withdrawalIndex;
        bytes32 blockRoot;
        bytes32 slotRoot;
        bytes32 timestampRoot;
        bytes32 executionPayloadRoot;
    }

    /// @notice This struct contains the merkle proofs and leaves needed to verify a balance update
    struct BalanceUpdateProof {
        bytes validatorBalanceProof;
        bytes validatorFieldsProof;
        bytes32 balanceRoot;
    }

    /// @notice This struct contains the root and proof for verifying the state root against the oracle block root
    struct StateRootProof {
        bytes32 beaconStateRoot;
        bytes proof;
    }

    /**
     * @notice This function verifies merkle proofs of the fields of a certain validator against a beacon chain state root
     * @param validatorIndex the index of the proven validator
     * @param beaconStateRoot is the beacon chain state root to be proven against.
     * @param validatorFieldsProof is the data used in proving the validator's fields
     * @param validatorFields the claimed fields of the validator
     */
    function verifyValidatorFields(
        bytes32 beaconStateRoot,
        bytes32[] calldata validatorFields,
        bytes calldata validatorFieldsProof,
        uint40 validatorIndex
    ) internal view {
        require(
            validatorFields.length == 2 ** VALIDATOR_FIELD_TREE_HEIGHT,
            "BeaconChainProofs.verifyValidatorFields: Validator fields has incorrect length"
        );

        /**
         * Note: the length of the validator merkle proof is BeaconChainProofs.VALIDATOR_TREE_HEIGHT + 1.
         * There is an additional layer added by hashing the root with the length of the validator list
         */
        require(
            validatorFieldsProof.length ==
                32 *
                    ((VALIDATOR_TREE_HEIGHT + 1) +
                        BEACON_STATE_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyValidatorFields: Proof has incorrect length"
        );
        uint256 index = (VALIDATOR_TREE_ROOT_INDEX <<
            (VALIDATOR_TREE_HEIGHT + 1)) | uint256(validatorIndex);
        // merkleize the validatorFields to get the leaf to prove
        bytes32 validatorRoot = Merkle.merkleizeSha256(validatorFields);

        // verify the proof of the validatorRoot against the beaconStateRoot
        require(
            Merkle.verifyInclusionSha256({
                proof: validatorFieldsProof,
                root: beaconStateRoot,
                leaf: validatorRoot,
                index: index
            }),
            "BeaconChainProofs.verifyValidatorFields: Invalid merkle proof"
        );
    }

    /**
     * @notice This function verifies merkle proofs of the balance of a certain validator against a beacon chain state root
     * @param validatorIndex the index of the proven validator
     * @param beaconStateRoot is the beacon chain state root to be proven against.
     * @param validatorBalanceProof is the proof of the balance against the beacon chain state root
     * @param balanceRoot is the serialized balance used to prove the balance of the validator (refer to `getBalanceAtIndex` for detailed explanation)
     */
    function verifyValidatorBalance(
        bytes32 beaconStateRoot,
        bytes32 balanceRoot,
        bytes calldata validatorBalanceProof,
        uint40 validatorIndex
    ) internal view {
        require(
            validatorBalanceProof.length ==
                32 *
                    ((BALANCE_TREE_HEIGHT + 1) +
                        BEACON_STATE_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyValidatorBalance: Proof has incorrect length"
        );

        /**
         * the beacon state's balance list is a list of uint64 values, and these are grouped together in 4s when merkleized.
         * Therefore, the index of the balance of a validator is validatorIndex/4
         */
        uint256 balanceIndex = uint256(validatorIndex / 4);
        /**
         * Note: Merkleization of the balance root tree uses MerkleizeWithMixin, i.e., the length of the array is hashed with the root of
         * the array.  Thus we shift the BALANCE_INDEX over by BALANCE_TREE_HEIGHT + 1 and not just BALANCE_TREE_HEIGHT.
         */
        balanceIndex =
            (BALANCE_INDEX << (BALANCE_TREE_HEIGHT + 1)) |
            balanceIndex;

        require(
            Merkle.verifyInclusionSha256({
                proof: validatorBalanceProof,
                root: beaconStateRoot,
                leaf: balanceRoot,
                index: balanceIndex
            }),
            "BeaconChainProofs.verifyValidatorBalance: Invalid merkle proof"
        );
    }

    /**
     * @notice This function verifies the latestBlockHeader against the state root. the latestBlockHeader is
     * a tracked in the beacon state.
     * @param beaconStateRoot is the beacon chain state root to be proven against.
     * @param stateRootProof is the provided merkle proof
     * @param latestBlockRoot is hashtree root of the latest block header in the beacon state
     */
    function verifyStateRootAgainstLatestBlockRoot(
        bytes32 latestBlockRoot,
        bytes32 beaconStateRoot,
        bytes calldata stateRootProof
    ) internal view {
        require(
            stateRootProof.length ==
                32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Proof has incorrect length"
        );
        //Next we verify the slot against the blockRoot
        require(
            Merkle.verifyInclusionSha256({
                proof: stateRootProof,
                root: latestBlockRoot,
                leaf: beaconStateRoot,
                index: STATE_ROOT_INDEX
            }),
            "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Invalid latest block header root merkle proof"
        );
    }

    /**
     * @notice This function verifies the slot and the withdrawal fields for a given withdrawal
     * @param withdrawalProof is the provided set of merkle proofs
     * @param withdrawalFields is the serialized withdrawal container to be proven
     */
    function verifyWithdrawal(
        bytes32 beaconStateRoot,
        bytes32[] calldata withdrawalFields,
        WithdrawalProof calldata withdrawalProof
    ) internal view {
        require(
            withdrawalFields.length == 2 ** WITHDRAWAL_FIELD_TREE_HEIGHT,
            "BeaconChainProofs.verifyWithdrawal: withdrawalFields has incorrect length"
        );

        require(
            withdrawalProof.blockRootIndex < 2 ** BLOCK_ROOTS_TREE_HEIGHT,
            "BeaconChainProofs.verifyWithdrawal: blockRootIndex is too large"
        );
        require(
            withdrawalProof.withdrawalIndex < 2 ** WITHDRAWALS_TREE_HEIGHT,
            "BeaconChainProofs.verifyWithdrawal: withdrawalIndex is too large"
        );

        require(
            withdrawalProof.historicalSummaryIndex <
                2 ** HISTORICAL_SUMMARIES_TREE_HEIGHT,
            "BeaconChainProofs.verifyWithdrawal: historicalSummaryIndex is too large"
        );

        require(
            withdrawalProof.withdrawalProof.length ==
                32 *
                    (EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT +
                        WITHDRAWALS_TREE_HEIGHT +
                        1),
            "BeaconChainProofs.verifyWithdrawal: withdrawalProof has incorrect length"
        );
        require(
            withdrawalProof.executionPayloadProof.length ==
                32 *
                    (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT +
                        BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyWithdrawal: executionPayloadProof has incorrect length"
        );
        require(
            withdrawalProof.slotProof.length ==
                32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyWithdrawal: slotProof has incorrect length"
        );
        require(
            withdrawalProof.timestampProof.length ==
                32 * (EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT),
            "BeaconChainProofs.verifyWithdrawal: timestampProof has incorrect length"
        );

        require(
            withdrawalProof.historicalSummaryBlockRootProof.length ==
                32 *
                    (BEACON_STATE_FIELD_TREE_HEIGHT +
                        (HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) +
                        1 +
                        (BLOCK_ROOTS_TREE_HEIGHT)),
            "BeaconChainProofs.verifyWithdrawal: historicalSummaryBlockRootProof has incorrect length"
        );
        /**
         * Note: Here, the "1" in "1 + (BLOCK_ROOTS_TREE_HEIGHT)" signifies that extra step of choosing the "block_root_summary" within the individual
         * "historical_summary". Everywhere else it signifies merkelize_with_mixin, where the length of an array is hashed with the root of the array,
         * but not here.
         */
        uint256 historicalBlockHeaderIndex = (HISTORICAL_SUMMARIES_INDEX <<
            ((HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) +
                1 +
                (BLOCK_ROOTS_TREE_HEIGHT))) |
            (uint256(withdrawalProof.historicalSummaryIndex) <<
                (1 + (BLOCK_ROOTS_TREE_HEIGHT))) |
            (BLOCK_SUMMARY_ROOT_INDEX << (BLOCK_ROOTS_TREE_HEIGHT)) |
            uint256(withdrawalProof.blockRootIndex);

        require(
            Merkle.verifyInclusionSha256({
                proof: withdrawalProof.historicalSummaryBlockRootProof,
                root: beaconStateRoot,
                leaf: withdrawalProof.blockRoot,
                index: historicalBlockHeaderIndex
            }),
            "BeaconChainProofs.verifyWithdrawal: Invalid historicalsummary merkle proof"
        );

        //Next we verify the slot against the blockRoot
        require(
            Merkle.verifyInclusionSha256({
                proof: withdrawalProof.slotProof,
                root: withdrawalProof.blockRoot,
                leaf: withdrawalProof.slotRoot,
                index: SLOT_INDEX
            }),
            "BeaconChainProofs.verifyWithdrawal: Invalid slot merkle proof"
        );

        {
            // Next we verify the executionPayloadRoot against the blockRoot
            uint256 executionPayloadIndex = (BODY_ROOT_INDEX <<
                (BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT)) |
                EXECUTION_PAYLOAD_INDEX;
            require(
                Merkle.verifyInclusionSha256({
                    proof: withdrawalProof.executionPayloadProof,
                    root: withdrawalProof.blockRoot,
                    leaf: withdrawalProof.executionPayloadRoot,
                    index: executionPayloadIndex
                }),
                "BeaconChainProofs.verifyWithdrawal: Invalid executionPayload merkle proof"
            );
        }

        // Next we verify the timestampRoot against the executionPayload root
        require(
            Merkle.verifyInclusionSha256({
                proof: withdrawalProof.timestampProof,
                root: withdrawalProof.executionPayloadRoot,
                leaf: withdrawalProof.timestampRoot,
                index: TIMESTAMP_INDEX
            }),
            "BeaconChainProofs.verifyWithdrawal: Invalid blockNumber merkle proof"
        );

        {
            /**
             * Next we verify the withdrawal fields against the blockRoot:
             * First we compute the withdrawal_index relative to the blockRoot by concatenating the indexes of all the
             * intermediate root indexes from the bottom of the sub trees (the withdrawal container) to the top, the blockRoot.
             * Then we calculate merkleize the withdrawalFields container to calculate the the withdrawalRoot.
             * Finally we verify the withdrawalRoot against the executionPayloadRoot.
             *
             *
             * Note: Merkleization of the withdrawals root tree uses MerkleizeWithMixin, i.e., the length of the array is hashed with the root of
             * the array.  Thus we shift the WITHDRAWALS_INDEX over by WITHDRAWALS_TREE_HEIGHT + 1 and not just WITHDRAWALS_TREE_HEIGHT.
             */
            uint256 withdrawalIndex = (WITHDRAWALS_INDEX <<
                (WITHDRAWALS_TREE_HEIGHT + 1)) |
                uint256(withdrawalProof.withdrawalIndex);
            bytes32 withdrawalRoot = Merkle.merkleizeSha256(withdrawalFields);
            require(
                Merkle.verifyInclusionSha256({
                    proof: withdrawalProof.withdrawalProof,
                    root: withdrawalProof.executionPayloadRoot,
                    leaf: withdrawalRoot,
                    index: withdrawalIndex
                }),
                "BeaconChainProofs.verifyWithdrawal: Invalid withdrawal merkle proof"
            );
        }
    }

    /**
     * @notice This function replicates the ssz hashing of a validator's pubkey, outlined below:
     *  hh := ssz.NewHasher()
     *  hh.PutBytes(validatorPubkey[:])
     *  validatorPubkeyHash := hh.Hash()
     *  hh.Reset()
     */
    function hashValidatorBLSPubkey(
        bytes memory validatorPubkey
    ) internal pure returns (bytes32 pubkeyHash) {
        require(
            validatorPubkey.length == 48,
            "Input should be 48 bytes in length"
        );
        return sha256(abi.encodePacked(validatorPubkey, bytes16(0)));
    }

    /**
     * @notice Parses a balanceRoot to get the uint64 balance of a validator.
     * @dev During merkleization of the beacon state balance tree, four uint64 values are treated as a single
     * leaf in the merkle tree. We use validatorIndex % 4 to determine which of the four uint64 values to
     * extract from the balanceRoot.
     * @param balanceRoot is the combination of 4 validator balances being proven for
     * @param validatorIndex is the index of the validator being proven for
     * @return The validator's balance, in Gwei
     */
    function getBalanceAtIndex(
        bytes32 balanceRoot,
        uint40 validatorIndex
    ) internal pure returns (uint64) {
        uint256 bitShiftAmount = (validatorIndex % 4) * 64;
        return
            Endian.fromLittleEndianUint64(
                bytes32((uint256(balanceRoot) << bitShiftAmount))
            );
    }

    /**
     * @dev Retrieve the withdrawal timestamp
     */
    function getWithdrawalTimestamp(
        WithdrawalProof memory withdrawalProof
    ) internal pure returns (uint64) {
        return Endian.fromLittleEndianUint64(withdrawalProof.timestampRoot);
    }

    /**
     * @dev Converts the withdrawal's slot to an epoch
     */
    function getWithdrawalEpoch(
        WithdrawalProof memory withdrawalProof
    ) internal pure returns (uint64) {
        return
            Endian.fromLittleEndianUint64(withdrawalProof.slotRoot) /
            SLOTS_PER_EPOCH;
    }

    /**
     * Indices for validator fields (refer to consensus specs):
     * 0: pubkey
     * 1: withdrawal credentials
     * 2: effective balance
     * 3: slashed?
     * 4: activation elligibility epoch
     * 5: activation epoch
     * 6: exit epoch
     * 7: withdrawable epoch
     */

    /**
     * @dev Retrieves a validator's pubkey hash
     */
    function getPubkeyHash(
        bytes32[] memory validatorFields
    ) internal pure returns (bytes32) {
        return validatorFields[VALIDATOR_PUBKEY_INDEX];
    }

    function getWithdrawalCredentials(
        bytes32[] memory validatorFields
    ) internal pure returns (bytes32) {
        return validatorFields[VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX];
    }

    /**
     * @dev Retrieves a validator's effective balance (in gwei)
     */
    function getEffectiveBalanceGwei(
        bytes32[] memory validatorFields
    ) internal pure returns (uint64) {
        return
            Endian.fromLittleEndianUint64(
                validatorFields[VALIDATOR_BALANCE_INDEX]
            );
    }

    /**
     * @dev Retrieves a validator's withdrawable epoch
     */
    function getWithdrawableEpoch(
        bytes32[] memory validatorFields
    ) internal pure returns (uint64) {
        return
            Endian.fromLittleEndianUint64(
                validatorFields[VALIDATOR_WITHDRAWABLE_EPOCH_INDEX]
            );
    }

    /**
     * Indices for withdrawal fields (refer to consensus specs):
     * 0: withdrawal index
     * 1: validator index
     * 2: execution address
     * 3: withdrawal amount
     */

    /**
     * @dev Retrieves a withdrawal's validator index
     */
    function getValidatorIndex(
        bytes32[] memory withdrawalFields
    ) internal pure returns (uint40) {
        return
            uint40(
                Endian.fromLittleEndianUint64(
                    withdrawalFields[WITHDRAWAL_VALIDATOR_INDEX_INDEX]
                )
            );
    }

    /**
     * @dev Retrieves a withdrawal's withdrawal amount (in gwei)
     */
    function getWithdrawalAmountGwei(
        bytes32[] memory withdrawalFields
    ) internal pure returns (uint64) {
        return
            Endian.fromLittleEndianUint64(
                withdrawalFields[WITHDRAWAL_VALIDATOR_AMOUNT_INDEX]
            );
    }
}

File 28 of 32 : Endian.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.0;

library Endian {
    /**
     * @notice Converts a little endian-formatted uint64 to a big endian-formatted uint64
     * @param lenum little endian-formatted uint64 input, provided as 'bytes32' type
     * @return n The big endian-formatted uint64
     * @dev Note that the input is formatted as a 'bytes32' type (i.e. 256 bits), but it is immediately truncated to a uint64 (i.e. 64 bits)
     * through a right-shift/shr operation.
     */
    function fromLittleEndianUint64(
        bytes32 lenum
    ) internal pure returns (uint64 n) {
        // the number needs to be stored in little-endian encoding (ie in bytes 0-8)
        n = uint64(uint256(lenum >> 192));
        return
            (n >> 56) |
            ((0x00FF000000000000 & n) >> 40) |
            ((0x0000FF0000000000 & n) >> 24) |
            ((0x000000FF00000000 & n) >> 8) |
            ((0x00000000FF000000 & n) << 8) |
            ((0x0000000000FF0000 & n) << 24) |
            ((0x000000000000FF00 & n) << 40) |
            ((0x00000000000000FF & n) << 56);
    }
}

File 29 of 32 : Merkle.sol
// SPDX-License-Identifier: BUSL-1.1
// Adapted from OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library Merkle {
    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. The tree is built assuming `leaf` is
     * the 0 indexed `index`'th leaf from the bottom left of the tree.
     *
     * Note this is for a Merkle tree using the keccak/sha3 hash function
     */
    function verifyInclusionKeccak(
        bytes memory proof,
        bytes32 root,
        bytes32 leaf,
        uint256 index
    ) internal pure returns (bool) {
        return processInclusionProofKeccak(proof, leaf, index) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. The tree is built assuming `leaf` is
     * the 0 indexed `index`'th leaf from the bottom left of the tree.
     *
     * _Available since v4.4._
     *
     * Note this is for a Merkle tree using the keccak/sha3 hash function
     */
    function processInclusionProofKeccak(
        bytes memory proof,
        bytes32 leaf,
        uint256 index
    ) internal pure returns (bytes32) {
        require(
            proof.length != 0 && proof.length % 32 == 0,
            "Merkle.processInclusionProofKeccak: proof length should be a non-zero multiple of 32"
        );
        bytes32 computedHash = leaf;
        for (uint256 i = 32; i <= proof.length; i += 32) {
            if (index % 2 == 0) {
                // if ith bit of index is 0, then computedHash is a left sibling
                assembly {
                    mstore(0x00, computedHash)
                    mstore(0x20, mload(add(proof, i)))
                    computedHash := keccak256(0x00, 0x40)
                    index := div(index, 2)
                }
            } else {
                // if ith bit of index is 1, then computedHash is a right sibling
                assembly {
                    mstore(0x00, mload(add(proof, i)))
                    mstore(0x20, computedHash)
                    computedHash := keccak256(0x00, 0x40)
                    index := div(index, 2)
                }
            }
        }
        return computedHash;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. The tree is built assuming `leaf` is
     * the 0 indexed `index`'th leaf from the bottom left of the tree.
     *
     * Note this is for a Merkle tree using the sha256 hash function
     */
    function verifyInclusionSha256(
        bytes memory proof,
        bytes32 root,
        bytes32 leaf,
        uint256 index
    ) internal view returns (bool) {
        return processInclusionProofSha256(proof, leaf, index) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. The tree is built assuming `leaf` is
     * the 0 indexed `index`'th leaf from the bottom left of the tree.
     *
     * _Available since v4.4._
     *
     * Note this is for a Merkle tree using the sha256 hash function
     */
    function processInclusionProofSha256(
        bytes memory proof,
        bytes32 leaf,
        uint256 index
    ) internal view returns (bytes32) {
        require(
            proof.length != 0 && proof.length % 32 == 0,
            "Merkle.processInclusionProofSha256: proof length should be a non-zero multiple of 32"
        );
        bytes32[1] memory computedHash = [leaf];
        for (uint256 i = 32; i <= proof.length; i += 32) {
            if (index % 2 == 0) {
                // if ith bit of index is 0, then computedHash is a left sibling
                assembly {
                    mstore(0x00, mload(computedHash))
                    mstore(0x20, mload(add(proof, i)))
                    if iszero(
                        staticcall(
                            sub(gas(), 2000),
                            2,
                            0x00,
                            0x40,
                            computedHash,
                            0x20
                        )
                    ) {
                        revert(0, 0)
                    }
                    index := div(index, 2)
                }
            } else {
                // if ith bit of index is 1, then computedHash is a right sibling
                assembly {
                    mstore(0x00, mload(add(proof, i)))
                    mstore(0x20, mload(computedHash))
                    if iszero(
                        staticcall(
                            sub(gas(), 2000),
                            2,
                            0x00,
                            0x40,
                            computedHash,
                            0x20
                        )
                    ) {
                        revert(0, 0)
                    }
                    index := div(index, 2)
                }
            }
        }
        return computedHash[0];
    }

    /**
     @notice this function returns the merkle root of a tree created from a set of leaves using sha256 as its hash function
     @param leaves the leaves of the merkle tree
     @return The computed Merkle root of the tree.
     @dev A pre-condition to this function is that leaves.length is a power of two.  If not, the function will merkleize the inputs incorrectly.
     */
    function merkleizeSha256(
        bytes32[] memory leaves
    ) internal pure returns (bytes32) {
        //there are half as many nodes in the layer above the leaves
        uint256 numNodesInLayer = leaves.length / 2;
        //create a layer to store the internal nodes
        bytes32[] memory layer = new bytes32[](numNodesInLayer);
        //fill the layer with the pairwise hashes of the leaves
        for (uint i = 0; i < numNodesInLayer; i++) {
            layer[i] = sha256(
                abi.encodePacked(leaves[2 * i], leaves[2 * i + 1])
            );
        }
        //the next layer above has half as many nodes
        numNodesInLayer /= 2;
        //while we haven't computed the root
        while (numNodesInLayer != 0) {
            //overwrite the first numNodesInLayer nodes in layer with the pairwise hashes of their children
            for (uint i = 0; i < numNodesInLayer; i++) {
                layer[i] = sha256(
                    abi.encodePacked(layer[2 * i], layer[2 * i + 1])
                );
            }
            //the next layer above has half as many nodes
            numNodesInLayer /= 2;
        }
        //the first node in the layer is the root
        return layer[0];
    }
}

File 30 of 32 : IRestaker.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "./IRestakerFacets.sol";

/**
 * @title Diamond-like implementation which support call with context (simple call).
 * @author GenesisLST
 */
interface IRestaker {
    error RestakerCannotClaim();

    event Claimed(address indexed recipient, uint256 amount);

    function initialize(address owner, IRestakerFacets facets) external;
    function __claim() external;
}

File 31 of 32 : IRestakerDeployer.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "./IRestaker.sol";

interface IRestakerDeployer {
    event RestakerDeployed(
        address indexed creator,
        IRestaker indexed restaker,
        uint256 id
    );

    function BEACON_PROXY_BYTECODE() external view returns (bytes memory);

    function beacon() external view returns (address);

    function nonce() external view returns (uint256);

    function deployRestaker() external returns (IRestaker restaker);

    function getRestaker(uint256 id) external view returns (address);
}

File 32 of 32 : IRestakerFacets.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import "../interfaces/IEigenPodManager.sol";

interface IRestakerFacets {
    error ZeroAddress();

    enum FuncTarget {
        POD,
        POD_MANAGER,
        DELEGATION_MANAGER
    }

    function selectorToTarget(bytes4 sig) external view returns (address);

    function getEigenPodManager() external view returns (IEigenPodManager);
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"OnlyGovernanceAllowed","type":"error"},{"inputs":[],"name":"OnlyOperatorAllowed","type":"error"},{"inputs":[],"name":"OnlyRestakingPoolAllowed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"config","outputs":[{"internalType":"contract IProtocolConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IProtocolConfig","name":"config","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ratio","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"totalManagedEth","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561001057600080fd5b5061001961001e565b6100d0565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff161561006e5760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b03908116146100cd5780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b61155e806100df6000396000f3fe608060405234801561001057600080fd5b506004361061012c5760003560e01c806371ca337d116100ad5780639dc29fac116100715780639dc29fac1461027e578063a9059cbb14610291578063c6e6f592146102a4578063dd62ed3e146102b7578063ff1bdd43146102ca57600080fd5b806371ca337d1461023857806379502c55146102405780638456cb591461025b578063906571471461026357806395d89b411461027657600080fd5b8063313ce567116100f4578063313ce567146101be5780633f4ba83a146101cd57806340c10f19146101d75780635c975abb146101ea57806370a082311461020257600080fd5b806301e1d1141461013157806306fdde031461014c578063095ea7b31461016157806318160ddd1461018457806323b872dd146101ab575b600080fd5b6101396102dd565b6040519081526020015b60405180910390f35b61015461030f565b6040516101439190611092565b61017461016f3660046110f8565b6103d2565b6040519015158152602001610143565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0254610139565b6101746101b9366004611124565b6103ec565b60405160128152602001610143565b6101d5610412565b005b6101d56101e53660046110f8565b6104c2565b6000805160206115098339815191525460ff16610174565b610139610210366004611165565b6001600160a01b031660009081526000805160206114e9833981519152602052604090205490565b61013961057e565b6000546040516001600160a01b039091168152602001610143565b6101d5610656565b6101d5610271366004611225565b610704565b610154610830565b6101d561028c3660046110f8565b61086f565b61017461029f3660046110f8565b610927565b6101396102b236600461129b565b610935565b6101396102c53660046112b4565b610954565b6101396102d836600461129b565b61099e565b600061030a6102d87f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace025490565b905090565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0380546060916000805160206114e98339815191529161034e906112ed565b80601f016020809104026020016040519081016040528092919081815260200182805461037a906112ed565b80156103c75780601f1061039c576101008083540402835291602001916103c7565b820191906000526020600020905b8154815290600101906020018083116103aa57829003601f168201915b505050505091505090565b6000336103e08185856109be565b60019150505b92915050565b6000336103fa8582856109d0565b610405858585610a3b565b60019150505b9392505050565b60008054906101000a90046001600160a01b03166001600160a01b031663289b3c0d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610463573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104879190611327565b6001600160a01b0316336001600160a01b0316146104b85760405163e2d4f15f60e01b815260040160405180910390fd5b6104c0610a9a565b565b6104ca610afa565b60008054906101000a90046001600160a01b03166001600160a01b0316637745165b6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561051b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061053f9190611327565b6001600160a01b0316336001600160a01b031614610570576040516301beb2d760e51b815260040160405180910390fd5b61057a8282610b2b565b5050565b600080546001600160a01b03166001600160a01b031663c5db8a7a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105c8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105ec9190611327565b60405163754b270760e01b81523060048201526001600160a01b03919091169063754b270790602401602060405180830381865afa158015610632573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061030a9190611344565b60008054906101000a90046001600160a01b03166001600160a01b031663289b3c0d6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106a7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106cb9190611327565b6001600160a01b0316336001600160a01b0316146106fc5760405163e2d4f15f60e01b815260040160405180910390fd5b6104c0610b61565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff1660008115801561074a5750825b905060008267ffffffffffffffff1660011480156107675750303b155b905081158015610775575080155b156107935760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff1916600117855583156107bd57845460ff60401b1916600160401b1785555b6107c688610baa565b6107d08787610bd4565b6107d8610be6565b6107e0610be6565b831561082657845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0480546060916000805160206114e98339815191529161034e906112ed565b610877610afa565b60008054906101000a90046001600160a01b03166001600160a01b0316637745165b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108c8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ec9190611327565b6001600160a01b0316336001600160a01b03161461091d576040516301beb2d760e51b815260040160405180910390fd5b61057a8282610bf6565b6000336103e0818585610a3b565b60006103e661094261057e565b8390670de0b6b3a76400006000610c2c565b6001600160a01b0391821660009081527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace016020908152604080832093909416825291909152205490565b60006103e6670de0b6b3a76400006109b461057e565b8491906001610c2c565b6109cb8383836001610c7d565b505050565b60006109dc8484610954565b90506000198114610a355781811015610a2657604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064015b60405180910390fd5b610a3584848484036000610c7d565b50505050565b6001600160a01b038316610a6557604051634b637e8f60e11b815260006004820152602401610a1d565b6001600160a01b038216610a8f5760405163ec442f0560e01b815260006004820152602401610a1d565b6109cb838383610d65565b610aa2610d78565b600080516020611509833981519152805460ff191681557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a150565b6000805160206115098339815191525460ff16156104c05760405163d93c066560e01b815260040160405180910390fd5b6001600160a01b038216610b555760405163ec442f0560e01b815260006004820152602401610a1d565b61057a60008383610d65565b610b69610afa565b600080516020611509833981519152805460ff191660011781557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25833610adc565b610bb2610da8565b600080546001600160a01b0319166001600160a01b0392909216919091179055565b610bdc610da8565b61057a8282610df1565b610bee610da8565b6104c0610e42565b6001600160a01b038216610c2057604051634b637e8f60e11b815260006004820152602401610a1d565b61057a82600083610d65565b600080610c3a868686610e63565b9050610c4583610f27565b8015610c61575060008480610c5c57610c5c61135d565b868809115b15610c7457610c71600182611373565b90505b95945050505050565b6000805160206114e98339815191526001600160a01b038516610cb65760405163e602df0560e01b815260006004820152602401610a1d565b6001600160a01b038416610ce057604051634a1406b160e11b815260006004820152602401610a1d565b6001600160a01b03808616600090815260018301602090815260408083209388168352929052208390558115610d5e57836001600160a01b0316856001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92585604051610d5591815260200190565b60405180910390a35b5050505050565b610d6d610afa565b6109cb838383610f54565b6000805160206115098339815191525460ff166104c057604051638dfc202b60e01b815260040160405180910390fd5b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff166104c057604051631afcd79f60e31b815260040160405180910390fd5b610df9610da8565b6000805160206114e98339815191527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace03610e3384826113e2565b5060048101610a3583826113e2565b610e4a610da8565b600080516020611509833981519152805460ff19169055565b6000838302816000198587098281108382030391505080600003610e9a57838281610e9057610e9061135d565b049250505061040b565b808411610eba5760405163227bc15360e01b815260040160405180910390fd5b6000848688096000868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b60006002826003811115610f3d57610f3d6114a2565b610f4791906114b8565b60ff166001149050919050565b6000805160206114e98339815191526001600160a01b038416610f905781816002016000828254610f859190611373565b909155506110029050565b6001600160a01b03841660009081526020829052604090205482811015610fe35760405163391434e360e21b81526001600160a01b03861660048201526024810182905260448101849052606401610a1d565b6001600160a01b03851660009081526020839052604090209083900390555b6001600160a01b03831661102057600281018054839003905561103f565b6001600160a01b03831660009081526020829052604090208054830190555b826001600160a01b0316846001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161108491815260200190565b60405180910390a350505050565b600060208083528351808285015260005b818110156110bf578581018301518582016040015282016110a3565b506000604082860101526040601f19601f8301168501019250505092915050565b6001600160a01b03811681146110f557600080fd5b50565b6000806040838503121561110b57600080fd5b8235611116816110e0565b946020939093013593505050565b60008060006060848603121561113957600080fd5b8335611144816110e0565b92506020840135611154816110e0565b929592945050506040919091013590565b60006020828403121561117757600080fd5b813561040b816110e0565b634e487b7160e01b600052604160045260246000fd5b600082601f8301126111a957600080fd5b813567ffffffffffffffff808211156111c4576111c4611182565b604051601f8301601f19908116603f011681019082821181831017156111ec576111ec611182565b8160405283815286602085880101111561120557600080fd5b836020870160208301376000602085830101528094505050505092915050565b60008060006060848603121561123a57600080fd5b8335611245816110e0565b9250602084013567ffffffffffffffff8082111561126257600080fd5b61126e87838801611198565b9350604086013591508082111561128457600080fd5b5061129186828701611198565b9150509250925092565b6000602082840312156112ad57600080fd5b5035919050565b600080604083850312156112c757600080fd5b82356112d2816110e0565b915060208301356112e2816110e0565b809150509250929050565b600181811c9082168061130157607f821691505b60208210810361132157634e487b7160e01b600052602260045260246000fd5b50919050565b60006020828403121561133957600080fd5b815161040b816110e0565b60006020828403121561135657600080fd5b5051919050565b634e487b7160e01b600052601260045260246000fd5b808201808211156103e657634e487b7160e01b600052601160045260246000fd5b601f8211156109cb57600081815260208120601f850160051c810160208610156113bb5750805b601f850160051c820191505b818110156113da578281556001016113c7565b505050505050565b815167ffffffffffffffff8111156113fc576113fc611182565b6114108161140a84546112ed565b84611394565b602080601f831160018114611445576000841561142d5750858301515b600019600386901b1c1916600185901b1785556113da565b600085815260208120601f198616915b8281101561147457888601518255948401946001909101908401611455565b50858210156114925787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b634e487b7160e01b600052602160045260246000fd5b600060ff8316806114d957634e487b7160e01b600052601260045260246000fd5b8060ff8416069150509291505056fe52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00cd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300a2646970667358221220d9c7e72434589c7e7f685457cdb4cc69d9ef998de03aacae0de16e1165eae59064736f6c63430008140033

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061012c5760003560e01c806371ca337d116100ad5780639dc29fac116100715780639dc29fac1461027e578063a9059cbb14610291578063c6e6f592146102a4578063dd62ed3e146102b7578063ff1bdd43146102ca57600080fd5b806371ca337d1461023857806379502c55146102405780638456cb591461025b578063906571471461026357806395d89b411461027657600080fd5b8063313ce567116100f4578063313ce567146101be5780633f4ba83a146101cd57806340c10f19146101d75780635c975abb146101ea57806370a082311461020257600080fd5b806301e1d1141461013157806306fdde031461014c578063095ea7b31461016157806318160ddd1461018457806323b872dd146101ab575b600080fd5b6101396102dd565b6040519081526020015b60405180910390f35b61015461030f565b6040516101439190611092565b61017461016f3660046110f8565b6103d2565b6040519015158152602001610143565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0254610139565b6101746101b9366004611124565b6103ec565b60405160128152602001610143565b6101d5610412565b005b6101d56101e53660046110f8565b6104c2565b6000805160206115098339815191525460ff16610174565b610139610210366004611165565b6001600160a01b031660009081526000805160206114e9833981519152602052604090205490565b61013961057e565b6000546040516001600160a01b039091168152602001610143565b6101d5610656565b6101d5610271366004611225565b610704565b610154610830565b6101d561028c3660046110f8565b61086f565b61017461029f3660046110f8565b610927565b6101396102b236600461129b565b610935565b6101396102c53660046112b4565b610954565b6101396102d836600461129b565b61099e565b600061030a6102d87f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace025490565b905090565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0380546060916000805160206114e98339815191529161034e906112ed565b80601f016020809104026020016040519081016040528092919081815260200182805461037a906112ed565b80156103c75780601f1061039c576101008083540402835291602001916103c7565b820191906000526020600020905b8154815290600101906020018083116103aa57829003601f168201915b505050505091505090565b6000336103e08185856109be565b60019150505b92915050565b6000336103fa8582856109d0565b610405858585610a3b565b60019150505b9392505050565b60008054906101000a90046001600160a01b03166001600160a01b031663289b3c0d6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610463573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104879190611327565b6001600160a01b0316336001600160a01b0316146104b85760405163e2d4f15f60e01b815260040160405180910390fd5b6104c0610a9a565b565b6104ca610afa565b60008054906101000a90046001600160a01b03166001600160a01b0316637745165b6040518163ffffffff1660e01b8152600401602060405180830381865afa15801561051b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061053f9190611327565b6001600160a01b0316336001600160a01b031614610570576040516301beb2d760e51b815260040160405180910390fd5b61057a8282610b2b565b5050565b600080546001600160a01b03166001600160a01b031663c5db8a7a6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105c8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105ec9190611327565b60405163754b270760e01b81523060048201526001600160a01b03919091169063754b270790602401602060405180830381865afa158015610632573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061030a9190611344565b60008054906101000a90046001600160a01b03166001600160a01b031663289b3c0d6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156106a7573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106cb9190611327565b6001600160a01b0316336001600160a01b0316146106fc5760405163e2d4f15f60e01b815260040160405180910390fd5b6104c0610b61565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a008054600160401b810460ff16159067ffffffffffffffff1660008115801561074a5750825b905060008267ffffffffffffffff1660011480156107675750303b155b905081158015610775575080155b156107935760405163f92ee8a960e01b815260040160405180910390fd5b845467ffffffffffffffff1916600117855583156107bd57845460ff60401b1916600160401b1785555b6107c688610baa565b6107d08787610bd4565b6107d8610be6565b6107e0610be6565b831561082657845460ff60401b19168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050505050565b7f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace0480546060916000805160206114e98339815191529161034e906112ed565b610877610afa565b60008054906101000a90046001600160a01b03166001600160a01b0316637745165b6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156108c8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ec9190611327565b6001600160a01b0316336001600160a01b03161461091d576040516301beb2d760e51b815260040160405180910390fd5b61057a8282610bf6565b6000336103e0818585610a3b565b60006103e661094261057e565b8390670de0b6b3a76400006000610c2c565b6001600160a01b0391821660009081527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace016020908152604080832093909416825291909152205490565b60006103e6670de0b6b3a76400006109b461057e565b8491906001610c2c565b6109cb8383836001610c7d565b505050565b60006109dc8484610954565b90506000198114610a355781811015610a2657604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064015b60405180910390fd5b610a3584848484036000610c7d565b50505050565b6001600160a01b038316610a6557604051634b637e8f60e11b815260006004820152602401610a1d565b6001600160a01b038216610a8f5760405163ec442f0560e01b815260006004820152602401610a1d565b6109cb838383610d65565b610aa2610d78565b600080516020611509833981519152805460ff191681557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa335b6040516001600160a01b03909116815260200160405180910390a150565b6000805160206115098339815191525460ff16156104c05760405163d93c066560e01b815260040160405180910390fd5b6001600160a01b038216610b555760405163ec442f0560e01b815260006004820152602401610a1d565b61057a60008383610d65565b610b69610afa565b600080516020611509833981519152805460ff191660011781557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25833610adc565b610bb2610da8565b600080546001600160a01b0319166001600160a01b0392909216919091179055565b610bdc610da8565b61057a8282610df1565b610bee610da8565b6104c0610e42565b6001600160a01b038216610c2057604051634b637e8f60e11b815260006004820152602401610a1d565b61057a82600083610d65565b600080610c3a868686610e63565b9050610c4583610f27565b8015610c61575060008480610c5c57610c5c61135d565b868809115b15610c7457610c71600182611373565b90505b95945050505050565b6000805160206114e98339815191526001600160a01b038516610cb65760405163e602df0560e01b815260006004820152602401610a1d565b6001600160a01b038416610ce057604051634a1406b160e11b815260006004820152602401610a1d565b6001600160a01b03808616600090815260018301602090815260408083209388168352929052208390558115610d5e57836001600160a01b0316856001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92585604051610d5591815260200190565b60405180910390a35b5050505050565b610d6d610afa565b6109cb838383610f54565b6000805160206115098339815191525460ff166104c057604051638dfc202b60e01b815260040160405180910390fd5b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0054600160401b900460ff166104c057604051631afcd79f60e31b815260040160405180910390fd5b610df9610da8565b6000805160206114e98339815191527f52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace03610e3384826113e2565b5060048101610a3583826113e2565b610e4a610da8565b600080516020611509833981519152805460ff19169055565b6000838302816000198587098281108382030391505080600003610e9a57838281610e9057610e9061135d565b049250505061040b565b808411610eba5760405163227bc15360e01b815260040160405180910390fd5b6000848688096000868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b60006002826003811115610f3d57610f3d6114a2565b610f4791906114b8565b60ff166001149050919050565b6000805160206114e98339815191526001600160a01b038416610f905781816002016000828254610f859190611373565b909155506110029050565b6001600160a01b03841660009081526020829052604090205482811015610fe35760405163391434e360e21b81526001600160a01b03861660048201526024810182905260448101849052606401610a1d565b6001600160a01b03851660009081526020839052604090209083900390555b6001600160a01b03831661102057600281018054839003905561103f565b6001600160a01b03831660009081526020829052604090208054830190555b826001600160a01b0316846001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161108491815260200190565b60405180910390a350505050565b600060208083528351808285015260005b818110156110bf578581018301518582016040015282016110a3565b506000604082860101526040601f19601f8301168501019250505092915050565b6001600160a01b03811681146110f557600080fd5b50565b6000806040838503121561110b57600080fd5b8235611116816110e0565b946020939093013593505050565b60008060006060848603121561113957600080fd5b8335611144816110e0565b92506020840135611154816110e0565b929592945050506040919091013590565b60006020828403121561117757600080fd5b813561040b816110e0565b634e487b7160e01b600052604160045260246000fd5b600082601f8301126111a957600080fd5b813567ffffffffffffffff808211156111c4576111c4611182565b604051601f8301601f19908116603f011681019082821181831017156111ec576111ec611182565b8160405283815286602085880101111561120557600080fd5b836020870160208301376000602085830101528094505050505092915050565b60008060006060848603121561123a57600080fd5b8335611245816110e0565b9250602084013567ffffffffffffffff8082111561126257600080fd5b61126e87838801611198565b9350604086013591508082111561128457600080fd5b5061129186828701611198565b9150509250925092565b6000602082840312156112ad57600080fd5b5035919050565b600080604083850312156112c757600080fd5b82356112d2816110e0565b915060208301356112e2816110e0565b809150509250929050565b600181811c9082168061130157607f821691505b60208210810361132157634e487b7160e01b600052602260045260246000fd5b50919050565b60006020828403121561133957600080fd5b815161040b816110e0565b60006020828403121561135657600080fd5b5051919050565b634e487b7160e01b600052601260045260246000fd5b808201808211156103e657634e487b7160e01b600052601160045260246000fd5b601f8211156109cb57600081815260208120601f850160051c810160208610156113bb5750805b601f850160051c820191505b818110156113da578281556001016113c7565b505050505050565b815167ffffffffffffffff8111156113fc576113fc611182565b6114108161140a84546112ed565b84611394565b602080601f831160018114611445576000841561142d5750858301515b600019600386901b1c1916600185901b1785556113da565b600085815260208120601f198616915b8281101561147457888601518255948401946001909101908401611455565b50858210156114925787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b634e487b7160e01b600052602160045260246000fd5b600060ff8316806114d957634e487b7160e01b600052601260045260246000fd5b8060ff8416069150509291505056fe52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00cd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300a2646970667358221220d9c7e72434589c7e7f685457cdb4cc69d9ef998de03aacae0de16e1165eae59064736f6c63430008140033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.