Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
18365637 | 439 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0x0d223d05e1cc4ac20de7fce86bc9bb8efb56f4d4
Contract Name:
ERC1155SeaDropCloneable
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 99999999 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { ERC1155SeaDropContractOffererCloneable } from "./ERC1155SeaDropContractOffererCloneable.sol"; /** * @title ERC1155SeaDropCloneable * @author James Wenzel (emo.eth) * @author Ryan Ghods (ralxz.eth) * @author Stephan Min (stephanm.eth) * @author Michael Cohen (notmichael.eth) * @notice A cloneable ERC1155 token contract that can mint as a * Seaport contract offerer. */ contract ERC1155SeaDropCloneable is ERC1155SeaDropContractOffererCloneable { /** * @notice Initialize the token contract. * * @param allowedConfigurer The address of the contract allowed to * implementation code. Also contains SeaDrop * implementation code. * @param allowedSeaport The address of the Seaport contract allowed to * interact. * @param name_ The name of the token. * @param symbol_ The symbol of the token. */ function initialize( address allowedConfigurer, address allowedSeaport, string memory name_, string memory symbol_, address initialOwner ) public initializer { // Initialize ownership. _initializeOwner(initialOwner); // Initialize ERC1155SeaDropContractOffererCloneable. __ERC1155SeaDropContractOffererCloneable_init( allowedConfigurer, allowedSeaport, name_, symbol_ ); } /** * @dev Auto-approve the conduit after mint or transfer. * * @custom:param from The address to transfer from. * @param to The address to transfer to. * @custom:param ids The token ids to transfer. * @custom:param amounts The quantities to transfer. * @custom:param data The data to pass if receiver is a contract. */ function _afterTokenTransfer( address /* from */, address to, uint256[] memory /* ids */, uint256[] memory /* amounts */, bytes memory /* data */ ) internal virtual override { // Auto-approve the conduit. if (to != address(0) && !isApprovedForAll(to, _CONDUIT)) { _setApprovalForAll(to, _CONDUIT, true); } } /** * @dev Override this function to return true if `_afterTokenTransfer` is * used. The is to help the compiler avoid producing dead bytecode. */ function _useAfterTokenTransfer() internal view virtual override returns (bool) { return true; } /** * @notice Burns a token, restricted to the owner or approved operator, * and must have sufficient balance. * * @param from The address to burn from. * @param id The token id to burn. * @param amount The amount to burn. */ function burn(address from, uint256 id, uint256 amount) external { // Burn the token. _burn(msg.sender, from, id, amount); } /** * @notice Burns a batch of tokens, restricted to the owner or * approved operator, and must have sufficient balance. * * @param from The address to burn from. * @param ids The token ids to burn. * @param amounts The amounts to burn per token id. */ function batchBurn( address from, uint256[] calldata ids, uint256[] calldata amounts ) external { // Burn the tokens. _batchBurn(msg.sender, from, ids, amounts); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC1155SeaDrop } from "../interfaces/IERC1155SeaDrop.sol"; import { ISeaDropToken } from "../interfaces/ISeaDropToken.sol"; import { ERC1155ContractMetadataCloneable } from "./ERC1155ContractMetadataCloneable.sol"; import { ERC1155SeaDropContractOffererStorage } from "../lib/ERC1155SeaDropContractOffererStorage.sol"; import { ERC1155SeaDropErrorsAndEvents } from "../lib/ERC1155SeaDropErrorsAndEvents.sol"; import { PublicDrop } from "../lib//ERC1155SeaDropStructs.sol"; import { AllowListData } from "../lib/SeaDropStructs.sol"; import { ERC1155ConduitPreapproved } from "../lib/ERC1155ConduitPreapproved.sol"; import { ERC1155 } from "solady/src/tokens/ERC1155.sol"; import { SpentItem } from "seaport-types/src/lib/ConsiderationStructs.sol"; import { ContractOffererInterface } from "seaport-types/src/interfaces/ContractOffererInterface.sol"; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /** * @title ERC1155SeaDropContractOffererCloneable * @author James Wenzel (emo.eth) * @author Ryan Ghods (ralxz.eth) * @author Stephan Min (stephanm.eth) * @author Michael Cohen (notmichael.eth) * @notice A cloneable ERC1155 token contract that can mint as a * Seaport contract offerer. */ contract ERC1155SeaDropContractOffererCloneable is ERC1155ContractMetadataCloneable, ERC1155SeaDropErrorsAndEvents { using ERC1155SeaDropContractOffererStorage for ERC1155SeaDropContractOffererStorage.Layout; /** * @notice Initialize the token contract. * * @param allowedConfigurer The address of the contract allowed to * configure parameters. Also contains SeaDrop * implementation code. * @param allowedSeaport The address of the Seaport contract allowed to * interact. * @param name_ The name of the token. * @param symbol_ The symbol of the token. */ function __ERC1155SeaDropContractOffererCloneable_init( address allowedConfigurer, address allowedSeaport, string memory name_, string memory symbol_ ) internal onlyInitializing { // Set the allowed Seaport to interact with this contract. if (allowedSeaport == address(0)) { revert AllowedSeaportCannotBeZeroAddress(); } ERC1155SeaDropContractOffererStorage.layout()._allowedSeaport[ allowedSeaport ] = true; // Set the allowed Seaport enumeration. address[] memory enumeratedAllowedSeaport = new address[](1); enumeratedAllowedSeaport[0] = allowedSeaport; ERC1155SeaDropContractOffererStorage .layout() ._enumeratedAllowedSeaport = enumeratedAllowedSeaport; // Emit an event noting the contract deployment. emit SeaDropTokenDeployed(SEADROP_TOKEN_TYPE.ERC1155_CLONE); // Initialize ERC1155ContractMetadataCloneable. __ERC1155ContractMetadataCloneable_init( allowedConfigurer, name_, symbol_ ); } /** * @notice The fallback function is used as a dispatcher for SeaDrop * methods. */ fallback(bytes calldata) external returns (bytes memory output) { // Get the function selector. bytes4 selector = msg.sig; // Get the rest of the msg data after the selector. bytes calldata data = msg.data[4:]; // Determine if we should forward the call to the implementation // contract with SeaDrop logic. bool callSeaDropImplementation = selector == ISeaDropToken.updateAllowedSeaport.selector || selector == ISeaDropToken.updateDropURI.selector || selector == ISeaDropToken.updateAllowList.selector || selector == ISeaDropToken.updateCreatorPayouts.selector || selector == ISeaDropToken.updatePayer.selector || selector == ISeaDropToken.updateAllowedFeeRecipient.selector || selector == ISeaDropToken.updateSigner.selector || selector == IERC1155SeaDrop.updatePublicDrop.selector || selector == ContractOffererInterface.previewOrder.selector || selector == ContractOffererInterface.generateOrder.selector || selector == ContractOffererInterface.getSeaportMetadata.selector || selector == IERC1155SeaDrop.getPublicDrop.selector || selector == IERC1155SeaDrop.getPublicDropIndexes.selector || selector == ISeaDropToken.getAllowedSeaport.selector || selector == ISeaDropToken.getCreatorPayouts.selector || selector == ISeaDropToken.getAllowListMerkleRoot.selector || selector == ISeaDropToken.getAllowedFeeRecipients.selector || selector == ISeaDropToken.getSigners.selector || selector == ISeaDropToken.getDigestIsUsed.selector || selector == ISeaDropToken.getPayers.selector; // Determine if we should require only the owner or configurer calling. bool requireOnlyOwnerOrConfigurer = selector == ISeaDropToken.updateAllowedSeaport.selector || selector == ISeaDropToken.updateDropURI.selector || selector == ISeaDropToken.updateAllowList.selector || selector == ISeaDropToken.updateCreatorPayouts.selector || selector == ISeaDropToken.updatePayer.selector || selector == ISeaDropToken.updateAllowedFeeRecipient.selector || selector == IERC1155SeaDrop.updatePublicDrop.selector; if (callSeaDropImplementation) { // For update calls, ensure the sender is only the owner // or configurer contract. if (requireOnlyOwnerOrConfigurer) { _onlyOwnerOrConfigurer(); } else if (selector == ISeaDropToken.updateSigner.selector) { // For updateSigner, a signer can disallow themselves. // Get the signer parameter. address signer = address(bytes20(data[12:32])); // If the signer is not allowed, ensure sender is only owner // or configurer. if ( msg.sender != signer || (msg.sender == signer && !ERC1155SeaDropContractOffererStorage .layout() ._allowedSigners[signer]) ) { _onlyOwnerOrConfigurer(); } } // Forward the call to the implementation contract. (bool success, bytes memory returnedData) = _CONFIGURER .delegatecall(msg.data); // Require that the call was successful. if (!success) { // Bubble up the revert reason. assembly { revert(add(32, returnedData), mload(returnedData)) } } // If the call was to generateOrder, mint the tokens. if (selector == ContractOffererInterface.generateOrder.selector) { _mintOrder(data); } // Return the data from the delegate call. return returnedData; } else if (selector == IERC1155SeaDrop.getMintStats.selector) { // Get the minter and token id. (address minter, uint256 tokenId) = abi.decode( data, (address, uint256) ); // Get the mint stats. ( uint256 minterNumMinted, uint256 minterNumMintedForTokenId, uint256 totalMintedForTokenId, uint256 maxSupply ) = _getMintStats(minter, tokenId); // Encode the return data. return abi.encode( minterNumMinted, minterNumMintedForTokenId, totalMintedForTokenId, maxSupply ); } else if (selector == ContractOffererInterface.ratifyOrder.selector) { // This function is a no-op, nothing additional needs to happen here. // Utilize assembly to efficiently return the ratifyOrder magic value. assembly { mstore(0, 0xf4dd92ce) return(0x1c, 32) } } else if (selector == ISeaDropToken.configurer.selector) { // Return the configurer contract. return abi.encode(_CONFIGURER); } else if (selector == IERC1155SeaDrop.multiConfigureMint.selector) { // Ensure only the owner or configurer can call this function. _onlyOwnerOrConfigurer(); // Mint the tokens. _multiConfigureMint(data); } else { // Revert if the function selector is not supported. revert UnsupportedFunctionSelector(selector); } } /** * @notice Returns a set of mint stats for the address. * This assists in enforcing maxSupply, maxTotalMintableByWallet, * and maxTokenSupplyForStage checks. * * @dev NOTE: Implementing contracts should always update these numbers * before transferring any tokens with _safeMint() to mitigate * consequences of malicious onERC1155Received() hooks. * * @param minter The minter address. * @param tokenId The token id to return the stats for. */ function _getMintStats( address minter, uint256 tokenId ) internal view returns ( uint256 minterNumMinted, uint256 minterNumMintedForTokenId, uint256 totalMintedForTokenId, uint256 maxSupply ) { // Put the token supply on the stack. TokenSupply storage tokenSupply = _tokenSupply[tokenId]; // Assign the return values. totalMintedForTokenId = tokenSupply.totalMinted; maxSupply = tokenSupply.maxSupply; minterNumMinted = _totalMintedByUser[minter]; minterNumMintedForTokenId = _totalMintedByUserPerToken[minter][tokenId]; } /** * @dev Handle ERC-1155 safeTransferFrom. If "from" is this contract, * the sender can only be Seaport or the conduit. * * @param from The address to transfer from. * @param to The address to transfer to. * @param id The token id to transfer. * @param amount The amount of tokens to transfer. * @param data The data to pass to the onERC1155Received hook. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) public virtual override { if (from == address(this)) { // Only Seaport or the conduit can use this function // when "from" is this contract. if ( msg.sender != _CONDUIT && !ERC1155SeaDropContractOffererStorage.layout()._allowedSeaport[ msg.sender ] ) { revert InvalidCallerOnlyAllowedSeaport(msg.sender); } return; } ERC1155._safeTransfer(_by(), from, to, id, amount, data); } /** * @notice Returns whether the interface is supported. * * @param interfaceId The interface id to check against. */ function supportsInterface( bytes4 interfaceId ) public view virtual override(ERC1155ContractMetadataCloneable) returns (bool) { return interfaceId == type(IERC1155SeaDrop).interfaceId || interfaceId == type(ContractOffererInterface).interfaceId || interfaceId == 0x2e778efc || // SIP-5 (getSeaportMetadata) // ERC1155ContractMetadata returns supportsInterface true for // IERC1155ContractMetadata, ERC-4906, ERC-2981 // ERC1155A returns supportsInterface true for // ERC165, ERC1155, ERC1155MetadataURI ERC1155ContractMetadataCloneable.supportsInterface(interfaceId); } /** * @dev Internal function to mint tokens during a generateOrder call * from Seaport. * * @param data The original transaction calldata, without the selector. */ function _mintOrder(bytes calldata data) internal { // Decode fulfiller, minimumReceived, and context from calldata. ( address fulfiller, SpentItem[] memory minimumReceived, , bytes memory context ) = abi.decode(data, (address, SpentItem[], SpentItem[], bytes)); // Assign the minter from context[22:42]. We validate context has the // correct minimum length in the implementation's `_decodeOrder`. address minter; assembly { minter := shr(96, mload(add(add(context, 0x20), 22))) } // If the minter is the zero address, set it to the fulfiller. if (minter == address(0)) { minter = fulfiller; } // Set the token ids and quantities. uint256 minimumReceivedLength = minimumReceived.length; uint256[] memory tokenIds = new uint256[](minimumReceivedLength); uint256[] memory quantities = new uint256[](minimumReceivedLength); for (uint256 i = 0; i < minimumReceivedLength; ) { tokenIds[i] = minimumReceived[i].identifier; quantities[i] = minimumReceived[i].amount; unchecked { ++i; } } // Mint the tokens. _batchMint(minter, tokenIds, quantities, ""); } /** * @dev Internal function to mint tokens during a multiConfigureMint call * from the configurer contract. * * @param data The original transaction calldata, without the selector. */ function _multiConfigureMint(bytes calldata data) internal { // Decode the calldata. ( address recipient, uint256[] memory tokenIds, uint256[] memory amounts ) = abi.decode(data, (address, uint256[], uint256[])); _batchMint(recipient, tokenIds, amounts, ""); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { ISeaDropToken } from "./ISeaDropToken.sol"; import { PublicDrop } from "../lib/ERC1155SeaDropStructs.sol"; /** * @dev A helper interface to get and set parameters for ERC1155SeaDrop. * The token does not expose these methods as part of its external * interface to optimize contract size, but does implement them. */ interface IERC1155SeaDrop is ISeaDropToken { /** * @notice Update the SeaDrop public drop parameters at a given index. * * @param publicDrop The new public drop parameters. * @param index The public drop index. */ function updatePublicDrop( PublicDrop calldata publicDrop, uint256 index ) external; /** * @notice Returns the public drop stage parameters at a given index. * * @param index The index of the public drop stage. */ function getPublicDrop( uint256 index ) external view returns (PublicDrop memory); /** * @notice Returns the public drop indexes. */ function getPublicDropIndexes() external view returns (uint256[] memory); /** * @notice Returns a set of mint stats for the address. * This assists SeaDrop in enforcing maxSupply, * maxTotalMintableByWallet, maxTotalMintableByWalletPerToken, * and maxTokenSupplyForStage checks. * * @dev NOTE: Implementing contracts should always update these numbers * before transferring any tokens with _safeMint() to mitigate * consequences of malicious onERC1155Received() hooks. * * @param minter The minter address. * @param tokenId The token id to return stats for. */ function getMintStats( address minter, uint256 tokenId ) external view returns ( uint256 minterNumMinted, uint256 minterNumMintedForTokenId, uint256 totalMintedForTokenId, uint256 maxSupply ); /** * @notice This function is only allowed to be called by the configurer * contract as a way to batch mints and configuration in one tx. * * @param recipient The address to receive the mints. * @param tokenIds The tokenIds to mint. * @param amounts The amounts to mint. */ function multiConfigureMint( address recipient, uint256[] calldata tokenIds, uint256[] calldata amounts ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { ISeaDropTokenContractMetadata } from "./ISeaDropTokenContractMetadata.sol"; import { AllowListData, CreatorPayout } from "../lib/SeaDropStructs.sol"; /** * @dev A helper base interface for IERC721SeaDrop and IERC1155SeaDrop. * The token does not expose these methods as part of its external * interface to optimize contract size, but does implement them. */ interface ISeaDropToken is ISeaDropTokenContractMetadata { /** * @notice Update the SeaDrop allowed Seaport contracts privileged to mint. * Only the owner can use this function. * * @param allowedSeaport The allowed Seaport addresses. */ function updateAllowedSeaport(address[] calldata allowedSeaport) external; /** * @notice Update the SeaDrop allowed fee recipient. * Only the owner can use this function. * * @param feeRecipient The new fee recipient. * @param allowed Whether the fee recipient is allowed. */ function updateAllowedFeeRecipient( address feeRecipient, bool allowed ) external; /** * @notice Update the SeaDrop creator payout addresses. * The total basis points must add up to exactly 10_000. * Only the owner can use this function. * * @param creatorPayouts The new creator payouts. */ function updateCreatorPayouts( CreatorPayout[] calldata creatorPayouts ) external; /** * @notice Update the SeaDrop drop URI. * Only the owner can use this function. * * @param dropURI The new drop URI. */ function updateDropURI(string calldata dropURI) external; /** * @notice Update the SeaDrop allow list data. * Only the owner can use this function. * * @param allowListData The new allow list data. */ function updateAllowList(AllowListData calldata allowListData) external; /** * @notice Update the SeaDrop allowed payers. * Only the owner can use this function. * * @param payer The payer to update. * @param allowed Whether the payer is allowed. */ function updatePayer(address payer, bool allowed) external; /** * @notice Update the SeaDrop allowed signer. * Only the owner can use this function. * An allowed signer can also disallow themselves. * * @param signer The signer to update. * @param allowed Whether the signer is allowed. */ function updateSigner(address signer, bool allowed) external; /** * @notice Get the SeaDrop allowed Seaport contracts privileged to mint. */ function getAllowedSeaport() external view returns (address[] memory); /** * @notice Returns the SeaDrop creator payouts. */ function getCreatorPayouts() external view returns (CreatorPayout[] memory); /** * @notice Returns the SeaDrop allow list merkle root. */ function getAllowListMerkleRoot() external view returns (bytes32); /** * @notice Returns the SeaDrop allowed fee recipients. */ function getAllowedFeeRecipients() external view returns (address[] memory); /** * @notice Returns the SeaDrop allowed signers. */ function getSigners() external view returns (address[] memory); /** * @notice Returns if the signed digest has been used. * * @param digest The digest hash. */ function getDigestIsUsed(bytes32 digest) external view returns (bool); /** * @notice Returns the SeaDrop allowed payers. */ function getPayers() external view returns (address[] memory); /** * @notice Returns the configurer contract. */ function configurer() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { IERC1155ContractMetadata } from "../interfaces/IERC1155ContractMetadata.sol"; import { ERC1155ConduitPreapproved } from "../lib/ERC1155ConduitPreapproved.sol"; import { ERC1155 } from "solady/src/tokens/ERC1155.sol"; import { ERC2981 } from "solady/src/tokens/ERC2981.sol"; import { Ownable } from "solady/src/auth/Ownable.sol"; import { Initializable } from "@openzeppelin-upgradeable/contracts/proxy/utils/Initializable.sol"; /** * @title ERC1155ContractMetadataCloneable * @author James Wenzel (emo.eth) * @author Ryan Ghods (ralxz.eth) * @author Stephan Min (stephanm.eth) * @author Michael Cohen (notmichael.eth) * @notice A cloneable token contract that extends ERC-1155 * with additional metadata and ownership capabilities. */ contract ERC1155ContractMetadataCloneable is ERC1155ConduitPreapproved, ERC2981, Ownable, IERC1155ContractMetadata, Initializable { /// @notice A struct containing the token supply info per token id. mapping(uint256 => TokenSupply) _tokenSupply; /// @notice The total number of tokens minted by address. mapping(address => uint256) _totalMintedByUser; /// @notice The total number of tokens minted per token id by address. mapping(address => mapping(uint256 => uint256)) _totalMintedByUserPerToken; /// @notice The name of the token. string internal _name; /// @notice The symbol of the token. string internal _symbol; /// @notice The base URI for token metadata. string internal _baseURI; /// @notice The contract URI for contract metadata. string internal _contractURI; /// @notice The provenance hash for guaranteeing metadata order /// for random reveals. bytes32 internal _provenanceHash; /// @notice The allowed contract that can configure SeaDrop parameters. address internal _CONFIGURER; /** * @dev Reverts if the sender is not the owner or the allowed * configurer contract. * * This is used as a function instead of a modifier * to save contract space when used multiple times. */ function _onlyOwnerOrConfigurer() internal view { if (msg.sender != _CONFIGURER && msg.sender != owner()) { revert Unauthorized(); } } /** * @notice Deploy the token contract. * * @param allowedConfigurer The address of the contract allowed to * configure parameters. Also contains SeaDrop * implementation code. * @param name_ The name of the token. * @param symbol_ The symbol of the token. */ function __ERC1155ContractMetadataCloneable_init( address allowedConfigurer, string memory name_, string memory symbol_ ) internal onlyInitializing { // Set the name of the token. _name = name_; // Set the symbol of the token. _symbol = symbol_; // Set the allowed configurer contract to interact with this contract. _CONFIGURER = allowedConfigurer; } /** * @notice Sets the base URI for the token metadata and emits an event. * * @param newBaseURI The new base URI to set. */ function setBaseURI(string calldata newBaseURI) external override { // Ensure the sender is only the owner or configurer contract. _onlyOwnerOrConfigurer(); // Set the new base URI. _baseURI = newBaseURI; // Emit an event with the update. emit BatchMetadataUpdate(0, type(uint256).max); } /** * @notice Sets the contract URI for contract metadata. * * @param newContractURI The new contract URI. */ function setContractURI(string calldata newContractURI) external override { // Ensure the sender is only the owner or configurer contract. _onlyOwnerOrConfigurer(); // Set the new contract URI. _contractURI = newContractURI; // Emit an event with the update. emit ContractURIUpdated(newContractURI); } /** * @notice Emit an event notifying metadata updates for * a range of token ids, according to EIP-4906. * * @param fromTokenId The start token id. * @param toTokenId The end token id. */ function emitBatchMetadataUpdate( uint256 fromTokenId, uint256 toTokenId ) external { // Ensure the sender is only the owner or configurer contract. _onlyOwnerOrConfigurer(); // Emit an event with the update. if (fromTokenId == toTokenId) { // If only one token is being updated, use the event // in the 1155 spec. emit URI(uri(fromTokenId), fromTokenId); } else { emit BatchMetadataUpdate(fromTokenId, toTokenId); } } /** * @notice Sets the max token supply and emits an event. * * @param tokenId The token id to set the max supply for. * @param newMaxSupply The new max supply to set. */ function setMaxSupply(uint256 tokenId, uint256 newMaxSupply) external { // Ensure the sender is only the owner or configurer contract. _onlyOwnerOrConfigurer(); // Ensure the max supply does not exceed the maximum value of uint64, // a limit due to the storage of bit-packed variables in TokenSupply, if (newMaxSupply > 2 ** 64 - 1) { revert CannotExceedMaxSupplyOfUint64(newMaxSupply); } // Set the new max supply. _tokenSupply[tokenId].maxSupply = uint64(newMaxSupply); // Emit an event with the update. emit MaxSupplyUpdated(tokenId, newMaxSupply); } /** * @notice Sets the provenance hash and emits an event. * * The provenance hash is used for random reveals, which * is a hash of the ordered metadata to show it has not been * modified after mint started. * * This function will revert if the provenance hash has already * been set, so be sure to carefully set it only once. * * @param newProvenanceHash The new provenance hash to set. */ function setProvenanceHash(bytes32 newProvenanceHash) external { // Ensure the sender is only the owner or configurer contract. _onlyOwnerOrConfigurer(); // Keep track of the old provenance hash for emitting with the event. bytes32 oldProvenanceHash = _provenanceHash; // Revert if the provenance hash has already been set. if (oldProvenanceHash != bytes32(0)) { revert ProvenanceHashCannotBeSetAfterAlreadyBeingSet(); } // Set the new provenance hash. _provenanceHash = newProvenanceHash; // Emit an event with the update. emit ProvenanceHashUpdated(oldProvenanceHash, newProvenanceHash); } /** * @notice Sets the default royalty information. * * Requirements: * * - `receiver` cannot be the zero address. * - `feeNumerator` cannot be greater than the fee denominator of 10_000 basis points. */ function setDefaultRoyalty(address receiver, uint96 feeNumerator) external { // Ensure the sender is only the owner or configurer contract. _onlyOwnerOrConfigurer(); // Set the default royalty. // ERC2981 implementation ensures feeNumerator <= feeDenominator // and receiver != address(0). _setDefaultRoyalty(receiver, feeNumerator); // Emit an event with the updated params. emit RoyaltyInfoUpdated(receiver, feeNumerator); } /** * @notice Returns the name of the token. */ function name() external view returns (string memory) { return _name; } /** * @notice Returns the symbol of the token. */ function symbol() external view returns (string memory) { return _symbol; } /** * @notice Returns the base URI for token metadata. */ function baseURI() external view override returns (string memory) { return _baseURI; } /** * @notice Returns the contract URI for contract metadata. */ function contractURI() external view override returns (string memory) { return _contractURI; } /** * @notice Returns the max token supply for a token id. */ function maxSupply(uint256 tokenId) external view returns (uint256) { return _tokenSupply[tokenId].maxSupply; } /** * @notice Returns the total supply for a token id. */ function totalSupply(uint256 tokenId) external view returns (uint256) { return _tokenSupply[tokenId].totalSupply; } /** * @notice Returns the total minted for a token id. */ function totalMinted(uint256 tokenId) external view returns (uint256) { return _tokenSupply[tokenId].totalMinted; } /** * @notice Returns the provenance hash. * The provenance hash is used for random reveals, which * is a hash of the ordered metadata to show it is unmodified * after mint has started. */ function provenanceHash() external view override returns (bytes32) { return _provenanceHash; } /** * @notice Returns the URI for token metadata. * * This implementation returns the same URI for *all* token types. * It relies on the token type ID substitution mechanism defined * in the EIP to replace {id} with the token id. * * @custom:param tokenId The token id to get the URI for. */ function uri( uint256 /* tokenId */ ) public view virtual override returns (string memory) { // Return the base URI. return _baseURI; } /** * @notice Returns whether the interface is supported. * * @param interfaceId The interface id to check against. */ function supportsInterface( bytes4 interfaceId ) public view virtual override(ERC1155, ERC2981) returns (bool) { return interfaceId == type(IERC1155ContractMetadata).interfaceId || interfaceId == 0x49064906 || // ERC-4906 (MetadataUpdate) ERC2981.supportsInterface(interfaceId) || // ERC1155 returns supportsInterface true for // ERC165, ERC1155, ERC1155MetadataURI ERC1155.supportsInterface(interfaceId); } /** * @dev Adds to the internal counters for a mint. * * @param to The address to mint to. * @param id The token id to mint. * @param amount The quantity to mint. * @param data The data to pass if receiver is a contract. */ function _mint( address to, uint256 id, uint256 amount, bytes memory data ) internal virtual override { // Increment mint counts. _incrementMintCounts(to, id, amount); ERC1155._mint(to, id, amount, data); } /** * @dev Adds to the internal counters for a batch mint. * * @param to The address to mint to. * @param ids The token ids to mint. * @param amounts The quantities to mint. * @param data The data to pass if receiver is a contract. */ function _batchMint( address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual override { // Put ids length on the stack to save MLOADs. uint256 idsLength = ids.length; for (uint256 i = 0; i < idsLength; ) { // Increment mint counts. _incrementMintCounts(to, ids[i], amounts[i]); unchecked { ++i; } } ERC1155._batchMint(to, ids, amounts, data); } /** * @dev Subtracts from the internal counters for a burn. * * @param by The address calling the burn. * @param from The address to burn from. * @param id The token id to burn. * @param amount The amount to burn. */ function _burn( address by, address from, uint256 id, uint256 amount ) internal virtual override { // Reduce the supply. _reduceSupplyOnBurn(id, amount); ERC1155._burn(by, from, id, amount); } /** * @dev Subtracts from the internal counters for a batch burn. * * @param by The address calling the burn. * @param from The address to burn from. * @param ids The token ids to burn. * @param amounts The amounts to burn. */ function _batchBurn( address by, address from, uint256[] memory ids, uint256[] memory amounts ) internal virtual override { // Put ids length on the stack to save MLOADs. uint256 idsLength = ids.length; for (uint256 i = 0; i < idsLength; ) { // Reduce the supply. _reduceSupplyOnBurn(ids[i], amounts[i]); unchecked { ++i; } } ERC1155._batchBurn(by, from, ids, amounts); } function _reduceSupplyOnBurn(uint256 id, uint256 amount) internal { // Get the current token supply. TokenSupply storage tokenSupply = _tokenSupply[id]; // Reduce the totalSupply. unchecked { tokenSupply.totalSupply -= uint64(amount); } } /** * @dev Internal function to increment mint counts. * * Note that this function does not check if the mint exceeds * maxSupply, which should be validated before this function is called. * * @param to The address to mint to. * @param id The token id to mint. * @param amount The quantity to mint. */ function _incrementMintCounts( address to, uint256 id, uint256 amount ) internal { // Get the current token supply. TokenSupply storage tokenSupply = _tokenSupply[id]; if (tokenSupply.totalMinted + amount > tokenSupply.maxSupply) { revert MintExceedsMaxSupply( tokenSupply.totalMinted + amount, tokenSupply.maxSupply ); } // Increment supply and number minted. // Can be unchecked because maxSupply cannot be set to exceed uint64. unchecked { tokenSupply.totalSupply += uint64(amount); tokenSupply.totalMinted += uint64(amount); // Increment total minted by user. _totalMintedByUser[to] += amount; // Increment total minted by user per token. _totalMintedByUserPerToken[to][id] += amount; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { PublicDrop } from "./ERC1155SeaDropStructs.sol"; import { CreatorPayout } from "./SeaDropStructs.sol"; library ERC1155SeaDropContractOffererStorage { struct Layout { /// @notice The allowed Seaport addresses that can mint. mapping(address => bool) _allowedSeaport; /// @notice The enumerated allowed Seaport addresses. address[] _enumeratedAllowedSeaport; /// @notice The public drop data. mapping(uint256 => PublicDrop) _publicDrops; /// @notice The enumerated public drop indexes. uint256[] _enumeratedPublicDropIndexes; /// @notice The creator payout addresses and basis points. CreatorPayout[] _creatorPayouts; /// @notice The allow list merkle root. bytes32 _allowListMerkleRoot; /// @notice The allowed fee recipients. mapping(address => bool) _allowedFeeRecipients; /// @notice The enumerated allowed fee recipients. address[] _enumeratedFeeRecipients; /// @notice The allowed server-side signers. mapping(address => bool) _allowedSigners; /// @notice The enumerated allowed signers. address[] _enumeratedSigners; /// @notice The used signature digests. mapping(bytes32 => bool) _usedDigests; /// @notice The allowed payers. mapping(address => bool) _allowedPayers; /// @notice The enumerated allowed payers. address[] _enumeratedPayers; } bytes32 internal constant STORAGE_SLOT = bytes32( uint256( keccak256("contracts.storage.ERC1155SeaDropContractOfferer") ) - 1 ); function layout() internal pure returns (Layout storage l) { bytes32 slot = STORAGE_SLOT; assembly { l.slot := slot } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { PublicDrop } from "./ERC1155SeaDropStructs.sol"; import { SeaDropErrorsAndEvents } from "./SeaDropErrorsAndEvents.sol"; interface ERC1155SeaDropErrorsAndEvents is SeaDropErrorsAndEvents { /** * @dev Revert with an error if an empty PublicDrop is provided * for an already-empty public drop. */ error PublicDropStageNotPresent(); /** * @dev Revert with an error if the mint quantity exceeds the * max minted per wallet for a certain token id. */ error MintQuantityExceedsMaxMintedPerWalletForTokenId( uint256 tokenId, uint256 total, uint256 allowed ); /** * @dev Revert with an error if the target token id to mint is not within * the drop stage range. */ error TokenIdNotWithinDropStageRange( uint256 tokenId, uint256 startTokenId, uint256 endTokenId ); /** * @notice Revert with an error if the number of maxSupplyAmounts doesn't * match the number of maxSupplyTokenIds. */ error MaxSupplyMismatch(); /** * @notice Revert with an error if the number of mint tokenIds doesn't * match the number of mint amounts. */ error MintAmountsMismatch(); /** * @notice Revert with an error if the mint order offer contains * a duplicate tokenId. */ error OfferContainsDuplicateTokenId(uint256 tokenId); /** * @dev Revert if the fromTokenId is greater than the toTokenId. */ error InvalidFromAndToTokenId(uint256 fromTokenId, uint256 toTokenId); /** * @notice Revert with an error if the number of publicDropIndexes doesn't * match the number of publicDrops. */ error PublicDropsMismatch(); /** * @dev An event with updated public drop data. */ event PublicDropUpdated(PublicDrop publicDrop, uint256 index); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { AllowListData, CreatorPayout } from "./SeaDropStructs.sol"; /** * @notice A struct defining public drop data. * Designed to fit efficiently in two storage slots. * * @param startPrice The start price per token. (Up to 1.2m * of native token, e.g. ETH, MATIC) * @param endPrice The end price per token. If this differs * from startPrice, the current price will * be calculated based on the current time. * @param startTime The start time, ensure this is not zero. * @param endTime The end time, ensure this is not zero. * @param restrictFeeRecipients If false, allow any fee recipient; * if true, check fee recipient is allowed. * @param paymentToken The payment token address. Null for * native token. * @param fromTokenId The start token id for the stage. * @param toTokenId The end token id for the stage. * @param maxTotalMintableByWallet Maximum total number of mints a user is * allowed. (The limit for this field is * 2^16 - 1) * @param maxTotalMintableByWalletPerToken Maximum total number of mints a user * is allowed for the token id. (The limit for * this field is 2^16 - 1) * @param feeBps Fee out of 10_000 basis points to be * collected. */ struct PublicDrop { // slot 1 uint80 startPrice; // 80/512 bits uint80 endPrice; // 160/512 bits uint40 startTime; // 200/512 bits uint40 endTime; // 240/512 bits bool restrictFeeRecipients; // 248/512 bits // uint8 unused; // slot 2 address paymentToken; // 408/512 bits uint24 fromTokenId; // 432/512 bits uint24 toTokenId; // 456/512 bits uint16 maxTotalMintableByWallet; // 472/512 bits uint16 maxTotalMintableByWalletPerToken; // 488/512 bits uint16 feeBps; // 504/512 bits } /** * @notice A struct defining mint params for an allow list. * An allow list leaf will be composed of `msg.sender` and * the following params. * * Note: Since feeBps is encoded in the leaf, backend should ensure * that feeBps is acceptable before generating a proof. * * @param startPrice The start price per token. (Up to 1.2m * of native token, e.g. ETH, MATIC) * @param endPrice The end price per token. If this differs * from startPrice, the current price will * be calculated based on the current time. * @param startTime The start time, ensure this is not zero. * @param endTime The end time, ensure this is not zero. * @param paymentToken The payment token for the mint. Null for * native token. * @param fromTokenId The start token id for the stage. * @param toTokenId The end token id for the stage. * @param maxTotalMintableByWallet Maximum total number of mints a user is * allowed. * @param maxTotalMintableByWalletPerToken Maximum total number of mints a user * is allowed for the token id. * @param maxTokenSupplyForStage The limit of token supply this stage can * mint within. * @param dropStageIndex The drop stage index to emit with the event * for analytical purposes. This should be * non-zero since the public mint emits with * index zero. * @param feeBps Fee out of 10_000 basis points to be * collected. * @param restrictFeeRecipients If false, allow any fee recipient; * if true, check fee recipient is allowed. */ struct MintParams { uint256 startPrice; uint256 endPrice; uint256 startTime; uint256 endTime; address paymentToken; uint256 fromTokenId; uint256 toTokenId; uint256 maxTotalMintableByWallet; uint256 maxTotalMintableByWalletPerToken; uint256 maxTokenSupplyForStage; uint256 dropStageIndex; // non-zero uint256 feeBps; bool restrictFeeRecipients; } /** * @dev Struct containing internal SeaDrop implementation logic * mint details to avoid stack too deep. * * @param feeRecipient The fee recipient. * @param payer The payer of the mint. * @param minter The mint recipient. * @param tokenIds The tokenIds to mint. * @param quantities The number of tokens to mint per tokenId. * @param withEffects Whether to apply state changes of the mint. */ struct MintDetails { address feeRecipient; address payer; address minter; uint256[] tokenIds; uint256[] quantities; bool withEffects; } /** * @notice A struct to configure multiple contract options in one transaction. */ struct MultiConfigureStruct { uint256[] maxSupplyTokenIds; uint256[] maxSupplyAmounts; string baseURI; string contractURI; PublicDrop[] publicDrops; uint256[] publicDropsIndexes; string dropURI; AllowListData allowListData; CreatorPayout[] creatorPayouts; bytes32 provenanceHash; address[] allowedFeeRecipients; address[] disallowedFeeRecipients; address[] allowedPayers; address[] disallowedPayers; // Server-signed address[] allowedSigners; address[] disallowedSigners; // ERC-2981 address royaltyReceiver; uint96 royaltyBps; // Mint address mintRecipient; uint256[] mintTokenIds; uint256[] mintAmounts; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; /** * @notice A struct defining a creator payout address and basis points. * * @param payoutAddress The payout address. * @param basisPoints The basis points to pay out to the creator. * The total creator payouts must equal 10_000 bps. */ struct CreatorPayout { address payoutAddress; uint16 basisPoints; } /** * @notice A struct defining allow list data (for minting an allow list). * * @param merkleRoot The merkle root for the allow list. * @param publicKeyURIs If the allowListURI is encrypted, a list of URIs * pointing to the public keys. Empty if unencrypted. * @param allowListURI The URI for the allow list. */ struct AllowListData { bytes32 merkleRoot; string[] publicKeyURIs; string allowListURI; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { ERC1155 } from "solady/src/tokens/ERC1155.sol"; /** * @title ERC1155ConduitPreapproved * @notice Solady's ERC1155 with the OpenSea conduit preapproved. */ abstract contract ERC1155ConduitPreapproved is ERC1155 { /// @dev The canonical OpenSea conduit. address internal constant _CONDUIT = 0x1E0049783F008A0085193E00003D00cd54003c71; function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) public virtual override { _safeTransfer(_by(), from, to, id, amount, data); } function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) public virtual override { _safeBatchTransfer(_by(), from, to, ids, amounts, data); } function isApprovedForAll( address owner, address operator ) public view virtual override returns (bool) { if (operator == _CONDUIT) return true; return ERC1155.isApprovedForAll(owner, operator); } function _by() internal view returns (address result) { assembly { // `msg.sender == _CONDUIT ? address(0) : msg.sender`. result := mul(iszero(eq(caller(), _CONDUIT)), caller()) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple ERC1155 implementation. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC1155.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC1155/ERC1155.sol) /// /// @dev Note: /// The ERC1155 standard allows for self-approvals. /// For performance, this implementation WILL NOT revert for such actions. /// Please add any checks with overrides if desired. abstract contract ERC1155 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The lengths of the input arrays are not the same. error ArrayLengthsMismatch(); /// @dev Cannot mint or transfer to the zero address. error TransferToZeroAddress(); /// @dev The recipient's balance has overflowed. error AccountBalanceOverflow(); /// @dev Insufficient balance. error InsufficientBalance(); /// @dev Only the token owner or an approved account can manage the tokens. error NotOwnerNorApproved(); /// @dev Cannot safely transfer to a contract that does not implement /// the ERC1155Receiver interface. error TransferToNonERC1155ReceiverImplementer(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Emitted when `amount` of token `id` is transferred /// from `from` to `to` by `operator`. event TransferSingle( address indexed operator, address indexed from, address indexed to, uint256 id, uint256 amount ); /// @dev Emitted when `amounts` of token `ids` are transferred /// from `from` to `to` by `operator`. event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] amounts ); /// @dev Emitted when `owner` enables or disables `operator` to manage all of their tokens. event ApprovalForAll(address indexed owner, address indexed operator, bool isApproved); /// @dev Emitted when the Uniform Resource Identifier (URI) for token `id` /// is updated to `value`. This event is not used in the base contract. /// You may need to emit this event depending on your URI logic. /// /// See: https://eips.ethereum.org/EIPS/eip-1155#metadata event URI(string value, uint256 indexed id); /// @dev `keccak256(bytes("TransferSingle(address,address,address,uint256,uint256)"))`. uint256 private constant _TRANSFER_SINGLE_EVENT_SIGNATURE = 0xc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62; /// @dev `keccak256(bytes("TransferBatch(address,address,address,uint256[],uint256[])"))`. uint256 private constant _TRANSFER_BATCH_EVENT_SIGNATURE = 0x4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb; /// @dev `keccak256(bytes("ApprovalForAll(address,address,bool)"))`. uint256 private constant _APPROVAL_FOR_ALL_EVENT_SIGNATURE = 0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The `ownerSlotSeed` of a given owner is given by. /// ``` /// let ownerSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, owner)) /// ``` /// /// The balance slot of `owner` is given by. /// ``` /// mstore(0x20, ownerSlotSeed) /// mstore(0x00, id) /// let balanceSlot := keccak256(0x00, 0x40) /// ``` /// /// The operator approval slot of `owner` is given by. /// ``` /// mstore(0x20, ownerSlotSeed) /// mstore(0x00, operator) /// let operatorApprovalSlot := keccak256(0x0c, 0x34) /// ``` uint256 private constant _ERC1155_MASTER_SLOT_SEED = 0x9a31110384e0b0c9; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC1155 METADATA */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the URI for token `id`. /// /// You can either return the same templated URI for all token IDs, /// (e.g. "https://example.com/api/{id}.json"), /// or return a unique URI for each `id`. /// /// See: https://eips.ethereum.org/EIPS/eip-1155#metadata function uri(uint256 id) public view virtual returns (string memory); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC1155 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the amount of `id` owned by `owner`. function balanceOf(address owner, uint256 id) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, _ERC1155_MASTER_SLOT_SEED) mstore(0x14, owner) mstore(0x00, id) result := sload(keccak256(0x00, 0x40)) } } /// @dev Returns whether `operator` is approved to manage the tokens of `owner`. function isApprovedForAll(address owner, address operator) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, _ERC1155_MASTER_SLOT_SEED) mstore(0x14, owner) mstore(0x00, operator) result := sload(keccak256(0x0c, 0x34)) } } /// @dev Sets whether `operator` is approved to manage the tokens of the caller. /// /// Emits a {ApprovalForAll} event. function setApprovalForAll(address operator, bool isApproved) public virtual { /// @solidity memory-safe-assembly assembly { // Convert to 0 or 1. isApproved := iszero(iszero(isApproved)) // Update the `isApproved` for (`msg.sender`, `operator`). mstore(0x20, _ERC1155_MASTER_SLOT_SEED) mstore(0x14, caller()) mstore(0x00, operator) sstore(keccak256(0x0c, 0x34), isApproved) // Emit the {ApprovalForAll} event. mstore(0x00, isApproved) // forgefmt: disable-next-line log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, caller(), shr(96, shl(96, operator))) } } /// @dev Transfers `amount` of `id` from `from` to `to`. /// /// Requirements: /// - `to` cannot be the zero address. /// - `from` must have at least `amount` of `id`. /// - If the caller is not `from`, /// it must be approved to manage the tokens of `from`. /// - If `to` refers to a smart contract, it must implement /// {ERC1155-onERC1155Reveived}, which is called upon a batch transfer. /// /// Emits a {Transfer} event. function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) public virtual { if (_useBeforeTokenTransfer()) { _beforeTokenTransfer(from, to, _single(id), _single(amount), data); } /// @solidity memory-safe-assembly assembly { let fromSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, from)) let toSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, to)) mstore(0x20, fromSlotSeed) // Clear the upper 96 bits. from := shr(96, fromSlotSeed) to := shr(96, toSlotSeed) // Revert if `to` is the zero address. if iszero(to) { mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`. revert(0x1c, 0x04) } // If the caller is not `from`, do the authorization check. if iszero(eq(caller(), from)) { mstore(0x00, caller()) if iszero(sload(keccak256(0x0c, 0x34))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Subtract and store the updated balance of `from`. { mstore(0x00, id) let fromBalanceSlot := keccak256(0x00, 0x40) let fromBalance := sload(fromBalanceSlot) if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } sstore(fromBalanceSlot, sub(fromBalance, amount)) } // Increase and store the updated balance of `to`. { mstore(0x20, toSlotSeed) let toBalanceSlot := keccak256(0x00, 0x40) let toBalanceBefore := sload(toBalanceSlot) let toBalanceAfter := add(toBalanceBefore, amount) if lt(toBalanceAfter, toBalanceBefore) { mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`. revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceAfter) } // Emit a {TransferSingle} event. mstore(0x20, amount) log4(0x00, 0x40, _TRANSFER_SINGLE_EVENT_SIGNATURE, caller(), from, to) } if (_useAfterTokenTransfer()) { _afterTokenTransfer(from, to, _single(id), _single(amount), data); } /// @solidity memory-safe-assembly assembly { // Do the {onERC1155Received} check if `to` is a smart contract. if extcodesize(to) { // Prepare the calldata. let m := mload(0x40) // `onERC1155Received(address,address,uint256,uint256,bytes)`. mstore(m, 0xf23a6e61) mstore(add(m, 0x20), caller()) mstore(add(m, 0x40), from) mstore(add(m, 0x60), id) mstore(add(m, 0x80), amount) mstore(add(m, 0xa0), 0xa0) calldatacopy(add(m, 0xc0), sub(data.offset, 0x20), add(0x20, data.length)) // Revert if the call reverts. if iszero(call(gas(), to, 0, add(m, 0x1c), add(0xc4, data.length), m, 0x20)) { if returndatasize() { // Bubble up the revert if the call reverts. returndatacopy(0x00, 0x00, returndatasize()) revert(0x00, returndatasize()) } mstore(m, 0) } // Load the returndata and compare it with the function selector. if iszero(eq(mload(m), shl(224, 0xf23a6e61))) { mstore(0x00, 0x9c05499b) // `TransferToNonERC1155ReceiverImplementer()`. revert(0x1c, 0x04) } } } } /// @dev Transfers `amounts` of `ids` from `from` to `to`. /// /// Requirements: /// - `to` cannot be the zero address. /// - `from` must have at least `amount` of `id`. /// - `ids` and `amounts` must have the same length. /// - If the caller is not `from`, /// it must be approved to manage the tokens of `from`. /// - If `to` refers to a smart contract, it must implement /// {ERC1155-onERC1155BatchReveived}, which is called upon a batch transfer. /// /// Emits a {TransferBatch} event. function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) public virtual { if (_useBeforeTokenTransfer()) { _beforeTokenTransfer(from, to, ids, amounts, data); } /// @solidity memory-safe-assembly assembly { if iszero(eq(ids.length, amounts.length)) { mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`. revert(0x1c, 0x04) } let fromSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, from)) let toSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, shl(96, to)) mstore(0x20, fromSlotSeed) // Clear the upper 96 bits. from := shr(96, fromSlotSeed) to := shr(96, toSlotSeed) // Revert if `to` is the zero address. if iszero(to) { mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`. revert(0x1c, 0x04) } // If the caller is not `from`, do the authorization check. if iszero(eq(caller(), from)) { mstore(0x00, caller()) if iszero(sload(keccak256(0x0c, 0x34))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Loop through all the `ids` and update the balances. { let end := shl(5, ids.length) for { let i := 0 } iszero(eq(i, end)) { i := add(i, 0x20) } { let amount := calldataload(add(amounts.offset, i)) // Subtract and store the updated balance of `from`. { mstore(0x20, fromSlotSeed) mstore(0x00, calldataload(add(ids.offset, i))) let fromBalanceSlot := keccak256(0x00, 0x40) let fromBalance := sload(fromBalanceSlot) if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } sstore(fromBalanceSlot, sub(fromBalance, amount)) } // Increase and store the updated balance of `to`. { mstore(0x20, toSlotSeed) let toBalanceSlot := keccak256(0x00, 0x40) let toBalanceBefore := sload(toBalanceSlot) let toBalanceAfter := add(toBalanceBefore, amount) if lt(toBalanceAfter, toBalanceBefore) { mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`. revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceAfter) } } } // Emit a {TransferBatch} event. { let m := mload(0x40) // Copy the `ids`. mstore(m, 0x40) let n := add(0x20, shl(5, ids.length)) let o := add(m, 0x40) calldatacopy(o, sub(ids.offset, 0x20), n) // Copy the `amounts`. mstore(add(m, 0x20), add(0x40, n)) o := add(o, n) n := add(0x20, shl(5, amounts.length)) calldatacopy(o, sub(amounts.offset, 0x20), n) n := sub(add(o, n), m) // Do the emit. log4(m, n, _TRANSFER_BATCH_EVENT_SIGNATURE, caller(), from, to) } } if (_useAfterTokenTransfer()) { _afterTokenTransferCalldata(from, to, ids, amounts, data); } /// @solidity memory-safe-assembly assembly { // Do the {onERC1155BatchReceived} check if `to` is a smart contract. if extcodesize(to) { let m := mload(0x40) // Prepare the calldata. // `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`. mstore(m, 0xbc197c81) mstore(add(m, 0x20), caller()) mstore(add(m, 0x40), from) // Copy the `ids`. mstore(add(m, 0x60), 0xa0) let n := add(0x20, shl(5, ids.length)) let o := add(m, 0xc0) calldatacopy(o, sub(ids.offset, 0x20), n) // Copy the `amounts`. let s := add(0xa0, n) mstore(add(m, 0x80), s) o := add(o, n) n := add(0x20, shl(5, amounts.length)) calldatacopy(o, sub(amounts.offset, 0x20), n) // Copy the `data`. mstore(add(m, 0xa0), add(s, n)) o := add(o, n) n := add(0x20, data.length) calldatacopy(o, sub(data.offset, 0x20), n) n := sub(add(o, n), add(m, 0x1c)) // Revert if the call reverts. if iszero(call(gas(), to, 0, add(m, 0x1c), n, m, 0x20)) { if returndatasize() { // Bubble up the revert if the call reverts. returndatacopy(0x00, 0x00, returndatasize()) revert(0x00, returndatasize()) } mstore(m, 0) } // Load the returndata and compare it with the function selector. if iszero(eq(mload(m), shl(224, 0xbc197c81))) { mstore(0x00, 0x9c05499b) // `TransferToNonERC1155ReceiverImplementer()`. revert(0x1c, 0x04) } } } } /// @dev Returns the amounts of `ids` for `owners. /// /// Requirements: /// - `owners` and `ids` must have the same length. function balanceOfBatch(address[] calldata owners, uint256[] calldata ids) public view virtual returns (uint256[] memory balances) { /// @solidity memory-safe-assembly assembly { if iszero(eq(ids.length, owners.length)) { mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`. revert(0x1c, 0x04) } balances := mload(0x40) mstore(balances, ids.length) let o := add(balances, 0x20) let end := shl(5, ids.length) mstore(0x40, add(end, o)) // Loop through all the `ids` and load the balances. for { let i := 0 } iszero(eq(i, end)) { i := add(i, 0x20) } { let owner := calldataload(add(owners.offset, i)) mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, shl(96, owner))) mstore(0x00, calldataload(add(ids.offset, i))) mstore(add(o, i), sload(keccak256(0x00, 0x40))) } } } /// @dev Returns true if this contract implements the interface defined by `interfaceId`. /// See: https://eips.ethereum.org/EIPS/eip-165 /// This function call must use less than 30000 gas. function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { let s := shr(224, interfaceId) // ERC165: 0x01ffc9a7, ERC1155: 0xd9b67a26, ERC1155MetadataURI: 0x0e89341c. result := or(or(eq(s, 0x01ffc9a7), eq(s, 0xd9b67a26)), eq(s, 0x0e89341c)) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL MINT FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Mints `amount` of `id` to `to`. /// /// Requirements: /// - `to` cannot be the zero address. /// - If `to` refers to a smart contract, it must implement /// {ERC1155-onERC1155Reveived}, which is called upon a batch transfer. /// /// Emits a {Transfer} event. function _mint(address to, uint256 id, uint256 amount, bytes memory data) internal virtual { if (_useBeforeTokenTransfer()) { _beforeTokenTransfer(address(0), to, _single(id), _single(amount), data); } /// @solidity memory-safe-assembly assembly { let to_ := shl(96, to) // Revert if `to` is the zero address. if iszero(to_) { mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`. revert(0x1c, 0x04) } // Increase and store the updated balance of `to`. { mstore(0x20, _ERC1155_MASTER_SLOT_SEED) mstore(0x14, to) mstore(0x00, id) let toBalanceSlot := keccak256(0x00, 0x40) let toBalanceBefore := sload(toBalanceSlot) let toBalanceAfter := add(toBalanceBefore, amount) if lt(toBalanceAfter, toBalanceBefore) { mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`. revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceAfter) } // Emit a {TransferSingle} event. mstore(0x00, id) mstore(0x20, amount) log4(0x00, 0x40, _TRANSFER_SINGLE_EVENT_SIGNATURE, caller(), 0, shr(96, to_)) } if (_useAfterTokenTransfer()) { _afterTokenTransfer(address(0), to, _single(id), _single(amount), data); } if (_hasCode(to)) _checkOnERC1155Received(address(0), to, id, amount, data); } /// @dev Mints `amounts` of `ids` to `to`. /// /// Requirements: /// - `to` cannot be the zero address. /// - `ids` and `amounts` must have the same length. /// - If `to` refers to a smart contract, it must implement /// {ERC1155-onERC1155BatchReveived}, which is called upon a batch transfer. /// /// Emits a {TransferBatch} event. function _batchMint( address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { if (_useBeforeTokenTransfer()) { _beforeTokenTransfer(address(0), to, ids, amounts, data); } /// @solidity memory-safe-assembly assembly { if iszero(eq(mload(ids), mload(amounts))) { mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`. revert(0x1c, 0x04) } let to_ := shl(96, to) // Revert if `to` is the zero address. if iszero(to_) { mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`. revert(0x1c, 0x04) } // Loop through all the `ids` and update the balances. { mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, to_)) let end := shl(5, mload(ids)) for { let i := 0 } iszero(eq(i, end)) {} { i := add(i, 0x20) let amount := mload(add(amounts, i)) // Increase and store the updated balance of `to`. { mstore(0x00, mload(add(ids, i))) let toBalanceSlot := keccak256(0x00, 0x40) let toBalanceBefore := sload(toBalanceSlot) let toBalanceAfter := add(toBalanceBefore, amount) if lt(toBalanceAfter, toBalanceBefore) { mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`. revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceAfter) } } } // Emit a {TransferBatch} event. { let m := mload(0x40) // Copy the `ids`. mstore(m, 0x40) let n := add(0x20, shl(5, mload(ids))) let o := add(m, 0x40) pop(staticcall(gas(), 4, ids, n, o, n)) // Copy the `amounts`. mstore(add(m, 0x20), add(0x40, returndatasize())) o := add(o, returndatasize()) n := add(0x20, shl(5, mload(amounts))) pop(staticcall(gas(), 4, amounts, n, o, n)) n := sub(add(o, returndatasize()), m) // Do the emit. log4(m, n, _TRANSFER_BATCH_EVENT_SIGNATURE, caller(), 0, shr(96, to_)) } } if (_useAfterTokenTransfer()) { _afterTokenTransfer(address(0), to, ids, amounts, data); } if (_hasCode(to)) _checkOnERC1155BatchReceived(address(0), to, ids, amounts, data); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL BURN FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `_burn(address(0), from, id, amount)`. function _burn(address from, uint256 id, uint256 amount) internal virtual { _burn(address(0), from, id, amount); } /// @dev Destroys `amount` of `id` from `from`. /// /// Requirements: /// - `from` must have at least `amount` of `id`. /// - If `by` is not the zero address, it must be either `from`, /// or approved to manage the tokens of `from`. /// /// Emits a {Transfer} event. function _burn(address by, address from, uint256 id, uint256 amount) internal virtual { if (_useBeforeTokenTransfer()) { _beforeTokenTransfer(from, address(0), _single(id), _single(amount), ""); } /// @solidity memory-safe-assembly assembly { let from_ := shl(96, from) mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, from_)) // If `by` is not the zero address, and not equal to `from`, // check if it is approved to manage all the tokens of `from`. if iszero(or(iszero(shl(96, by)), eq(shl(96, by), from_))) { mstore(0x00, by) if iszero(sload(keccak256(0x0c, 0x34))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Decrease and store the updated balance of `from`. { mstore(0x00, id) let fromBalanceSlot := keccak256(0x00, 0x40) let fromBalance := sload(fromBalanceSlot) if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } sstore(fromBalanceSlot, sub(fromBalance, amount)) } // Emit a {TransferSingle} event. mstore(0x00, id) mstore(0x20, amount) log4(0x00, 0x40, _TRANSFER_SINGLE_EVENT_SIGNATURE, caller(), shr(96, from_), 0) } if (_useAfterTokenTransfer()) { _afterTokenTransfer(from, address(0), _single(id), _single(amount), ""); } } /// @dev Equivalent to `_batchBurn(address(0), from, ids, amounts)`. function _batchBurn(address from, uint256[] memory ids, uint256[] memory amounts) internal virtual { _batchBurn(address(0), from, ids, amounts); } /// @dev Destroys `amounts` of `ids` from `from`. /// /// Requirements: /// - `ids` and `amounts` must have the same length. /// - `from` must have at least `amounts` of `ids`. /// - If `by` is not the zero address, it must be either `from`, /// or approved to manage the tokens of `from`. /// /// Emits a {TransferBatch} event. function _batchBurn(address by, address from, uint256[] memory ids, uint256[] memory amounts) internal virtual { if (_useBeforeTokenTransfer()) { _beforeTokenTransfer(from, address(0), ids, amounts, ""); } /// @solidity memory-safe-assembly assembly { if iszero(eq(mload(ids), mload(amounts))) { mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`. revert(0x1c, 0x04) } let from_ := shl(96, from) mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, from_)) // If `by` is not the zero address, and not equal to `from`, // check if it is approved to manage all the tokens of `from`. let by_ := shl(96, by) if iszero(or(iszero(by_), eq(by_, from_))) { mstore(0x00, by) if iszero(sload(keccak256(0x0c, 0x34))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Loop through all the `ids` and update the balances. { let end := shl(5, mload(ids)) for { let i := 0 } iszero(eq(i, end)) {} { i := add(i, 0x20) let amount := mload(add(amounts, i)) // Decrease and store the updated balance of `to`. { mstore(0x00, mload(add(ids, i))) let fromBalanceSlot := keccak256(0x00, 0x40) let fromBalance := sload(fromBalanceSlot) if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } sstore(fromBalanceSlot, sub(fromBalance, amount)) } } } // Emit a {TransferBatch} event. { let m := mload(0x40) // Copy the `ids`. mstore(m, 0x40) let n := add(0x20, shl(5, mload(ids))) let o := add(m, 0x40) pop(staticcall(gas(), 4, ids, n, o, n)) // Copy the `amounts`. mstore(add(m, 0x20), add(0x40, returndatasize())) o := add(o, returndatasize()) n := add(0x20, shl(5, mload(amounts))) pop(staticcall(gas(), 4, amounts, n, o, n)) n := sub(add(o, returndatasize()), m) // Do the emit. log4(m, n, _TRANSFER_BATCH_EVENT_SIGNATURE, caller(), shr(96, from_), 0) } } if (_useAfterTokenTransfer()) { _afterTokenTransfer(from, address(0), ids, amounts, ""); } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL APPROVAL FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Approve or remove the `operator` as an operator for `by`, /// without authorization checks. /// /// Emits a {ApprovalForAll} event. function _setApprovalForAll(address by, address operator, bool isApproved) internal virtual { /// @solidity memory-safe-assembly assembly { // Convert to 0 or 1. isApproved := iszero(iszero(isApproved)) // Update the `isApproved` for (`by`, `operator`). mstore(0x20, _ERC1155_MASTER_SLOT_SEED) mstore(0x14, by) mstore(0x00, operator) sstore(keccak256(0x0c, 0x34), isApproved) // Emit the {ApprovalForAll} event. mstore(0x00, isApproved) let m := shr(96, not(0)) log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, and(m, by), and(m, operator)) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL TRANSFER FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `_safeTransfer(address(0), from, to, id, amount, data)`. function _safeTransfer(address from, address to, uint256 id, uint256 amount, bytes memory data) internal virtual { _safeTransfer(address(0), from, to, id, amount, data); } /// @dev Transfers `amount` of `id` from `from` to `to`. /// /// Requirements: /// - `to` cannot be the zero address. /// - `from` must have at least `amount` of `id`. /// - If `by` is not the zero address, it must be either `from`, /// or approved to manage the tokens of `from`. /// - If `to` refers to a smart contract, it must implement /// {ERC1155-onERC1155Reveived}, which is called upon a batch transfer. /// /// Emits a {Transfer} event. function _safeTransfer( address by, address from, address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { if (_useBeforeTokenTransfer()) { _beforeTokenTransfer(from, to, _single(id), _single(amount), data); } /// @solidity memory-safe-assembly assembly { let from_ := shl(96, from) let to_ := shl(96, to) // Revert if `to` is the zero address. if iszero(to_) { mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`. revert(0x1c, 0x04) } mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, from_)) // If `by` is not the zero address, and not equal to `from`, // check if it is approved to manage all the tokens of `from`. let by_ := shl(96, by) if iszero(or(iszero(by_), eq(by_, from_))) { mstore(0x00, by) if iszero(sload(keccak256(0x0c, 0x34))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Subtract and store the updated balance of `from`. { mstore(0x00, id) let fromBalanceSlot := keccak256(0x00, 0x40) let fromBalance := sload(fromBalanceSlot) if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } sstore(fromBalanceSlot, sub(fromBalance, amount)) } // Increase and store the updated balance of `to`. { mstore(0x20, or(_ERC1155_MASTER_SLOT_SEED, to_)) let toBalanceSlot := keccak256(0x00, 0x40) let toBalanceBefore := sload(toBalanceSlot) let toBalanceAfter := add(toBalanceBefore, amount) if lt(toBalanceAfter, toBalanceBefore) { mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`. revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceAfter) } // Emit a {TransferSingle} event. mstore(0x20, amount) // forgefmt: disable-next-line log4(0x00, 0x40, _TRANSFER_SINGLE_EVENT_SIGNATURE, caller(), shr(96, from_), shr(96, to_)) } if (_useAfterTokenTransfer()) { _afterTokenTransfer(from, to, _single(id), _single(amount), data); } if (_hasCode(to)) _checkOnERC1155Received(from, to, id, amount, data); } /// @dev Equivalent to `_safeBatchTransfer(address(0), from, to, ids, amounts, data)`. function _safeBatchTransfer( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { _safeBatchTransfer(address(0), from, to, ids, amounts, data); } /// @dev Transfers `amounts` of `ids` from `from` to `to`. /// /// Requirements: /// - `to` cannot be the zero address. /// - `ids` and `amounts` must have the same length. /// - `from` must have at least `amounts` of `ids`. /// - If `by` is not the zero address, it must be either `from`, /// or approved to manage the tokens of `from`. /// - If `to` refers to a smart contract, it must implement /// {ERC1155-onERC1155BatchReveived}, which is called upon a batch transfer. /// /// Emits a {TransferBatch} event. function _safeBatchTransfer( address by, address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { if (_useBeforeTokenTransfer()) { _beforeTokenTransfer(from, to, ids, amounts, data); } /// @solidity memory-safe-assembly assembly { if iszero(eq(mload(ids), mload(amounts))) { mstore(0x00, 0x3b800a46) // `ArrayLengthsMismatch()`. revert(0x1c, 0x04) } let from_ := shl(96, from) let to_ := shl(96, to) // Revert if `to` is the zero address. if iszero(to_) { mstore(0x00, 0xea553b34) // `TransferToZeroAddress()`. revert(0x1c, 0x04) } let fromSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, from_) let toSlotSeed := or(_ERC1155_MASTER_SLOT_SEED, to_) mstore(0x20, fromSlotSeed) // If `by` is not the zero address, and not equal to `from`, // check if it is approved to manage all the tokens of `from`. let by_ := shl(96, by) if iszero(or(iszero(by_), eq(by_, from_))) { mstore(0x00, by) if iszero(sload(keccak256(0x0c, 0x34))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Loop through all the `ids` and update the balances. { let end := shl(5, mload(ids)) for { let i := 0 } iszero(eq(i, end)) {} { i := add(i, 0x20) let amount := mload(add(amounts, i)) // Subtract and store the updated balance of `from`. { mstore(0x20, fromSlotSeed) mstore(0x00, mload(add(ids, i))) let fromBalanceSlot := keccak256(0x00, 0x40) let fromBalance := sload(fromBalanceSlot) if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } sstore(fromBalanceSlot, sub(fromBalance, amount)) } // Increase and store the updated balance of `to`. { mstore(0x20, toSlotSeed) let toBalanceSlot := keccak256(0x00, 0x40) let toBalanceBefore := sload(toBalanceSlot) let toBalanceAfter := add(toBalanceBefore, amount) if lt(toBalanceAfter, toBalanceBefore) { mstore(0x00, 0x01336cea) // `AccountBalanceOverflow()`. revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceAfter) } } } // Emit a {TransferBatch} event. { let m := mload(0x40) // Copy the `ids`. mstore(m, 0x40) let n := add(0x20, shl(5, mload(ids))) let o := add(m, 0x40) pop(staticcall(gas(), 4, ids, n, o, n)) // Copy the `amounts`. mstore(add(m, 0x20), add(0x40, returndatasize())) o := add(o, returndatasize()) n := add(0x20, shl(5, mload(amounts))) pop(staticcall(gas(), 4, amounts, n, o, n)) n := sub(add(o, returndatasize()), m) // Do the emit. log4(m, n, _TRANSFER_BATCH_EVENT_SIGNATURE, caller(), shr(96, from_), shr(96, to_)) } } if (_useAfterTokenTransfer()) { _afterTokenTransfer(from, to, ids, amounts, data); } if (_hasCode(to)) _checkOnERC1155BatchReceived(from, to, ids, amounts, data); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HOOKS FOR OVERRIDING */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Override this function to return true if `_beforeTokenTransfer` is used. /// The is to help the compiler avoid producing dead bytecode. function _useBeforeTokenTransfer() internal view virtual returns (bool) { return false; } /// @dev Hook that is called before any token transfer. /// This includes minting and burning, as well as batched variants. /// /// The same hook is called on both single and batched variants. /// For single transfers, the length of the `id` and `amount` arrays are 1. function _beforeTokenTransfer( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual {} /// @dev Override this function to return true if `_afterTokenTransfer` is used. /// The is to help the compiler avoid producing dead bytecode. function _useAfterTokenTransfer() internal view virtual returns (bool) { return false; } /// @dev Hook that is called after any token transfer. /// This includes minting and burning, as well as batched variants. /// /// The same hook is called on both single and batched variants. /// For single transfers, the length of the `id` and `amount` arrays are 1. function _afterTokenTransfer( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual {} /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Helper for calling the `_afterTokenTransfer` hook. /// The is to help the compiler avoid producing dead bytecode. function _afterTokenTransferCalldata( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) private { if (_useAfterTokenTransfer()) { _afterTokenTransfer(from, to, ids, amounts, data); } } /// @dev Returns if `a` has bytecode of non-zero length. function _hasCode(address a) private view returns (bool result) { /// @solidity memory-safe-assembly assembly { result := extcodesize(a) // Can handle dirty upper bits. } } /// @dev Perform a call to invoke {IERC1155Receiver-onERC1155Received} on `to`. /// Reverts if the target does not support the function correctly. function _checkOnERC1155Received( address from, address to, uint256 id, uint256 amount, bytes memory data ) private { /// @solidity memory-safe-assembly assembly { // Prepare the calldata. let m := mload(0x40) // `onERC1155Received(address,address,uint256,uint256,bytes)`. mstore(m, 0xf23a6e61) mstore(add(m, 0x20), caller()) mstore(add(m, 0x40), shr(96, shl(96, from))) mstore(add(m, 0x60), id) mstore(add(m, 0x80), amount) mstore(add(m, 0xa0), 0xa0) let n := mload(data) mstore(add(m, 0xc0), n) if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xe0), n)) } // Revert if the call reverts. if iszero(call(gas(), to, 0, add(m, 0x1c), add(0xc4, n), m, 0x20)) { if returndatasize() { // Bubble up the revert if the call reverts. returndatacopy(0x00, 0x00, returndatasize()) revert(0x00, returndatasize()) } mstore(m, 0) } // Load the returndata and compare it with the function selector. if iszero(eq(mload(m), shl(224, 0xf23a6e61))) { mstore(0x00, 0x9c05499b) // `TransferToNonERC1155ReceiverImplementer()`. revert(0x1c, 0x04) } } } /// @dev Perform a call to invoke {IERC1155Receiver-onERC1155BatchReceived} on `to`. /// Reverts if the target does not support the function correctly. function _checkOnERC1155BatchReceived( address from, address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) private { /// @solidity memory-safe-assembly assembly { // Prepare the calldata. let m := mload(0x40) // `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`. mstore(m, 0xbc197c81) mstore(add(m, 0x20), caller()) mstore(add(m, 0x40), shr(96, shl(96, from))) // Copy the `ids`. mstore(add(m, 0x60), 0xa0) let n := add(0x20, shl(5, mload(ids))) let o := add(m, 0xc0) pop(staticcall(gas(), 4, ids, n, o, n)) // Copy the `amounts`. let s := add(0xa0, returndatasize()) mstore(add(m, 0x80), s) o := add(o, returndatasize()) n := add(0x20, shl(5, mload(amounts))) pop(staticcall(gas(), 4, amounts, n, o, n)) // Copy the `data`. mstore(add(m, 0xa0), add(s, returndatasize())) o := add(o, returndatasize()) n := add(0x20, mload(data)) pop(staticcall(gas(), 4, data, n, o, n)) n := sub(add(o, returndatasize()), add(m, 0x1c)) // Revert if the call reverts. if iszero(call(gas(), to, 0, add(m, 0x1c), n, m, 0x20)) { if returndatasize() { // Bubble up the revert if the call reverts. returndatacopy(0x00, 0x00, returndatasize()) revert(0x00, returndatasize()) } mstore(m, 0) } // Load the returndata and compare it with the function selector. if iszero(eq(mload(m), shl(224, 0xbc197c81))) { mstore(0x00, 0x9c05499b) // `TransferToNonERC1155ReceiverImplementer()`. revert(0x1c, 0x04) } } } /// @dev Returns `x` in an array with a single element. function _single(uint256 x) private pure returns (uint256[] memory result) { assembly { result := mload(0x40) mstore(0x40, add(result, 0x40)) mstore(result, 1) mstore(add(result, 0x20), x) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import { BasicOrderType, ItemType, OrderType, Side } from "./ConsiderationEnums.sol"; import { CalldataPointer, MemoryPointer } from "../helpers/PointerLibraries.sol"; /** * @dev An order contains eleven components: an offerer, a zone (or account that * can cancel the order or restrict who can fulfill the order depending on * the type), the order type (specifying partial fill support as well as * restricted order status), the start and end time, a hash that will be * provided to the zone when validating restricted orders, a salt, a key * corresponding to a given conduit, a counter, and an arbitrary number of * offer items that can be spent along with consideration items that must * be received by their respective recipient. */ struct OrderComponents { address offerer; address zone; OfferItem[] offer; ConsiderationItem[] consideration; OrderType orderType; uint256 startTime; uint256 endTime; bytes32 zoneHash; uint256 salt; bytes32 conduitKey; uint256 counter; } /** * @dev An offer item has five components: an item type (ETH or other native * tokens, ERC20, ERC721, and ERC1155, as well as criteria-based ERC721 and * ERC1155), a token address, a dual-purpose "identifierOrCriteria" * component that will either represent a tokenId or a merkle root * depending on the item type, and a start and end amount that support * increasing or decreasing amounts over the duration of the respective * order. */ struct OfferItem { ItemType itemType; address token; uint256 identifierOrCriteria; uint256 startAmount; uint256 endAmount; } /** * @dev A consideration item has the same five components as an offer item and * an additional sixth component designating the required recipient of the * item. */ struct ConsiderationItem { ItemType itemType; address token; uint256 identifierOrCriteria; uint256 startAmount; uint256 endAmount; address payable recipient; } /** * @dev A spent item is translated from a utilized offer item and has four * components: an item type (ETH or other native tokens, ERC20, ERC721, and * ERC1155), a token address, a tokenId, and an amount. */ struct SpentItem { ItemType itemType; address token; uint256 identifier; uint256 amount; } /** * @dev A received item is translated from a utilized consideration item and has * the same four components as a spent item, as well as an additional fifth * component designating the required recipient of the item. */ struct ReceivedItem { ItemType itemType; address token; uint256 identifier; uint256 amount; address payable recipient; } /** * @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155 * matching, a group of six functions may be called that only requires a * subset of the usual order arguments. Note the use of a "basicOrderType" * enum; this represents both the usual order type as well as the "route" * of the basic order (a simple derivation function for the basic order * type is `basicOrderType = orderType + (4 * basicOrderRoute)`.) */ struct BasicOrderParameters { // calldata offset address considerationToken; // 0x24 uint256 considerationIdentifier; // 0x44 uint256 considerationAmount; // 0x64 address payable offerer; // 0x84 address zone; // 0xa4 address offerToken; // 0xc4 uint256 offerIdentifier; // 0xe4 uint256 offerAmount; // 0x104 BasicOrderType basicOrderType; // 0x124 uint256 startTime; // 0x144 uint256 endTime; // 0x164 bytes32 zoneHash; // 0x184 uint256 salt; // 0x1a4 bytes32 offererConduitKey; // 0x1c4 bytes32 fulfillerConduitKey; // 0x1e4 uint256 totalOriginalAdditionalRecipients; // 0x204 AdditionalRecipient[] additionalRecipients; // 0x224 bytes signature; // 0x244 // Total length, excluding dynamic array data: 0x264 (580) } /** * @dev Basic orders can supply any number of additional recipients, with the * implied assumption that they are supplied from the offered ETH (or other * native token) or ERC20 token for the order. */ struct AdditionalRecipient { uint256 amount; address payable recipient; } /** * @dev The full set of order components, with the exception of the counter, * must be supplied when fulfilling more sophisticated orders or groups of * orders. The total number of original consideration items must also be * supplied, as the caller may specify additional consideration items. */ struct OrderParameters { address offerer; // 0x00 address zone; // 0x20 OfferItem[] offer; // 0x40 ConsiderationItem[] consideration; // 0x60 OrderType orderType; // 0x80 uint256 startTime; // 0xa0 uint256 endTime; // 0xc0 bytes32 zoneHash; // 0xe0 uint256 salt; // 0x100 bytes32 conduitKey; // 0x120 uint256 totalOriginalConsiderationItems; // 0x140 // offer.length // 0x160 } /** * @dev Orders require a signature in addition to the other order parameters. */ struct Order { OrderParameters parameters; bytes signature; } /** * @dev Advanced orders include a numerator (i.e. a fraction to attempt to fill) * and a denominator (the total size of the order) in addition to the * signature and other order parameters. It also supports an optional field * for supplying extra data; this data will be provided to the zone if the * order type is restricted and the zone is not the caller, or will be * provided to the offerer as context for contract order types. */ struct AdvancedOrder { OrderParameters parameters; uint120 numerator; uint120 denominator; bytes signature; bytes extraData; } /** * @dev Orders can be validated (either explicitly via `validate`, or as a * consequence of a full or partial fill), specifically cancelled (they can * also be cancelled in bulk via incrementing a per-zone counter), and * partially or fully filled (with the fraction filled represented by a * numerator and denominator). */ struct OrderStatus { bool isValidated; bool isCancelled; uint120 numerator; uint120 denominator; } /** * @dev A criteria resolver specifies an order, side (offer vs. consideration), * and item index. It then provides a chosen identifier (i.e. tokenId) * alongside a merkle proof demonstrating the identifier meets the required * criteria. */ struct CriteriaResolver { uint256 orderIndex; Side side; uint256 index; uint256 identifier; bytes32[] criteriaProof; } /** * @dev A fulfillment is applied to a group of orders. It decrements a series of * offer and consideration items, then generates a single execution * element. A given fulfillment can be applied to as many offer and * consideration items as desired, but must contain at least one offer and * at least one consideration that match. The fulfillment must also remain * consistent on all key parameters across all offer items (same offerer, * token, type, tokenId, and conduit preference) as well as across all * consideration items (token, type, tokenId, and recipient). */ struct Fulfillment { FulfillmentComponent[] offerComponents; FulfillmentComponent[] considerationComponents; } /** * @dev Each fulfillment component contains one index referencing a specific * order and another referencing a specific offer or consideration item. */ struct FulfillmentComponent { uint256 orderIndex; uint256 itemIndex; } /** * @dev An execution is triggered once all consideration items have been zeroed * out. It sends the item in question from the offerer to the item's * recipient, optionally sourcing approvals from either this contract * directly or from the offerer's chosen conduit if one is specified. An * execution is not provided as an argument, but rather is derived via * orders, criteria resolvers, and fulfillments (where the total number of * executions will be less than or equal to the total number of indicated * fulfillments) and returned as part of `matchOrders`. */ struct Execution { ReceivedItem item; address offerer; bytes32 conduitKey; } /** * @dev Restricted orders are validated post-execution by calling validateOrder * on the zone. This struct provides context about the order fulfillment * and any supplied extraData, as well as all order hashes fulfilled in a * call to a match or fulfillAvailable method. */ struct ZoneParameters { bytes32 orderHash; address fulfiller; address offerer; SpentItem[] offer; ReceivedItem[] consideration; bytes extraData; bytes32[] orderHashes; uint256 startTime; uint256 endTime; bytes32 zoneHash; } /** * @dev Zones and contract offerers can communicate which schemas they implement * along with any associated metadata related to each schema. */ struct Schema { uint256 id; bytes metadata; } using StructPointers for OrderComponents global; using StructPointers for OfferItem global; using StructPointers for ConsiderationItem global; using StructPointers for SpentItem global; using StructPointers for ReceivedItem global; using StructPointers for BasicOrderParameters global; using StructPointers for AdditionalRecipient global; using StructPointers for OrderParameters global; using StructPointers for Order global; using StructPointers for AdvancedOrder global; using StructPointers for OrderStatus global; using StructPointers for CriteriaResolver global; using StructPointers for Fulfillment global; using StructPointers for FulfillmentComponent global; using StructPointers for Execution global; using StructPointers for ZoneParameters global; /** * @dev This library provides a set of functions for converting structs to * pointers. */ library StructPointers { /** * @dev Get a MemoryPointer from OrderComponents. * * @param obj The OrderComponents object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderComponents memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderComponents. * * @param obj The OrderComponents object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderComponents calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OfferItem. * * @param obj The OfferItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OfferItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OfferItem. * * @param obj The OfferItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OfferItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ConsiderationItem. * * @param obj The ConsiderationItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ConsiderationItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ConsiderationItem. * * @param obj The ConsiderationItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ConsiderationItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from SpentItem. * * @param obj The SpentItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( SpentItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from SpentItem. * * @param obj The SpentItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( SpentItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ReceivedItem. * * @param obj The ReceivedItem object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ReceivedItem memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ReceivedItem. * * @param obj The ReceivedItem object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ReceivedItem calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from BasicOrderParameters. * * @param obj The BasicOrderParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( BasicOrderParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from BasicOrderParameters. * * @param obj The BasicOrderParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( BasicOrderParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from AdditionalRecipient. * * @param obj The AdditionalRecipient object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( AdditionalRecipient memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from AdditionalRecipient. * * @param obj The AdditionalRecipient object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( AdditionalRecipient calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OrderParameters. * * @param obj The OrderParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderParameters. * * @param obj The OrderParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Order. * * @param obj The Order object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Order memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Order. * * @param obj The Order object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Order calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from AdvancedOrder. * * @param obj The AdvancedOrder object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( AdvancedOrder memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from AdvancedOrder. * * @param obj The AdvancedOrder object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( AdvancedOrder calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from OrderStatus. * * @param obj The OrderStatus object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( OrderStatus memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from OrderStatus. * * @param obj The OrderStatus object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( OrderStatus calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from CriteriaResolver. * * @param obj The CriteriaResolver object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( CriteriaResolver memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from CriteriaResolver. * * @param obj The CriteriaResolver object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( CriteriaResolver calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Fulfillment. * * @param obj The Fulfillment object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Fulfillment memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Fulfillment. * * @param obj The Fulfillment object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Fulfillment calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from FulfillmentComponent. * * @param obj The FulfillmentComponent object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( FulfillmentComponent memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from FulfillmentComponent. * * @param obj The FulfillmentComponent object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( FulfillmentComponent calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from Execution. * * @param obj The Execution object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( Execution memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from Execution. * * @param obj The Execution object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( Execution calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } /** * @dev Get a MemoryPointer from ZoneParameters. * * @param obj The ZoneParameters object. * * @return ptr The MemoryPointer. */ function toMemoryPointer( ZoneParameters memory obj ) internal pure returns (MemoryPointer ptr) { assembly { ptr := obj } } /** * @dev Get a CalldataPointer from ZoneParameters. * * @param obj The ZoneParameters object. * * @return ptr The CalldataPointer. */ function toCalldataPointer( ZoneParameters calldata obj ) internal pure returns (CalldataPointer ptr) { assembly { ptr := obj } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; import {ReceivedItem, Schema, SpentItem} from "../lib/ConsiderationStructs.sol"; import {IERC165} from "../interfaces/IERC165.sol"; /** * @title ContractOffererInterface * @notice Contains the minimum interfaces needed to interact with a contract * offerer. */ interface ContractOffererInterface is IERC165 { /** * @dev Generates an order with the specified minimum and maximum spent * items, and optional context (supplied as extraData). * * @param fulfiller The address of the fulfiller. * @param minimumReceived The minimum items that the caller is willing to * receive. * @param maximumSpent The maximum items the caller is willing to spend. * @param context Additional context of the order. * * @return offer A tuple containing the offer items. * @return consideration A tuple containing the consideration items. */ function generateOrder( address fulfiller, SpentItem[] calldata minimumReceived, SpentItem[] calldata maximumSpent, bytes calldata context // encoded based on the schemaID ) external returns (SpentItem[] memory offer, ReceivedItem[] memory consideration); /** * @dev Ratifies an order with the specified offer, consideration, and * optional context (supplied as extraData). * * @param offer The offer items. * @param consideration The consideration items. * @param context Additional context of the order. * @param orderHashes The hashes to ratify. * @param contractNonce The nonce of the contract. * * @return ratifyOrderMagicValue The magic value returned by the contract * offerer. */ function ratifyOrder( SpentItem[] calldata offer, ReceivedItem[] calldata consideration, bytes calldata context, // encoded based on the schemaID bytes32[] calldata orderHashes, uint256 contractNonce ) external returns (bytes4 ratifyOrderMagicValue); /** * @dev View function to preview an order generated in response to a minimum * set of received items, maximum set of spent items, and context * (supplied as extraData). * * @param caller The address of the caller (e.g. Seaport). * @param fulfiller The address of the fulfiller (e.g. the account * calling Seaport). * @param minimumReceived The minimum items that the caller is willing to * receive. * @param maximumSpent The maximum items the caller is willing to spend. * @param context Additional context of the order. * * @return offer A tuple containing the offer items. * @return consideration A tuple containing the consideration items. */ function previewOrder( address caller, address fulfiller, SpentItem[] calldata minimumReceived, SpentItem[] calldata maximumSpent, bytes calldata context // encoded based on the schemaID ) external view returns (SpentItem[] memory offer, ReceivedItem[] memory consideration); /** * @dev Gets the metadata for this contract offerer. * * @return name The name of the contract offerer. * @return schemas The schemas supported by the contract offerer. */ function getSeaportMetadata() external view returns (string memory name, Schema[] memory schemas); // map to Seaport Improvement Proposal IDs function supportsInterface(bytes4 interfaceId) external view override returns (bool); // Additional functions and/or events based on implemented schemaIDs }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.19; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; interface ISeaDropTokenContractMetadata { /** * @dev Emit an event for token metadata reveals/updates, * according to EIP-4906. * * @param _fromTokenId The start token id. * @param _toTokenId The end token id. */ event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId); /** * @dev Emit an event when the URI for the collection-level metadata * is updated. */ event ContractURIUpdated(string newContractURI); /** * @dev Emit an event with the previous and new provenance hash after * being updated. */ event ProvenanceHashUpdated(bytes32 previousHash, bytes32 newHash); /** * @dev Emit an event when the EIP-2981 royalty info is updated. */ event RoyaltyInfoUpdated(address receiver, uint256 basisPoints); /** * @notice Throw if the max supply exceeds uint64, a limit * due to the storage of bit-packed variables. */ error CannotExceedMaxSupplyOfUint64(uint256 got); /** * @dev Revert with an error when attempting to set the provenance * hash after the mint has started. */ error ProvenanceHashCannotBeSetAfterMintStarted(); /** * @dev Revert with an error when attempting to set the provenance * hash after it has already been set. */ error ProvenanceHashCannotBeSetAfterAlreadyBeingSet(); /** * @notice Sets the base URI for the token metadata and emits an event. * * @param tokenURI The new base URI to set. */ function setBaseURI(string calldata tokenURI) external; /** * @notice Sets the contract URI for contract metadata. * * @param newContractURI The new contract URI. */ function setContractURI(string calldata newContractURI) external; /** * @notice Sets the provenance hash and emits an event. * * The provenance hash is used for random reveals, which * is a hash of the ordered metadata to show it has not been * modified after mint started. * * This function will revert after the first item has been minted. * * @param newProvenanceHash The new provenance hash to set. */ function setProvenanceHash(bytes32 newProvenanceHash) external; /** * @notice Sets the default royalty information. * * Requirements: * * - `receiver` cannot be the zero address. * - `feeNumerator` cannot be greater than the fee denominator of * 10_000 basis points. */ function setDefaultRoyalty(address receiver, uint96 feeNumerator) external; /** * @notice Returns the base URI for token metadata. */ function baseURI() external view returns (string memory); /** * @notice Returns the contract URI. */ function contractURI() external view returns (string memory); /** * @notice Returns the provenance hash. * The provenance hash is used for random reveals, which * is a hash of the ordered metadata to show it is unmodified * after mint has started. */ function provenanceHash() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { ISeaDropTokenContractMetadata } from "./ISeaDropTokenContractMetadata.sol"; interface IERC1155ContractMetadata is ISeaDropTokenContractMetadata { /** * @dev A struct representing the supply info for a token id, * packed into one storage slot. * * @param maxSupply The max supply for the token id. * @param totalSupply The total token supply for the token id. * Subtracted when an item is burned. * @param totalMinted The total number of tokens minted for the token id. */ struct TokenSupply { uint64 maxSupply; // 64/256 bits uint64 totalSupply; // 128/256 bits uint64 totalMinted; // 192/256 bits } /** * @dev Emit an event when the max token supply for a token id is updated. */ event MaxSupplyUpdated(uint256 tokenId, uint256 newMaxSupply); /** * @dev Revert with an error if the mint quantity exceeds the max token * supply. */ error MintExceedsMaxSupply(uint256 total, uint256 maxSupply); /** * @notice Sets the max supply for a token id and emits an event. * * @param tokenId The token id to set the max supply for. * @param newMaxSupply The new max supply to set. */ function setMaxSupply(uint256 tokenId, uint256 newMaxSupply) external; /** * @notice Returns the name of the token. */ function name() external view returns (string memory); /** * @notice Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @notice Returns the max token supply for a token id. */ function maxSupply(uint256 tokenId) external view returns (uint256); /** * @notice Returns the total supply for a token id. */ function totalSupply(uint256 tokenId) external view returns (uint256); /** * @notice Returns the total minted for a token id. */ function totalMinted(uint256 tokenId) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple ERC2981 NFT Royalty Standard implementation. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC2981.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/common/ERC2981.sol) abstract contract ERC2981 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The royalty fee numerator exceeds the fee denominator. error RoyaltyOverflow(); /// @dev The royalty receiver cannot be the zero address. error RoyaltyReceiverIsZeroAddress(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The default royalty info is given by: /// ``` /// let packed := sload(_ERC2981_MASTER_SLOT_SEED) /// let receiver := shr(96, packed) /// let royaltyFraction := xor(packed, shl(96, receiver)) /// ``` /// /// The per token royalty info is given by. /// ``` /// mstore(0x00, tokenId) /// mstore(0x20, _ERC2981_MASTER_SLOT_SEED) /// let packed := sload(keccak256(0x00, 0x40)) /// let receiver := shr(96, packed) /// let royaltyFraction := xor(packed, shl(96, receiver)) /// ``` uint256 private constant _ERC2981_MASTER_SLOT_SEED = 0xaa4ec00224afccfdb7; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC2981 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Checks that `_feeDenominator` is non-zero. constructor() { require(_feeDenominator() != 0, "Fee denominator cannot be zero."); } /// @dev Returns the denominator for the royalty amount. /// Defaults to 10000, which represents fees in basis points. /// Override this function to return a custom amount if needed. function _feeDenominator() internal pure virtual returns (uint96) { return 10000; } /// @dev Returns true if this contract implements the interface defined by `interfaceId`. /// See: https://eips.ethereum.org/EIPS/eip-165 /// This function call must use less than 30000 gas. function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { let s := shr(224, interfaceId) // ERC165: 0x01ffc9a7, ERC2981: 0x2a55205a. result := or(eq(s, 0x01ffc9a7), eq(s, 0x2a55205a)) } } /// @dev Returns the `receiver` and `royaltyAmount` for `tokenId` sold at `salePrice`. function royaltyInfo(uint256 tokenId, uint256 salePrice) public view virtual returns (address receiver, uint256 royaltyAmount) { uint256 feeDenominator = _feeDenominator(); /// @solidity memory-safe-assembly assembly { mstore(0x00, tokenId) mstore(0x20, _ERC2981_MASTER_SLOT_SEED) let packed := sload(keccak256(0x00, 0x40)) receiver := shr(96, packed) if iszero(receiver) { packed := sload(mload(0x20)) receiver := shr(96, packed) } let x := salePrice let y := xor(packed, shl(96, receiver)) // `feeNumerator`. // Overflow check, equivalent to `require(y == 0 || x <= type(uint256).max / y)`. // Out-of-gas revert. Should not be triggered in practice, but included for safety. returndatacopy(returndatasize(), returndatasize(), mul(y, gt(x, div(not(0), y)))) royaltyAmount := div(mul(x, y), feeDenominator) } } /// @dev Sets the default royalty `receiver` and `feeNumerator`. /// /// Requirements: /// - `receiver` must not be the zero address. /// - `feeNumerator` must not be greater than the fee denominator. function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual { uint256 feeDenominator = _feeDenominator(); /// @solidity memory-safe-assembly assembly { feeNumerator := shr(160, shl(160, feeNumerator)) if gt(feeNumerator, feeDenominator) { mstore(0x00, 0x350a88b3) // `RoyaltyOverflow()`. revert(0x1c, 0x04) } let packed := shl(96, receiver) if iszero(packed) { mstore(0x00, 0xb4457eaa) // `RoyaltyReceiverIsZeroAddress()`. revert(0x1c, 0x04) } sstore(_ERC2981_MASTER_SLOT_SEED, or(packed, feeNumerator)) } } /// @dev Sets the default royalty `receiver` and `feeNumerator` to zero. function _deleteDefaultRoyalty() internal virtual { /// @solidity memory-safe-assembly assembly { sstore(_ERC2981_MASTER_SLOT_SEED, 0) } } /// @dev Sets the royalty `receiver` and `feeNumerator` for `tokenId`. /// /// Requirements: /// - `receiver` must not be the zero address. /// - `feeNumerator` must not be greater than the fee denominator. function _setTokenRoyalty(uint256 tokenId, address receiver, uint96 feeNumerator) internal virtual { uint256 feeDenominator = _feeDenominator(); /// @solidity memory-safe-assembly assembly { feeNumerator := shr(160, shl(160, feeNumerator)) if gt(feeNumerator, feeDenominator) { mstore(0x00, 0x350a88b3) // `RoyaltyOverflow()`. revert(0x1c, 0x04) } let packed := shl(96, receiver) if iszero(packed) { mstore(0x00, 0xb4457eaa) // `RoyaltyReceiverIsZeroAddress()`. revert(0x1c, 0x04) } mstore(0x00, tokenId) mstore(0x20, _ERC2981_MASTER_SLOT_SEED) sstore(keccak256(0x00, 0x40), or(packed, feeNumerator)) } } /// @dev Sets the royalty `receiver` and `feeNumerator` for `tokenId` to zero. function _resetTokenRoyalty(uint256 tokenId) internal virtual { /// @solidity memory-safe-assembly assembly { mstore(0x00, tokenId) mstore(0x20, _ERC2981_MASTER_SLOT_SEED) sstore(keccak256(0x00, 0x40), 0) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple single owner authorization mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol) /// @dev While the ownable portion follows /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility, /// the nomenclature for the 2-step ownership handover may be unique to this codebase. abstract contract Ownable { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The caller is not authorized to call the function. error Unauthorized(); /// @dev The `newOwner` cannot be the zero address. error NewOwnerIsZeroAddress(); /// @dev The `pendingOwner` does not have a valid handover request. error NoHandoverRequest(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ownership is transferred from `oldOwner` to `newOwner`. /// This event is intentionally kept the same as OpenZeppelin's Ownable to be /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173), /// despite it not being as lightweight as a single argument event. event OwnershipTransferred(address indexed oldOwner, address indexed newOwner); /// @dev An ownership handover to `pendingOwner` has been requested. event OwnershipHandoverRequested(address indexed pendingOwner); /// @dev The ownership handover to `pendingOwner` has been canceled. event OwnershipHandoverCanceled(address indexed pendingOwner); /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`. uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE = 0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0; /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE = 0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d; /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE = 0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The owner slot is given by: `not(_OWNER_SLOT_NOT)`. /// It is intentionally chosen to be a high value /// to avoid collision with lower slots. /// The choice of manual storage layout is to enable compatibility /// with both regular and upgradeable contracts. uint256 private constant _OWNER_SLOT_NOT = 0x8b78c6d8; /// The ownership handover slot of `newOwner` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED)) /// let handoverSlot := keccak256(0x00, 0x20) /// ``` /// It stores the expiry timestamp of the two-step ownership handover. uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Initializes the owner directly without authorization guard. /// This function must be called upon initialization, /// regardless of whether the contract is upgradeable or not. /// This is to enable generalization to both regular and upgradeable contracts, /// and to save gas in case the initial owner is not the caller. /// For performance reasons, this function will not check if there /// is an existing owner. function _initializeOwner(address newOwner) internal virtual { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(not(_OWNER_SLOT_NOT), newOwner) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } /// @dev Sets the owner directly without authorization guard. function _setOwner(address newOwner) internal virtual { /// @solidity memory-safe-assembly assembly { let ownerSlot := not(_OWNER_SLOT_NOT) // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, newOwner) } } /// @dev Throws if the sender is not the owner. function _checkOwner() internal view virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner, revert. if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC UPDATE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Allows the owner to transfer the ownership to `newOwner`. function transferOwnership(address newOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { if iszero(shl(96, newOwner)) { mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`. revert(0x1c, 0x04) } } _setOwner(newOwner); } /// @dev Allows the owner to renounce their ownership. function renounceOwnership() public payable virtual onlyOwner { _setOwner(address(0)); } /// @dev Request a two-step ownership handover to the caller. /// The request will automatically expire in 48 hours (172800 seconds) by default. function requestOwnershipHandover() public payable virtual { unchecked { uint256 expires = block.timestamp + ownershipHandoverValidFor(); /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to `expires`. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), expires) // Emit the {OwnershipHandoverRequested} event. log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller()) } } } /// @dev Cancels the two-step ownership handover to the caller, if any. function cancelOwnershipHandover() public payable virtual { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), 0) // Emit the {OwnershipHandoverCanceled} event. log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller()) } } /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`. /// Reverts if there is no existing ownership handover requested by `pendingOwner`. function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) let handoverSlot := keccak256(0x0c, 0x20) // If the handover does not exist, or has expired. if gt(timestamp(), sload(handoverSlot)) { mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`. revert(0x1c, 0x04) } // Set the handover slot to 0. sstore(handoverSlot, 0) } _setOwner(pendingOwner); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC READ FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the owner of the contract. function owner() public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { result := sload(not(_OWNER_SLOT_NOT)) } } /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`. function ownershipHandoverExpiresAt(address pendingOwner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the handover slot. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) // Load the handover slot. result := sload(keccak256(0x0c, 0x20)) } } /// @dev Returns how long a two-step ownership handover is valid for in seconds. function ownershipHandoverValidFor() public view virtual returns (uint64) { return 48 * 3600; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MODIFIERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Marks a function as only callable by the owner. modifier onlyOwner() virtual { _checkOwner(); _; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.19; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (address(this).code.length == 0 && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { CreatorPayout, PublicDrop } from "./ERC721SeaDropStructs.sol"; interface SeaDropErrorsAndEvents { /** * @notice The SeaDrop token types, emitted as part of * `event SeaDropTokenDeployed`. */ enum SEADROP_TOKEN_TYPE { ERC721_STANDARD, ERC721_CLONE, ERC721_UPGRADEABLE, ERC1155_STANDARD, ERC1155_CLONE, ERC1155_UPGRADEABLE } /** * @notice An event to signify that a SeaDrop token contract was deployed. */ event SeaDropTokenDeployed(SEADROP_TOKEN_TYPE tokenType); /** * @notice Revert with an error if the function selector is not supported. */ error UnsupportedFunctionSelector(bytes4 selector); /** * @dev Revert with an error if the drop stage is not active. */ error NotActive( uint256 currentTimestamp, uint256 startTimestamp, uint256 endTimestamp ); /** * @dev Revert with an error if the mint quantity exceeds the max allowed * to be minted per wallet. */ error MintQuantityExceedsMaxMintedPerWallet(uint256 total, uint256 allowed); /** * @dev Revert with an error if the mint quantity exceeds the max token * supply. */ error MintQuantityExceedsMaxSupply(uint256 total, uint256 maxSupply); /** * @dev Revert with an error if the mint quantity exceeds the max token * supply for the stage. * Note: The `maxTokenSupplyForStage` for public mint is * always `type(uint).max`. */ error MintQuantityExceedsMaxTokenSupplyForStage( uint256 total, uint256 maxTokenSupplyForStage ); /** * @dev Revert if the fee recipient is the zero address. */ error FeeRecipientCannotBeZeroAddress(); /** * @dev Revert if the fee recipient is not already included. */ error FeeRecipientNotPresent(); /** * @dev Revert if the fee basis points is greater than 10_000. */ error InvalidFeeBps(uint256 feeBps); /** * @dev Revert if the fee recipient is already included. */ error DuplicateFeeRecipient(); /** * @dev Revert if the fee recipient is restricted and not allowed. */ error FeeRecipientNotAllowed(address got); /** * @dev Revert if the creator payout address is the zero address. */ error CreatorPayoutAddressCannotBeZeroAddress(); /** * @dev Revert if the creator payouts are not set. */ error CreatorPayoutsNotSet(); /** * @dev Revert if the creator payout basis points are zero. */ error CreatorPayoutBasisPointsCannotBeZero(); /** * @dev Revert if the total basis points for the creator payouts * don't equal exactly 10_000. */ error InvalidCreatorPayoutTotalBasisPoints( uint256 totalReceivedBasisPoints ); /** * @dev Revert if the creator payout basis points don't add up to 10_000. */ error InvalidCreatorPayoutBasisPoints(uint256 totalReceivedBasisPoints); /** * @dev Revert with an error if the allow list proof is invalid. */ error InvalidProof(); /** * @dev Revert if a supplied signer address is the zero address. */ error SignerCannotBeZeroAddress(); /** * @dev Revert with an error if a signer is not included in * the enumeration when removing. */ error SignerNotPresent(); /** * @dev Revert with an error if a payer is not included in * the enumeration when removing. */ error PayerNotPresent(); /** * @dev Revert with an error if a payer is already included in mapping * when adding. */ error DuplicatePayer(); /** * @dev Revert with an error if a signer is already included in mapping * when adding. */ error DuplicateSigner(); /** * @dev Revert with an error if the payer is not allowed. The minter must * pay for their own mint. */ error PayerNotAllowed(address got); /** * @dev Revert if a supplied payer address is the zero address. */ error PayerCannotBeZeroAddress(); /** * @dev Revert if the start time is greater than the end time. */ error InvalidStartAndEndTime(uint256 startTime, uint256 endTime); /** * @dev Revert with an error if the signer payment token is not the same. */ error InvalidSignedPaymentToken(address got, address want); /** * @dev Revert with an error if supplied signed mint price is less than * the minimum specified. */ error InvalidSignedMintPrice( address paymentToken, uint256 got, uint256 minimum ); /** * @dev Revert with an error if supplied signed maxTotalMintableByWallet * is greater than the maximum specified. */ error InvalidSignedMaxTotalMintableByWallet(uint256 got, uint256 maximum); /** * @dev Revert with an error if supplied signed * maxTotalMintableByWalletPerToken is greater than the maximum * specified. */ error InvalidSignedMaxTotalMintableByWalletPerToken( uint256 got, uint256 maximum ); /** * @dev Revert with an error if the fromTokenId is not within range. */ error InvalidSignedFromTokenId(uint256 got, uint256 minimum); /** * @dev Revert with an error if the toTokenId is not within range. */ error InvalidSignedToTokenId(uint256 got, uint256 maximum); /** * @dev Revert with an error if supplied signed start time is less than * the minimum specified. */ error InvalidSignedStartTime(uint256 got, uint256 minimum); /** * @dev Revert with an error if supplied signed end time is greater than * the maximum specified. */ error InvalidSignedEndTime(uint256 got, uint256 maximum); /** * @dev Revert with an error if supplied signed maxTokenSupplyForStage * is greater than the maximum specified. */ error InvalidSignedMaxTokenSupplyForStage(uint256 got, uint256 maximum); /** * @dev Revert with an error if supplied signed feeBps is greater than * the maximum specified, or less than the minimum. */ error InvalidSignedFeeBps(uint256 got, uint256 minimumOrMaximum); /** * @dev Revert with an error if signed mint did not specify to restrict * fee recipients. */ error SignedMintsMustRestrictFeeRecipients(); /** * @dev Revert with an error if a signature for a signed mint has already * been used. */ error SignatureAlreadyUsed(); /** * @dev Revert with an error if the contract has no balance to withdraw. */ error NoBalanceToWithdraw(); /** * @dev Revert with an error if the caller is not an allowed Seaport. */ error InvalidCallerOnlyAllowedSeaport(address caller); /** * @dev Revert with an error if the order does not have the ERC1155 magic * consideration item to signify a consecutive mint. */ error MustSpecifyERC1155ConsiderationItemForSeaDropMint(); /** * @dev Revert with an error if the extra data version is not supported. */ error UnsupportedExtraDataVersion(uint8 version); /** * @dev Revert with an error if the extra data encoding is not supported. */ error InvalidExtraDataEncoding(uint8 version); /** * @dev Revert with an error if the provided substandard is not supported. */ error InvalidSubstandard(uint8 substandard); /** * @dev Revert with an error if the implementation contract is called without * delegatecall. */ error OnlyDelegateCalled(); /** * @dev Revert with an error if the provided allowed Seaport is the * zero address. */ error AllowedSeaportCannotBeZeroAddress(); /** * @dev Emit an event when allowed Seaport contracts are updated. */ event AllowedSeaportUpdated(address[] allowedSeaport); /** * @dev An event with details of a SeaDrop mint, for analytical purposes. * * @param payer The address who payed for the tx. * @param dropStageIndex The drop stage index. Items minted through * public mint have dropStageIndex of 0 */ event SeaDropMint(address payer, uint256 dropStageIndex); /** * @dev An event with updated allow list data. * * @param previousMerkleRoot The previous allow list merkle root. * @param newMerkleRoot The new allow list merkle root. * @param publicKeyURI If the allow list is encrypted, the public key * URIs that can decrypt the list. * Empty if unencrypted. * @param allowListURI The URI for the allow list. */ event AllowListUpdated( bytes32 indexed previousMerkleRoot, bytes32 indexed newMerkleRoot, string[] publicKeyURI, string allowListURI ); /** * @dev An event with updated drop URI. */ event DropURIUpdated(string newDropURI); /** * @dev An event with the updated creator payout address. */ event CreatorPayoutsUpdated(CreatorPayout[] creatorPayouts); /** * @dev An event with the updated allowed fee recipient. */ event AllowedFeeRecipientUpdated( address indexed feeRecipient, bool indexed allowed ); /** * @dev An event with the updated signer. */ event SignerUpdated(address indexed signer, bool indexed allowed); /** * @dev An event with the updated payer. */ event PayerUpdated(address indexed payer, bool indexed allowed); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; enum OrderType { // 0: no partial fills, anyone can execute FULL_OPEN, // 1: partial fills supported, anyone can execute PARTIAL_OPEN, // 2: no partial fills, only offerer or zone can execute FULL_RESTRICTED, // 3: partial fills supported, only offerer or zone can execute PARTIAL_RESTRICTED, // 4: contract order type CONTRACT } enum BasicOrderType { // 0: no partial fills, anyone can execute ETH_TO_ERC721_FULL_OPEN, // 1: partial fills supported, anyone can execute ETH_TO_ERC721_PARTIAL_OPEN, // 2: no partial fills, only offerer or zone can execute ETH_TO_ERC721_FULL_RESTRICTED, // 3: partial fills supported, only offerer or zone can execute ETH_TO_ERC721_PARTIAL_RESTRICTED, // 4: no partial fills, anyone can execute ETH_TO_ERC1155_FULL_OPEN, // 5: partial fills supported, anyone can execute ETH_TO_ERC1155_PARTIAL_OPEN, // 6: no partial fills, only offerer or zone can execute ETH_TO_ERC1155_FULL_RESTRICTED, // 7: partial fills supported, only offerer or zone can execute ETH_TO_ERC1155_PARTIAL_RESTRICTED, // 8: no partial fills, anyone can execute ERC20_TO_ERC721_FULL_OPEN, // 9: partial fills supported, anyone can execute ERC20_TO_ERC721_PARTIAL_OPEN, // 10: no partial fills, only offerer or zone can execute ERC20_TO_ERC721_FULL_RESTRICTED, // 11: partial fills supported, only offerer or zone can execute ERC20_TO_ERC721_PARTIAL_RESTRICTED, // 12: no partial fills, anyone can execute ERC20_TO_ERC1155_FULL_OPEN, // 13: partial fills supported, anyone can execute ERC20_TO_ERC1155_PARTIAL_OPEN, // 14: no partial fills, only offerer or zone can execute ERC20_TO_ERC1155_FULL_RESTRICTED, // 15: partial fills supported, only offerer or zone can execute ERC20_TO_ERC1155_PARTIAL_RESTRICTED, // 16: no partial fills, anyone can execute ERC721_TO_ERC20_FULL_OPEN, // 17: partial fills supported, anyone can execute ERC721_TO_ERC20_PARTIAL_OPEN, // 18: no partial fills, only offerer or zone can execute ERC721_TO_ERC20_FULL_RESTRICTED, // 19: partial fills supported, only offerer or zone can execute ERC721_TO_ERC20_PARTIAL_RESTRICTED, // 20: no partial fills, anyone can execute ERC1155_TO_ERC20_FULL_OPEN, // 21: partial fills supported, anyone can execute ERC1155_TO_ERC20_PARTIAL_OPEN, // 22: no partial fills, only offerer or zone can execute ERC1155_TO_ERC20_FULL_RESTRICTED, // 23: partial fills supported, only offerer or zone can execute ERC1155_TO_ERC20_PARTIAL_RESTRICTED } enum BasicOrderRouteType { // 0: provide Ether (or other native token) to receive offered ERC721 item. ETH_TO_ERC721, // 1: provide Ether (or other native token) to receive offered ERC1155 item. ETH_TO_ERC1155, // 2: provide ERC20 item to receive offered ERC721 item. ERC20_TO_ERC721, // 3: provide ERC20 item to receive offered ERC1155 item. ERC20_TO_ERC1155, // 4: provide ERC721 item to receive offered ERC20 item. ERC721_TO_ERC20, // 5: provide ERC1155 item to receive offered ERC20 item. ERC1155_TO_ERC20 } enum ItemType { // 0: ETH on mainnet, MATIC on polygon, etc. NATIVE, // 1: ERC20 items (ERC777 and ERC20 analogues could also technically work) ERC20, // 2: ERC721 items ERC721, // 3: ERC1155 items ERC1155, // 4: ERC721 items where a number of tokenIds are supported ERC721_WITH_CRITERIA, // 5: ERC1155 items where a number of ids are supported ERC1155_WITH_CRITERIA } enum Side { // 0: Items that can be spent OFFER, // 1: Items that must be received CONSIDERATION }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.13; type CalldataPointer is uint256; type ReturndataPointer is uint256; type MemoryPointer is uint256; using CalldataPointerLib for CalldataPointer global; using MemoryPointerLib for MemoryPointer global; using ReturndataPointerLib for ReturndataPointer global; using CalldataReaders for CalldataPointer global; using ReturndataReaders for ReturndataPointer global; using MemoryReaders for MemoryPointer global; using MemoryWriters for MemoryPointer global; CalldataPointer constant CalldataStart = CalldataPointer.wrap(0x04); MemoryPointer constant FreeMemoryPPtr = MemoryPointer.wrap(0x40); uint256 constant IdentityPrecompileAddress = 0x4; uint256 constant OffsetOrLengthMask = 0xffffffff; uint256 constant _OneWord = 0x20; uint256 constant _FreeMemoryPointerSlot = 0x40; /// @dev Allocates `size` bytes in memory by increasing the free memory pointer /// and returns the memory pointer to the first byte of the allocated region. // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function malloc(uint256 size) pure returns (MemoryPointer mPtr) { assembly { mPtr := mload(_FreeMemoryPointerSlot) mstore(_FreeMemoryPointerSlot, add(mPtr, size)) } } // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function getFreeMemoryPointer() pure returns (MemoryPointer mPtr) { mPtr = FreeMemoryPPtr.readMemoryPointer(); } // (Free functions cannot have visibility.) // solhint-disable-next-line func-visibility function setFreeMemoryPointer(MemoryPointer mPtr) pure { FreeMemoryPPtr.write(mPtr); } library CalldataPointerLib { function lt( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( CalldataPointer a, CalldataPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(CalldataPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } /// @dev Resolves an offset stored at `cdPtr + headOffset` to a calldata. /// pointer `cdPtr` must point to some parent object with a dynamic /// type's head stored at `cdPtr + headOffset`. function pptr( CalldataPointer cdPtr, uint256 headOffset ) internal pure returns (CalldataPointer cdPtrChild) { cdPtrChild = cdPtr.offset( cdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask ); } /// @dev Resolves an offset stored at `cdPtr` to a calldata pointer. /// `cdPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( CalldataPointer cdPtr ) internal pure returns (CalldataPointer cdPtrChild) { cdPtrChild = cdPtr.offset(cdPtr.readUint256() & OffsetOrLengthMask); } /// @dev Returns the calldata pointer one word after `cdPtr`. function next( CalldataPointer cdPtr ) internal pure returns (CalldataPointer cdPtrNext) { assembly { cdPtrNext := add(cdPtr, _OneWord) } } /// @dev Returns the calldata pointer `_offset` bytes after `cdPtr`. function offset( CalldataPointer cdPtr, uint256 _offset ) internal pure returns (CalldataPointer cdPtrNext) { assembly { cdPtrNext := add(cdPtr, _offset) } } /// @dev Copies `size` bytes from calldata starting at `src` to memory at /// `dst`. function copy( CalldataPointer src, MemoryPointer dst, uint256 size ) internal pure { assembly { calldatacopy(dst, src, size) } } } library ReturndataPointerLib { function lt( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( ReturndataPointer a, ReturndataPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(ReturndataPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } /// @dev Resolves an offset stored at `rdPtr + headOffset` to a returndata /// pointer. `rdPtr` must point to some parent object with a dynamic /// type's head stored at `rdPtr + headOffset`. function pptr( ReturndataPointer rdPtr, uint256 headOffset ) internal pure returns (ReturndataPointer rdPtrChild) { rdPtrChild = rdPtr.offset( rdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask ); } /// @dev Resolves an offset stored at `rdPtr` to a returndata pointer. /// `rdPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( ReturndataPointer rdPtr ) internal pure returns (ReturndataPointer rdPtrChild) { rdPtrChild = rdPtr.offset(rdPtr.readUint256() & OffsetOrLengthMask); } /// @dev Returns the returndata pointer one word after `cdPtr`. function next( ReturndataPointer rdPtr ) internal pure returns (ReturndataPointer rdPtrNext) { assembly { rdPtrNext := add(rdPtr, _OneWord) } } /// @dev Returns the returndata pointer `_offset` bytes after `cdPtr`. function offset( ReturndataPointer rdPtr, uint256 _offset ) internal pure returns (ReturndataPointer rdPtrNext) { assembly { rdPtrNext := add(rdPtr, _offset) } } /// @dev Copies `size` bytes from returndata starting at `src` to memory at /// `dst`. function copy( ReturndataPointer src, MemoryPointer dst, uint256 size ) internal pure { assembly { returndatacopy(dst, src, size) } } } library MemoryPointerLib { function copy( MemoryPointer src, MemoryPointer dst, uint256 size ) internal view { assembly { let success := staticcall( gas(), IdentityPrecompileAddress, src, size, dst, size ) if or(iszero(returndatasize()), iszero(success)) { revert(0, 0) } } } function lt( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := lt(a, b) } } function gt( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := gt(a, b) } } function eq( MemoryPointer a, MemoryPointer b ) internal pure returns (bool c) { assembly { c := eq(a, b) } } function isNull(MemoryPointer a) internal pure returns (bool b) { assembly { b := iszero(a) } } function hash( MemoryPointer ptr, uint256 length ) internal pure returns (bytes32 _hash) { assembly { _hash := keccak256(ptr, length) } } /// @dev Returns the memory pointer one word after `mPtr`. function next( MemoryPointer mPtr ) internal pure returns (MemoryPointer mPtrNext) { assembly { mPtrNext := add(mPtr, _OneWord) } } /// @dev Returns the memory pointer `_offset` bytes after `mPtr`. function offset( MemoryPointer mPtr, uint256 _offset ) internal pure returns (MemoryPointer mPtrNext) { assembly { mPtrNext := add(mPtr, _offset) } } /// @dev Resolves a pointer at `mPtr + headOffset` to a memory /// pointer. `mPtr` must point to some parent object with a dynamic /// type's pointer stored at `mPtr + headOffset`. function pptr( MemoryPointer mPtr, uint256 headOffset ) internal pure returns (MemoryPointer mPtrChild) { mPtrChild = mPtr.offset(headOffset).readMemoryPointer(); } /// @dev Resolves a pointer stored at `mPtr` to a memory pointer. /// `mPtr` must point to some parent object with a dynamic type as its /// first member, e.g. `struct { bytes data; }` function pptr( MemoryPointer mPtr ) internal pure returns (MemoryPointer mPtrChild) { mPtrChild = mPtr.readMemoryPointer(); } } library CalldataReaders { /// @dev Reads the value at `cdPtr` and applies a mask to return only the /// last 4 bytes. function readMaskedUint256( CalldataPointer cdPtr ) internal pure returns (uint256 value) { value = cdPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `cdPtr` in calldata. function readBool( CalldataPointer cdPtr ) internal pure returns (bool value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the address at `cdPtr` in calldata. function readAddress( CalldataPointer cdPtr ) internal pure returns (address value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes1 at `cdPtr` in calldata. function readBytes1( CalldataPointer cdPtr ) internal pure returns (bytes1 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes2 at `cdPtr` in calldata. function readBytes2( CalldataPointer cdPtr ) internal pure returns (bytes2 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes3 at `cdPtr` in calldata. function readBytes3( CalldataPointer cdPtr ) internal pure returns (bytes3 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes4 at `cdPtr` in calldata. function readBytes4( CalldataPointer cdPtr ) internal pure returns (bytes4 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes5 at `cdPtr` in calldata. function readBytes5( CalldataPointer cdPtr ) internal pure returns (bytes5 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes6 at `cdPtr` in calldata. function readBytes6( CalldataPointer cdPtr ) internal pure returns (bytes6 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes7 at `cdPtr` in calldata. function readBytes7( CalldataPointer cdPtr ) internal pure returns (bytes7 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes8 at `cdPtr` in calldata. function readBytes8( CalldataPointer cdPtr ) internal pure returns (bytes8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes9 at `cdPtr` in calldata. function readBytes9( CalldataPointer cdPtr ) internal pure returns (bytes9 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes10 at `cdPtr` in calldata. function readBytes10( CalldataPointer cdPtr ) internal pure returns (bytes10 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes11 at `cdPtr` in calldata. function readBytes11( CalldataPointer cdPtr ) internal pure returns (bytes11 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes12 at `cdPtr` in calldata. function readBytes12( CalldataPointer cdPtr ) internal pure returns (bytes12 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes13 at `cdPtr` in calldata. function readBytes13( CalldataPointer cdPtr ) internal pure returns (bytes13 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes14 at `cdPtr` in calldata. function readBytes14( CalldataPointer cdPtr ) internal pure returns (bytes14 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes15 at `cdPtr` in calldata. function readBytes15( CalldataPointer cdPtr ) internal pure returns (bytes15 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes16 at `cdPtr` in calldata. function readBytes16( CalldataPointer cdPtr ) internal pure returns (bytes16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes17 at `cdPtr` in calldata. function readBytes17( CalldataPointer cdPtr ) internal pure returns (bytes17 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes18 at `cdPtr` in calldata. function readBytes18( CalldataPointer cdPtr ) internal pure returns (bytes18 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes19 at `cdPtr` in calldata. function readBytes19( CalldataPointer cdPtr ) internal pure returns (bytes19 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes20 at `cdPtr` in calldata. function readBytes20( CalldataPointer cdPtr ) internal pure returns (bytes20 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes21 at `cdPtr` in calldata. function readBytes21( CalldataPointer cdPtr ) internal pure returns (bytes21 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes22 at `cdPtr` in calldata. function readBytes22( CalldataPointer cdPtr ) internal pure returns (bytes22 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes23 at `cdPtr` in calldata. function readBytes23( CalldataPointer cdPtr ) internal pure returns (bytes23 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes24 at `cdPtr` in calldata. function readBytes24( CalldataPointer cdPtr ) internal pure returns (bytes24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes25 at `cdPtr` in calldata. function readBytes25( CalldataPointer cdPtr ) internal pure returns (bytes25 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes26 at `cdPtr` in calldata. function readBytes26( CalldataPointer cdPtr ) internal pure returns (bytes26 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes27 at `cdPtr` in calldata. function readBytes27( CalldataPointer cdPtr ) internal pure returns (bytes27 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes28 at `cdPtr` in calldata. function readBytes28( CalldataPointer cdPtr ) internal pure returns (bytes28 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes29 at `cdPtr` in calldata. function readBytes29( CalldataPointer cdPtr ) internal pure returns (bytes29 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes30 at `cdPtr` in calldata. function readBytes30( CalldataPointer cdPtr ) internal pure returns (bytes30 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes31 at `cdPtr` in calldata. function readBytes31( CalldataPointer cdPtr ) internal pure returns (bytes31 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the bytes32 at `cdPtr` in calldata. function readBytes32( CalldataPointer cdPtr ) internal pure returns (bytes32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint8 at `cdPtr` in calldata. function readUint8( CalldataPointer cdPtr ) internal pure returns (uint8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint16 at `cdPtr` in calldata. function readUint16( CalldataPointer cdPtr ) internal pure returns (uint16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint24 at `cdPtr` in calldata. function readUint24( CalldataPointer cdPtr ) internal pure returns (uint24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint32 at `cdPtr` in calldata. function readUint32( CalldataPointer cdPtr ) internal pure returns (uint32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint40 at `cdPtr` in calldata. function readUint40( CalldataPointer cdPtr ) internal pure returns (uint40 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint48 at `cdPtr` in calldata. function readUint48( CalldataPointer cdPtr ) internal pure returns (uint48 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint56 at `cdPtr` in calldata. function readUint56( CalldataPointer cdPtr ) internal pure returns (uint56 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint64 at `cdPtr` in calldata. function readUint64( CalldataPointer cdPtr ) internal pure returns (uint64 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint72 at `cdPtr` in calldata. function readUint72( CalldataPointer cdPtr ) internal pure returns (uint72 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint80 at `cdPtr` in calldata. function readUint80( CalldataPointer cdPtr ) internal pure returns (uint80 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint88 at `cdPtr` in calldata. function readUint88( CalldataPointer cdPtr ) internal pure returns (uint88 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint96 at `cdPtr` in calldata. function readUint96( CalldataPointer cdPtr ) internal pure returns (uint96 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint104 at `cdPtr` in calldata. function readUint104( CalldataPointer cdPtr ) internal pure returns (uint104 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint112 at `cdPtr` in calldata. function readUint112( CalldataPointer cdPtr ) internal pure returns (uint112 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint120 at `cdPtr` in calldata. function readUint120( CalldataPointer cdPtr ) internal pure returns (uint120 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint128 at `cdPtr` in calldata. function readUint128( CalldataPointer cdPtr ) internal pure returns (uint128 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint136 at `cdPtr` in calldata. function readUint136( CalldataPointer cdPtr ) internal pure returns (uint136 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint144 at `cdPtr` in calldata. function readUint144( CalldataPointer cdPtr ) internal pure returns (uint144 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint152 at `cdPtr` in calldata. function readUint152( CalldataPointer cdPtr ) internal pure returns (uint152 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint160 at `cdPtr` in calldata. function readUint160( CalldataPointer cdPtr ) internal pure returns (uint160 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint168 at `cdPtr` in calldata. function readUint168( CalldataPointer cdPtr ) internal pure returns (uint168 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint176 at `cdPtr` in calldata. function readUint176( CalldataPointer cdPtr ) internal pure returns (uint176 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint184 at `cdPtr` in calldata. function readUint184( CalldataPointer cdPtr ) internal pure returns (uint184 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint192 at `cdPtr` in calldata. function readUint192( CalldataPointer cdPtr ) internal pure returns (uint192 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint200 at `cdPtr` in calldata. function readUint200( CalldataPointer cdPtr ) internal pure returns (uint200 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint208 at `cdPtr` in calldata. function readUint208( CalldataPointer cdPtr ) internal pure returns (uint208 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint216 at `cdPtr` in calldata. function readUint216( CalldataPointer cdPtr ) internal pure returns (uint216 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint224 at `cdPtr` in calldata. function readUint224( CalldataPointer cdPtr ) internal pure returns (uint224 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint232 at `cdPtr` in calldata. function readUint232( CalldataPointer cdPtr ) internal pure returns (uint232 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint240 at `cdPtr` in calldata. function readUint240( CalldataPointer cdPtr ) internal pure returns (uint240 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint248 at `cdPtr` in calldata. function readUint248( CalldataPointer cdPtr ) internal pure returns (uint248 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the uint256 at `cdPtr` in calldata. function readUint256( CalldataPointer cdPtr ) internal pure returns (uint256 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int8 at `cdPtr` in calldata. function readInt8( CalldataPointer cdPtr ) internal pure returns (int8 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int16 at `cdPtr` in calldata. function readInt16( CalldataPointer cdPtr ) internal pure returns (int16 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int24 at `cdPtr` in calldata. function readInt24( CalldataPointer cdPtr ) internal pure returns (int24 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int32 at `cdPtr` in calldata. function readInt32( CalldataPointer cdPtr ) internal pure returns (int32 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int40 at `cdPtr` in calldata. function readInt40( CalldataPointer cdPtr ) internal pure returns (int40 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int48 at `cdPtr` in calldata. function readInt48( CalldataPointer cdPtr ) internal pure returns (int48 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int56 at `cdPtr` in calldata. function readInt56( CalldataPointer cdPtr ) internal pure returns (int56 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int64 at `cdPtr` in calldata. function readInt64( CalldataPointer cdPtr ) internal pure returns (int64 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int72 at `cdPtr` in calldata. function readInt72( CalldataPointer cdPtr ) internal pure returns (int72 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int80 at `cdPtr` in calldata. function readInt80( CalldataPointer cdPtr ) internal pure returns (int80 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int88 at `cdPtr` in calldata. function readInt88( CalldataPointer cdPtr ) internal pure returns (int88 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int96 at `cdPtr` in calldata. function readInt96( CalldataPointer cdPtr ) internal pure returns (int96 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int104 at `cdPtr` in calldata. function readInt104( CalldataPointer cdPtr ) internal pure returns (int104 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int112 at `cdPtr` in calldata. function readInt112( CalldataPointer cdPtr ) internal pure returns (int112 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int120 at `cdPtr` in calldata. function readInt120( CalldataPointer cdPtr ) internal pure returns (int120 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int128 at `cdPtr` in calldata. function readInt128( CalldataPointer cdPtr ) internal pure returns (int128 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int136 at `cdPtr` in calldata. function readInt136( CalldataPointer cdPtr ) internal pure returns (int136 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int144 at `cdPtr` in calldata. function readInt144( CalldataPointer cdPtr ) internal pure returns (int144 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int152 at `cdPtr` in calldata. function readInt152( CalldataPointer cdPtr ) internal pure returns (int152 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int160 at `cdPtr` in calldata. function readInt160( CalldataPointer cdPtr ) internal pure returns (int160 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int168 at `cdPtr` in calldata. function readInt168( CalldataPointer cdPtr ) internal pure returns (int168 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int176 at `cdPtr` in calldata. function readInt176( CalldataPointer cdPtr ) internal pure returns (int176 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int184 at `cdPtr` in calldata. function readInt184( CalldataPointer cdPtr ) internal pure returns (int184 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int192 at `cdPtr` in calldata. function readInt192( CalldataPointer cdPtr ) internal pure returns (int192 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int200 at `cdPtr` in calldata. function readInt200( CalldataPointer cdPtr ) internal pure returns (int200 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int208 at `cdPtr` in calldata. function readInt208( CalldataPointer cdPtr ) internal pure returns (int208 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int216 at `cdPtr` in calldata. function readInt216( CalldataPointer cdPtr ) internal pure returns (int216 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int224 at `cdPtr` in calldata. function readInt224( CalldataPointer cdPtr ) internal pure returns (int224 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int232 at `cdPtr` in calldata. function readInt232( CalldataPointer cdPtr ) internal pure returns (int232 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int240 at `cdPtr` in calldata. function readInt240( CalldataPointer cdPtr ) internal pure returns (int240 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int248 at `cdPtr` in calldata. function readInt248( CalldataPointer cdPtr ) internal pure returns (int248 value) { assembly { value := calldataload(cdPtr) } } /// @dev Reads the int256 at `cdPtr` in calldata. function readInt256( CalldataPointer cdPtr ) internal pure returns (int256 value) { assembly { value := calldataload(cdPtr) } } } library ReturndataReaders { /// @dev Reads value at `rdPtr` & applies a mask to return only last 4 bytes function readMaskedUint256( ReturndataPointer rdPtr ) internal pure returns (uint256 value) { value = rdPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `rdPtr` in returndata. function readBool( ReturndataPointer rdPtr ) internal pure returns (bool value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the address at `rdPtr` in returndata. function readAddress( ReturndataPointer rdPtr ) internal pure returns (address value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes1 at `rdPtr` in returndata. function readBytes1( ReturndataPointer rdPtr ) internal pure returns (bytes1 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes2 at `rdPtr` in returndata. function readBytes2( ReturndataPointer rdPtr ) internal pure returns (bytes2 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes3 at `rdPtr` in returndata. function readBytes3( ReturndataPointer rdPtr ) internal pure returns (bytes3 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes4 at `rdPtr` in returndata. function readBytes4( ReturndataPointer rdPtr ) internal pure returns (bytes4 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes5 at `rdPtr` in returndata. function readBytes5( ReturndataPointer rdPtr ) internal pure returns (bytes5 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes6 at `rdPtr` in returndata. function readBytes6( ReturndataPointer rdPtr ) internal pure returns (bytes6 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes7 at `rdPtr` in returndata. function readBytes7( ReturndataPointer rdPtr ) internal pure returns (bytes7 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes8 at `rdPtr` in returndata. function readBytes8( ReturndataPointer rdPtr ) internal pure returns (bytes8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes9 at `rdPtr` in returndata. function readBytes9( ReturndataPointer rdPtr ) internal pure returns (bytes9 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes10 at `rdPtr` in returndata. function readBytes10( ReturndataPointer rdPtr ) internal pure returns (bytes10 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes11 at `rdPtr` in returndata. function readBytes11( ReturndataPointer rdPtr ) internal pure returns (bytes11 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes12 at `rdPtr` in returndata. function readBytes12( ReturndataPointer rdPtr ) internal pure returns (bytes12 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes13 at `rdPtr` in returndata. function readBytes13( ReturndataPointer rdPtr ) internal pure returns (bytes13 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes14 at `rdPtr` in returndata. function readBytes14( ReturndataPointer rdPtr ) internal pure returns (bytes14 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes15 at `rdPtr` in returndata. function readBytes15( ReturndataPointer rdPtr ) internal pure returns (bytes15 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes16 at `rdPtr` in returndata. function readBytes16( ReturndataPointer rdPtr ) internal pure returns (bytes16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes17 at `rdPtr` in returndata. function readBytes17( ReturndataPointer rdPtr ) internal pure returns (bytes17 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes18 at `rdPtr` in returndata. function readBytes18( ReturndataPointer rdPtr ) internal pure returns (bytes18 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes19 at `rdPtr` in returndata. function readBytes19( ReturndataPointer rdPtr ) internal pure returns (bytes19 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes20 at `rdPtr` in returndata. function readBytes20( ReturndataPointer rdPtr ) internal pure returns (bytes20 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes21 at `rdPtr` in returndata. function readBytes21( ReturndataPointer rdPtr ) internal pure returns (bytes21 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes22 at `rdPtr` in returndata. function readBytes22( ReturndataPointer rdPtr ) internal pure returns (bytes22 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes23 at `rdPtr` in returndata. function readBytes23( ReturndataPointer rdPtr ) internal pure returns (bytes23 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes24 at `rdPtr` in returndata. function readBytes24( ReturndataPointer rdPtr ) internal pure returns (bytes24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes25 at `rdPtr` in returndata. function readBytes25( ReturndataPointer rdPtr ) internal pure returns (bytes25 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes26 at `rdPtr` in returndata. function readBytes26( ReturndataPointer rdPtr ) internal pure returns (bytes26 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes27 at `rdPtr` in returndata. function readBytes27( ReturndataPointer rdPtr ) internal pure returns (bytes27 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes28 at `rdPtr` in returndata. function readBytes28( ReturndataPointer rdPtr ) internal pure returns (bytes28 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes29 at `rdPtr` in returndata. function readBytes29( ReturndataPointer rdPtr ) internal pure returns (bytes29 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes30 at `rdPtr` in returndata. function readBytes30( ReturndataPointer rdPtr ) internal pure returns (bytes30 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes31 at `rdPtr` in returndata. function readBytes31( ReturndataPointer rdPtr ) internal pure returns (bytes31 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the bytes32 at `rdPtr` in returndata. function readBytes32( ReturndataPointer rdPtr ) internal pure returns (bytes32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint8 at `rdPtr` in returndata. function readUint8( ReturndataPointer rdPtr ) internal pure returns (uint8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint16 at `rdPtr` in returndata. function readUint16( ReturndataPointer rdPtr ) internal pure returns (uint16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint24 at `rdPtr` in returndata. function readUint24( ReturndataPointer rdPtr ) internal pure returns (uint24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint32 at `rdPtr` in returndata. function readUint32( ReturndataPointer rdPtr ) internal pure returns (uint32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint40 at `rdPtr` in returndata. function readUint40( ReturndataPointer rdPtr ) internal pure returns (uint40 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint48 at `rdPtr` in returndata. function readUint48( ReturndataPointer rdPtr ) internal pure returns (uint48 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint56 at `rdPtr` in returndata. function readUint56( ReturndataPointer rdPtr ) internal pure returns (uint56 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint64 at `rdPtr` in returndata. function readUint64( ReturndataPointer rdPtr ) internal pure returns (uint64 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint72 at `rdPtr` in returndata. function readUint72( ReturndataPointer rdPtr ) internal pure returns (uint72 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint80 at `rdPtr` in returndata. function readUint80( ReturndataPointer rdPtr ) internal pure returns (uint80 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint88 at `rdPtr` in returndata. function readUint88( ReturndataPointer rdPtr ) internal pure returns (uint88 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint96 at `rdPtr` in returndata. function readUint96( ReturndataPointer rdPtr ) internal pure returns (uint96 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint104 at `rdPtr` in returndata. function readUint104( ReturndataPointer rdPtr ) internal pure returns (uint104 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint112 at `rdPtr` in returndata. function readUint112( ReturndataPointer rdPtr ) internal pure returns (uint112 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint120 at `rdPtr` in returndata. function readUint120( ReturndataPointer rdPtr ) internal pure returns (uint120 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint128 at `rdPtr` in returndata. function readUint128( ReturndataPointer rdPtr ) internal pure returns (uint128 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint136 at `rdPtr` in returndata. function readUint136( ReturndataPointer rdPtr ) internal pure returns (uint136 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint144 at `rdPtr` in returndata. function readUint144( ReturndataPointer rdPtr ) internal pure returns (uint144 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint152 at `rdPtr` in returndata. function readUint152( ReturndataPointer rdPtr ) internal pure returns (uint152 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint160 at `rdPtr` in returndata. function readUint160( ReturndataPointer rdPtr ) internal pure returns (uint160 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint168 at `rdPtr` in returndata. function readUint168( ReturndataPointer rdPtr ) internal pure returns (uint168 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint176 at `rdPtr` in returndata. function readUint176( ReturndataPointer rdPtr ) internal pure returns (uint176 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint184 at `rdPtr` in returndata. function readUint184( ReturndataPointer rdPtr ) internal pure returns (uint184 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint192 at `rdPtr` in returndata. function readUint192( ReturndataPointer rdPtr ) internal pure returns (uint192 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint200 at `rdPtr` in returndata. function readUint200( ReturndataPointer rdPtr ) internal pure returns (uint200 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint208 at `rdPtr` in returndata. function readUint208( ReturndataPointer rdPtr ) internal pure returns (uint208 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint216 at `rdPtr` in returndata. function readUint216( ReturndataPointer rdPtr ) internal pure returns (uint216 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint224 at `rdPtr` in returndata. function readUint224( ReturndataPointer rdPtr ) internal pure returns (uint224 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint232 at `rdPtr` in returndata. function readUint232( ReturndataPointer rdPtr ) internal pure returns (uint232 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint240 at `rdPtr` in returndata. function readUint240( ReturndataPointer rdPtr ) internal pure returns (uint240 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint248 at `rdPtr` in returndata. function readUint248( ReturndataPointer rdPtr ) internal pure returns (uint248 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the uint256 at `rdPtr` in returndata. function readUint256( ReturndataPointer rdPtr ) internal pure returns (uint256 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int8 at `rdPtr` in returndata. function readInt8( ReturndataPointer rdPtr ) internal pure returns (int8 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int16 at `rdPtr` in returndata. function readInt16( ReturndataPointer rdPtr ) internal pure returns (int16 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int24 at `rdPtr` in returndata. function readInt24( ReturndataPointer rdPtr ) internal pure returns (int24 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int32 at `rdPtr` in returndata. function readInt32( ReturndataPointer rdPtr ) internal pure returns (int32 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int40 at `rdPtr` in returndata. function readInt40( ReturndataPointer rdPtr ) internal pure returns (int40 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int48 at `rdPtr` in returndata. function readInt48( ReturndataPointer rdPtr ) internal pure returns (int48 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int56 at `rdPtr` in returndata. function readInt56( ReturndataPointer rdPtr ) internal pure returns (int56 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int64 at `rdPtr` in returndata. function readInt64( ReturndataPointer rdPtr ) internal pure returns (int64 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int72 at `rdPtr` in returndata. function readInt72( ReturndataPointer rdPtr ) internal pure returns (int72 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int80 at `rdPtr` in returndata. function readInt80( ReturndataPointer rdPtr ) internal pure returns (int80 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int88 at `rdPtr` in returndata. function readInt88( ReturndataPointer rdPtr ) internal pure returns (int88 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int96 at `rdPtr` in returndata. function readInt96( ReturndataPointer rdPtr ) internal pure returns (int96 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int104 at `rdPtr` in returndata. function readInt104( ReturndataPointer rdPtr ) internal pure returns (int104 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int112 at `rdPtr` in returndata. function readInt112( ReturndataPointer rdPtr ) internal pure returns (int112 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int120 at `rdPtr` in returndata. function readInt120( ReturndataPointer rdPtr ) internal pure returns (int120 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int128 at `rdPtr` in returndata. function readInt128( ReturndataPointer rdPtr ) internal pure returns (int128 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int136 at `rdPtr` in returndata. function readInt136( ReturndataPointer rdPtr ) internal pure returns (int136 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int144 at `rdPtr` in returndata. function readInt144( ReturndataPointer rdPtr ) internal pure returns (int144 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int152 at `rdPtr` in returndata. function readInt152( ReturndataPointer rdPtr ) internal pure returns (int152 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int160 at `rdPtr` in returndata. function readInt160( ReturndataPointer rdPtr ) internal pure returns (int160 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int168 at `rdPtr` in returndata. function readInt168( ReturndataPointer rdPtr ) internal pure returns (int168 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int176 at `rdPtr` in returndata. function readInt176( ReturndataPointer rdPtr ) internal pure returns (int176 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int184 at `rdPtr` in returndata. function readInt184( ReturndataPointer rdPtr ) internal pure returns (int184 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int192 at `rdPtr` in returndata. function readInt192( ReturndataPointer rdPtr ) internal pure returns (int192 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int200 at `rdPtr` in returndata. function readInt200( ReturndataPointer rdPtr ) internal pure returns (int200 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int208 at `rdPtr` in returndata. function readInt208( ReturndataPointer rdPtr ) internal pure returns (int208 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int216 at `rdPtr` in returndata. function readInt216( ReturndataPointer rdPtr ) internal pure returns (int216 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int224 at `rdPtr` in returndata. function readInt224( ReturndataPointer rdPtr ) internal pure returns (int224 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int232 at `rdPtr` in returndata. function readInt232( ReturndataPointer rdPtr ) internal pure returns (int232 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int240 at `rdPtr` in returndata. function readInt240( ReturndataPointer rdPtr ) internal pure returns (int240 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int248 at `rdPtr` in returndata. function readInt248( ReturndataPointer rdPtr ) internal pure returns (int248 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } /// @dev Reads the int256 at `rdPtr` in returndata. function readInt256( ReturndataPointer rdPtr ) internal pure returns (int256 value) { assembly { returndatacopy(0, rdPtr, _OneWord) value := mload(0) } } } library MemoryReaders { /// @dev Reads the memory pointer at `mPtr` in memory. function readMemoryPointer( MemoryPointer mPtr ) internal pure returns (MemoryPointer value) { assembly { value := mload(mPtr) } } /// @dev Reads value at `mPtr` & applies a mask to return only last 4 bytes function readMaskedUint256( MemoryPointer mPtr ) internal pure returns (uint256 value) { value = mPtr.readUint256() & OffsetOrLengthMask; } /// @dev Reads the bool at `mPtr` in memory. function readBool(MemoryPointer mPtr) internal pure returns (bool value) { assembly { value := mload(mPtr) } } /// @dev Reads the address at `mPtr` in memory. function readAddress( MemoryPointer mPtr ) internal pure returns (address value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes1 at `mPtr` in memory. function readBytes1( MemoryPointer mPtr ) internal pure returns (bytes1 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes2 at `mPtr` in memory. function readBytes2( MemoryPointer mPtr ) internal pure returns (bytes2 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes3 at `mPtr` in memory. function readBytes3( MemoryPointer mPtr ) internal pure returns (bytes3 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes4 at `mPtr` in memory. function readBytes4( MemoryPointer mPtr ) internal pure returns (bytes4 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes5 at `mPtr` in memory. function readBytes5( MemoryPointer mPtr ) internal pure returns (bytes5 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes6 at `mPtr` in memory. function readBytes6( MemoryPointer mPtr ) internal pure returns (bytes6 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes7 at `mPtr` in memory. function readBytes7( MemoryPointer mPtr ) internal pure returns (bytes7 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes8 at `mPtr` in memory. function readBytes8( MemoryPointer mPtr ) internal pure returns (bytes8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes9 at `mPtr` in memory. function readBytes9( MemoryPointer mPtr ) internal pure returns (bytes9 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes10 at `mPtr` in memory. function readBytes10( MemoryPointer mPtr ) internal pure returns (bytes10 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes11 at `mPtr` in memory. function readBytes11( MemoryPointer mPtr ) internal pure returns (bytes11 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes12 at `mPtr` in memory. function readBytes12( MemoryPointer mPtr ) internal pure returns (bytes12 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes13 at `mPtr` in memory. function readBytes13( MemoryPointer mPtr ) internal pure returns (bytes13 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes14 at `mPtr` in memory. function readBytes14( MemoryPointer mPtr ) internal pure returns (bytes14 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes15 at `mPtr` in memory. function readBytes15( MemoryPointer mPtr ) internal pure returns (bytes15 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes16 at `mPtr` in memory. function readBytes16( MemoryPointer mPtr ) internal pure returns (bytes16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes17 at `mPtr` in memory. function readBytes17( MemoryPointer mPtr ) internal pure returns (bytes17 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes18 at `mPtr` in memory. function readBytes18( MemoryPointer mPtr ) internal pure returns (bytes18 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes19 at `mPtr` in memory. function readBytes19( MemoryPointer mPtr ) internal pure returns (bytes19 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes20 at `mPtr` in memory. function readBytes20( MemoryPointer mPtr ) internal pure returns (bytes20 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes21 at `mPtr` in memory. function readBytes21( MemoryPointer mPtr ) internal pure returns (bytes21 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes22 at `mPtr` in memory. function readBytes22( MemoryPointer mPtr ) internal pure returns (bytes22 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes23 at `mPtr` in memory. function readBytes23( MemoryPointer mPtr ) internal pure returns (bytes23 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes24 at `mPtr` in memory. function readBytes24( MemoryPointer mPtr ) internal pure returns (bytes24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes25 at `mPtr` in memory. function readBytes25( MemoryPointer mPtr ) internal pure returns (bytes25 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes26 at `mPtr` in memory. function readBytes26( MemoryPointer mPtr ) internal pure returns (bytes26 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes27 at `mPtr` in memory. function readBytes27( MemoryPointer mPtr ) internal pure returns (bytes27 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes28 at `mPtr` in memory. function readBytes28( MemoryPointer mPtr ) internal pure returns (bytes28 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes29 at `mPtr` in memory. function readBytes29( MemoryPointer mPtr ) internal pure returns (bytes29 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes30 at `mPtr` in memory. function readBytes30( MemoryPointer mPtr ) internal pure returns (bytes30 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes31 at `mPtr` in memory. function readBytes31( MemoryPointer mPtr ) internal pure returns (bytes31 value) { assembly { value := mload(mPtr) } } /// @dev Reads the bytes32 at `mPtr` in memory. function readBytes32( MemoryPointer mPtr ) internal pure returns (bytes32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint8 at `mPtr` in memory. function readUint8(MemoryPointer mPtr) internal pure returns (uint8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint16 at `mPtr` in memory. function readUint16( MemoryPointer mPtr ) internal pure returns (uint16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint24 at `mPtr` in memory. function readUint24( MemoryPointer mPtr ) internal pure returns (uint24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint32 at `mPtr` in memory. function readUint32( MemoryPointer mPtr ) internal pure returns (uint32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint40 at `mPtr` in memory. function readUint40( MemoryPointer mPtr ) internal pure returns (uint40 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint48 at `mPtr` in memory. function readUint48( MemoryPointer mPtr ) internal pure returns (uint48 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint56 at `mPtr` in memory. function readUint56( MemoryPointer mPtr ) internal pure returns (uint56 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint64 at `mPtr` in memory. function readUint64( MemoryPointer mPtr ) internal pure returns (uint64 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint72 at `mPtr` in memory. function readUint72( MemoryPointer mPtr ) internal pure returns (uint72 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint80 at `mPtr` in memory. function readUint80( MemoryPointer mPtr ) internal pure returns (uint80 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint88 at `mPtr` in memory. function readUint88( MemoryPointer mPtr ) internal pure returns (uint88 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint96 at `mPtr` in memory. function readUint96( MemoryPointer mPtr ) internal pure returns (uint96 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint104 at `mPtr` in memory. function readUint104( MemoryPointer mPtr ) internal pure returns (uint104 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint112 at `mPtr` in memory. function readUint112( MemoryPointer mPtr ) internal pure returns (uint112 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint120 at `mPtr` in memory. function readUint120( MemoryPointer mPtr ) internal pure returns (uint120 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint128 at `mPtr` in memory. function readUint128( MemoryPointer mPtr ) internal pure returns (uint128 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint136 at `mPtr` in memory. function readUint136( MemoryPointer mPtr ) internal pure returns (uint136 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint144 at `mPtr` in memory. function readUint144( MemoryPointer mPtr ) internal pure returns (uint144 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint152 at `mPtr` in memory. function readUint152( MemoryPointer mPtr ) internal pure returns (uint152 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint160 at `mPtr` in memory. function readUint160( MemoryPointer mPtr ) internal pure returns (uint160 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint168 at `mPtr` in memory. function readUint168( MemoryPointer mPtr ) internal pure returns (uint168 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint176 at `mPtr` in memory. function readUint176( MemoryPointer mPtr ) internal pure returns (uint176 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint184 at `mPtr` in memory. function readUint184( MemoryPointer mPtr ) internal pure returns (uint184 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint192 at `mPtr` in memory. function readUint192( MemoryPointer mPtr ) internal pure returns (uint192 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint200 at `mPtr` in memory. function readUint200( MemoryPointer mPtr ) internal pure returns (uint200 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint208 at `mPtr` in memory. function readUint208( MemoryPointer mPtr ) internal pure returns (uint208 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint216 at `mPtr` in memory. function readUint216( MemoryPointer mPtr ) internal pure returns (uint216 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint224 at `mPtr` in memory. function readUint224( MemoryPointer mPtr ) internal pure returns (uint224 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint232 at `mPtr` in memory. function readUint232( MemoryPointer mPtr ) internal pure returns (uint232 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint240 at `mPtr` in memory. function readUint240( MemoryPointer mPtr ) internal pure returns (uint240 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint248 at `mPtr` in memory. function readUint248( MemoryPointer mPtr ) internal pure returns (uint248 value) { assembly { value := mload(mPtr) } } /// @dev Reads the uint256 at `mPtr` in memory. function readUint256( MemoryPointer mPtr ) internal pure returns (uint256 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int8 at `mPtr` in memory. function readInt8(MemoryPointer mPtr) internal pure returns (int8 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int16 at `mPtr` in memory. function readInt16(MemoryPointer mPtr) internal pure returns (int16 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int24 at `mPtr` in memory. function readInt24(MemoryPointer mPtr) internal pure returns (int24 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int32 at `mPtr` in memory. function readInt32(MemoryPointer mPtr) internal pure returns (int32 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int40 at `mPtr` in memory. function readInt40(MemoryPointer mPtr) internal pure returns (int40 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int48 at `mPtr` in memory. function readInt48(MemoryPointer mPtr) internal pure returns (int48 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int56 at `mPtr` in memory. function readInt56(MemoryPointer mPtr) internal pure returns (int56 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int64 at `mPtr` in memory. function readInt64(MemoryPointer mPtr) internal pure returns (int64 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int72 at `mPtr` in memory. function readInt72(MemoryPointer mPtr) internal pure returns (int72 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int80 at `mPtr` in memory. function readInt80(MemoryPointer mPtr) internal pure returns (int80 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int88 at `mPtr` in memory. function readInt88(MemoryPointer mPtr) internal pure returns (int88 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int96 at `mPtr` in memory. function readInt96(MemoryPointer mPtr) internal pure returns (int96 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int104 at `mPtr` in memory. function readInt104( MemoryPointer mPtr ) internal pure returns (int104 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int112 at `mPtr` in memory. function readInt112( MemoryPointer mPtr ) internal pure returns (int112 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int120 at `mPtr` in memory. function readInt120( MemoryPointer mPtr ) internal pure returns (int120 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int128 at `mPtr` in memory. function readInt128( MemoryPointer mPtr ) internal pure returns (int128 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int136 at `mPtr` in memory. function readInt136( MemoryPointer mPtr ) internal pure returns (int136 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int144 at `mPtr` in memory. function readInt144( MemoryPointer mPtr ) internal pure returns (int144 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int152 at `mPtr` in memory. function readInt152( MemoryPointer mPtr ) internal pure returns (int152 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int160 at `mPtr` in memory. function readInt160( MemoryPointer mPtr ) internal pure returns (int160 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int168 at `mPtr` in memory. function readInt168( MemoryPointer mPtr ) internal pure returns (int168 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int176 at `mPtr` in memory. function readInt176( MemoryPointer mPtr ) internal pure returns (int176 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int184 at `mPtr` in memory. function readInt184( MemoryPointer mPtr ) internal pure returns (int184 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int192 at `mPtr` in memory. function readInt192( MemoryPointer mPtr ) internal pure returns (int192 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int200 at `mPtr` in memory. function readInt200( MemoryPointer mPtr ) internal pure returns (int200 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int208 at `mPtr` in memory. function readInt208( MemoryPointer mPtr ) internal pure returns (int208 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int216 at `mPtr` in memory. function readInt216( MemoryPointer mPtr ) internal pure returns (int216 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int224 at `mPtr` in memory. function readInt224( MemoryPointer mPtr ) internal pure returns (int224 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int232 at `mPtr` in memory. function readInt232( MemoryPointer mPtr ) internal pure returns (int232 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int240 at `mPtr` in memory. function readInt240( MemoryPointer mPtr ) internal pure returns (int240 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int248 at `mPtr` in memory. function readInt248( MemoryPointer mPtr ) internal pure returns (int248 value) { assembly { value := mload(mPtr) } } /// @dev Reads the int256 at `mPtr` in memory. function readInt256( MemoryPointer mPtr ) internal pure returns (int256 value) { assembly { value := mload(mPtr) } } } library MemoryWriters { /// @dev Writes `valuePtr` to memory at `mPtr`. function write(MemoryPointer mPtr, MemoryPointer valuePtr) internal pure { assembly { mstore(mPtr, valuePtr) } } /// @dev Writes a boolean `value` to `mPtr` in memory. function write(MemoryPointer mPtr, bool value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes an address `value` to `mPtr` in memory. function write(MemoryPointer mPtr, address value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes a bytes32 `value` to `mPtr` in memory. /// Separate name to disambiguate literal write parameters. function writeBytes32(MemoryPointer mPtr, bytes32 value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes a uint256 `value` to `mPtr` in memory. function write(MemoryPointer mPtr, uint256 value) internal pure { assembly { mstore(mPtr, value) } } /// @dev Writes an int256 `value` to `mPtr` in memory. /// Separate name to disambiguate literal write parameters. function writeInt(MemoryPointer mPtr, int256 value) internal pure { assembly { mstore(mPtr, value) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.7; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.19; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(target.code.length > 0, "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import { AllowListData, CreatorPayout } from "./SeaDropStructs.sol"; /** * @notice A struct defining public drop data. * Designed to fit efficiently in two storage slots. * * @param startPrice The start price per token. (Up to 1.2m * of native token, e.g. ETH, MATIC) * @param endPrice The end price per token. If this differs * from startPrice, the current price will * be calculated based on the current time. * @param startTime The start time, ensure this is not zero. * @param endTime The end time, ensure this is not zero. * @param paymentToken The payment token address. Null for * native token. * @param maxTotalMintableByWallet Maximum total number of mints a user is * allowed. (The limit for this field is * 2^16 - 1) * @param feeBps Fee out of 10_000 basis points to be * collected. * @param restrictFeeRecipients If false, allow any fee recipient; * if true, check fee recipient is allowed. */ struct PublicDrop { uint80 startPrice; // 80/512 bits uint80 endPrice; // 160/512 bits uint40 startTime; // 200/512 bits uint40 endTime; // 240/512 bits address paymentToken; // 400/512 bits uint16 maxTotalMintableByWallet; // 416/512 bits uint16 feeBps; // 432/512 bits bool restrictFeeRecipients; // 440/512 bits } /** * @notice A struct defining mint params for an allow list. * An allow list leaf will be composed of `msg.sender` and * the following params. * * Note: Since feeBps is encoded in the leaf, backend should ensure * that feeBps is acceptable before generating a proof. * * @param startPrice The start price per token. (Up to 1.2m * of native token, e.g. ETH, MATIC) * @param endPrice The end price per token. If this differs * from startPrice, the current price will * be calculated based on the current time. * @param startTime The start time, ensure this is not zero. * @param endTime The end time, ensure this is not zero. * @param paymentToken The payment token for the mint. Null for * native token. * @param maxTotalMintableByWallet Maximum total number of mints a user is * allowed. * @param maxTokenSupplyForStage The limit of token supply this stage can * mint within. * @param dropStageIndex The drop stage index to emit with the event * for analytical purposes. This should be * non-zero since the public mint emits with * index zero. * @param feeBps Fee out of 10_000 basis points to be * collected. * @param restrictFeeRecipients If false, allow any fee recipient; * if true, check fee recipient is allowed. */ struct MintParams { uint256 startPrice; uint256 endPrice; uint256 startTime; uint256 endTime; address paymentToken; uint256 maxTotalMintableByWallet; uint256 maxTokenSupplyForStage; uint256 dropStageIndex; // non-zero uint256 feeBps; bool restrictFeeRecipients; } /** * @dev Struct containing internal SeaDrop implementation logic * mint details to avoid stack too deep. * * @param feeRecipient The fee recipient. * @param payer The payer of the mint. * @param minter The mint recipient. * @param quantity The number of tokens to mint. * @param withEffects Whether to apply state changes of the mint. */ struct MintDetails { address feeRecipient; address payer; address minter; uint256 quantity; bool withEffects; } /** * @notice A struct to configure multiple contract options in one transaction. */ struct MultiConfigureStruct { uint256 maxSupply; string baseURI; string contractURI; PublicDrop publicDrop; string dropURI; AllowListData allowListData; CreatorPayout[] creatorPayouts; bytes32 provenanceHash; address[] allowedFeeRecipients; address[] disallowedFeeRecipients; address[] allowedPayers; address[] disallowedPayers; // Server-signed address[] allowedSigners; address[] disallowedSigners; // ERC-2981 address royaltyReceiver; uint96 royaltyBps; // Mint address mintRecipient; uint256 mintQuantity; }
{ "remappings": [ "forge-std/=lib/forge-std/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "ERC721A/=lib/ERC721A/contracts/", "ERC721A-Upgradeable/=lib/ERC721A-Upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@openzeppelin-upgradeable/contracts/=lib/openzeppelin-contracts-upgradeable/contracts/", "@rari-capital/solmate/=lib/seaport/lib/solmate/", "murky/=lib/murky/src/", "create2-scripts/=lib/create2-helpers/script/", "seadrop/=src/", "seaport-sol/=lib/seaport/lib/seaport-sol/", "seaport-types/=lib/seaport/lib/seaport-types/", "seaport-core/=lib/seaport/lib/seaport-core/", "seaport-test-utils/=lib/seaport/test/foundry/utils/", "solady/=lib/solady/" ], "optimizer": { "enabled": true, "runs": 99999999 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "libraries": {} }
[{"inputs":[],"name":"AccountBalanceOverflow","type":"error"},{"inputs":[],"name":"AllowedSeaportCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"ArrayLengthsMismatch","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"}],"name":"CannotExceedMaxSupplyOfUint64","type":"error"},{"inputs":[],"name":"CreatorPayoutAddressCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"CreatorPayoutBasisPointsCannotBeZero","type":"error"},{"inputs":[],"name":"CreatorPayoutsNotSet","type":"error"},{"inputs":[],"name":"DuplicateFeeRecipient","type":"error"},{"inputs":[],"name":"DuplicatePayer","type":"error"},{"inputs":[],"name":"DuplicateSigner","type":"error"},{"inputs":[],"name":"FeeRecipientCannotBeZeroAddress","type":"error"},{"inputs":[{"internalType":"address","name":"got","type":"address"}],"name":"FeeRecipientNotAllowed","type":"error"},{"inputs":[],"name":"FeeRecipientNotPresent","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"InvalidCallerOnlyAllowedSeaport","type":"error"},{"inputs":[{"internalType":"uint256","name":"totalReceivedBasisPoints","type":"uint256"}],"name":"InvalidCreatorPayoutBasisPoints","type":"error"},{"inputs":[{"internalType":"uint256","name":"totalReceivedBasisPoints","type":"uint256"}],"name":"InvalidCreatorPayoutTotalBasisPoints","type":"error"},{"inputs":[{"internalType":"uint8","name":"version","type":"uint8"}],"name":"InvalidExtraDataEncoding","type":"error"},{"inputs":[{"internalType":"uint256","name":"feeBps","type":"uint256"}],"name":"InvalidFeeBps","type":"error"},{"inputs":[{"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"internalType":"uint256","name":"toTokenId","type":"uint256"}],"name":"InvalidFromAndToTokenId","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"maximum","type":"uint256"}],"name":"InvalidSignedEndTime","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"minimumOrMaximum","type":"uint256"}],"name":"InvalidSignedFeeBps","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"minimum","type":"uint256"}],"name":"InvalidSignedFromTokenId","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"maximum","type":"uint256"}],"name":"InvalidSignedMaxTokenSupplyForStage","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"maximum","type":"uint256"}],"name":"InvalidSignedMaxTotalMintableByWallet","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"maximum","type":"uint256"}],"name":"InvalidSignedMaxTotalMintableByWalletPerToken","type":"error"},{"inputs":[{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"minimum","type":"uint256"}],"name":"InvalidSignedMintPrice","type":"error"},{"inputs":[{"internalType":"address","name":"got","type":"address"},{"internalType":"address","name":"want","type":"address"}],"name":"InvalidSignedPaymentToken","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"minimum","type":"uint256"}],"name":"InvalidSignedStartTime","type":"error"},{"inputs":[{"internalType":"uint256","name":"got","type":"uint256"},{"internalType":"uint256","name":"maximum","type":"uint256"}],"name":"InvalidSignedToTokenId","type":"error"},{"inputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"InvalidStartAndEndTime","type":"error"},{"inputs":[{"internalType":"uint8","name":"substandard","type":"uint8"}],"name":"InvalidSubstandard","type":"error"},{"inputs":[],"name":"MaxSupplyMismatch","type":"error"},{"inputs":[],"name":"MintAmountsMismatch","type":"error"},{"inputs":[{"internalType":"uint256","name":"total","type":"uint256"},{"internalType":"uint256","name":"maxSupply","type":"uint256"}],"name":"MintExceedsMaxSupply","type":"error"},{"inputs":[{"internalType":"uint256","name":"total","type":"uint256"},{"internalType":"uint256","name":"allowed","type":"uint256"}],"name":"MintQuantityExceedsMaxMintedPerWallet","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"total","type":"uint256"},{"internalType":"uint256","name":"allowed","type":"uint256"}],"name":"MintQuantityExceedsMaxMintedPerWalletForTokenId","type":"error"},{"inputs":[{"internalType":"uint256","name":"total","type":"uint256"},{"internalType":"uint256","name":"maxSupply","type":"uint256"}],"name":"MintQuantityExceedsMaxSupply","type":"error"},{"inputs":[{"internalType":"uint256","name":"total","type":"uint256"},{"internalType":"uint256","name":"maxTokenSupplyForStage","type":"uint256"}],"name":"MintQuantityExceedsMaxTokenSupplyForStage","type":"error"},{"inputs":[],"name":"MustSpecifyERC1155ConsiderationItemForSeaDropMint","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoBalanceToWithdraw","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[{"internalType":"uint256","name":"currentTimestamp","type":"uint256"},{"internalType":"uint256","name":"startTimestamp","type":"uint256"},{"internalType":"uint256","name":"endTimestamp","type":"uint256"}],"name":"NotActive","type":"error"},{"inputs":[],"name":"NotOwnerNorApproved","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"OfferContainsDuplicateTokenId","type":"error"},{"inputs":[],"name":"OnlyDelegateCalled","type":"error"},{"inputs":[],"name":"PayerCannotBeZeroAddress","type":"error"},{"inputs":[{"internalType":"address","name":"got","type":"address"}],"name":"PayerNotAllowed","type":"error"},{"inputs":[],"name":"PayerNotPresent","type":"error"},{"inputs":[],"name":"ProvenanceHashCannotBeSetAfterAlreadyBeingSet","type":"error"},{"inputs":[],"name":"ProvenanceHashCannotBeSetAfterMintStarted","type":"error"},{"inputs":[],"name":"PublicDropStageNotPresent","type":"error"},{"inputs":[],"name":"PublicDropsMismatch","type":"error"},{"inputs":[],"name":"RoyaltyOverflow","type":"error"},{"inputs":[],"name":"RoyaltyReceiverIsZeroAddress","type":"error"},{"inputs":[],"name":"SignatureAlreadyUsed","type":"error"},{"inputs":[],"name":"SignedMintsMustRestrictFeeRecipients","type":"error"},{"inputs":[],"name":"SignerCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"SignerNotPresent","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"startTokenId","type":"uint256"},{"internalType":"uint256","name":"endTokenId","type":"uint256"}],"name":"TokenIdNotWithinDropStageRange","type":"error"},{"inputs":[],"name":"TransferToNonERC1155ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[{"internalType":"uint8","name":"version","type":"uint8"}],"name":"UnsupportedExtraDataVersion","type":"error"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"UnsupportedFunctionSelector","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"previousMerkleRoot","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newMerkleRoot","type":"bytes32"},{"indexed":false,"internalType":"string[]","name":"publicKeyURI","type":"string[]"},{"indexed":false,"internalType":"string","name":"allowListURI","type":"string"}],"name":"AllowListUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"feeRecipient","type":"address"},{"indexed":true,"internalType":"bool","name":"allowed","type":"bool"}],"name":"AllowedFeeRecipientUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address[]","name":"allowedSeaport","type":"address[]"}],"name":"AllowedSeaportUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"isApproved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_toTokenId","type":"uint256"}],"name":"BatchMetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"newContractURI","type":"string"}],"name":"ContractURIUpdated","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address","name":"payoutAddress","type":"address"},{"internalType":"uint16","name":"basisPoints","type":"uint16"}],"indexed":false,"internalType":"struct CreatorPayout[]","name":"creatorPayouts","type":"tuple[]"}],"name":"CreatorPayoutsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"newDropURI","type":"string"}],"name":"DropURIUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newMaxSupply","type":"uint256"}],"name":"MaxSupplyUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":true,"internalType":"bool","name":"allowed","type":"bool"}],"name":"PayerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"previousHash","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"newHash","type":"bytes32"}],"name":"ProvenanceHashUpdated","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint80","name":"startPrice","type":"uint80"},{"internalType":"uint80","name":"endPrice","type":"uint80"},{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"endTime","type":"uint40"},{"internalType":"bool","name":"restrictFeeRecipients","type":"bool"},{"internalType":"address","name":"paymentToken","type":"address"},{"internalType":"uint24","name":"fromTokenId","type":"uint24"},{"internalType":"uint24","name":"toTokenId","type":"uint24"},{"internalType":"uint16","name":"maxTotalMintableByWallet","type":"uint16"},{"internalType":"uint16","name":"maxTotalMintableByWalletPerToken","type":"uint16"},{"internalType":"uint16","name":"feeBps","type":"uint16"}],"indexed":false,"internalType":"struct PublicDrop","name":"publicDrop","type":"tuple"},{"indexed":false,"internalType":"uint256","name":"index","type":"uint256"}],"name":"PublicDropUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"basisPoints","type":"uint256"}],"name":"RoyaltyInfoUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"payer","type":"address"},{"indexed":false,"internalType":"uint256","name":"dropStageIndex","type":"uint256"}],"name":"SeaDropMint","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"enum SeaDropErrorsAndEvents.SEADROP_TOKEN_TYPE","name":"tokenType","type":"uint8"}],"name":"SeaDropTokenDeployed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"signer","type":"address"},{"indexed":true,"internalType":"bool","name":"allowed","type":"bool"}],"name":"SignerUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"stateMutability":"nonpayable","type":"fallback"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"owners","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"balances","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"batchBurn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"internalType":"uint256","name":"toTokenId","type":"uint256"}],"name":"emitBatchMetadataUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"allowedConfigurer","type":"address"},{"internalType":"address","name":"allowedSeaport","type":"address"},{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"address","name":"initialOwner","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ownershipHandoverValidFor","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"provenanceHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"royaltyAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"isApproved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newContractURI","type":"string"}],"name":"setContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint96","name":"feeNumerator","type":"uint96"}],"name":"setDefaultRoyalty","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"newMaxSupply","type":"uint256"}],"name":"setMaxSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"newProvenanceHash","type":"bytes32"}],"name":"setProvenanceHash","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"totalMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.