Latest 25 from a total of 1,199 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Withdraw | 18706776 | 733 days ago | IN | 0 ETH | 0.0017086 | ||||
| Mint | 18705356 | 733 days ago | IN | 0.04 ETH | 0.0031423 | ||||
| Mint | 18705321 | 733 days ago | IN | 0.1 ETH | 0.00604589 | ||||
| Mint | 18705305 | 733 days ago | IN | 0.1 ETH | 0.00672869 | ||||
| Mint | 18705098 | 733 days ago | IN | 0.04 ETH | 0.00377889 | ||||
| Mint | 18704951 | 733 days ago | IN | 0.04 ETH | 0.00364995 | ||||
| Mint | 18704635 | 733 days ago | IN | 0.08 ETH | 0.00521357 | ||||
| Mint | 18704529 | 733 days ago | IN | 0.06 ETH | 0.00498606 | ||||
| Mint | 18704119 | 733 days ago | IN | 0.1 ETH | 0.00758769 | ||||
| Mint | 18703945 | 734 days ago | IN | 0.02 ETH | 0.00356792 | ||||
| Mint | 18703420 | 734 days ago | IN | 0.02 ETH | 0.00323531 | ||||
| Mint | 18702703 | 734 days ago | IN | 0.04 ETH | 0.00397892 | ||||
| Mint | 18702161 | 734 days ago | IN | 0.02 ETH | 0.00329885 | ||||
| Mint | 18702145 | 734 days ago | IN | 0.04 ETH | 0.00474914 | ||||
| Mint | 18701913 | 734 days ago | IN | 0.04 ETH | 0.00414863 | ||||
| Mint | 18700030 | 734 days ago | IN | 0.02 ETH | 0.00385802 | ||||
| Mint | 18699412 | 734 days ago | IN | 0.02 ETH | 0.00431786 | ||||
| Mint | 18699331 | 734 days ago | IN | 0.04 ETH | 0.00454742 | ||||
| Mint | 18699226 | 734 days ago | IN | 0.04 ETH | 0.00410638 | ||||
| Mint | 18699174 | 734 days ago | IN | 0.04 ETH | 0.00417116 | ||||
| Mint | 18699004 | 734 days ago | IN | 0.04 ETH | 0.00382191 | ||||
| Mint | 18698839 | 734 days ago | IN | 0.04 ETH | 0.00430393 | ||||
| Mint | 18698784 | 734 days ago | IN | 0.02 ETH | 0.00281089 | ||||
| Mint | 18698768 | 734 days ago | IN | 0.08 ETH | 0.00529067 | ||||
| Mint | 18698650 | 734 days ago | IN | 0.04 ETH | 0.00439522 |
Latest 7 internal transactions
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| Transfer | 18706776 | 733 days ago | 2.26 ETH | ||||
| Transfer | 18691875 | 735 days ago | 1.74 ETH | ||||
| Transfer | 18269596 | 794 days ago | 1.14 ETH | ||||
| Transfer | 18263964 | 795 days ago | 2.86 ETH | ||||
| Transfer | 17999285 | 832 days ago | 3.44 ETH | ||||
| Transfer | 17606762 | 887 days ago | 5.965 ETH | ||||
| Transfer | 17592568 | 889 days ago | 18.781 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Minimal Proxy Contract for 0xe591069dfcbbb76df3a780a6712458aea2aca04c
Contract Name:
SalesStore
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;
import "@openzeppelin/contracts/access/AccessControl.sol";
import "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import "solady/src/utils/MerkleProofLib.sol";
import "solady/src/utils/ECDSA.sol";
enum LimitMode {
MerkleTree,
List,
None,
ECDSA
}
struct SalesInfo {
LimitMode limitMode;
bool onSale;
uint96 cost;
uint8 maxQtyPerTx;
bool usePeriodSale;
uint40 timeStart;
uint24 duration;
}
interface IERC721SalesItem {
function sellerMint(address to, uint256 quantity) external;
function supportsInterface(bytes4) external view returns (bool);
}
contract SalesStore is Initializable, AccessControl {
///////////////////////////////////////////////////////////////////////////
// Variables
///////////////////////////////////////////////////////////////////////////
/// @dev Sales information on sales id.
mapping(uint256 => SalesInfo) internal _salesInfo;
/// @dev Merkle root on sales id for merkelTree of LimitMode.
mapping(uint256 => bytes32) public merkleRoots;
/// @dev Alloctions on sales id for list of LimitMode.
mapping(uint256 => mapping(address => uint256)) public allocations;
/// @dev Minted allocations on address on sales id.
mapping(uint256 => mapping(address => uint256)) public mintedNumbers;
/// @dev If true, Whole sales are suspended.
bool public salesSuspended;
/// @dev Sales counter.
uint24 internal _salesCount;
/// @dev Target NFT
IERC721SalesItem public salesTarget;
/// @dev Withdraw address.
address public withdrawAddress;
/// @dev ECDSA signer address.
address public ECDSASigner;
/// @dev ECDSA salt.
uint96 public ECDSASalt;
///////////////////////////////////////////////////////////////////////////
// Custom Errors
///////////////////////////////////////////////////////////////////////////
/// @dev A specified parmeter is Zero Address.
error ZeroAddress();
/// @dev
error RegisterInvalidContract();
/// @dev
error IndexOutOfBound();
/// @dev The sale is not open.
error NotOnSale();
/// @dev Mint exceeding maximum quantity per transaction.
error MintExceedingMaximumQuantity();
/// @dev Mint without sufficient func.
error MintWithoutSufficientFund();
/// @dev Allocation is insufficient.
error FailVerification();
/// @dev Allocation is insufficient.
error InsufficientAllocation();
/// @dev Call invalid sale function.
error CallInvalidLimitMode();
/// @dev Operation is unauthorized.
error UnauthorizedOperation();
/// @dev Caller is not EOA User.
error CallerNotUser();
/// @dev Start sale with updating other parameters is not allowed.
error StartSaleWithUpdatingOtherParameters();
/// @dev Invalid update operation under safeMode.
error InvalidUpdateUnderSafeMode();
/// @dev
error ParameterLengthNotMatch();
///////////////////////////////////////////////////////////////////////////
// Modifier
///////////////////////////////////////////////////////////////////////////
// Revert when operated by not admin user.
modifier onlyAdmin() {
if(!hasRole(DEFAULT_ADMIN_ROLE, msg.sender)) revert UnauthorizedOperation();
_;
}
// Revert when caller is not EOA
modifier callerIsUser() {
if (tx.origin != msg.sender) revert CallerNotUser();
_;
}
// Revert When sale is suspended.
modifier WhenNotSuspended() {
// Check sales supended
if (salesSuspended) revert NotOnSale();
_;
}
///////////////////////////////////////////////////////////////////////////
// Initializer
///////////////////////////////////////////////////////////////////////////
function initialize(address target, address admin) public virtual initializer {
// Essential initialization.
_initializeCore(target, admin);
}
function initialize(address target, address admin, address receiver) public virtual initializer {
// Essential initialization.
_initializeCore(target, admin);
// Set withdrawAddress
withdrawAddress = receiver;
}
function initialize(address target, address admin, address receiver, address signer, uint96 salt) public virtual initializer {
// Essential initialization.
_initializeCore(target, admin);
// Set withdrawAddress.
withdrawAddress = receiver;
// Set ECDSA configuration.
ECDSASigner = signer;
ECDSASalt = salt;
}
function _initializeCore(address target, address admin) internal virtual {
// Set target
_setSalesTarget(target);
// Grant Admin for specified address or msg.sender
if (admin == address(0)) admin = msg.sender;
_grantRole(DEFAULT_ADMIN_ROLE, admin);
}
///////////////////////////////////////////////////////////////////////////
// Internal setter logics
///////////////////////////////////////////////////////////////////////////
function _setSalesTarget(address target) internal {
// Check target
if (target == address(0)) revert ZeroAddress();
IERC721SalesItem targetERC721 = IERC721SalesItem(target);
// Check interface of ERC721
if (!targetERC721.supportsInterface(0x80ac58cd)) revert RegisterInvalidContract();
// Register target
salesTarget = targetERC721;
}
function _addSale(SalesInfo memory sale) internal {
uint256 newId = _salesCount;
_salesInfo[newId] = sale;
++_salesCount;
}
function _updateSale(uint256 id, SalesInfo memory newSale, bool safe) internal {
if (id + 1 > _salesCount) revert IndexOutOfBound();
if (safe) {
SalesInfo memory sale = _salesInfo[id];
if (sale.limitMode != newSale.limitMode) revert InvalidUpdateUnderSafeMode();
if (sale.onSale) revert InvalidUpdateUnderSafeMode();
if (newSale.onSale) revert StartSaleWithUpdatingOtherParameters();
}
_salesInfo[id] = newSale;
}
///////////////////////////////////////////////////////////////////////////
// Public withdraw function
///////////////////////////////////////////////////////////////////////////
function withdraw()
external
payable
onlyAdmin
{
if (withdrawAddress == address(0)) revert ZeroAddress();
(bool os, ) = payable(withdrawAddress).call{
value: address(this).balance
}("");
require(os);
}
///////////////////////////////////////////////////////////////////////////
// Public getter functions
///////////////////////////////////////////////////////////////////////////
function salesCount() external view returns (uint256) {
return uint256(_salesCount);
}
function nowOnSale(uint256 id) external view returns (bool) {
// Check `id` in bound.
if (id + 1 > _salesCount) revert IndexOutOfBound();
// Load sales information.
SalesInfo memory sale = _salesInfo[id];
if (!sale.onSale) {
if (!sale.usePeriodSale) return false;
if (block.timestamp < uint256(sale.timeStart)) return false;
if (uint256(sale.timeStart) + uint256(sale.duration) < block.timestamp) return false;
}
return true;
}
function nowOnSaleAll() external view returns (bool[] memory ret) {
uint256 count = _salesCount;
ret = new bool[] (count);
for (uint256 i; i < count; ++i) {
// Load sales information.
SalesInfo memory sale = _salesInfo[i];
if (sale.onSale) {
ret[i] = true;
} else {
if (uint256(sale.timeStart) <= block.timestamp) {
if (block.timestamp <= uint256(sale.timeStart) + uint256(sale.duration)) {
ret[i] = true;
}
}
}
}
}
function mintedNumbersAll(address addr) external view returns (uint256[] memory ret) {
uint256 count = _salesCount;
ret = new uint256[] (count);
for (uint256 i; i < count; ++i) {
// Load mintedNumbers information.
ret[i] = mintedNumbers[i][addr];
}
}
///////////////////////////////////////////////////////////////////////////
// Public Admin Setter Functions
///////////////////////////////////////////////////////////////////////////
function setSalesTarget(address target)
external
onlyAdmin
{
_setSalesTarget(target);
}
function setWithdrawAddress(address newReceiver)
external
onlyAdmin
{
withdrawAddress = newReceiver;
}
function setECDSASigner(address newSigner)
external
onlyAdmin
{
ECDSASigner = newSigner;
}
function setECDSASalt(uint96 newSalt)
external
onlyAdmin
{
ECDSASalt = newSalt;
}
function setMerkleRoot(uint256 id, bytes32 root)
external
onlyAdmin
{
if (id + 1 > _salesCount) revert IndexOutOfBound();
merkleRoots[id] = root;
}
function setAllocations(uint256 id, address[] calldata addrs, uint256[] calldata allocs)
external
onlyAdmin
{
if (id + 1 > _salesCount) revert IndexOutOfBound();
uint256 length = addrs.length;
if (length != allocs.length) revert ParameterLengthNotMatch();
for (uint256 i; i < length; ++i) {
allocations[id][addrs[i]] = allocs[i];
}
}
function salesInfo(uint256 id) external view returns (SalesInfo memory) {
return _salesInfo[id];
}
function addSale(SalesInfo memory sale) external onlyAdmin {
_addSale(sale);
}
function addSale(LimitMode limitMode, uint256 cost, uint256 maxQtyPerTx)
external
onlyAdmin
{
SalesInfo memory sale = SalesInfo(
limitMode,
false,
uint96(cost),
uint8(maxQtyPerTx),
false,
0,
0
);
_addSale(sale);
}
function addSaleBatch(SalesInfo[] calldata sales) external onlyAdmin {
if (sales.length > 0) {
for (uint256 i; i < sales.length;++i) {
_addSale(sales[i]);
}
}
}
function addSaleBatch(
LimitMode[] calldata limitModes,
uint256[] calldata costs,
uint256[] calldata maxQtyPerTxs
)
external
onlyAdmin
{
if (limitModes.length != costs.length) revert ParameterLengthNotMatch();
if (limitModes.length != maxQtyPerTxs.length) revert ParameterLengthNotMatch();
if (limitModes.length > 0) {
for (uint256 i; i < limitModes.length;++i) {
SalesInfo memory sale = SalesInfo(
limitModes[i],
false,
uint96(costs[i]),
uint8(maxQtyPerTxs[i]),
false,
0,
0
);
_addSale(sale);
}
}
}
function updateSale(uint256 id, SalesInfo memory sale)
external
onlyAdmin
{
_updateSale(id, sale, true);
}
function updateCost(uint256 id, uint256 cost)
external
onlyAdmin
{
SalesInfo memory sale = _salesInfo[id];
sale.cost = uint96(cost);
_updateSale(id, sale, false);
}
function updateMaxQtyPerTx(uint256 id, uint256 maxQtyPerTx)
external
onlyAdmin
{
SalesInfo memory sale = _salesInfo[id];
sale.maxQtyPerTx = uint8(maxQtyPerTx);
_updateSale(id, sale, false);
}
function updateUsePeriodSale(uint256 id, bool value)
external
onlyAdmin
{
SalesInfo memory sale = _salesInfo[id];
sale.usePeriodSale = value;
_updateSale(id, sale, false);
}
function updateTimeStart(uint256 id, uint256 timeStart)
external
onlyAdmin
{
SalesInfo memory sale = _salesInfo[id];
sale.timeStart = uint40(timeStart);
_updateSale(id, sale, false);
}
function updateDuration(uint256 id, uint256 duration)
external
onlyAdmin
{
SalesInfo memory sale = _salesInfo[id];
sale.duration = uint24(duration);
_updateSale(id, sale, false);
}
function setOnSale(uint256 id, bool value)
external
onlyAdmin
{
SalesInfo memory sale = _salesInfo[id];
sale.onSale = value;
_updateSale(id, sale, false);
}
function _getDigest(bytes memory message) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", message));
}
///////////////////////////////////////////////////////////////////////////
// Internal mint logic
///////////////////////////////////////////////////////////////////////////
function _mint(
uint256 id,
uint256 amount,
bool isLimitSale,
uint256 allocation,
bool onSale,
uint96 cost,
uint8 maxQtyPerTx,
bool usePeriodSale,
uint40 timeStart,
uint24 duration
) internal {
// Check on sale.
if (!onSale) {
if (!usePeriodSale) revert NotOnSale();
if (block.timestamp < uint256(timeStart)) revert NotOnSale();
if (uint256(timeStart) + uint256(duration) < block.timestamp) revert NotOnSale();
}
// Check remain allocation.
if (isLimitSale) {
uint256 currentMinted = mintedNumbers[id][msg.sender];
if (currentMinted + amount > allocation) revert InsufficientAllocation();
// Increment minted count
mintedNumbers[id][msg.sender] = currentMinted + amount;
}
// Check quantity.
if (maxQtyPerTx > 0) {
if (amount > maxQtyPerTx) revert MintExceedingMaximumQuantity();
}
// Check funds.
if (msg.value < cost * amount) revert MintWithoutSufficientFund();
// Mint
salesTarget.sellerMint(msg.sender, amount);
}
///////////////////////////////////////////////////////////////////////////
// Mint Functions
///////////////////////////////////////////////////////////////////////////
function mintWithProof(uint256 id, uint256 amount, bytes32[] calldata proof, uint256 allocation)
external
payable
callerIsUser
WhenNotSuspended
{
// Check `id` in bound.
if (id + 1 > _salesCount) revert IndexOutOfBound();
// Load sales information.
SalesInfo memory sale = _salesInfo[id];
// Check sales mode.
if (sale.limitMode != LimitMode.MerkleTree) revert CallInvalidLimitMode();
// Check merkle proof.
if (!MerkleProofLib.verifyCalldata(
proof,
merkleRoots[id],
keccak256(abi.encodePacked(msg.sender, allocation))
)) revert FailVerification();
// Call internal mint function
_mint(id, amount, true, allocation, sale.onSale, sale.cost, sale.maxQtyPerTx, sale.usePeriodSale, sale.timeStart, sale.duration);
}
function mintWithSignature(uint256 id, uint256 amount, bytes calldata signature, uint256 allocation)
external
payable
callerIsUser
WhenNotSuspended
{
// Check `id` in bound.
if (id + 1 > _salesCount) revert IndexOutOfBound();
// Load sales information.
SalesInfo memory sale = _salesInfo[id];
// Check sales mode(ECDSA).
if (sale.limitMode != LimitMode.ECDSA) revert CallInvalidLimitMode();
// Verify signature.
address recovered = ECDSA.recover(
_getDigest(abi.encodePacked(ECDSASalt, id, msg.sender, allocation)),
signature
);
if (recovered != ECDSASigner) revert FailVerification();
// Call internal mint function
_mint(id, amount, true, allocation, sale.onSale, sale.cost, sale.maxQtyPerTx, sale.usePeriodSale, sale.timeStart, sale.duration);
}
function mint(uint256 id, uint256 amount)
external
payable
callerIsUser
WhenNotSuspended
{
// Check `id` in bound.
if (id + 1 > _salesCount) revert IndexOutOfBound();
// Load sales information.
SalesInfo memory sale = _salesInfo[id];
// Check sales mode.
if (sale.limitMode == LimitMode.MerkleTree) revert CallInvalidLimitMode();
if (sale.limitMode == LimitMode.ECDSA) revert CallInvalidLimitMode();
// Check remain allocation.
if (sale.limitMode == LimitMode.List) {
_mint(id, amount, true, allocations[id][msg.sender], sale.onSale, sale.cost, sale.maxQtyPerTx, sale.usePeriodSale, sale.timeStart, sale.duration);
} else {
_mint(id, amount, false, 0, sale.onSale, sale.cost, sale.maxQtyPerTx, sale.usePeriodSale, sale.timeStart, sale.duration);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
Strings.toHexString(account),
" is missing role ",
Strings.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account) public virtual override {
require(account == _msgSender(), "AccessControl: can only renounce roles for self");
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
import "../../utils/Address.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```solidity
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
*
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized != type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Gas optimized verification of proof of inclusion for a leaf in a Merkle tree.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/MerkleProofLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/MerkleProofLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol)
library MerkleProofLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* MERKLE PROOF VERIFICATION OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf)
internal
pure
returns (bool isValid)
{
/// @solidity memory-safe-assembly
assembly {
if mload(proof) {
// Initialize `offset` to the offset of `proof` elements in memory.
let offset := add(proof, 0x20)
// Left shift by 5 is equivalent to multiplying by 0x20.
let end := add(offset, shl(5, mload(proof)))
// Iterate over proof elements to compute root hash.
for {} 1 {} {
// Slot of `leaf` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(leaf, mload(offset)))
// Store elements to hash contiguously in scratch space.
// Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
mstore(scratch, leaf)
mstore(xor(scratch, 0x20), mload(offset))
// Reuse `leaf` to store the hash to reduce stack operations.
leaf := keccak256(0x00, 0x40)
offset := add(offset, 0x20)
if iszero(lt(offset, end)) { break }
}
}
isValid := eq(leaf, root)
}
}
/// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`.
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf)
internal
pure
returns (bool isValid)
{
/// @solidity memory-safe-assembly
assembly {
if proof.length {
// Left shift by 5 is equivalent to multiplying by 0x20.
let end := add(proof.offset, shl(5, proof.length))
// Initialize `offset` to the offset of `proof` in the calldata.
let offset := proof.offset
// Iterate over proof elements to compute root hash.
for {} 1 {} {
// Slot of `leaf` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(leaf, calldataload(offset)))
// Store elements to hash contiguously in scratch space.
// Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes.
mstore(scratch, leaf)
mstore(xor(scratch, 0x20), calldataload(offset))
// Reuse `leaf` to store the hash to reduce stack operations.
leaf := keccak256(0x00, 0x40)
offset := add(offset, 0x20)
if iszero(lt(offset, end)) { break }
}
}
isValid := eq(leaf, root)
}
}
/// @dev Returns whether all `leafs` exist in the Merkle tree with `root`,
/// given `proof` and `flags`.
function verifyMultiProof(
bytes32[] memory proof,
bytes32 root,
bytes32[] memory leafs,
bool[] memory flags
) internal pure returns (bool isValid) {
// Rebuilds the root by consuming and producing values on a queue.
// The queue starts with the `leafs` array, and goes into a `hashes` array.
// After the process, the last element on the queue is verified
// to be equal to the `root`.
//
// The `flags` array denotes whether the sibling
// should be popped from the queue (`flag == true`), or
// should be popped from the `proof` (`flag == false`).
/// @solidity memory-safe-assembly
assembly {
// Cache the lengths of the arrays.
let leafsLength := mload(leafs)
let proofLength := mload(proof)
let flagsLength := mload(flags)
// Advance the pointers of the arrays to point to the data.
leafs := add(0x20, leafs)
proof := add(0x20, proof)
flags := add(0x20, flags)
// If the number of flags is correct.
for {} eq(add(leafsLength, proofLength), add(flagsLength, 1)) {} {
// For the case where `proof.length + leafs.length == 1`.
if iszero(flagsLength) {
// `isValid = (proof.length == 1 ? proof[0] : leafs[0]) == root`.
isValid := eq(mload(xor(leafs, mul(xor(proof, leafs), proofLength))), root)
break
}
// We can use the free memory space for the queue.
// We don't need to allocate, since the queue is temporary.
let hashesFront := mload(0x40)
// Copy the leafs into the hashes.
// Sometimes, a little memory expansion costs less than branching.
// Should cost less, even with a high free memory offset of 0x7d00.
// Left shift by 5 is equivalent to multiplying by 0x20.
leafsLength := shl(5, leafsLength)
for { let i := 0 } iszero(eq(i, leafsLength)) { i := add(i, 0x20) } {
mstore(add(hashesFront, i), mload(add(leafs, i)))
}
// Compute the back of the hashes.
let hashesBack := add(hashesFront, leafsLength)
// This is the end of the memory for the queue.
// We recycle `flagsLength` to save on stack variables
// (this trick may not always save gas).
flagsLength := add(hashesBack, shl(5, flagsLength))
for {} 1 {} {
// Pop from `hashes`.
let a := mload(hashesFront)
// Pop from `hashes`.
let b := mload(add(hashesFront, 0x20))
hashesFront := add(hashesFront, 0x40)
// If the flag is false, load the next proof,
// else, pops from the queue.
if iszero(mload(flags)) {
// Loads the next proof.
b := mload(proof)
proof := add(proof, 0x20)
// Unpop from `hashes`.
hashesFront := sub(hashesFront, 0x20)
}
// Advance to the next flag.
flags := add(flags, 0x20)
// Slot of `a` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(a, b))
// Hash the scratch space and push the result onto the queue.
mstore(scratch, a)
mstore(xor(scratch, 0x20), b)
mstore(hashesBack, keccak256(0x00, 0x40))
hashesBack := add(hashesBack, 0x20)
if iszero(lt(hashesBack, flagsLength)) { break }
}
// Checks if the last value in the queue is same as the root.
isValid := eq(mload(sub(hashesBack, 0x20)), root)
break
}
}
}
/// @dev Returns whether all `leafs` exist in the Merkle tree with `root`,
/// given `proof` and `flags`.
function verifyMultiProofCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32[] calldata leafs,
bool[] calldata flags
) internal pure returns (bool isValid) {
// Rebuilds the root by consuming and producing values on a queue.
// The queue starts with the `leafs` array, and goes into a `hashes` array.
// After the process, the last element on the queue is verified
// to be equal to the `root`.
//
// The `flags` array denotes whether the sibling
// should be popped from the queue (`flag == true`), or
// should be popped from the `proof` (`flag == false`).
/// @solidity memory-safe-assembly
assembly {
// If the number of flags is correct.
for {} eq(add(leafs.length, proof.length), add(flags.length, 1)) {} {
// For the case where `proof.length + leafs.length == 1`.
if iszero(flags.length) {
// `isValid = (proof.length == 1 ? proof[0] : leafs[0]) == root`.
// forgefmt: disable-next-item
isValid := eq(
calldataload(
xor(leafs.offset, mul(xor(proof.offset, leafs.offset), proof.length))
),
root
)
break
}
// We can use the free memory space for the queue.
// We don't need to allocate, since the queue is temporary.
let hashesFront := mload(0x40)
// Copy the leafs into the hashes.
// Sometimes, a little memory expansion costs less than branching.
// Should cost less, even with a high free memory offset of 0x7d00.
// Left shift by 5 is equivalent to multiplying by 0x20.
calldatacopy(hashesFront, leafs.offset, shl(5, leafs.length))
// Compute the back of the hashes.
let hashesBack := add(hashesFront, shl(5, leafs.length))
// This is the end of the memory for the queue.
// We recycle `flags.length` to save on stack variables
// (this trick may not always save gas).
flags.length := add(hashesBack, shl(5, flags.length))
// We don't need to make a copy of `proof.offset` or `flags.offset`,
// as they are pass-by-value (this trick may not always save gas).
for {} 1 {} {
// Pop from `hashes`.
let a := mload(hashesFront)
// Pop from `hashes`.
let b := mload(add(hashesFront, 0x20))
hashesFront := add(hashesFront, 0x40)
// If the flag is false, load the next proof,
// else, pops from the queue.
if iszero(calldataload(flags.offset)) {
// Loads the next proof.
b := calldataload(proof.offset)
proof.offset := add(proof.offset, 0x20)
// Unpop from `hashes`.
hashesFront := sub(hashesFront, 0x20)
}
// Advance to the next flag offset.
flags.offset := add(flags.offset, 0x20)
// Slot of `a` in scratch space.
// If the condition is true: 0x20, otherwise: 0x00.
let scratch := shl(5, gt(a, b))
// Hash the scratch space and push the result onto the queue.
mstore(scratch, a)
mstore(xor(scratch, 0x20), b)
mstore(hashesBack, keccak256(0x00, 0x40))
hashesBack := add(hashesBack, 0x20)
if iszero(lt(hashesBack, flags.length)) { break }
}
// Checks if the last value in the queue is same as the root.
isValid := eq(mload(sub(hashesBack, 0x20)), root)
break
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EMPTY CALLDATA HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an empty calldata bytes32 array.
function emptyProof() internal pure returns (bytes32[] calldata proof) {
/// @solidity memory-safe-assembly
assembly {
proof.length := 0
}
}
/// @dev Returns an empty calldata bytes32 array.
function emptyLeafs() internal pure returns (bytes32[] calldata leafs) {
/// @solidity memory-safe-assembly
assembly {
leafs.length := 0
}
}
/// @dev Returns an empty calldata bool array.
function emptyFlags() internal pure returns (bool[] calldata flags) {
/// @solidity memory-safe-assembly
assembly {
flags.length := 0
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Gas optimized ECDSA wrapper.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
library ECDSA {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The signature is invalid.
error InvalidSignature();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The number which `s` must not exceed in order for
/// the signature to be non-malleable.
bytes32 private constant _MALLEABILITY_THRESHOLD =
0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RECOVERY OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// Note: as of Solady version 0.0.68, these functions will
// revert upon recovery failure for more safety by default.
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the `signature`.
///
/// This function does NOT accept EIP-2098 short form signatures.
/// Use `recover(bytes32 hash, bytes32 r, bytes32 vs)` for EIP-2098
/// short form signatures instead.
function recover(bytes32 hash, bytes memory signature) internal view returns (address result) {
/// @solidity memory-safe-assembly
assembly {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
// Copy `r` and `s`.
mstore(0x40, mload(add(signature, 0x20))) // `r`.
let s := mload(add(signature, 0x40))
mstore(0x60, s)
// Store the `hash` in the scratch space.
mstore(0x00, hash)
// Compute `v` and store it in the scratch space.
mstore(0x20, byte(0, mload(add(signature, 0x60))))
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
and(
// If the signature is exactly 65 bytes in length.
eq(mload(signature), 65),
// If `s` in lower half order, such that the signature is not malleable.
lt(s, add(_MALLEABILITY_THRESHOLD, 1))
), // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x00, // Start of output.
0x20 // Size of output.
)
)
result := mload(0x00)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
// Store the function selector of `InvalidSignature()`.
mstore(0x00, 0x8baa579f)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore the zero slot.
mstore(0x60, 0)
// Restore the free memory pointer.
mstore(0x40, m)
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the `signature`.
///
/// This function does NOT accept EIP-2098 short form signatures.
/// Use `recover(bytes32 hash, bytes32 r, bytes32 vs)` for EIP-2098
/// short form signatures instead.
function recoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
// Directly copy `r` and `s` from the calldata.
calldatacopy(0x40, signature.offset, 0x40)
// Store the `hash` in the scratch space.
mstore(0x00, hash)
// Compute `v` and store it in the scratch space.
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40))))
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
and(
// If the signature is exactly 65 bytes in length.
eq(signature.length, 65),
// If `s` in lower half order, such that the signature is not malleable.
lt(mload(0x60), add(_MALLEABILITY_THRESHOLD, 1))
), // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x00, // Start of output.
0x20 // Size of output.
)
)
result := mload(0x00)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
// Store the function selector of `InvalidSignature()`.
mstore(0x00, 0x8baa579f)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore the zero slot.
mstore(0x60, 0)
// Restore the free memory pointer.
mstore(0x40, m)
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
///
/// This function only accepts EIP-2098 short form signatures.
/// See: https://eips.ethereum.org/EIPS/eip-2098
///
/// To be honest, I do not recommend using EIP-2098 signatures
/// for simplicity, performance, and security reasons. Most if not
/// all clients support traditional non EIP-2098 signatures by default.
/// As such, this method is intentionally not fully inlined.
/// It is merely included for completeness.
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
uint8 v;
bytes32 s;
/// @solidity memory-safe-assembly
assembly {
s := shr(1, shl(1, vs))
v := add(shr(255, vs), 27)
}
result = recover(hash, v, r, s);
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
// If `s` in lower half order, such that the signature is not malleable.
lt(s, add(_MALLEABILITY_THRESHOLD, 1)), // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x00, // Start of output.
0x20 // Size of output.
)
)
result := mload(0x00)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
if iszero(returndatasize()) {
// Store the function selector of `InvalidSignature()`.
mstore(0x00, 0x8baa579f)
// Revert with (offset, size).
revert(0x1c, 0x04)
}
// Restore the zero slot.
mstore(0x60, 0)
// Restore the free memory pointer.
mstore(0x40, m)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* TRY-RECOVER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// WARNING!
// These functions will NOT revert upon recovery failure.
// Instead, they will return the zero address upon recovery failure.
// It is critical that the returned address is NEVER compared against
// a zero address (e.g. an uninitialized address variable).
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the `signature`.
///
/// This function does NOT accept EIP-2098 short form signatures.
/// Use `recover(bytes32 hash, bytes32 r, bytes32 vs)` for EIP-2098
/// short form signatures instead.
function tryRecover(bytes32 hash, bytes memory signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
if iszero(xor(mload(signature), 65)) {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
// Copy `r` and `s`.
mstore(0x40, mload(add(signature, 0x20))) // `r`.
let s := mload(add(signature, 0x40))
mstore(0x60, s)
// If `s` in lower half order, such that the signature is not malleable.
if iszero(gt(s, _MALLEABILITY_THRESHOLD)) {
// Store the `hash` in the scratch space.
mstore(0x00, hash)
// Compute `v` and store it in the scratch space.
mstore(0x20, byte(0, mload(add(signature, 0x60))))
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
0x01, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
// Restore the zero slot.
mstore(0x60, 0)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
}
// Restore the free memory pointer.
mstore(0x40, m)
}
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the `signature`.
///
/// This function does NOT accept EIP-2098 short form signatures.
/// Use `recover(bytes32 hash, bytes32 r, bytes32 vs)` for EIP-2098
/// short form signatures instead.
function tryRecoverCalldata(bytes32 hash, bytes calldata signature)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
if iszero(xor(signature.length, 65)) {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
// Directly copy `r` and `s` from the calldata.
calldatacopy(0x40, signature.offset, 0x40)
// If `s` in lower half order, such that the signature is not malleable.
if iszero(gt(mload(0x60), _MALLEABILITY_THRESHOLD)) {
// Store the `hash` in the scratch space.
mstore(0x00, hash)
// Compute `v` and store it in the scratch space.
mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40))))
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
0x01, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
// Restore the zero slot.
mstore(0x60, 0)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
}
// Restore the free memory pointer.
mstore(0x40, m)
}
}
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the EIP-2098 short form signature defined by `r` and `vs`.
///
/// This function only accepts EIP-2098 short form signatures.
/// See: https://eips.ethereum.org/EIPS/eip-2098
///
/// To be honest, I do not recommend using EIP-2098 signatures
/// for simplicity, performance, and security reasons. Most if not
/// all clients support traditional non EIP-2098 signatures by default.
/// As such, this method is intentionally not fully inlined.
/// It is merely included for completeness.
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs)
internal
view
returns (address result)
{
uint8 v;
bytes32 s;
/// @solidity memory-safe-assembly
assembly {
s := shr(1, shl(1, vs))
v := add(shr(255, vs), 27)
}
result = tryRecover(hash, v, r, s);
}
/// @dev Recovers the signer's address from a message digest `hash`,
/// and the signature defined by `v`, `r`, `s`.
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
internal
view
returns (address result)
{
/// @solidity memory-safe-assembly
assembly {
// Copy the free memory pointer so that we can restore it later.
let m := mload(0x40)
// If `s` in lower half order, such that the signature is not malleable.
if iszero(gt(s, _MALLEABILITY_THRESHOLD)) {
// Store the `hash`, `v`, `r`, `s` in the scratch space.
mstore(0x00, hash)
mstore(0x20, and(v, 0xff))
mstore(0x40, r)
mstore(0x60, s)
pop(
staticcall(
gas(), // Amount of gas left for the transaction.
0x01, // Address of `ecrecover`.
0x00, // Start of input.
0x80, // Size of input.
0x40, // Start of output.
0x20 // Size of output.
)
)
// Restore the zero slot.
mstore(0x60, 0)
// `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
result := mload(xor(0x60, returndatasize()))
}
// Restore the free memory pointer.
mstore(0x40, m)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HASHING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an Ethereum Signed Message, created from a `hash`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
/// JSON-RPC method as part of EIP-191.
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// Store into scratch space for keccak256.
mstore(0x20, hash)
mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32")
// 0x40 - 0x04 = 0x3c
result := keccak256(0x04, 0x3c)
}
}
/// @dev Returns an Ethereum Signed Message, created from `s`.
/// This produces a hash corresponding to the one signed with the
/// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
/// JSON-RPC method as part of EIP-191.
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
assembly {
// The length of "\x19Ethereum Signed Message:\n" is 26 bytes (i.e. 0x1a).
// If we reserve 2 words, we'll have 64 - 26 = 38 bytes to store the
// ASCII decimal representation of the length of `s` up to about 2 ** 126.
// Instead of allocating, we temporarily copy the 64 bytes before the
// start of `s` data to some variables.
let m := mload(sub(s, 0x20))
// The length of `s` is in bytes.
let sLength := mload(s)
let ptr := add(s, 0x20)
let w := not(0)
// `end` marks the end of the memory which we will compute the keccak256 of.
let end := add(ptr, sLength)
// Convert the length of the bytes to ASCII decimal representation
// and store it into the memory.
for { let temp := sLength } 1 {} {
ptr := add(ptr, w) // `sub(ptr, 1)`.
mstore8(ptr, add(48, mod(temp, 10)))
temp := div(temp, 10)
if iszero(temp) { break }
}
// Copy the header over to the memory.
mstore(sub(ptr, 0x20), "\x00\x00\x00\x00\x00\x00\x19Ethereum Signed Message:\n")
// Compute the keccak256 of the memory.
result := keccak256(sub(ptr, 0x1a), sub(end, sub(ptr, 0x1a)))
// Restore the previous memory.
mstore(s, sLength)
mstore(sub(s, 0x20), m)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EMPTY CALLDATA HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns an empty calldata bytes.
function emptySignature() internal pure returns (bytes calldata signature) {
/// @solidity memory-safe-assembly
assembly {
signature.length := 0
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControl {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
*
* Furthermore, `isContract` will also return true if the target contract within
* the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
* which only has an effect at the end of a transaction.
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
(bool success, ) = recipient.call{value: amount}("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
(bool success, bytes memory returndata) = target.call{value: value}(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
(bool success, bytes memory returndata) = target.delegatecall(data);
return verifyCallResultFromTarget(target, success, returndata, errorMessage);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage) private pure {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}{
"remappings": [
"@openzeppelin/=lib/openzeppelin-contracts/",
"ContractAllowList/=lib/ContractAllowList/contracts/",
"closedsea/=lib/closedsea/",
"contract-allow-list/=lib/ContractAllowList/",
"contracts/=lib/ContractAllowList/contracts/",
"ds-test/=lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
"erc721a-upgradeable/=lib/closedsea/lib/erc721a-upgradeable/contracts/",
"erc721a/=lib/erc721a/",
"erc721psi/=lib/ContractAllowList/node_modules/erc721psi/",
"forge-std/=lib/forge-std/src/",
"murky/=lib/murky/src/",
"openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin/=lib/openzeppelin-contracts/contracts/",
"operator-filter-registry/=lib/closedsea/lib/operator-filter-registry/",
"solady/=lib/solady/",
"solidity-bits/=lib/ContractAllowList/node_modules/solidity-bits/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "paris",
"libraries": {}
}Contract ABI
API[{"inputs":[],"name":"CallInvalidLimitMode","type":"error"},{"inputs":[],"name":"CallerNotUser","type":"error"},{"inputs":[],"name":"FailVerification","type":"error"},{"inputs":[],"name":"IndexOutOfBound","type":"error"},{"inputs":[],"name":"InsufficientAllocation","type":"error"},{"inputs":[],"name":"InvalidUpdateUnderSafeMode","type":"error"},{"inputs":[],"name":"MintExceedingMaximumQuantity","type":"error"},{"inputs":[],"name":"MintWithoutSufficientFund","type":"error"},{"inputs":[],"name":"NotOnSale","type":"error"},{"inputs":[],"name":"ParameterLengthNotMatch","type":"error"},{"inputs":[],"name":"RegisterInvalidContract","type":"error"},{"inputs":[],"name":"StartSaleWithUpdatingOtherParameters","type":"error"},{"inputs":[],"name":"UnauthorizedOperation","type":"error"},{"inputs":[],"name":"ZeroAddress","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ECDSASalt","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ECDSASigner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum LimitMode","name":"limitMode","type":"uint8"},{"internalType":"bool","name":"onSale","type":"bool"},{"internalType":"uint96","name":"cost","type":"uint96"},{"internalType":"uint8","name":"maxQtyPerTx","type":"uint8"},{"internalType":"bool","name":"usePeriodSale","type":"bool"},{"internalType":"uint40","name":"timeStart","type":"uint40"},{"internalType":"uint24","name":"duration","type":"uint24"}],"internalType":"struct SalesInfo","name":"sale","type":"tuple"}],"name":"addSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum LimitMode","name":"limitMode","type":"uint8"},{"internalType":"uint256","name":"cost","type":"uint256"},{"internalType":"uint256","name":"maxQtyPerTx","type":"uint256"}],"name":"addSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum LimitMode[]","name":"limitModes","type":"uint8[]"},{"internalType":"uint256[]","name":"costs","type":"uint256[]"},{"internalType":"uint256[]","name":"maxQtyPerTxs","type":"uint256[]"}],"name":"addSaleBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum LimitMode","name":"limitMode","type":"uint8"},{"internalType":"bool","name":"onSale","type":"bool"},{"internalType":"uint96","name":"cost","type":"uint96"},{"internalType":"uint8","name":"maxQtyPerTx","type":"uint8"},{"internalType":"bool","name":"usePeriodSale","type":"bool"},{"internalType":"uint40","name":"timeStart","type":"uint40"},{"internalType":"uint24","name":"duration","type":"uint24"}],"internalType":"struct SalesInfo[]","name":"sales","type":"tuple[]"}],"name":"addSaleBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"allocations","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"address","name":"admin","type":"address"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"signer","type":"address"},{"internalType":"uint96","name":"salt","type":"uint96"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"address","name":"admin","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"address","name":"admin","type":"address"},{"internalType":"address","name":"receiver","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"merkleRoots","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"uint256","name":"allocation","type":"uint256"}],"name":"mintWithProof","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"allocation","type":"uint256"}],"name":"mintWithSignature","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"address","name":"","type":"address"}],"name":"mintedNumbers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"mintedNumbersAll","outputs":[{"internalType":"uint256[]","name":"ret","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"nowOnSale","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nowOnSaleAll","outputs":[{"internalType":"bool[]","name":"ret","type":"bool[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"salesCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"salesInfo","outputs":[{"components":[{"internalType":"enum LimitMode","name":"limitMode","type":"uint8"},{"internalType":"bool","name":"onSale","type":"bool"},{"internalType":"uint96","name":"cost","type":"uint96"},{"internalType":"uint8","name":"maxQtyPerTx","type":"uint8"},{"internalType":"bool","name":"usePeriodSale","type":"bool"},{"internalType":"uint40","name":"timeStart","type":"uint40"},{"internalType":"uint24","name":"duration","type":"uint24"}],"internalType":"struct SalesInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"salesSuspended","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"salesTarget","outputs":[{"internalType":"contract IERC721SalesItem","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"address[]","name":"addrs","type":"address[]"},{"internalType":"uint256[]","name":"allocs","type":"uint256[]"}],"name":"setAllocations","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint96","name":"newSalt","type":"uint96"}],"name":"setECDSASalt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"setECDSASigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes32","name":"root","type":"bytes32"}],"name":"setMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bool","name":"value","type":"bool"}],"name":"setOnSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"setSalesTarget","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newReceiver","type":"address"}],"name":"setWithdrawAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"cost","type":"uint256"}],"name":"updateCost","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"updateDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"maxQtyPerTx","type":"uint256"}],"name":"updateMaxQtyPerTx","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"components":[{"internalType":"enum LimitMode","name":"limitMode","type":"uint8"},{"internalType":"bool","name":"onSale","type":"bool"},{"internalType":"uint96","name":"cost","type":"uint96"},{"internalType":"uint8","name":"maxQtyPerTx","type":"uint8"},{"internalType":"bool","name":"usePeriodSale","type":"bool"},{"internalType":"uint40","name":"timeStart","type":"uint40"},{"internalType":"uint24","name":"duration","type":"uint24"}],"internalType":"struct SalesInfo","name":"sale","type":"tuple"}],"name":"updateSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"timeStart","type":"uint256"}],"name":"updateTimeStart","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bool","name":"value","type":"bool"}],"name":"updateUsePeriodSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"withdrawAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.