More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 133 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Withdraw | 21839851 | 8 hrs ago | IN | 0 ETH | 0.00071789 | ||||
Withdraw | 21839839 | 8 hrs ago | IN | 0 ETH | 0.00056642 | ||||
Multicall | 21834593 | 26 hrs ago | IN | 0 ETH | 0.00084782 | ||||
Deposit | 21829012 | 44 hrs ago | IN | 0 ETH | 0.00035956 | ||||
Deposit | 21829008 | 44 hrs ago | IN | 0 ETH | 0.00056516 | ||||
Deposit | 21826774 | 2 days ago | IN | 0 ETH | 0.00053098 | ||||
Withdraw | 21825131 | 2 days ago | IN | 0 ETH | 0.00186829 | ||||
Withdraw | 21825077 | 2 days ago | IN | 0 ETH | 0.00204146 | ||||
Deposit | 21823851 | 2 days ago | IN | 0 ETH | 0.00234218 | ||||
Deposit | 21821460 | 2 days ago | IN | 0 ETH | 0.00057022 | ||||
Multicall | 21816922 | 3 days ago | IN | 0 ETH | 0.00070635 | ||||
Multicall | 21811819 | 4 days ago | IN | 0 ETH | 0.00151398 | ||||
Withdraw | 21811139 | 4 days ago | IN | 0 ETH | 0.00070548 | ||||
Deposit | 21807497 | 4 days ago | IN | 0 ETH | 0.00082168 | ||||
Deposit | 21805896 | 5 days ago | IN | 0 ETH | 0.00057777 | ||||
Deposit | 21802495 | 5 days ago | IN | 0 ETH | 0.00070646 | ||||
Withdraw | 21802029 | 5 days ago | IN | 0 ETH | 0.00095139 | ||||
Withdraw | 21801898 | 5 days ago | IN | 0 ETH | 0.00079013 | ||||
Deposit | 21801894 | 5 days ago | IN | 0 ETH | 0.00056725 | ||||
Multicall | 21801153 | 5 days ago | IN | 0 ETH | 0.0009326 | ||||
Withdraw | 21801087 | 5 days ago | IN | 0 ETH | 0.00077213 | ||||
Multicall | 21799607 | 5 days ago | IN | 0 ETH | 0.0009326 | ||||
Withdraw | 21794945 | 6 days ago | IN | 0 ETH | 0.00083424 | ||||
Deposit | 21794129 | 6 days ago | IN | 0 ETH | 0.00091673 | ||||
Multicall | 21793741 | 6 days ago | IN | 0 ETH | 0.00041952 |
Latest 2 internal transactions
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
21779880 | 8 days ago | Contract Creation | 0 ETH | |||
21779880 | 8 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
PeggedFarmKeeper
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 288 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; // OpenZeppelin import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; import '@openzeppelin/contracts/utils/structs/EnumerableSet.sol'; import '@openzeppelin/contracts/access/manager/AccessManaged.sol'; import '@openzeppelin/contracts/utils/Multicall.sol'; import '@openzeppelin/contracts/utils/ReentrancyGuard.sol'; import '@openzeppelin/contracts/utils/math/Math.sol'; // Libary import './lib/Constants.sol'; import './lib/Farms.sol'; import './lib/uniswap/PoolAddress.sol'; import './lib/uniswap/LiquidityAmounts.sol'; import './lib/uniswap/PositionValue.sol'; // Proxy import './proxy/TokenProxy.sol'; // Interfaces import './interfaces/IIncentiveToken.sol'; import './interfaces/IFarmKeeper.sol'; import './interfaces/IPeggedFarmKeeper.sol'; // Other Contracts import './UniversalBuyAndBurn.sol'; /** * @title Pegged FarmKeeper: A Uniswap V3 Farming Protocol, built on a root FarmKeeper, extending for "stable farms" * Stable farms will allow to contribute liquditiy in a tight range around e.g. a 1:1 peg. * @notice Manages liquidity farms for Uniswap V3 pools with integrated buy-and-burn mechanism * @dev Inspired by MasterChef, adapted for Uniswap V3 and Universal Buy And Burn * * ███████╗ █████╗ ██████╗ ███╗ ███╗██╗ ██╗███████╗███████╗██████╗ ███████╗██████╗ * ██╔════╝██╔══██╗██╔══██╗████╗ ████║██║ ██╔╝██╔════╝██╔════╝██╔══██╗██╔════╝██╔══██╗ * █████╗ ███████║██████╔╝██╔████╔██║█████╔╝ █████╗ █████╗ ██████╔╝█████╗ ██████╔╝ * ██╔══╝ ██╔══██║██╔══██╗██║╚██╔╝██║██╔═██╗ ██╔══╝ ██╔══╝ ██╔═══╝ ██╔══╝ ██╔══██╗ * ██║ ██║ ██║██║ ██║██║ ╚═╝ ██║██║ ██╗███████╗███████╗██║ ███████╗██║ ██║ * ╚═╝ ╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚═╝ ╚═╝╚══════╝╚══════╝╚═╝ ╚══════╝╚═╝ ╚═╝ * * * Key Features: * 1. Uniswap V3 Compatibility: Manages farms for Uniswap V3 liquidity positions * 2. Flexible Reward System: Distributes incentive tokens as rewards based on liquidity provision * 3. Fee Collection: Collects and distributes fees from Uniswap V3 positions * 4. Buy-and-Burn Integration: Automatically sends collected fees to a buy-and-burn mechanism * 5. Protocol Fee: Allows for collection of protocol fees on each farm * 6. Acts as a Sub-FarmKeeper instance by adding a proxy pool. Incentive tokens minted to this * proxy pool are then distributed to the regular FarmKeeper rules. * * How it works: * - Users deposit liquidity into farms, receiving a share of the farm's total liquidity * - The contract manages a single Uniswap V3 position for each farm * - Rewards (incentive tokens) are collected from FarmKeeper and distributed based on users' liquidity share and time * - Fees collected from Uniswap V3 positions are: * a) Sent to the buy-and-burn contract for designated input tokens * b) Distributed to users for non-input tokens * - Users can withdraw their liquidity and claim rewards at any time * * Security features: * - Access control using OpenZeppelin's AccessManaged * - Reentrancy protection through function ordering and ReentrancyGuard * - Slippage protection for liquidity operations */ contract PeggedFarmKeeper is IPeggedFarmKeeper, AccessManaged, Multicall, ReentrancyGuard { using Farms for Farms.Map; using SafeERC20 for IERC20; // ----------------------------------------- // Type declarations // ----------------------------------------- struct AddFarmParams { address tokenA; address tokenB; uint24 fee; uint56 allocPoints; uint256 protocolFee; uint32 priceTwa; uint256 slippage; int24 minTick; int24 maxTick; } struct Ticks { int24 minTick; int24 maxTick; } // ----------------------------------------- // State variables // ----------------------------------------- /** @notice The farms managed by this contract */ Farms.Map private _farms; /** @notice Accumulated protocol fees for each token */ mapping(address token => uint256 amount) public protocolFees; /** @notice Min. and Max. Tick per farm-id */ mapping(address id => Ticks ticks) public ticks; /** @notice Indicates if the contract has been successfully initialized */ bool public initialized; /** @notice The IncentiveToken contract */ IIncentiveToken public incentiveToken; /** @notice The TINC buy and burn contract */ UniversalBuyAndBurn public buyAndBurn; /** @notice The FarmKeeper instance owning the icentive token */ IFarmKeeper public rootKeeper; /** @notice Proxy Tokens for root FarmKeeper */ ProxyToken private _proxyTokenA; ProxyToken private _proxyTokenB; /** @notice The farm ID used to interact with the root farm keeper instance */ address public rootKeeperFarmId; /** @notice Accumulated incentive tokens per share */ uint256 private _globalAccIncentiveTokenPerShare; /** @notice Total allocation points across all farms */ uint256 public totalAllocPoints; // ----------------------------------------- // Events // ----------------------------------------- event FarmEnabled(address indexed id, AddFarmParams params); event FeeDistributed(address indexed id, address indexed user, address indexed token, uint256 amount); event IncentiveTokenDistributed(address indexed id, address indexed user, uint256 amount); event Deposit( address indexed id, address indexed user, uint128 liquidity, uint256 amountToken0, uint256 amountToken1 ); event Withdraw( address indexed id, address indexed user, uint256 liquidity, uint256 amountToken0, uint256 amountToken1 ); event ProtocolFeesCollected(address indexed token, uint256 amount); event SlippageUpdated(address indexed id, uint256 newSlippage); event PriceTwaUpdated(address indexed id, uint32 newTwa); event ProtocolFeeUpdated(address indexed id, uint256 newFee); event AllocationUpdated(address indexed id, uint256 allocPoints); // ----------------------------------------- // Errors // ----------------------------------------- error InvalidLiquidityAmount(); error InvalidPriceTwa(); error InvalidSlippage(); error InvalidFee(); error InvalidAllocPoints(); error InvalidTokenId(); error InvalidFarmId(); error AlreadyInitialized(); error InvalidIncentiveToken(); error DuplicatedFarm(); error TotalAllocationCannotBeZero(); error InvalidTicks(); // ----------------------------------------- // Modifiers // ----------------------------------------- // ----------------------------------------- // Constructor // ----------------------------------------- /** * @notice Creates a new instance of the contract * @param incentiveTokenAddress The address of the Incentive Token contract * @param universalBuyAndBurnAddress The address of the Universal Buy And Burn contract * @param rootKeeperAddress The address of the root farm keeper contract * @param manager The address of the Access Manager contract */ constructor( address incentiveTokenAddress, address universalBuyAndBurnAddress, address rootKeeperAddress, address manager ) AccessManaged(manager) { incentiveToken = IIncentiveToken(incentiveTokenAddress); buyAndBurn = UniversalBuyAndBurn(universalBuyAndBurnAddress); rootKeeper = IFarmKeeper(rootKeeperAddress); // Deploy two helper tokens, mint supply, deploy a pool _proxyTokenA = new ProxyToken(); _proxyTokenB = new ProxyToken(); PoolAddress.PoolKey memory poolKey = PoolAddress.getPoolKey( address(_proxyTokenA), address(_proxyTokenB), Constants.FEE_TIER_1_PERCENT ); // 1:1 initial price rootKeeperFarmId = INonfungiblePositionManager(Constants.NON_FUNGIBLE_POSITION_MANAGER) .createAndInitializePoolIfNecessary(poolKey.token0, poolKey.token1, poolKey.fee, 79228162514264337593543950336); } // ----------------------------------------- // Receive function // ----------------------------------------- // ----------------------------------------- // Fallback function // ----------------------------------------- // ----------------------------------------- // External functions // ----------------------------------------- /** * @notice Initializes the FarmKeeper contract * @dev Can only be called once and must be called by the contract manager after ownership of * the incentive token has been successfully transfered to the farm keeper. */ function initialize() external restricted { if (initialized) revert AlreadyInitialized(); // Try to access the farm view (must be enabled in root farm keeper), will revert if not available rootKeeper.farmView(rootKeeperFarmId); initialized = true; // Deposit into root farm keeper, holding 100% of the liquidity in this pool (address token0, address token1, uint128 liquidity, uint256 amount0, uint256 amount1) = rootKeeper .getLiquidityForAmount(rootKeeperFarmId, address(_proxyTokenA), 1000 ether); ProxyToken(token0).mint(address(this), amount0); ProxyToken(token1).mint(address(this), amount1); ProxyToken(token0).approve(address(rootKeeper), amount0); ProxyToken(token1).approve(address(rootKeeper), amount1); rootKeeper.deposit(rootKeeperFarmId, liquidity, block.timestamp); } /** * @notice Allows a user to deposit liquidity into a farm * Setting liquidity to zero allows to pull fees and incentive tokens * without modifying the liquidity position by the user. * @param id The ID of the farm to deposit into * @param liquidity The amount of liquidity to deposit * @param slippage Allow users to override default slippage settings (0: default, otherwise override, in basis points) * @param deadline The Unix timestamp by which the transaction must be confirmed. * If the transaction is pending in the mempool beyond this time, it will revert, * preventing any further interaction with the Uniswap LP position. */ function deposit(address id, uint128 liquidity, uint256 slippage, uint256 deadline) external nonReentrant { if (!_farms.contains(id)) revert InvalidFarmId(); Farm storage farm = _farms.get(id); User storage user = _farms.user(id, msg.sender); // Always collect reward _collectReward(); // Update farm and collect fees _updateFarm(farm, true); // Distribute pending rewards and fees uint256 pendingIncentiveTokens = Math.mulDiv( user.liquidity, farm.accIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18 ) - user.rewardCheckpoint; uint256 pendingFeeToken0 = Math.mulDiv(user.liquidity, farm.accFeePerShareForToken0, Constants.SCALE_FACTOR_1E18) - user.feeCheckpointToken0; uint256 pendingFeeToken1 = Math.mulDiv(user.liquidity, farm.accFeePerShareForToken1, Constants.SCALE_FACTOR_1E18) - user.feeCheckpointToken1; uint128 addedLiquidity = 0; uint256 amountToken0 = 0; uint256 amountToken1 = 0; // Allow to call this function without modifying liquidity // to pull rewards only if (liquidity > 0) { if (farm.lp.tokenId == 0) { // Create LP position and refund caller (addedLiquidity, amountToken0, amountToken1) = _createLiquidityPosition(farm, liquidity, slippage, deadline); } else { // Add liquidity to existing position (addedLiquidity, amountToken0, amountToken1) = _addLiquidity(farm, liquidity, slippage, deadline); } } // Update state user.liquidity += addedLiquidity; user.rewardCheckpoint = Math.mulDiv(user.liquidity, farm.accIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18); user.feeCheckpointToken0 = Math.mulDiv(user.liquidity, farm.accFeePerShareForToken0, Constants.SCALE_FACTOR_1E18); user.feeCheckpointToken1 = Math.mulDiv(user.liquidity, farm.accFeePerShareForToken1, Constants.SCALE_FACTOR_1E18); // Payout pending tokens if (pendingIncentiveTokens > 0) { _safeTransferToken(address(incentiveToken), msg.sender, pendingIncentiveTokens); emit IncentiveTokenDistributed(id, msg.sender, pendingIncentiveTokens); } if (pendingFeeToken0 > 0) { _safeTransferToken(farm.poolKey.token0, msg.sender, pendingFeeToken0); emit FeeDistributed(id, msg.sender, farm.poolKey.token0, pendingFeeToken0); } if (pendingFeeToken1 > 0) { _safeTransferToken(farm.poolKey.token1, msg.sender, pendingFeeToken1); emit FeeDistributed(id, msg.sender, farm.poolKey.token1, pendingFeeToken1); } emit Deposit(id, msg.sender, liquidity, amountToken0, amountToken1); } /** * @notice Allows a user to withdraw liquidity from a farm * To harvest incentive tokens and fees, call `deposit` with liquidity amount of 0. * @param id The ID of the farm to withdraw from * @param liquidity The amount of liquidity to withdraw * @param slippage Allow users to override default slippage settings (0: default, otherwise override, in basis points) * @param deadline The Unix timestamp by which the transaction must be confirmed. * If the transaction is pending in the mempool beyond this time, it will revert, * preventing any further interaction with the Uniswap LP position. */ function withdraw(address id, uint128 liquidity, uint256 slippage, uint256 deadline) external nonReentrant { if (!_farms.contains(id)) revert InvalidFarmId(); Farm storage farm = _farms.get(id); User storage user = _farms.user(id, msg.sender); if (user.liquidity < liquidity || liquidity == 0) { revert InvalidLiquidityAmount(); } // Always collect reward _collectReward(); // Update farms and collect fees _updateFarm(farm, true); // Calculate pending rewards and fees uint256 pendingIncentiveTokens = Math.mulDiv( user.liquidity, farm.accIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18 ) - user.rewardCheckpoint; uint256 pendingFeeToken0 = Math.mulDiv(user.liquidity, farm.accFeePerShareForToken0, Constants.SCALE_FACTOR_1E18) - user.feeCheckpointToken0; uint256 pendingFeeToken1 = Math.mulDiv(user.liquidity, farm.accFeePerShareForToken1, Constants.SCALE_FACTOR_1E18) - user.feeCheckpointToken1; // Update state user.liquidity -= liquidity; user.rewardCheckpoint = Math.mulDiv(user.liquidity, farm.accIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18); user.feeCheckpointToken0 = Math.mulDiv(user.liquidity, farm.accFeePerShareForToken0, Constants.SCALE_FACTOR_1E18); user.feeCheckpointToken1 = Math.mulDiv(user.liquidity, farm.accFeePerShareForToken1, Constants.SCALE_FACTOR_1E18); // Decrease liquidity (uint256 amountToken0, uint256 amountToken1) = _decreaseLiquidity(farm, liquidity, msg.sender, slippage, deadline); // Payout pending tokens if (pendingIncentiveTokens > 0) { // Transfer Incentive Tokens _safeTransferToken(address(incentiveToken), msg.sender, pendingIncentiveTokens); emit IncentiveTokenDistributed(id, msg.sender, pendingIncentiveTokens); } if (pendingFeeToken0 > 0) { _safeTransferToken(farm.poolKey.token0, msg.sender, pendingFeeToken0); emit FeeDistributed(id, msg.sender, farm.poolKey.token0, pendingFeeToken0); } if (pendingFeeToken1 > 0) { _safeTransferToken(farm.poolKey.token1, msg.sender, pendingFeeToken1); emit FeeDistributed(id, msg.sender, farm.poolKey.token1, pendingFeeToken1); } emit Withdraw(id, msg.sender, liquidity, amountToken0, amountToken1); } /** * @notice Updates a specific farm and collect fees * @param id The ID of the farm to update * @param collectFees collect trading fees accumulated by the liquidity provided */ function updateFarm(address id, bool collectFees) external nonReentrant { if (!_farms.contains(id)) revert InvalidFarmId(); // Always collect reward _collectReward(); Farm storage farm = _farms.get(id); _updateFarm(farm, collectFees); } /** * @notice Enables a new farm * @param params The parameters for the new farm */ function enableFarm(AddFarmParams calldata params) external restricted { PoolAddress.PoolKey memory poolKey = PoolAddress.getPoolKey(params.tokenA, params.tokenB, params.fee); // Derive a unique-ID to allow multiple farms with different min. and max. ticks // use case: move range by a few percent by disabling and enabling a new farm address id = address( uint160( uint256( keccak256( abi.encode( PoolAddress.computeAddress(Constants.FACTORY, poolKey), int256(params.minTick), int256(params.maxTick) ) ) ) ) ); // Check for duplicates if (_farms.contains(id)) revert DuplicatedFarm(); _validateAllocPoints(params.allocPoints); _validatePriceTwa(params.priceTwa); _validateSlippage(params.slippage); _validateProtocolFee(params.protocolFee); _validateTicks(params.fee, params.minTick, params.maxTick); // Ensure valid allocations points when enabling a farm if (totalAllocPoints + params.allocPoints <= 0) revert InvalidAllocPoints(); // Update all farms but do not collect fees as only // the incentive token allocations are affected by enabling a new farm massUpdateFarms(false); // Append new farm _farms.add( Farm({ id: id, poolKey: poolKey, lp: LP({tokenId: 0, liquidity: 0}), allocPoints: params.allocPoints, // Use lastRewardTime as checkpoint // If a farm is enabled with zero allocation, setting the allocation later will take the snapshot lastRewardTime: params.allocPoints > 0 ? Math.mulDiv(params.allocPoints, _globalAccIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18) : 0, accIncentiveTokenPerShare: 0, accFeePerShareForToken0: 0, accFeePerShareForToken1: 0, protocolFee: params.protocolFee, priceTwa: params.priceTwa, slippage: params.slippage }) ); ticks[id].minTick = params.minTick; ticks[id].maxTick = params.maxTick; totalAllocPoints += params.allocPoints; emit FarmEnabled(id, params); } /** * @notice Sets the slippage percentage for buy and burn minimum received amount * @param id The ID of the farm to update * @param slippage The new slippage value (from 0% to 15%) */ function setSlippage(address id, uint256 slippage) external restricted { if (!_farms.contains(id)) revert InvalidFarmId(); _validateSlippage(slippage); _farms.get(id).slippage = slippage; emit SlippageUpdated(id, slippage); } /** * @notice Sets the TWA value used for requesting quotes * @param id The ID of the farm to update * @param mins TWA in minutes */ function setPriceTwa(address id, uint32 mins) external restricted { if (!_farms.contains(id)) revert InvalidFarmId(); _validatePriceTwa(mins); _farms.get(id).priceTwa = mins; emit PriceTwaUpdated(id, mins); } /** * @notice Sets the protocol fee for a farm * @param id The ID of the farm to update * @param fee The new protocol fee */ function setProtocolFee(address id, uint256 fee) external restricted { if (!_farms.contains(id)) revert InvalidFarmId(); _validateProtocolFee(fee); Farm storage farm = _farms.get(id); // Always collect reward _collectReward(); // collect fees and distribute with the old protocol fee // before the new setting takes effect _updateFarm(farm, true); farm.protocolFee = fee; emit ProtocolFeeUpdated(id, fee); } /** * @notice Collect accumulated protocol fees for a specific token * @param token The address of the token to withdraw fees for */ function collectProtocolFee(address token) external restricted { uint256 protocolFee = protocolFees[token]; protocolFees[token] = 0; if (protocolFee > 0) { IERC20(token).safeTransfer(msg.sender, protocolFee); } emit ProtocolFeesCollected(token, protocolFee); } /** * @notice Updates the allocation points for a given farm * @param id The ID of the farm to update * @param allocPoints The new allocation points */ function setAllocation(address id, uint256 allocPoints) external restricted { if (!_farms.contains(id)) revert InvalidFarmId(); _validateAllocPoints(allocPoints); Farm storage farm = _farms.get(id); // Update all farms but do not collect fees as only // the INC token distribution is affected by modifying allocations massUpdateFarms(false); if (farm.allocPoints > allocPoints) { if (totalAllocPoints - (farm.allocPoints - allocPoints) <= 0) revert TotalAllocationCannotBeZero(); } // Re-Enabling a farm, update checkpoint using new farm allocation if (farm.allocPoints == 0) { farm.lastRewardTime = Math.mulDiv(allocPoints, _globalAccIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18); } totalAllocPoints = totalAllocPoints - farm.allocPoints + allocPoints; farm.allocPoints = allocPoints; emit AllocationUpdated(id, allocPoints); } /** * @notice Retrieves all farms * @return An array of all Farms */ function farmViews() external view returns (FarmView[] memory) { Farm[] memory farms = _farms.values(); FarmView[] memory views = new FarmView[](farms.length); for (uint256 idx = 0; idx < farms.length; idx++) { views[idx] = farmView(farms[idx].id); } return views; } /** * @notice Retrieves a user view for a specific farm * @param id The ID of the farm * @param userId The address of the user * @return A UserView struct with the user's farm information */ function userView(address id, address userId) external view returns (UserView memory) { if (!_farms.contains(id)) revert InvalidFarmId(); Farm storage farm = _farms.get(id); User storage user = _farms.user(id, userId); if (user.liquidity == 0) { return UserView({ token0: farm.poolKey.token0, token1: farm.poolKey.token1, liquidity: user.liquidity, balanceToken0: 0, balanceToken1: 0, pendingFeeToken0: 0, pendingFeeToken1: 0, pendingIncentiveTokens: 0 }); } ( uint256 accIncentiveTokenPerShare, uint256 accFeePerShareForToken0, uint256 accFeePerShareForToken1 ) = _getSharesAtBlockTimestamp(farm); (uint160 slotPrice, ) = _getTwaPrice(PoolAddress.computeAddress(Constants.FACTORY, farm.poolKey), 0); Ticks storage tick = ticks[farm.id]; (uint256 balanceToken0, uint256 balanceToken1) = LiquidityAmounts.getAmountsForLiquidity( slotPrice, TickMath.getSqrtRatioAtTick(tick.minTick), TickMath.getSqrtRatioAtTick(tick.maxTick), user.liquidity ); return UserView({ token0: farm.poolKey.token0, token1: farm.poolKey.token1, liquidity: user.liquidity, balanceToken0: balanceToken0, balanceToken1: balanceToken1, pendingFeeToken0: Math.mulDiv(user.liquidity, accFeePerShareForToken0, Constants.SCALE_FACTOR_1E18) - user.feeCheckpointToken0, pendingFeeToken1: Math.mulDiv(user.liquidity, accFeePerShareForToken1, Constants.SCALE_FACTOR_1E18) - user.feeCheckpointToken1, pendingIncentiveTokens: Math.mulDiv(user.liquidity, accIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18) - user.rewardCheckpoint }); } /** * @notice Calculates the token amounts required for a given liquidity amount * @param id The unique identifier of the farm * @param liquidity The amount of liquidity to provide * @return token0 The address of the first token in the pair * @return token1 The address of the second token in the pair * @return amount0 The desired amount of token0 * @return amount1 The desired amount of token1 */ function getAmountsForLiquidity( address id, uint128 liquidity ) external view returns (address token0, address token1, uint256 amount0, uint256 amount1) { if (!_farms.contains(id)) revert InvalidFarmId(); Farm storage farm = _farms.get(id); Ticks storage tick = ticks[farm.id]; (uint160 slotPrice, ) = _getTwaPrice(PoolAddress.computeAddress(Constants.FACTORY, farm.poolKey), 0); // Calculate amounts based on current slot price (amount0, amount1) = LiquidityAmounts.getAmountsForLiquidity( slotPrice, TickMath.getSqrtRatioAtTick(tick.minTick), TickMath.getSqrtRatioAtTick(tick.maxTick), liquidity ); token0 = farm.poolKey.token0; token1 = farm.poolKey.token1; } /** * @notice Calculates the liquidity and token amounts for a given token amount * @param id The unique identifier of the farm * @param token The address of the token to provide * @param amount The amount of the token to provide * @return token0 The address of the first token in the pair * @return token1 The address of the second token in the pair * @return liquidity The calculated liquidity amount * @return amount0 The amount of token0 required * @return amount1 The amount of token1 required */ function getLiquidityForAmount( address id, address token, uint256 amount ) external view returns (address token0, address token1, uint128 liquidity, uint256 amount0, uint256 amount1) { if (!_farms.contains(id)) revert InvalidFarmId(); Farm storage farm = _farms.get(id); Ticks storage tick = ticks[farm.id]; token0 = farm.poolKey.token0; token1 = farm.poolKey.token1; // Get prices (uint160 slotPrice, ) = _getTwaPrice(PoolAddress.computeAddress(Constants.FACTORY, farm.poolKey), 0); uint160 sqrtRatioAX96 = TickMath.getSqrtRatioAtTick(tick.minTick); uint160 sqrtRatioBX96 = TickMath.getSqrtRatioAtTick(tick.maxTick); // Price is below range if (slotPrice <= sqrtRatioAX96) { if (token == token0) { liquidity = LiquidityAmounts.getLiquidityForAmount0(sqrtRatioAX96, sqrtRatioBX96, amount); } else { // Cannot add given token below range liquidity = 0; amount0 = 0; amount1 = 0; return (token0, token1, liquidity, amount0, amount1); } } // Price is in range else if (slotPrice < sqrtRatioBX96) { if (token == token0) { liquidity = LiquidityAmounts.getLiquidityForAmount0(slotPrice, sqrtRatioBX96, amount); } else if (token == token1) { liquidity = LiquidityAmounts.getLiquidityForAmount1(sqrtRatioAX96, slotPrice, amount); } else { revert InvalidTokenId(); } } // Price is above range else { if (token == token1) { liquidity = LiquidityAmounts.getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioBX96, amount); } else { // Cannot add given token below range liquidity = 0; amount0 = 0; amount1 = 0; return (token0, token1, liquidity, amount0, amount1); } } // Calculate amounts based on the slot price (amount0, amount1) = LiquidityAmounts.getAmountsForLiquidity( slotPrice, TickMath.getSqrtRatioAtTick(tick.minTick), TickMath.getSqrtRatioAtTick(tick.maxTick), liquidity ); } /** * @notice Computes the unique identifier for a Uniswap V3 pool * @param tokenA The address of the first token in the pair * @param tokenB The address of the second token in the pair * @param fee The fee tier of the pool * @param minTick minimum Tick for the LP position * @param maxTick maximum Tick for the LP position * @return id The computed address of the Uniswap V3 pool */ function getFarmId( address tokenA, address tokenB, uint24 fee, int24 minTick, int24 maxTick ) external pure returns (address id) { PoolAddress.PoolKey memory poolKey = PoolAddress.getPoolKey(tokenA, tokenB, fee); id = address( uint160( uint256( keccak256( abi.encode(PoolAddress.computeAddress(Constants.FACTORY, poolKey), int256(minTick), int256(maxTick)) ) ) ) ); } /** * @notice Computes the pool address for a farm ID */ function getPoolForId(address id) external view returns (address) { if (!_farms.contains(id)) revert InvalidFarmId(); Farm storage farm = _farms.get(id); return PoolAddress.computeAddress(Constants.FACTORY, farm.poolKey); } // ----------------------------------------- // Public functions // ----------------------------------------- /** * @notice Retrieves detailed information about a specific farm * @param id The unique identifier of the farm * @return A FarmView struct containing comprehensive farm details */ function farmView(address id) public view returns (FarmView memory) { if (!_farms.contains(id)) revert InvalidFarmId(); Farm storage farm = _farms.get(id); Ticks storage tick = ticks[id]; (uint160 slotPrice, ) = _getTwaPrice(PoolAddress.computeAddress(Constants.FACTORY, farm.poolKey), 0); (uint256 balanceToken0, uint256 balanceToken1) = LiquidityAmounts.getAmountsForLiquidity( slotPrice, TickMath.getSqrtRatioAtTick(tick.minTick), TickMath.getSqrtRatioAtTick(tick.maxTick), farm.lp.liquidity ); ( uint256 accIncentiveTokenPerShare, uint256 accFeePerShareForToken0, uint256 accFeePerShareForToken1 ) = _getSharesAtBlockTimestamp(farm); return FarmView({ id: farm.id, poolKey: farm.poolKey, lp: farm.lp, allocPoints: farm.allocPoints, // @dev: Last reward time is used as the checkpoint in share calculations in pegged farm keeper lastRewardTime: farm.lastRewardTime, // @dev: accumulated share values have been updated to the current block time and **do not** // reflect the values captured at last reward time accIncentiveTokenPerShare: accIncentiveTokenPerShare, accFeePerShareForToken0: accFeePerShareForToken0, accFeePerShareForToken1: accFeePerShareForToken1, protocolFee: farm.protocolFee, priceTwa: farm.priceTwa, slippage: farm.slippage, balanceToken0: balanceToken0, balanceToken1: balanceToken1 }); } /** * @notice Updates reward variables for all farms * @dev This function can be gas-intensive, use cautiously * @param collectFees optionally, collect fees on every farm */ function massUpdateFarms(bool collectFees) public nonReentrant { uint256 length = _farms.length(); // Always collect reward _collectReward(); // Iterate all farms and update them for (uint256 idx = 0; idx < length; idx++) { Farm storage farm = _farms.at(idx); _updateFarm(farm, collectFees); } } // ----------------------------------------- // Internal functions // ----------------------------------------- // ----------------------------------------- // Private functions // ----------------------------------------- function _updateFarm(Farm storage farm, bool collectFees) private { // Total liquidity uint256 liquidity = farm.lp.liquidity; // Collect fees if needed, possible even if incentive token are not issued yet if (collectFees) { _collectFees(farm); } // NOOP if allocation points are zero // Checkpoint is updated when changing the allocation points from zero to a value if (farm.allocPoints == 0) { return; } // Take checkpoint if liquidity is zero // This might leave incentive tokens in the farm but ensures a fair distribution // across users if (liquidity == 0) { farm.lastRewardTime = Math.mulDiv( farm.allocPoints, _globalAccIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18 ); return; } // Update incentive tokens for this farm from global pool // Use lastRewardTime as checkpoint variable in pegged farm implementation uint256 incentiveTokenReward = Math.mulDiv( farm.allocPoints, _globalAccIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18 ) - farm.lastRewardTime; // Use lastRewardTime as checkpoint variable in pegged farm implementation farm.lastRewardTime = Math.mulDiv(farm.allocPoints, _globalAccIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18); // Scale shares by scaling factor and liquidity farm.accIncentiveTokenPerShare += Math.mulDiv(incentiveTokenReward, Constants.SCALE_FACTOR_1E18, liquidity); } function _collectReward() private { // Only start collecting rewards once a farms is active if (totalAllocPoints == 0) return; uint256 balanceBefore = incentiveToken.balanceOf(address(this)); // Collect pending tokens rootKeeper.deposit(rootKeeperFarmId, 0, block.timestamp); uint256 collected = incentiveToken.balanceOf(address(this)) - balanceBefore; // Update global shares _globalAccIncentiveTokenPerShare += Math.mulDiv(collected, Constants.SCALE_FACTOR_1E18, totalAllocPoints); } function _collectFees(Farm storage farm) private { // Cache State Variables uint256 liquidity = farm.lp.liquidity; uint256 tokenId = farm.lp.tokenId; INonfungiblePositionManager manager = INonfungiblePositionManager(Constants.NON_FUNGIBLE_POSITION_MANAGER); // Do nothing if shared LP position has not been minted yet or there is no liquidity // and hence no fees will be collected if (tokenId <= 0 || liquidity == 0) return; // Collect the maximum amount possible of both tokens INonfungiblePositionManager.CollectParams memory params = INonfungiblePositionManager.CollectParams( tokenId, address(this), type(uint128).max, type(uint128).max ); (uint256 amount0, uint256 amount1) = manager.collect(params); // Identify tokens which are accepted as input for buy and burn bool isInputToken0 = buyAndBurn.isInputToken(farm.poolKey.token0); bool isInputToken1 = buyAndBurn.isInputToken(farm.poolKey.token1); // Handle token0 if (isInputToken0) { uint256 protocolFee = 0; if (farm.protocolFee > 0) { protocolFee = Math.mulDiv(amount0, farm.protocolFee, Constants.BASIS); protocolFees[farm.poolKey.token0] += protocolFee; } // Send core tokens to the buy and burn contract _safeTransferToken(farm.poolKey.token0, address(buyAndBurn), amount0 - protocolFee); } else { farm.accFeePerShareForToken0 += Math.mulDiv(amount0, Constants.SCALE_FACTOR_1E18, liquidity); } // Handle token1 if (isInputToken1) { uint256 protocolFee = 0; if (farm.protocolFee > 0) { protocolFee = Math.mulDiv(amount1, farm.protocolFee, Constants.BASIS); protocolFees[farm.poolKey.token1] += protocolFee; } // Send core tokens to the buy and burn contract _safeTransferToken(farm.poolKey.token1, address(buyAndBurn), amount1 - protocolFee); } else { farm.accFeePerShareForToken1 += Math.mulDiv(amount1, Constants.SCALE_FACTOR_1E18, liquidity); } } function _createLiquidityPosition( Farm storage farm, uint128 liquidity, uint256 slippage, uint256 deadline ) private returns (uint128, uint256, uint256) { ( uint256 desiredAmount0, uint256 desiredAmount1, uint256 minAmount0, uint256 minAmount1 ) = _getDesiredAmountsForLiquidity(farm, liquidity, slippage > 0 ? slippage : farm.slippage); // Transfer tokens to the Farm Keeper IERC20(farm.poolKey.token0).safeTransferFrom(msg.sender, address(this), desiredAmount0); IERC20(farm.poolKey.token1).safeTransferFrom(msg.sender, address(this), desiredAmount1); IERC20(farm.poolKey.token0).safeIncreaseAllowance(Constants.NON_FUNGIBLE_POSITION_MANAGER, desiredAmount0); IERC20(farm.poolKey.token1).safeIncreaseAllowance(Constants.NON_FUNGIBLE_POSITION_MANAGER, desiredAmount1); // Mint the shared liquidity position INonfungiblePositionManager manager = INonfungiblePositionManager(Constants.NON_FUNGIBLE_POSITION_MANAGER); Ticks storage tick = ticks[farm.id]; INonfungiblePositionManager.MintParams memory mintParams = INonfungiblePositionManager.MintParams({ token0: farm.poolKey.token0, token1: farm.poolKey.token1, fee: farm.poolKey.fee, tickLower: tick.minTick, tickUpper: tick.maxTick, amount0Desired: desiredAmount0, amount1Desired: desiredAmount1, amount0Min: minAmount0, amount1Min: minAmount1, recipient: address(this), deadline: deadline }); (uint256 tokenId, uint128 mintedLiquidity, uint256 usedAmount0, uint256 usedAmount1) = manager.mint(mintParams); // Refund unused tokens uint256 unusedAmount0 = desiredAmount0 - usedAmount0; uint256 unusedAmount1 = desiredAmount1 - usedAmount1; if (unusedAmount0 > 0) { _safeTransferToken(farm.poolKey.token0, msg.sender, unusedAmount0); } if (unusedAmount1 > 0) { _safeTransferToken(farm.poolKey.token1, msg.sender, unusedAmount1); } // Update state farm.lp.tokenId = tokenId; farm.lp.liquidity += mintedLiquidity; // Reset allowance IERC20(farm.poolKey.token0).forceApprove(Constants.NON_FUNGIBLE_POSITION_MANAGER, 0); IERC20(farm.poolKey.token1).forceApprove(Constants.NON_FUNGIBLE_POSITION_MANAGER, 0); return (mintedLiquidity, usedAmount0, usedAmount1); } function _addLiquidity( Farm storage farm, uint128 liquidity, uint256 slippage, uint256 deadline ) private returns (uint128, uint256, uint256) { ( uint256 desiredAmount0, uint256 desiredAmount1, uint256 minAmount0, uint256 minAmount1 ) = _getDesiredAmountsForLiquidity(farm, liquidity, slippage > 0 ? slippage : farm.slippage); // Transfer tokens to the Farm Keeper IERC20(farm.poolKey.token0).safeTransferFrom(msg.sender, address(this), desiredAmount0); IERC20(farm.poolKey.token1).safeTransferFrom(msg.sender, address(this), desiredAmount1); IERC20(farm.poolKey.token0).safeIncreaseAllowance(Constants.NON_FUNGIBLE_POSITION_MANAGER, desiredAmount0); IERC20(farm.poolKey.token1).safeIncreaseAllowance(Constants.NON_FUNGIBLE_POSITION_MANAGER, desiredAmount1); INonfungiblePositionManager manager = INonfungiblePositionManager(Constants.NON_FUNGIBLE_POSITION_MANAGER); (uint128 addedLiquidity, uint256 usedAmount0, uint256 usedAmount1) = manager.increaseLiquidity( INonfungiblePositionManager.IncreaseLiquidityParams({ tokenId: farm.lp.tokenId, amount0Desired: desiredAmount0, amount1Desired: desiredAmount1, amount0Min: minAmount0, amount1Min: minAmount1, deadline: deadline }) ); // Refund unused tokens uint256 unusedAmount0 = desiredAmount0 - usedAmount0; uint256 unusedAmount1 = desiredAmount1 - usedAmount1; if (unusedAmount0 > 0) { _safeTransferToken(farm.poolKey.token0, msg.sender, unusedAmount0); } if (unusedAmount1 > 0) { _safeTransferToken(farm.poolKey.token1, msg.sender, unusedAmount1); } // Update state farm.lp.liquidity += addedLiquidity; // Reset allowance IERC20(farm.poolKey.token0).forceApprove(Constants.NON_FUNGIBLE_POSITION_MANAGER, 0); IERC20(farm.poolKey.token1).forceApprove(Constants.NON_FUNGIBLE_POSITION_MANAGER, 0); // Track liquidity added by each individual user return (addedLiquidity, usedAmount0, usedAmount1); } function _decreaseLiquidity( Farm storage farm, uint128 liquidity, address to, uint256 slippage, uint256 deadline ) private returns (uint256 amount0, uint256 amount1) { INonfungiblePositionManager manager = INonfungiblePositionManager(Constants.NON_FUNGIBLE_POSITION_MANAGER); (, , uint256 minAmount0, uint256 minAmount1) = _getDesiredAmountsForLiquidity( farm, liquidity, slippage > 0 ? slippage : farm.slippage ); (amount0, amount1) = manager.decreaseLiquidity( INonfungiblePositionManager.DecreaseLiquidityParams({ tokenId: farm.lp.tokenId, liquidity: liquidity, amount0Min: minAmount0, amount1Min: minAmount1, deadline: deadline }) ); // Directly transfer tokens to caller INonfungiblePositionManager.CollectParams memory params = INonfungiblePositionManager.CollectParams( farm.lp.tokenId, to, uint128(amount0), uint128(amount1) ); manager.collect(params); farm.lp.liquidity -= liquidity; } function _safeTransferToken(address token, address to, uint256 amount) private { uint256 balanace = IERC20(token).balanceOf(address(this)); if (amount > 0) { // In case if rounding error causes farm keeper to not have enough tokens. if (amount > balanace) { IERC20(token).safeTransfer(to, balanace); } else { IERC20(token).safeTransfer(to, amount); } } } function _getTwaPrice(address id, uint32 priceTwa) private view returns (uint160 slotPrice, uint160 twaPrice) { // Default to current price IUniswapV3Pool pool = IUniswapV3Pool(id); (slotPrice, , , , , , ) = pool.slot0(); // Default TWA price to slot twaPrice = slotPrice; uint32 secondsAgo = uint32(priceTwa * 60); uint32 oldestObservation = 0; // Load oldest observation if cardinality greater than zero oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(id); // Limit to oldest observation (fallback) if (oldestObservation < secondsAgo) { secondsAgo = oldestObservation; } // If TWAP is enabled and price history exists, consult oracle if (secondsAgo > 0) { // Consult the Oracle Library for TWAP (int24 arithmeticMeanTick, ) = OracleLibrary.consult(id, secondsAgo); // Convert tick to sqrtPriceX96 twaPrice = TickMath.getSqrtRatioAtTick(arithmeticMeanTick); } } function _getDesiredAmountsForLiquidity( Farm storage farm, uint128 liquidity, uint256 slippage ) private view returns (uint256 desiredAmount0, uint256 desiredAmount1, uint256 minAmount0, uint256 minAmount1) { (uint160 slotPrice, uint160 twaPrice) = _getTwaPrice( PoolAddress.computeAddress(Constants.FACTORY, farm.poolKey), farm.priceTwa ); Ticks storage tick = ticks[farm.id]; // Calculate desired amounts based on current slot price (desiredAmount0, desiredAmount1) = LiquidityAmounts.getAmountsForLiquidity( slotPrice, TickMath.getSqrtRatioAtTick(tick.minTick), TickMath.getSqrtRatioAtTick(tick.maxTick), liquidity ); // Calculate minimal amounts based on TWA price for slippage protection (minAmount0, minAmount1) = LiquidityAmounts.getAmountsForLiquidity( twaPrice, TickMath.getSqrtRatioAtTick(tick.minTick), TickMath.getSqrtRatioAtTick(tick.maxTick), liquidity ); // Apply slippage minAmount0 = (minAmount0 * (Constants.BASIS - slippage)) / Constants.BASIS; minAmount1 = (minAmount1 * (Constants.BASIS - slippage)) / Constants.BASIS; } function _getSharesAtBlockTimestamp( Farm storage farm ) private view returns (uint256 accIncentiveTokenPerShare, uint256 accFeePerShareForToken0, uint256 accFeePerShareForToken1) { accIncentiveTokenPerShare = farm.accIncentiveTokenPerShare; accFeePerShareForToken0 = farm.accFeePerShareForToken0; accFeePerShareForToken1 = farm.accFeePerShareForToken1; // Do not perform any updates if liquidity is zero if (farm.lp.liquidity <= 0) { return (accIncentiveTokenPerShare, accFeePerShareForToken0, accFeePerShareForToken1); } UserView memory pending = rootKeeper.userView(rootKeeperFarmId, address(this)); uint256 pendingGlobalAccIncentiveTokenPerShare = _globalAccIncentiveTokenPerShare; if (pending.pendingIncentiveTokens > 0) { pendingGlobalAccIncentiveTokenPerShare += Math.mulDiv( pending.pendingIncentiveTokens, Constants.SCALE_FACTOR_1E18, totalAllocPoints ); } uint256 pendingIncentiveTokenReward = Math.mulDiv( farm.allocPoints, pendingGlobalAccIncentiveTokenPerShare, Constants.SCALE_FACTOR_1E18 ) - farm.lastRewardTime; if (pendingIncentiveTokenReward > 0) { accIncentiveTokenPerShare += Math.mulDiv( pendingIncentiveTokenReward, Constants.SCALE_FACTOR_1E18, farm.lp.liquidity ); } // Try update fees if LP token exists if (farm.lp.tokenId > 0) { (uint256 pendingFeeAmount0, uint256 pendingFeeAmount1) = PositionValue.fees( INonfungiblePositionManager(Constants.NON_FUNGIBLE_POSITION_MANAGER), farm.lp.tokenId ); bool isInputToken0 = buyAndBurn.isInputToken(farm.poolKey.token0); bool isInputToken1 = buyAndBurn.isInputToken(farm.poolKey.token1); if (!isInputToken0 && pendingFeeAmount0 > 0) { accFeePerShareForToken0 += Math.mulDiv(pendingFeeAmount0, Constants.SCALE_FACTOR_1E18, farm.lp.liquidity); } if (!isInputToken1 && pendingFeeAmount1 > 0) { accFeePerShareForToken1 += Math.mulDiv(pendingFeeAmount1, Constants.SCALE_FACTOR_1E18, farm.lp.liquidity); } } } function _validatePriceTwa(uint32 mins) private pure { if (mins < 5 || mins > 60) revert InvalidPriceTwa(); } function _validateSlippage(uint256 slippage) private pure { if (slippage < 1 || slippage > 2500) revert InvalidSlippage(); } function _validateProtocolFee(uint256 fee) private pure { if (fee > 2500) revert InvalidFee(); } function _validateAllocPoints(uint256 allocPoints) private pure { if (allocPoints > Constants.MAX_ALLOCATION_POINTS) revert InvalidAllocPoints(); } function _validateTicks(uint24 fee, int24 minTick, int24 maxTick) private pure { // Check that minTick and maxTick are within the global limits if (minTick < Constants.MIN_TICK || maxTick > Constants.MAX_TICK) revert InvalidTicks(); // Check that minTick is less than maxTick require(minTick < maxTick, 'minTick must be less than maxTick'); // Validate tick alignment with fee-specific tick spacing int24 tickSpacing = _getTickSpacing(fee); if (minTick % tickSpacing != 0 || maxTick % tickSpacing != 0) revert InvalidTicks(); } // Function to get tick spacing based on fee tier function _getTickSpacing(uint24 fee) private pure returns (int24) { if (fee == 100) return 1; // 0.01% fee tier if (fee == 500) return 10; // 0.05% fee tier if (fee == 3000) return 60; // 0.3% fee tier if (fee == 10000) return 200; // 1% fee tier if (fee == 20000) return 4; // 0.02% fee tier if (fee == 30000) return 6; // 0.03% fee tier if (fee == 40000) return 8; // 0.04% fee tier revert InvalidTicks(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/manager/AccessManaged.sol) pragma solidity ^0.8.20; import {IAuthority} from "./IAuthority.sol"; import {AuthorityUtils} from "./AuthorityUtils.sol"; import {IAccessManager} from "./IAccessManager.sol"; import {IAccessManaged} from "./IAccessManaged.sol"; import {Context} from "../../utils/Context.sol"; /** * @dev This contract module makes available a {restricted} modifier. Functions decorated with this modifier will be * permissioned according to an "authority": a contract like {AccessManager} that follows the {IAuthority} interface, * implementing a policy that allows certain callers to access certain functions. * * IMPORTANT: The `restricted` modifier should never be used on `internal` functions, judiciously used in `public` * functions, and ideally only used in `external` functions. See {restricted}. */ abstract contract AccessManaged is Context, IAccessManaged { address private _authority; bool private _consumingSchedule; /** * @dev Initializes the contract connected to an initial authority. */ constructor(address initialAuthority) { _setAuthority(initialAuthority); } /** * @dev Restricts access to a function as defined by the connected Authority for this contract and the * caller and selector of the function that entered the contract. * * [IMPORTANT] * ==== * In general, this modifier should only be used on `external` functions. It is okay to use it on `public` * functions that are used as external entry points and are not called internally. Unless you know what you're * doing, it should never be used on `internal` functions. Failure to follow these rules can have critical security * implications! This is because the permissions are determined by the function that entered the contract, i.e. the * function at the bottom of the call stack, and not the function where the modifier is visible in the source code. * ==== * * [WARNING] * ==== * Avoid adding this modifier to the https://docs.soliditylang.org/en/v0.8.20/contracts.html#receive-ether-function[`receive()`] * function or the https://docs.soliditylang.org/en/v0.8.20/contracts.html#fallback-function[`fallback()`]. These * functions are the only execution paths where a function selector cannot be unambiguously determined from the calldata * since the selector defaults to `0x00000000` in the `receive()` function and similarly in the `fallback()` function * if no calldata is provided. (See {_checkCanCall}). * * The `receive()` function will always panic whereas the `fallback()` may panic depending on the calldata length. * ==== */ modifier restricted() { _checkCanCall(_msgSender(), _msgData()); _; } /// @inheritdoc IAccessManaged function authority() public view virtual returns (address) { return _authority; } /// @inheritdoc IAccessManaged function setAuthority(address newAuthority) public virtual { address caller = _msgSender(); if (caller != authority()) { revert AccessManagedUnauthorized(caller); } if (newAuthority.code.length == 0) { revert AccessManagedInvalidAuthority(newAuthority); } _setAuthority(newAuthority); } /// @inheritdoc IAccessManaged function isConsumingScheduledOp() public view returns (bytes4) { return _consumingSchedule ? this.isConsumingScheduledOp.selector : bytes4(0); } /** * @dev Transfers control to a new authority. Internal function with no access restriction. Allows bypassing the * permissions set by the current authority. */ function _setAuthority(address newAuthority) internal virtual { _authority = newAuthority; emit AuthorityUpdated(newAuthority); } /** * @dev Reverts if the caller is not allowed to call the function identified by a selector. Panics if the calldata * is less than 4 bytes long. */ function _checkCanCall(address caller, bytes calldata data) internal virtual { (bool immediate, uint32 delay) = AuthorityUtils.canCallWithDelay( authority(), caller, address(this), bytes4(data[0:4]) ); if (!immediate) { if (delay > 0) { _consumingSchedule = true; IAccessManager(authority()).consumeScheduledOp(caller, data); _consumingSchedule = false; } else { revert AccessManagedUnauthorized(caller); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/manager/AccessManager.sol) pragma solidity ^0.8.20; import {IAccessManager} from "./IAccessManager.sol"; import {IAccessManaged} from "./IAccessManaged.sol"; import {Address} from "../../utils/Address.sol"; import {Context} from "../../utils/Context.sol"; import {Multicall} from "../../utils/Multicall.sol"; import {Math} from "../../utils/math/Math.sol"; import {Time} from "../../utils/types/Time.sol"; /** * @dev AccessManager is a central contract to store the permissions of a system. * * A smart contract under the control of an AccessManager instance is known as a target, and will inherit from the * {AccessManaged} contract, be connected to this contract as its manager and implement the {AccessManaged-restricted} * modifier on a set of functions selected to be permissioned. Note that any function without this setup won't be * effectively restricted. * * The restriction rules for such functions are defined in terms of "roles" identified by an `uint64` and scoped * by target (`address`) and function selectors (`bytes4`). These roles are stored in this contract and can be * configured by admins (`ADMIN_ROLE` members) after a delay (see {getTargetAdminDelay}). * * For each target contract, admins can configure the following without any delay: * * * The target's {AccessManaged-authority} via {updateAuthority}. * * Close or open a target via {setTargetClosed} keeping the permissions intact. * * The roles that are allowed (or disallowed) to call a given function (identified by its selector) through {setTargetFunctionRole}. * * By default every address is member of the `PUBLIC_ROLE` and every target function is restricted to the `ADMIN_ROLE` until configured otherwise. * Additionally, each role has the following configuration options restricted to this manager's admins: * * * A role's admin role via {setRoleAdmin} who can grant or revoke roles. * * A role's guardian role via {setRoleGuardian} who's allowed to cancel operations. * * A delay in which a role takes effect after being granted through {setGrantDelay}. * * A delay of any target's admin action via {setTargetAdminDelay}. * * A role label for discoverability purposes with {labelRole}. * * Any account can be added and removed into any number of these roles by using the {grantRole} and {revokeRole} functions * restricted to each role's admin (see {getRoleAdmin}). * * Since all the permissions of the managed system can be modified by the admins of this instance, it is expected that * they will be highly secured (e.g., a multisig or a well-configured DAO). * * NOTE: This contract implements a form of the {IAuthority} interface, but {canCall} has additional return data so it * doesn't inherit `IAuthority`. It is however compatible with the `IAuthority` interface since the first 32 bytes of * the return data are a boolean as expected by that interface. * * NOTE: Systems that implement other access control mechanisms (for example using {Ownable}) can be paired with an * {AccessManager} by transferring permissions (ownership in the case of {Ownable}) directly to the {AccessManager}. * Users will be able to interact with these contracts through the {execute} function, following the access rules * registered in the {AccessManager}. Keep in mind that in that context, the msg.sender seen by restricted functions * will be {AccessManager} itself. * * WARNING: When granting permissions over an {Ownable} or {AccessControl} contract to an {AccessManager}, be very * mindful of the danger associated with functions such as {Ownable-renounceOwnership} or * {AccessControl-renounceRole}. */ contract AccessManager is Context, Multicall, IAccessManager { using Time for *; // Structure that stores the details for a target contract. struct TargetConfig { mapping(bytes4 selector => uint64 roleId) allowedRoles; Time.Delay adminDelay; bool closed; } // Structure that stores the details for a role/account pair. This structures fit into a single slot. struct Access { // Timepoint at which the user gets the permission. // If this is either 0 or in the future, then the role permission is not available. uint48 since; // Delay for execution. Only applies to restricted() / execute() calls. Time.Delay delay; } // Structure that stores the details of a role. struct Role { // Members of the role. mapping(address user => Access access) members; // Admin who can grant or revoke permissions. uint64 admin; // Guardian who can cancel operations targeting functions that need this role. uint64 guardian; // Delay in which the role takes effect after being granted. Time.Delay grantDelay; } // Structure that stores the details for a scheduled operation. This structure fits into a single slot. struct Schedule { // Moment at which the operation can be executed. uint48 timepoint; // Operation nonce to allow third-party contracts to identify the operation. uint32 nonce; } /** * @dev The identifier of the admin role. Required to perform most configuration operations including * other roles' management and target restrictions. */ uint64 public constant ADMIN_ROLE = type(uint64).min; // 0 /** * @dev The identifier of the public role. Automatically granted to all addresses with no delay. */ uint64 public constant PUBLIC_ROLE = type(uint64).max; // 2**64-1 mapping(address target => TargetConfig mode) private _targets; mapping(uint64 roleId => Role) private _roles; mapping(bytes32 operationId => Schedule) private _schedules; // Used to identify operations that are currently being executed via {execute}. // This should be transient storage when supported by the EVM. bytes32 private _executionId; /** * @dev Check that the caller is authorized to perform the operation. * See {AccessManager} description for a detailed breakdown of the authorization logic. */ modifier onlyAuthorized() { _checkAuthorized(); _; } constructor(address initialAdmin) { if (initialAdmin == address(0)) { revert AccessManagerInvalidInitialAdmin(address(0)); } // admin is active immediately and without any execution delay. _grantRole(ADMIN_ROLE, initialAdmin, 0, 0); } // =================================================== GETTERS ==================================================== /// @inheritdoc IAccessManager function canCall( address caller, address target, bytes4 selector ) public view virtual returns (bool immediate, uint32 delay) { if (isTargetClosed(target)) { return (false, 0); } else if (caller == address(this)) { // Caller is AccessManager, this means the call was sent through {execute} and it already checked // permissions. We verify that the call "identifier", which is set during {execute}, is correct. return (_isExecuting(target, selector), 0); } else { uint64 roleId = getTargetFunctionRole(target, selector); (bool isMember, uint32 currentDelay) = hasRole(roleId, caller); return isMember ? (currentDelay == 0, currentDelay) : (false, 0); } } /// @inheritdoc IAccessManager function expiration() public view virtual returns (uint32) { return 1 weeks; } /// @inheritdoc IAccessManager function minSetback() public view virtual returns (uint32) { return 5 days; } /// @inheritdoc IAccessManager function isTargetClosed(address target) public view virtual returns (bool) { return _targets[target].closed; } /// @inheritdoc IAccessManager function getTargetFunctionRole(address target, bytes4 selector) public view virtual returns (uint64) { return _targets[target].allowedRoles[selector]; } /// @inheritdoc IAccessManager function getTargetAdminDelay(address target) public view virtual returns (uint32) { return _targets[target].adminDelay.get(); } /// @inheritdoc IAccessManager function getRoleAdmin(uint64 roleId) public view virtual returns (uint64) { return _roles[roleId].admin; } /// @inheritdoc IAccessManager function getRoleGuardian(uint64 roleId) public view virtual returns (uint64) { return _roles[roleId].guardian; } /// @inheritdoc IAccessManager function getRoleGrantDelay(uint64 roleId) public view virtual returns (uint32) { return _roles[roleId].grantDelay.get(); } /// @inheritdoc IAccessManager function getAccess( uint64 roleId, address account ) public view virtual returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect) { Access storage access = _roles[roleId].members[account]; since = access.since; (currentDelay, pendingDelay, effect) = access.delay.getFull(); return (since, currentDelay, pendingDelay, effect); } /// @inheritdoc IAccessManager function hasRole( uint64 roleId, address account ) public view virtual returns (bool isMember, uint32 executionDelay) { if (roleId == PUBLIC_ROLE) { return (true, 0); } else { (uint48 hasRoleSince, uint32 currentDelay, , ) = getAccess(roleId, account); return (hasRoleSince != 0 && hasRoleSince <= Time.timestamp(), currentDelay); } } // =============================================== ROLE MANAGEMENT =============================================== /// @inheritdoc IAccessManager function labelRole(uint64 roleId, string calldata label) public virtual onlyAuthorized { if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } emit RoleLabel(roleId, label); } /// @inheritdoc IAccessManager function grantRole(uint64 roleId, address account, uint32 executionDelay) public virtual onlyAuthorized { _grantRole(roleId, account, getRoleGrantDelay(roleId), executionDelay); } /// @inheritdoc IAccessManager function revokeRole(uint64 roleId, address account) public virtual onlyAuthorized { _revokeRole(roleId, account); } /// @inheritdoc IAccessManager function renounceRole(uint64 roleId, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessManagerBadConfirmation(); } _revokeRole(roleId, callerConfirmation); } /// @inheritdoc IAccessManager function setRoleAdmin(uint64 roleId, uint64 admin) public virtual onlyAuthorized { _setRoleAdmin(roleId, admin); } /// @inheritdoc IAccessManager function setRoleGuardian(uint64 roleId, uint64 guardian) public virtual onlyAuthorized { _setRoleGuardian(roleId, guardian); } /// @inheritdoc IAccessManager function setGrantDelay(uint64 roleId, uint32 newDelay) public virtual onlyAuthorized { _setGrantDelay(roleId, newDelay); } /** * @dev Internal version of {grantRole} without access control. Returns true if the role was newly granted. * * Emits a {RoleGranted} event. */ function _grantRole( uint64 roleId, address account, uint32 grantDelay, uint32 executionDelay ) internal virtual returns (bool) { if (roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } bool newMember = _roles[roleId].members[account].since == 0; uint48 since; if (newMember) { since = Time.timestamp() + grantDelay; _roles[roleId].members[account] = Access({since: since, delay: executionDelay.toDelay()}); } else { // No setback here. Value can be reset by doing revoke + grant, effectively allowing the admin to perform // any change to the execution delay within the duration of the role admin delay. (_roles[roleId].members[account].delay, since) = _roles[roleId].members[account].delay.withUpdate( executionDelay, 0 ); } emit RoleGranted(roleId, account, executionDelay, since, newMember); return newMember; } /** * @dev Internal version of {revokeRole} without access control. This logic is also used by {renounceRole}. * Returns true if the role was previously granted. * * Emits a {RoleRevoked} event if the account had the role. */ function _revokeRole(uint64 roleId, address account) internal virtual returns (bool) { if (roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } if (_roles[roleId].members[account].since == 0) { return false; } delete _roles[roleId].members[account]; emit RoleRevoked(roleId, account); return true; } /** * @dev Internal version of {setRoleAdmin} without access control. * * Emits a {RoleAdminChanged} event. * * NOTE: Setting the admin role as the `PUBLIC_ROLE` is allowed, but it will effectively allow * anyone to set grant or revoke such role. */ function _setRoleAdmin(uint64 roleId, uint64 admin) internal virtual { if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } _roles[roleId].admin = admin; emit RoleAdminChanged(roleId, admin); } /** * @dev Internal version of {setRoleGuardian} without access control. * * Emits a {RoleGuardianChanged} event. * * NOTE: Setting the guardian role as the `PUBLIC_ROLE` is allowed, but it will effectively allow * anyone to cancel any scheduled operation for such role. */ function _setRoleGuardian(uint64 roleId, uint64 guardian) internal virtual { if (roleId == ADMIN_ROLE || roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } _roles[roleId].guardian = guardian; emit RoleGuardianChanged(roleId, guardian); } /** * @dev Internal version of {setGrantDelay} without access control. * * Emits a {RoleGrantDelayChanged} event. */ function _setGrantDelay(uint64 roleId, uint32 newDelay) internal virtual { if (roleId == PUBLIC_ROLE) { revert AccessManagerLockedRole(roleId); } uint48 effect; (_roles[roleId].grantDelay, effect) = _roles[roleId].grantDelay.withUpdate(newDelay, minSetback()); emit RoleGrantDelayChanged(roleId, newDelay, effect); } // ============================================= FUNCTION MANAGEMENT ============================================== /// @inheritdoc IAccessManager function setTargetFunctionRole( address target, bytes4[] calldata selectors, uint64 roleId ) public virtual onlyAuthorized { for (uint256 i = 0; i < selectors.length; ++i) { _setTargetFunctionRole(target, selectors[i], roleId); } } /** * @dev Internal version of {setTargetFunctionRole} without access control. * * Emits a {TargetFunctionRoleUpdated} event. */ function _setTargetFunctionRole(address target, bytes4 selector, uint64 roleId) internal virtual { _targets[target].allowedRoles[selector] = roleId; emit TargetFunctionRoleUpdated(target, selector, roleId); } /// @inheritdoc IAccessManager function setTargetAdminDelay(address target, uint32 newDelay) public virtual onlyAuthorized { _setTargetAdminDelay(target, newDelay); } /** * @dev Internal version of {setTargetAdminDelay} without access control. * * Emits a {TargetAdminDelayUpdated} event. */ function _setTargetAdminDelay(address target, uint32 newDelay) internal virtual { uint48 effect; (_targets[target].adminDelay, effect) = _targets[target].adminDelay.withUpdate(newDelay, minSetback()); emit TargetAdminDelayUpdated(target, newDelay, effect); } // =============================================== MODE MANAGEMENT ================================================ /// @inheritdoc IAccessManager function setTargetClosed(address target, bool closed) public virtual onlyAuthorized { _setTargetClosed(target, closed); } /** * @dev Set the closed flag for a contract. This is an internal setter with no access restrictions. * * Emits a {TargetClosed} event. */ function _setTargetClosed(address target, bool closed) internal virtual { _targets[target].closed = closed; emit TargetClosed(target, closed); } // ============================================== DELAYED OPERATIONS ============================================== /// @inheritdoc IAccessManager function getSchedule(bytes32 id) public view virtual returns (uint48) { uint48 timepoint = _schedules[id].timepoint; return _isExpired(timepoint) ? 0 : timepoint; } /// @inheritdoc IAccessManager function getNonce(bytes32 id) public view virtual returns (uint32) { return _schedules[id].nonce; } /// @inheritdoc IAccessManager function schedule( address target, bytes calldata data, uint48 when ) public virtual returns (bytes32 operationId, uint32 nonce) { address caller = _msgSender(); // Fetch restrictions that apply to the caller on the targeted function (, uint32 setback) = _canCallExtended(caller, target, data); uint48 minWhen = Time.timestamp() + setback; // If call with delay is not authorized, or if requested timing is too soon, revert if (setback == 0 || (when > 0 && when < minWhen)) { revert AccessManagerUnauthorizedCall(caller, target, _checkSelector(data)); } // Reuse variable due to stack too deep when = uint48(Math.max(when, minWhen)); // cast is safe: both inputs are uint48 // If caller is authorised, schedule operation operationId = hashOperation(caller, target, data); _checkNotScheduled(operationId); unchecked { // It's not feasible to overflow the nonce in less than 1000 years nonce = _schedules[operationId].nonce + 1; } _schedules[operationId].timepoint = when; _schedules[operationId].nonce = nonce; emit OperationScheduled(operationId, nonce, when, caller, target, data); // Using named return values because otherwise we get stack too deep } /** * @dev Reverts if the operation is currently scheduled and has not expired. * * NOTE: This function was introduced due to stack too deep errors in schedule. */ function _checkNotScheduled(bytes32 operationId) private view { uint48 prevTimepoint = _schedules[operationId].timepoint; if (prevTimepoint != 0 && !_isExpired(prevTimepoint)) { revert AccessManagerAlreadyScheduled(operationId); } } /// @inheritdoc IAccessManager // Reentrancy is not an issue because permissions are checked on msg.sender. Additionally, // _consumeScheduledOp guarantees a scheduled operation is only executed once. // slither-disable-next-line reentrancy-no-eth function execute(address target, bytes calldata data) public payable virtual returns (uint32) { address caller = _msgSender(); // Fetch restrictions that apply to the caller on the targeted function (bool immediate, uint32 setback) = _canCallExtended(caller, target, data); // If call is not authorized, revert if (!immediate && setback == 0) { revert AccessManagerUnauthorizedCall(caller, target, _checkSelector(data)); } bytes32 operationId = hashOperation(caller, target, data); uint32 nonce; // If caller is authorised, check operation was scheduled early enough // Consume an available schedule even if there is no currently enforced delay if (setback != 0 || getSchedule(operationId) != 0) { nonce = _consumeScheduledOp(operationId); } // Mark the target and selector as authorised bytes32 executionIdBefore = _executionId; _executionId = _hashExecutionId(target, _checkSelector(data)); // Perform call Address.functionCallWithValue(target, data, msg.value); // Reset execute identifier _executionId = executionIdBefore; return nonce; } /// @inheritdoc IAccessManager function cancel(address caller, address target, bytes calldata data) public virtual returns (uint32) { address msgsender = _msgSender(); bytes4 selector = _checkSelector(data); bytes32 operationId = hashOperation(caller, target, data); if (_schedules[operationId].timepoint == 0) { revert AccessManagerNotScheduled(operationId); } else if (caller != msgsender) { // calls can only be canceled by the account that scheduled them, a global admin, or by a guardian of the required role. (bool isAdmin, ) = hasRole(ADMIN_ROLE, msgsender); (bool isGuardian, ) = hasRole(getRoleGuardian(getTargetFunctionRole(target, selector)), msgsender); if (!isAdmin && !isGuardian) { revert AccessManagerUnauthorizedCancel(msgsender, caller, target, selector); } } delete _schedules[operationId].timepoint; // reset the timepoint, keep the nonce uint32 nonce = _schedules[operationId].nonce; emit OperationCanceled(operationId, nonce); return nonce; } /// @inheritdoc IAccessManager function consumeScheduledOp(address caller, bytes calldata data) public virtual { address target = _msgSender(); if (IAccessManaged(target).isConsumingScheduledOp() != IAccessManaged.isConsumingScheduledOp.selector) { revert AccessManagerUnauthorizedConsume(target); } _consumeScheduledOp(hashOperation(caller, target, data)); } /** * @dev Internal variant of {consumeScheduledOp} that operates on bytes32 operationId. * * Returns the nonce of the scheduled operation that is consumed. */ function _consumeScheduledOp(bytes32 operationId) internal virtual returns (uint32) { uint48 timepoint = _schedules[operationId].timepoint; uint32 nonce = _schedules[operationId].nonce; if (timepoint == 0) { revert AccessManagerNotScheduled(operationId); } else if (timepoint > Time.timestamp()) { revert AccessManagerNotReady(operationId); } else if (_isExpired(timepoint)) { revert AccessManagerExpired(operationId); } delete _schedules[operationId].timepoint; // reset the timepoint, keep the nonce emit OperationExecuted(operationId, nonce); return nonce; } /// @inheritdoc IAccessManager function hashOperation(address caller, address target, bytes calldata data) public view virtual returns (bytes32) { return keccak256(abi.encode(caller, target, data)); } // ==================================================== OTHERS ==================================================== /// @inheritdoc IAccessManager function updateAuthority(address target, address newAuthority) public virtual onlyAuthorized { IAccessManaged(target).setAuthority(newAuthority); } // ================================================= ADMIN LOGIC ================================================== /** * @dev Check if the current call is authorized according to admin and roles logic. * * WARNING: Carefully review the considerations of {AccessManaged-restricted} since they apply to this modifier. */ function _checkAuthorized() private { address caller = _msgSender(); (bool immediate, uint32 delay) = _canCallSelf(caller, _msgData()); if (!immediate) { if (delay == 0) { (, uint64 requiredRole, ) = _getAdminRestrictions(_msgData()); revert AccessManagerUnauthorizedAccount(caller, requiredRole); } else { _consumeScheduledOp(hashOperation(caller, address(this), _msgData())); } } } /** * @dev Get the admin restrictions of a given function call based on the function and arguments involved. * * Returns: * - bool restricted: does this data match a restricted operation * - uint64: which role is this operation restricted to * - uint32: minimum delay to enforce for that operation (max between operation's delay and admin's execution delay) */ function _getAdminRestrictions( bytes calldata data ) private view returns (bool adminRestricted, uint64 roleAdminId, uint32 executionDelay) { if (data.length < 4) { return (false, 0, 0); } bytes4 selector = _checkSelector(data); // Restricted to ADMIN with no delay beside any execution delay the caller may have if ( selector == this.labelRole.selector || selector == this.setRoleAdmin.selector || selector == this.setRoleGuardian.selector || selector == this.setGrantDelay.selector || selector == this.setTargetAdminDelay.selector ) { return (true, ADMIN_ROLE, 0); } // Restricted to ADMIN with the admin delay corresponding to the target if ( selector == this.updateAuthority.selector || selector == this.setTargetClosed.selector || selector == this.setTargetFunctionRole.selector ) { // First argument is a target. address target = abi.decode(data[0x04:0x24], (address)); uint32 delay = getTargetAdminDelay(target); return (true, ADMIN_ROLE, delay); } // Restricted to that role's admin with no delay beside any execution delay the caller may have. if (selector == this.grantRole.selector || selector == this.revokeRole.selector) { // First argument is a roleId. uint64 roleId = abi.decode(data[0x04:0x24], (uint64)); return (true, getRoleAdmin(roleId), 0); } return (false, getTargetFunctionRole(address(this), selector), 0); } // =================================================== HELPERS ==================================================== /** * @dev An extended version of {canCall} for internal usage that checks {_canCallSelf} * when the target is this contract. * * Returns: * - bool immediate: whether the operation can be executed immediately (with no delay) * - uint32 delay: the execution delay */ function _canCallExtended( address caller, address target, bytes calldata data ) private view returns (bool immediate, uint32 delay) { if (target == address(this)) { return _canCallSelf(caller, data); } else { return data.length < 4 ? (false, 0) : canCall(caller, target, _checkSelector(data)); } } /** * @dev A version of {canCall} that checks for restrictions in this contract. */ function _canCallSelf(address caller, bytes calldata data) private view returns (bool immediate, uint32 delay) { if (data.length < 4) { return (false, 0); } if (caller == address(this)) { // Caller is AccessManager, this means the call was sent through {execute} and it already checked // permissions. We verify that the call "identifier", which is set during {execute}, is correct. return (_isExecuting(address(this), _checkSelector(data)), 0); } (bool adminRestricted, uint64 roleId, uint32 operationDelay) = _getAdminRestrictions(data); // isTargetClosed apply to non-admin-restricted function if (!adminRestricted && isTargetClosed(address(this))) { return (false, 0); } (bool inRole, uint32 executionDelay) = hasRole(roleId, caller); if (!inRole) { return (false, 0); } // downcast is safe because both options are uint32 delay = uint32(Math.max(operationDelay, executionDelay)); return (delay == 0, delay); } /** * @dev Returns true if a call with `target` and `selector` is being executed via {executed}. */ function _isExecuting(address target, bytes4 selector) private view returns (bool) { return _executionId == _hashExecutionId(target, selector); } /** * @dev Returns true if a schedule timepoint is past its expiration deadline. */ function _isExpired(uint48 timepoint) private view returns (bool) { return timepoint + expiration() <= Time.timestamp(); } /** * @dev Extracts the selector from calldata. Panics if data is not at least 4 bytes */ function _checkSelector(bytes calldata data) private pure returns (bytes4) { return bytes4(data[0:4]); } /** * @dev Hashing function for execute protection */ function _hashExecutionId(address target, bytes4 selector) private pure returns (bytes32) { return keccak256(abi.encode(target, selector)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/AuthorityUtils.sol) pragma solidity ^0.8.20; import {IAuthority} from "./IAuthority.sol"; library AuthorityUtils { /** * @dev Since `AccessManager` implements an extended IAuthority interface, invoking `canCall` with backwards compatibility * for the preexisting `IAuthority` interface requires special care to avoid reverting on insufficient return data. * This helper function takes care of invoking `canCall` in a backwards compatible way without reverting. */ function canCallWithDelay( address authority, address caller, address target, bytes4 selector ) internal view returns (bool immediate, uint32 delay) { (bool success, bytes memory data) = authority.staticcall( abi.encodeCall(IAuthority.canCall, (caller, target, selector)) ); if (success) { if (data.length >= 0x40) { (immediate, delay) = abi.decode(data, (bool, uint32)); } else if (data.length >= 0x20) { immediate = abi.decode(data, (bool)); } } return (immediate, delay); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAccessManaged.sol) pragma solidity ^0.8.20; interface IAccessManaged { /** * @dev Authority that manages this contract was updated. */ event AuthorityUpdated(address authority); error AccessManagedUnauthorized(address caller); error AccessManagedRequiredDelay(address caller, uint32 delay); error AccessManagedInvalidAuthority(address authority); /** * @dev Returns the current authority. */ function authority() external view returns (address); /** * @dev Transfers control to a new authority. The caller must be the current authority. */ function setAuthority(address) external; /** * @dev Returns true only in the context of a delayed restricted call, at the moment that the scheduled operation is * being consumed. Prevents denial of service for delayed restricted calls in the case that the contract performs * attacker controlled calls. */ function isConsumingScheduledOp() external view returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/manager/IAccessManager.sol) pragma solidity ^0.8.20; import {Time} from "../../utils/types/Time.sol"; interface IAccessManager { /** * @dev A delayed operation was scheduled. */ event OperationScheduled( bytes32 indexed operationId, uint32 indexed nonce, uint48 schedule, address caller, address target, bytes data ); /** * @dev A scheduled operation was executed. */ event OperationExecuted(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev A scheduled operation was canceled. */ event OperationCanceled(bytes32 indexed operationId, uint32 indexed nonce); /** * @dev Informational labelling for a roleId. */ event RoleLabel(uint64 indexed roleId, string label); /** * @dev Emitted when `account` is granted `roleId`. * * NOTE: The meaning of the `since` argument depends on the `newMember` argument. * If the role is granted to a new member, the `since` argument indicates when the account becomes a member of the role, * otherwise it indicates the execution delay for this account and roleId is updated. */ event RoleGranted(uint64 indexed roleId, address indexed account, uint32 delay, uint48 since, bool newMember); /** * @dev Emitted when `account` membership or `roleId` is revoked. Unlike granting, revoking is instantaneous. */ event RoleRevoked(uint64 indexed roleId, address indexed account); /** * @dev Role acting as admin over a given `roleId` is updated. */ event RoleAdminChanged(uint64 indexed roleId, uint64 indexed admin); /** * @dev Role acting as guardian over a given `roleId` is updated. */ event RoleGuardianChanged(uint64 indexed roleId, uint64 indexed guardian); /** * @dev Grant delay for a given `roleId` will be updated to `delay` when `since` is reached. */ event RoleGrantDelayChanged(uint64 indexed roleId, uint32 delay, uint48 since); /** * @dev Target mode is updated (true = closed, false = open). */ event TargetClosed(address indexed target, bool closed); /** * @dev Role required to invoke `selector` on `target` is updated to `roleId`. */ event TargetFunctionRoleUpdated(address indexed target, bytes4 selector, uint64 indexed roleId); /** * @dev Admin delay for a given `target` will be updated to `delay` when `since` is reached. */ event TargetAdminDelayUpdated(address indexed target, uint32 delay, uint48 since); error AccessManagerAlreadyScheduled(bytes32 operationId); error AccessManagerNotScheduled(bytes32 operationId); error AccessManagerNotReady(bytes32 operationId); error AccessManagerExpired(bytes32 operationId); error AccessManagerLockedRole(uint64 roleId); error AccessManagerBadConfirmation(); error AccessManagerUnauthorizedAccount(address msgsender, uint64 roleId); error AccessManagerUnauthorizedCall(address caller, address target, bytes4 selector); error AccessManagerUnauthorizedConsume(address target); error AccessManagerUnauthorizedCancel(address msgsender, address caller, address target, bytes4 selector); error AccessManagerInvalidInitialAdmin(address initialAdmin); /** * @dev Check if an address (`caller`) is authorised to call a given function on a given contract directly (with * no restriction). Additionally, it returns the delay needed to perform the call indirectly through the {schedule} * & {execute} workflow. * * This function is usually called by the targeted contract to control immediate execution of restricted functions. * Therefore we only return true if the call can be performed without any delay. If the call is subject to a * previously set delay (not zero), then the function should return false and the caller should schedule the operation * for future execution. * * If `immediate` is true, the delay can be disregarded and the operation can be immediately executed, otherwise * the operation can be executed if and only if delay is greater than 0. * * NOTE: The IAuthority interface does not include the `uint32` delay. This is an extension of that interface that * is backward compatible. Some contracts may thus ignore the second return argument. In that case they will fail * to identify the indirect workflow, and will consider calls that require a delay to be forbidden. * * NOTE: This function does not report the permissions of the admin functions in the manager itself. These are defined by the * {AccessManager} documentation. */ function canCall( address caller, address target, bytes4 selector ) external view returns (bool allowed, uint32 delay); /** * @dev Expiration delay for scheduled proposals. Defaults to 1 week. * * IMPORTANT: Avoid overriding the expiration with 0. Otherwise every contract proposal will be expired immediately, * disabling any scheduling usage. */ function expiration() external view returns (uint32); /** * @dev Minimum setback for all delay updates, with the exception of execution delays. It * can be increased without setback (and reset via {revokeRole} in the case event of an * accidental increase). Defaults to 5 days. */ function minSetback() external view returns (uint32); /** * @dev Get whether the contract is closed disabling any access. Otherwise role permissions are applied. * * NOTE: When the manager itself is closed, admin functions are still accessible to avoid locking the contract. */ function isTargetClosed(address target) external view returns (bool); /** * @dev Get the role required to call a function. */ function getTargetFunctionRole(address target, bytes4 selector) external view returns (uint64); /** * @dev Get the admin delay for a target contract. Changes to contract configuration are subject to this delay. */ function getTargetAdminDelay(address target) external view returns (uint32); /** * @dev Get the id of the role that acts as an admin for the given role. * * The admin permission is required to grant the role, revoke the role and update the execution delay to execute * an operation that is restricted to this role. */ function getRoleAdmin(uint64 roleId) external view returns (uint64); /** * @dev Get the role that acts as a guardian for a given role. * * The guardian permission allows canceling operations that have been scheduled under the role. */ function getRoleGuardian(uint64 roleId) external view returns (uint64); /** * @dev Get the role current grant delay. * * Its value may change at any point without an event emitted following a call to {setGrantDelay}. * Changes to this value, including effect timepoint are notified in advance by the {RoleGrantDelayChanged} event. */ function getRoleGrantDelay(uint64 roleId) external view returns (uint32); /** * @dev Get the access details for a given account for a given role. These details include the timepoint at which * membership becomes active, and the delay applied to all operation by this user that requires this permission * level. * * Returns: * [0] Timestamp at which the account membership becomes valid. 0 means role is not granted. * [1] Current execution delay for the account. * [2] Pending execution delay for the account. * [3] Timestamp at which the pending execution delay will become active. 0 means no delay update is scheduled. */ function getAccess( uint64 roleId, address account ) external view returns (uint48 since, uint32 currentDelay, uint32 pendingDelay, uint48 effect); /** * @dev Check if a given account currently has the permission level corresponding to a given role. Note that this * permission might be associated with an execution delay. {getAccess} can provide more details. */ function hasRole(uint64 roleId, address account) external view returns (bool isMember, uint32 executionDelay); /** * @dev Give a label to a role, for improved role discoverability by UIs. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleLabel} event. */ function labelRole(uint64 roleId, string calldata label) external; /** * @dev Add `account` to `roleId`, or change its execution delay. * * This gives the account the authorization to call any function that is restricted to this role. An optional * execution delay (in seconds) can be set. If that delay is non 0, the user is required to schedule any operation * that is restricted to members of this role. The user will only be able to execute the operation after the delay has * passed, before it has expired. During this period, admin and guardians can cancel the operation (see {cancel}). * * If the account has already been granted this role, the execution delay will be updated. This update is not * immediate and follows the delay rules. For example, if a user currently has a delay of 3 hours, and this is * called to reduce that delay to 1 hour, the new delay will take some time to take effect, enforcing that any * operation executed in the 3 hours that follows this update was indeed scheduled before this update. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - granted role must not be the `PUBLIC_ROLE` * * Emits a {RoleGranted} event. */ function grantRole(uint64 roleId, address account, uint32 executionDelay) external; /** * @dev Remove an account from a role, with immediate effect. If the account does not have the role, this call has * no effect. * * Requirements: * * - the caller must be an admin for the role (see {getRoleAdmin}) * - revoked role must not be the `PUBLIC_ROLE` * * Emits a {RoleRevoked} event if the account had the role. */ function revokeRole(uint64 roleId, address account) external; /** * @dev Renounce role permissions for the calling account with immediate effect. If the sender is not in * the role this call has no effect. * * Requirements: * * - the caller must be `callerConfirmation`. * * Emits a {RoleRevoked} event if the account had the role. */ function renounceRole(uint64 roleId, address callerConfirmation) external; /** * @dev Change admin role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleAdminChanged} event */ function setRoleAdmin(uint64 roleId, uint64 admin) external; /** * @dev Change guardian role for a given role. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGuardianChanged} event */ function setRoleGuardian(uint64 roleId, uint64 guardian) external; /** * @dev Update the delay for granting a `roleId`. * * Requirements: * * - the caller must be a global admin * * Emits a {RoleGrantDelayChanged} event. */ function setGrantDelay(uint64 roleId, uint32 newDelay) external; /** * @dev Set the role required to call functions identified by the `selectors` in the `target` contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetFunctionRoleUpdated} event per selector. */ function setTargetFunctionRole(address target, bytes4[] calldata selectors, uint64 roleId) external; /** * @dev Set the delay for changing the configuration of a given target contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetAdminDelayUpdated} event. */ function setTargetAdminDelay(address target, uint32 newDelay) external; /** * @dev Set the closed flag for a contract. * * Closing the manager itself won't disable access to admin methods to avoid locking the contract. * * Requirements: * * - the caller must be a global admin * * Emits a {TargetClosed} event. */ function setTargetClosed(address target, bool closed) external; /** * @dev Return the timepoint at which a scheduled operation will be ready for execution. This returns 0 if the * operation is not yet scheduled, has expired, was executed, or was canceled. */ function getSchedule(bytes32 id) external view returns (uint48); /** * @dev Return the nonce for the latest scheduled operation with a given id. Returns 0 if the operation has never * been scheduled. */ function getNonce(bytes32 id) external view returns (uint32); /** * @dev Schedule a delayed operation for future execution, and return the operation identifier. It is possible to * choose the timestamp at which the operation becomes executable as long as it satisfies the execution delays * required for the caller. The special value zero will automatically set the earliest possible time. * * Returns the `operationId` that was scheduled. Since this value is a hash of the parameters, it can reoccur when * the same parameters are used; if this is relevant, the returned `nonce` can be used to uniquely identify this * scheduled operation from other occurrences of the same `operationId` in invocations of {execute} and {cancel}. * * Emits a {OperationScheduled} event. * * NOTE: It is not possible to concurrently schedule more than one operation with the same `target` and `data`. If * this is necessary, a random byte can be appended to `data` to act as a salt that will be ignored by the target * contract if it is using standard Solidity ABI encoding. */ function schedule( address target, bytes calldata data, uint48 when ) external returns (bytes32 operationId, uint32 nonce); /** * @dev Execute a function that is delay restricted, provided it was properly scheduled beforehand, or the * execution delay is 0. * * Returns the nonce that identifies the previously scheduled operation that is executed, or 0 if the * operation wasn't previously scheduled (if the caller doesn't have an execution delay). * * Emits an {OperationExecuted} event only if the call was scheduled and delayed. */ function execute(address target, bytes calldata data) external payable returns (uint32); /** * @dev Cancel a scheduled (delayed) operation. Returns the nonce that identifies the previously scheduled * operation that is cancelled. * * Requirements: * * - the caller must be the proposer, a guardian of the targeted function, or a global admin * * Emits a {OperationCanceled} event. */ function cancel(address caller, address target, bytes calldata data) external returns (uint32); /** * @dev Consume a scheduled operation targeting the caller. If such an operation exists, mark it as consumed * (emit an {OperationExecuted} event and clean the state). Otherwise, throw an error. * * This is useful for contract that want to enforce that calls targeting them were scheduled on the manager, * with all the verifications that it implies. * * Emit a {OperationExecuted} event. */ function consumeScheduledOp(address caller, bytes calldata data) external; /** * @dev Hashing function for delayed operations. */ function hashOperation(address caller, address target, bytes calldata data) external view returns (bytes32); /** * @dev Changes the authority of a target managed by this manager instance. * * Requirements: * * - the caller must be a global admin */ function updateAuthority(address target, address newAuthority) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/manager/IAuthority.sol) pragma solidity ^0.8.20; /** * @dev Standard interface for permissioning originally defined in Dappsys. */ interface IAuthority { /** * @dev Returns true if the caller can invoke on a target the function identified by a function selector. */ function canCall(address caller, address target, bytes4 selector) external view returns (bool allowed); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC20Metadata} from "./extensions/IERC20Metadata.sol"; import {Context} from "../../utils/Context.sol"; import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC-20 * applications. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Skips emitting an {Approval} event indicating an allowance update. This is not * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve]. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * * ```solidity * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance < type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol) pragma solidity ^0.8.20; import {Errors} from "./Errors.sol"; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert Errors.InsufficientBalance(address(this).balance, amount); } (bool success, bytes memory returndata) = recipient.call{value: amount}(""); if (!success) { _revert(returndata); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {Errors.FailedCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case * of an unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {Errors.FailedCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly ("memory-safe") { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert Errors.FailedCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Multicall.sol) pragma solidity ^0.8.20; import {Address} from "./Address.sol"; import {Context} from "./Context.sol"; /** * @dev Provides a function to batch together multiple calls in a single external call. * * Consider any assumption about calldata validation performed by the sender may be violated if it's not especially * careful about sending transactions invoking {multicall}. For example, a relay address that filters function * selectors won't filter calls nested within a {multicall} operation. * * NOTE: Since 5.0.1 and 4.9.4, this contract identifies non-canonical contexts (i.e. `msg.sender` is not {_msgSender}). * If a non-canonical context is identified, the following self `delegatecall` appends the last bytes of `msg.data` * to the subcall. This makes it safe to use with {ERC2771Context}. Contexts that don't affect the resolution of * {_msgSender} are not propagated to subcalls. */ abstract contract Multicall is Context { /** * @dev Receives and executes a batch of function calls on this contract. * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) { bytes memory context = msg.sender == _msgSender() ? new bytes(0) : msg.data[msg.data.length - _contextSuffixLength():]; results = new bytes[](data.length); for (uint256 i = 0; i < data.length; i++) { results[i] = Address.functionDelegateCall(address(this), bytes.concat(data[i], context)); } return results; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; assembly ("memory-safe") { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly ("memory-safe") { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly ("memory-safe") { result := store } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ↓ ↓ ↓ [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt( Delay self, uint48 timepoint ) private pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { (valueBefore, valueAfter, effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint128 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) library FixedPoint128 { uint256 internal constant Q128 = 0x100000000000000000000000000000000; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.4.0; /// @title FixedPoint96 /// @notice A library for handling binary fixed point numbers, see https://en.wikipedia.org/wiki/Q_(number_format) /// @dev Used in SqrtPriceMath.sol library FixedPoint96 { uint8 internal constant RESOLUTION = 96; uint256 internal constant Q96 = 0x1000000000000000000000000; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; interface IBurnProxy { /** * @dev Burns all tokens held by this contract and updates the total burned tokens count. * * The function retrieves the balance of token to burn * held by the contract itself. If the balance is non-zero, it proceeds to burn * those tokens however possible. After burning the tokens, it updates * state variable to reflect the new total amount of burned tokens. * Finally, it emits a `Burned` event indicating * the address that initiated the burn and the amount of tokens burned. * * Emits a `Burned` event with the caller's address and the amount burned. */ function burn() external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; import '../lib/Farms.sol'; /** * @dev Interface for the (non-pegged) farm keeper */ interface IFarmKeeper { function updateFarm(address id, bool collectFees) external; function farmView(address id) external view returns (FarmView memory); function userView(address id, address userId) external view returns (UserView memory); function deposit(address id, uint128 liquidity, uint256 deadline) external; function getLiquidityForAmount( address id, address token, uint256 amount ) external view returns (address token0, address token1, uint128 liquidity, uint256 amount0, uint256 amount1); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; // OpenZeppelin import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol'; /** * @title IIncentiveToken * @dev Interface for the Incentive Token, extending standard ERC20 and ERC20Permit functionality */ interface IIncentiveToken is IERC20, IERC20Permit { /** * @notice Mints new tokens to a specified account * @dev This function can only be called by the FarmKeeper contract * @param account The address that will receive the minted tokens * @param amount The amount of tokens to mint */ function mint(address account, uint256 amount) external; /** * @notice Returns the address of the current owner * @dev This function allows the FarmKeeper contract to verify ownership * @return The address of the current owner */ function owner() external view returns (address); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.24; pragma abicoder v2; /// @title Non-fungible token for positions /// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred /// and authorized. interface INonfungiblePositionManager { /// @notice Emitted when liquidity is increased for a position NFT /// @dev Also emitted when a token is minted /// @param tokenId The ID of the token for which liquidity was increased /// @param liquidity The amount by which liquidity for the NFT position was increased /// @param amount0 The amount of token0 that was paid for the increase in liquidity /// @param amount1 The amount of token1 that was paid for the increase in liquidity event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when liquidity is decreased for a position NFT /// @param tokenId The ID of the token for which liquidity was decreased /// @param liquidity The amount by which liquidity for the NFT position was decreased /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); /// @notice Emitted when tokens are collected for a position NFT /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior /// @param tokenId The ID of the token for which underlying tokens were collected /// @param recipient The address of the account that received the collected tokens /// @param amount0 The amount of token0 owed to the position that was collected /// @param amount1 The amount of token1 owed to the position that was collected event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1); /// @notice Returns the position information associated with a given token ID. /// @dev Throws if the token ID is not valid. /// @param tokenId The ID of the token that represents the position /// @return nonce The nonce for permits /// @return operator The address that is approved for spending /// @return token0 The address of the token0 for a specific pool /// @return token1 The address of the token1 for a specific pool /// @return fee The fee associated with the pool /// @return tickLower The lower end of the tick range for the position /// @return tickUpper The higher end of the tick range for the position /// @return liquidity The liquidity of the position /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation function positions( uint256 tokenId ) external view returns ( uint96 nonce, address operator, address token0, address token1, uint24 fee, int24 tickLower, int24 tickUpper, uint128 liquidity, uint256 feeGrowthInside0LastX128, uint256 feeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ); struct MintParams { address token0; address token1; uint24 fee; int24 tickLower; int24 tickUpper; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; address recipient; uint256 deadline; } /// @notice Creates a new position wrapped in a NFT /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized /// a method does not exist, i.e. the pool is assumed to be initialized. /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata /// @return tokenId The ID of the token that represents the minted position /// @return liquidity The amount of liquidity for this position /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function mint( MintParams calldata params ) external payable returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1); struct IncreaseLiquidityParams { uint256 tokenId; uint256 amount0Desired; uint256 amount1Desired; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender` /// @param params tokenId The ID of the token for which liquidity is being increased, /// amount0Desired The desired amount of token0 to be spent, /// amount1Desired The desired amount of token1 to be spent, /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check, /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check, /// deadline The time by which the transaction must be included to effect the change /// @return liquidity The new liquidity amount as a result of the increase /// @return amount0 The amount of token0 to acheive resulting liquidity /// @return amount1 The amount of token1 to acheive resulting liquidity function increaseLiquidity( IncreaseLiquidityParams calldata params ) external payable returns (uint128 liquidity, uint256 amount0, uint256 amount1); struct DecreaseLiquidityParams { uint256 tokenId; uint128 liquidity; uint256 amount0Min; uint256 amount1Min; uint256 deadline; } /// @notice Decreases the amount of liquidity in a position and accounts it to the position /// @param params tokenId The ID of the token for which liquidity is being decreased, /// amount The amount by which liquidity will be decreased, /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity, /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity, /// deadline The time by which the transaction must be included to effect the change /// @return amount0 The amount of token0 accounted to the position's tokens owed /// @return amount1 The amount of token1 accounted to the position's tokens owed function decreaseLiquidity( DecreaseLiquidityParams calldata params ) external payable returns (uint256 amount0, uint256 amount1); struct CollectParams { uint256 tokenId; address recipient; uint128 amount0Max; uint128 amount1Max; } /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient /// @param params tokenId The ID of the NFT for which tokens are being collected, /// recipient The account that should receive the tokens, /// amount0Max The maximum amount of token0 to collect, /// amount1Max The maximum amount of token1 to collect /// @return amount0 The amount of fees collected in token0 /// @return amount1 The amount of fees collected in token1 function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1); /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens /// must be collected first. /// @param tokenId The ID of the token that is being burned function burn(uint256 tokenId) external payable; /// @notice create and initialize a pool if necessary function createAndInitializePoolIfNecessary( address token0, address token1, uint24 fee, uint160 sqrtPriceX96 ) external payable returns (address pool); function factory() external view returns (address factory); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; // OpenZeppelin import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol'; interface IOutputToken is IERC20, IERC20Permit { function burn(uint256 amount) external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; import '../lib/Farms.sol'; /** * @dev Interface for the (pegged) farm keeper */ interface IPeggedFarmKeeper { function updateFarm(address id, bool collectFees) external; function farmView(address id) external view returns (FarmView memory); function userView(address id, address userId) external view returns (UserView memory); function deposit(address id, uint128 liquidity, uint256 slippage, uint256 deadline) external; function getLiquidityForAmount( address id, address token, uint256 amount ) external view returns (address token0, address token1, uint128 liquidity, uint256 amount0, uint256 amount1); }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; interface IPermit2 { /// @notice Approves the spender to use up to amount of the specified token up until the expiration /// @param token The token to approve /// @param spender The spender address to approve /// @param amount The approved amount of the token /// @param expiration The timestamp at which the approval is no longer valid /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve /// @dev Setting amount to type(uint160).max sets an unlimited approval function approve(address token, address spender, uint160 amount, uint48 expiration) external; }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.24; interface IUniswapV3Pool { /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas /// when accessed externally. /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value /// tick The current tick of the pool, i.e. according to the last tick transition that was run. /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick /// boundary. /// observationIndex The index of the last oracle observation that was written, /// observationCardinality The current maximum number of observations stored in the pool, /// observationCardinalityNext The next maximum number of observations, to be updated when the observation. /// feeProtocol The protocol fee for both tokens of the pool. /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0 /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee. /// unlocked Whether the pool is currently locked to reentrancy function slot0() external view returns ( uint160 sqrtPriceX96, int24 tick, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext, uint8 feeProtocol, bool unlocked ); /// @notice Look up information about a specific tick in the pool /// @param tick The tick to look up /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or /// tick upper, /// liquidityNet how much liquidity changes when the pool price crosses the tick, /// feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0, /// feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1, /// tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick /// secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick, /// secondsOutside the seconds spent on the other side of the tick from the current tick, /// initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false. /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0. /// In addition, these values are only relative and must be used only in comparison to previous snapshots for /// a specific position. function ticks( int24 tick ) external view returns ( uint128 liquidityGross, int128 liquidityNet, uint256 feeGrowthOutside0X128, uint256 feeGrowthOutside1X128, int56 tickCumulativeOutside, uint160 secondsPerLiquidityOutsideX128, uint32 secondsOutside, bool initialized ); /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal0X128() external view returns (uint256); /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool /// @dev This value can overflow the uint256 function feeGrowthGlobal1X128() external view returns (uint256); function observe( uint32[] calldata secondsAgos ) external view returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s); /// @notice Returns data about a specific observation index /// @param index The element of the observations array to fetch /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time /// ago, rather than at a specific index in the array. /// @return blockTimestamp The timestamp of the observation, /// Returns tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp, /// Returns secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp, /// Returns initialized whether the observation has been initialized and the values are safe to use function observations( uint256 index ) external view returns (uint32 blockTimestamp, int56 tickCumulative, uint160 secondsPerLiquidityCumulativeX128, bool initialized); /// @notice Increase the maximum number of price and liquidity observations that this pool will store /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to /// the input observationCardinalityNext. /// @param observationCardinalityNext The desired minimum number of observations for the pool to store function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external; /// @notice The amounts of token0 and token1 that are owed to the protocol /// @dev Protocol fees will never exceed uint128 max in either token function protocolFees() external view returns (uint128 token0, uint128 token1); /// @notice The first of the two tokens of the pool, sorted by address /// @return The token contract address function token0() external view returns (address); /// @notice The second of the two tokens of the pool, sorted by address /// @return The token contract address function token1() external view returns (address); /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6 /// @return The fee function fee() external view returns (uint24); }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.24; interface IUniversalRouter { /// @notice Executes encoded commands along with provided inputs. Reverts if deadline has expired. /// @param commands A set of concatenated commands, each 1 byte in length /// @param inputs An array of byte strings containing abi encoded inputs for each command /// @param deadline The deadline by which the transaction must be executed function execute(bytes calldata commands, bytes[] calldata inputs, uint256 deadline) external payable; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; /** * @title Constants Library * @notice Library containing constant values used throughout the protocol * @dev This library defines various constants to ensure consistency across the system */ library Constants { // ----------------------------------------- // Common // ----------------------------------------- /** * @dev Base unit for percentage calculations (100% = 10000) */ uint256 constant BASIS = 10_000; /** * @dev Scaling factor for high-precision calculations */ uint256 constant SCALE_FACTOR_1E12 = 1e12; uint256 constant SCALE_FACTOR_1E18 = 1e18; /** * @notice Ticks for LP Positions */ int24 constant MIN_TICK = -887200; int24 constant MAX_TICK = -MIN_TICK; /** * @notice UniSwap V3 fee tiers */ uint24 constant FEE_TIER_1_PERCENT = 10000; // ----------------------------------------- // Farm Keeper // ----------------------------------------- /** * @notice Constant rate of TINC emission per second * @dev Set to 1 TINC per second (1e18 considering 18 decimals) */ uint256 public constant INCENTIVE_TOKEN_PER_SECOND = 1e18; /** * @notice Maximum allocation points that can be assigned to a single farm * @dev Limits the relative weight of a farm in the reward distribution */ uint256 public constant MAX_ALLOCATION_POINTS = 4000; // ----------------------------------------- // Addresses // ----------------------------------------- /** * @dev V3 DEX Factory address */ address constant FACTORY = 0x1F98431c8aD98523631AE4a59f267346ea31F984; /** * @dev V3 DEX Non-Fungible Position Manager address */ address constant NON_FUNGIBLE_POSITION_MANAGER = 0xC36442b4a4522E871399CD717aBDD847Ab11FE88; /** * @dev V3 DEX Universal Router address */ address constant UNIVERSAL_ROUTER = 0x3fC91A3afd70395Cd496C647d5a6CC9D4B2b7FAD; /** * @dev V3 DEX Permit2 address */ address constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3; /** * @dev Wrapped native token address (WETH, WPLS...) */ address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; /** * @dev V3 DEX Init Code Hash */ bytes32 constant POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54; }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; import './uniswap/PoolAddress.sol'; /** * @title LP Struct * @notice Represents a UniSwap V3 liquidity position * @dev Stores the token ID and liquidity amount for a UniSwap V3 position */ struct LP { uint256 tokenId; uint128 liquidity; } /** * @title User Struct * @notice Represents a user's position in a farm * @dev Stores user's liquidity and checkpoints for reward and fee calculations */ struct User { /** * @dev Amount of liquidity the user contributed to the shared LP position */ uint128 liquidity; /** * @dev Checkpoint for reward calculations (not scaled) */ uint256 rewardCheckpoint; /** * @dev Checkpoint for fee calculations (token0, not scaled) */ uint256 feeCheckpointToken0; /** * @dev Checkpoint for fee calculations (token1, not scaled) */ uint256 feeCheckpointToken1; // Reward Calculation and Scaling Explanation: // To maintain precision with integer math, we use a scaling factor (e.g., 1e12). // The farm's accIncentiveTokenPerShare is stored scaled up by this factor. // // At any given time, the pending reward for a user is calculated as: // // pending reward = (user.liquidity * farm.accIncentiveTokenPerShare) / SCALE_FACTOR - user.rewardCheckpoint // // Where: // - farm.accIncentiveTokenPerShare is scaled up by SCALE_FACTOR (e.g., 1e12) // - user.rewardCheckpoint is NOT scaled (it's the result of a previous scaled calculation) // // This scaling allows for precise fractional reward calculations even with integer math. // // When a user deposits or withdraws liquidity: // 1. The farm's `accIncentiveTokenPerShare` (scaled) is updated to reflect accumulated rewards. // 2. The user's pending reward is calculated and sent to their address. // 3. The user's `liquidity` is updated based on their deposit or withdrawal. // 4. The user's `rewardCheckpoint` is set to: (user.liquidity * farm.accIncentiveTokenPerShare) / SCALE_FACTOR // This establishes a new baseline for future reward calculations. // // The scaling ensures accurate reward distribution proportional to users' liquidity // and time in the farm, even when dealing with small fractions of tokens. } /** * @title UserView Struct * @notice Represents a view of a user's position in a farm * @dev Used for external queries to get user's current state in a farm */ struct UserView { address token0; address token1; uint128 liquidity; uint256 balanceToken0; uint256 balanceToken1; uint256 pendingFeeToken0; uint256 pendingFeeToken1; uint256 pendingIncentiveTokens; } /** * @title Farm Struct * @notice Represents information about a specific farm * @dev Stores all relevant data for a farm, including pool info, rewards, and fees */ struct Farm { /** * @dev The pool address to uniquely identify the farm */ address id; /** * @dev Helper struct to hold pool information */ PoolAddress.PoolKey poolKey; /** * @dev Liquidity information for this farm */ LP lp; /** * @dev How many allocation points assigned to this pool. INC to distribute per second. */ uint256 allocPoints; /** * @dev Last time that INC distribution occurs */ uint256 lastRewardTime; /** * @dev Accumulated INC per share */ uint256 accIncentiveTokenPerShare; /** * @dev Accumulated fees for token0 per share */ uint256 accFeePerShareForToken0; /** * @dev Accumulated fees for token1 per share */ uint256 accFeePerShareForToken1; /** * @dev The protocol fee for this pair in basis points */ uint256 protocolFee; /** * @dev Specifies the value in minutes for the time-weighted average when quoting output tokens */ uint32 priceTwa; /** * @dev Maximum slippage percentage acceptable when manipulating liquidity */ uint256 slippage; } /** * @title FarmView Struct * @notice Represents a view of a farm * @dev Used for external queries to get a farms current state */ struct FarmView { address id; PoolAddress.PoolKey poolKey; LP lp; uint256 allocPoints; uint256 lastRewardTime; uint256 accIncentiveTokenPerShare; uint256 accFeePerShareForToken0; uint256 accFeePerShareForToken1; uint256 protocolFee; uint32 priceTwa; uint256 slippage; uint256 balanceToken0; uint256 balanceToken1; } /** * @title Farms Library * @notice Library for managing a collection of Farm structs * @dev Provides functions for adding, removing, and querying farms */ library Farms { /** * @dev Struct to store Farms in an array with mappings for efficient lookups */ struct Map { Farm[] _farms; // Array storage for all farms mapping(address id => uint256 position) _positions; // Mapping of farm id to their position in the array mapping(address farmId => mapping(address userId => User user)) _users; // Mapping of farm id to their users } /** * @dev Get a user for a farm * @param map The map to get the user from * @param farm The farm address * @param id The user id (address) * @return User The user struct for the given farm and user address */ function user(Map storage map, address farm, address id) internal view returns (User storage) { return map._users[farm][id]; } /** * @dev Add a farm to the map * @param map The map to add the farm to * @param farm The farm to be added * @return bool True if farm was added, false if it already existed */ function add(Map storage map, Farm memory farm) internal returns (bool) { if (!contains(map, farm)) { map._farms.push(farm); // Store the index + 1, using 0 as a sentinel value for "not in map" map._positions[farm.id] = map._farms.length; return true; } else { return false; } } /** * @dev Retrieve a farm for a given id * @param map The map to search in * @param id The id of the farm whose info to retrieve * @return Farm The info associated with the farm */ function get(Map storage map, address id) internal view returns (Farm storage) { uint256 idx = map._positions[id]; require(idx != 0, 'Info for id does not exist'); return map._farms[idx - 1]; } /** * @dev Remove a farm from the map * @param map The map to remove the farm from * @param farm The farm to be removed * @return bool True if the farm was removed, false if it didn't exist */ function remove(Map storage map, Farm calldata farm) internal returns (bool) { uint256 position = map._positions[farm.id]; if (position != 0) { uint256 valueIndex = position - 1; uint256 lastIndex = map._farms.length - 1; if (valueIndex != lastIndex) { Farm storage lastElement = map._farms[lastIndex]; map._farms[valueIndex] = lastElement; map._positions[lastElement.id] = position; } map._farms.pop(); delete map._positions[farm.id]; return true; } else { return false; } } /** * @dev Check if a farm exists in the map * @param map The map to check * @param farm The farm to look for * @return bool True if the farm exists, false otherwise */ function contains(Map storage map, Farm memory farm) internal view returns (bool) { return map._positions[farm.id] != 0; } /** * @dev Check if a farm exists in the map * @param map The map to check * @param id The farm id * @return bool True if the farm exists, false otherwise */ function contains(Map storage map, address id) internal view returns (bool) { return map._positions[id] != 0; } /** * @dev Get the number of farms in the map * @param map The map to check * @return uint256 The number of farms in the map */ function length(Map storage map) internal view returns (uint256) { return map._farms.length; } /** * @dev Get a farm at a specific index in the map * @param map The map to query * @param index The index of the farm to retrieve * @return Farm The farm at the specified index */ function at(Map storage map, uint256 index) internal view returns (Farm storage) { require(index < map._farms.length, 'Index out of bounds'); return map._farms[index]; } /** * @dev Get all farms in the map * @param map The map to query * @return Farm[] An array containing all farms in the map * @notice This function may be gas-intensive for large sets and should be used cautiously */ function values(Map storage map) internal view returns (Farm[] memory) { return map._farms; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; // Interfaces import '../interfaces/IBurnProxy.sol'; /** * @title InputToken Struct * @notice Represents an Input-Token and holds stats and parameters for buy and burn * @dev This struct is used to store all relevant information for an input token in the buy and burn process */ struct InputToken { /** * @dev The input token address used as a unique identifier */ address id; // ----------------------------------------- // Stats // ----------------------------------------- /** * @dev Accumulates total tokens used for buy and burn of the output token */ uint256 totalTokensUsedForBuyAndBurn; /** * @dev Accumulates total tokens burned */ uint256 totalTokensBurned; /** * @dev Accumulates total tokens paid as incentive fee to run public functions */ uint256 totalIncentiveFee; // ----------------------------------------- // Internal Variables // ----------------------------------------- /** * @dev Timestamp of the last buy and burn operation for this core token to track intervals */ uint256 lastCallTs; // ----------------------------------------- // Parameters // ----------------------------------------- /** * @dev Limits the amount of core token that can be used per swap to control swap sizes */ uint256 capPerSwap; /** * @dev Minimum time interval (in seconds) required between successive buy and burn operations */ uint256 interval; /** * @dev The incentive fee in basis points to call buy and burn */ uint256 incentiveFee; /** * @dev The burn proxy for the input token */ IBurnProxy burnProxy; /** * @dev The amount of input token to burn directly for each buy and burn call (between 0 and 100% in basis points) */ uint256 burnPercentage; /** * @dev Specifies the value in minutes for the time-weighted average when calculating the output token amount * for slippage protection. Can be set to zero to disable. */ uint32 priceTwa; /** * @dev Maximum slippage percentage acceptable when buying tokens. * Slippage is expressed as a percentage (in basis points). */ uint256 slippage; /** * @dev The swap path (format must be compatible with the UniSwap universal router) */ bytes path; /** * @dev Indicates whether buy and burn operations for this input token are paused. * When `paused` is true, buy and burn actions are temporarily halted, but funds can still be * sent and accumulated for future use. The `isInputToken` function will return true if the input * token is paused but not disabled, allowing funds to be collected without executing buy and burn * operations until unpaused. */ bool paused; /** * @dev Indicates whether the input token is disabled for external contracts. * If `disabled` is true, it signals to external contracts to stop sending funds for this input token, * even though buy and burn operations are still active. Setting `disabled` to true does not pause * buy and burn operations. Both `paused` and `disabled` must be true to fully deactivate the input * token, stopping both new deposits from external contracts and buy and burn actions. * * Note: `isInputToken` is an advisory view function, and external contracts or users may still send * funds to the universal buy and burn instance regardless of its result. */ bool disabled; } /** * @title InputTokenView Struct * @notice Represents an Input-Token and holds stats and parameters for buy and burn including balances * @dev This struct is used to implement frontends adding balance and information about the next round. * Usage in another smart contract may be gas-intensive for large sets and should be used cautiously */ struct InputTokenView { address id; uint256 totalTokensUsedForBuyAndBurn; uint256 totalTokensBurned; uint256 totalIncentiveFee; uint256 lastCallTs; uint256 capPerSwap; uint256 interval; uint256 incentiveFee; address burnProxy; uint256 burnPercentage; uint32 priceTwa; uint256 slippage; bytes path; bool paused; bool disabled; // Additional view parameters /** * @dev Current balance of the input token */ uint256 balance; /** * @dev Amount of tokens to be bought in the next round */ uint256 nextToBuy; /** * @dev Amount of tokens to be burned in the next round */ uint256 nextToBurn; /** * @dev Amount of incentive fee for the next round */ uint256 nextIncentiveFee; /** * @dev The UTC timestamp when buy and burn can be called next */ uint256 nextCall; } /** * @title InputTokens Library * @dev Library for managing a collection of InputToken structs */ library InputTokens { /** * @dev Struct to store InputTokens in an array with a mapping for efficient lookups */ struct Map { InputToken[] _tokens; // Array storage for all tokens mapping(address token => uint256 position) _positions; // Mapping of token id to their position in the array } /** * @dev Add a token info to the map * @param map The map to add the token info to * @param token The token info to be added * @return bool True if token was added, false if it already existed */ function add(Map storage map, InputToken memory token) internal returns (bool) { if (!contains(map, token)) { map._tokens.push(token); // Store the index + 1, using 0 as a sentinel value for "not in map" map._positions[token.id] = map._tokens.length; return true; } else { return false; } } /** * @dev Retrieve a token info for a given token address * @param map The map to search in * @param tokenAddress The token address of the token whose info to retrieve * @return InputToken The info associated with the token */ function get(Map storage map, address tokenAddress) internal view returns (InputToken storage) { uint256 idx = map._positions[tokenAddress]; require(idx != 0, 'Input token does not exist'); return map._tokens[idx - 1]; } /** * @dev Remove a token info from the map * @param map The map to remove the token info from * @param token The token to be removed * @return bool True if the token info was removed, false if it didn't exist */ function remove(Map storage map, InputToken calldata token) internal returns (bool) { uint256 position = map._positions[token.id]; if (position != 0) { uint256 valueIndex = position - 1; uint256 lastIndex = map._tokens.length - 1; if (valueIndex != lastIndex) { InputToken storage lastElement = map._tokens[lastIndex]; map._tokens[valueIndex] = lastElement; map._positions[lastElement.id] = position; } map._tokens.pop(); delete map._positions[token.id]; return true; } else { return false; } } /** * @dev Check if a token exists in the map * @param map The map to check * @param token The token to look for * @return bool True if the token exists, false otherwise */ function contains(Map storage map, InputToken memory token) internal view returns (bool) { return map._positions[token.id] != 0; } /** * @dev Check if a token info exists in the map * @param map The map to check * @param tokenAddress The token address to check * @return bool True if the token info exists, false otherwise */ function contains(Map storage map, address tokenAddress) internal view returns (bool) { return map._positions[tokenAddress] != 0; } /** * @dev Get the number of tokens in the map * @param map The map to check * @return uint256 The number of tokens in the map */ function length(Map storage map) internal view returns (uint256) { return map._tokens.length; } /** * @dev Get a token info at a specific index in the map * @param map The map to query * @param index The index of the token to retrieve * @return InputToken The token info at the specified index */ function at(Map storage map, uint256 index) internal view returns (InputToken storage) { require(index < map._tokens.length, 'Index out of bounds'); return map._tokens[index]; } /** * @dev Get all info for tokens in the map * @param map The map to query * @return InputToken[] An array containing all tokens in the map * @notice This function may be gas-intensive for large sets and should be used cautiously */ function values(Map storage map) internal view returns (InputToken[] memory) { return map._tokens; } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.24; // Use OpenZeppelin replacement for FullMath import '@openzeppelin/contracts/utils/math/Math.sol'; import '@uniswap/v3-core/contracts/libraries/FixedPoint96.sol'; /// @title Liquidity amount functions /// @notice Provides functions for computing liquidity amounts from token amounts and prices library LiquidityAmounts { /// @notice Downcasts uint256 to uint128 /// @param x The uint258 to be downcasted /// @return y The passed value, downcasted to uint128 function toUint128(uint256 x) private pure returns (uint128 y) { require((y = uint128(x)) == x); } /// @notice Computes the amount of liquidity received for a given amount of token0 and price range /// @dev Calculates amount0 * (sqrt(upper) * sqrt(lower)) / (sqrt(upper) - sqrt(lower)) /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount0 The amount0 being sent in /// @return liquidity The amount of returned liquidity function getLiquidityForAmount0( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount0 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); uint256 intermediate = Math.mulDiv(sqrtRatioAX96, sqrtRatioBX96, FixedPoint96.Q96); return toUint128(Math.mulDiv(amount0, intermediate, sqrtRatioBX96 - sqrtRatioAX96)); } /// @notice Computes the amount of liquidity received for a given amount of token1 and price range /// @dev Calculates amount1 / (sqrt(upper) - sqrt(lower)). /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount1 The amount1 being sent in /// @return liquidity The amount of returned liquidity function getLiquidityForAmount1( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount1 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return toUint128(Math.mulDiv(amount1, FixedPoint96.Q96, sqrtRatioBX96 - sqrtRatioAX96)); } /// @notice Computes the maximum amount of liquidity received for a given amount of token0, token1, the current /// pool prices and the prices at the tick boundaries /// @param sqrtRatioX96 A sqrt price representing the current pool prices /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param amount0 The amount of token0 being sent in /// @param amount1 The amount of token1 being sent in /// @return liquidity The maximum amount of liquidity received function getLiquidityForAmounts( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint256 amount0, uint256 amount1 ) internal pure returns (uint128 liquidity) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 <= sqrtRatioAX96) { liquidity = getLiquidityForAmount0(sqrtRatioAX96, sqrtRatioBX96, amount0); } else if (sqrtRatioX96 < sqrtRatioBX96) { uint128 liquidity0 = getLiquidityForAmount0(sqrtRatioX96, sqrtRatioBX96, amount0); uint128 liquidity1 = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioX96, amount1); liquidity = liquidity0 < liquidity1 ? liquidity0 : liquidity1; } else { liquidity = getLiquidityForAmount1(sqrtRatioAX96, sqrtRatioBX96, amount1); } } /// @notice Computes the amount of token0 for a given amount of liquidity and a price range /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount0 The amount of token0 function getAmount0ForLiquidity( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return Math.mulDiv(uint256(liquidity) << FixedPoint96.RESOLUTION, sqrtRatioBX96 - sqrtRatioAX96, sqrtRatioBX96) / sqrtRatioAX96; } /// @notice Computes the amount of token1 for a given amount of liquidity and a price range /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount1 The amount of token1 function getAmount1ForLiquidity( uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); return Math.mulDiv(liquidity, sqrtRatioBX96 - sqrtRatioAX96, FixedPoint96.Q96); } /// @notice Computes the token0 and token1 value for a given amount of liquidity, the current /// pool prices and the prices at the tick boundaries /// @param sqrtRatioX96 A sqrt price representing the current pool prices /// @param sqrtRatioAX96 A sqrt price representing the first tick boundary /// @param sqrtRatioBX96 A sqrt price representing the second tick boundary /// @param liquidity The liquidity being valued /// @return amount0 The amount of token0 /// @return amount1 The amount of token1 function getAmountsForLiquidity( uint160 sqrtRatioX96, uint160 sqrtRatioAX96, uint160 sqrtRatioBX96, uint128 liquidity ) internal pure returns (uint256 amount0, uint256 amount1) { if (sqrtRatioAX96 > sqrtRatioBX96) (sqrtRatioAX96, sqrtRatioBX96) = (sqrtRatioBX96, sqrtRatioAX96); if (sqrtRatioX96 <= sqrtRatioAX96) { amount0 = getAmount0ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity); } else if (sqrtRatioX96 < sqrtRatioBX96) { amount0 = getAmount0ForLiquidity(sqrtRatioX96, sqrtRatioBX96, liquidity); amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioX96, liquidity); } else { amount1 = getAmount1ForLiquidity(sqrtRatioAX96, sqrtRatioBX96, liquidity); } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; // Interfaces import '../../interfaces/IUniswapV3Pool.sol'; // OpenZeppelin import '@openzeppelin/contracts/utils/math/Math.sol'; /** * @notice Adapted Uniswap V3 OracleLibrary computation to be compliant with Solidity 0.8.x and later. * * Documentation for Auditors: * * Solidity Version: Updated the Solidity version pragma to ^0.8.0. This change ensures compatibility * with Solidity version 0.8.x. * * Safe Arithmetic Operations: Solidity 0.8.x automatically checks for arithmetic overflows/underflows. * Therefore, the code no longer needs to use SafeMath library (or similar) for basic arithmetic operations. * This change simplifies the code and reduces the potential for errors related to manual overflow/underflow checking. * * Overflow/Underflow: With the introduction of automatic overflow/underflow checks in Solidity 0.8.x, * the code is inherently safer and less prone to certain types of arithmetic errors. * * Removal of SafeMath Library: Since Solidity 0.8.x handles arithmetic operations safely, the use of SafeMath library * is omitted in this update. * * Git-style diff for the `consult` function: * * ```diff * function consult(address pool, uint32 secondsAgo) * internal * view * returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity) * { * require(secondsAgo != 0, 'BP'); * * uint32[] memory secondsAgos = new uint32[](2); * secondsAgos[0] = secondsAgo; * secondsAgos[1] = 0; * * (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) = * IUniswapV3Pool(pool).observe(secondsAgos); * * int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0]; * uint160 secondsPerLiquidityCumulativesDelta = * secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0]; * * - arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgo); * + int56 secondsAgoInt56 = int56(uint56(secondsAgo)); * + arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56); * // Always round to negative infinity * - if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgo != 0)) arithmeticMeanTick--; * + if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgoInt56 != 0)) arithmeticMeanTick--; * * - uint192 secondsAgoX160 = uint192(secondsAgo) * type(uint160).max; * + uint192 secondsAgoUint192 = uint192(secondsAgo); * + uint192 secondsAgoX160 = secondsAgoUint192 * type(uint160).max; * harmonicMeanLiquidity = uint128(secondsAgoX160 / (uint192(secondsPerLiquidityCumulativesDelta) << 32)); * } * ``` */ /// @title Oracle library /// @notice Provides functions to integrate with V3 pool oracle library OracleLibrary { /// @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool /// @param pool Address of the pool that we want to observe /// @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means /// @return arithmeticMeanTick The arithmetic mean tick from (block.timestamp - secondsAgo) to block.timestamp /// @return harmonicMeanLiquidity The harmonic mean liquidity from (block.timestamp - secondsAgo) to block.timestamp function consult( address pool, uint32 secondsAgo ) internal view returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity) { require(secondsAgo != 0, 'BP'); uint32[] memory secondsAgos = new uint32[](2); secondsAgos[0] = secondsAgo; secondsAgos[1] = 0; (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) = IUniswapV3Pool(pool) .observe(secondsAgos); int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0]; uint160 secondsPerLiquidityCumulativesDelta; unchecked { secondsPerLiquidityCumulativesDelta = secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0]; } // Safe casting of secondsAgo to int56 for division int56 secondsAgoInt56 = int56(uint56(secondsAgo)); arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56); // Always round to negative infinity if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgoInt56 != 0)) arithmeticMeanTick--; // Safe casting of secondsAgo to uint192 for multiplication uint192 secondsAgoUint192 = uint192(secondsAgo); harmonicMeanLiquidity = uint128( (secondsAgoUint192 * uint192(type(uint160).max)) / (uint192(secondsPerLiquidityCumulativesDelta) << 32) ); } /// @notice Given a pool, it returns the number of seconds ago of the oldest stored observation /// @param pool Address of Uniswap V3 pool that we want to observe /// @return secondsAgo The number of seconds ago of the oldest observation stored for the pool function getOldestObservationSecondsAgo(address pool) internal view returns (uint32 secondsAgo) { (, , uint16 observationIndex, uint16 observationCardinality, , , ) = IUniswapV3Pool(pool).slot0(); require(observationCardinality > 0, 'NI'); (uint32 observationTimestamp, , , bool initialized) = IUniswapV3Pool(pool).observations( (observationIndex + 1) % observationCardinality ); // The next index might not be initialized if the cardinality is in the process of increasing // In this case the oldest observation is always in index 0 if (!initialized) { (observationTimestamp, , , ) = IUniswapV3Pool(pool).observations(0); } secondsAgo = uint32(block.timestamp) - observationTimestamp; } /// @notice Given a tick and a token amount, calculates the amount of token received in exchange /// a slightly modified version of the UniSwap library getQuoteAtTick to accept a sqrtRatioX96 as input parameter /// @param sqrtRatioX96 The sqrt ration /// @param baseAmount Amount of token to be converted /// @param baseToken Address of an ERC20 token contract used as the baseAmount denomination /// @param quoteToken Address of an ERC20 token contract used as the quoteAmount denomination /// @return quoteAmount Amount of quoteToken received for baseAmount of baseToken function getQuoteForSqrtRatioX96( uint160 sqrtRatioX96, uint256 baseAmount, address baseToken, address quoteToken ) internal pure returns (uint256 quoteAmount) { // Calculate quoteAmount with better precision if it doesn't overflow when multiplied by itself if (sqrtRatioX96 <= type(uint128).max) { uint256 ratioX192 = uint256(sqrtRatioX96) * sqrtRatioX96; quoteAmount = baseToken < quoteToken ? Math.mulDiv(ratioX192, baseAmount, 1 << 192) : Math.mulDiv(1 << 192, baseAmount, ratioX192); } else { uint256 ratioX128 = Math.mulDiv(sqrtRatioX96, sqrtRatioX96, 1 << 64); quoteAmount = baseToken < quoteToken ? Math.mulDiv(ratioX128, baseAmount, 1 << 128) : Math.mulDiv(1 << 128, baseAmount, ratioX128); } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; library PathDecoder { /// @dev The length of the bytes encoded address uint256 internal constant ADDR_SIZE = 20; /// @dev The length of the bytes encoded fee uint256 internal constant V3_FEE_SIZE = 3; /// @dev The offset of a single token address (20) and pool fee (3) uint256 internal constant NEXT_V3_POOL_OFFSET = ADDR_SIZE + V3_FEE_SIZE; /// @dev The offset of an encoded pool key /// Token (20) + Fee (3) + Token (20) = 43 uint256 internal constant V3_POP_OFFSET = NEXT_V3_POOL_OFFSET + ADDR_SIZE; struct Hop { address tokenIn; address tokenOut; uint24 fee; } /// @notice Decodes the swap path /// @param path The bytes of the swap path /// @return hops The decoded array of Hop structs function decode(bytes memory path) internal pure returns (Hop[] memory hops) { require(path.length >= V3_POP_OFFSET, 'Path too short'); require((path.length - ADDR_SIZE) % NEXT_V3_POOL_OFFSET == 0, 'Invalid path length'); uint256 numHops = (path.length - ADDR_SIZE) / NEXT_V3_POOL_OFFSET; hops = new Hop[](numHops); for (uint256 i = 0; i < numHops; i++) { (address tokenIn, uint24 fee, address tokenOut) = toPool(path, i * NEXT_V3_POOL_OFFSET); hops[i] = Hop(tokenIn, tokenOut, fee); } } /// @notice Returns the pool details starting at the given offset /// @dev has been modified to from the UniSwap library to work with bytes memory /// @param _bytes The input bytes memory to decode /// @param _start The starting offset for this pool in the path /// @return tokenIn The first token address /// @return fee The pool fee /// @return tokenOut The second token address function toPool( bytes memory _bytes, uint256 _start ) internal pure returns (address tokenIn, uint24 fee, address tokenOut) { require(_start + V3_POP_OFFSET <= _bytes.length, 'Invalid pool offset'); assembly { let poolData := mload(add(add(_bytes, 32), _start)) tokenIn := shr(96, poolData) fee := and(shr(72, poolData), 0xffffff) tokenOut := shr(96, mload(add(add(_bytes, 55), _start))) } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; import '../Constants.sol'; /** * @notice Adapted Uniswap V3 pool address computation to be compliant with Solidity 0.8.x and later. * @dev Changes were made to address the stricter type conversion rules in newer Solidity versions. * Original Uniswap V3 code directly converted a uint256 to an address, which is disallowed in Solidity 0.8.x. * Adaptation Steps: * 1. The `pool` address is computed by first hashing pool parameters. * 2. The resulting `uint256` hash is then explicitly cast to `uint160` before casting to `address`. * This two-step conversion process is necessary due to the Solidity 0.8.x restriction. * Direct conversion from `uint256` to `address` is disallowed to prevent mistakes * that can occur due to the size mismatch between the types. * 3. Added a require statement to ensure `token0` is less than `token1`, maintaining * Uniswap's invariant and preventing pool address calculation errors. * @param factory The Uniswap V3 factory contract address. * @param key The PoolKey containing token addresses and fee tier. * @return pool The computed address of the Uniswap V3 pool. * @custom:modification Explicit type conversion from `uint256` to `uint160` then to `address`. * * function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) { * require(key.token0 < key.token1); * pool = address( * uint160( // Explicit conversion to uint160 added for compatibility with Solidity 0.8.x * uint256( * keccak256( * abi.encodePacked( * hex'ff', * factory, * keccak256(abi.encode(key.token0, key.token1, key.fee)), * POOL_INIT_CODE_HASH * ) * ) * ) * ) * ); * } */ /// @dev This code is copied from Uniswap V3 which uses an older compiler version. /// @title Provides functions for deriving a pool address from the factory, tokens, and the fee library PoolAddress { /// @notice The identifying key of the pool struct PoolKey { address token0; address token1; uint24 fee; } /// @notice Returns PoolKey: the ordered tokens with the matched fee levels /// @param tokenA The first token of a pool, unsorted /// @param tokenB The second token of a pool, unsorted /// @param fee The fee level of the pool /// @return Poolkey The pool details with ordered token0 and token1 assignments function getPoolKey(address tokenA, address tokenB, uint24 fee) internal pure returns (PoolKey memory) { if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA); return PoolKey({token0: tokenA, token1: tokenB, fee: fee}); } /// @notice Deterministically computes the pool address given the factory and PoolKey /// @param factory The Uniswap V3 factory contract address /// @param key The PoolKey /// @return pool The contract address of the V3 pool function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) { require(key.token0 < key.token1); pool = address( uint160( // Convert uint256 to uint160 first uint256( keccak256( abi.encodePacked( hex'ff', factory, keccak256(abi.encode(key.token0, key.token1, key.fee)), Constants.POOL_INIT_CODE_HASH ) ) ) ) ); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity >=0.5.0; library PositionKey { /// @dev Returns the key of the position in the core library function compute(address owner, int24 tickLower, int24 tickUpper) internal pure returns (bytes32) { return keccak256(abi.encodePacked(owner, tickLower, tickUpper)); } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.24; // Use OpenZeppelin replacement for FullMath import '@openzeppelin/contracts/utils/math/Math.sol'; // UniSwap Core import '@uniswap/v3-core/contracts/libraries/FixedPoint128.sol'; // Interfaces import '../../interfaces/INonfungiblePositionManager.sol'; import '../../interfaces/IUniswapV3Pool.sol'; // Lib import './TickMath.sol'; import './LiquidityAmounts.sol'; import './PoolAddress.sol'; import './PositionKey.sol'; /// @title Returns information about the token value held in a Uniswap V3 NFT library PositionValue { /// @notice Returns the total amounts of token0 and token1, i.e. the sum of fees and principal /// that a given nonfungible position manager token is worth /// @param positionManager The Uniswap V3 NonfungiblePositionManager /// @param tokenId The tokenId of the token for which to get the total value /// @param sqrtRatioX96 The square root price X96 for which to calculate the principal amounts /// @return amount0 The total amount of token0 including principal and fees /// @return amount1 The total amount of token1 including principal and fees function total( INonfungiblePositionManager positionManager, uint256 tokenId, uint160 sqrtRatioX96 ) internal view returns (uint256 amount0, uint256 amount1) { (uint256 amount0Principal, uint256 amount1Principal) = principal(positionManager, tokenId, sqrtRatioX96); (uint256 amount0Fee, uint256 amount1Fee) = fees(positionManager, tokenId); return (amount0Principal + amount0Fee, amount1Principal + amount1Fee); } /// @notice Calculates the principal (currently acting as liquidity) owed to the token owner in the event /// that the position is burned /// @param positionManager The Uniswap V3 NonfungiblePositionManager /// @param tokenId The tokenId of the token for which to get the total principal owed /// @param sqrtRatioX96 The square root price X96 for which to calculate the principal amounts /// @return amount0 The principal amount of token0 /// @return amount1 The principal amount of token1 function principal( INonfungiblePositionManager positionManager, uint256 tokenId, uint160 sqrtRatioX96 ) internal view returns (uint256 amount0, uint256 amount1) { (, , , , , int24 tickLower, int24 tickUpper, uint128 liquidity, , , , ) = positionManager.positions(tokenId); return LiquidityAmounts.getAmountsForLiquidity( sqrtRatioX96, TickMath.getSqrtRatioAtTick(tickLower), TickMath.getSqrtRatioAtTick(tickUpper), liquidity ); } struct FeeParams { address token0; address token1; uint24 fee; int24 tickLower; int24 tickUpper; uint128 liquidity; uint256 positionFeeGrowthInside0LastX128; uint256 positionFeeGrowthInside1LastX128; uint256 tokensOwed0; uint256 tokensOwed1; } /// @notice Calculates the total fees owed to the token owner /// @param positionManager The Uniswap V3 NonfungiblePositionManager /// @param tokenId The tokenId of the token for which to get the total fees owed /// @return amount0 The amount of fees owed in token0 /// @return amount1 The amount of fees owed in token1 function fees( INonfungiblePositionManager positionManager, uint256 tokenId ) internal view returns (uint256 amount0, uint256 amount1) { ( , , address token0, address token1, uint24 fee, int24 tickLower, int24 tickUpper, uint128 liquidity, uint256 positionFeeGrowthInside0LastX128, uint256 positionFeeGrowthInside1LastX128, uint128 tokensOwed0, uint128 tokensOwed1 ) = positionManager.positions(tokenId); return _fees( FeeParams({ token0: token0, token1: token1, fee: fee, tickLower: tickLower, tickUpper: tickUpper, liquidity: liquidity, positionFeeGrowthInside0LastX128: positionFeeGrowthInside0LastX128, positionFeeGrowthInside1LastX128: positionFeeGrowthInside1LastX128, tokensOwed0: tokensOwed0, tokensOwed1: tokensOwed1 }) ); } function _fees(FeeParams memory feeParams) private view returns (uint256 amount0, uint256 amount1) { (uint256 poolFeeGrowthInside0LastX128, uint256 poolFeeGrowthInside1LastX128) = _getFeeGrowthInside( IUniswapV3Pool( PoolAddress.computeAddress( Constants.FACTORY, PoolAddress.PoolKey({token0: feeParams.token0, token1: feeParams.token1, fee: feeParams.fee}) ) ), feeParams.tickLower, feeParams.tickUpper ); unchecked { amount0 = Math.mulDiv( poolFeeGrowthInside0LastX128 - feeParams.positionFeeGrowthInside0LastX128, feeParams.liquidity, FixedPoint128.Q128 ) + feeParams.tokensOwed0; amount1 = Math.mulDiv( poolFeeGrowthInside1LastX128 - feeParams.positionFeeGrowthInside1LastX128, feeParams.liquidity, FixedPoint128.Q128 ) + feeParams.tokensOwed1; } } function _getFeeGrowthInside( IUniswapV3Pool pool, int24 tickLower, int24 tickUpper ) private view returns (uint256 feeGrowthInside0X128, uint256 feeGrowthInside1X128) { (, int24 tickCurrent, , , , , ) = pool.slot0(); (, , uint256 lowerFeeGrowthOutside0X128, uint256 lowerFeeGrowthOutside1X128, , , , ) = pool.ticks(tickLower); (, , uint256 upperFeeGrowthOutside0X128, uint256 upperFeeGrowthOutside1X128, , , , ) = pool.ticks(tickUpper); unchecked { if (tickCurrent < tickLower) { feeGrowthInside0X128 = lowerFeeGrowthOutside0X128 - upperFeeGrowthOutside0X128; feeGrowthInside1X128 = lowerFeeGrowthOutside1X128 - upperFeeGrowthOutside1X128; } else if (tickCurrent < tickUpper) { uint256 feeGrowthGlobal0X128 = pool.feeGrowthGlobal0X128(); uint256 feeGrowthGlobal1X128 = pool.feeGrowthGlobal1X128(); feeGrowthInside0X128 = feeGrowthGlobal0X128 - lowerFeeGrowthOutside0X128 - upperFeeGrowthOutside0X128; feeGrowthInside1X128 = feeGrowthGlobal1X128 - lowerFeeGrowthOutside1X128 - upperFeeGrowthOutside1X128; } else { feeGrowthInside0X128 = upperFeeGrowthOutside0X128 - lowerFeeGrowthOutside0X128; feeGrowthInside1X128 = upperFeeGrowthOutside1X128 - lowerFeeGrowthOutside1X128; } } } }
// SPDX-License-Identifier: GPL-2.0-or-later pragma solidity 0.8.24; /** * @notice Adapted Uniswap V3 TickMath library computation to be compliant with Solidity 0.8.x and later. * * Documentation for Auditors: * * Solidity Version: Updated the Solidity version pragma to ^0.8.0. This change ensures compatibility * with Solidity version 0.8.x. * * Safe Arithmetic Operations: Solidity 0.8.x automatically checks for arithmetic overflows/underflows. * Therefore, the code no longer needs to use the SafeMath library (or similar) for basic arithmetic operations. * This change simplifies the code and reduces the potential for errors related to manual overflow/underflow checking. * * Explicit Type Conversion: The explicit conversion of `MAX_TICK` from `int24` to `uint256` in the `require` statement * is safe and necessary for comparison with `absTick`, which is a `uint256`. This conversion is compliant with * Solidity 0.8.x's type system and does not introduce any arithmetic risk. * * Overflow/Underflow: With the introduction of automatic overflow/underflow checks in Solidity 0.8.x, * the code is inherently safer and less prone to certain types of arithmetic errors. * * Removal of SafeMath Library: Since Solidity 0.8.x handles arithmetic operations safely, the use of the SafeMath * library is omitted in this update. * * Use unchecked to allow phantom overflows as intended in the original UniSwap V3 code. * * Git-style diff for the TickMath library: * * ```diff * - pragma solidity >=0.5.0 <0.8.0; * + pragma solidity ^0.8.0; * * function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { * uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); * - require(absTick <= uint256(MAX_TICK), 'T'); * + require(absTick <= uint256(int256(MAX_TICK)), 'T'); // Explicit type conversion * for Solidity 0.8.x compatibility * // ... (rest of the function) * } * * function getTickAtSqrtRatio( * uint160 sqrtPriceX96 * ) internal pure returns (int24 tick) { * // [Code for calculating the tick based on sqrtPriceX96 remains unchanged] * * - tick = tickLow == tickHi * - ? tickLow * - : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 * - ? tickHi * - : tickLow; * + if (tickLow == tickHi) { * + tick = tickLow; * + } else { * + tick = (getSqrtRatioAtTick(tickHi) <= sqrtPriceX96) ? tickHi : tickLow; * + } * } * ``` * * Note: Other than the pragma version change and the explicit type conversion * in the `require` statement, the original functions * within the TickMath library are compatible with Solidity 0.8.x without requiring * any further modifications. This is due to * the fact that the logic within these functions already adheres to safe arithmetic * practices and does not involve operations * that would be affected by the 0.8.x compiler's built-in checks. */ /// @title Math library for computing sqrt prices from ticks and vice versa /// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports /// prices between 2**-128 and 2**128 library TickMath { /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128 int24 internal constant MIN_TICK = -887272; /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128 int24 internal constant MAX_TICK = -MIN_TICK; /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK) uint160 internal constant MIN_SQRT_RATIO = 4295128739; /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK) uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342; /// @notice Calculates sqrt(1.0001^tick) * 2^96 /// @dev Throws if |tick| > max tick /// @param tick The input tick for the above formula /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets /// at the given tick function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) { unchecked { uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick)); require(absTick <= uint256(int256(MAX_TICK)), 'T'); // Explicit type conversion for Solidity 0.8.x compatibility uint256 ratio = absTick & 0x1 != 0 ? 0xfffcb933bd6fad37aa2d162d1a594001 : 0x100000000000000000000000000000000; if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128; if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128; if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128; if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128; if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128; if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128; if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128; if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128; if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128; if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128; if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128; if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128; if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128; if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128; if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128; if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128; if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128; if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128; if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128; if (tick > 0) ratio = type(uint256).max / ratio; // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96. // we then downcast because we know the result always fits within 160 bits due to our tick input constraint // we round up in the division so getTickAtSqrtRatio of the output price is always consistent sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1)); } } /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may /// ever return. /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96 /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) { unchecked { // second inequality must be < because the price can never reach the price at the max tick require(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO, 'R'); uint256 ratio = uint256(sqrtPriceX96) << 32; uint256 r = ratio; uint256 msb = 0; assembly { let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(5, gt(r, 0xFFFFFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(4, gt(r, 0xFFFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(3, gt(r, 0xFF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(2, gt(r, 0xF)) msb := or(msb, f) r := shr(f, r) } assembly { let f := shl(1, gt(r, 0x3)) msb := or(msb, f) r := shr(f, r) } assembly { let f := gt(r, 0x1) msb := or(msb, f) } if (msb >= 128) r = ratio >> (msb - 127); else r = ratio << (127 - msb); int256 log_2 = (int256(msb) - 128) << 64; assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(63, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(62, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(61, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(60, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(59, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(58, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(57, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(56, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(55, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(54, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(53, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(52, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(51, f)) r := shr(f, r) } assembly { r := shr(127, mul(r, r)) let f := shr(128, r) log_2 := or(log_2, shl(50, f)) } int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128); int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128); // Adjusted logic for determining the tick if (tickLow == tickHi) { tick = tickLow; } else { tick = (getSqrtRatioAtTick(tickHi) <= sqrtPriceX96) ? tickHi : tickLow; } } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; import '@openzeppelin/contracts/token/ERC20/ERC20.sol'; import '@openzeppelin/contracts/access/Ownable.sol'; contract ProxyToken is ERC20, Ownable { constructor() ERC20('Proxy Token', 'PT') Ownable(msg.sender) {} function mint(address to, uint256 amount) external onlyOwner { _mint(to, amount); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.24; // OpenZeppelins import '@openzeppelin/contracts/access/manager/AccessManager.sol'; import '@openzeppelin/contracts/access/manager/AccessManaged.sol'; import '@openzeppelin/contracts/utils/ReentrancyGuard.sol'; import '@openzeppelin/contracts/token/ERC20/IERC20.sol'; import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol'; import '@openzeppelin/contracts/utils/Multicall.sol'; import '@openzeppelin/contracts/utils/math/SafeCast.sol'; // Library import './lib/Constants.sol'; import './lib/InputTokens.sol'; import './lib/uniswap/PoolAddress.sol'; import './lib/uniswap/Oracle.sol'; import './lib/uniswap/TickMath.sol'; import './lib/uniswap/PathDecoder.sol'; // Interfaces import './interfaces/IBurnProxy.sol'; import './interfaces/IPermit2.sol'; import './interfaces/IUniversalRouter.sol'; import './interfaces/IOutputToken.sol'; import './interfaces/IFarmKeeper.sol'; import './interfaces/IUniswapV3Pool.sol'; /** * @title UniversalBuyAndBurn * @notice A contract for buying and burning an output token using various ERC20 input tokens * @dev This contract enables a flexible buy-and-burn mechanism for tokenomics management * * ██████╗ ██╗ ██╗██╗ ██╗ ██████╗ ██████╗ ██╗ ██╗██████╗ ███╗ ██╗ * ██╔══██╗██║ ██║╚██╗ ██╔╝ ██╔════╝ ██╔══██╗██║ ██║██╔══██╗████╗ ██║ * ██████╔╝██║ ██║ ╚████╔╝ ███████╗ ██████╔╝██║ ██║██████╔╝██╔██╗ ██║ * ██╔══██╗██║ ██║ ╚██╔╝ ╚════██║ ██╔══██╗██║ ██║██╔══██╗██║╚██╗██║ * ██████╔╝╚██████╔╝ ██║ ███████║ ██████╔╝╚██████╔╝██║ ██║██║ ╚████║ * ╚═════╝ ╚═════╝ ╚═╝ ╚══════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═══╝ * * Key features: * - Supports multiple input tokens for buying and burning a single output token * - Configurable parameters for each input token (e.g., cap per swap, cooldown interval, incentive fee) * - Direct burning of input tokens or swapping for output tokens before burning * - Uses Uniswap V3 for token swaps with customizable swap paths * - Implements a Time-Weighted Average Price (TWAP) mechanism for price quotes * - Includes slippage protection for swaps * - Provides incentives for users triggering the buy-and-burn process * * Security features: * - Access control using OpenZeppelin's AccessManaged * - Reentrancy protection * - Cooldown periods between buy-and-burn operations * * Restrictions: * - Requires a deployment of the UniSwap Universal Router * - Limits Swap paths to V3 pools only */ contract UniversalBuyAndBurn is AccessManaged, ReentrancyGuard, Multicall { using InputTokens for InputTokens.Map; using PathDecoder for PathDecoder.Hop; using SafeERC20 for IERC20; // ----------------------------------------- // Type declarations // ----------------------------------------- /** * @notice Function parameters to pass when enabling a new input token */ struct EnableInputToken { address id; uint256 capPerSwap; uint256 interval; uint256 incentiveFee; IBurnProxy burnProxy; uint256 burnPercentage; uint32 priceTwa; uint256 slippage; bytes path; bool paused; } // ----------------------------------------- // State variables // ----------------------------------------- InputTokens.Map private _inputTokens; /** * @dev Tracks the total amount of output tokens purchased and burned. * This accumulates the output tokens bought and subsequently burned over time. */ uint256 public totalOutputTokensBurned; /** * @dev The output token. A public burn function with a * function signature function burn(uint256 amount) is mandatory. */ IOutputToken public outputToken; // ----------------------------------------- // Events // ----------------------------------------- /** * @notice Emitted when output tokens are bought with an input token and are subsequently burned. * @dev This event indicates both the purchase and burning of output tokens in a single transaction. * Depending on the input token settings, might also burn input tokens directly. * @param inputTokenAddress The input token address. * @param toBuy The amount of input tokens used to buy and burn the output token. * @param toBurn The amount of input tokens directly burned. * @param incentiveFee The amout of input tokens payed as incentive fee to run the function. * @param outputTokensBurned The amount of output tokens burned. * @param caller The function caller */ event BuyAndBurn( address indexed inputTokenAddress, uint256 toBuy, uint256 toBurn, uint256 incentiveFee, uint256 outputTokensBurned, address caller ); /** * @notice Emitted when a new input token is activated for the first time * @param inputTokenAddress the Input Token Identifier (address) */ event InputTokenEnabled(address indexed inputTokenAddress, EnableInputToken params); /** * Events emitted when a input token parameter is updated */ event CapPerSwapUpdated(address indexed inputTokenAddress, uint256 newCap); event BuyAndBurnIntervalUpdated(address indexed inputTokenAddress, uint256 newInterval); event IncentiveFeeUpdated(address indexed inputTokenAddress, uint256 newFee); event SlippageUpdated(address indexed inputTokenAddress, uint256 newSlippage); event PriceTwaUpdated(address indexed inputTokenAddress, uint32 newTwa); event BurnPercentageUpdated(address indexed inputTokenAddress, uint256 newPercentage); event BurnProxyUpdated(address indexed inputTokenAddress, address newProxy); event SwapPathUpdated(address indexed inputTokenAddress, bytes newPath); event PausedUpdated(address indexed inputTokenAddress, bool paused); event DisabledUpdated(address indexed inputTOkenAddress, bool disabled); // ----------------------------------------- // Errors // ----------------------------------------- error InvalidCaller(); error CooldownPeriodActive(); error NoInputTokenBalance(); error InvalidInputTokenAddress(); error InputTokenAlreadyEnabled(); error InvalidCapPerSwap(); error InvalidInterval(); error InvalidIncentiveFee(); error InvalidBurnProxy(); error InvalidBurnPercentage(); error InvalidPriceTwa(); error InvalidSlippage(); error InvalidSwapPath(); error InputTokenPaused(); // ----------------------------------------- // Modifiers // ----------------------------------------- // ----------------------------------------- // Constructor // ----------------------------------------- /** * @notice Creates a new instance of the contract. */ constructor(IOutputToken outputToken_, address manager) AccessManaged(manager) { // store the output token interface outputToken = outputToken_; } // ----------------------------------------- // Receive function // ----------------------------------------- // ----------------------------------------- // Fallback function // ----------------------------------------- // ----------------------------------------- // External functions // ----------------------------------------- /** * @notice Buys Output tokens using an input token and then burns them. * @dev This function swaps an approved input token for Output tokens using the universal swap router, * then burns the Output tokens. * It includes security checks to prevent abuse (e.g., reentrancy, bot interactions, cooldown periods). * The function also handles an incentive fee for the caller and can burn input tokens directly if specified. * @param inputTokenAddress The address of the input token to be used for buying Output tokens. * @custom:events Emits a BoughtAndBurned event after successfully buying and burning Output tokens. * @custom:security nonReentrant * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidCaller Thrown if the caller is not the transaction origin (prevents contract calls). * @custom:error NoInputTokenBalance Thrown if there are no tokens left in the contract. * @custom:error CooldownPeriodActive Thrown if the function is called before the cooldown period has elapsed. * @custom:error InputTokenPaused Thrown if the buyAndBurn for the specified input token is paused. */ function buyAndBurn(address inputTokenAddress) external nonReentrant { // Ensure processing a valid input token if (!_inputTokens.contains(inputTokenAddress)) { revert InvalidInputTokenAddress(); } InputToken storage inputTokenInfo = _inputTokens.get(inputTokenAddress); // prevent contract accounts (bots) from calling this function // becomes obsolete with EIP-3074, there are other measures in // place to make MEV attacks inefficient (cap per swap, interval control) if (msg.sender != tx.origin) { revert InvalidCaller(); } if (inputTokenInfo.paused) { revert InputTokenPaused(); } // keep a minium gap of interval between each call // update stored timestamp if (block.timestamp - inputTokenInfo.lastCallTs <= inputTokenInfo.interval) { revert CooldownPeriodActive(); } inputTokenInfo.lastCallTs = block.timestamp; // Get the input token amount to buy and incentive fee // this call will revert if there are no input tokens left in the contract (uint256 toBuy, uint256 toBurn, uint256 incentiveFee) = _getAmounts(inputTokenInfo); if (toBuy == 0 && toBurn == 0) { revert NoInputTokenBalance(); } // Burn Input Tokens if (toBurn > 0) { // Send tokens to the burn proxy IERC20(inputTokenAddress).safeTransfer(address(inputTokenInfo.burnProxy), toBurn); // Execute burn inputTokenInfo.burnProxy.burn(); } // Buy Output Tokens and burn them uint256 outputTokensBought = 0; if (toBuy > 0) { uint256 estimatedMinimumOutput = estimateMinimumOutputAmount( inputTokenInfo.path, inputTokenInfo.slippage, inputTokenInfo.priceTwa, toBuy ); _approveForSwap(inputTokenAddress, toBuy); // Commands for the Universal Router bytes memory commands = abi.encodePacked( bytes1(0x00) // V3 swap exact input ); // Inputs for the Universal Router bytes[] memory inputs = new bytes[](1); inputs[0] = abi.encode( address(this), // Recipient is the buy and burn contract toBuy, estimatedMinimumOutput, inputTokenInfo.path, true // Payer is the buy and burn contract ); uint256 balanceBefore = outputToken.balanceOf(address(this)); // Execute the swap IUniversalRouter(Constants.UNIVERSAL_ROUTER).execute(commands, inputs, block.timestamp); outputTokensBought = outputToken.balanceOf(address(this)) - balanceBefore; // Burn the tokens bought outputToken.burn(outputTokensBought); } if (incentiveFee > 0) { // Send incentive fee IERC20(inputTokenAddress).safeTransfer(msg.sender, incentiveFee); } // Update state inputTokenInfo.totalTokensUsedForBuyAndBurn += toBuy; inputTokenInfo.totalTokensBurned += toBurn; inputTokenInfo.totalIncentiveFee += incentiveFee; totalOutputTokensBurned += outputTokensBought; // Emit events emit BuyAndBurn(inputTokenAddress, toBuy, toBurn, incentiveFee, outputTokensBought, msg.sender); } /** * @notice Enables a new input token for buyAndBurn operations. * @dev This function can only be called by the contract owner or authorized addresses. * It sets up all necessary parameters for a new input token. * @param params A struct containing all the parameters for the new input token. * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is zero. * @custom:error InputTokenAlreadyEnabled Thrown if the input token is already enabled. * @custom:error Various errors for invalid parameter values (see validation functions). * @custom:event Emits an InputTokenEnabled event with the new input token address and all its parameters. */ function enableInputToken(EnableInputToken calldata params) external restricted { if (params.id == address(0)) revert InvalidInputTokenAddress(); if (_inputTokens.contains(params.id)) revert InputTokenAlreadyEnabled(); _validateCapPerSwap(params.capPerSwap); _validateInterval(params.interval); _validateIncentiveFee(params.incentiveFee); _validateBurnProxy(address(params.burnProxy)); _validateBurnPercentage(params.burnPercentage); _validatePriceTwa(params.priceTwa); _validateSlippage(params.slippage); // Allow to enable an input token without a valid path // if all tokens are burned if (params.burnPercentage < Constants.BASIS) { _validatePath(PathDecoder.decode(params.path)); } _inputTokens.add( InputToken({ id: params.id, totalTokensUsedForBuyAndBurn: 0, totalTokensBurned: 0, totalIncentiveFee: 0, lastCallTs: 0, capPerSwap: params.capPerSwap, interval: params.interval, incentiveFee: params.incentiveFee, burnProxy: IBurnProxy(params.burnProxy), burnPercentage: params.burnPercentage, priceTwa: params.priceTwa, slippage: params.slippage, path: params.path, paused: params.paused, disabled: false }) ); emit InputTokenEnabled(params.id, params); } /** * @notice Sets the maximum amount of input tokens that can be used per buyAndBurn call. * @dev This function can only be called by the contract owner or authorized addresses. * @param inputTokenAddress The address of the input token for which to set the cap. * @param amount The maximum amount of input tokens allowed per swap, in the token's native decimals. * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidCapPerSwap Thrown if the cap per swap is zero. * @custom:event Emits a CapPerSwapUpdated event with the input token address and new cap value. */ function setCapPerSwap(address inputTokenAddress, uint256 amount) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _validateCapPerSwap(amount); _inputTokens.get(inputTokenAddress).capPerSwap = amount; emit CapPerSwapUpdated(inputTokenAddress, amount); } /** * @notice Sets the minimum time interval between buyAndBurn calls for a specific input token. * @dev This function can only be called by the contract owner or authorized addresses. * @param inputTokenAddress The address of the input token for which to set the interval. * @param secs The cooldown period in seconds between buyAndBurn calls. * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidInterval Thrown if the interval is not between 60 * seconds (1 minute) and 43200 seconds (12 hours). * @custom:event Emits a BuyAndBurnIntervalUpdated event with the input token address and new interval value. */ function setBuyAndBurnInterval(address inputTokenAddress, uint256 secs) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _validateInterval(secs); _inputTokens.get(inputTokenAddress).interval = secs; emit BuyAndBurnIntervalUpdated(inputTokenAddress, secs); } /** * @notice Sets the incentive fee percentage for buyAndBurn calls for a specific input token. * @dev This function can only be called by the contract owner or authorized addresses. * @param inputTokenAddress The address of the input token for which to set the incentive fee. * @param incentiveFee The incentive fee in basis points (0 = 0.0%, 1000 = 10%). * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidIncentiveFee Thrown if the incentive fee is not between 0 (0.0%) and 1000 (10%). * @custom:event Emits an IncentiveFeeUpdated event with the input token address and new fee value. */ function setIncentiveFee(address inputTokenAddress, uint256 incentiveFee) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _validateIncentiveFee(incentiveFee); _inputTokens.get(inputTokenAddress).incentiveFee = incentiveFee; emit IncentiveFeeUpdated(inputTokenAddress, incentiveFee); } /** * @notice Sets the slippage tolerance percentage for buyAndBurn swaps for a specific input token. * @dev This function can only be called by the contract owner or authorized addresses. * @param inputTokenAddress The address of the input token for which to set the slippage tolerance. * @param slippage The slippage tolerance in basis points (1 = 0.01%, 2500 = 25%). * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidSlippage Thrown if the slippage is not between 1 (0.01%) and 2500 (25%). * @custom:event Emits a SlippageUpdated event with the input token address and new slippage value. */ function setSlippage(address inputTokenAddress, uint256 slippage) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _validateSlippage(slippage); _inputTokens.get(inputTokenAddress).slippage = slippage; emit SlippageUpdated(inputTokenAddress, slippage); } /** * @notice Sets the Time-Weighted Average (TWA) period for price quotes used in buyAndBurn * swaps for a specific input token. Allows to disable TWA by setting mins to zero. * @dev This function can only be called by the contract owner or authorized addresses. * @param inputTokenAddress The address of the input token for which to set the TWA period. * @param mins The TWA period in minutes. * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidPriceTwa Thrown if the TWA period is not between 0 minutes and 60 minutes (1 hour). * @custom:event Emits a PriceTwaUpdated event with the input token address and new TWA value. */ function setPriceTwa(address inputTokenAddress, uint32 mins) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _validatePriceTwa(mins); _inputTokens.get(inputTokenAddress).priceTwa = mins; emit PriceTwaUpdated(inputTokenAddress, mins); } /** * @notice Sets the percentage of input tokens to be directly burned in buyAndBurn * operations for a specific input token. * @dev This function can only be called by the contract owner or authorized addresses. * @param inputTokenAddress The address of the input token for which to set the burn percentage. * @param burnPercentage The percentage of input tokens to be burned, expressed in basis points (0-10000). * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidBurnPercentage Thrown if the burn percentage is greater than 10000 basis points (100%). * @custom:event Emits a BurnPercentageUpdated event with the input token address and new burn percentage value. */ function setBurnPercentage(address inputTokenAddress, uint256 burnPercentage) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _validateBurnPercentage(burnPercentage); InputToken storage token = _inputTokens.get(inputTokenAddress); if (burnPercentage < Constants.BASIS) { // Ensure a valid path exists if burn percentage is less than 100% if (token.path.length < PathDecoder.V3_POP_OFFSET) { revert InvalidSwapPath(); } _validatePath(PathDecoder.decode(token.path)); } token.burnPercentage = burnPercentage; emit BurnPercentageUpdated(inputTokenAddress, burnPercentage); } /** * @notice Sets the burn proxy address for a specific input token in buyAndBurn operations. * @dev This function can only be called by the contract owner or authorized addresses. * @param inputTokenAddress The address of the input token for which to set the burn proxy. * @param proxy The address of the burn proxy contract. * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidBurnProxy Thrown if the proxy address is set to the zero address. * @custom:event Emits a BurnProxyUpdated event with the input token address and new burn proxy address. */ function setBurnProxy(address inputTokenAddress, address proxy) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _validateBurnProxy(proxy); _inputTokens.get(inputTokenAddress).burnProxy = IBurnProxy(proxy); emit BurnProxyUpdated(inputTokenAddress, proxy); } /** * @notice Sets the Uniswap swap path for a specific input token in buyAndBurn operations. * @dev This function can only be called by the contract owner or authorized addresses. * @param inputTokenAddress The address of the input token for which to set the swap path. * @param path The encoded swap path as a bytes array. * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:error InvalidSwapPath Thrown if the provided path is invalid (does not end with the output token). * @custom:event Emits a SwapPathUpdated event with the input token address and new swap path. */ function setSwapPath(address inputTokenAddress, bytes calldata path) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _validatePath(PathDecoder.decode(path)); _inputTokens.get(inputTokenAddress).path = path; emit SwapPathUpdated(inputTokenAddress, path); } /** * @notice Pauses or unpauses buyAndBurn for a specific input token. * @dev This function can only be called by the contract owner or authorized addresses. * It allows for temporary suspension of buyAndBurn operations for a particular input token. * @param inputTokenAddress The address of the input token for which to set the pause state. * @param paused True to pause operations, false to unpause. * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:event Emits a PausedUpdated event with the input token address and new pause state. */ function setPaused(address inputTokenAddress, bool paused) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); _inputTokens.get(inputTokenAddress).paused = paused; emit PausedUpdated(inputTokenAddress, paused); } /** * @notice Sets the disabled state for a specific input token. * @dev This function can only be called by the contract owner or authorized addresses. * It marks the specified input token as disabled or enabled, affecting its usability by * external contracts interacting with the universal buy and burn instance. This does not * directly pause buyAndBurn operations; use `setPaused` to pause them. * @param farmKeeper the farm keeper address to trigger updates when disabling a token * @param farmIds the farm to update * @param inputTokenAddress The address of the input token for which to set the disabled state. * @param disabled True to disable the token, false to enable. * @custom:security restricted * @custom:error InvalidInputTokenAddress Thrown if the input token address is not approved. * @custom:event DisabledUpdated Emitted with the input token address and new disabled state. */ function setDisabled( address farmKeeper, address[] calldata farmIds, address inputTokenAddress, bool disabled ) external restricted { if (!_inputTokens.contains(inputTokenAddress)) revert InvalidInputTokenAddress(); if (farmKeeper != address(0)) { for (uint256 idx = 0; idx < farmIds.length; idx++) { IFarmKeeper(farmKeeper).updateFarm(farmIds[idx], true); } } _inputTokens.get(inputTokenAddress).disabled = disabled; emit DisabledUpdated(inputTokenAddress, disabled); } /** * @notice Retrieves an array of all registered input tokens and their current states. * @dev This function provides a comprehensive view of all input tokens, including * calculated values for the next buyAndBurn operation. * @return InputTokenView[] An array of InputTokenView structs, each containing * detailed information about an input token. * @custom:struct InputTokenView { * address id; // Address of the input token * uint256 totalTokensUsedForBuyAndBurn; // Total amount of tokens used to buy and burn output tokens * uint256 totalTokensBurned; // Total amount of tokens directly burned * uint256 totalIncentiveFee; // Total amount of tokens paid as incentive fees * uint256 lastCallTs; // Timestamp of the last buyAndBurn call * uint256 capPerSwap; // Maximum amount allowed per swap * uint256 interval; // Cooldown period between buyAndBurn calls * uint256 incentiveFee; // Current incentive fee percentage * address burnProxy; // Address of the burn proxy contract * uint256 burnPercentage; // Percentage of tokens to be directly burned * uint32 priceTwa; // Time-Weighted Average period for price quotes * uint256 slippage; // Slippage tolerance for swaps * bool paused; // Buy and burn with the given input token is paused * uint256 balance; // Current balance of the token in this contract * uint256 nextToBuy; // Amount to be used for buying in the next operation * uint256 nextToBurn; // Amount to be directly burned in the next operation * uint256 nextIncentiveFee; // Incentive fee for the next operation * uint256 nextCall; // The UTC timestamp when buy and burn can be called next * } */ function inputTokens() external view returns (InputTokenView[] memory) { InputToken[] memory tokens = _inputTokens.values(); InputTokenView[] memory views = new InputTokenView[](tokens.length); for (uint256 idx = 0; idx < tokens.length; idx++) { views[idx] = inputToken(tokens[idx].id); } return views; } /** * @notice Checks if a given address is registered as an input token. * @dev This function provides a way to verify if an address is in the list of approved input tokens. * It returns true if the address is a registered input token and is not disabled. This function can be used * by external contracts to determine if they should interact with the universal buy and burn instance using * the specified input token. Note that even if the function returns false, it is still possible to send * funds to the buy and burn instance, but such actions may not be desired or expected. * * @param inputTokenAddress The address to check. * @return bool Returns true if the address is a registered and active input token (not disabled), * false otherwise. */ function isInputToken(address inputTokenAddress) external view returns (bool) { if (_inputTokens.contains(inputTokenAddress)) { return !_inputTokens.get(inputTokenAddress).disabled; } return false; } // ----------------------------------------- // Public functions // ----------------------------------------- /** * @notice Retrieves the InputTokenView for a specific input token. * @param inputTokenAddress The address of the input token to query. * @return inputTokenView The InputTokenView struct containing all information about the specified input token. */ function inputToken(address inputTokenAddress) public view returns (InputTokenView memory inputTokenView) { InputToken memory token = _inputTokens.get(inputTokenAddress); inputTokenView.id = token.id; inputTokenView.totalTokensUsedForBuyAndBurn = token.totalTokensUsedForBuyAndBurn; inputTokenView.totalTokensBurned = token.totalTokensBurned; inputTokenView.totalIncentiveFee = token.totalIncentiveFee; inputTokenView.lastCallTs = token.lastCallTs; inputTokenView.capPerSwap = token.capPerSwap; inputTokenView.interval = token.interval; inputTokenView.incentiveFee = token.incentiveFee; inputTokenView.burnProxy = address(token.burnProxy); inputTokenView.burnPercentage = token.burnPercentage; inputTokenView.priceTwa = token.priceTwa; inputTokenView.slippage = token.slippage; inputTokenView.paused = token.paused; inputTokenView.disabled = token.disabled; inputTokenView.path = token.path; inputTokenView.balance = IERC20(token.id).balanceOf(address(this)); (uint256 toBuy, uint256 toBurn, uint256 incentiveFee) = _getAmounts(token); inputTokenView.nextToBuy = toBuy; inputTokenView.nextToBurn = toBurn; inputTokenView.nextIncentiveFee = incentiveFee; inputTokenView.nextCall = token.lastCallTs + token.interval + 1; } /** * @notice Get a quote for output token for a given input token amount * @dev Uses Time-Weighted Average Price (TWAP) and falls back to the pool price if TWAP is not available. * @param inputTokenAddress Address of an ERC20 token contract used as the input token * @param outputTokenAddress Address of an ERC20 token contract used as the output token * @param fee The fee tier of the pool * @param twap The time period in minutes for TWAP calculation (can be set to zero to fallback to pool ratio) * @param inputTokenAmount The amount of input token for which the output token quote is needed * @return quote The amount of output token * @dev This function computes the TWAP of output token in terms of the input token * using the Uniswap V3 pools and the Oracle Library. * @dev Limitations: This function assumes both input and output tokens have 18 decimals. * For tokens with different decimals, additional scaling would be required. */ function getQuote( address inputTokenAddress, address outputTokenAddress, uint24 fee, uint256 twap, uint256 inputTokenAmount ) public view returns (uint256 quote, uint32 secondsAgo) { address poolAddress = PoolAddress.computeAddress( Constants.FACTORY, PoolAddress.getPoolKey(inputTokenAddress, outputTokenAddress, fee) ); // Default to current price IUniswapV3Pool pool = IUniswapV3Pool(poolAddress); (uint160 sqrtPriceX96, , , , , , ) = pool.slot0(); secondsAgo = uint32(twap * 60); uint32 oldestObservation = 0; // Load oldest observation if cardinality greather than zero oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(poolAddress); // Limit to oldest observation if (oldestObservation < secondsAgo) { secondsAgo = oldestObservation; } // If TWAP is enabled and price history exists, consult oracle if (secondsAgo > 0) { // Consult the Oracle Library for TWAP (int24 arithmeticMeanTick, ) = OracleLibrary.consult(poolAddress, secondsAgo); // Convert tick to sqrtPriceX96 sqrtPriceX96 = TickMath.getSqrtRatioAtTick(arithmeticMeanTick); } return ( OracleLibrary.getQuoteForSqrtRatioX96(sqrtPriceX96, inputTokenAmount, inputTokenAddress, outputTokenAddress), secondsAgo ); } /** * @notice Calculate Minimum Amount Out for a swap along a path (including multiple hops) * @dev Calculates the minimum amount of output tokens expected along a swap path * @param path The encoded swap path * @param slippage The allowed slippage in basis points (e.g., 100 for 1%) * @param twap The time period in minutes for TWAP calculation * @param inputAmount The amount of input tokens to be swapped * @return amountOutMinimum The minimum amount of output tokens expected from the swap * @dev Limitations: * 1. The slippage is applied to the final output amount, not to each hop individually. * 2. This calculation does not account for potential price impact of the swap itself. */ function estimateMinimumOutputAmount( bytes memory path, uint256 slippage, uint256 twap, uint256 inputAmount ) public view returns (uint256 amountOutMinimum) { PathDecoder.Hop[] memory hops = PathDecoder.decode(path); uint256 currentAmount = inputAmount; for (uint256 idx = 0; idx < hops.length; idx++) { (currentAmount, ) = getQuote(hops[idx].tokenIn, hops[idx].tokenOut, hops[idx].fee, twap, currentAmount); } // Apply slippage to the final amount amountOutMinimum = (currentAmount * (Constants.BASIS - slippage)) / Constants.BASIS; } // ----------------------------------------- // Internal functions // ----------------------------------------- // ----------------------------------------- // Private functions // ----------------------------------------- function _getAmounts( InputToken memory inputTokenInfo ) private view returns (uint256 toBuy, uint256 toBurn, uint256 incentiveFee) { IERC20 token = IERC20(inputTokenInfo.id); // Core Token Balance of this contract uint256 inputAmount = token.balanceOf(address(this)); uint256 capPerSwap = inputTokenInfo.capPerSwap; if (inputAmount > capPerSwap) { inputAmount = capPerSwap; } if (inputAmount == 0) { return (0, 0, 0); } incentiveFee = (inputAmount * inputTokenInfo.incentiveFee) / Constants.BASIS; inputAmount -= incentiveFee; if (inputTokenInfo.burnPercentage == Constants.BASIS) { // Burn 100% of the input tokens return (0, inputAmount, incentiveFee); } else if (inputTokenInfo.burnPercentage == 0) { // Burn 0% of the input tokens return (inputAmount, 0, incentiveFee); } // Calculate amounts toBurn = (inputAmount * inputTokenInfo.burnPercentage) / Constants.BASIS; toBuy = inputAmount - toBurn; return (toBuy, toBurn, incentiveFee); } function _approveForSwap(address token, uint256 amount) private { // Approve transfer via permit2 IERC20(token).safeIncreaseAllowance(Constants.PERMIT2, amount); // Give universal router access to tokens via permit2 // If the inputted expiration is 0, the allowance only lasts the duration of the block. IPermit2(Constants.PERMIT2).approve(token, Constants.UNIVERSAL_ROUTER, SafeCast.toUint160(amount), 0); } function _validatePath(PathDecoder.Hop[] memory hops) private view { if (hops[hops.length - 1].tokenOut != address(outputToken)) { revert InvalidSwapPath(); } } function _validateCapPerSwap(uint256 amount) private pure { if (amount == 0) revert InvalidCapPerSwap(); } function _validateInterval(uint256 secs) private pure { if (secs < 60 || secs > 43200) revert InvalidInterval(); } function _validateIncentiveFee(uint256 fee) private pure { if (fee > 1000) revert InvalidIncentiveFee(); } function _validateBurnProxy(address proxy) private pure { if (proxy == address(0)) revert InvalidBurnProxy(); } function _validateBurnPercentage(uint256 percentage) private pure { if (percentage > Constants.BASIS) revert InvalidBurnPercentage(); } function _validatePriceTwa(uint32 mins) private pure { if (mins > 60) revert InvalidPriceTwa(); } function _validateSlippage(uint256 slippage) private pure { if (slippage < 1 || slippage > 2500) revert InvalidSlippage(); } }
{ "viaIR": true, "optimizer": { "enabled": true, "runs": 288 }, "metadata": { "bytecodeHash": "none" }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"incentiveTokenAddress","type":"address"},{"internalType":"address","name":"universalBuyAndBurnAddress","type":"address"},{"internalType":"address","name":"rootKeeperAddress","type":"address"},{"internalType":"address","name":"manager","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"authority","type":"address"}],"name":"AccessManagedInvalidAuthority","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"uint32","name":"delay","type":"uint32"}],"name":"AccessManagedRequiredDelay","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"AccessManagedUnauthorized","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"DuplicatedFarm","type":"error"},{"inputs":[],"name":"FailedCall","type":"error"},{"inputs":[],"name":"InvalidAllocPoints","type":"error"},{"inputs":[],"name":"InvalidFarmId","type":"error"},{"inputs":[],"name":"InvalidFee","type":"error"},{"inputs":[],"name":"InvalidIncentiveToken","type":"error"},{"inputs":[],"name":"InvalidLiquidityAmount","type":"error"},{"inputs":[],"name":"InvalidPriceTwa","type":"error"},{"inputs":[],"name":"InvalidSlippage","type":"error"},{"inputs":[],"name":"InvalidTicks","type":"error"},{"inputs":[],"name":"InvalidTokenId","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"TotalAllocationCannotBeZero","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"indexed":false,"internalType":"uint256","name":"allocPoints","type":"uint256"}],"name":"AllocationUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"authority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint128","name":"liquidity","type":"uint128"},{"indexed":false,"internalType":"uint256","name":"amountToken0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountToken1","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"components":[{"internalType":"address","name":"tokenA","type":"address"},{"internalType":"address","name":"tokenB","type":"address"},{"internalType":"uint24","name":"fee","type":"uint24"},{"internalType":"uint56","name":"allocPoints","type":"uint56"},{"internalType":"uint256","name":"protocolFee","type":"uint256"},{"internalType":"uint32","name":"priceTwa","type":"uint32"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"int24","name":"minTick","type":"int24"},{"internalType":"int24","name":"maxTick","type":"int24"}],"indexed":false,"internalType":"struct PeggedFarmKeeper.AddFarmParams","name":"params","type":"tuple"}],"name":"FarmEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"FeeDistributed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"IncentiveTokenDistributed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"indexed":false,"internalType":"uint32","name":"newTwa","type":"uint32"}],"name":"PriceTwaUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"indexed":false,"internalType":"uint256","name":"newFee","type":"uint256"}],"name":"ProtocolFeeUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ProtocolFeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"indexed":false,"internalType":"uint256","name":"newSlippage","type":"uint256"}],"name":"SlippageUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"id","type":"address"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"liquidity","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountToken0","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountToken1","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"buyAndBurn","outputs":[{"internalType":"contract UniversalBuyAndBurn","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"collectProtocolFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"uint128","name":"liquidity","type":"uint128"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"tokenA","type":"address"},{"internalType":"address","name":"tokenB","type":"address"},{"internalType":"uint24","name":"fee","type":"uint24"},{"internalType":"uint56","name":"allocPoints","type":"uint56"},{"internalType":"uint256","name":"protocolFee","type":"uint256"},{"internalType":"uint32","name":"priceTwa","type":"uint32"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"int24","name":"minTick","type":"int24"},{"internalType":"int24","name":"maxTick","type":"int24"}],"internalType":"struct PeggedFarmKeeper.AddFarmParams","name":"params","type":"tuple"}],"name":"enableFarm","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"}],"name":"farmView","outputs":[{"components":[{"internalType":"address","name":"id","type":"address"},{"components":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"uint24","name":"fee","type":"uint24"}],"internalType":"struct PoolAddress.PoolKey","name":"poolKey","type":"tuple"},{"components":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint128","name":"liquidity","type":"uint128"}],"internalType":"struct LP","name":"lp","type":"tuple"},{"internalType":"uint256","name":"allocPoints","type":"uint256"},{"internalType":"uint256","name":"lastRewardTime","type":"uint256"},{"internalType":"uint256","name":"accIncentiveTokenPerShare","type":"uint256"},{"internalType":"uint256","name":"accFeePerShareForToken0","type":"uint256"},{"internalType":"uint256","name":"accFeePerShareForToken1","type":"uint256"},{"internalType":"uint256","name":"protocolFee","type":"uint256"},{"internalType":"uint32","name":"priceTwa","type":"uint32"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"uint256","name":"balanceToken0","type":"uint256"},{"internalType":"uint256","name":"balanceToken1","type":"uint256"}],"internalType":"struct FarmView","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"farmViews","outputs":[{"components":[{"internalType":"address","name":"id","type":"address"},{"components":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"uint24","name":"fee","type":"uint24"}],"internalType":"struct PoolAddress.PoolKey","name":"poolKey","type":"tuple"},{"components":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint128","name":"liquidity","type":"uint128"}],"internalType":"struct LP","name":"lp","type":"tuple"},{"internalType":"uint256","name":"allocPoints","type":"uint256"},{"internalType":"uint256","name":"lastRewardTime","type":"uint256"},{"internalType":"uint256","name":"accIncentiveTokenPerShare","type":"uint256"},{"internalType":"uint256","name":"accFeePerShareForToken0","type":"uint256"},{"internalType":"uint256","name":"accFeePerShareForToken1","type":"uint256"},{"internalType":"uint256","name":"protocolFee","type":"uint256"},{"internalType":"uint32","name":"priceTwa","type":"uint32"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"uint256","name":"balanceToken0","type":"uint256"},{"internalType":"uint256","name":"balanceToken1","type":"uint256"}],"internalType":"struct FarmView[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"uint128","name":"liquidity","type":"uint128"}],"name":"getAmountsForLiquidity","outputs":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenA","type":"address"},{"internalType":"address","name":"tokenB","type":"address"},{"internalType":"uint24","name":"fee","type":"uint24"},{"internalType":"int24","name":"minTick","type":"int24"},{"internalType":"int24","name":"maxTick","type":"int24"}],"name":"getFarmId","outputs":[{"internalType":"address","name":"id","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getLiquidityForAmount","outputs":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"uint128","name":"liquidity","type":"uint128"},{"internalType":"uint256","name":"amount0","type":"uint256"},{"internalType":"uint256","name":"amount1","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"}],"name":"getPoolForId","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"incentiveToken","outputs":[{"internalType":"contract IIncentiveToken","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isConsumingScheduledOp","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"collectFees","type":"bool"}],"name":"massUpdateFarms","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"protocolFees","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rootKeeper","outputs":[{"internalType":"contract IFarmKeeper","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rootKeeperFarmId","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"uint256","name":"allocPoints","type":"uint256"}],"name":"setAllocation","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"uint32","name":"mins","type":"uint32"}],"name":"setPriceTwa","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"uint256","name":"fee","type":"uint256"}],"name":"setProtocolFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"uint256","name":"slippage","type":"uint256"}],"name":"setSlippage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"}],"name":"ticks","outputs":[{"internalType":"int24","name":"minTick","type":"int24"},{"internalType":"int24","name":"maxTick","type":"int24"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAllocPoints","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"bool","name":"collectFees","type":"bool"}],"name":"updateFarm","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"address","name":"userId","type":"address"}],"name":"userView","outputs":[{"components":[{"internalType":"address","name":"token0","type":"address"},{"internalType":"address","name":"token1","type":"address"},{"internalType":"uint128","name":"liquidity","type":"uint128"},{"internalType":"uint256","name":"balanceToken0","type":"uint256"},{"internalType":"uint256","name":"balanceToken1","type":"uint256"},{"internalType":"uint256","name":"pendingFeeToken0","type":"uint256"},{"internalType":"uint256","name":"pendingFeeToken1","type":"uint256"},{"internalType":"uint256","name":"pendingIncentiveTokens","type":"uint256"}],"internalType":"struct UserView","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"id","type":"address"},{"internalType":"uint128","name":"liquidity","type":"uint128"},{"internalType":"uint256","name":"slippage","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060409080825234620002ad5760808162006ddf8038038091620000258285620002e4565b833981010312620002ad57620000796200003f8262000308565b9160209060606200005283830162000308565b916200006087820162000308565b6001600160a01b03958693919284928392910162000308565b169360018060a01b0319977f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad87600097808c8a54161789558c51908152a16001805560075490610100600160a81b039060081b1690610100600160a81b0319161760075516866008541617600855168460095416176009558451610c2e908181019160018060401b0391808410838511176200028f5780620061b19483868339039085f08015620002a357861687600a541617600a5587519281840192848410908411176200028f57908392918339039082f0801562000283578316908185600b541617600b558584600a54168381848480516200017781620002b2565b828152828a820152015281811162000277575b505085808351926200019c84620002b2565b16948583521690818682015261271092839101528751936309f56ab160e11b85526004850152602484015260448301526c01000000000000000000000000606483015282826084818473c36442b4a4522e871399cd717abdd847ab11fe885af19283156200026b57819362000227575b5050501690600c541617600c5551615e9390816200031e8239f35b9091809350813d831162000263575b620002428183620002e4565b81010312620002605750620002579062000308565b3880806200020c565b80fd5b503d62000236565b508551903d90823e3d90fd5b9450905038806200018a565b508451903d90823e3d90fd5b634e487b7160e01b85526041600452602485fd5b88513d86823e3d90fd5b600080fd5b606081019081106001600160401b03821117620002ce57604052565b634e487b7160e01b600052604160045260246000fd5b601f909101601f19168101906001600160401b03821190821017620002ce57604052565b51906001600160a01b0382168203620002ad5756fe608080604052600436101561001357600080fd5b600090813560e01c908163158ef93e14612897575080631c514e1a146128065780631fa36cbe146127e85780632a1174c51461274057806337cc5bc01461271957806344680af9146126b257806344ff9a4c146126415780634e15fa39146121d157806352390e1d1461216a5780635b29212914612136578063638126f81461210c578063656a03d61461205d578063666687bb14611b495780637a9e5e4b14611a9c5780638129fc1c146115eb5780638d1fc0bd14610d8e5780638fb3603714610d495780639076c16614610ba957806398772e2414610b63578063a440fef914610ae2578063aa6df29914610abb578063ab7ca029146107e5578063ac9650d8146105de578063b5b3ca2c14610541578063bf7e214f1461051b578063c474a5cc14610481578063c8635ad114610296578063d02aac28146101cc578063dcf844a7146101945763f542496e1461016b57600080fd5b3461019157806003193601126101915760206001600160a01b0360095416604051908152f35b80fd5b50346101915760203660031901126101915760406020916001600160a01b036101bb6128b8565b168152600583522054604051908152f35b5034610191576040366003190112610191576101e66128b8565b60243563ffffffff811691828203610291576102023633614af4565b61021f816001600160a01b03166000526003602052604060002090565b541561027f576001600160a01b0360209161025a7fddef3248ad548943a191a06d87454f832790916835dd0351eb40fc2b92316e9e94614cf4565b600b61026582613801565b01805463ffffffff1916861790556040519485521692a280f35b604051631f4d2e4560e11b8152600490fd5b600080fd5b5034610191578060031936011261019157600254906102b482613767565b6102c16040519182612afd565b82815260028252602092827f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace858085015b8484106103d95750858580519261032161030b85613767565b946103196040519687612afd565b808652613767565b601f190181845b8281106103c357505050825b8251811015610379578061035d6001600160a01b03610355600194876137b2565b5151166133c5565b61036782886137b2565b5261037281876137b2565b5001610334565b6040805183815286518185018190528785019282019085885b82811061039f5784840385f35b90919282610200826103b46001948a516128e4565b01960191019492919094610392565b6103cb613323565b828289010152018290610328565b600191600d916040516103eb81612a3e565b6001600160a01b038654168152610403858701612b1f565b838201526104136003870161339e565b60408201526005860154606082015260068601546080820152600786015460a0820152600886015460c0820152600986015460e0820152600a86015461010082015263ffffffff600b87015416610120820152600c86015461014082015281520192019201919086906102f2565b50346101915760403660031901126101915761049b6128b8565b602435906104a93633614af4565b6104c6816001600160a01b03166000526003602052604060002090565b541561027f5760206001600160a01b037f7971d2b2782d522602d7df83da2901f5c32c3b383eb2e82da8acf32ec3d9bb549261050185614d2a565b84600c61050d83613801565b01556040519485521692a280f35b50346101915780600319360112610191576001600160a01b036020915416604051908152f35b50346101915760403660031901126101915761055b6128b8565b602435906105693633614af4565b610586816001600160a01b03166000526003602052604060002090565b541561027f5760206001600160a01b037f389f6e01d911ce2a6919bdcf4e57d270003243ca9c54e7911454a70f89aee19e926105c185614d5b565b84600a6105cd83613801565b6105d561486d565b61050d81614a63565b5034610191576020806003193601126107e1576004359167ffffffffffffffff908184116101915736602385011215610191578360040135918083116107e15760246005913660248660051b890101116107dd5760405186810192818410838511176107c7578360409795975285825261065785613767565b966106656040519889612afd565b85885261067186613767565b601f199a908b018a895b8b8382106107b75750505050368190036042190191885b888110610710578c8c8c8c60405192808401908085528351809252604085018160408460051b880101950193965b8388106106cd5786860387f35b9091929394838080600193603f198b820301875285601f8b516106fb815180928187528780880191016129ff565b011601019701930197019690939291936106c0565b8481831b84010135848112156107b357830185810135908882116107af576044019080360382136107af5761079d838f8f938f600197968f6107838f958495610797976107779460405195838794868601998a37840191858301938a8552519384916129ff565b01038084520182612afd565b5190305af46107906150a9565b9030615dc5565b926137b2565b526107a8818d6137b2565b5001610692565b8b80fd5b8a80fd5b60609082018301528c910161067b565b634e487b7160e01b600052604160045260246000fd5b8380fd5b5080fd5b5034610191576040366003190112610191576107ff6128b8565b906024908135926001600160801b038416840361029157610833816001600160a01b03166000526003602052604060002090565b541561027f5761084290613801565b9160406001600160a01b03928385541681526006602052209360018401918361087261086d85612b1f565b613fdb565b169560405191633850c7bd60e01b80845260e0846004818c5afa9384156109ea57600094610a94575b5060405190815260e0816004818c5afa9889156109ea5760009160009a610a59575b5061ffff809a16918215610a30578a16600101918a8311610a1b578a906040519b8c9463252c09d760e01b80965216061660048b01526080998a818581855afa9283156109ea578b916000906000956109f6575b50931561098b575b50505063ffffffff809116814216031161097757508492600292610957925461095161094682870b614135565b9160181c860b614135565b916144bc565b949093541694015416604051938452602084015260408301526060820152f35b634e487b7160e01b60009081526011600452fd5b9091925083604051809481938252600060048301525afa9081156109ea576000916109ba575b50388981610919565b6109da9150893d8b116109e3575b6109d28183612afd565b8101906150f7565b505050386109b1565b503d6109c8565b6040513d6000823e3d90fd5b9050610a10919450823d84116109e3576109d28183612afd565b959291505038610911565b83634e487b7160e01b60005260116004526000fd5b60405162461bcd60e51b815260206004820152600281860152614e4960f01b6044820152606490fd5b909950610a7e915060e03d60e011610a8d575b610a768183612afd565b8101906140b0565b505050925090509098386108bd565b503d610a6c565b610aae91945060e03d60e011610a8d57610a768183612afd565b505050505050923861089b565b503461019157806003193601126101915760206001600160a01b0360085416604051908152f35b5034610191576020366003190112610191576001600160a01b03610b046128b8565b610b0e3633614af4565b1680825260056020527fd72df92d2a1deb61bf4978dfd140c21dcb0a449bd22cb16af2cd7a853d250526602060408420848154915580610b53575b604051908152a280f35b610b5e813386615068565b610b49565b503461019157602036600319011261019157604080916001600160a01b03610b896128b8565b168152600660205220548151908060020b825260181c60020b6020820152f35b503461019157604036600319011261019157610bc36128b8565b6024803591610bd23633614af4565b610bef816001600160a01b03166000526003602052604060002090565b541561027f57610bfe83614cea565b610c0781613801565b91610c1061484a565b60029060025491610c1f61486d565b865b838110610ceb5750505050600180558260058301805493828511610cb3575b9160209391610c8c82610c87886001600160a01b03977f183f2ce0b749ed46549cb16586af0c501abab8d242cc4b2076aec30d2dd9c4bc9a15610c9c575b50600e54612b58565b612f9c565b600e55556040519485521692a280f35b6006610caa600d5486614534565b91015538610c7e565b915091610ccc600e54610cc68787612b58565b90612b58565b15610cd957918491610c40565b604051632aeaf3c360e01b8152600490fd5b8154811015610d0f5780610d09610d036001936137c6565b506149e3565b01610c21565b60405162461bcd60e51b81526020600482015260138185015272496e646578206f7574206f6620626f756e647360681b6044820152606490fd5b5034610191578060031936011261019157805460a01c60ff1615610d8657506020638fb3603760e01b5b6040516001600160e01b03199091168152f35b602090610d73565b503461019157610d9d366129c1565b610da561484a565b610dc2846001600160a01b03166000526003602052604060002090565b541561027f57610dd184613801565b610dee856001600160a01b03166000526004602052604060002090565b33600052602052604060002090610e0361486d565b610e0c81614a63565b6001600160801b03825416610e33610e28600784015483614534565b600185015490612b58565b610e6c610e61610e55610e4a600887015486614534565b600288015490612b58565b93600986015490614534565b600386015490612b58565b93898a809781996001600160801b038c16611043575b505050610ee26003916001600160801b03610ea185549282841661374c565b1680916001600160801b031916178455610ebf600788015482614534565b6001850155610ed2600888015482614534565b6002850155600987015490614534565b91015580610ff3575b5080610f9f575b5081610f4b575b50506001600160801b0360405193168352602083015260408201527f3651de12490166ef8ea536fe5334e650cb52a7a6fd6fb51730e7b3fc62f2ba4560606001600160a01b0333941692a36001805580f35b6002016001600160a01b038091610f66843384845416614fc1565b5416916040519081527f4303f1dc403b2d82b2ff82c450e8c03a40429f3fc282993ec09fc61951fea57260203393891692a43880610ef9565b600182016001600160a01b038091610fbb843384845416614fc1565b5416916040519081527f4303f1dc403b2d82b2ff82c450e8c03a40429f3fc282993ec09fc61951fea572602033938b1692a438610ef2565b6001600160a01b039061100e81338460075460081c16614fc1565b6040519081527f04d7dcb8f092f33995d9cb542568906cf639a16be52a638fff741fec0c3d86b1602033938b1692a338610eeb565b92509750975060038501541560001461138557801561137757611068905b8986615535565b611089846001600160a01b0360018b9d959d97969701541630903390615b40565b6110a28430336001600160a01b0360028d015416615b40565b6110b9836001600160a01b0360018b015416615b7f565b6110d0846001600160a01b0360028b015416615b7f565b6001600160a01b038854168b52600660205260408b20996001600160a01b0360018a0154169a62ffffff60028b01549154916040519d8e61111081612a3e565b528d60206001600160a01b03831691015260a01c1660408d01528060020b60608d015260181c60020b60808c01528360a08c01528460c08c015260e08b01526101008a0152306101208a015261014089015261014060405198634418b22b60e11b8a526001600160a01b0381511660048b01526001600160a01b0360208201511660248b015262ffffff60408201511660448b0152606081015160020b60648b0152608081015160020b60848b015260a081015160a48b015260c081015160c48b015260e081015160e48b01526101008101516101048b01526001600160a01b03610120820151166101248b01520151610144890152608088610164818c73c36442b4a4522e871399cd717abdd847ab11fe885af191821561136c5789918a998b94611303575b5091839161125460039561124e8e610ee297612b58565b92612b58565b90806112e5575b50806112c7575b50838801556004870180546001600160801b036112818c82841661374c565b16906001600160801b0319161790556112a66001600160a01b03600189015416615cb6565b6112bc6001600160a01b03600289015416615cb6565b98975b918c91610e82565b6112df90336001600160a01b0360028c015416614fc1565b38611262565b6112fd90336001600160a01b0360018d015416614fc1565b3861125b565b995092509850506080873d608011611364575b8161132360809383612afd565b810103126107b357610ee26003918861124e9a6112548251936060604061134c6020870161371a565b9501519d01519c9d50929b955092935091508a611237565b3d9150611316565b6040513d8b823e3d90fd5b50611068600c850154611061565b90965080156115dd5761139a905b8885615535565b6113ba846001600160a01b0360018a9d979c959d01541630903390615b40565b6113d38330336001600160a01b0360028c015416615b40565b6113ea896001600160a01b0360018a015416615b7f565b611401836001600160a01b0360028a015416615b7f565b6003870154996040519a8b67ffffffffffffffff60c08281810110920111176107c75760c08c016040908152908c5260208c018b8152818d0186815260608e0193845260808e0194855260a08e01958652915163219f5d1760e01b81529c5160048e01525160248d01525160448c01525160648b01525160848a01525160a489015287808c5a9260c49173c36442b4a4522e871399cd717abdd847ab11fe88606095f19081156115d2578b978c998d93611573575b5091610ee2916114cc8261124e8d600397612b58565b9080611555575b5080611537575b506004870180546001600160801b036114f58c82841661374c565b16906001600160801b03191617905561151a6001600160a01b03600189015416615cb6565b6115306001600160a01b03600289015416615cb6565b98976112bf565b61154f90336001600160a01b0360028b015416614fc1565b386114da565b61156d90336001600160a01b0360018c015416614fc1565b386114d3565b9850915097506060873d6060116115ca575b8161159260609383612afd565b810103126107b357610ee260039161124e996114cc6115b08b61371a565b60208c01516040909c01519b9c509a9450909290506114b6565b3d9150611585565b6040513d8d823e3d90fd5b5061139a600c840154611393565b50346101915780600319360112610191576116063633614af4565b6007549060ff8216611a8b576001600160a01b0380600954169281600c541690604051635b29212960e01b81528260048201526102009081816024818a5afa8015611a8057611942575b505060ff1916600117600755600a546040516352390e1d60e01b8152600481019290925282166024820152683635c9adc5dea0000060448201529260a090849060649082905afa801561181057829083948492859186936118db575b50841691823b156118d7576040516340c10f1960e01b8082523060048301526024820184905290878160448183895af180156118a1576118c4575b508587981690813b156118965760405190815230600482015260248101839052878160448183865af19081156118a15788916118ac575b50508560095416604051908163095ea7b360e01b96878252818b8161176060209a8b9760048401602090939291936001600160a01b0360408201951681520152565b03925af180156118a15761185f575b5060095460405194855286166001600160a01b03166004850152602484019190915281908390818881604481015b03925af1801561185457611820575b5050816009541691600c541690823b1561181b5760648492836001600160801b039560405196879586946360fb0f5960e01b865260048601521660248401524260448401525af18015611810576118005750f35b61180990612ab0565b6101915780f35b6040513d84823e3d90fd5b505050fd5b81813d831161184d575b6118348183612afd565b8101031261181b576118459061373f565b5038806117ac565b503d61182a565b6040513d87823e3d90fd5b91908383813d831161189a575b6118768183612afd565b810103126118965761179d9461188c859461373f565b509450909161176f565b8780fd5b503d61186c565b6040513d8a823e3d90fd5b6118b590612ab0565b6118c057863861171e565b8680fd5b966118d0879998612ab0565b96976116e7565b8580fd5b96505050505060a0833d60a01161193a575b816118fa60a09383612afd565b810103126107e15761190b836136f6565b92611918602082016136f6565b6119246040830161371a565b60608301516080909301519195909290846116ac565b3d91506118ed565b80823d8411611a79575b6119568183612afd565b8101039182126118d7576040519161196d83612a77565b611976826136f6565b83526060601f198201126118c057604090815161199281612a94565b61199e602085016136f6565b81526119ab8385016136f6565b60208201526119bc6060850161370a565b818401526020850152607f1901126118d7579160019160a094936040516119e281612a22565b608082015181526119f487830161371a565b6020820152604083015260c0810151606083015260e081015160808301526101e0610100918281015188850152610120928382015160c08601526101408083015160e087015261016091828401519087015261018094611a5586850161372e565b908701526101a0830151908601526101c08201519085015201519101529192611650565b503d61194c565b6040513d88823e3d90fd5b60405162dc149f60e41b8152600490fd5b503461019157602036600319011261019157611ab66128b8565b8154906001600160a01b03908183163303611b3257803b15611b1957916020917f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad931680916bffffffffffffffffffffffff60a01b16178455604051908152a180f35b6040516361798f2f60e11b815291166004820152602490fd5b60405162d1953b60e31b8152336004820152602490fd5b503461019157611b58366129c1565b611b6061484a565b611b7d846001600160a01b03166000526003602052604060002090565b541561027f57611b8c84613801565b91611baa856001600160a01b03166000526004602052604060002090565b33875260205260408620926001600160801b038454166001600160801b03861611801561204c575b61203a57611bde61486d565b611be781614a63565b835493600782019283546001600160801b03871690611c0591614534565b9160018101928354611c1691612b58565b966008850180546001600160801b03831690611c3191614534565b6002840154611c3f91612b58565b9460098701546001600160801b03841690611c5991614534565b6003850154611c6791612b58565b97611c7b8c6001600160801b0386166136dd565b6001600160801b031680946001600160801b03191617855554611c9e9084614534565b905554611cab9082614534565b60028301556009850154611cbe91614534565b600390910155801561202c57611cd6905b8784615535565b9150959150600384015495604051968760a081011067ffffffffffffffff60a08a0111176120185760a0880160409081529088526001600160801b038a811660208a01908152828a0193845260608a0194855260808a019586528251630624e65f60e11b8152995160048b0152511660248901529051604488015290516064870152905160848601528460a4818b73c36442b4a4522e871399cd717abdd847ab11fe885af19485156118a15788948996611ff1575b50611e0b60406003850154815190611da282612a5b565b815233602082019081526001600160801b03898116848401528a811660608401908152845163fc6f786560e01b81528451600482015292516001600160a01b03166024840152604090930151811660448301529151909116606482015291829081906084820190565b03818d73c36442b4a4522e871399cd717abdd847ab11fe885af18015611fe657611fb8575b506004830180546001600160801b03611e4b8a8284166136dd565b16906001600160801b03191617905580611f68575b5080611f14575b5081611ec0575b50506001600160801b0360405193168352602083015260408201527febff2602b3f468259e1e99f613fed6691f3a6526effe6ef3e768ba7ae7a36c4f60606001600160a01b0333941692a36001805580f35b6002016001600160a01b038091611edb843384845416614fc1565b5416916040519081527f4303f1dc403b2d82b2ff82c450e8c03a40429f3fc282993ec09fc61951fea57260203393891692a43880611e6e565b600182016001600160a01b038091611f30843384845416614fc1565b5416916040519081527f4303f1dc403b2d82b2ff82c450e8c03a40429f3fc282993ec09fc61951fea572602033938b1692a438611e67565b6001600160a01b0390611f8381338460075460081c16614fc1565b6040519081527f04d7dcb8f092f33995d9cb542568906cf639a16be52a638fff741fec0c3d86b1602033938b1692a338611e60565b611fd99060403d604011611fdf575b611fd18183612afd565b810190614fab565b50611e30565b503d611fc7565b6040513d8c823e3d90fd5b90955061200e91945060403d604011611fdf57611fd18183612afd565b9390939438611d8b565b634e487b7160e01b8c52604160045260248cfd5b50611cd6600c830154611ccf565b604051631f2c4df760e11b8152600490fd5b506001600160801b03851615611bd2565b50346101915760a0366003190112610191576120776128b8565b906120806128ce565b6120886129af565b90606435938460020b8095036107dd57608435938460020b8095036101915760206001600160a01b0387876121006120c461086d8a8a8a614ca0565b926120f260405193849288840196876040919493926001600160a01b03606083019616825260208201520152565b03601f198101835282612afd565b51902016604051908152f35b503461019157806003193601126101915760206001600160a01b0360075460081c16604051908152f35b50346101915760203660031901126101915761020061215b6121566128b8565b6133c5565b61216860405180926128e4565bf35b50346101915760603660031901126101915760a06001600160801b036121a26121916128b8565b6121996128ce565b60443591612fa9565b936040959291939551956001600160a01b03809216875216602086015216604084015260608301526080820152f35b5034610191576101209081600319360112610191576121f03633614af4565b600435916001600160a01b0390818416840361263d576024936024358381168103612639579061222891612222612f40565b91614ca0565b9161223283613fdb565b61223a612f52565b90826002926120f261227f61224d612f62565b860b604051928391602097888401968a0b90876040919493926001600160a01b03606083019616825260208201520152565b51902016946122a1866001600160a01b03166000526003602052604060002090565b546126275766ffffffffffffff916122c1836122bb612f73565b16614cea565b6122d16122cc612f89565b614cf4565b60c435926122de84614d2a565b608435916122eb83614d5b565b6122f3612f40565b6122fb612f52565b612303612f62565b9181890b620d899f1981128015612619575b6125a357838a0b13156125ca5761232e612335916154a5565b8092614d77565b880b15918215926125b5575b50506125a35761235d600e5483612356612f73565b1690612f9c565b156125915761236a61484a565b85549a61237561486d565b8a5b8c811061253957505088999a506001805560405161239481612a22565b8b81528b82820152826123a5612f73565b8d826123af612f73565b16159050612532576123cd6123c2612f73565b83600d549116614534565b925b6123d7612f89565b97856040519e8f906123e882612a3e565b8152015260408d01521660608b015260808a01528a60a08a01528a60c08a01528a60e08a015261243261010099848b82015263ffffffff8096168a82015286610140820152614d89565b5061243b612f52565b908a8c526006815260408c20805492612452612f62565b60181b9362ffffff809565ffffff0000001692169065ffffffffffff19161717905561248983612480612f73565b16600e54612f9c565b600e5560405197806124996128b8565b1689526124a46128ce565b16908801526124b16129af565b16604087015260643590811680910361252e576060860152608085015260a4359081168091036118965760a084015260c083015260e43580820b8091036118c05760e08301526101043580910b8091036118d7577f257b162f48e241fa38bace67101b4dfc2b8000e15dd9459aeea5f0eb0ec8389593820152a280f35b8980fd5b8d926123cf565b87548110156125575780612551610d036001936137c6565b01612377565b60405162461bcd60e51b81526004810184905260138184015272496e646578206f7574206f6620626f756e647360681b6044820152606490fd5b60405163017f373f60e51b8152600490fd5b604051631434ed7f60e01b8152600490fd5b6125bf9250614d77565b860b15153880612341565b60405162461bcd60e51b815260048101859052602160248201527f6d696e5469636b206d757374206265206c657373207468616e206d61785469636044820152606b60f81b6064820152608490fd5b50620d89a0848b0b13612315565b60405163061a581b60e51b8152600490fd5b8480fd5b8280fd5b50346101915760403660031901126101915761265b6128b8565b602435801515810361263d5761266f61484a565b61268c826001600160a01b03166000526003602052604060002090565b541561027f576126a66126ab926126a161486d565b613801565b614aa6565b6001805580f35b5034610191576020366003190112610191576126cc6128b8565b6126e9816001600160a01b03166000526003602052604060002090565b541561027f5761270861086d6001612702602094613801565b01612b1f565b6001600160a01b0360405191168152f35b503461019157806003193601126101915760206001600160a01b03600c5416604051908152f35b5034610191576020806003193601126107e15760043590811515820361263d5761276861484a565b6002906002549161277761486d565b845b83811061278857856001805580f35b81548110156127ad57806127a7866127a16001946137c6565b50614aa6565b01612779565b60405162461bcd60e51b8152600481018490526013602482015272496e646578206f7574206f6620626f756e647360681b6044820152606490fd5b50346101915780600319360112610191576020600e54604051908152f35b5034610191576040366003190112610191576101006128346128266128b8565b61282e6128ce565b90612b7b565b60e0604051916001600160a01b0380825116845260208201511660208401526001600160801b036040820151166040840152606081015160608401526080810151608084015260a081015160a084015260c081015160c0840152015160e0820152f35b9050346107e157816003193601126107e15760209060ff6007541615158152f35b600435906001600160a01b038216820361029157565b602435906001600160a01b038216820361029157565b6101e09062ffffff60406001600160a01b038084511686526020840151908082511660208801526020820151168287015201511660608401526001600160801b03602060408301518051608087015201511660a0840152606081015160c0840152608081015160e084015260a081015190610100918285015260c0810151610120908186015260e08201519261014093848701528201519061016091828701528201519263ffffffff6101809416848701528201516101a08601528101516101c08501520151910152565b6044359062ffffff8216820361029157565b6080906003190112610291576004356001600160a01b038116810361029157906024356001600160801b038116810361029157906044359060643590565b60005b838110612a125750506000910152565b8181015183820152602001612a02565b6040810190811067ffffffffffffffff8211176107c757604052565b610160810190811067ffffffffffffffff8211176107c757604052565b6080810190811067ffffffffffffffff8211176107c757604052565b6101a0810190811067ffffffffffffffff8211176107c757604052565b6060810190811067ffffffffffffffff8211176107c757604052565b67ffffffffffffffff81116107c757604052565b610100810190811067ffffffffffffffff8211176107c757604052565b60a0810190811067ffffffffffffffff8211176107c757604052565b90601f8019910116810190811067ffffffffffffffff8211176107c757604052565b90604051612b2c81612a94565b604062ffffff829460016001600160a01b03918281541686520154908116602085015260a01c16910152565b91908203918211612b6557565b634e487b7160e01b600052601160045260246000fd5b906040805190612b8a82612ac4565b60009081835260209382858501528282850152826060850152608083818601528360a08601528360c08601528360e080960152612bda876001600160a01b03166000526003602052604060002090565b5415612f2f57612c06612bec88613801565b976001600160a01b03166000526004602052604060002090565b6001600160a01b0380931685528652828420936001600160801b038554168015612ee957612c338961387c565b96919760018c019487612c4861086d88612b1f565b16908b855192633850c7bd60e01b808552600492858481855afa948515612eba578f908596612ec4575b508851918252818481855afa908115612eba57908f929185938692612e8f575b505061ffff809116928315612e6557811660010190808211612e52578951938163252c09d760e01b93848752160616848401528b83602481855afa928315612e4857908c9186908795612e23575b509315612dcd575b50505063ffffffff8091168142160311612dba57509085858f938f8c8096541682526006905220548060020b612d1d90614135565b9060181c60020b612d2d90614135565b90612d37936144bc565b98909654169c600201541691612d4d9085614534565b6002820154612d5b91612b58565b97612d669085614534565b6003820154612d7491612b58565b98612d7f9085614534565b9060010154612d8d91612b58565b9982519b612d9a8d612ac4565b8c528b0152890152606088015286015260a085015260c084015282015290565b634e487b7160e01b825260119052602490fd5b909192506024895180948193825287878301525afa908115612e19578391612df9575b50388a81612ce8565b612e1091508a3d8c116109e3576109d28183612afd565b50505038612df0565b87513d85823e3d90fd5b9050612e3d919450823d84116109e3576109d28183612afd565b959291505038612ce0565b89513d87823e3d90fd5b634e487b7160e01b865260118552602486fd5b50508f836064918a519162461bcd60e51b835282015260026024820152614e4960f01b6044820152fd5b612eaa93945080919250903d10610a8d57610a768183612afd565b5050509392509050918f80612c92565b88513d86823e3d90fd5b81612edc9297503d8811610a8d57610a768183612afd565b5050505050509438612c72565b92819791955060028160018b9795970154169901541690825198612f0c8a612ac4565b89528801528601528160608601528401528160a08401528160c084015282015290565b8251631f4d2e4560e11b8152600490fd5b60443562ffffff811681036102915790565b60e4358060020b81036102915790565b610104358060020b81036102915790565b60643566ffffffffffffff811681036102915790565b60a43563ffffffff811681036102915790565b91908201809211612b6557565b92909192612fca816001600160a01b03166000526003602052604060002090565b541561027f57612fd990613801565b926001600160a01b039081855416600090815260066020526040918282209260018801968561301561086d826002818d54169d0154169a612b1f565b1693825195633850c7bd60e01b80885260e0600497818a8a81845afa998a156132d557859a6132df575b50865192835281838a81845afa9283156132d557859286946132aa575b505061ffff8093169182156132825783166001019280841161326f578751928163252c09d760e01b95868652160616898301526080928383602481855afa9283156132655786908794613240575b5092156131e9575b5050905063ffffffff80911681421603116131d65754918260020b976130d789614135565b9360181c60020b966130e888614135565b958c8a841687851681116131405750505050808c16911614600014613132575061312061312e95936131289897959361095193614f6b565b968794614135565b91614135565b9091565b968796508695509350505050565b929591949288851611156131b05750508116908c8116820361317957505050505091610951613120859361312898979561312e97614f6b565b9091929394508a16146000146131a357505091610951613120859361312e96613128999896614f28565b516307ed98ed60e31b8152fd5b935093501614600014613132575061312061312e95936131289897959361095193614f28565b634e487b7160e01b825260118652602482fd5b8391925060248851809481938252888d8301525afa918215613236578492613216575b50508038806130b2565b61322c9250803d106109e3576109d28183612afd565b505050388061320c565b86513d86823e3d90fd5b905061325a919350843d86116109e3576109d28183612afd565b9492915050386130aa565b88513d88823e3d90fd5b634e487b7160e01b865260118a52602486fd5b875162461bcd60e51b81526020818c015260026024820152614e4960f01b6044820152606490fd5b80919294506132c59350903d10610a8d57610a768183612afd565b505050925090509091388061305c565b87513d87823e3d90fd5b6132f7919a50823d8411610a8d57610a768183612afd565b505050505050983861303f565b6040519061331182612a94565b60006040838281528260208201520152565b6040519061333082612a77565b600080835261018083613341613304565b602082015260405161335281612a22565b83815283602082015260408201528260608201528260808201528260a08201528260c08201528260e0820152826101008201528261012082015282610140820152826101608201520152565b906040516133ab81612a22565b60206001600160801b036001839580548552015416910152565b6133cd613323565b506133eb816001600160a01b03166000526003602052604060002090565b541561027f576133fa81613801565b906001600160a01b039182600092168252600660205260408220908361342561086d60018401612b1f565b169260405190633850c7bd60e01b9384835260049160e08484818a5afa9384156136a95781946136b6575b5060405195865260e08684818a5afa9687156136a9578196829861367c575b5061ffff8098169687156136535788166001019780891161364057604051978163252c09d760e01b9a8b8b52160616848801526080978888602481855afa978815613635579089918490859a613610575b5098156135c1575b50505063ffffffff8080971681421603116135ae5750906135139291546001600160801b036135086134fc8360020b614135565b9260181c60020b614135565b9286015416926144bc565b93909261351f8361387c565b919785541697600586015494600687015490600a88015495600b89015416966135716003600c8b01549a6040519e8f9061355882612a77565b8152602061356860018401612b1f565b9101520161339e565b60408d015260608c01528a015260a089015260c088015260e087015261010086015261012085015261014084015261016083015261018082015290565b634e487b7160e01b815260118352602490fd5b909192975060246040518094819382528a888301525afa908115611a805786916135f0575b50943887816134c8565b6136079150873d89116109e3576109d28183612afd565b505050386135e6565b905061362a919950823d84116109e3576109d28183612afd565b9a92915050386134c0565b6040513d85823e3d90fd5b634e487b7160e01b835260118552602483fd5b60405162461bcd60e51b815260208187015260026024820152614e4960f01b6044820152606490fd5b90975061369991965060e03d60e011610a8d57610a768183612afd565b505050979250905095963861346f565b50604051903d90823e3d90fd5b6136d091945060e03d60e011610a8d57610a768183612afd565b5050505050509238613450565b6001600160801b039182169082160391908211612b6557565b51906001600160a01b038216820361029157565b519062ffffff8216820361029157565b51906001600160801b038216820361029157565b519063ffffffff8216820361029157565b5190811515820361029157565b9190916001600160801b0380809416911601918211612b6557565b67ffffffffffffffff81116107c75760051b60200190565b80511561378c5760200190565b634e487b7160e01b600052603260045260246000fd5b80516001101561378c5760400190565b805182101561378c5760209160051b010190565b60025481101561378c57600d906002600052027f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace0190600090565b6001600160a01b031660005260036020526040600020548015613837576000198101908111612b6557613833906137c6565b5090565b60405162461bcd60e51b815260206004820152601a60248201527f496e666f20666f7220696420646f6573206e6f742065786973740000000000006044820152606490fd5b906007820154916008810154916009820154916001600160801b03600482015416908115613bc1576001600160a01b03600954166101006001600160a01b03600c5416604460405180948193630e28a70d60e11b835260048301523060248301525afa9081156109ea57600091613f34575b5061390f61391a9160e0600d5491015180613f1d575b506005840154614534565b600683015490612b58565b80613f07575b506003810154908161393157505050565b6040519163133f757160e31b83526004830152610180808360248173c36442b4a4522e871399cd717abdd847ab11fe885afa9283156109ea576000808182839284988590869787998892613e30575b50506040519a8b67ffffffffffffffff6101408281810110920111176107c7576001600160a01b0399613a2f9960e08e6001600160801b0396878f9a9662ffffff9d8f988f8f8f8f81889e6101408c01604052168a5216602089015216604087015260020b606086015260020b60808501521660a083015260c08201520152166101008c0152166101208a01528160405195613a1b87612a94565b168552166020840152166040820152613fdb565b1691606081015160020b92608082015160020b60009060405192633850c7bd60e01b845260e084600481845afa938415613635578394613e08575b5060405163f30dba9360e01b8152600481018890529161010083602481855afa978815613dfd5784938599613dcd575b5060405163f30dba9360e01b8152600481018390529561010087602481875afa968715611a80578697613d8d575b5060020b90811215613c8c5750505061012092613b2592613b0292039603955b60c085015160a08601516001600160801b03169103614662565b610100840151019460e084015190036001600160801b0360a08501511690614662565b91015101916001600160a01b0360085416916001600160a01b03600182015416604051906399039f9d60e01b908183526004830152602082602481885afa9182156109ea57600092613c41575b5060246001600160a01b03600260209495015416916040519687938492835260048301525afa9283156109ea57600093613c05575b501580613bfc575b613be6575b501580613bdd575b613bc5575b5050565b613bda929391613bd4916145bc565b90612f9c565b90565b50801515613bbc565b95613bd484613bf593986145bc565b9438613bb4565b50801515613baf565b9092506020813d602011613c39575b81613c2160209383612afd565b8101031261029157613c329061373f565b9138613ba7565b3d9150613c14565b91506020823d602011613c84575b81613c5c60209383612afd565b810103126102915760246001600160a01b036002613c7b60209561373f565b94505050613b72565b3d9150613c4f565b91979392911215613d755760405163f305839960e01b815296602088600481845afa9788156109ea57600098613d40575b50966020600498604051998a8092634614131960e01b82525afa9788156109ea57600098613d00575b5092613b02926101209592613b2595030397030395613ae8565b929491939097506020833d602011613d38575b81613d2060209383612afd565b81010312610291579151969093919290613b02613ce6565b3d9150613d13565b97506020883d602011613d6d575b81613d5b60209383612afd565b81010312610291579651966020613cbd565b3d9150613d4e565b61012093965091613b2592613b029203960395613ae8565b909650613db59195506101003d61010011613dc6575b613dad8183612afd565b810190615e28565b505050509692509050949538613ac8565b503d613da3565b909850613dec9193506101003d61010011613dc657613dad8183612afd565b505050509492509050929738613a9a565b6040513d86823e3d90fd5b613e2291945060e03d60e011610a8d57610a768183612afd565b505050505090509238613a6a565b98509a50505050505050915083813d8311613f00575b613e508183612afd565b810103126101915782516bffffffffffffffffffffffff8116036101915750613e7b602083016136f6565b50613e88604083016136f6565b613e94606084016136f6565b92613ea16080820161370a565b93613eae60a08301614093565b613eba60c08401614093565b90613ec760e0850161371a565b9161010085015197610120860151613eef610160613ee86101408a0161371a565b980161371a565b979591939294999096973880613980565b503d613e46565b95613bd483613f1693986145bc565b9438613920565b90613bd4613f2e92600e54906145bc565b38613904565b9050610100813d61010011613fd3575b81613f526101009383612afd565b810103126102915761390f61391a9160e060405191613f7083612ac4565b613f79816136f6565b8352613f87602082016136f6565b6020840152613f986040820161371a565b6040840152606081015160608401526080810151608084015260a081015160a084015260c081015160c0840152015160e082015291506138ee565b3d9150613f44565b6001600160a01b0390818151169082602082015116908183101561029157604062ffffff910151166040519160208301938452604083015260608201526060815261402581612a5b565b519020604051602081019160ff60f81b83527307e610c722b66148d8c6b92967c99cd1ba8c7e6160621b602183015260358201527fe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b5460558201526055815261408c81612a5b565b5190201690565b51908160020b820361029157565b519061ffff8216820361029157565b908160e0910312610291576140c4816136f6565b916140d160208301614093565b916140de604082016140a1565b916140eb606083016140a1565b916140f8608082016140a1565b9160a082015160ff811681036102915760c0613bda91930161373f565b811561411f570490565b634e487b7160e01b600052601260045260246000fd5b60020b60008112156144b65780600003905b620d89e8821161448d57600182161561447b576001600160881b036ffffcb933bd6fad37aa2d162d1a5940015b16916002811661445f575b60048116614443575b60088116614427575b6010811661440b575b602081166143ef575b604081166143d3575b6080908181166143b8575b610100811661439d575b6102008116614382575b6104008116614367575b610800811661434c575b6110008116614331575b6120008116614316575b61400081166142fb575b61800081166142e0575b6201000081166142c5575b6202000081166142ab575b620400008116614291575b6208000016614276575b50600012614267575b6001600160a01b039063ffffffff811661425e5760ff60005b169060201c011690565b60ff6001614254565b801561411f576000190461423b565b6b048a170391f7dc42444e8fa26000929302901c9190614232565b6d2216e584f5fa1ea926041bedfe98909302811c92614228565b926e5d6af8dedb81196699c329225ee60402811c9261421d565b926f09aa508b5b7a84e1c677de54f3e99bc902811c92614212565b926f31be135f97d08fd981231505542fcfa602811c92614207565b926f70d869a156d2a1b890bb3df62baf32f702811c926141fd565b926fa9f746462d870fdf8a65dc1f90e061e502811c926141f3565b926fd097f3bdfd2022b8845ad8f792aa582502811c926141e9565b926fe7159475a2c29b7443b29c7fa6e889d902811c926141df565b926ff3392b0822b70005940c7a398e4b70f302811c926141d5565b926ff987a7253ac413176f2b074cf7815e5402811c926141cb565b926ffcbe86c7900a88aedcffc83b479aa3a402811c926141c1565b926ffe5dee046a99a2a811c461f1969c305302811c926141b7565b916fff2ea16466c96a3843ec78b326b528610260801c916141ac565b916fff973b41fa98c081472e6896dfb254c00260801c916141a3565b916fffcb9843d60f6159c9db58835c9266440260801c9161419a565b916fffe5caca7e10e4e61c3624eaa0941cd00260801c91614191565b916ffff2e50f5f656932ef12357cf3c7fdcc0260801c91614188565b916ffff97272373d413259a46990580e213a0260801c9161417f565b6001600160881b03600160801b614174565b60405162461bcd60e51b81526020600482015260016024820152601560fa1b6044820152606490fd5b80614147565b9093926000929091836001600160a01b038084168189161161452c575b8281169088811682116144f957505050506144f5929394615164565b915b565b90919294955083161160001461452057509061451a83613bda949383615164565b94615132565b94613bda939250615132565b9692966144d9565b9080820290600019818409908280831092039180830392146145ab57670de0b6b3a76400009082821115614598577faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac10669940990828211900360ee1b910360121c170290565b634e487b7160005260116020526024601cfd5b5050670de0b6b3a764000091500490565b90670de0b6b3a7640000808302919060001981850993838086109503948086039514614655578483111561463c579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b82634e487b71600052156003026011186020526024601cfd5b505090613bda9250614115565b81810291906000198282099183808410930392808403931461469f57600160801b9183831115614598570990828211900360801b910360801c1790565b50505060801c90565b90606082901b90600160601b60001981850993838086109503948086039514614655578483111561463c579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b81810291906000198282099183808410930392808403931461476257600160601b9183831115614598570990828211900360a01b910360601c1790565b50505060601c90565b9080820290600019818409908280831092039180830392146147c9576127109082821115614598577fbc01a36e2eb1c432ca57a786c226809d495182a9930be0ded288ce703afb7e91940990828211900360fc1b910360041c170290565b505061271091500490565b918183029160001981850993838086109503948086039514614655578483111561463c579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b60026001541461485b576002600155565b604051633ee5aeb560e01b8152600490fd5b600e54600090156149e0576001600160a01b0390600754604092835192816370a0823160e01b9384865230600487015285602481602096879460081c165afa9485156149d65782956149a7575b50806009541681600c5416813b156107dd578391606483928a5194859384926360fb0f5960e01b845260048401528160248401524260448401525af18015612e195790849291614994575b5060075460081c1693602487518096819382523060048301525afa94851561498a575093614956575b50506149406149499161495193612b58565b600e54906145bc565b600d54612f9c565b600d55565b90809350813d8311614983575b61496d8183612afd565b810103126102915790519061494061494961492e565b503d614963565b51903d90823e3d90fd5b6149a090939193612ab0565b9138614905565b9094508281813d83116149cf575b6149bf8183612afd565b810103126107e1575193386148ba565b503d6149b5565b86513d84823e3d90fd5b50565b6001600160801b036004820154166005820154908115614a5e578015614a4957614a3b600791614a4593600d54614a34614a1d8284614534565b91614a2e60068a0193845490612b58565b93614534565b90556145bc565b9201918254612f9c565b9055565b50614a59600691600d5490614534565b910155565b505050565b6001600160801b03600482015416614a7a826151b4565b6005820154908115614a5e578015614a4957614a3b600791614a4593600d54614a34614a1d8284614534565b906001600160801b0360048301541690614ae6576005820154908115614a5e578015614a4957614a3b600791614a4593600d54614a34614a1d8284614534565b614aef826151b4565b614a7a565b6000908154926001600160a01b038085169082600411612639578485908680604097885195602087019163b700961360e01b8352169586602482015230604482015263ffffffff60e01b833516606482015260648152614b5381612ae1565b5190875afa86614b616150a9565b91614c30575b505015614b78575b50505050505050565b63ffffffff1615614c1a5760ff60a01b19958616600160a01b178555813b156126395791849184938360649651968780958194634a63ebf760e11b835260048301528860248301528060448301528084848401378181018301849052601f01601f191681010301925af1908115614c115750614c02575b5090815416905538808080808080614b6f565b614c0b90612ab0565b38614bef565b513d84823e3d90fd5b60249084519062d1953b60e31b82526004820152fd5b815191939092838310614c695750508290810103126118d757614c6085614c596020840161373f565b920161372e565b905b3886614b67565b925092906020811015614c7e575b5050614c62565b81925090602091810103126118c0576020614c99910161373f565b3880614c77565b9162ffffff91614cae613304565b506001600160a01b039081811682861611614ce4575b8160405195614cd287612a94565b16855216602084015216604082015290565b93614cc4565b610fa01061259157565b63ffffffff1660058110908115614d1f575b50614d0d57565b604051632152f83760e11b8152600490fd5b603c91501138614d06565b60018110908115614d4f575b50614d3d57565b60405163334ee9a160e01b8152600490fd5b6109c491501138614d36565b6109c410614d6557565b6040516358d620b360e01b8152600490fd5b9060020b90811561411f5760020b0790565b6001600160a01b0390818151169060009182526003602052604082205415600014614f095760025468010000000000000000811015614ef557806001614dd292016002556137c6565b919091614ee15790600c6101408386604096955116966bffffffffffffffffffffffff60a01b888187541617865560018601602084015191838351169082541617905560028601916020820151168254918962ffffff60a01b91015160a01b169168ffffffffffffffffff60b81b161717905585810151805160038601556001600160801b03602060048701920151166001600160801b0319825416179055606081015160058501556080810151600685015560a0810151600785015560c0810151600885015560e08101516009850155610100810151600a850155600b840163ffffffff6101208301511663ffffffff19825416179055015191015560025492815260036020522055600190565b634e487b7160e01b83526004839052602483fd5b634e487b7160e01b83526041600452602483fd5b50905090565b6001600160a01b039182169082160391908211612b6557565b90614f4a614f5193926001600160a01b039283811684831611614f6557614f0f565b16906146a8565b6001600160801b0381169081036102915790565b90614f0f565b90614f5192916001600160a01b039081831682821611614fa5575b614f9e90614f98838516848316614725565b93614f0f565b16916147d4565b91614f86565b9190826040910312610291576020825192015190565b6040516370a0823160e01b81523060048201526001600160a01b039190911692909190602083602481875afa9283156109ea57600093615034575b5080615009575b50505050565b82811115615024575061501b92615068565b38808080615003565b915061502f92615068565b61501b565b9092506020813d602011615060575b8161505060209383612afd565b8101031261029157519138614ffc565b3d9150615043565b60405163a9059cbb60e01b60208201526001600160a01b039290921660248301526044808301939093529181526144f7916150a4606483612afd565b615d69565b3d156150e4573d9067ffffffffffffffff82116107c757604051916150d8601f8201601f191660200184612afd565b82523d6000602084013e565b606090565b51908160060b820361029157565b91908260809103126102915761510c8261372e565b91615119602082016150e9565b91613bda606061512b604085016136f6565b930161373f565b613bda929161515c6001600160801b03926001600160a01b039283811684831611614f6557614f0f565b169116614725565b906151a6613bda936001600160a01b0392838116848616116151ae575b838061518d8784614f0f565b169116916001600160801b0360601b9060601b166147d4565b911690614115565b93615181565b6001600160801b0380600483015416906003830154908115801561549d575b61500357615250906040928351906151ea82612a5b565b815230602080830191825285830184905260608301938452855163fc6f786560e01b81528351600482015291516001600160a01b031660248301526040909201516001600160801b03908116604483015292519092166064830152909182906084820190565b03928083600095818773c36442b4a4522e871399cd717abdd847ab11fe885af1938415615492578093819561546d575b506001600160a01b0395866008541660018901888154169685516399039f9d60e01b9889825260048201528781602481875afa90811561542e578691615438575b508760028d019960248d8c5416918a519788938492835260048301525afa93841561542e57858d93928d9289976153ef575b50156153cc575061532493600a8894015480615399575b509061531e915416928c6008541692612b58565b91614fc1565b156153835750926144f79692869285600a61531e9796015480615353575b505050505416936008541692612b58565b60059192939650615364908961476b565b958585541683525220615378848254612f9c565b905538808080615342565b92505050614a459350614a3b91506009926145bc565b61531e929194506153aa908461476b565b9381815416895260058b528989206153c3868254612f9c565b9055909161530a565b9250506153d992506145bc565b6153e860088b01918254612f9c565b9055615324565b939450955050508781813d8311615427575b61540b8183612afd565b810103126118d757908a856154208e9461373f565b95386152f3565b503d615401565b87513d88823e3d90fd5b90508781813d8311615466575b61544f8183612afd565b810103126118d7576154609061373f565b386152c1565b503d615445565b909450816154889294503d8511611fdf57611fd18183612afd565b9290929338615280565b9051903d90823e3d90fd5b5082156151d3565b62ffffff166064811461551c576101f4811461551657610bb8811461551057612710811461550a57614e2081146155045761753081146154fe57619c40146154f957604051631434ed7f60e01b8152600490fd5b600890565b50600690565b50600490565b5060c890565b50603c90565b50600a90565b50600190565b81810292918115918404141715612b6557565b91909261554761086d60018501612b1f565b9363ffffffff600b8501541660405195633850c7bd60e01b80885260e0886004816001600160a01b0386165afa9788156109ea57600098615b19575b50603c889302908163ffffffff811603612b655763ffffffff82169060405190815260e0816004816001600160a01b0388165afa9081156109ea57600090600092615af1575b5061ffff821615615ac75761ffff60018183160111612b655761ffff9081600181806040519663252c09d760e01b88521693160116061660048201526080816024816001600160a01b0388165afa9081156109ea57600090600092615aa2575b509015615a3d575b63ffffffff1663ffffffff42160363ffffffff8111612b655763ffffffff80931683821610615a35575b501690811580156156e1575b505050906156b9916001600160a01b0361312896541660005260066020526040600020546109516156b1848360020b9a6156a08c614135565b9460181c60020b9461095186614135565b989099614135565b9290612710918203828111612b6557826156d6826156dd94615522565b0494615522565b0490565b9091939250600090615a0b5760405191936156fb83612a94565b6002835281602093848101966040368937836157168361377f565b5282615721836137a2565b5260405197889263883bdbfd60e01b8452602484019088600486015251809152604484019190855b898282106159eb57505050506001600160a01b038380920392165afa94851561181057829083966158de575b50615789615782826137a2565b519161377f565b5160060b9060060b0394667fffffffffffff1990667fffffffffffff8713828812176158ca576001600160a01b036157cc816157c4846137a2565b51169261377f565b51169003928260060b9660060b9087156158b657600019928214888414166158a2575086810560020b96600082129182615893575b505061587e575b5077ffffffffffffffffffffffffffffffffffffffffffffffff6001600160a01b03820216046001600160a01b0303612b655777ffffffffffffffffffffffffffffffffffffffff00000000911b161561411f57613128946001600160a01b036158746156b994614135565b9293829750615667565b9094627fffff198114612b6557019338615808565b0760060b151590503880615801565b634e487b7160e01b81526011600452602490fd5b634e487b7160e01b81526012600452602490fd5b634e487b7160e01b84526011600452602484fd5b9550503d8083873e6158f08187612afd565b85019460408187031261263d57805167ffffffffffffffff908181116126395782019187601f840112156126395782519261592a84613767565b936159386040519586612afd565b808552878086019160051b830101918a83116118965788809101915b8383106159d3575091505081015191821161263957019580601f880112156107dd57865161598181613767565b9761598f604051998a612afd565b81895286808a019260051b8201019283116118d75786809101915b8383106159bb575050505038615775565b81906159c6846136f6565b81520191019086906159aa565b81906159de846150e9565b8152019101908890615954565b835163ffffffff1685528997508c96509384019390920191600101615749565b60405162461bcd60e51b8152602060048201526002602482015261042560f41b6044820152606490fd5b90503861565b565b5060405163252c09d760e01b8152600060048201526080816024816001600160a01b0388165afa80156109ea5763ffffffff91600091615a80575b509050615631565b615a99915060803d6080116109e3576109d28183612afd565b50505038615a78565b9050615abd915060803d6080116109e3576109d28183612afd565b9291505038615629565b60405162461bcd60e51b81526020600482015260026024820152614e4960f01b6044820152606490fd5b9050615b0c915060e03d60e011610a8d57610a768183612afd565b50505092509050386155c9565b615b3391985060e03d60e011610a8d57610a768183612afd565b5050505050509638615583565b90926144f793604051936323b872dd60e01b60208601526001600160a01b0380921660248601521660448401526064830152606482526150a482612ae1565b604051636eb1769f60e11b815230600482015273c36442b4a4522e871399cd717abdd847ab11fe8860248201819052926001600160a01b03831692916020918282604481885afa80156109ea57600090615c87575b615bde9250612f9c565b906040519381600081870163095ea7b360e01b958682528960248a0152604489015260448852615c0d88612a5b565b87519082885af1903d6000519083615c68575b50505015615c30575b5050505050565b615c5e946150a4926040519283015260248201526000604482015260448152615c5881612a5b565b82615d69565b3880808080615c29565b91925090615c7d57503b15155b388080615c20565b6001915014615c75565b508282813d8311615caf575b615c9d8183612afd565b8101031261029157615bde9151615bd4565b503d615c93565b604051602081019163095ea7b360e01b80845273c36442b4a4522e871399cd717abdd847ab11fe889081602485015260206000809681604488015260448752615cfe87612a5b565b86519082875af185513d82615d44575b505015615d1c575050505050565b615c5e946150a4926040519260208401526024830152604482015260448152615c5881612a5b565b909150615d6157506001600160a01b0383163b15155b3880615d0e565b600114615d5a565b906000602091828151910182855af1156109ea576000513d615dbc57506001600160a01b0381163b155b615d9a5750565b604051635274afe760e01b81526001600160a01b039091166004820152602490fd5b60011415615d93565b90615dec5750805115615dda57805190602001fd5b60405163d6bda27560e01b8152600490fd5b81511580615e1f575b615dfd575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b15615df5565b91908261010091031261029157615e3e8261371a565b91602081015180600f0b81036102915791604082015191606081015191615e67608083016150e9565b91615e7460a082016136f6565b91613bda60e061512b60c0850161372e56fea164736f6c6343000818000a60803462000372576040906001600160401b03908083018281118282101762000272578352600b81526020916a283937bc3c902a37b5b2b760a91b83830152835184810181811083821117620002725785526002815261141560f21b84820152825182811162000272576003918254916001958684811c9416801562000367575b8885101462000351578190601f94858111620002fb575b508890858311600114620002945760009262000288575b505060001982861b1c191690861b1783555b8051938411620002725760049586548681811c9116801562000267575b82821014620002525783811162000207575b50809285116001146200019957509383949184926000956200018d575b50501b92600019911b1c19161781555b331562000177575060058054336001600160a01b0319821681179092559151916001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a36108b69081620003788239f35b60006024925191631e4fbdf760e01b8352820152fd5b0151935038806200010c565b92919084601f1981168860005285600020956000905b89838310620001ec5750505010620001d1575b50505050811b0181556200011c565b01519060f884600019921b161c1916905538808080620001c2565b858701518955909701969485019488935090810190620001af565b87600052816000208480880160051c82019284891062000248575b0160051c019087905b8281106200023b575050620000ef565b600081550187906200022b565b9250819262000222565b602288634e487b7160e01b6000525260246000fd5b90607f1690620000dd565b634e487b7160e01b600052604160045260246000fd5b015190503880620000ae565b90889350601f19831691876000528a6000209260005b8c828210620002e45750508411620002cb575b505050811b018355620000c0565b015160001983881b60f8161c19169055388080620002bd565b8385015186558c97909501949384019301620002aa565b90915085600052886000208580850160051c8201928b861062000347575b918a91869594930160051c01915b8281106200033757505062000097565b600081558594508a910162000327565b9250819262000319565b634e487b7160e01b600052602260045260246000fd5b93607f169362000080565b600080fdfe6080604081815260048036101561001557600080fd5b600092833560e01c90816306fdde031461062e57508063095ea7b31461058557806318160ddd1461056657806323b872dd14610472578063313ce5671461045657806340c10f19146103a757806370a0823114610371578063715018a61461030c5780638da5cb5b146102e457806395d89b41146101c2578063a9059cbb14610191578063dd62ed3e146101445763f2fde38b146100b257600080fd5b34610140576020366003190112610140576100cb61076e565b906100d461087d565b6001600160a01b0380921692831561012a575050600554826bffffffffffffffffffffffff60a01b821617600555167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b51631e4fbdf760e01b8152908101849052602490fd5b8280fd5b50503461018d578060031936011261018d578060209261016261076e565b61016a610789565b6001600160a01b0391821683526001865283832091168252845220549051908152f35b5080fd5b50503461018d578060031936011261018d576020906101bb6101b161076e565b602435903361079f565b5160018152f35b5091903461018d578160031936011261018d5780519082845460018160011c90600183169283156102da575b60209384841081146102c7578388529081156102ab5750600114610256575b505050829003601f01601f191682019267ffffffffffffffff841183851017610243575082918261023f925282610725565b0390f35b634e487b7160e01b815260418552602490fd5b8787529192508591837f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b838510610297575050505083010138808061020d565b805488860183015293019284908201610281565b60ff1916878501525050151560051b840101905038808061020d565b634e487b7160e01b895260228a52602489fd5b91607f16916101ee565b50503461018d578160031936011261018d576020906001600160a01b03600554169051908152f35b833461036e578060031936011261036e5761032561087d565b806001600160a01b036005546bffffffffffffffffffffffff60a01b8116600555167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b80fd5b50503461018d57602036600319011261018d57806020926001600160a01b0361039861076e565b16815280845220549051908152f35b5090346101405780600319360112610140576103c161076e565b906001600160a01b03602435926103d661087d565b16928315610441576002549083820180921161042e575084927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9260209260025585855284835280852082815401905551908152a380f35b634e487b7160e01b865260119052602485fd5b84602492519163ec442f0560e01b8352820152fd5b50503461018d578160031936011261018d576020905160128152f35b50823461036e57606036600319011261036e5761048d61076e565b610495610789565b91604435936001600160a01b0383168083526001602052868320338452602052868320549160001983106104d2575b6020886101bb89898961079f565b86831061053a57811561052357331561050c575082526001602090815286832033845281529186902090859003905582906101bb876104c4565b8751634a1406b160e11b8152908101849052602490fd5b875163e602df0560e01b8152908101849052602490fd5b8751637dc7a0d960e11b8152339181019182526020820193909352604081018790528291506060010390fd5b50503461018d578160031936011261018d576020906002549051908152f35b503461014057816003193601126101405761059e61076e565b602435903315610617576001600160a01b031691821561060057508083602095338152600187528181208582528752205582519081527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925843392a35160018152f35b8351634a1406b160e11b8152908101859052602490fd5b835163e602df0560e01b8152808401869052602490fd5b84915083346101405782600319360112610140578260035460018160011c906001831692831561071b575b60209384841081146102c7578388529081156106ff57506001146106a957505050829003601f01601f191682019267ffffffffffffffff841183851017610243575082918261023f925282610725565b600387529192508591837fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b8385106106eb575050505083010185808061020d565b8054888601830152930192849082016106d5565b60ff1916878501525050151560051b840101905085808061020d565b91607f1691610659565b6020808252825181830181905290939260005b82811061075a57505060409293506000838284010152601f8019910116010190565b818101860151848201604001528501610738565b600435906001600160a01b038216820361078457565b600080fd5b602435906001600160a01b038216820361078457565b916001600160a01b03808416928315610864571692831561084b5760009083825281602052604082205490838210610819575091604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815220818154019055604051908152a3565b60405163391434e360e21b81526001600160a01b03919091166004820152602481019190915260448101839052606490fd5b60405163ec442f0560e01b815260006004820152602490fd5b604051634b637e8f60e11b815260006004820152602490fd5b6001600160a01b0360055416330361089157565b60405163118cdaa760e01b8152336004820152602490fdfea164736f6c6343000818000a0000000000000000000000006532b3f1e4dbff542fbd6befe5ed7041c10b385a000000000000000000000000060e990a7e760f211447e76a53ff6e1be2f3bdd300000000000000000000000052c1cc79fbbef91d3952ae75b1961d08f0172223000000000000000000000000598d291d3e8f483790ebac729db148a88e8c3780
Deployed Bytecode
0x608080604052600436101561001357600080fd5b600090813560e01c908163158ef93e14612897575080631c514e1a146128065780631fa36cbe146127e85780632a1174c51461274057806337cc5bc01461271957806344680af9146126b257806344ff9a4c146126415780634e15fa39146121d157806352390e1d1461216a5780635b29212914612136578063638126f81461210c578063656a03d61461205d578063666687bb14611b495780637a9e5e4b14611a9c5780638129fc1c146115eb5780638d1fc0bd14610d8e5780638fb3603714610d495780639076c16614610ba957806398772e2414610b63578063a440fef914610ae2578063aa6df29914610abb578063ab7ca029146107e5578063ac9650d8146105de578063b5b3ca2c14610541578063bf7e214f1461051b578063c474a5cc14610481578063c8635ad114610296578063d02aac28146101cc578063dcf844a7146101945763f542496e1461016b57600080fd5b3461019157806003193601126101915760206001600160a01b0360095416604051908152f35b80fd5b50346101915760203660031901126101915760406020916001600160a01b036101bb6128b8565b168152600583522054604051908152f35b5034610191576040366003190112610191576101e66128b8565b60243563ffffffff811691828203610291576102023633614af4565b61021f816001600160a01b03166000526003602052604060002090565b541561027f576001600160a01b0360209161025a7fddef3248ad548943a191a06d87454f832790916835dd0351eb40fc2b92316e9e94614cf4565b600b61026582613801565b01805463ffffffff1916861790556040519485521692a280f35b604051631f4d2e4560e11b8152600490fd5b600080fd5b5034610191578060031936011261019157600254906102b482613767565b6102c16040519182612afd565b82815260028252602092827f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace858085015b8484106103d95750858580519261032161030b85613767565b946103196040519687612afd565b808652613767565b601f190181845b8281106103c357505050825b8251811015610379578061035d6001600160a01b03610355600194876137b2565b5151166133c5565b61036782886137b2565b5261037281876137b2565b5001610334565b6040805183815286518185018190528785019282019085885b82811061039f5784840385f35b90919282610200826103b46001948a516128e4565b01960191019492919094610392565b6103cb613323565b828289010152018290610328565b600191600d916040516103eb81612a3e565b6001600160a01b038654168152610403858701612b1f565b838201526104136003870161339e565b60408201526005860154606082015260068601546080820152600786015460a0820152600886015460c0820152600986015460e0820152600a86015461010082015263ffffffff600b87015416610120820152600c86015461014082015281520192019201919086906102f2565b50346101915760403660031901126101915761049b6128b8565b602435906104a93633614af4565b6104c6816001600160a01b03166000526003602052604060002090565b541561027f5760206001600160a01b037f7971d2b2782d522602d7df83da2901f5c32c3b383eb2e82da8acf32ec3d9bb549261050185614d2a565b84600c61050d83613801565b01556040519485521692a280f35b50346101915780600319360112610191576001600160a01b036020915416604051908152f35b50346101915760403660031901126101915761055b6128b8565b602435906105693633614af4565b610586816001600160a01b03166000526003602052604060002090565b541561027f5760206001600160a01b037f389f6e01d911ce2a6919bdcf4e57d270003243ca9c54e7911454a70f89aee19e926105c185614d5b565b84600a6105cd83613801565b6105d561486d565b61050d81614a63565b5034610191576020806003193601126107e1576004359167ffffffffffffffff908184116101915736602385011215610191578360040135918083116107e15760246005913660248660051b890101116107dd5760405186810192818410838511176107c7578360409795975285825261065785613767565b966106656040519889612afd565b85885261067186613767565b601f199a908b018a895b8b8382106107b75750505050368190036042190191885b888110610710578c8c8c8c60405192808401908085528351809252604085018160408460051b880101950193965b8388106106cd5786860387f35b9091929394838080600193603f198b820301875285601f8b516106fb815180928187528780880191016129ff565b011601019701930197019690939291936106c0565b8481831b84010135848112156107b357830185810135908882116107af576044019080360382136107af5761079d838f8f938f600197968f6107838f958495610797976107779460405195838794868601998a37840191858301938a8552519384916129ff565b01038084520182612afd565b5190305af46107906150a9565b9030615dc5565b926137b2565b526107a8818d6137b2565b5001610692565b8b80fd5b8a80fd5b60609082018301528c910161067b565b634e487b7160e01b600052604160045260246000fd5b8380fd5b5080fd5b5034610191576040366003190112610191576107ff6128b8565b906024908135926001600160801b038416840361029157610833816001600160a01b03166000526003602052604060002090565b541561027f5761084290613801565b9160406001600160a01b03928385541681526006602052209360018401918361087261086d85612b1f565b613fdb565b169560405191633850c7bd60e01b80845260e0846004818c5afa9384156109ea57600094610a94575b5060405190815260e0816004818c5afa9889156109ea5760009160009a610a59575b5061ffff809a16918215610a30578a16600101918a8311610a1b578a906040519b8c9463252c09d760e01b80965216061660048b01526080998a818581855afa9283156109ea578b916000906000956109f6575b50931561098b575b50505063ffffffff809116814216031161097757508492600292610957925461095161094682870b614135565b9160181c860b614135565b916144bc565b949093541694015416604051938452602084015260408301526060820152f35b634e487b7160e01b60009081526011600452fd5b9091925083604051809481938252600060048301525afa9081156109ea576000916109ba575b50388981610919565b6109da9150893d8b116109e3575b6109d28183612afd565b8101906150f7565b505050386109b1565b503d6109c8565b6040513d6000823e3d90fd5b9050610a10919450823d84116109e3576109d28183612afd565b959291505038610911565b83634e487b7160e01b60005260116004526000fd5b60405162461bcd60e51b815260206004820152600281860152614e4960f01b6044820152606490fd5b909950610a7e915060e03d60e011610a8d575b610a768183612afd565b8101906140b0565b505050925090509098386108bd565b503d610a6c565b610aae91945060e03d60e011610a8d57610a768183612afd565b505050505050923861089b565b503461019157806003193601126101915760206001600160a01b0360085416604051908152f35b5034610191576020366003190112610191576001600160a01b03610b046128b8565b610b0e3633614af4565b1680825260056020527fd72df92d2a1deb61bf4978dfd140c21dcb0a449bd22cb16af2cd7a853d250526602060408420848154915580610b53575b604051908152a280f35b610b5e813386615068565b610b49565b503461019157602036600319011261019157604080916001600160a01b03610b896128b8565b168152600660205220548151908060020b825260181c60020b6020820152f35b503461019157604036600319011261019157610bc36128b8565b6024803591610bd23633614af4565b610bef816001600160a01b03166000526003602052604060002090565b541561027f57610bfe83614cea565b610c0781613801565b91610c1061484a565b60029060025491610c1f61486d565b865b838110610ceb5750505050600180558260058301805493828511610cb3575b9160209391610c8c82610c87886001600160a01b03977f183f2ce0b749ed46549cb16586af0c501abab8d242cc4b2076aec30d2dd9c4bc9a15610c9c575b50600e54612b58565b612f9c565b600e55556040519485521692a280f35b6006610caa600d5486614534565b91015538610c7e565b915091610ccc600e54610cc68787612b58565b90612b58565b15610cd957918491610c40565b604051632aeaf3c360e01b8152600490fd5b8154811015610d0f5780610d09610d036001936137c6565b506149e3565b01610c21565b60405162461bcd60e51b81526020600482015260138185015272496e646578206f7574206f6620626f756e647360681b6044820152606490fd5b5034610191578060031936011261019157805460a01c60ff1615610d8657506020638fb3603760e01b5b6040516001600160e01b03199091168152f35b602090610d73565b503461019157610d9d366129c1565b610da561484a565b610dc2846001600160a01b03166000526003602052604060002090565b541561027f57610dd184613801565b610dee856001600160a01b03166000526004602052604060002090565b33600052602052604060002090610e0361486d565b610e0c81614a63565b6001600160801b03825416610e33610e28600784015483614534565b600185015490612b58565b610e6c610e61610e55610e4a600887015486614534565b600288015490612b58565b93600986015490614534565b600386015490612b58565b93898a809781996001600160801b038c16611043575b505050610ee26003916001600160801b03610ea185549282841661374c565b1680916001600160801b031916178455610ebf600788015482614534565b6001850155610ed2600888015482614534565b6002850155600987015490614534565b91015580610ff3575b5080610f9f575b5081610f4b575b50506001600160801b0360405193168352602083015260408201527f3651de12490166ef8ea536fe5334e650cb52a7a6fd6fb51730e7b3fc62f2ba4560606001600160a01b0333941692a36001805580f35b6002016001600160a01b038091610f66843384845416614fc1565b5416916040519081527f4303f1dc403b2d82b2ff82c450e8c03a40429f3fc282993ec09fc61951fea57260203393891692a43880610ef9565b600182016001600160a01b038091610fbb843384845416614fc1565b5416916040519081527f4303f1dc403b2d82b2ff82c450e8c03a40429f3fc282993ec09fc61951fea572602033938b1692a438610ef2565b6001600160a01b039061100e81338460075460081c16614fc1565b6040519081527f04d7dcb8f092f33995d9cb542568906cf639a16be52a638fff741fec0c3d86b1602033938b1692a338610eeb565b92509750975060038501541560001461138557801561137757611068905b8986615535565b611089846001600160a01b0360018b9d959d97969701541630903390615b40565b6110a28430336001600160a01b0360028d015416615b40565b6110b9836001600160a01b0360018b015416615b7f565b6110d0846001600160a01b0360028b015416615b7f565b6001600160a01b038854168b52600660205260408b20996001600160a01b0360018a0154169a62ffffff60028b01549154916040519d8e61111081612a3e565b528d60206001600160a01b03831691015260a01c1660408d01528060020b60608d015260181c60020b60808c01528360a08c01528460c08c015260e08b01526101008a0152306101208a015261014089015261014060405198634418b22b60e11b8a526001600160a01b0381511660048b01526001600160a01b0360208201511660248b015262ffffff60408201511660448b0152606081015160020b60648b0152608081015160020b60848b015260a081015160a48b015260c081015160c48b015260e081015160e48b01526101008101516101048b01526001600160a01b03610120820151166101248b01520151610144890152608088610164818c73c36442b4a4522e871399cd717abdd847ab11fe885af191821561136c5789918a998b94611303575b5091839161125460039561124e8e610ee297612b58565b92612b58565b90806112e5575b50806112c7575b50838801556004870180546001600160801b036112818c82841661374c565b16906001600160801b0319161790556112a66001600160a01b03600189015416615cb6565b6112bc6001600160a01b03600289015416615cb6565b98975b918c91610e82565b6112df90336001600160a01b0360028c015416614fc1565b38611262565b6112fd90336001600160a01b0360018d015416614fc1565b3861125b565b995092509850506080873d608011611364575b8161132360809383612afd565b810103126107b357610ee26003918861124e9a6112548251936060604061134c6020870161371a565b9501519d01519c9d50929b955092935091508a611237565b3d9150611316565b6040513d8b823e3d90fd5b50611068600c850154611061565b90965080156115dd5761139a905b8885615535565b6113ba846001600160a01b0360018a9d979c959d01541630903390615b40565b6113d38330336001600160a01b0360028c015416615b40565b6113ea896001600160a01b0360018a015416615b7f565b611401836001600160a01b0360028a015416615b7f565b6003870154996040519a8b67ffffffffffffffff60c08281810110920111176107c75760c08c016040908152908c5260208c018b8152818d0186815260608e0193845260808e0194855260a08e01958652915163219f5d1760e01b81529c5160048e01525160248d01525160448c01525160648b01525160848a01525160a489015287808c5a9260c49173c36442b4a4522e871399cd717abdd847ab11fe88606095f19081156115d2578b978c998d93611573575b5091610ee2916114cc8261124e8d600397612b58565b9080611555575b5080611537575b506004870180546001600160801b036114f58c82841661374c565b16906001600160801b03191617905561151a6001600160a01b03600189015416615cb6565b6115306001600160a01b03600289015416615cb6565b98976112bf565b61154f90336001600160a01b0360028b015416614fc1565b386114da565b61156d90336001600160a01b0360018c015416614fc1565b386114d3565b9850915097506060873d6060116115ca575b8161159260609383612afd565b810103126107b357610ee260039161124e996114cc6115b08b61371a565b60208c01516040909c01519b9c509a9450909290506114b6565b3d9150611585565b6040513d8d823e3d90fd5b5061139a600c840154611393565b50346101915780600319360112610191576116063633614af4565b6007549060ff8216611a8b576001600160a01b0380600954169281600c541690604051635b29212960e01b81528260048201526102009081816024818a5afa8015611a8057611942575b505060ff1916600117600755600a546040516352390e1d60e01b8152600481019290925282166024820152683635c9adc5dea0000060448201529260a090849060649082905afa801561181057829083948492859186936118db575b50841691823b156118d7576040516340c10f1960e01b8082523060048301526024820184905290878160448183895af180156118a1576118c4575b508587981690813b156118965760405190815230600482015260248101839052878160448183865af19081156118a15788916118ac575b50508560095416604051908163095ea7b360e01b96878252818b8161176060209a8b9760048401602090939291936001600160a01b0360408201951681520152565b03925af180156118a15761185f575b5060095460405194855286166001600160a01b03166004850152602484019190915281908390818881604481015b03925af1801561185457611820575b5050816009541691600c541690823b1561181b5760648492836001600160801b039560405196879586946360fb0f5960e01b865260048601521660248401524260448401525af18015611810576118005750f35b61180990612ab0565b6101915780f35b6040513d84823e3d90fd5b505050fd5b81813d831161184d575b6118348183612afd565b8101031261181b576118459061373f565b5038806117ac565b503d61182a565b6040513d87823e3d90fd5b91908383813d831161189a575b6118768183612afd565b810103126118965761179d9461188c859461373f565b509450909161176f565b8780fd5b503d61186c565b6040513d8a823e3d90fd5b6118b590612ab0565b6118c057863861171e565b8680fd5b966118d0879998612ab0565b96976116e7565b8580fd5b96505050505060a0833d60a01161193a575b816118fa60a09383612afd565b810103126107e15761190b836136f6565b92611918602082016136f6565b6119246040830161371a565b60608301516080909301519195909290846116ac565b3d91506118ed565b80823d8411611a79575b6119568183612afd565b8101039182126118d7576040519161196d83612a77565b611976826136f6565b83526060601f198201126118c057604090815161199281612a94565b61199e602085016136f6565b81526119ab8385016136f6565b60208201526119bc6060850161370a565b818401526020850152607f1901126118d7579160019160a094936040516119e281612a22565b608082015181526119f487830161371a565b6020820152604083015260c0810151606083015260e081015160808301526101e0610100918281015188850152610120928382015160c08601526101408083015160e087015261016091828401519087015261018094611a5586850161372e565b908701526101a0830151908601526101c08201519085015201519101529192611650565b503d61194c565b6040513d88823e3d90fd5b60405162dc149f60e41b8152600490fd5b503461019157602036600319011261019157611ab66128b8565b8154906001600160a01b03908183163303611b3257803b15611b1957916020917f2f658b440c35314f52658ea8a740e05b284cdc84dc9ae01e891f21b8933e7cad931680916bffffffffffffffffffffffff60a01b16178455604051908152a180f35b6040516361798f2f60e11b815291166004820152602490fd5b60405162d1953b60e31b8152336004820152602490fd5b503461019157611b58366129c1565b611b6061484a565b611b7d846001600160a01b03166000526003602052604060002090565b541561027f57611b8c84613801565b91611baa856001600160a01b03166000526004602052604060002090565b33875260205260408620926001600160801b038454166001600160801b03861611801561204c575b61203a57611bde61486d565b611be781614a63565b835493600782019283546001600160801b03871690611c0591614534565b9160018101928354611c1691612b58565b966008850180546001600160801b03831690611c3191614534565b6002840154611c3f91612b58565b9460098701546001600160801b03841690611c5991614534565b6003850154611c6791612b58565b97611c7b8c6001600160801b0386166136dd565b6001600160801b031680946001600160801b03191617855554611c9e9084614534565b905554611cab9082614534565b60028301556009850154611cbe91614534565b600390910155801561202c57611cd6905b8784615535565b9150959150600384015495604051968760a081011067ffffffffffffffff60a08a0111176120185760a0880160409081529088526001600160801b038a811660208a01908152828a0193845260608a0194855260808a019586528251630624e65f60e11b8152995160048b0152511660248901529051604488015290516064870152905160848601528460a4818b73c36442b4a4522e871399cd717abdd847ab11fe885af19485156118a15788948996611ff1575b50611e0b60406003850154815190611da282612a5b565b815233602082019081526001600160801b03898116848401528a811660608401908152845163fc6f786560e01b81528451600482015292516001600160a01b03166024840152604090930151811660448301529151909116606482015291829081906084820190565b03818d73c36442b4a4522e871399cd717abdd847ab11fe885af18015611fe657611fb8575b506004830180546001600160801b03611e4b8a8284166136dd565b16906001600160801b03191617905580611f68575b5080611f14575b5081611ec0575b50506001600160801b0360405193168352602083015260408201527febff2602b3f468259e1e99f613fed6691f3a6526effe6ef3e768ba7ae7a36c4f60606001600160a01b0333941692a36001805580f35b6002016001600160a01b038091611edb843384845416614fc1565b5416916040519081527f4303f1dc403b2d82b2ff82c450e8c03a40429f3fc282993ec09fc61951fea57260203393891692a43880611e6e565b600182016001600160a01b038091611f30843384845416614fc1565b5416916040519081527f4303f1dc403b2d82b2ff82c450e8c03a40429f3fc282993ec09fc61951fea572602033938b1692a438611e67565b6001600160a01b0390611f8381338460075460081c16614fc1565b6040519081527f04d7dcb8f092f33995d9cb542568906cf639a16be52a638fff741fec0c3d86b1602033938b1692a338611e60565b611fd99060403d604011611fdf575b611fd18183612afd565b810190614fab565b50611e30565b503d611fc7565b6040513d8c823e3d90fd5b90955061200e91945060403d604011611fdf57611fd18183612afd565b9390939438611d8b565b634e487b7160e01b8c52604160045260248cfd5b50611cd6600c830154611ccf565b604051631f2c4df760e11b8152600490fd5b506001600160801b03851615611bd2565b50346101915760a0366003190112610191576120776128b8565b906120806128ce565b6120886129af565b90606435938460020b8095036107dd57608435938460020b8095036101915760206001600160a01b0387876121006120c461086d8a8a8a614ca0565b926120f260405193849288840196876040919493926001600160a01b03606083019616825260208201520152565b03601f198101835282612afd565b51902016604051908152f35b503461019157806003193601126101915760206001600160a01b0360075460081c16604051908152f35b50346101915760203660031901126101915761020061215b6121566128b8565b6133c5565b61216860405180926128e4565bf35b50346101915760603660031901126101915760a06001600160801b036121a26121916128b8565b6121996128ce565b60443591612fa9565b936040959291939551956001600160a01b03809216875216602086015216604084015260608301526080820152f35b5034610191576101209081600319360112610191576121f03633614af4565b600435916001600160a01b0390818416840361263d576024936024358381168103612639579061222891612222612f40565b91614ca0565b9161223283613fdb565b61223a612f52565b90826002926120f261227f61224d612f62565b860b604051928391602097888401968a0b90876040919493926001600160a01b03606083019616825260208201520152565b51902016946122a1866001600160a01b03166000526003602052604060002090565b546126275766ffffffffffffff916122c1836122bb612f73565b16614cea565b6122d16122cc612f89565b614cf4565b60c435926122de84614d2a565b608435916122eb83614d5b565b6122f3612f40565b6122fb612f52565b612303612f62565b9181890b620d899f1981128015612619575b6125a357838a0b13156125ca5761232e612335916154a5565b8092614d77565b880b15918215926125b5575b50506125a35761235d600e5483612356612f73565b1690612f9c565b156125915761236a61484a565b85549a61237561486d565b8a5b8c811061253957505088999a506001805560405161239481612a22565b8b81528b82820152826123a5612f73565b8d826123af612f73565b16159050612532576123cd6123c2612f73565b83600d549116614534565b925b6123d7612f89565b97856040519e8f906123e882612a3e565b8152015260408d01521660608b015260808a01528a60a08a01528a60c08a01528a60e08a015261243261010099848b82015263ffffffff8096168a82015286610140820152614d89565b5061243b612f52565b908a8c526006815260408c20805492612452612f62565b60181b9362ffffff809565ffffff0000001692169065ffffffffffff19161717905561248983612480612f73565b16600e54612f9c565b600e5560405197806124996128b8565b1689526124a46128ce565b16908801526124b16129af565b16604087015260643590811680910361252e576060860152608085015260a4359081168091036118965760a084015260c083015260e43580820b8091036118c05760e08301526101043580910b8091036118d7577f257b162f48e241fa38bace67101b4dfc2b8000e15dd9459aeea5f0eb0ec8389593820152a280f35b8980fd5b8d926123cf565b87548110156125575780612551610d036001936137c6565b01612377565b60405162461bcd60e51b81526004810184905260138184015272496e646578206f7574206f6620626f756e647360681b6044820152606490fd5b60405163017f373f60e51b8152600490fd5b604051631434ed7f60e01b8152600490fd5b6125bf9250614d77565b860b15153880612341565b60405162461bcd60e51b815260048101859052602160248201527f6d696e5469636b206d757374206265206c657373207468616e206d61785469636044820152606b60f81b6064820152608490fd5b50620d89a0848b0b13612315565b60405163061a581b60e51b8152600490fd5b8480fd5b8280fd5b50346101915760403660031901126101915761265b6128b8565b602435801515810361263d5761266f61484a565b61268c826001600160a01b03166000526003602052604060002090565b541561027f576126a66126ab926126a161486d565b613801565b614aa6565b6001805580f35b5034610191576020366003190112610191576126cc6128b8565b6126e9816001600160a01b03166000526003602052604060002090565b541561027f5761270861086d6001612702602094613801565b01612b1f565b6001600160a01b0360405191168152f35b503461019157806003193601126101915760206001600160a01b03600c5416604051908152f35b5034610191576020806003193601126107e15760043590811515820361263d5761276861484a565b6002906002549161277761486d565b845b83811061278857856001805580f35b81548110156127ad57806127a7866127a16001946137c6565b50614aa6565b01612779565b60405162461bcd60e51b8152600481018490526013602482015272496e646578206f7574206f6620626f756e647360681b6044820152606490fd5b50346101915780600319360112610191576020600e54604051908152f35b5034610191576040366003190112610191576101006128346128266128b8565b61282e6128ce565b90612b7b565b60e0604051916001600160a01b0380825116845260208201511660208401526001600160801b036040820151166040840152606081015160608401526080810151608084015260a081015160a084015260c081015160c0840152015160e0820152f35b9050346107e157816003193601126107e15760209060ff6007541615158152f35b600435906001600160a01b038216820361029157565b602435906001600160a01b038216820361029157565b6101e09062ffffff60406001600160a01b038084511686526020840151908082511660208801526020820151168287015201511660608401526001600160801b03602060408301518051608087015201511660a0840152606081015160c0840152608081015160e084015260a081015190610100918285015260c0810151610120908186015260e08201519261014093848701528201519061016091828701528201519263ffffffff6101809416848701528201516101a08601528101516101c08501520151910152565b6044359062ffffff8216820361029157565b6080906003190112610291576004356001600160a01b038116810361029157906024356001600160801b038116810361029157906044359060643590565b60005b838110612a125750506000910152565b8181015183820152602001612a02565b6040810190811067ffffffffffffffff8211176107c757604052565b610160810190811067ffffffffffffffff8211176107c757604052565b6080810190811067ffffffffffffffff8211176107c757604052565b6101a0810190811067ffffffffffffffff8211176107c757604052565b6060810190811067ffffffffffffffff8211176107c757604052565b67ffffffffffffffff81116107c757604052565b610100810190811067ffffffffffffffff8211176107c757604052565b60a0810190811067ffffffffffffffff8211176107c757604052565b90601f8019910116810190811067ffffffffffffffff8211176107c757604052565b90604051612b2c81612a94565b604062ffffff829460016001600160a01b03918281541686520154908116602085015260a01c16910152565b91908203918211612b6557565b634e487b7160e01b600052601160045260246000fd5b906040805190612b8a82612ac4565b60009081835260209382858501528282850152826060850152608083818601528360a08601528360c08601528360e080960152612bda876001600160a01b03166000526003602052604060002090565b5415612f2f57612c06612bec88613801565b976001600160a01b03166000526004602052604060002090565b6001600160a01b0380931685528652828420936001600160801b038554168015612ee957612c338961387c565b96919760018c019487612c4861086d88612b1f565b16908b855192633850c7bd60e01b808552600492858481855afa948515612eba578f908596612ec4575b508851918252818481855afa908115612eba57908f929185938692612e8f575b505061ffff809116928315612e6557811660010190808211612e52578951938163252c09d760e01b93848752160616848401528b83602481855afa928315612e4857908c9186908795612e23575b509315612dcd575b50505063ffffffff8091168142160311612dba57509085858f938f8c8096541682526006905220548060020b612d1d90614135565b9060181c60020b612d2d90614135565b90612d37936144bc565b98909654169c600201541691612d4d9085614534565b6002820154612d5b91612b58565b97612d669085614534565b6003820154612d7491612b58565b98612d7f9085614534565b9060010154612d8d91612b58565b9982519b612d9a8d612ac4565b8c528b0152890152606088015286015260a085015260c084015282015290565b634e487b7160e01b825260119052602490fd5b909192506024895180948193825287878301525afa908115612e19578391612df9575b50388a81612ce8565b612e1091508a3d8c116109e3576109d28183612afd565b50505038612df0565b87513d85823e3d90fd5b9050612e3d919450823d84116109e3576109d28183612afd565b959291505038612ce0565b89513d87823e3d90fd5b634e487b7160e01b865260118552602486fd5b50508f836064918a519162461bcd60e51b835282015260026024820152614e4960f01b6044820152fd5b612eaa93945080919250903d10610a8d57610a768183612afd565b5050509392509050918f80612c92565b88513d86823e3d90fd5b81612edc9297503d8811610a8d57610a768183612afd565b5050505050509438612c72565b92819791955060028160018b9795970154169901541690825198612f0c8a612ac4565b89528801528601528160608601528401528160a08401528160c084015282015290565b8251631f4d2e4560e11b8152600490fd5b60443562ffffff811681036102915790565b60e4358060020b81036102915790565b610104358060020b81036102915790565b60643566ffffffffffffff811681036102915790565b60a43563ffffffff811681036102915790565b91908201809211612b6557565b92909192612fca816001600160a01b03166000526003602052604060002090565b541561027f57612fd990613801565b926001600160a01b039081855416600090815260066020526040918282209260018801968561301561086d826002818d54169d0154169a612b1f565b1693825195633850c7bd60e01b80885260e0600497818a8a81845afa998a156132d557859a6132df575b50865192835281838a81845afa9283156132d557859286946132aa575b505061ffff8093169182156132825783166001019280841161326f578751928163252c09d760e01b95868652160616898301526080928383602481855afa9283156132655786908794613240575b5092156131e9575b5050905063ffffffff80911681421603116131d65754918260020b976130d789614135565b9360181c60020b966130e888614135565b958c8a841687851681116131405750505050808c16911614600014613132575061312061312e95936131289897959361095193614f6b565b968794614135565b91614135565b9091565b968796508695509350505050565b929591949288851611156131b05750508116908c8116820361317957505050505091610951613120859361312898979561312e97614f6b565b9091929394508a16146000146131a357505091610951613120859361312e96613128999896614f28565b516307ed98ed60e31b8152fd5b935093501614600014613132575061312061312e95936131289897959361095193614f28565b634e487b7160e01b825260118652602482fd5b8391925060248851809481938252888d8301525afa918215613236578492613216575b50508038806130b2565b61322c9250803d106109e3576109d28183612afd565b505050388061320c565b86513d86823e3d90fd5b905061325a919350843d86116109e3576109d28183612afd565b9492915050386130aa565b88513d88823e3d90fd5b634e487b7160e01b865260118a52602486fd5b875162461bcd60e51b81526020818c015260026024820152614e4960f01b6044820152606490fd5b80919294506132c59350903d10610a8d57610a768183612afd565b505050925090509091388061305c565b87513d87823e3d90fd5b6132f7919a50823d8411610a8d57610a768183612afd565b505050505050983861303f565b6040519061331182612a94565b60006040838281528260208201520152565b6040519061333082612a77565b600080835261018083613341613304565b602082015260405161335281612a22565b83815283602082015260408201528260608201528260808201528260a08201528260c08201528260e0820152826101008201528261012082015282610140820152826101608201520152565b906040516133ab81612a22565b60206001600160801b036001839580548552015416910152565b6133cd613323565b506133eb816001600160a01b03166000526003602052604060002090565b541561027f576133fa81613801565b906001600160a01b039182600092168252600660205260408220908361342561086d60018401612b1f565b169260405190633850c7bd60e01b9384835260049160e08484818a5afa9384156136a95781946136b6575b5060405195865260e08684818a5afa9687156136a9578196829861367c575b5061ffff8098169687156136535788166001019780891161364057604051978163252c09d760e01b9a8b8b52160616848801526080978888602481855afa978815613635579089918490859a613610575b5098156135c1575b50505063ffffffff8080971681421603116135ae5750906135139291546001600160801b036135086134fc8360020b614135565b9260181c60020b614135565b9286015416926144bc565b93909261351f8361387c565b919785541697600586015494600687015490600a88015495600b89015416966135716003600c8b01549a6040519e8f9061355882612a77565b8152602061356860018401612b1f565b9101520161339e565b60408d015260608c01528a015260a089015260c088015260e087015261010086015261012085015261014084015261016083015261018082015290565b634e487b7160e01b815260118352602490fd5b909192975060246040518094819382528a888301525afa908115611a805786916135f0575b50943887816134c8565b6136079150873d89116109e3576109d28183612afd565b505050386135e6565b905061362a919950823d84116109e3576109d28183612afd565b9a92915050386134c0565b6040513d85823e3d90fd5b634e487b7160e01b835260118552602483fd5b60405162461bcd60e51b815260208187015260026024820152614e4960f01b6044820152606490fd5b90975061369991965060e03d60e011610a8d57610a768183612afd565b505050979250905095963861346f565b50604051903d90823e3d90fd5b6136d091945060e03d60e011610a8d57610a768183612afd565b5050505050509238613450565b6001600160801b039182169082160391908211612b6557565b51906001600160a01b038216820361029157565b519062ffffff8216820361029157565b51906001600160801b038216820361029157565b519063ffffffff8216820361029157565b5190811515820361029157565b9190916001600160801b0380809416911601918211612b6557565b67ffffffffffffffff81116107c75760051b60200190565b80511561378c5760200190565b634e487b7160e01b600052603260045260246000fd5b80516001101561378c5760400190565b805182101561378c5760209160051b010190565b60025481101561378c57600d906002600052027f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace0190600090565b6001600160a01b031660005260036020526040600020548015613837576000198101908111612b6557613833906137c6565b5090565b60405162461bcd60e51b815260206004820152601a60248201527f496e666f20666f7220696420646f6573206e6f742065786973740000000000006044820152606490fd5b906007820154916008810154916009820154916001600160801b03600482015416908115613bc1576001600160a01b03600954166101006001600160a01b03600c5416604460405180948193630e28a70d60e11b835260048301523060248301525afa9081156109ea57600091613f34575b5061390f61391a9160e0600d5491015180613f1d575b506005840154614534565b600683015490612b58565b80613f07575b506003810154908161393157505050565b6040519163133f757160e31b83526004830152610180808360248173c36442b4a4522e871399cd717abdd847ab11fe885afa9283156109ea576000808182839284988590869787998892613e30575b50506040519a8b67ffffffffffffffff6101408281810110920111176107c7576001600160a01b0399613a2f9960e08e6001600160801b0396878f9a9662ffffff9d8f988f8f8f8f81889e6101408c01604052168a5216602089015216604087015260020b606086015260020b60808501521660a083015260c08201520152166101008c0152166101208a01528160405195613a1b87612a94565b168552166020840152166040820152613fdb565b1691606081015160020b92608082015160020b60009060405192633850c7bd60e01b845260e084600481845afa938415613635578394613e08575b5060405163f30dba9360e01b8152600481018890529161010083602481855afa978815613dfd5784938599613dcd575b5060405163f30dba9360e01b8152600481018390529561010087602481875afa968715611a80578697613d8d575b5060020b90811215613c8c5750505061012092613b2592613b0292039603955b60c085015160a08601516001600160801b03169103614662565b610100840151019460e084015190036001600160801b0360a08501511690614662565b91015101916001600160a01b0360085416916001600160a01b03600182015416604051906399039f9d60e01b908183526004830152602082602481885afa9182156109ea57600092613c41575b5060246001600160a01b03600260209495015416916040519687938492835260048301525afa9283156109ea57600093613c05575b501580613bfc575b613be6575b501580613bdd575b613bc5575b5050565b613bda929391613bd4916145bc565b90612f9c565b90565b50801515613bbc565b95613bd484613bf593986145bc565b9438613bb4565b50801515613baf565b9092506020813d602011613c39575b81613c2160209383612afd565b8101031261029157613c329061373f565b9138613ba7565b3d9150613c14565b91506020823d602011613c84575b81613c5c60209383612afd565b810103126102915760246001600160a01b036002613c7b60209561373f565b94505050613b72565b3d9150613c4f565b91979392911215613d755760405163f305839960e01b815296602088600481845afa9788156109ea57600098613d40575b50966020600498604051998a8092634614131960e01b82525afa9788156109ea57600098613d00575b5092613b02926101209592613b2595030397030395613ae8565b929491939097506020833d602011613d38575b81613d2060209383612afd565b81010312610291579151969093919290613b02613ce6565b3d9150613d13565b97506020883d602011613d6d575b81613d5b60209383612afd565b81010312610291579651966020613cbd565b3d9150613d4e565b61012093965091613b2592613b029203960395613ae8565b909650613db59195506101003d61010011613dc6575b613dad8183612afd565b810190615e28565b505050509692509050949538613ac8565b503d613da3565b909850613dec9193506101003d61010011613dc657613dad8183612afd565b505050509492509050929738613a9a565b6040513d86823e3d90fd5b613e2291945060e03d60e011610a8d57610a768183612afd565b505050505090509238613a6a565b98509a50505050505050915083813d8311613f00575b613e508183612afd565b810103126101915782516bffffffffffffffffffffffff8116036101915750613e7b602083016136f6565b50613e88604083016136f6565b613e94606084016136f6565b92613ea16080820161370a565b93613eae60a08301614093565b613eba60c08401614093565b90613ec760e0850161371a565b9161010085015197610120860151613eef610160613ee86101408a0161371a565b980161371a565b979591939294999096973880613980565b503d613e46565b95613bd483613f1693986145bc565b9438613920565b90613bd4613f2e92600e54906145bc565b38613904565b9050610100813d61010011613fd3575b81613f526101009383612afd565b810103126102915761390f61391a9160e060405191613f7083612ac4565b613f79816136f6565b8352613f87602082016136f6565b6020840152613f986040820161371a565b6040840152606081015160608401526080810151608084015260a081015160a084015260c081015160c0840152015160e082015291506138ee565b3d9150613f44565b6001600160a01b0390818151169082602082015116908183101561029157604062ffffff910151166040519160208301938452604083015260608201526060815261402581612a5b565b519020604051602081019160ff60f81b83527307e610c722b66148d8c6b92967c99cd1ba8c7e6160621b602183015260358201527fe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b5460558201526055815261408c81612a5b565b5190201690565b51908160020b820361029157565b519061ffff8216820361029157565b908160e0910312610291576140c4816136f6565b916140d160208301614093565b916140de604082016140a1565b916140eb606083016140a1565b916140f8608082016140a1565b9160a082015160ff811681036102915760c0613bda91930161373f565b811561411f570490565b634e487b7160e01b600052601260045260246000fd5b60020b60008112156144b65780600003905b620d89e8821161448d57600182161561447b576001600160881b036ffffcb933bd6fad37aa2d162d1a5940015b16916002811661445f575b60048116614443575b60088116614427575b6010811661440b575b602081166143ef575b604081166143d3575b6080908181166143b8575b610100811661439d575b6102008116614382575b6104008116614367575b610800811661434c575b6110008116614331575b6120008116614316575b61400081166142fb575b61800081166142e0575b6201000081166142c5575b6202000081166142ab575b620400008116614291575b6208000016614276575b50600012614267575b6001600160a01b039063ffffffff811661425e5760ff60005b169060201c011690565b60ff6001614254565b801561411f576000190461423b565b6b048a170391f7dc42444e8fa26000929302901c9190614232565b6d2216e584f5fa1ea926041bedfe98909302811c92614228565b926e5d6af8dedb81196699c329225ee60402811c9261421d565b926f09aa508b5b7a84e1c677de54f3e99bc902811c92614212565b926f31be135f97d08fd981231505542fcfa602811c92614207565b926f70d869a156d2a1b890bb3df62baf32f702811c926141fd565b926fa9f746462d870fdf8a65dc1f90e061e502811c926141f3565b926fd097f3bdfd2022b8845ad8f792aa582502811c926141e9565b926fe7159475a2c29b7443b29c7fa6e889d902811c926141df565b926ff3392b0822b70005940c7a398e4b70f302811c926141d5565b926ff987a7253ac413176f2b074cf7815e5402811c926141cb565b926ffcbe86c7900a88aedcffc83b479aa3a402811c926141c1565b926ffe5dee046a99a2a811c461f1969c305302811c926141b7565b916fff2ea16466c96a3843ec78b326b528610260801c916141ac565b916fff973b41fa98c081472e6896dfb254c00260801c916141a3565b916fffcb9843d60f6159c9db58835c9266440260801c9161419a565b916fffe5caca7e10e4e61c3624eaa0941cd00260801c91614191565b916ffff2e50f5f656932ef12357cf3c7fdcc0260801c91614188565b916ffff97272373d413259a46990580e213a0260801c9161417f565b6001600160881b03600160801b614174565b60405162461bcd60e51b81526020600482015260016024820152601560fa1b6044820152606490fd5b80614147565b9093926000929091836001600160a01b038084168189161161452c575b8281169088811682116144f957505050506144f5929394615164565b915b565b90919294955083161160001461452057509061451a83613bda949383615164565b94615132565b94613bda939250615132565b9692966144d9565b9080820290600019818409908280831092039180830392146145ab57670de0b6b3a76400009082821115614598577faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac10669940990828211900360ee1b910360121c170290565b634e487b7160005260116020526024601cfd5b5050670de0b6b3a764000091500490565b90670de0b6b3a7640000808302919060001981850993838086109503948086039514614655578483111561463c579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b82634e487b71600052156003026011186020526024601cfd5b505090613bda9250614115565b81810291906000198282099183808410930392808403931461469f57600160801b9183831115614598570990828211900360801b910360801c1790565b50505060801c90565b90606082901b90600160601b60001981850993838086109503948086039514614655578483111561463c579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b81810291906000198282099183808410930392808403931461476257600160601b9183831115614598570990828211900360a01b910360601c1790565b50505060601c90565b9080820290600019818409908280831092039180830392146147c9576127109082821115614598577fbc01a36e2eb1c432ca57a786c226809d495182a9930be0ded288ce703afb7e91940990828211900360fc1b910360041c170290565b505061271091500490565b918183029160001981850993838086109503948086039514614655578483111561463c579082910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b60026001541461485b576002600155565b604051633ee5aeb560e01b8152600490fd5b600e54600090156149e0576001600160a01b0390600754604092835192816370a0823160e01b9384865230600487015285602481602096879460081c165afa9485156149d65782956149a7575b50806009541681600c5416813b156107dd578391606483928a5194859384926360fb0f5960e01b845260048401528160248401524260448401525af18015612e195790849291614994575b5060075460081c1693602487518096819382523060048301525afa94851561498a575093614956575b50506149406149499161495193612b58565b600e54906145bc565b600d54612f9c565b600d55565b90809350813d8311614983575b61496d8183612afd565b810103126102915790519061494061494961492e565b503d614963565b51903d90823e3d90fd5b6149a090939193612ab0565b9138614905565b9094508281813d83116149cf575b6149bf8183612afd565b810103126107e1575193386148ba565b503d6149b5565b86513d84823e3d90fd5b50565b6001600160801b036004820154166005820154908115614a5e578015614a4957614a3b600791614a4593600d54614a34614a1d8284614534565b91614a2e60068a0193845490612b58565b93614534565b90556145bc565b9201918254612f9c565b9055565b50614a59600691600d5490614534565b910155565b505050565b6001600160801b03600482015416614a7a826151b4565b6005820154908115614a5e578015614a4957614a3b600791614a4593600d54614a34614a1d8284614534565b906001600160801b0360048301541690614ae6576005820154908115614a5e578015614a4957614a3b600791614a4593600d54614a34614a1d8284614534565b614aef826151b4565b614a7a565b6000908154926001600160a01b038085169082600411612639578485908680604097885195602087019163b700961360e01b8352169586602482015230604482015263ffffffff60e01b833516606482015260648152614b5381612ae1565b5190875afa86614b616150a9565b91614c30575b505015614b78575b50505050505050565b63ffffffff1615614c1a5760ff60a01b19958616600160a01b178555813b156126395791849184938360649651968780958194634a63ebf760e11b835260048301528860248301528060448301528084848401378181018301849052601f01601f191681010301925af1908115614c115750614c02575b5090815416905538808080808080614b6f565b614c0b90612ab0565b38614bef565b513d84823e3d90fd5b60249084519062d1953b60e31b82526004820152fd5b815191939092838310614c695750508290810103126118d757614c6085614c596020840161373f565b920161372e565b905b3886614b67565b925092906020811015614c7e575b5050614c62565b81925090602091810103126118c0576020614c99910161373f565b3880614c77565b9162ffffff91614cae613304565b506001600160a01b039081811682861611614ce4575b8160405195614cd287612a94565b16855216602084015216604082015290565b93614cc4565b610fa01061259157565b63ffffffff1660058110908115614d1f575b50614d0d57565b604051632152f83760e11b8152600490fd5b603c91501138614d06565b60018110908115614d4f575b50614d3d57565b60405163334ee9a160e01b8152600490fd5b6109c491501138614d36565b6109c410614d6557565b6040516358d620b360e01b8152600490fd5b9060020b90811561411f5760020b0790565b6001600160a01b0390818151169060009182526003602052604082205415600014614f095760025468010000000000000000811015614ef557806001614dd292016002556137c6565b919091614ee15790600c6101408386604096955116966bffffffffffffffffffffffff60a01b888187541617865560018601602084015191838351169082541617905560028601916020820151168254918962ffffff60a01b91015160a01b169168ffffffffffffffffff60b81b161717905585810151805160038601556001600160801b03602060048701920151166001600160801b0319825416179055606081015160058501556080810151600685015560a0810151600785015560c0810151600885015560e08101516009850155610100810151600a850155600b840163ffffffff6101208301511663ffffffff19825416179055015191015560025492815260036020522055600190565b634e487b7160e01b83526004839052602483fd5b634e487b7160e01b83526041600452602483fd5b50905090565b6001600160a01b039182169082160391908211612b6557565b90614f4a614f5193926001600160a01b039283811684831611614f6557614f0f565b16906146a8565b6001600160801b0381169081036102915790565b90614f0f565b90614f5192916001600160a01b039081831682821611614fa5575b614f9e90614f98838516848316614725565b93614f0f565b16916147d4565b91614f86565b9190826040910312610291576020825192015190565b6040516370a0823160e01b81523060048201526001600160a01b039190911692909190602083602481875afa9283156109ea57600093615034575b5080615009575b50505050565b82811115615024575061501b92615068565b38808080615003565b915061502f92615068565b61501b565b9092506020813d602011615060575b8161505060209383612afd565b8101031261029157519138614ffc565b3d9150615043565b60405163a9059cbb60e01b60208201526001600160a01b039290921660248301526044808301939093529181526144f7916150a4606483612afd565b615d69565b3d156150e4573d9067ffffffffffffffff82116107c757604051916150d8601f8201601f191660200184612afd565b82523d6000602084013e565b606090565b51908160060b820361029157565b91908260809103126102915761510c8261372e565b91615119602082016150e9565b91613bda606061512b604085016136f6565b930161373f565b613bda929161515c6001600160801b03926001600160a01b039283811684831611614f6557614f0f565b169116614725565b906151a6613bda936001600160a01b0392838116848616116151ae575b838061518d8784614f0f565b169116916001600160801b0360601b9060601b166147d4565b911690614115565b93615181565b6001600160801b0380600483015416906003830154908115801561549d575b61500357615250906040928351906151ea82612a5b565b815230602080830191825285830184905260608301938452855163fc6f786560e01b81528351600482015291516001600160a01b031660248301526040909201516001600160801b03908116604483015292519092166064830152909182906084820190565b03928083600095818773c36442b4a4522e871399cd717abdd847ab11fe885af1938415615492578093819561546d575b506001600160a01b0395866008541660018901888154169685516399039f9d60e01b9889825260048201528781602481875afa90811561542e578691615438575b508760028d019960248d8c5416918a519788938492835260048301525afa93841561542e57858d93928d9289976153ef575b50156153cc575061532493600a8894015480615399575b509061531e915416928c6008541692612b58565b91614fc1565b156153835750926144f79692869285600a61531e9796015480615353575b505050505416936008541692612b58565b60059192939650615364908961476b565b958585541683525220615378848254612f9c565b905538808080615342565b92505050614a459350614a3b91506009926145bc565b61531e929194506153aa908461476b565b9381815416895260058b528989206153c3868254612f9c565b9055909161530a565b9250506153d992506145bc565b6153e860088b01918254612f9c565b9055615324565b939450955050508781813d8311615427575b61540b8183612afd565b810103126118d757908a856154208e9461373f565b95386152f3565b503d615401565b87513d88823e3d90fd5b90508781813d8311615466575b61544f8183612afd565b810103126118d7576154609061373f565b386152c1565b503d615445565b909450816154889294503d8511611fdf57611fd18183612afd565b9290929338615280565b9051903d90823e3d90fd5b5082156151d3565b62ffffff166064811461551c576101f4811461551657610bb8811461551057612710811461550a57614e2081146155045761753081146154fe57619c40146154f957604051631434ed7f60e01b8152600490fd5b600890565b50600690565b50600490565b5060c890565b50603c90565b50600a90565b50600190565b81810292918115918404141715612b6557565b91909261554761086d60018501612b1f565b9363ffffffff600b8501541660405195633850c7bd60e01b80885260e0886004816001600160a01b0386165afa9788156109ea57600098615b19575b50603c889302908163ffffffff811603612b655763ffffffff82169060405190815260e0816004816001600160a01b0388165afa9081156109ea57600090600092615af1575b5061ffff821615615ac75761ffff60018183160111612b655761ffff9081600181806040519663252c09d760e01b88521693160116061660048201526080816024816001600160a01b0388165afa9081156109ea57600090600092615aa2575b509015615a3d575b63ffffffff1663ffffffff42160363ffffffff8111612b655763ffffffff80931683821610615a35575b501690811580156156e1575b505050906156b9916001600160a01b0361312896541660005260066020526040600020546109516156b1848360020b9a6156a08c614135565b9460181c60020b9461095186614135565b989099614135565b9290612710918203828111612b6557826156d6826156dd94615522565b0494615522565b0490565b9091939250600090615a0b5760405191936156fb83612a94565b6002835281602093848101966040368937836157168361377f565b5282615721836137a2565b5260405197889263883bdbfd60e01b8452602484019088600486015251809152604484019190855b898282106159eb57505050506001600160a01b038380920392165afa94851561181057829083966158de575b50615789615782826137a2565b519161377f565b5160060b9060060b0394667fffffffffffff1990667fffffffffffff8713828812176158ca576001600160a01b036157cc816157c4846137a2565b51169261377f565b51169003928260060b9660060b9087156158b657600019928214888414166158a2575086810560020b96600082129182615893575b505061587e575b5077ffffffffffffffffffffffffffffffffffffffffffffffff6001600160a01b03820216046001600160a01b0303612b655777ffffffffffffffffffffffffffffffffffffffff00000000911b161561411f57613128946001600160a01b036158746156b994614135565b9293829750615667565b9094627fffff198114612b6557019338615808565b0760060b151590503880615801565b634e487b7160e01b81526011600452602490fd5b634e487b7160e01b81526012600452602490fd5b634e487b7160e01b84526011600452602484fd5b9550503d8083873e6158f08187612afd565b85019460408187031261263d57805167ffffffffffffffff908181116126395782019187601f840112156126395782519261592a84613767565b936159386040519586612afd565b808552878086019160051b830101918a83116118965788809101915b8383106159d3575091505081015191821161263957019580601f880112156107dd57865161598181613767565b9761598f604051998a612afd565b81895286808a019260051b8201019283116118d75786809101915b8383106159bb575050505038615775565b81906159c6846136f6565b81520191019086906159aa565b81906159de846150e9565b8152019101908890615954565b835163ffffffff1685528997508c96509384019390920191600101615749565b60405162461bcd60e51b8152602060048201526002602482015261042560f41b6044820152606490fd5b90503861565b565b5060405163252c09d760e01b8152600060048201526080816024816001600160a01b0388165afa80156109ea5763ffffffff91600091615a80575b509050615631565b615a99915060803d6080116109e3576109d28183612afd565b50505038615a78565b9050615abd915060803d6080116109e3576109d28183612afd565b9291505038615629565b60405162461bcd60e51b81526020600482015260026024820152614e4960f01b6044820152606490fd5b9050615b0c915060e03d60e011610a8d57610a768183612afd565b50505092509050386155c9565b615b3391985060e03d60e011610a8d57610a768183612afd565b5050505050509638615583565b90926144f793604051936323b872dd60e01b60208601526001600160a01b0380921660248601521660448401526064830152606482526150a482612ae1565b604051636eb1769f60e11b815230600482015273c36442b4a4522e871399cd717abdd847ab11fe8860248201819052926001600160a01b03831692916020918282604481885afa80156109ea57600090615c87575b615bde9250612f9c565b906040519381600081870163095ea7b360e01b958682528960248a0152604489015260448852615c0d88612a5b565b87519082885af1903d6000519083615c68575b50505015615c30575b5050505050565b615c5e946150a4926040519283015260248201526000604482015260448152615c5881612a5b565b82615d69565b3880808080615c29565b91925090615c7d57503b15155b388080615c20565b6001915014615c75565b508282813d8311615caf575b615c9d8183612afd565b8101031261029157615bde9151615bd4565b503d615c93565b604051602081019163095ea7b360e01b80845273c36442b4a4522e871399cd717abdd847ab11fe889081602485015260206000809681604488015260448752615cfe87612a5b565b86519082875af185513d82615d44575b505015615d1c575050505050565b615c5e946150a4926040519260208401526024830152604482015260448152615c5881612a5b565b909150615d6157506001600160a01b0383163b15155b3880615d0e565b600114615d5a565b906000602091828151910182855af1156109ea576000513d615dbc57506001600160a01b0381163b155b615d9a5750565b604051635274afe760e01b81526001600160a01b039091166004820152602490fd5b60011415615d93565b90615dec5750805115615dda57805190602001fd5b60405163d6bda27560e01b8152600490fd5b81511580615e1f575b615dfd575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b15615df5565b91908261010091031261029157615e3e8261371a565b91602081015180600f0b81036102915791604082015191606081015191615e67608083016150e9565b91615e7460a082016136f6565b91613bda60e061512b60c0850161372e56fea164736f6c6343000818000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000006532b3f1e4dbff542fbd6befe5ed7041c10b385a000000000000000000000000060e990a7e760f211447e76a53ff6e1be2f3bdd300000000000000000000000052c1cc79fbbef91d3952ae75b1961d08f0172223000000000000000000000000598d291d3e8f483790ebac729db148a88e8c3780
-----Decoded View---------------
Arg [0] : incentiveTokenAddress (address): 0x6532B3F1e4DBff542fbD6befE5Ed7041c10B385a
Arg [1] : universalBuyAndBurnAddress (address): 0x060E990A7E760f211447E76a53fF6E1Be2f3Bdd3
Arg [2] : rootKeeperAddress (address): 0x52C1cC79fbBeF91D3952Ae75b1961D08F0172223
Arg [3] : manager (address): 0x598d291D3E8f483790EBAc729db148A88E8C3780
-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 0000000000000000000000006532b3f1e4dbff542fbd6befe5ed7041c10b385a
Arg [1] : 000000000000000000000000060e990a7e760f211447e76a53ff6e1be2f3bdd3
Arg [2] : 00000000000000000000000052c1cc79fbbef91d3952ae75b1961d08f0172223
Arg [3] : 000000000000000000000000598d291d3e8f483790ebac729db148a88e8c3780
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | 100.00% | <$0.000001 | 805,085,290.1803 | $286.95 |
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.