Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
20692554 | 105 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
PreLaunch
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 10000 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
pragma solidity ^0.8.25; import { UD60x18, ud, UNIT as UNIT_60x18, ZERO as ZERO_60x18 } from "@prb/math/UD60x18.sol"; import { ERC20 } from "@solady/tokens/ERC20.sol"; import { WETH } from "@solady/tokens/WETH.sol"; import { SafeTransferLib } from "@solady/utils/SafeTransferLib.sol"; import { OwnableUpgradeable } from "@openzeppelin/upgradeable/access/OwnableUpgradeable.sol"; import { Initializable } from "@openzeppelin/upgradeable/proxy/utils/Initializable.sol"; import { UUPSUpgradeable } from "@openzeppelin/upgradeable/proxy/utils/UUPSUpgradeable.sol"; import { LpETH } from "@/lpETH/LPETH.sol"; address payable constant weth = payable(address(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2)); interface VotingEscrow { function lockFor(address, uint256 amount, uint256 duration) external; } struct Lockup { uint256 amount; uint256 duration; // In epochs } struct Config { uint256 cap; uint256 deadline; uint256 minLockup; uint256 maxLockup; uint256 epochLength; UD60x18 minMultiplier; UD60x18 maxMultiplier; UD60x18 slope; } error InvalidDuration(); error Inactive(); error NotClaimable(); error CapExceeded(); contract PreLaunch is Initializable, OwnableUpgradeable, UUPSUpgradeable { uint256 public immutable cap; // Maximum amount of deposits allowed uint256 public immutable deadline; // Deadline for deposits UD60x18 internal immutable MIN_LOCKUP_DURATION; UD60x18 internal immutable MAX_LOCKUP_DURATION; UD60x18 internal immutable MIN_MULTIPLIER; UD60x18 internal immutable MAX_MULTIPLIER; UD60x18 internal immutable SLOPE; uint256 internal immutable EPOCH_LENGTH; uint256 public totalWeightedDeposits; // Total weighted deposits uint256 public totalDeposits; // Total deposits address public votingEscrow; // Voting escrow contract address payable lpEth; // LP token for lpETH uint96 claimableTimestamp; // Timestamp when deposits become claimable uint256 lpEthReceived = 0; mapping(address account => Lockup) internal lockups; constructor(Config memory _config) { cap = _config.cap; deadline = _config.deadline; MIN_LOCKUP_DURATION = UD60x18.wrap(_config.minLockup * 1e18); MAX_LOCKUP_DURATION = UD60x18.wrap(_config.maxLockup * 1e18); MIN_MULTIPLIER = _config.minMultiplier; MAX_MULTIPLIER = _config.maxMultiplier; SLOPE = _config.slope; EPOCH_LENGTH = _config.epochLength; _disableInitializers(); } function initialize() public initializer { __Ownable_init(msg.sender); __UUPSUpgradeable_init(); } receive() external payable { } function lockup(address account) external view returns (Lockup memory) { return lockups[account]; } function isActive() public view returns (bool) { return block.timestamp <= deadline; } function isClaimable() public view returns (bool) { return votingEscrow != address(0) && lpEthReceived > 0; } function setLpEth(address payable _lpEth) external onlyOwner { if (lpEth != address(0)) { revert(); } lpEth = _lpEth; } function setVotingEscrow(address _votingEscrow) external onlyOwner { if (votingEscrow != address(0)) { revert(); } votingEscrow = _votingEscrow; claimableTimestamp = uint96(block.timestamp); } function mintLpEth(uint256 minLpShares) external onlyOwner { if (lpEth == address(0)) { revert(); } if (isActive()) { revert(); } uint256 lpShares = LpETH(lpEth).deposit{ value: address(this).balance }(minLpShares); lpEthReceived += lpShares; } function depositETH(uint256 duration) external payable { _deposit(msg.value, duration); } function depositWETH(uint256 amount, uint256 duration) external { SafeTransferLib.safeTransferFrom(weth, msg.sender, address(this), amount); SafeTransferLib.safeApprove(weth, weth, amount); WETH(weth).withdraw(amount); _deposit(amount, duration); } function _deposit(uint256 amount, uint256 duration) internal { if (!isActive()) { revert Inactive(); } if (!isValidDuration(duration)) { revert InvalidDuration(); } if (totalDeposits + amount > cap) { revert CapExceeded(); } // Since we allow changing the lockup before the deadline // When a user has an existing deposit, and his new deposit has a different lockup, // We adopt the latest lockup set. // 1. Calculate existing weighted deposit // 2. Subtract the existing weighted deposit from the totalWeightedDeposits // 3. Add the new weighted deposit to the totalWeightedDeposits // 4. Update the lockup // 5. Update the totalDeposits Lockup storage lockup = lockups[msg.sender]; if (lockup.amount > 0) { uint256 existingWeightedDeposit = calculateWeightedDeposit(lockup.amount, lockup.duration); unchecked { totalWeightedDeposits -= existingWeightedDeposit; } } uint256 weightedDeposit = calculateWeightedDeposit(amount + lockup.amount, duration); totalWeightedDeposits += weightedDeposit; totalDeposits += amount; lockups[msg.sender] = Lockup({ amount: amount + lockup.amount, duration: duration }); } function withdraw(uint256 amount) external { if (!isActive()) { revert Inactive(); } // 1. Calculate the weighted deposit // 2. Subtract the weighted deposit from the totalWeightedDeposits // 3. Calculate the weighted deposit based on the remaining balance // 4. Add the new weighted deposit to the totalWeightedDeposits // 5. Update the lockup // 6. Update the totalDeposits Lockup storage lockup = lockups[msg.sender]; uint256 weightedDeposit = calculateWeightedDeposit(lockup.amount, lockup.duration); totalWeightedDeposits -= weightedDeposit; uint256 remainingAmount = lockup.amount - amount; uint256 remainingWeightedDeposit = calculateWeightedDeposit(remainingAmount, lockup.duration); totalWeightedDeposits += remainingWeightedDeposit; unchecked { totalDeposits -= amount; } lockup.amount = remainingAmount; payable(msg.sender).transfer(amount); } function changeLockup(uint256 duration) external { if (!isActive()) { revert Inactive(); } if (!isValidDuration(duration)) { revert InvalidDuration(); } Lockup storage lockup = lockups[msg.sender]; uint256 weightedDeposit = calculateWeightedDeposit(lockup.amount, lockup.duration); totalWeightedDeposits -= weightedDeposit; uint256 newWeightedDeposit = calculateWeightedDeposit(lockup.amount, duration); totalWeightedDeposits += newWeightedDeposit; lockup.duration = duration; } function claimVeTokens() external { if (!isClaimable()) { revert NotClaimable(); } Lockup storage lockup = lockups[msg.sender]; // Account for elapsed time since the deposits became claimable in epochs uint256 epochsElapsedSinceClaimable = (block.timestamp - claimableTimestamp) / EPOCH_LENGTH; uint256 lpEthAmount = lockup.amount * lpEthReceived / totalDeposits; SafeTransferLib.safeApprove(lpEth, votingEscrow, lpEthAmount); if (lockup.duration > epochsElapsedSinceClaimable) { VotingEscrow(votingEscrow).lockFor(msg.sender, lpEthAmount, lockup.duration - epochsElapsedSinceClaimable); } else { ERC20(LpETH(lpEth).lpToken()).transfer(msg.sender, lpEthAmount); } delete lockups[msg.sender]; } function calculateWeightedDeposit(uint256 amount, uint256 epochs) public view returns (uint256) { UD60x18 durationUD = UD60x18.wrap(epochs * 1e18); if (durationUD.lt(MIN_LOCKUP_DURATION)) { return 0; } return UD60x18.wrap(amount).mul( MIN_MULTIPLIER.add(MAX_MULTIPLIER.sub(MIN_MULTIPLIER)).mul( durationUD.sub(MIN_LOCKUP_DURATION).div(MAX_LOCKUP_DURATION - MIN_LOCKUP_DURATION).pow(SLOPE) ) ).unwrap(); } function isValidDuration(uint256 duration) internal view returns (bool) { // We compare the unscaled version of epochs so we increase stepwise per epoch // If we compare against the fixed point version, we can end up in between epochs return duration >= MIN_LOCKUP_DURATION.unwrap() / 1e18 && duration <= MAX_LOCKUP_DURATION.unwrap() / 1e18; } ///@dev required by the OZ UUPS module // solhint-disable-next-line no-empty-blocks function _authorizeUpgrade(address) internal override onlyOwner { } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple ERC20 + EIP-2612 implementation. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC20.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/ERC20.sol) /// /// @dev Note: /// - The ERC20 standard allows minting and transferring to and from the zero address, /// minting and transferring zero tokens, as well as self-approvals. /// For performance, this implementation WILL NOT revert for such actions. /// Please add any checks with overrides if desired. /// - The `permit` function uses the ecrecover precompile (0x1). /// /// If you are overriding: /// - NEVER violate the ERC20 invariant: /// the total sum of all balances must be equal to `totalSupply()`. /// - Check that the overridden function is actually used in the function you want to /// change the behavior of. Much of the code has been manually inlined for performance. abstract contract ERC20 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The total supply has overflowed. error TotalSupplyOverflow(); /// @dev The allowance has overflowed. error AllowanceOverflow(); /// @dev The allowance has underflowed. error AllowanceUnderflow(); /// @dev Insufficient balance. error InsufficientBalance(); /// @dev Insufficient allowance. error InsufficientAllowance(); /// @dev The permit is invalid. error InvalidPermit(); /// @dev The permit has expired. error PermitExpired(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Emitted when `amount` tokens is transferred from `from` to `to`. event Transfer(address indexed from, address indexed to, uint256 amount); /// @dev Emitted when `amount` tokens is approved by `owner` to be used by `spender`. event Approval(address indexed owner, address indexed spender, uint256 amount); /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`. uint256 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`. uint256 private constant _APPROVAL_EVENT_SIGNATURE = 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The storage slot for the total supply. uint256 private constant _TOTAL_SUPPLY_SLOT = 0x05345cdf77eb68f44c; /// @dev The balance slot of `owner` is given by: /// ``` /// mstore(0x0c, _BALANCE_SLOT_SEED) /// mstore(0x00, owner) /// let balanceSlot := keccak256(0x0c, 0x20) /// ``` uint256 private constant _BALANCE_SLOT_SEED = 0x87a211a2; /// @dev The allowance slot of (`owner`, `spender`) is given by: /// ``` /// mstore(0x20, spender) /// mstore(0x0c, _ALLOWANCE_SLOT_SEED) /// mstore(0x00, owner) /// let allowanceSlot := keccak256(0x0c, 0x34) /// ``` uint256 private constant _ALLOWANCE_SLOT_SEED = 0x7f5e9f20; /// @dev The nonce slot of `owner` is given by: /// ``` /// mstore(0x0c, _NONCES_SLOT_SEED) /// mstore(0x00, owner) /// let nonceSlot := keccak256(0x0c, 0x20) /// ``` uint256 private constant _NONCES_SLOT_SEED = 0x38377508; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev `(_NONCES_SLOT_SEED << 16) | 0x1901`. uint256 private constant _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX = 0x383775081901; /// @dev `keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)")`. bytes32 private constant _DOMAIN_TYPEHASH = 0x8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f; /// @dev `keccak256("1")`. bytes32 private constant _VERSION_HASH = 0xc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6; /// @dev `keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)")`. bytes32 private constant _PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 METADATA */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the name of the token. function name() public view virtual returns (string memory); /// @dev Returns the symbol of the token. function symbol() public view virtual returns (string memory); /// @dev Returns the decimals places of the token. function decimals() public view virtual returns (uint8) { return 18; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the amount of tokens in existence. function totalSupply() public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := sload(_TOTAL_SUPPLY_SLOT) } } /// @dev Returns the amount of tokens owned by `owner`. function balanceOf(address owner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x20)) } } /// @dev Returns the amount of tokens that `spender` can spend on behalf of `owner`. function allowance(address owner, address spender) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x34)) } } /// @dev Sets `amount` as the allowance of `spender` over the caller's tokens. /// /// Emits a {Approval} event. function approve(address spender, uint256 amount) public virtual returns (bool) { /// @solidity memory-safe-assembly assembly { // Compute the allowance slot and store the amount. mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x34), amount) // Emit the {Approval} event. mstore(0x00, amount) log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, caller(), shr(96, mload(0x2c))) } return true; } /// @dev Transfer `amount` tokens from the caller to `to`. /// /// Requirements: /// - `from` must at least have `amount`. /// /// Emits a {Transfer} event. function transfer(address to, uint256 amount) public virtual returns (bool) { _beforeTokenTransfer(msg.sender, to, amount); /// @solidity memory-safe-assembly assembly { // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, caller()) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, caller(), shr(96, mload(0x0c))) } _afterTokenTransfer(msg.sender, to, amount); return true; } /// @dev Transfers `amount` tokens from `from` to `to`. /// /// Note: Does not update the allowance if it is the maximum uint256 value. /// /// Requirements: /// - `from` must at least have `amount`. /// - The caller must have at least `amount` of allowance to transfer the tokens of `from`. /// /// Emits a {Transfer} event. function transferFrom(address from, address to, uint256 amount) public virtual returns (bool) { _beforeTokenTransfer(from, to, amount); /// @solidity memory-safe-assembly assembly { let from_ := shl(96, from) // Compute the allowance slot and load its value. mstore(0x20, caller()) mstore(0x0c, or(from_, _ALLOWANCE_SLOT_SEED)) let allowanceSlot := keccak256(0x0c, 0x34) let allowance_ := sload(allowanceSlot) // If the allowance is not the maximum uint256 value. if add(allowance_, 1) { // Revert if the amount to be transferred exceeds the allowance. if gt(amount, allowance_) { mstore(0x00, 0x13be252b) // `InsufficientAllowance()`. revert(0x1c, 0x04) } // Subtract and store the updated allowance. sstore(allowanceSlot, sub(allowance_, amount)) } // Compute the balance slot and load its value. mstore(0x0c, or(from_, _BALANCE_SLOT_SEED)) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c))) } _afterTokenTransfer(from, to, amount); return true; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EIP-2612 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev For more performance, override to return the constant value /// of `keccak256(bytes(name()))` if `name()` will never change. function _constantNameHash() internal view virtual returns (bytes32 result) {} /// @dev Returns the current nonce for `owner`. /// This value is used to compute the signature for EIP-2612 permit. function nonces(address owner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the nonce slot and load its value. mstore(0x0c, _NONCES_SLOT_SEED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x20)) } } /// @dev Sets `value` as the allowance of `spender` over the tokens of `owner`, /// authorized by a signed approval by `owner`. /// /// Emits a {Approval} event. function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { bytes32 nameHash = _constantNameHash(); // We simply calculate it on-the-fly to allow for cases where the `name` may change. if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name())); /// @solidity memory-safe-assembly assembly { // Revert if the block timestamp is greater than `deadline`. if gt(timestamp(), deadline) { mstore(0x00, 0x1a15a3cc) // `PermitExpired()`. revert(0x1c, 0x04) } let m := mload(0x40) // Grab the free memory pointer. // Clean the upper 96 bits. owner := shr(96, shl(96, owner)) spender := shr(96, shl(96, spender)) // Compute the nonce slot and load its value. mstore(0x0e, _NONCES_SLOT_SEED_WITH_SIGNATURE_PREFIX) mstore(0x00, owner) let nonceSlot := keccak256(0x0c, 0x20) let nonceValue := sload(nonceSlot) // Prepare the domain separator. mstore(m, _DOMAIN_TYPEHASH) mstore(add(m, 0x20), nameHash) mstore(add(m, 0x40), _VERSION_HASH) mstore(add(m, 0x60), chainid()) mstore(add(m, 0x80), address()) mstore(0x2e, keccak256(m, 0xa0)) // Prepare the struct hash. mstore(m, _PERMIT_TYPEHASH) mstore(add(m, 0x20), owner) mstore(add(m, 0x40), spender) mstore(add(m, 0x60), value) mstore(add(m, 0x80), nonceValue) mstore(add(m, 0xa0), deadline) mstore(0x4e, keccak256(m, 0xc0)) // Prepare the ecrecover calldata. mstore(0x00, keccak256(0x2c, 0x42)) mstore(0x20, and(0xff, v)) mstore(0x40, r) mstore(0x60, s) let t := staticcall(gas(), 1, 0, 0x80, 0x20, 0x20) // If the ecrecover fails, the returndatasize will be 0x00, // `owner` will be checked if it equals the hash at 0x00, // which evaluates to false (i.e. 0), and we will revert. // If the ecrecover succeeds, the returndatasize will be 0x20, // `owner` will be compared against the returned address at 0x20. if iszero(eq(mload(returndatasize()), owner)) { mstore(0x00, 0xddafbaef) // `InvalidPermit()`. revert(0x1c, 0x04) } // Increment and store the updated nonce. sstore(nonceSlot, add(nonceValue, t)) // `t` is 1 if ecrecover succeeds. // Compute the allowance slot and store the value. // The `owner` is already at slot 0x20. mstore(0x40, or(shl(160, _ALLOWANCE_SLOT_SEED), spender)) sstore(keccak256(0x2c, 0x34), value) // Emit the {Approval} event. log3(add(m, 0x60), 0x20, _APPROVAL_EVENT_SIGNATURE, owner, spender) mstore(0x40, m) // Restore the free memory pointer. mstore(0x60, 0) // Restore the zero pointer. } } /// @dev Returns the EIP-712 domain separator for the EIP-2612 permit. function DOMAIN_SEPARATOR() public view virtual returns (bytes32 result) { bytes32 nameHash = _constantNameHash(); // We simply calculate it on-the-fly to allow for cases where the `name` may change. if (nameHash == bytes32(0)) nameHash = keccak256(bytes(name())); /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Grab the free memory pointer. mstore(m, _DOMAIN_TYPEHASH) mstore(add(m, 0x20), nameHash) mstore(add(m, 0x40), _VERSION_HASH) mstore(add(m, 0x60), chainid()) mstore(add(m, 0x80), address()) result := keccak256(m, 0xa0) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL MINT FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Mints `amount` tokens to `to`, increasing the total supply. /// /// Emits a {Transfer} event. function _mint(address to, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), to, amount); /// @solidity memory-safe-assembly assembly { let totalSupplyBefore := sload(_TOTAL_SUPPLY_SLOT) let totalSupplyAfter := add(totalSupplyBefore, amount) // Revert if the total supply overflows. if lt(totalSupplyAfter, totalSupplyBefore) { mstore(0x00, 0xe5cfe957) // `TotalSupplyOverflow()`. revert(0x1c, 0x04) } // Store the updated total supply. sstore(_TOTAL_SUPPLY_SLOT, totalSupplyAfter) // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, 0, shr(96, mload(0x0c))) } _afterTokenTransfer(address(0), to, amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL BURN FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Burns `amount` tokens from `from`, reducing the total supply. /// /// Emits a {Transfer} event. function _burn(address from, uint256 amount) internal virtual { _beforeTokenTransfer(from, address(0), amount); /// @solidity memory-safe-assembly assembly { // Compute the balance slot and load its value. mstore(0x0c, _BALANCE_SLOT_SEED) mstore(0x00, from) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Subtract and store the updated total supply. sstore(_TOTAL_SUPPLY_SLOT, sub(sload(_TOTAL_SUPPLY_SLOT), amount)) // Emit the {Transfer} event. mstore(0x00, amount) log3(0x00, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, shl(96, from)), 0) } _afterTokenTransfer(from, address(0), amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL TRANSFER FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Moves `amount` of tokens from `from` to `to`. function _transfer(address from, address to, uint256 amount) internal virtual { _beforeTokenTransfer(from, to, amount); /// @solidity memory-safe-assembly assembly { let from_ := shl(96, from) // Compute the balance slot and load its value. mstore(0x0c, or(from_, _BALANCE_SLOT_SEED)) let fromBalanceSlot := keccak256(0x0c, 0x20) let fromBalance := sload(fromBalanceSlot) // Revert if insufficient balance. if gt(amount, fromBalance) { mstore(0x00, 0xf4d678b8) // `InsufficientBalance()`. revert(0x1c, 0x04) } // Subtract and store the updated balance. sstore(fromBalanceSlot, sub(fromBalance, amount)) // Compute the balance slot of `to`. mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x20) // Add and store the updated balance of `to`. // Will not overflow because the sum of all user balances // cannot exceed the maximum uint256 value. sstore(toBalanceSlot, add(sload(toBalanceSlot), amount)) // Emit the {Transfer} event. mstore(0x20, amount) log3(0x20, 0x20, _TRANSFER_EVENT_SIGNATURE, shr(96, from_), shr(96, mload(0x0c))) } _afterTokenTransfer(from, to, amount); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL ALLOWANCE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Updates the allowance of `owner` for `spender` based on spent `amount`. function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { /// @solidity memory-safe-assembly assembly { // Compute the allowance slot and load its value. mstore(0x20, spender) mstore(0x0c, _ALLOWANCE_SLOT_SEED) mstore(0x00, owner) let allowanceSlot := keccak256(0x0c, 0x34) let allowance_ := sload(allowanceSlot) // If the allowance is not the maximum uint256 value. if add(allowance_, 1) { // Revert if the amount to be transferred exceeds the allowance. if gt(amount, allowance_) { mstore(0x00, 0x13be252b) // `InsufficientAllowance()`. revert(0x1c, 0x04) } // Subtract and store the updated allowance. sstore(allowanceSlot, sub(allowance_, amount)) } } } /// @dev Sets `amount` as the allowance of `spender` over the tokens of `owner`. /// /// Emits a {Approval} event. function _approve(address owner, address spender, uint256 amount) internal virtual { /// @solidity memory-safe-assembly assembly { let owner_ := shl(96, owner) // Compute the allowance slot and store the amount. mstore(0x20, spender) mstore(0x0c, or(owner_, _ALLOWANCE_SLOT_SEED)) sstore(keccak256(0x0c, 0x34), amount) // Emit the {Approval} event. mstore(0x00, amount) log3(0x00, 0x20, _APPROVAL_EVENT_SIGNATURE, shr(96, owner_), shr(96, mload(0x2c))) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HOOKS TO OVERRIDE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Hook that is called before any transfer of tokens. /// This includes minting and burning. function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /// @dev Hook that is called after any transfer of tokens. /// This includes minting and burning. function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {ERC20} from "./ERC20.sol"; /// @notice Simple Wrapped Ether implementation. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/WETH.sol) /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/WETH.sol) /// @author Inspired by WETH9 (https://github.com/dapphub/ds-weth/blob/master/src/weth9.sol) contract WETH is ERC20 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ETH transfer has failed. error ETHTransferFailed(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Emitted when `amount` is deposited from `from`. event Deposit(address indexed from, uint256 amount); /// @dev Emitted when `amount` is withdrawn to `to`. event Withdrawal(address indexed to, uint256 amount); /// @dev `keccak256(bytes("Deposit(address,uint256)"))`. uint256 private constant _DEPOSIT_EVENT_SIGNATURE = 0xe1fffcc4923d04b559f4d29a8bfc6cda04eb5b0d3c460751c2402c5c5cc9109c; /// @dev `keccak256(bytes("Withdrawal(address,uint256)"))`. uint256 private constant _WITHDRAWAL_EVENT_SIGNATURE = 0x7fcf532c15f0a6db0bd6d0e038bea71d30d808c7d98cb3bf7268a95bf5081b65; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 METADATA */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the name of the token. function name() public view virtual override returns (string memory) { return "Wrapped Ether"; } /// @dev Returns the symbol of the token. function symbol() public view virtual override returns (string memory) { return "WETH"; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* WETH */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Deposits `amount` ETH of the caller and mints `amount` WETH to the caller. /// /// Emits a {Deposit} event. function deposit() public payable virtual { _mint(msg.sender, msg.value); /// @solidity memory-safe-assembly assembly { // Emit the {Deposit} event. mstore(0x00, callvalue()) log2(0x00, 0x20, _DEPOSIT_EVENT_SIGNATURE, caller()) } } /// @dev Burns `amount` WETH of the caller and sends `amount` ETH to the caller. /// /// Emits a {Withdrawal} event. function withdraw(uint256 amount) public virtual { _burn(msg.sender, amount); /// @solidity memory-safe-assembly assembly { // Emit the {Withdrawal} event. mstore(0x00, amount) log2(0x00, 0x20, _WITHDRAWAL_EVENT_SIGNATURE, caller()) // Transfer the ETH and check if it succeeded or not. if iszero(call(gas(), caller(), amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Equivalent to `deposit()`. receive() external payable virtual { deposit(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @author Permit2 operations from (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol) /// /// @dev Note: /// - For ETH transfers, please use `forceSafeTransferETH` for DoS protection. /// - For ERC20s, this implementation won't check that a token has code, /// responsibility is delegated to the caller. library SafeTransferLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ETH transfer has failed. error ETHTransferFailed(); /// @dev The ERC20 `transferFrom` has failed. error TransferFromFailed(); /// @dev The ERC20 `transfer` has failed. error TransferFailed(); /// @dev The ERC20 `approve` has failed. error ApproveFailed(); /// @dev The Permit2 operation has failed. error Permit2Failed(); /// @dev The Permit2 amount must be less than `2**160 - 1`. error Permit2AmountOverflow(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Suggested gas stipend for contract receiving ETH that disallows any storage writes. uint256 internal constant GAS_STIPEND_NO_STORAGE_WRITES = 2300; /// @dev Suggested gas stipend for contract receiving ETH to perform a few /// storage reads and writes, but low enough to prevent griefing. uint256 internal constant GAS_STIPEND_NO_GRIEF = 100000; /// @dev The unique EIP-712 domain domain separator for the DAI token contract. bytes32 internal constant DAI_DOMAIN_SEPARATOR = 0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7; /// @dev The address for the WETH9 contract on Ethereum mainnet. address internal constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; /// @dev The canonical Permit2 address. /// [Github](https://github.com/Uniswap/permit2) /// [Etherscan](https://etherscan.io/address/0x000000000022D473030F116dDEE9F6B43aC78BA3) address internal constant PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ETH OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // If the ETH transfer MUST succeed with a reasonable gas budget, use the force variants. // // The regular variants: // - Forwards all remaining gas to the target. // - Reverts if the target reverts. // - Reverts if the current contract has insufficient balance. // // The force variants: // - Forwards with an optional gas stipend // (defaults to `GAS_STIPEND_NO_GRIEF`, which is sufficient for most cases). // - If the target reverts, or if the gas stipend is exhausted, // creates a temporary contract to force send the ETH via `SELFDESTRUCT`. // Future compatible with `SENDALL`: https://eips.ethereum.org/EIPS/eip-4758. // - Reverts if the current contract has insufficient balance. // // The try variants: // - Forwards with a mandatory gas stipend. // - Instead of reverting, returns whether the transfer succeeded. /// @dev Sends `amount` (in wei) ETH to `to`. function safeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gas(), to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Sends all the ETH in the current contract to `to`. function safeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // Transfer all the ETH and check if it succeeded or not. if iszero(call(gas(), to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with a `gasStipend`. function forceSafeTransferAllETH(address to, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { if iszero(call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { if lt(selfbalance(), amount) { mstore(0x00, 0xb12d13eb) // `ETHTransferFailed()`. revert(0x1c, 0x04) } if iszero(call(GAS_STIPEND_NO_GRIEF, to, amount, codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(amount, 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Force sends all the ETH in the current contract to `to`, with `GAS_STIPEND_NO_GRIEF`. function forceSafeTransferAllETH(address to) internal { /// @solidity memory-safe-assembly assembly { // forgefmt: disable-next-item if iszero(call(GAS_STIPEND_NO_GRIEF, to, selfbalance(), codesize(), 0x00, codesize(), 0x00)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. if iszero(create(selfbalance(), 0x0b, 0x16)) { revert(codesize(), codesize()) } // For gas estimation. } } } /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`. function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, amount, codesize(), 0x00, codesize(), 0x00) } } /// @dev Sends all the ETH in the current contract to `to`, with a `gasStipend`. function trySafeTransferAllETH(address to, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { success := call(gasStipend, to, selfbalance(), codesize(), 0x00, codesize(), 0x00) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for /// the current contract to manage. function safeTransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// /// The `from` account must have at least `amount` approved for the current contract to manage. function trySafeTransferFrom(address token, address from, address to, uint256 amount) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x60, amount) // Store the `amount` argument. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x23b872dd000000000000000000000000) // `transferFrom(address,address,uint256)`. success := and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends all of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have their entire balance approved for the current contract to manage. function safeTransferAllFrom(address token, address from, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) // Cache the free memory pointer. mstore(0x40, to) // Store the `to` argument. mstore(0x2c, shl(96, from)) // Store the `from` argument. mstore(0x0c, 0x70a08231000000000000000000000000) // `balanceOf(address)`. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x60, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x00, 0x23b872dd) // `transferFrom(address,address,uint256)`. amount := mload(0x60) // The `amount` is already at 0x60. We'll need to return it. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { mstore(0x00, 0x7939f424) // `TransferFromFailed()`. revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, m) // Restore the free memory pointer. } } /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransfer(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sends all of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransferAll(address token, address to) internal returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x70a08231) // Store the function selector of `balanceOf(address)`. mstore(0x20, address()) // Store the address of the current contract. // Read the balance, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x1c, 0x24, 0x34, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x14, to) // Store the `to` argument. amount := mload(0x34) // The `amount` is already at 0x34. We'll need to return it. mstore(0x00, 0xa9059cbb000000000000000000000000) // `transfer(address,uint256)`. // Perform the transfer, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x90b8ec18) // `TransferFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// Reverts upon failure. function safeApprove(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, reverting upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// If the initial attempt to approve fails, attempts to reset the approved amount to zero, /// then retries the approval again (some tokens, e.g. USDT, requires this). /// Reverts upon failure. function safeApproveWithRetry(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { mstore(0x14, to) // Store the `to` argument. mstore(0x34, amount) // Store the `amount` argument. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. // Perform the approval, retrying upon failure. if iszero( and( // The arguments of `and` are evaluated from right to left. or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x34, 0) // Store 0 for the `amount`. mstore(0x00, 0x095ea7b3000000000000000000000000) // `approve(address,uint256)`. pop(call(gas(), token, 0, 0x10, 0x44, codesize(), 0x00)) // Reset the approval. mstore(0x34, amount) // Store back the original `amount`. // Retry the approval, reverting upon failure. if iszero( and( or(eq(mload(0x00), 1), iszero(returndatasize())), // Returned 1 or nothing. call(gas(), token, 0, 0x10, 0x44, 0x00, 0x20) ) ) { mstore(0x00, 0x3e3f8f73) // `ApproveFailed()`. revert(0x1c, 0x04) } } mstore(0x34, 0) // Restore the part of the free memory pointer that was overwritten. } } /// @dev Returns the amount of ERC20 `token` owned by `account`. /// Returns zero if the `token` does not exist. function balanceOf(address token, address account) internal view returns (uint256 amount) { /// @solidity memory-safe-assembly assembly { mstore(0x14, account) // Store the `account` argument. mstore(0x00, 0x70a08231000000000000000000000000) // `balanceOf(address)`. amount := mul( // The arguments of `mul` are evaluated from right to left. mload(0x20), and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x1f), // At least 32 bytes returned. staticcall(gas(), token, 0x10, 0x24, 0x20, 0x20) ) ) } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// If the initial attempt fails, try to use Permit2 to transfer the token. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for the current contract to manage. function safeTransferFrom2(address token, address from, address to, uint256 amount) internal { if (!trySafeTransferFrom(token, from, to, amount)) { permit2TransferFrom(token, from, to, amount); } } /// @dev Sends `amount` of ERC20 `token` from `from` to `to` via Permit2. /// Reverts upon failure. function permit2TransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(add(m, 0x74), shr(96, shl(96, token))) mstore(add(m, 0x54), amount) mstore(add(m, 0x34), to) mstore(add(m, 0x20), shl(96, from)) // `transferFrom(address,address,uint160,address)`. mstore(m, 0x36c78516000000000000000000000000) let p := PERMIT2 let exists := eq(chainid(), 1) if iszero(exists) { exists := iszero(iszero(extcodesize(p))) } if iszero(and(call(gas(), p, 0, add(m, 0x10), 0x84, codesize(), 0x00), exists)) { mstore(0x00, 0x7939f4248757f0fd) // `TransferFromFailed()` or `Permit2AmountOverflow()`. revert(add(0x18, shl(2, iszero(iszero(shr(160, amount))))), 0x04) } } } /// @dev Permit a user to spend a given amount of /// another user's tokens via native EIP-2612 permit if possible, falling /// back to Permit2 if native permit fails or is not implemented on the token. function permit2( address token, address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { bool success; /// @solidity memory-safe-assembly assembly { for {} shl(96, xor(token, WETH9)) {} { mstore(0x00, 0x3644e515) // `DOMAIN_SEPARATOR()`. if iszero( and( // The arguments of `and` are evaluated from right to left. lt(iszero(mload(0x00)), eq(returndatasize(), 0x20)), // Returns 1 non-zero word. // Gas stipend to limit gas burn for tokens that don't refund gas when // an non-existing function is called. 5K should be enough for a SLOAD. staticcall(5000, token, 0x1c, 0x04, 0x00, 0x20) ) ) { break } // After here, we can be sure that token is a contract. let m := mload(0x40) mstore(add(m, 0x34), spender) mstore(add(m, 0x20), shl(96, owner)) mstore(add(m, 0x74), deadline) if eq(mload(0x00), DAI_DOMAIN_SEPARATOR) { mstore(0x14, owner) mstore(0x00, 0x7ecebe00000000000000000000000000) // `nonces(address)`. mstore(add(m, 0x94), staticcall(gas(), token, 0x10, 0x24, add(m, 0x54), 0x20)) mstore(m, 0x8fcbaf0c000000000000000000000000) // `IDAIPermit.permit`. // `nonces` is already at `add(m, 0x54)`. // `1` is already stored at `add(m, 0x94)`. mstore(add(m, 0xb4), and(0xff, v)) mstore(add(m, 0xd4), r) mstore(add(m, 0xf4), s) success := call(gas(), token, 0, add(m, 0x10), 0x104, codesize(), 0x00) break } mstore(m, 0xd505accf000000000000000000000000) // `IERC20Permit.permit`. mstore(add(m, 0x54), amount) mstore(add(m, 0x94), and(0xff, v)) mstore(add(m, 0xb4), r) mstore(add(m, 0xd4), s) success := call(gas(), token, 0, add(m, 0x10), 0xe4, codesize(), 0x00) break } } if (!success) simplePermit2(token, owner, spender, amount, deadline, v, r, s); } /// @dev Simple permit on the Permit2 contract. function simplePermit2( address token, address owner, address spender, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(m, 0x927da105) // `allowance(address,address,address)`. { let addressMask := shr(96, not(0)) mstore(add(m, 0x20), and(addressMask, owner)) mstore(add(m, 0x40), and(addressMask, token)) mstore(add(m, 0x60), and(addressMask, spender)) mstore(add(m, 0xc0), and(addressMask, spender)) } let p := mul(PERMIT2, iszero(shr(160, amount))) if iszero( and( // The arguments of `and` are evaluated from right to left. gt(returndatasize(), 0x5f), // Returns 3 words: `amount`, `expiration`, `nonce`. staticcall(gas(), p, add(m, 0x1c), 0x64, add(m, 0x60), 0x60) ) ) { mstore(0x00, 0x6b836e6b8757f0fd) // `Permit2Failed()` or `Permit2AmountOverflow()`. revert(add(0x18, shl(2, iszero(p))), 0x04) } mstore(m, 0x2b67b570) // `Permit2.permit` (PermitSingle variant). // `owner` is already `add(m, 0x20)`. // `token` is already at `add(m, 0x40)`. mstore(add(m, 0x60), amount) mstore(add(m, 0x80), 0xffffffffffff) // `expiration = type(uint48).max`. // `nonce` is already at `add(m, 0xa0)`. // `spender` is already at `add(m, 0xc0)`. mstore(add(m, 0xe0), deadline) mstore(add(m, 0x100), 0x100) // `signature` offset. mstore(add(m, 0x120), 0x41) // `signature` length. mstore(add(m, 0x140), r) mstore(add(m, 0x160), s) mstore(add(m, 0x180), shl(248, v)) if iszero(call(gas(), p, 0, add(m, 0x1c), 0x184, codesize(), 0x00)) { mstore(0x00, 0x6b836e6b) // `Permit2Failed()`. revert(0x1c, 0x04) } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Ownable struct OwnableStorage { address _owner; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300; function _getOwnableStorage() private pure returns (OwnableStorage storage $) { assembly { $.slot := OwnableStorageLocation } } /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ function __Ownable_init(address initialOwner) internal onlyInitializing { __Ownable_init_unchained(initialOwner); } function __Ownable_init_unchained(address initialOwner) internal onlyInitializing { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { OwnableStorage storage $ = _getOwnableStorage(); return $._owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { OwnableStorage storage $ = _getOwnableStorage(); address oldOwner = $._owner; $._owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.20; import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol"; import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol"; import {Initializable} from "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. */ abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable address private immutable __self = address(this); /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)` * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev The call is from an unauthorized context. */ error UUPSUnauthorizedCallContext(); /** * @dev The storage `slot` is unsupported as a UUID. */ error UUPSUnsupportedProxiableUUID(bytes32 slot); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { _checkProxy(); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { _checkNotDelegated(); _; } function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual notDelegated returns (bytes32) { return ERC1967Utils.IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data); } /** * @dev Reverts if the execution is not performed via delegatecall or the execution * context is not of a proxy with an ERC1967-compliant implementation pointing to self. * See {_onlyProxy}. */ function _checkProxy() internal view virtual { if ( address(this) == __self || // Must be called through delegatecall ERC1967Utils.getImplementation() != __self // Must be called through an active proxy ) { revert UUPSUnauthorizedCallContext(); } } /** * @dev Reverts if the execution is performed via delegatecall. * See {notDelegated}. */ function _checkNotDelegated() internal view virtual { if (address(this) != __self) { // Must not be called through delegatecall revert UUPSUnauthorizedCallContext(); } } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call. * * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value * is expected to be the implementation slot in ERC1967. * * Emits an {IERC1967-Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) { revert UUPSUnsupportedProxiableUUID(slot); } ERC1967Utils.upgradeToAndCall(newImplementation, data); } catch { // The implementation is not UUPS revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation); } } }
// SPDX-License-Identifier: MIT // // _____ _ _ // |_ _| | | (_) // | | ___ _ __ __| | ___ _ __ _ _______ // | |/ _ \ '_ \ / _` |/ _ \ '__| |_ / _ \ // | | __/ | | | (_| | __/ | | |/ / __/ // \_/\___|_| |_|\__,_|\___|_| |_/___\___| // // Copyright (c) Tenderize Labs Ltd pragma solidity >=0.8.25; import { Registry } from "@/Registry.sol"; import { LPToken } from "@/lpETH/LPToken.sol"; import { UnsETH } from "@/unsETH/UnsETH.sol"; import { UnsETHQueue } from "@/lpETH/UnsETHQueue.sol"; import { Adapter } from "@/adapters/Adapter.sol"; import { WithdrawQueue } from "@/lpETH/WithdrawQueue.sol"; import { ERC721Receiver } from "@/utils/ERC721Receiver.sol"; import { SafeTransferLib } from "solady/utils/SafeTransferLib.sol"; import { Multicallable } from "solady/utils/Multicallable.sol"; import { FixedPointMathLib } from "solady/utils/FixedPointMathLib.sol"; import { SelfPermit } from "@/utils/SelfPermit.sol"; import { UD60x18, ud, UNIT as UNIT_60x18, ZERO as ZERO_60x18 } from "@prb/math/UD60x18.sol"; import { OwnableUpgradeable } from "@openzeppelin/upgradeable/access/OwnableUpgradeable.sol"; import { Initializable } from "@openzeppelin/upgradeable/proxy/utils/Initializable.sol"; import { UUPSUpgradeable } from "@openzeppelin/upgradeable/proxy/utils/UUPSUpgradeable.sol"; // Time for which unsETH can be bought from the pool // Since at the moment it won't be possible to determine // The maturity of certain unsETH tokens, we will set this to 3.5 days. // This value should be lower than the common advertised unstaking time of supported protocols. // ALTERNATIVELY: in the future we could use an oracle that determines the current withdrawal queue length // which should account for both partial and full withdrawals, but not for any potential instant liquid funds // some protocols might keep on hand. This is why "buyUnlock" should also always check if an unlock has been finalized. uint256 constant UNSETH_EXPIRATION_TIME = 3 days + 12 hours; UD60x18 constant BASE_FEE = UD60x18.wrap(0.0005e18); UD60x18 constant K = UD60x18.wrap(4.5e18); UD60x18 constant RELAYER_CUT = UD60x18.wrap(0.025e18); UD60x18 constant TREASURY_CUT = UD60x18.wrap(0.2e18); UD60x18 constant MIN_LP_CUT = UD60x18.wrap(0.2e18); struct ConstructorConfig { Registry registry; LPToken lpToken; UnsETH unsETH; address treasury; } struct SwapParams { UD60x18 u; UD60x18 U; UD60x18 s; UD60x18 S; } abstract contract LpETHEvents { error ErrorNotFinalized(uint256 tokenId); error ErrorIsFinalized(uint256 tokenId); error ErrorInvalidAsset(address asset); error UnexpectedTokenId(); error ErrorSlippage(uint256 out, uint256 minOut); error ErrorDepositSharesZero(); error ErrorRecoveryMode(); error GaugeZero(); error ErrorInsufficientAmount(); error DepositedInCurrentTx(); event Deposit(address indexed from, uint256 amount, uint256 lpSharesMinted); event Withdraw(address indexed to, uint256 amount, uint256 lpSharesBurnt, uint256 requestId); event ClaimWithdrawRequest(uint256 indexed requestId, address indexed to, uint256 amount); event Swap(address indexed caller, address indexed asset, uint256 amountIn, uint256 fee, uint256 unlockId); event UnlockBought(address indexed caller, uint256 tokenId, uint256 amount, uint256 reward, uint256 lpFees); event UnlockRedeemed(address indexed relayer, uint256 tokenId, uint256 amount, uint256 reward, uint256 lpFees); event BatchUnlockRedeemed( address indexed relayer, uint256 amount, uint256 reward, uint256 lpFees, uint256[] tokenIds ); event BatchUnlockBought(address indexed caller, uint256 amount, uint256 reward, uint256 lpFees, uint256[] tokenIds); event RelayerRewardsClaimed(address indexed relayer, uint256 rewards); } abstract contract LpETHStorage { uint256 private constant SSLOT = uint256(keccak256("lpeth.xyz.storage.location")) - 1; struct Data { LPToken lpToken; // total amount unlocking uint256 unlocking; // total amount of liabilities owed to LPs uint256 liabilities; // sum of token supplies that have outstanding unlocks UD60x18 S; // Recovery amount, if `recovery` > 0 enable recovery mode uint256 recovery; // treasury share of rewards pending withdrawal uint256 treasuryRewards; // Unlock queue to hold unlocks UnsETHQueue.Data unsETHQueue; // Withdraw request queue WithdrawQueue.Data withdrawQueue; // amount unlocking per asset mapping(address asset => uint256 unlocking) unlockingForAsset; // last supply of a tenderizer when seen, tracked because they are rebasing tokens mapping(address asset => UD60x18 lastSupply) lastSupplyForAsset; // relayer fees mapping(address relayer => uint256 reward) relayerRewards; // fee gauges mapping(address => UD60x18) gauges; } function _loadStorageSlot() internal pure returns (Data storage $) { uint256 slot = SSLOT; // solhint-disable-next-line no-inline-assembly assembly { $.slot := slot } } } contract LpETH is LpETHStorage, LpETHEvents, Initializable, OwnableUpgradeable, UUPSUpgradeable, Multicallable, SelfPermit, ERC721Receiver { using UnsETHQueue for UnsETHQueue.Data; using WithdrawQueue for WithdrawQueue.Data; // uint256(keccak256("DEPOSITED_IN_CURRENT_TX")) uint256 private constant NONREENTRANT_TSTORE = 0x20; uint256 private constant DEPOSITED_IN_CURRENT_TX_TSTORE = 0x40; // tstore slot LPToken private immutable LPTOKEN = LPToken(address(0)); Registry private immutable REGISTRY = Registry(address(0)); UnsETH private immutable UNSETH = UnsETH(payable(0xA2FE2b9298c03AF9C5d885e62Bc04F77a7Ff91BF)); address payable private immutable TREASURY = payable(0x5542b58080FEE48dBE6f38ec0135cE9011519d96); function initialize() public initializer { __Ownable_init(msg.sender); __UUPSUpgradeable_init(); } receive() external payable { } modifier nonreentrant() { assembly { if tload(NONREENTRANT_TSTORE) { revert(0, 0) } tstore(NONREENTRANT_TSTORE, 1) } _; // Unlocks the guard, making the pattern composable. // After the function exits, it can be called again, even in the same transaction. assembly { tstore(NONREENTRANT_TSTORE, 0) } } /// @custom:oz-upgrades-unsafe-allow constructor constructor(ConstructorConfig memory config) { REGISTRY = config.registry; LPTOKEN = config.lpToken; UNSETH = config.unsETH; TREASURY = payable(config.treasury); _disableInitializers(); } function setFeeGauge(address asset, UD60x18 gauge) external onlyOwner { Data storage $ = _loadStorageSlot(); if (gauge.eq(ZERO_60x18)) revert GaugeZero(); $.gauges[asset] = gauge; } function getFeeGauge(address asset) public view returns (UD60x18) { Data storage $ = _loadStorageSlot(); UD60x18 gauge = $.gauges[asset]; return gauge.eq(ZERO_60x18) ? UNIT_60x18 : gauge; } function deposit(uint256 minLpShares) external payable returns (uint256 lpShares) { Data storage $ = _loadStorageSlot(); uint256 supply = LPTOKEN.totalSupply(); lpShares = $.liabilities > 0 && supply > 0 ? FixedPointMathLib.fullMulDiv(msg.value, supply, $.liabilities) : msg.value; if (lpShares < minLpShares) revert ErrorSlippage(lpShares, minLpShares); if (lpShares == 0) revert ErrorDepositSharesZero(); $.liabilities += msg.value; LPTOKEN.mint(msg.sender, lpShares); assembly { tstore(DEPOSITED_IN_CURRENT_TX_TSTORE, 1) } emit Deposit(msg.sender, msg.value, lpShares); } function withdraw(uint256 amount, uint256 maxLpSharesBurnt) external nonreentrant returns (uint256 requestId) { bytes4 selector = LpETHEvents.DepositedInCurrentTx.selector; assembly { // Get the free memory pointer let freeMemPtr := mload(0x40) if eq(tload(DEPOSITED_IN_CURRENT_TX_TSTORE), 1) { // Store the selector at the free memory pointer mstore(freeMemPtr, selector) // Revert with the selector stored in memory revert(freeMemPtr, 0x04) } } Data storage $ = _loadStorageSlot(); uint256 available = ud(amount).mul(UNIT_60x18.sub(ud($.unlocking).div(ud($.liabilities)))).unwrap(); if (available < amount) { requestId = $.withdrawQueue.createRequest(uint128(amount - available), payable(msg.sender)); } // Calculate LP tokens to burn uint256 lpShares = $.liabilities > 0 ? FixedPointMathLib.fullMulDivUp(amount, LPTOKEN.totalSupply(), $.liabilities) : amount; if (lpShares == 0) revert ErrorDepositSharesZero(); if (lpShares > maxLpSharesBurnt) revert ErrorSlippage(lpShares, maxLpSharesBurnt); // Update liabilities $.liabilities -= amount; // Burn LP tokens from the caller LPTOKEN.burn(msg.sender, lpShares); // Transfer available tokens to caller payable(msg.sender).transfer(available); emit Withdraw(msg.sender, amount, lpShares, requestId); } function quote(address asset, uint256 amount) external view returns (uint256 out) { Adapter adapter = REGISTRY.adapters(asset); if (address(adapter) == address(0)) revert ErrorInvalidAsset(asset); SwapParams memory p = _getSwapParams(asset, adapter); out = _quote(asset, amount, p); } function swap(address asset, uint256 amount, uint256 minOut) external nonreentrant returns (uint256 out) { Data storage $ = _loadStorageSlot(); Adapter adapter = REGISTRY.adapters(asset); if (address(adapter) == address(0)) revert ErrorInvalidAsset(asset); SwapParams memory p = _getSwapParams(asset, adapter); SafeTransferLib.safeTransferFrom(asset, msg.sender, address(this), amount); SafeTransferLib.safeApprove(asset, address(UNSETH), amount); // Currently this method will revert if isn't between the MIN and MAX for the // specified 'asset'. // While we could handle this in the runtime in a future upgrade. // For now we'll handle this on the client side with 'multicall' and not being // able to swap less than the MIN. (uint256 tokenId, uint256 amountExpected) = UNSETH.requestWithdraw(asset, amount); (out) = _quote(asset, amountExpected, p); uint256 fee = amountExpected - out; // Revert if slippage threshold is exceeded, i.e. if `out` is less than `minOut` if (out < minOut) revert ErrorSlippage(out, minOut); // update pool state $.unsETHQueue.push(UnsETHQueue.Item({ tokenId: tokenId, fee: fee })); $.unlocking += amountExpected; $.unlockingForAsset[asset] += amountExpected; { UD60x18 x = ud(amountExpected); $.lastSupplyForAsset[asset] = p.s.sub(x); $.S = p.S.sub(x); } // Transfer `out` of `to` to msg.sender SafeTransferLib.safeTransferETH(msg.sender, out); emit Swap(msg.sender, asset, amount, fee, tokenId); } function redeemUnlock() external nonreentrant { Data storage $ = _loadStorageSlot(); // get oldest item from unlock queue UnsETHQueue.Item memory unlock = $.unsETHQueue.popHead().data; if (!UNSETH.isFinalized(unlock.tokenId)) revert ErrorNotFinalized(unlock.tokenId); UnsETH.Request memory request = UNSETH.getRequest(unlock.tokenId); uint256 amountReceived = UNSETH.claimWithdraw(unlock.tokenId); uint256 fee = _doRecovery(amountReceived, request.amount, unlock.fee); // update pool state with liabilities { // - Update unlocking uint256 unlocked = _min(request.amount, amountReceived); _updateAssetState(unlocked, request.derivative); $.unlocking -= unlocked; } // account for rewards and fees //calculate the relayer and lp reward (uint256 relayerReward, uint256 lpReward,) = _redeemUpdatePoolWithRewards(fee); // Finalize requests { uint256 amountToFinalize = amountReceived - unlock.fee; $.withdrawQueue.finalizeRequests(amountToFinalize); } emit UnlockRedeemed(msg.sender, unlock.tokenId, amountReceived, relayerReward, lpReward); } function batchRedeemUnlocks(uint256 n) external nonreentrant { Data storage $ = _loadStorageSlot(); uint256 totalReceived; uint256 totalExpected; uint256 totalFee; uint256[] memory tokenIds = new uint256[](n); for (uint256 i = 0; i < n; i++) { // get oldest item from unlock queue UnsETHQueue.Item memory unlock = $.unsETHQueue.popHead().data; if (!UNSETH.isFinalized(unlock.tokenId)) break; UnsETH.Request memory request = UNSETH.getRequest(unlock.tokenId); uint256 amountReceived = UNSETH.claimWithdraw(unlock.tokenId); totalFee += unlock.fee; totalExpected += request.amount; totalReceived += amountReceived; tokenIds[i] = unlock.tokenId; _updateAssetState(_min(amountReceived, request.amount), request.derivative); } uint256 totalFeeAfterRecovery = _doRecovery(totalReceived, totalExpected, totalFee); // update pool state // - Update unlocking $.unlocking -= _min(totalExpected, totalReceived); //calculate the relayer and lp rewards (uint256 relayerReward, uint256 lpReward,) = _redeemUpdatePoolWithRewards(totalFeeAfterRecovery); // Finalize requests { uint256 amountToFinalize = totalReceived - totalFee; $.withdrawQueue.finalizeRequests(amountToFinalize); } emit BatchUnlockRedeemed(msg.sender, totalReceived, relayerReward, lpReward, tokenIds); } function _updateAssetState(uint256 unlocked, address asset) internal { Data storage $ = _loadStorageSlot(); uint256 ufa = $.unlockingForAsset[asset] - unlocked; // - Update S if unlockingForAsset is now zero if (ufa == 0) { $.S = $.S.sub($.lastSupplyForAsset[asset]); $.lastSupplyForAsset[asset] = ZERO_60x18; } // - Update unlockingForAsset $.unlockingForAsset[asset] = ufa; } function _redeemUpdatePoolWithRewards(uint256 fee) internal returns (uint256 relayerReward, uint256 lpReward, uint256 treasuryCut) { Data storage $ = _loadStorageSlot(); relayerReward = ud(fee).mul(RELAYER_CUT).unwrap(); // update relayer rewards $.relayerRewards[msg.sender] += relayerReward; // - Update liabilities to distribute LP rewards treasuryCut = ud(fee).mul(TREASURY_CUT).unwrap(); lpReward = fee - treasuryCut - relayerReward; $.treasuryRewards += treasuryCut; $.liabilities += lpReward; } function buyUnlock(uint256 expectedTokenId) external payable nonreentrant returns (uint256 tokenId) { Data storage $ = _loadStorageSlot(); // Can not purchase unlocks in recovery mode // The fees need to flow back to paying off debt and relayers are cheaper if ($.recovery > 0) revert ErrorRecoveryMode(); // get newest item from unlock queue UnsETHQueue.Item memory unlock = $.unsETHQueue.popTail().data; tokenId = unlock.tokenId; UnsETH.Request memory request = UNSETH.getRequest(tokenId); if (tokenId != expectedTokenId) revert UnexpectedTokenId(); if (UNSETH.isFinalized(tokenId) || request.createdAt + UNSETH_EXPIRATION_TIME < block.timestamp) { revert ErrorIsFinalized(tokenId); } // Calculate the reward for purchasing the unlock // The base reward is the fee minus the MIN_LP_CUT going to liquidity providers and minus the TREASURY_CUT going // to the // treasury // The base reward then further decays as time to maturity decreases (uint256 reward, uint256 lpCut, uint256 treasuryCut) = _buyUpdatePoolWithRewards(unlock.fee, request.createdAt); // - Update liabilities to distribute LP rewards $.liabilities += lpCut; // - Update treasury rewards $.treasuryRewards += treasuryCut; // Update pool state // - update unlocking $.unlocking -= request.amount; _updateAssetState(request.amount, request.derivative); // Finalize requests { uint256 amountToFinalize = request.amount - unlock.fee; $.withdrawQueue.finalizeRequests(amountToFinalize); } // transfer unlock amount minus reward from caller to pool // the reward is the discount paid. 'reward < unlock.fee' always. if (msg.value < request.amount - reward) revert ErrorInsufficientAmount(); // transfer unlock to caller UNSETH.safeTransferFrom(address(this), msg.sender, tokenId); // Transfer unused ETH back payable(msg.sender).transfer(msg.value - request.amount + reward); emit UnlockBought(msg.sender, tokenId, request.amount, reward, lpCut); } function batchBuyUnlock(uint256 n, uint256 expectedStartId) external payable nonreentrant { Data storage $ = _loadStorageSlot(); // Can not purchase unlocks in recovery mode // The fees need to flow back to paying off debt and relayers are cheaper if ($.recovery > 0) revert ErrorRecoveryMode(); uint256 totalAmountExpected; uint256 totalRewards; uint256 totalLpCut; uint256 totalTreasuryCut; uint256 msgValue = msg.value; uint256[] memory tokenIds = new uint256[](n); for (uint256 i = 0; i < n; i++) { // get newest item from unlock queue UnsETHQueue.Item memory unlock = $.unsETHQueue.popTail().data; UnsETH.Request memory request = UNSETH.getRequest(unlock.tokenId); if (i == 0 && unlock.tokenId != expectedStartId) revert UnexpectedTokenId(); if (UNSETH.isFinalized(unlock.tokenId) || request.createdAt + UNSETH_EXPIRATION_TIME < block.timestamp) { break; } totalAmountExpected += request.amount; tokenIds[i] = unlock.tokenId; (uint256 reward, uint256 lpCut, uint256 treasuryCut) = _buyUpdatePoolWithRewards(unlock.fee, request.createdAt); totalRewards += reward; totalLpCut += lpCut; totalTreasuryCut += treasuryCut; _updateAssetState(request.amount, request.derivative); // transfer unlock amount minus reward from caller to pool // the reward is the discount paid. 'reward < unlock.fee' always. if (msgValue < request.amount - reward) revert ErrorInsufficientAmount(); msgValue -= request.amount - reward; // transfer unlock to caller UNSETH.safeTransferFrom(address(this), msg.sender, unlock.tokenId); } // Update pool state // - update unlocking $.unlocking -= totalAmountExpected; // - Update liabilities to distribute LP rewards $.liabilities += totalLpCut; // - Update treasury rewards $.treasuryRewards += totalTreasuryCut; // Finalize requests { uint256 amountToFinalize = totalAmountExpected - totalRewards - totalLpCut - totalTreasuryCut; $.withdrawQueue.finalizeRequests(amountToFinalize); } // transfer unused ETH back if (msgValue > 0) { payable(msg.sender).transfer(msgValue); } emit BatchUnlockBought(msg.sender, totalAmountExpected, totalRewards, totalLpCut, tokenIds); } function _buyUpdatePoolWithRewards( uint256 fee, uint256 requestCreatedAt ) internal view returns (uint256 reward, uint256 lpCut, uint256 treasuryCut) { UD60x18 fee60x18 = ud(fee); lpCut = fee60x18.mul(MIN_LP_CUT).unwrap(); treasuryCut = fee60x18.mul(TREASURY_CUT).unwrap(); uint256 baseReward = fee - lpCut - treasuryCut; UD60x18 progress = ud(requestCreatedAt - block.timestamp).div(ud(UNSETH_EXPIRATION_TIME)); reward = ud(baseReward).mul(UNIT_60x18.sub(progress)).unwrap(); // Adjust lpCut by the remaining amount after subtracting the reward // This step seems to adjust lpCut to balance out the distribution // Assuming the final lpCut should encompass any unallocated fee portions lpCut += baseReward - reward; } /** * @notice Claim outstanding rewards for a relayer. * @return relayerReward Amount of tokens claimed */ function claimRelayerRewards() external returns (uint256 relayerReward) { Data storage $ = _loadStorageSlot(); relayerReward = $.relayerRewards[msg.sender]; delete $.relayerRewards[msg.sender]; payable(msg.sender).transfer(relayerReward); emit RelayerRewardsClaimed(msg.sender, relayerReward); } function claimTreasuryRewards() external onlyOwner returns (uint256 treasuryReward) { Data storage $ = _loadStorageSlot(); treasuryReward = $.treasuryRewards; $.treasuryRewards = 0; payable(TREASURY).transfer(treasuryReward); } function claimWithdrawRequest(uint256 id) external returns (uint256 amount) { amount = _loadStorageSlot().withdrawQueue.claimRequest(id); emit ClaimWithdrawRequest(id, msg.sender, amount); } function getWithdrawRequest(uint256 id) external view returns (WithdrawQueue.Request memory) { return _loadStorageSlot().withdrawQueue.getRequest(id); } function getClaimableForWithdrawRequest(uint256 id) external view returns (uint256) { return _loadStorageSlot().withdrawQueue.getClaimableForRequest(id); } function lpToken() external view returns (address) { return address(LPTOKEN); } function liabilities() external view returns (uint256) { Data storage $ = _loadStorageSlot(); return $.liabilities; } /** * @notice Amount of available liquidity (cash on hand). */ function liquidity() public view returns (uint256) { Data storage $ = _loadStorageSlot(); return $.liabilities - $.unlocking; } /** * @notice Check outstanding rewards for a relayer. * @param relayer Address of the relayer * @return relayerReward Amount of tokens that can be claimed */ function pendingRelayerRewards(address relayer) external view returns (uint256) { Data storage $ = _loadStorageSlot(); return $.relayerRewards[relayer]; } ///@dev required by the OZ UUPS module // solhint-disable-next-line no-empty-blocks function _authorizeUpgrade(address) internal override onlyOwner { } function _min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function _getSwapParams(address asset, Adapter adapter) internal view returns (SwapParams memory p) { Data storage $ = _loadStorageSlot(); UD60x18 U = ud($.unlocking); UD60x18 u = ud($.unlockingForAsset[asset]); (UD60x18 s, UD60x18 S) = _checkTotalETHStaked(asset, adapter); p = SwapParams({ U: U, u: u, S: S, s: s }); } /** * @notice Since the LSTs to be exchanged are aTokens, and thus have a rebasing supply, * we need to update the supplies upon a swap to correctly determine the spread of the asset. */ function _checkTotalETHStaked(address asset, Adapter adapter) internal view returns (UD60x18 s, UD60x18 S) { Data storage $ = _loadStorageSlot(); S = $.S; s = ud(adapter.totalStaked()); UD60x18 oldSupply = $.lastSupplyForAsset[asset]; if (oldSupply.lt(s)) { S = S.add(s.sub(oldSupply)); } else if (oldSupply.gt(s)) { S = S.sub(oldSupply.sub(s)); } } function _quote(address asset, uint256 amount, SwapParams memory p) internal view returns (uint256 out) { Data storage $ = _loadStorageSlot(); UD60x18 x = ud(amount); UD60x18 nom = _calculateNominator(x, p, $); UD60x18 denom = _calculateDenominator(p); UD60x18 gauge = getFeeGauge(asset); // total fee = gauge x (baseFee * amount + nom/denom) uint256 fee = BASE_FEE.mul(x).add(nom.div(denom)).mul(gauge).unwrap(); fee = fee >= amount ? amount : fee; unchecked { out = amount - fee; } } function _calculateNominator(UD60x18 x, SwapParams memory p, Data storage $) internal view returns (UD60x18 nom) { UD60x18 L = ud($.liabilities); UD60x18 sumA = p.u.add(x).mul(K).add(p.u); UD60x18 negatorB = K.add(UNIT_60x18).mul(p.u); UD60x18 util = p.U.div(L).pow(K); UD60x18 util_change = p.U.add(x).div(L).pow(K); if (sumA < p.U) { sumA = p.U.sub(sumA).mul(util_change); // we must subtract sumA from sumB // we know sumB must always be positive so we // can proceed with the regular calculation UD60x18 sumB = p.U.sub(negatorB).mul(util); nom = sumB.sub(sumA).mul(p.S.add(p.U)); } else { // sumA is positive, sumB can be positive or negative sumA = sumA.sub(p.U).mul(util_change); if (p.U < negatorB) { UD60x18 sumB = negatorB.sub(p.U).mul(util); nom = sumA.sub(sumB).mul(p.S.add(p.U)); } else { UD60x18 sumB = p.U.sub(negatorB).mul(util); nom = sumA.add(sumB).mul(p.S.add(p.U)); } } } function _calculateDenominator(SwapParams memory p) internal pure returns (UD60x18) { return K.mul(UNIT_60x18.add(K)).mul(p.s.add(p.u)); } function _doRecovery( uint256 amountReceived, uint256 amountExpected, uint256 fee ) internal returns (uint256 remaining) { Data storage $ = _loadStorageSlot(); uint256 recovery = $.recovery; // Handle deficit if (amountReceived < amountExpected) { recovery += amountExpected - amountReceived; } // Handle surplus if (amountReceived > amountExpected) { uint256 excess = amountReceived - amountExpected; amountReceived = amountExpected; if (excess > recovery) { excess -= recovery; recovery = 0; $.liabilities += excess; } else { recovery -= excess; excess = 0; } } if (recovery > 0) { if (fee >= recovery) { unchecked { fee -= recovery; recovery = 0; } } else { unchecked { recovery -= fee; fee = 0; } } } remaining = fee; $.recovery = recovery; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ /// /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.20; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.20; import {IBeacon} from "../beacon/IBeacon.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. */ library ERC1967Utils { // We re-declare ERC-1967 events here because they can't be used directly from IERC1967. // This will be fixed in Solidity 0.8.21. At that point we should remove these events. /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } }
// SPDX-License-Identifier: MIT // // _____ _ _ // |_ _| | | (_) // | | ___ _ __ __| | ___ _ __ _ _______ // | |/ _ \ '_ \ / _` |/ _ \ '__| |_ / _ \ // | | __/ | | | (_| | __/ | | |/ / __/ // \_/\___|_| |_|\__,_|\___|_| |_/___\___| // // Copyright (c) Tenderize Labs Ltd pragma solidity >=0.8.25; import { OwnableUpgradeable } from "@openzeppelin/upgradeable/access/OwnableUpgradeable.sol"; import { Initializable } from "@openzeppelin/upgradeable/proxy/utils/Initializable.sol"; import { UUPSUpgradeable } from "@openzeppelin/upgradeable/proxy/utils/UUPSUpgradeable.sol"; import { Adapter } from "@/adapters/Adapter.sol"; contract Registry is Initializable, OwnableUpgradeable, UUPSUpgradeable { mapping(address asset => Adapter) public adapters; function initialize() public initializer { __Ownable_init(msg.sender); __UUPSUpgradeable_init(); } /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } function setAdapter(address token, Adapter adapter) external onlyOwner { adapters[token] = adapter; } function _authorizeUpgrade(address newImplementation) internal override onlyOwner { } }
// SPDX-License-Identifier: MIT // // _____ _ _ // |_ _| | | (_) // | | ___ _ __ __| | ___ _ __ _ _______ // | |/ _ \ '_ \ / _` |/ _ \ '__| |_ / _ \ // | | __/ | | | (_| | __/ | | |/ / __/ // \_/\___|_| |_|\__,_|\___|_| |_/___\___| // // Copyright (c) Tenderize Labs Ltd pragma solidity >=0.8.25; import { ERC20 } from "@solady/tokens/ERC20.sol"; import { Ownable } from "solady/auth/Ownable.sol"; contract LPToken is Ownable, ERC20 { constructor() ERC20() { _initializeOwner(msg.sender); } function name() public pure override returns (string memory) { return "lpETH"; } function symbol() public pure override returns (string memory) { return "lpETH"; } function mint(address to, uint256 value) public onlyOwner { _mint(to, value); } function burn(address from, uint256 value) public onlyOwner { _burn(from, value); } }
// SPDX-License-Identifier: MIT // // _____ _ _ // |_ _| | | (_) // | | ___ _ __ __| | ___ _ __ _ _______ // | |/ _ \ '_ \ / _` |/ _ \ '__| |_ / _ \ // | | __/ | | | (_| | __/ | | |/ / __/ // \_/\___|_| |_|\__,_|\___|_| |_/___\___| // // Copyright (c) Tenderize Labs Ltd import { ERC721 } from "solady/tokens/ERC721.sol"; import { ERC20 } from "solady/tokens/ERC20.sol"; import { FixedPointMathLib } from "solady/utils/FixedPointMathLib.sol"; import { SafeTransferLib } from "solady/utils/SafeTransferLib.sol"; import { Initializable } from "@openzeppelin/upgradeable/proxy/utils/Initializable.sol"; import { UUPSUpgradeable } from "@openzeppelin/upgradeable/proxy/utils/UUPSUpgradeable.sol"; import { OwnableUpgradeable } from "@openzeppelin/upgradeable/access/OwnableUpgradeable.sol"; import { Renderer } from "@/unsETH/Renderer.sol"; import { Registry } from "@/Registry.sol"; import { ERC721Receiver } from "@/utils/ERC721Receiver.sol"; import { Adapter, AdapterDelegateCall } from "@/adapters/Adapter.sol"; pragma solidity >=0.8.25; // solhint-disable quotes contract UnsETH is Initializable, UUPSUpgradeable, OwnableUpgradeable, ERC721, ERC721Receiver { /// @title Unlocks /// @notice ERC721 contract for unlock tokens /// @dev Creates an NFT for staked tokens pending unlock. Each Unlock has an amount and a maturity date. struct Request { uint256 requestId; // request id uint256 amount; // expected amount to receive uint256 createdAt; // block timestamp address derivative; // address of the derivative LST/LRT } address private immutable LPETH; Registry private immutable REGISTRY; Renderer private immutable RENDERER; mapping(uint256 => Request) private requests; error NotOwnerOf(uint256 tokenId, address owner, address sender); error InvalidID(); constructor(address registry, address renderer) ERC721() { REGISTRY = Registry(registry); RENDERER = Renderer(renderer); _disableInitializers(); } function initialize() external initializer { __Ownable_init(msg.sender); __UUPSUpgradeable_init(); } fallback() external payable { } receive() external payable { } function name() public pure override returns (string memory) { return "Unstaking ETH"; } function symbol() public pure override returns (string memory) { return "unsETH"; } function requestWithdraw( address asset, uint256 amount ) external returns (uint256 tokenId, uint256 amountExpected) { SafeTransferLib.safeTransferFrom(asset, msg.sender, address(this), amount); uint256 requestId; (requestId, amountExpected) = abi.decode( AdapterDelegateCall._delegatecall( REGISTRY.adapters(asset), abi.encodeWithSelector(Adapter.requestWithdraw.selector, amount) ), (uint256, uint256) ); Request memory _metadata = Request({ requestId: requestId, amount: amountExpected, createdAt: block.timestamp, derivative: asset }); tokenId = uint256(keccak256(abi.encodePacked(asset, requestId))); requests[tokenId] = _metadata; _safeMint(msg.sender, tokenId); } function claimWithdraw(uint256 tokenId) external returns (uint256 amount) { if (ownerOf(tokenId) != msg.sender) { revert NotOwnerOf(tokenId, ownerOf(tokenId), msg.sender); } Request memory _metadata = requests[tokenId]; amount = abi.decode( AdapterDelegateCall._delegatecall( REGISTRY.adapters(_metadata.derivative), abi.encodeWithSelector(Adapter.claimWithdraw.selector, _metadata.requestId) ), (uint256) ); _burn(tokenId); delete requests[tokenId]; SafeTransferLib.safeTransferETH(msg.sender, amount); } function isFinalized(uint256 tokenId) external view returns (bool) { Request memory _metadata = requests[tokenId]; return REGISTRY.adapters(_metadata.derivative).isFinalized(_metadata.requestId); } function minMaxAmount(address asset) external view returns (uint256 min, uint256 max) { return REGISTRY.adapters(asset).minMaxAmount(); } function getRequest(uint256 tokenId) external view returns (Request memory) { return requests[tokenId]; } /** * @notice Returns the tokenURI of an unlock token * @param tokenId ID of the unlock token * @return tokenURI of the unlock token */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (ownerOf(tokenId) == address(0)) { revert InvalidID(); } Request memory data = requests[tokenId]; return RENDERER.json(data); } ///@dev required by the OZ UUPS module // solhint-disable-next-line no-empty-blocks function _authorizeUpgrade(address) internal override onlyOwner { } }
// SPDX-License-Identifier: MIT // // _____ _ _ // |_ _| | | (_) // | | ___ _ __ __| | ___ _ __ _ _______ // | |/ _ \ '_ \ / _` |/ _ \ '__| |_ / _ \ // | | __/ | | | (_| | __/ | | |/ / __/ // \_/\___|_| |_|\__,_|\___|_| |_/___\___| // // Copyright (c) Tenderize Labs Ltd pragma solidity >=0.8.25; /** * @notice This file implements the necessary functionality for a double-ended queue or deque. * Elements can be popped from the front or back, but the deque can only be appended to. * It is used to store a list of unlocks for a given TenderSwap pool. * @dev modified from https://github.com/Tenderize/tenderswap/blob/main/src/UnlockQueue.sol */ library UnsETHQueue { error QueueEmpty(); error IdExists(); struct Item { uint256 tokenId; uint256 fee; } struct Node { Item data; uint256 next; uint256 prev; } struct Data { uint256 _head; // oldest element uint256 _tail; // newest element mapping(uint256 index => Node) nodes; // elements as a map } /** * @notice Get the oldest element in the queue * @param q The queue to query * @return The oldest element in the queue */ function head(UnsETHQueue.Data storage q) internal view returns (Node memory) { return q.nodes[q._head]; } /** * @notice Get the newest element in the queue * @param q The queue to query * @return The newest element in the queue */ function tail(UnsETHQueue.Data storage q) internal view returns (Node memory) { return q.nodes[q._tail]; } /** * @notice Pop the oldest element from the queue * @param q The queue to pop from */ function popHead(UnsETHQueue.Data storage q) internal returns (Node memory node) { uint256 head = q._head; if (head == 0) revert QueueEmpty(); node = q.nodes[head]; uint256 next = q.nodes[head].next; if (next == 0) { q._head = 0; q._tail = 0; } else { q._head = next; q.nodes[next].prev = 0; } delete q.nodes[head]; } /** * @notice Pop the newest element from the queue * @param q The queue to pop from */ function popTail(UnsETHQueue.Data storage q) internal returns (Node memory node) { uint256 tail = q._tail; if (tail == 0) revert QueueEmpty(); node = q.nodes[tail]; uint256 prev = q.nodes[tail].prev; if (prev == 0) { q._head = 0; q._tail = 0; } else { q._tail = prev; q.nodes[prev].next = 0; } delete q.nodes[tail]; } /** * @notice Push a new element to the back of the queue * @param q The queue to push to * @param unlock The unlock data to push */ function push(UnsETHQueue.Data storage q, Item memory unlock) internal { uint256 tail = q._tail; uint256 newTail = unlock.tokenId; if (tail != 0) { if (q.nodes[newTail].data.tokenId != 0) revert IdExists(); } q.nodes[newTail].data = unlock; q.nodes[newTail].prev = tail; if (tail == 0) { q._head = newTail; } else { q.nodes[tail].next = newTail; } q._tail = newTail; } }
pragma solidity >=0.8.25; library AdapterDelegateCall { error AdapterDelegateCallFailed(string msg); function _delegatecall(Adapter adapter, bytes memory data) internal returns (bytes memory) { // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returnData) = address(adapter).delegatecall(data); if (!success) { if (returnData.length < 4) { revert AdapterDelegateCallFailed("Unknown error occurred"); } // Bubble up the full return data assembly { let returndata_size := mload(returnData) revert(add(returnData, 0x20), returndata_size) } } return returnData; } } interface Adapter { function previewWithdraw(uint256 amount) external view returns (uint256 amountExpected); function requestWithdraw(uint256 amount) external returns (uint256 tokenId, uint256 amountExpected); // TODO: for each adapter check if a cross-contract invocation to get this amount is more efficient // than fetching account balance before and after function claimWithdraw(uint256 tokenId) external returns (uint256 amount); function isFinalized(uint256 tokenId) external view returns (bool); function totalStaked() external view returns (uint256); function minMaxAmount() external view returns (uint256 min, uint256 max); }
// SPDX-License-Identifier: MIT // // _____ _ _ // |_ _| | | (_) // | | ___ _ __ __| | ___ _ __ _ _______ // | |/ _ \ '_ \ / _` |/ _ \ '__| |_ / _ \ // | | __/ | | | (_| | __/ | | |/ / __/ // \_/\___|_| |_|\__,_|\___|_| |_/___\___| // // Copyright (c) Tenderize Labs Ltd pragma solidity >=0.8.25; import { SafeTransferLib } from "@solady/utils/SafeTransferLib.sol"; library WithdrawQueue { error NotFinalized(uint256 id); error Unauthorized(); error NoClaimableETH(); struct Request { uint256 amount; // original request amount uint256 cumulative; // cumulative requested *before* this request in the current round uint256 round; // round this request was created in address payable account; } struct Data { uint256 lastId; uint256 currentRound; uint256 totalFinalized; mapping(uint256 id => Request) queue; } function createRequest(Data storage $, uint128 amount, address payable account) external returns (uint256 id) { // Check if lastId has been finalized Request memory prev = $.queue[$.lastId]; id = ++$.lastId; // start head at 1 // Check if last known ID has been finalized // if `prev.round` <= `$.currentRound` -> true // the current 'queue' is empty and we can start cumulative from 0 // as the last call of `finalizeRequest` has also set `totalFinalized` back to 0 // otherwise proceed as normal and set cumulative to `prev.cumulative + prev.amount` uint256 cumulative = prev.cumulative + prev.amount; if (prev.round < $.currentRound) cumulative = 0; $.queue[id] = Request({ amount: amount, // checkpoint cumulative requested cumulative: cumulative, account: account, round: $.currentRound }); } function claimRequest(Data storage $, uint256 id) external returns (uint256 amount) { Request storage req = $.queue[id]; if (msg.sender != req.account) revert Unauthorized(); if (req.round < $.currentRound || req.cumulative + req.amount <= $.totalFinalized) { // Fully finalized, full amount is claimable // We can remove the entry amount = req.amount; delete $.queue[id]; } else { // Partially finalized, calculate claimable amount // And update state amount = $.totalFinalized - req.cumulative; req.amount -= amount; req.cumulative += amount; } if (amount == 0) revert NoClaimableETH(); SafeTransferLib.safeTransferETH(req.account, amount); } function finalizeRequests(Data storage $, uint256 amount) external { uint256 lastId = $.lastId; if (lastId == 0) return; Request memory req = $.queue[lastId]; uint256 max = req.cumulative + req.amount - $.totalFinalized; // If `amount > max` we can finalize all pending requests. // In this case we can increment `currentRound` and reset `totalFinalized` to 0. // The next request created will start its `cumulative` from 0. if (amount >= max) { amount = max; $.currentRound++; $.totalFinalized = 0; } else { $.totalFinalized += amount; } } function getClaimableForRequest(Data storage $, uint256 id) external view returns (uint256 amount) { Request storage req = $.queue[id]; if (req.round < $.currentRound || req.cumulative + req.amount <= $.totalFinalized) { // Fully finalized, full amount is claimable // We can remove the entry amount = req.amount; } else { // Partially finalized, calculate claimable amount // And update state amount = $.totalFinalized - req.cumulative; } } function getRequest(Data storage $, uint256 id) external view returns (Request memory) { return $.queue[id]; } }
// SPDX-FileCopyrightText: 2021 Tenderize <[email protected]> // SPDX-License-Identifier: MIT pragma solidity >=0.8.25; abstract contract ERC721Receiver { function onERC721Received(address, address, uint256, bytes calldata) external pure returns (bytes4) { return ERC721Receiver.onERC721Received.selector; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Contract that enables a single call to call multiple methods on itself. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Multicallable.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Multicallable.sol) /// /// WARNING: /// This implementation is NOT to be used with ERC2771 out-of-the-box. /// https://blog.openzeppelin.com/arbitrary-address-spoofing-vulnerability-erc2771context-multicall-public-disclosure /// This also applies to potentially other ERCs / patterns appending to the back of calldata. /// /// We do NOT have a check for ERC2771, as we do not inherit from OpenZeppelin's context. /// Moreover, it is infeasible and inefficient for us to add checks and mitigations /// for all possible ERC / patterns appending to the back of calldata. /// /// We would highly recommend using an alternative pattern such as /// https://github.com/Vectorized/multicaller /// which is more flexible, futureproof, and safer by default. abstract contract Multicallable { /// @dev Apply `DELEGATECALL` with the current contract to each calldata in `data`, /// and store the `abi.encode` formatted results of each `DELEGATECALL` into `results`. /// If any of the `DELEGATECALL`s reverts, the entire context is reverted, /// and the error is bubbled up. /// /// This function is deliberately made non-payable to guard against double-spending. /// (See: https://www.paradigm.xyz/2021/08/two-rights-might-make-a-wrong) /// /// For efficiency, this function will directly return the results, terminating the context. /// If called internally, it must be called at the end of a function /// that returns `(bytes[] memory)`. function multicall(bytes[] calldata data) public virtual returns (bytes[] memory) { assembly { mstore(0x00, 0x20) mstore(0x20, data.length) // Store `data.length` into `results`. // Early return if no data. if iszero(data.length) { return(0x00, 0x40) } let results := 0x40 // `shl` 5 is equivalent to multiplying by 0x20. let end := shl(5, data.length) // Copy the offsets from calldata into memory. calldatacopy(0x40, data.offset, end) // Offset into `results`. let resultsOffset := end // Pointer to the end of `results`. end := add(results, end) for {} 1 {} { // The offset of the current bytes in the calldata. let o := add(data.offset, mload(results)) let m := add(resultsOffset, 0x40) // Copy the current bytes from calldata to the memory. calldatacopy( m, add(o, 0x20), // The offset of the current bytes' bytes. calldataload(o) // The length of the current bytes. ) if iszero(delegatecall(gas(), address(), m, calldataload(o), codesize(), 0x00)) { // Bubble up the revert if the delegatecall reverts. returndatacopy(0x00, 0x00, returndatasize()) revert(0x00, returndatasize()) } // Append the current `resultsOffset` into `results`. mstore(results, resultsOffset) results := add(results, 0x20) // Append the `returndatasize()`, and the return data. mstore(m, returndatasize()) returndatacopy(add(m, 0x20), 0x00, returndatasize()) // Advance the `resultsOffset` by `returndatasize() + 0x20`, // rounded up to the next multiple of 32. resultsOffset := and(add(add(resultsOffset, returndatasize()), 0x3f), 0xffffffffffffffe0) if iszero(lt(results, end)) { break } } return(0x00, add(resultsOffset, 0x40)) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an overflow. error RPowOverflow(); /// @dev The mantissa is too big to fit. error MantissaOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, due to an multiplication overflow. error SMulWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error SDivWadFailed(); /// @dev The operation failed, either due to a multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /// @dev The input outside the acceptable domain. error OutOfDomain(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down. function sMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, y) // Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`. if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) { mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`. revert(0x1c, 0x04) } z := sdiv(z, WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks. function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { mstore(0x00, 0xbac65e5b) // `MulWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks. function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function sDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := mul(x, WAD) // Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`. if iszero(and(iszero(iszero(y)), eq(sdiv(z, WAD), x))) { mstore(0x00, 0x5c43740d) // `SDivWadFailed()`. revert(0x1c, 0x04) } z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks. function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { mstore(0x00, 0x7c5f487d) // `DivWadFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks. function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is less than 0.5 we return zero. // This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`. if (x <= -41446531673892822313) return r; /// @solidity memory-safe-assembly assembly { // When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as // an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96` // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // `k` is in the range `[-61, 195]`. // Evaluate using a (6, 7)-term rational approximation. // `p` is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already `2**96` too large. r := sdiv(p, q) } // r should be in the range `(0.09, 0.25) * 2**96`. // We now need to multiply r by: // - The scale factor `s ≈ 6.031367120`. // - The `2**k` factor from the range reduction. // - The `1e18 / 2**96` factor for base conversion. // We do this all at once, with an intermediate result in `2**213` // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. /// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln function lnWad(int256 x) internal pure returns (int256 r) { /// @solidity memory-safe-assembly assembly { // We want to convert `x` from `10**18` fixed point to `2**96` fixed point. // We do this by multiplying by `2**96 / 10**18`. But since // `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here // and add `ln(2**96 / 10**18)` at the end. // Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`. r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // We place the check here for more optimal stack operations. if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } // forgefmt: disable-next-item r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)) // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x := shr(159, shl(r, x)) // Evaluate using a (8, 8)-term rational approximation. // `p` is made monic, we will multiply by a scale factor later. // forgefmt: disable-next-item let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir. sar(96, mul(add(43456485725739037958740375743393, sar(96, mul(add(24828157081833163892658089445524, sar(96, mul(add(3273285459638523848632254066296, x), x))), x))), x)), 11111509109440967052023855526967) p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857) p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526) p := sub(mul(p, x), shl(96, 795164235651350426258249787498)) // We leave `p` in `2**192` basis so we don't need to scale it back up for the division. // `q` is monic by convention. let q := add(5573035233440673466300451813936, x) q := add(71694874799317883764090561454958, sar(96, mul(x, q))) q := add(283447036172924575727196451306956, sar(96, mul(x, q))) q := add(401686690394027663651624208769553, sar(96, mul(x, q))) q := add(204048457590392012362485061816622, sar(96, mul(x, q))) q := add(31853899698501571402653359427138, sar(96, mul(x, q))) q := add(909429971244387300277376558375, sar(96, mul(x, q))) // `p / q` is in the range `(0, 0.125) * 2**96`. // Finalization, we need to: // - Multiply by the scale factor `s = 5.549…`. // - Add `ln(2**96 / 10**18)`. // - Add `k * ln(2)`. // - Multiply by `10**18 / 2**96 = 5**18 >> 78`. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already `2**96` too large. p := sdiv(p, q) // Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`. p := mul(1677202110996718588342820967067443963516166, p) // Add `ln(2) * k * 5**18 * 2**192`. // forgefmt: disable-next-item p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p) // Add `ln(2**96 / 10**18) * 5**18 * 2**192`. p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p) // Base conversion: mul `2**18 / 2**192`. r := sar(174, p) } } /// @dev Returns `W_0(x)`, denominated in `WAD`. /// See: https://en.wikipedia.org/wiki/Lambert_W_function /// a.k.a. Product log function. This is an approximation of the principal branch. function lambertW0Wad(int256 x) internal pure returns (int256 w) { // forgefmt: disable-next-item unchecked { if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`. int256 wad = int256(WAD); int256 p = x; uint256 c; // Whether we need to avoid catastrophic cancellation. uint256 i = 4; // Number of iterations. if (w <= 0x1ffffffffffff) { if (-0x4000000000000 <= w) { i = 1; // Inputs near zero only take one step to converge. } else if (w <= -0x3ffffffffffffff) { i = 32; // Inputs near `-1/e` take very long to converge. } } else if (w >> 63 == 0) { /// @solidity memory-safe-assembly assembly { // Inline log2 for more performance, since the range is small. let v := shr(49, w) let l := shl(3, lt(0xff, v)) l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)), 49) w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13)) c := gt(l, 60) i := add(2, add(gt(l, 53), c)) } } else { int256 ll = lnWad(w = lnWad(w)); /// @solidity memory-safe-assembly assembly { // `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`. w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll)) i := add(3, iszero(shr(68, x))) c := iszero(shr(143, x)) } if (c == 0) { do { // If `x` is big, use Newton's so that intermediate values won't overflow. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := mul(w, div(e, wad)) w := sub(w, sdiv(sub(t, x), div(add(e, t), wad))) } if (p <= w) break; p = w; } while (--i != 0); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } return w; } } do { // Otherwise, use Halley's for faster convergence. int256 e = expWad(w); /// @solidity memory-safe-assembly assembly { let t := add(w, wad) let s := sub(mul(w, e), mul(x, wad)) w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t))))) } if (p <= w) break; p = w; } while (--i != c); /// @solidity memory-safe-assembly assembly { w := sub(w, sgt(w, 2)) } // For certain ranges of `x`, we'll use the quadratic-rate recursive formula of // R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation. if (c != 0) { int256 t = w | 1; /// @solidity memory-safe-assembly assembly { x := sdiv(mul(x, wad), t) } x = (t * (wad + lnWad(x))); /// @solidity memory-safe-assembly assembly { w := sdiv(x, add(wad, t)) } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Calculates `floor(x * y / d)` with full precision. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { // 512-bit multiply `[p1 p0] = x * y`. // Compute the product mod `2**256` and mod `2**256 - 1` // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that `product = p1 * 2**256 + p0`. // Least significant 256 bits of the product. result := mul(x, y) // Temporarily use `result` as `p0` to save gas. let mm := mulmod(x, y, not(0)) // Most significant 256 bits of the product. let p1 := sub(mm, add(result, lt(mm, result))) // Handle non-overflow cases, 256 by 256 division. if iszero(p1) { if iszero(d) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } result := div(result, d) break } // Make sure the result is less than `2**256`. Also prevents `d == 0`. if iszero(gt(d, p1)) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } /*------------------- 512 by 256 division --------------------*/ // Make division exact by subtracting the remainder from `[p1 p0]`. // Compute remainder using mulmod. let r := mulmod(x, y, d) // `t` is the least significant bit of `d`. // Always greater or equal to 1. let t := and(d, sub(0, d)) // Divide `d` by `t`, which is a power of two. d := div(d, t) // Invert `d mod 2**256` // Now that `d` is an odd number, it has an inverse // modulo `2**256` such that `d * inv = 1 mod 2**256`. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, `d * inv = 1 mod 2**4`. let inv := xor(2, mul(3, d)) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128 result := mul( // Divide [p1 p0] by the factors of two. // Shift in bits from `p1` into `p0`. For this we need // to flip `t` such that it is `2**256 / t`. or( mul(sub(p1, gt(r, result)), add(div(sub(0, t), t), 1)), div(sub(result, r), t) ), // inverse mod 2**256 mul(inv, sub(2, mul(d, inv))) ) break } } } /// @dev Calculates `floor(x * y / d)` with full precision, rounded up. /// Throws if result overflows a uint256 or when `d` is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 result) { result = fullMulDiv(x, y, d); /// @solidity memory-safe-assembly assembly { if mulmod(x, y, d) { result := add(result, 1) if iszero(result) { mstore(0x00, 0xae47f702) // `FullMulDivFailed()`. revert(0x1c, 0x04) } } } } /// @dev Returns `floor(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := div(mul(x, y), d) } } /// @dev Returns `ceil(x * y / d)`. /// Reverts if `x * y` overflows, or `d` is zero. function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(d != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(d, iszero(mul(y, gt(x, div(not(0), y)))))) { mstore(0x00, 0xad251c27) // `MulDivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), d))), div(mul(x, y), d)) } } /// @dev Returns `ceil(x / d)`. /// Reverts if `d` is zero. function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(d) { mstore(0x00, 0x65244e4e) // `DivFailed()`. revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, d))), div(x, d)) } } /// @dev Returns `max(0, x - y)`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`. /// Reverts if the computation overflows. function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`. if x { z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x` let half := shr(1, b) // Divide `b` by 2. // Divide `y` by 2 every iteration. for { y := shr(1, y) } y { y := shr(1, y) } { let xx := mul(x, x) // Store x squared. let xxRound := add(xx, half) // Round to the nearest number. // Revert if `xx + half` overflowed, or if `x ** 2` overflows. if or(lt(xxRound, xx), shr(128, x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } x := div(xxRound, b) // Set `x` to scaled `xxRound`. // If `y` is odd: if and(y, 1) { let zx := mul(z, x) // Compute `z * x`. let zxRound := add(zx, half) // Round to the nearest number. // If `z * x` overflowed or `zx + half` overflowed: if or(xor(div(zx, x), z), lt(zxRound, zx)) { // Revert if `x` is non-zero. if iszero(iszero(x)) { mstore(0x00, 0x49f7642b) // `RPowOverflow()`. revert(0x1c, 0x04) } } z := div(zxRound, b) // Return properly scaled `zxRound`. } } } } } /// @dev Returns the square root of `x`. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the cube root of `x`. /// Credit to bout3fiddy and pcaversaccio under AGPLv3 license: /// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy function cbrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3))) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := div(add(add(div(x, mul(z, z)), z), z), 3) z := sub(z, lt(div(x, mul(z, z)), z)) } } /// @dev Returns the square root of `x`, denominated in `WAD`. function sqrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 9; if (x <= type(uint256).max / 10 ** 36 - 1) { x *= 10 ** 18; z = 1; } z *= sqrt(x); } } /// @dev Returns the cube root of `x`, denominated in `WAD`. function cbrtWad(uint256 x) internal pure returns (uint256 z) { unchecked { z = 10 ** 12; if (x <= (type(uint256).max / 10 ** 36) * 10 ** 18 - 1) { if (x >= type(uint256).max / 10 ** 36) { x *= 10 ** 18; z = 10 ** 6; } else { x *= 10 ** 36; z = 1; } } z *= cbrt(x); } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 58)) { mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`. revert(0x1c, 0x04) } for { result := 1 } x { x := sub(x, 1) } { result := mul(result, x) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. /// Returns 0 if `x` is zero. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) // forgefmt: disable-next-item r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)), 0x0706060506020504060203020504030106050205030304010505030400000000)) } } /// @dev Returns the log2 of `x`, rounded up. /// Returns 0 if `x` is zero. function log2Up(uint256 x) internal pure returns (uint256 r) { r = log2(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(r, 1), x)) } } /// @dev Returns the log10 of `x`. /// Returns 0 if `x` is zero. function log10(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(lt(x, 100000000000000000000000000000000000000)) { x := div(x, 100000000000000000000000000000000000000) r := 38 } if iszero(lt(x, 100000000000000000000)) { x := div(x, 100000000000000000000) r := add(r, 20) } if iszero(lt(x, 10000000000)) { x := div(x, 10000000000) r := add(r, 10) } if iszero(lt(x, 100000)) { x := div(x, 100000) r := add(r, 5) } r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999))))) } } /// @dev Returns the log10 of `x`, rounded up. /// Returns 0 if `x` is zero. function log10Up(uint256 x) internal pure returns (uint256 r) { r = log10(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(exp(10, r), x)) } } /// @dev Returns the log256 of `x`. /// Returns 0 if `x` is zero. function log256(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(shr(3, r), lt(0xff, shr(r, x))) } } /// @dev Returns the log256 of `x`, rounded up. /// Returns 0 if `x` is zero. function log256Up(uint256 x) internal pure returns (uint256 r) { r = log256(x); /// @solidity memory-safe-assembly assembly { r := add(r, lt(shl(shl(3, r), 1), x)) } } /// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`. /// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent). function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) { /// @solidity memory-safe-assembly assembly { mantissa := x if mantissa { if iszero(mod(mantissa, 1000000000000000000000000000000000)) { mantissa := div(mantissa, 1000000000000000000000000000000000) exponent := 33 } if iszero(mod(mantissa, 10000000000000000000)) { mantissa := div(mantissa, 10000000000000000000) exponent := add(exponent, 19) } if iszero(mod(mantissa, 1000000000000)) { mantissa := div(mantissa, 1000000000000) exponent := add(exponent, 12) } if iszero(mod(mantissa, 1000000)) { mantissa := div(mantissa, 1000000) exponent := add(exponent, 6) } if iszero(mod(mantissa, 10000)) { mantissa := div(mantissa, 10000) exponent := add(exponent, 4) } if iszero(mod(mantissa, 100)) { mantissa := div(mantissa, 100) exponent := add(exponent, 2) } if iszero(mod(mantissa, 10)) { mantissa := div(mantissa, 10) exponent := add(exponent, 1) } } } } /// @dev Convenience function for packing `x` into a smaller number using `sci`. /// The `mantissa` will be in bits [7..255] (the upper 249 bits). /// The `exponent` will be in bits [0..6] (the lower 7 bits). /// Use `SafeCastLib` to safely ensure that the `packed` number is small /// enough to fit in the desired unsigned integer type: /// ``` /// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether)); /// ``` function packSci(uint256 x) internal pure returns (uint256 packed) { (x, packed) = sci(x); // Reuse for `mantissa` and `exponent`. /// @solidity memory-safe-assembly assembly { if shr(249, x) { mstore(0x00, 0xce30380c) // `MantissaOverflow()`. revert(0x1c, 0x04) } packed := or(shl(7, x), packed) } } /// @dev Convenience function for unpacking a packed number from `packSci`. function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) { unchecked { unpacked = (packed >> 7) * 10 ** (packed & 0x7f); } } /// @dev Returns the average of `x` and `y`. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = (x & y) + ((x ^ y) >> 1); } } /// @dev Returns the average of `x` and `y`. function avg(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = (x >> 1) + (y >> 1) + (x & y & 1); } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(sar(255, x), add(sar(255, x), x)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(mul(xor(sub(y, x), sub(x, y)), sgt(x, y)), sub(y, x)) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the minimum of `x` and `y`. function min(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), sgt(y, x))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), gt(minValue, x))) z := xor(z, mul(xor(z, maxValue), lt(maxValue, z))) } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, minValue), sgt(minValue, x))) z := xor(z, mul(xor(z, maxValue), slt(maxValue, z))) } } /// @dev Returns greatest common divisor of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RAW NUMBER OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns `x + y`, without checking for overflow. function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x + y; } } /// @dev Returns `x + y`, without checking for overflow. function rawAdd(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x + y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x - y; } } /// @dev Returns `x - y`, without checking for underflow. function rawSub(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x - y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) { unchecked { z = x * y; } } /// @dev Returns `x * y`, without checking for overflow. function rawMul(int256 x, int256 y) internal pure returns (int256 z) { unchecked { z = x * y; } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x / y`, returning 0 if `y` is zero. function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := sdiv(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function rawSMod(int256 x, int256 y) internal pure returns (int256 z) { /// @solidity memory-safe-assembly assembly { z := smod(x, y) } } /// @dev Returns `(x + y) % d`, return 0 if `d` if zero. function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := addmod(x, y, d) } } /// @dev Returns `(x * y) % d`, return 0 if `d` if zero. function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mulmod(x, y, d) } } }
// SPDX-FileCopyrightText: 2021 Tenderize <[email protected]> // SPDX-License-Identifier: MIT import { ERC20 } from "solady/tokens/ERC20.sol"; pragma solidity >=0.8.25; /// @title Self Permit /// @notice Functionality to call permit on any EIP-2612-compliant token for use in the route interface ISelfPermit { /// @notice Permits this contract to spend a given token from `msg.sender` /// @dev The `owner` is always msg.sender and the `spender` is always address(this). /// @param _token The address of the token spent /// @param _value The amount that can be spent of token /// @param _deadline A timestamp, the current blocktime must be less than or equal to this timestamp /// @param _v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param _r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param _s Must produce valid secp256k1 signature from the holder along with `r` and `v` function selfPermit( address _token, uint256 _value, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) external payable; /// @notice Permits this contract to spend a given token from `msg.sender` /// @dev The `owner` is always msg.sender and the `spender` is always address(this). /// Can be used instead of #selfPermit to prevent calls from failing due to a frontrun of a call to #selfPermit /// @param _token The address of the token spent /// @param _value The amount that can be spent of token /// @param _deadline A timestamp, the current blocktime must be less than or equal to this timestamp /// @param _v Must produce valid secp256k1 signature from the holder along with `r` and `s` /// @param _r Must produce valid secp256k1 signature from the holder along with `v` and `s` /// @param _s Must produce valid secp256k1 signature from the holder along with `r` and `v` function selfPermitIfNecessary( address _token, uint256 _value, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) external payable; } abstract contract SelfPermit is ISelfPermit { /// @inheritdoc ISelfPermit function selfPermit( address _token, uint256 _value, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) public payable override { ERC20(_token).permit(msg.sender, address(this), _value, _deadline, _v, _r, _s); } /// @inheritdoc ISelfPermit function selfPermitIfNecessary( address _token, uint256 _value, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) external payable override { uint256 allowance = ERC20(_token).allowance(msg.sender, address(this)); if (allowance < _value) selfPermit(_token, _value - allowance, _deadline, _v, _r, _s); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple single owner authorization mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol) /// /// @dev Note: /// This implementation does NOT auto-initialize the owner to `msg.sender`. /// You MUST call the `_initializeOwner` in the constructor / initializer. /// /// While the ownable portion follows /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility, /// the nomenclature for the 2-step ownership handover may be unique to this codebase. abstract contract Ownable { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The caller is not authorized to call the function. error Unauthorized(); /// @dev The `newOwner` cannot be the zero address. error NewOwnerIsZeroAddress(); /// @dev The `pendingOwner` does not have a valid handover request. error NoHandoverRequest(); /// @dev Cannot double-initialize. error AlreadyInitialized(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ownership is transferred from `oldOwner` to `newOwner`. /// This event is intentionally kept the same as OpenZeppelin's Ownable to be /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173), /// despite it not being as lightweight as a single argument event. event OwnershipTransferred(address indexed oldOwner, address indexed newOwner); /// @dev An ownership handover to `pendingOwner` has been requested. event OwnershipHandoverRequested(address indexed pendingOwner); /// @dev The ownership handover to `pendingOwner` has been canceled. event OwnershipHandoverCanceled(address indexed pendingOwner); /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`. uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE = 0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0; /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE = 0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d; /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE = 0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The owner slot is given by: /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`. /// It is intentionally chosen to be a high value /// to avoid collision with lower slots. /// The choice of manual storage layout is to enable compatibility /// with both regular and upgradeable contracts. bytes32 internal constant _OWNER_SLOT = 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927; /// The ownership handover slot of `newOwner` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED)) /// let handoverSlot := keccak256(0x00, 0x20) /// ``` /// It stores the expiry timestamp of the two-step ownership handover. uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Override to return true to make `_initializeOwner` prevent double-initialization. function _guardInitializeOwner() internal pure virtual returns (bool guard) {} /// @dev Initializes the owner directly without authorization guard. /// This function must be called upon initialization, /// regardless of whether the contract is upgradeable or not. /// This is to enable generalization to both regular and upgradeable contracts, /// and to save gas in case the initial owner is not the caller. /// For performance reasons, this function will not check if there /// is an existing owner. function _initializeOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT if sload(ownerSlot) { mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`. revert(0x1c, 0x04) } // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } else { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(_OWNER_SLOT, newOwner) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } } /// @dev Sets the owner directly without authorization guard. function _setOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) } } else { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, newOwner) } } } /// @dev Throws if the sender is not the owner. function _checkOwner() internal view virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner, revert. if iszero(eq(caller(), sload(_OWNER_SLOT))) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } /// @dev Returns how long a two-step ownership handover is valid for in seconds. /// Override to return a different value if needed. /// Made internal to conserve bytecode. Wrap it in a public function if needed. function _ownershipHandoverValidFor() internal view virtual returns (uint64) { return 48 * 3600; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC UPDATE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Allows the owner to transfer the ownership to `newOwner`. function transferOwnership(address newOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { if iszero(shl(96, newOwner)) { mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`. revert(0x1c, 0x04) } } _setOwner(newOwner); } /// @dev Allows the owner to renounce their ownership. function renounceOwnership() public payable virtual onlyOwner { _setOwner(address(0)); } /// @dev Request a two-step ownership handover to the caller. /// The request will automatically expire in 48 hours (172800 seconds) by default. function requestOwnershipHandover() public payable virtual { unchecked { uint256 expires = block.timestamp + _ownershipHandoverValidFor(); /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to `expires`. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), expires) // Emit the {OwnershipHandoverRequested} event. log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller()) } } } /// @dev Cancels the two-step ownership handover to the caller, if any. function cancelOwnershipHandover() public payable virtual { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), 0) // Emit the {OwnershipHandoverCanceled} event. log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller()) } } /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`. /// Reverts if there is no existing ownership handover requested by `pendingOwner`. function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) let handoverSlot := keccak256(0x0c, 0x20) // If the handover does not exist, or has expired. if gt(timestamp(), sload(handoverSlot)) { mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`. revert(0x1c, 0x04) } // Set the handover slot to 0. sstore(handoverSlot, 0) } _setOwner(pendingOwner); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC READ FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the owner of the contract. function owner() public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { result := sload(_OWNER_SLOT) } } /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`. function ownershipHandoverExpiresAt(address pendingOwner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the handover slot. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) // Load the handover slot. result := sload(keccak256(0x0c, 0x20)) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MODIFIERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Marks a function as only callable by the owner. modifier onlyOwner() virtual { _checkOwner(); _; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple ERC721 implementation with storage hitchhiking. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC721.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC721/ERC721.sol) /// /// @dev Note: /// - The ERC721 standard allows for self-approvals. /// For performance, this implementation WILL NOT revert for such actions. /// Please add any checks with overrides if desired. /// - For performance, methods are made payable where permitted by the ERC721 standard. /// - The `safeTransfer` functions use the identity precompile (0x4) /// to copy memory internally. /// /// If you are overriding: /// - NEVER violate the ERC721 invariant: /// the balance of an owner MUST always be equal to their number of ownership slots. /// The transfer functions do not have an underflow guard for user token balances. /// - Make sure all variables written to storage are properly cleaned // (e.g. the bool value for `isApprovedForAll` MUST be either 1 or 0 under the hood). /// - Check that the overridden function is actually used in the function you want to /// change the behavior of. Much of the code has been manually inlined for performance. abstract contract ERC721 { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev An account can hold up to 4294967295 tokens. uint256 internal constant _MAX_ACCOUNT_BALANCE = 0xffffffff; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Only the token owner or an approved account can manage the token. error NotOwnerNorApproved(); /// @dev The token does not exist. error TokenDoesNotExist(); /// @dev The token already exists. error TokenAlreadyExists(); /// @dev Cannot query the balance for the zero address. error BalanceQueryForZeroAddress(); /// @dev Cannot mint or transfer to the zero address. error TransferToZeroAddress(); /// @dev The token must be owned by `from`. error TransferFromIncorrectOwner(); /// @dev The recipient's balance has overflowed. error AccountBalanceOverflow(); /// @dev Cannot safely transfer to a contract that does not implement /// the ERC721Receiver interface. error TransferToNonERC721ReceiverImplementer(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Emitted when token `id` is transferred from `from` to `to`. event Transfer(address indexed from, address indexed to, uint256 indexed id); /// @dev Emitted when `owner` enables `account` to manage the `id` token. event Approval(address indexed owner, address indexed account, uint256 indexed id); /// @dev Emitted when `owner` enables or disables `operator` to manage all of their tokens. event ApprovalForAll(address indexed owner, address indexed operator, bool isApproved); /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`. uint256 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`. uint256 private constant _APPROVAL_EVENT_SIGNATURE = 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925; /// @dev `keccak256(bytes("ApprovalForAll(address,address,bool)"))`. uint256 private constant _APPROVAL_FOR_ALL_EVENT_SIGNATURE = 0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ownership data slot of `id` is given by: /// ``` /// mstore(0x00, id) /// mstore(0x1c, _ERC721_MASTER_SLOT_SEED) /// let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) /// ``` /// Bits Layout: /// - [0..159] `addr` /// - [160..255] `extraData` /// /// The approved address slot is given by: `add(1, ownershipSlot)`. /// /// See: https://notes.ethereum.org/%40vbuterin/verkle_tree_eip /// /// The balance slot of `owner` is given by: /// ``` /// mstore(0x1c, _ERC721_MASTER_SLOT_SEED) /// mstore(0x00, owner) /// let balanceSlot := keccak256(0x0c, 0x1c) /// ``` /// Bits Layout: /// - [0..31] `balance` /// - [32..255] `aux` /// /// The `operator` approval slot of `owner` is given by: /// ``` /// mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator)) /// mstore(0x00, owner) /// let operatorApprovalSlot := keccak256(0x0c, 0x30) /// ``` uint256 private constant _ERC721_MASTER_SLOT_SEED = 0x7d8825530a5a2e7a << 192; /// @dev Pre-shifted and pre-masked constant. uint256 private constant _ERC721_MASTER_SLOT_SEED_MASKED = 0x0a5a2e7a00000000; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC721 METADATA */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the token collection name. function name() public view virtual returns (string memory); /// @dev Returns the token collection symbol. function symbol() public view virtual returns (string memory); /// @dev Returns the Uniform Resource Identifier (URI) for token `id`. function tokenURI(uint256 id) public view virtual returns (string memory); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC721 */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the owner of token `id`. /// /// Requirements: /// - Token `id` must exist. function ownerOf(uint256 id) public view virtual returns (address result) { result = _ownerOf(id); /// @solidity memory-safe-assembly assembly { if iszero(result) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } } } /// @dev Returns the number of tokens owned by `owner`. /// /// Requirements: /// - `owner` must not be the zero address. function balanceOf(address owner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Revert if the `owner` is the zero address. if iszero(owner) { mstore(0x00, 0x8f4eb604) // `BalanceQueryForZeroAddress()`. revert(0x1c, 0x04) } mstore(0x1c, _ERC721_MASTER_SLOT_SEED) mstore(0x00, owner) result := and(sload(keccak256(0x0c, 0x1c)), _MAX_ACCOUNT_BALANCE) } } /// @dev Returns the account approved to manage token `id`. /// /// Requirements: /// - Token `id` must exist. function getApproved(uint256 id) public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) if iszero(shl(96, sload(ownershipSlot))) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } result := sload(add(1, ownershipSlot)) } } /// @dev Sets `account` as the approved account to manage token `id`. /// /// Requirements: /// - Token `id` must exist. /// - The caller must be the owner of the token, /// or an approved operator for the token owner. /// /// Emits an {Approval} event. function approve(address account, uint256 id) public payable virtual { _approve(msg.sender, account, id); } /// @dev Returns whether `operator` is approved to manage the tokens of `owner`. function isApprovedForAll(address owner, address operator) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { mstore(0x1c, operator) mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x30)) } } /// @dev Sets whether `operator` is approved to manage the tokens of the caller. /// /// Emits an {ApprovalForAll} event. function setApprovalForAll(address operator, bool isApproved) public virtual { /// @solidity memory-safe-assembly assembly { // Convert to 0 or 1. isApproved := iszero(iszero(isApproved)) // Update the `isApproved` for (`msg.sender`, `operator`). mstore(0x1c, operator) mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x30), isApproved) // Emit the {ApprovalForAll} event. mstore(0x00, isApproved) // forgefmt: disable-next-item log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, caller(), shr(96, shl(96, operator))) } } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - The caller must be the owner of the token, or be approved to manage the token. /// /// Emits a {Transfer} event. function transferFrom(address from, address to, uint256 id) public payable virtual { _beforeTokenTransfer(from, to, id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. let bitmaskAddress := shr(96, not(0)) from := and(bitmaskAddress, from) to := and(bitmaskAddress, to) // Load the ownership data. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, caller())) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let ownershipPacked := sload(ownershipSlot) let owner := and(bitmaskAddress, ownershipPacked) // Revert if the token does not exist, or if `from` is not the owner. if iszero(mul(owner, eq(owner, from))) { // `TokenDoesNotExist()`, `TransferFromIncorrectOwner()`. mstore(shl(2, iszero(owner)), 0xceea21b6a1148100) revert(0x1c, 0x04) } // Load, check, and update the token approval. { mstore(0x00, from) let approvedAddress := sload(add(1, ownershipSlot)) // Revert if the caller is not the owner, nor approved. if iszero(or(eq(caller(), from), eq(caller(), approvedAddress))) { if iszero(sload(keccak256(0x0c, 0x30))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Delete the approved address if any. if approvedAddress { sstore(add(1, ownershipSlot), 0) } } // Update with the new owner. sstore(ownershipSlot, xor(ownershipPacked, xor(from, to))) // Decrement the balance of `from`. { let fromBalanceSlot := keccak256(0x0c, 0x1c) sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1)) } // Increment the balance of `to`. { mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x1c) let toBalanceSlotPacked := add(sload(toBalanceSlot), 1) // Revert if `to` is the zero address, or if the account balance overflows. if iszero(mul(to, and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE))) { // `TransferToZeroAddress()`, `AccountBalanceOverflow()`. mstore(shl(2, iszero(to)), 0xea553b3401336cea) revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceSlotPacked) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id) } _afterTokenTransfer(from, to, id); } /// @dev Equivalent to `safeTransferFrom(from, to, id, "")`. function safeTransferFrom(address from, address to, uint256 id) public payable virtual { transferFrom(from, to, id); if (_hasCode(to)) _checkOnERC721Received(from, to, id, ""); } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - The caller must be the owner of the token, or be approved to manage the token. /// - If `to` refers to a smart contract, it must implement /// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. /// /// Emits a {Transfer} event. function safeTransferFrom(address from, address to, uint256 id, bytes calldata data) public payable virtual { transferFrom(from, to, id); if (_hasCode(to)) _checkOnERC721Received(from, to, id, data); } /// @dev Returns true if this contract implements the interface defined by `interfaceId`. /// See: https://eips.ethereum.org/EIPS/eip-165 /// This function call must use less than 30000 gas. function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { let s := shr(224, interfaceId) // ERC165: 0x01ffc9a7, ERC721: 0x80ac58cd, ERC721Metadata: 0x5b5e139f. result := or(or(eq(s, 0x01ffc9a7), eq(s, 0x80ac58cd)), eq(s, 0x5b5e139f)) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL QUERY FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns if token `id` exists. function _exists(uint256 id) internal view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) result := iszero(iszero(shl(96, sload(add(id, add(id, keccak256(0x00, 0x20))))))) } } /// @dev Returns the owner of token `id`. /// Returns the zero address instead of reverting if the token does not exist. function _ownerOf(uint256 id) internal view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) result := shr(96, shl(96, sload(add(id, add(id, keccak256(0x00, 0x20)))))) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL DATA HITCHHIKING FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance, no events are emitted for the hitchhiking setters. // Please emit your own events if required. /// @dev Returns the auxiliary data for `owner`. /// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data. /// Auxiliary data can be set for any address, even if it does not have any tokens. function _getAux(address owner) internal view virtual returns (uint224 result) { /// @solidity memory-safe-assembly assembly { mstore(0x1c, _ERC721_MASTER_SLOT_SEED) mstore(0x00, owner) result := shr(32, sload(keccak256(0x0c, 0x1c))) } } /// @dev Set the auxiliary data for `owner` to `value`. /// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data. /// Auxiliary data can be set for any address, even if it does not have any tokens. function _setAux(address owner, uint224 value) internal virtual { /// @solidity memory-safe-assembly assembly { mstore(0x1c, _ERC721_MASTER_SLOT_SEED) mstore(0x00, owner) let balanceSlot := keccak256(0x0c, 0x1c) let packed := sload(balanceSlot) sstore(balanceSlot, xor(packed, shl(32, xor(value, shr(32, packed))))) } } /// @dev Returns the extra data for token `id`. /// Minting, transferring, burning a token will not change the extra data. /// The extra data can be set on a non-existent token. function _getExtraData(uint256 id) internal view virtual returns (uint96 result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) result := shr(160, sload(add(id, add(id, keccak256(0x00, 0x20))))) } } /// @dev Sets the extra data for token `id` to `value`. /// Minting, transferring, burning a token will not change the extra data. /// The extra data can be set on a non-existent token. function _setExtraData(uint256 id, uint96 value) internal virtual { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let packed := sload(ownershipSlot) sstore(ownershipSlot, xor(packed, shl(160, xor(value, shr(160, packed))))) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL MINT FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Mints token `id` to `to`. /// /// Requirements: /// /// - Token `id` must not exist. /// - `to` cannot be the zero address. /// /// Emits a {Transfer} event. function _mint(address to, uint256 id) internal virtual { _beforeTokenTransfer(address(0), to, id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. to := shr(96, shl(96, to)) // Load the ownership data. mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let ownershipPacked := sload(ownershipSlot) // Revert if the token already exists. if shl(96, ownershipPacked) { mstore(0x00, 0xc991cbb1) // `TokenAlreadyExists()`. revert(0x1c, 0x04) } // Update with the owner. sstore(ownershipSlot, or(ownershipPacked, to)) // Increment the balance of the owner. { mstore(0x00, to) let balanceSlot := keccak256(0x0c, 0x1c) let balanceSlotPacked := add(sload(balanceSlot), 1) // Revert if `to` is the zero address, or if the account balance overflows. if iszero(mul(to, and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE))) { // `TransferToZeroAddress()`, `AccountBalanceOverflow()`. mstore(shl(2, iszero(to)), 0xea553b3401336cea) revert(0x1c, 0x04) } sstore(balanceSlot, balanceSlotPacked) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id) } _afterTokenTransfer(address(0), to, id); } /// @dev Mints token `id` to `to`, and updates the extra data for token `id` to `value`. /// Does NOT check if token `id` already exists (assumes `id` is auto-incrementing). /// /// Requirements: /// /// - `to` cannot be the zero address. /// /// Emits a {Transfer} event. function _mintAndSetExtraDataUnchecked(address to, uint256 id, uint96 value) internal virtual { _beforeTokenTransfer(address(0), to, id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. to := shr(96, shl(96, to)) // Update with the owner and extra data. mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) sstore(add(id, add(id, keccak256(0x00, 0x20))), or(shl(160, value), to)) // Increment the balance of the owner. { mstore(0x00, to) let balanceSlot := keccak256(0x0c, 0x1c) let balanceSlotPacked := add(sload(balanceSlot), 1) // Revert if `to` is the zero address, or if the account balance overflows. if iszero(mul(to, and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE))) { // `TransferToZeroAddress()`, `AccountBalanceOverflow()`. mstore(shl(2, iszero(to)), 0xea553b3401336cea) revert(0x1c, 0x04) } sstore(balanceSlot, balanceSlotPacked) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id) } _afterTokenTransfer(address(0), to, id); } /// @dev Equivalent to `_safeMint(to, id, "")`. function _safeMint(address to, uint256 id) internal virtual { _safeMint(to, id, ""); } /// @dev Mints token `id` to `to`. /// /// Requirements: /// /// - Token `id` must not exist. /// - `to` cannot be the zero address. /// - If `to` refers to a smart contract, it must implement /// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. /// /// Emits a {Transfer} event. function _safeMint(address to, uint256 id, bytes memory data) internal virtual { _mint(to, id); if (_hasCode(to)) _checkOnERC721Received(address(0), to, id, data); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL BURN FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `_burn(address(0), id)`. function _burn(uint256 id) internal virtual { _burn(address(0), id); } /// @dev Destroys token `id`, using `by`. /// /// Requirements: /// /// - Token `id` must exist. /// - If `by` is not the zero address, /// it must be the owner of the token, or be approved to manage the token. /// /// Emits a {Transfer} event. function _burn(address by, uint256 id) internal virtual { address owner = ownerOf(id); _beforeTokenTransfer(owner, address(0), id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. by := shr(96, shl(96, by)) // Load the ownership data. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by)) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let ownershipPacked := sload(ownershipSlot) // Reload the owner in case it is changed in `_beforeTokenTransfer`. owner := shr(96, shl(96, ownershipPacked)) // Revert if the token does not exist. if iszero(owner) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } // Load and check the token approval. { mstore(0x00, owner) let approvedAddress := sload(add(1, ownershipSlot)) // If `by` is not the zero address, do the authorization check. // Revert if the `by` is not the owner, nor approved. if iszero(or(iszero(by), or(eq(by, owner), eq(by, approvedAddress)))) { if iszero(sload(keccak256(0x0c, 0x30))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Delete the approved address if any. if approvedAddress { sstore(add(1, ownershipSlot), 0) } } // Clear the owner. sstore(ownershipSlot, xor(ownershipPacked, owner)) // Decrement the balance of `owner`. { let balanceSlot := keccak256(0x0c, 0x1c) sstore(balanceSlot, sub(sload(balanceSlot), 1)) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, owner, 0, id) } _afterTokenTransfer(owner, address(0), id); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL APPROVAL FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns whether `account` is the owner of token `id`, or is approved to manage it. /// /// Requirements: /// - Token `id` must exist. function _isApprovedOrOwner(address account, uint256 id) internal view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { result := 1 // Clear the upper 96 bits. account := shr(96, shl(96, account)) // Load the ownership data. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, account)) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let owner := shr(96, shl(96, sload(ownershipSlot))) // Revert if the token does not exist. if iszero(owner) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } // Check if `account` is the `owner`. if iszero(eq(account, owner)) { mstore(0x00, owner) // Check if `account` is approved to manage the token. if iszero(sload(keccak256(0x0c, 0x30))) { result := eq(account, sload(add(1, ownershipSlot))) } } } } /// @dev Returns the account approved to manage token `id`. /// Returns the zero address instead of reverting if the token does not exist. function _getApproved(uint256 id) internal view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) result := sload(add(1, add(id, add(id, keccak256(0x00, 0x20))))) } } /// @dev Equivalent to `_approve(address(0), account, id)`. function _approve(address account, uint256 id) internal virtual { _approve(address(0), account, id); } /// @dev Sets `account` as the approved account to manage token `id`, using `by`. /// /// Requirements: /// - Token `id` must exist. /// - If `by` is not the zero address, `by` must be the owner /// or an approved operator for the token owner. /// /// Emits a {Approval} event. function _approve(address by, address account, uint256 id) internal virtual { assembly { // Clear the upper 96 bits. let bitmaskAddress := shr(96, not(0)) account := and(bitmaskAddress, account) by := and(bitmaskAddress, by) // Load the owner of the token. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by)) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let owner := and(bitmaskAddress, sload(ownershipSlot)) // Revert if the token does not exist. if iszero(owner) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } // If `by` is not the zero address, do the authorization check. // Revert if `by` is not the owner, nor approved. if iszero(or(iszero(by), eq(by, owner))) { mstore(0x00, owner) if iszero(sload(keccak256(0x0c, 0x30))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Sets `account` as the approved account to manage `id`. sstore(add(1, ownershipSlot), account) // Emit the {Approval} event. log4(codesize(), 0x00, _APPROVAL_EVENT_SIGNATURE, owner, account, id) } } /// @dev Approve or remove the `operator` as an operator for `by`, /// without authorization checks. /// /// Emits an {ApprovalForAll} event. function _setApprovalForAll(address by, address operator, bool isApproved) internal virtual { /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. by := shr(96, shl(96, by)) operator := shr(96, shl(96, operator)) // Convert to 0 or 1. isApproved := iszero(iszero(isApproved)) // Update the `isApproved` for (`by`, `operator`). mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator)) mstore(0x00, by) sstore(keccak256(0x0c, 0x30), isApproved) // Emit the {ApprovalForAll} event. mstore(0x00, isApproved) log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, by, operator) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL TRANSFER FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `_transfer(address(0), from, to, id)`. function _transfer(address from, address to, uint256 id) internal virtual { _transfer(address(0), from, to, id); } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - If `by` is not the zero address, /// it must be the owner of the token, or be approved to manage the token. /// /// Emits a {Transfer} event. function _transfer(address by, address from, address to, uint256 id) internal virtual { _beforeTokenTransfer(from, to, id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. let bitmaskAddress := shr(96, not(0)) from := and(bitmaskAddress, from) to := and(bitmaskAddress, to) by := and(bitmaskAddress, by) // Load the ownership data. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by)) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let ownershipPacked := sload(ownershipSlot) let owner := and(bitmaskAddress, ownershipPacked) // Revert if the token does not exist, or if `from` is not the owner. if iszero(mul(owner, eq(owner, from))) { // `TokenDoesNotExist()`, `TransferFromIncorrectOwner()`. mstore(shl(2, iszero(owner)), 0xceea21b6a1148100) revert(0x1c, 0x04) } // Load, check, and update the token approval. { mstore(0x00, from) let approvedAddress := sload(add(1, ownershipSlot)) // If `by` is not the zero address, do the authorization check. // Revert if the `by` is not the owner, nor approved. if iszero(or(iszero(by), or(eq(by, from), eq(by, approvedAddress)))) { if iszero(sload(keccak256(0x0c, 0x30))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Delete the approved address if any. if approvedAddress { sstore(add(1, ownershipSlot), 0) } } // Update with the new owner. sstore(ownershipSlot, xor(ownershipPacked, xor(from, to))) // Decrement the balance of `from`. { let fromBalanceSlot := keccak256(0x0c, 0x1c) sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1)) } // Increment the balance of `to`. { mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x1c) let toBalanceSlotPacked := add(sload(toBalanceSlot), 1) // Revert if `to` is the zero address, or if the account balance overflows. if iszero(mul(to, and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE))) { // `TransferToZeroAddress()`, `AccountBalanceOverflow()`. mstore(shl(2, iszero(to)), 0xea553b3401336cea) revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceSlotPacked) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id) } _afterTokenTransfer(from, to, id); } /// @dev Equivalent to `_safeTransfer(from, to, id, "")`. function _safeTransfer(address from, address to, uint256 id) internal virtual { _safeTransfer(from, to, id, ""); } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - The caller must be the owner of the token, or be approved to manage the token. /// - If `to` refers to a smart contract, it must implement /// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. /// /// Emits a {Transfer} event. function _safeTransfer(address from, address to, uint256 id, bytes memory data) internal virtual { _transfer(address(0), from, to, id); if (_hasCode(to)) _checkOnERC721Received(from, to, id, data); } /// @dev Equivalent to `_safeTransfer(by, from, to, id, "")`. function _safeTransfer(address by, address from, address to, uint256 id) internal virtual { _safeTransfer(by, from, to, id, ""); } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - If `by` is not the zero address, /// it must be the owner of the token, or be approved to manage the token. /// - If `to` refers to a smart contract, it must implement /// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. /// /// Emits a {Transfer} event. function _safeTransfer(address by, address from, address to, uint256 id, bytes memory data) internal virtual { _transfer(by, from, to, id); if (_hasCode(to)) _checkOnERC721Received(from, to, id, data); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HOOKS FOR OVERRIDING */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Hook that is called before any token transfers, including minting and burning. function _beforeTokenTransfer(address from, address to, uint256 id) internal virtual {} /// @dev Hook that is called after any token transfers, including minting and burning. function _afterTokenTransfer(address from, address to, uint256 id) internal virtual {} /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns if `a` has bytecode of non-zero length. function _hasCode(address a) private view returns (bool result) { /// @solidity memory-safe-assembly assembly { result := extcodesize(a) // Can handle dirty upper bits. } } /// @dev Perform a call to invoke {IERC721Receiver-onERC721Received} on `to`. /// Reverts if the target does not support the function correctly. function _checkOnERC721Received(address from, address to, uint256 id, bytes memory data) private { /// @solidity memory-safe-assembly assembly { // Prepare the calldata. let m := mload(0x40) let onERC721ReceivedSelector := 0x150b7a02 mstore(m, onERC721ReceivedSelector) mstore(add(m, 0x20), caller()) // The `operator`, which is always `msg.sender`. mstore(add(m, 0x40), shr(96, shl(96, from))) mstore(add(m, 0x60), id) mstore(add(m, 0x80), 0x80) let n := mload(data) mstore(add(m, 0xa0), n) if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xc0), n)) } // Revert if the call reverts. if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m, 0x20)) { if returndatasize() { // Bubble up the revert if the call reverts. returndatacopy(m, 0x00, returndatasize()) revert(m, returndatasize()) } } // Load the returndata and compare it. if iszero(eq(mload(m), shl(224, onERC721ReceivedSelector))) { mstore(0x00, 0xd1a57ed6) // `TransferToNonERC721ReceiverImplementer()`. revert(0x1c, 0x04) } } } }
// SPDX-License-Identifier: MIT // // _____ _ _ // |_ _| | | (_) // | | ___ _ __ __| | ___ _ __ _ _______ // | |/ _ \ '_ \ / _` |/ _ \ '__| |_ / _ \ // | | __/ | | | (_| | __/ | | |/ / __/ // \_/\___|_| |_|\__,_|\___|_| |_/___\___| // // Copyright (c) Tenderize Labs Ltd pragma solidity >=0.8.25; import { Initializable } from "@openzeppelin/upgradeable/proxy/utils/Initializable.sol"; import { UUPSUpgradeable } from "@openzeppelin/upgradeable/proxy/utils/UUPSUpgradeable.sol"; import { OwnableUpgradeable } from "@openzeppelin/upgradeable/access/OwnableUpgradeable.sol"; import { UnsETH } from "@/unsETH/UnsETH.sol"; import { Base64 } from "@/unsETH/Base64.sol"; import { Strings } from "@openzeppelin/contracts/utils/Strings.sol"; // import { Strings } from "openzeppelin-contracts/utils/Strings.sol"; // solhint-disable quotes /// @title Renderer /// @notice ERC721 metadata renderer for unlock tokens /// @dev Renders SVG and JSON metadata for unlock tokens /// @dev UUPS upgradeable contract contract Renderer { using Strings for uint256; using Strings for address; /** * @notice Returns the JSON metadata for a given unlock * @param data metadata for the token */ function json(UnsETH.Request memory data) external pure returns (string memory) { return string( abi.encodePacked( "data:application/json;base64,", Base64.encode( abi.encodePacked( '{"name": "unsETH", "description": "unstaking ETH",', '"attributes":[', _serializeMetadata(data), "]}" ) ) ) ); } function svg(UnsETH.Request memory data) external pure returns (string memory) { return string( abi.encodePacked( '<svg width="290" height="500" viewBox="0 0 290 500" xmlns="http://www.w3.org/2000/svg"', " xmlns:xlink='http://www.w3.org/1999/xlink'>", Base64.encode( abi.encodePacked( "<rect width='290px' height='500px' fill='#", "000000", "'/>", "<text x='10' y='20'>", data.derivative.toHexString(), '</text><text x="10" y="40">', data.amount.toString(), '</text><text x="10" y="60">', data.createdAt.toString(), '</text><text x="10" y="80">', data.requestId.toString(), "</text>", "</svg>" ) ) ) ); } function _serializeMetadata(UnsETH.Request memory data) internal pure returns (string memory metadataString) { metadataString = string( abi.encodePacked( '{"trait_type": "createdAt", "value":', data.createdAt.toString(), "},", '{"trait_type": "amount", "value":', data.amount.toString(), "},", '{"trait_type": "derivative", "value":"', data.derivative.toHexString(), '"},', '{"trait_type": "requestId", "value":"', data.requestId.toString(), '"}' ) ); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT // // _____ _ _ // |_ _| | | (_) // | | ___ _ __ __| | ___ _ __ _ _______ // | |/ _ \ '_ \ / _` |/ _ \ '__| |_ / _ \ // | | __/ | | | (_| | __/ | | |/ / __/ // \_/\___|_| |_|\__,_|\___|_| |_/___\___| // // Copyright (c) Tenderize Labs Ltd pragma solidity >=0.8.25; /** * Based on Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/80238e2ebed645cf7dcfe831f7c4458e9cb574e9/base64.sol */ /// @title Base64 /// @notice Provides functions for encoding/decoding base64 library Base64 { string internal constant TABLE_ENCODE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; bytes internal constant TABLE_DECODE = hex"0000000000000000000000000000000000000000000000000000000000000000" hex"00000000000000000000003e0000003f3435363738393a3b3c3d000000000000" hex"00000102030405060708090a0b0c0d0e0f101112131415161718190000000000" hex"001a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132330000000000"; function encode(bytes memory data) internal pure returns (string memory) { if (data.length == 0) return ""; // load the table into memory string memory table = TABLE_ENCODE; // multiply by 4/3 rounded up uint256 encodedLen = 4 * ((data.length + 2) / 3); // add some extra buffer at the end required for the writing string memory result = new string(encodedLen + 32); assembly { // set the actual output length mstore(result, encodedLen) // prepare the lookup table let tablePtr := add(table, 1) // input ptr let dataPtr := data let endPtr := add(dataPtr, mload(data)) // result ptr, jump over length let resultPtr := add(result, 32) // run over the input, 3 bytes at a time // solhint-disable-next-line no-empty-blocks for { } lt(dataPtr, endPtr) { } { // read 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // write 4 characters mstore(resultPtr, shl(248, mload(add(tablePtr, and(shr(18, input), 0x3F))))) resultPtr := add(resultPtr, 1) mstore(resultPtr, shl(248, mload(add(tablePtr, and(shr(12, input), 0x3F))))) resultPtr := add(resultPtr, 1) mstore(resultPtr, shl(248, mload(add(tablePtr, and(shr(6, input), 0x3F))))) resultPtr := add(resultPtr, 1) mstore(resultPtr, shl(248, mload(add(tablePtr, and(input, 0x3F))))) resultPtr := add(resultPtr, 1) } // padding with '=' switch mod(mload(data), 3) case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) } case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) } } return result; } function decode(string memory _data) internal pure returns (bytes memory) { bytes memory data = bytes(_data); if (data.length == 0) return new bytes(0); require(data.length % 4 == 0, "invalid base64 decoder input"); // load the table into memory bytes memory table = TABLE_DECODE; // every 4 characters represent 3 bytes uint256 decodedLen = (data.length / 4) * 3; // add some extra buffer at the end required for the writing bytes memory result = new bytes(decodedLen + 32); assembly { // padding with '=' let lastBytes := mload(add(data, mload(data))) if eq(and(lastBytes, 0xFF), 0x3d) { decodedLen := sub(decodedLen, 1) if eq(and(lastBytes, 0xFFFF), 0x3d3d) { decodedLen := sub(decodedLen, 1) } } // set the actual output length mstore(result, decodedLen) // prepare the lookup table let tablePtr := add(table, 1) // input ptr let dataPtr := data let endPtr := add(dataPtr, mload(data)) // result ptr, jump over length let resultPtr := add(result, 32) // run over the input, 4 characters at a time // solhint-disable-next-line no-empty-blocks for { } lt(dataPtr, endPtr) { } { // read 4 characters dataPtr := add(dataPtr, 4) let input := mload(dataPtr) // write 3 bytes let output := add( add( shl(18, and(mload(add(tablePtr, and(shr(24, input), 0xFF))), 0xFF)), shl(12, and(mload(add(tablePtr, and(shr(16, input), 0xFF))), 0xFF)) ), add( shl(6, and(mload(add(tablePtr, and(shr(8, input), 0xFF))), 0xFF)), and(mload(add(tablePtr, and(input, 0xFF))), 0xFF) ) ) mstore(resultPtr, shl(232, output)) resultPtr := add(resultPtr, 3) } } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "forge-std/=node_modules/forge-std/src/", "@/=src/", "@test/=test/", "@openzeppelin/upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@solady/=lib/solady/src/", "@prb/math/=lib/prb-math/src/", "@solmate/=lib/solmate/src/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@prb/test/=lib/prb-math/node_modules/@prb/test/", "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "prb-math/=lib/prb-math/src/", "solady/=lib/solady/src/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "none", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"components":[{"internalType":"uint256","name":"cap","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint256","name":"minLockup","type":"uint256"},{"internalType":"uint256","name":"maxLockup","type":"uint256"},{"internalType":"uint256","name":"epochLength","type":"uint256"},{"internalType":"UD60x18","name":"minMultiplier","type":"uint256"},{"internalType":"UD60x18","name":"maxMultiplier","type":"uint256"},{"internalType":"UD60x18","name":"slope","type":"uint256"}],"internalType":"struct Config","name":"_config","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[],"name":"CapExceeded","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"Inactive","type":"error"},{"inputs":[],"name":"InvalidDuration","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotClaimable","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Log_InputTooSmall","type":"error"},{"inputs":[],"name":"UUPSUnauthorizedCallContext","type":"error"},{"inputs":[{"internalType":"bytes32","name":"slot","type":"bytes32"}],"name":"UUPSUnsupportedProxiableUUID","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"UPGRADE_INTERFACE_VERSION","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"epochs","type":"uint256"}],"name":"calculateWeightedDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"changeLockup","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimVeTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deadline","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"depositETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"depositWETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isClaimable","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"lockup","outputs":[{"components":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"}],"internalType":"struct Lockup","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"minLpShares","type":"uint256"}],"name":"mintLpEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_lpEth","type":"address"}],"name":"setLpEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_votingEscrow","type":"address"}],"name":"setVotingEscrow","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalDeposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalWeightedDeposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"votingEscrow","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6101a0604052306080525f600455348015610018575f80fd5b50604051612df1380380612df18339810160408190526100379161015d565b805160a052602081015160c052604081015161005b90670de0b6b3a76400006101f6565b60e052606081015161007590670de0b6b3a76400006101f6565b6101005260a08101516101205260c08101516101405260e0810151610160526080810151610180526100a56100ab565b5061021f565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000900460ff16156100fb5760405163f92ee8a960e01b815260040160405180910390fd5b80546001600160401b039081161461015a5780546001600160401b0319166001600160401b0390811782556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b50565b5f61010080838503121561016f575f80fd5b604051908101906001600160401b038211818310171561019d57634e487b7160e01b5f52604160045260245ffd5b81604052835181526020840151602082015260408401516040820152606084015160608201526080840151608082015260a084015160a082015260c084015160c082015260e084015160e0820152809250505092915050565b808202811582820484141761021957634e487b7160e01b5f52601160045260245ffd5b92915050565b60805160a05160c05160e0516101005161012051610140516101605161018051612b126102df5f395f610d4501525f610b2401525f610bce01525f8181610bef0152610c1501525f8181610b4b01526111af01525f8181610ae501528181610b6c01528181610b96015261117301525f818161028d015281816102d101528181610570015281816106e001528181611025015261130d01525f818161032301526113a601525f81816114e10152818161150a015261172b0152612b125ff3fe608060405260043610610186575f3560e01c80635358fbda116100d1578063ad3cb1cc1161007c578063da632bd911610057578063da632bd91461051c578063dd9a055314610530578063f2fde38b1461054f575f80fd5b8063ad3cb1cc14610489578063b4b2f88a146104de578063ce5ec92e146104fd575f80fd5b80637d882097116100ac5780637d882097146104175780638129fc1c1461042c5780638da5cb5b14610440575f80fd5b80635358fbda146103dc578063715018a6146103ef57806374478bb314610403575f80fd5b80632e1a7d4d116101315780634f1ef2861161010c5780634f1ef286146103645780634f2bfe5b1461037757806352d1902d146103c8575f80fd5b80632e1a7d4d146102f3578063355274ea14610312578063365297c614610345575f80fd5b80630df19d35116101615780630df19d35146101f857806322f3e2d41461027f57806329dcb0cf146102c0575f80fd5b806301492c6214610191578063066fc8fb146101b25780630b0313a9146101d9575f80fd5b3661018d57005b5f80fd5b34801561019c575f80fd5b506101b06101ab366004612800565b61056e565b005b3480156101bd575f80fd5b506101c65f5481565b6040519081526020015b60405180910390f35b3480156101e4575f80fd5b506101b06101f3366004612838565b61066d565b348015610203575f80fd5b50610264610212366004612838565b604080518082019091525f80825260208201525073ffffffffffffffffffffffffffffffffffffffff165f90815260056020908152604091829020825180840190935280548352600101549082015290565b604080518251815260209283015192810192909252016101d0565b34801561028a575f80fd5b507f00000000000000000000000000000000000000000000000000000000000000004211155b60405190151581526020016101d0565b3480156102cb575f80fd5b506101c67f000000000000000000000000000000000000000000000000000000000000000081565b3480156102fe575f80fd5b506101b061030d366004612800565b6106de565b34801561031d575f80fd5b506101c67f000000000000000000000000000000000000000000000000000000000000000081565b348015610350575f80fd5b506101b061035f366004612853565b6107e6565b6101b06103723660046128a0565b6108ac565b348015610382575f80fd5b506002546103a39073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016101d0565b3480156103d3575f80fd5b506101c66108c7565b6101b06103ea366004612800565b6108f5565b3480156103fa575f80fd5b506101b0610902565b34801561040e575f80fd5b506102b0610915565b348015610422575f80fd5b506101c660015481565b348015610437575f80fd5b506101b0610944565b34801561044b575f80fd5b507f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005473ffffffffffffffffffffffffffffffffffffffff166103a3565b348015610494575f80fd5b506104d16040518060400160405280600581526020017f352e302e3000000000000000000000000000000000000000000000000000000081525081565b6040516101d0919061297c565b3480156104e9575f80fd5b506101c66104f8366004612853565b610ac9565b348015610508575f80fd5b506101b0610517366004612838565b610c54565b348015610527575f80fd5b506101b0610cf1565b34801561053b575f80fd5b506101b061054a366004612800565b610ffa565b34801561055a575f80fd5b506101b0610569366004612838565b6110ff565b7f00000000000000000000000000000000000000000000000000000000000000004211156105c8576040517f2e8acb0d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6105d181611164565b610607576040517f7616640100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b335f908152600560205260408120805460018201549192916106299190610ac9565b9050805f8082825461063b91906129fc565b909155505081545f9061064e9085610ac9565b9050805f808282546106609190612a0f565b9091555050505060010155565b6106756111dc565b60035473ffffffffffffffffffffffffffffffffffffffff1615610697575f80fd5b600380547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b7f0000000000000000000000000000000000000000000000000000000000000000421115610738576040517f2e8acb0d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b335f9081526005602052604081208054600182015491929161075a9190610ac9565b9050805f8082825461076c91906129fc565b909155505081545f906107809085906129fc565b90505f610791828560010154610ac9565b9050805f808282546107a39190612a0f565b9091555050600180548690039055818455604051339086156108fc029087905f818181858888f193505050501580156107de573d5f803e3d5ffd5b505050505050565b61080673c02aaa39b223fe8d0a0e5c4f27ead9083c756cc233308561126a565b61082573c02aaa39b223fe8d0a0e5c4f27ead9083c756cc280846112c2565b6040517f2e1a7d4d0000000000000000000000000000000000000000000000000000000081526004810183905273c02aaa39b223fe8d0a0e5c4f27ead9083c756cc290632e1a7d4d906024015f604051808303815f87803b158015610888575f80fd5b505af115801561089a573d5f803e3d5ffd5b505050506108a8828261130b565b5050565b6108b46114c9565b6108bd826115cd565b6108a882826115d5565b5f6108d0611713565b507f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc90565b6108ff348261130b565b50565b61090a6111dc565b6109135f611782565b565b6002545f9073ffffffffffffffffffffffffffffffffffffffff161580159061093f57505f600454115b905090565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000810460ff16159067ffffffffffffffff165f8115801561098e5750825b90505f8267ffffffffffffffff1660011480156109aa5750303b155b9050811580156109b8575080155b156109ef576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b84547fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000001660011785558315610a505784547fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff16680100000000000000001785555b610a5933611817565b610a61611828565b8315610ac25784547fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050565b5f80610add83670de0b6b3a7640000612a22565b9050610b08817f00000000000000000000000000000000000000000000000000000000000000001190565b15610b16575f915050610c4e565b610c4a610c47610c40610bc67f0000000000000000000000000000000000000000000000000000000000000000610bc0610b907f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611830565b610bba887f0000000000000000000000000000000000000000000000000000000000000000611830565b90611845565b9061185c565b610c3a610c137f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611830565b7f000000000000000000000000000000000000000000000000000000000000000090611969565b90611977565b8690611977565b90565b9150505b92915050565b610c5c6111dc565b60025473ffffffffffffffffffffffffffffffffffffffff1615610c7e575f80fd5b600280547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff9283161790556003805490911674010000000000000000000000000000000000000000426bffffffffffffffffffffffff1602179055565b610cf9610915565b610d2f576040517f6247a84e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b335f9081526005602052604081206003549091907f000000000000000000000000000000000000000000000000000000000000000090610d95907401000000000000000000000000000000000000000090046bffffffffffffffffffffffff16426129fc565b610d9f9190612a66565b90505f600154600454845f0154610db69190612a22565b610dc09190612a66565b600354600254919250610ded9173ffffffffffffffffffffffffffffffffffffffff9182169116836112c2565b8183600101541115610eba57600254600184015473ffffffffffffffffffffffffffffffffffffffff909116906383e25f8a9033908490610e2f9087906129fc565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e086901b16815273ffffffffffffffffffffffffffffffffffffffff9093166004840152602483019190915260448201526064015f604051808303815f87803b158015610e9f575f80fd5b505af1158015610eb1573d5f803e3d5ffd5b50505050610fe0565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16635fcbd2856040518163ffffffff1660e01b8152600401602060405180830381865afa158015610f24573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f489190612a9e565b6040517fa9059cbb0000000000000000000000000000000000000000000000000000000081523360048201526024810183905273ffffffffffffffffffffffffffffffffffffffff919091169063a9059cbb906044016020604051808303815f875af1158015610fba573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fde9190612ab9565b505b5050335f9081526005602052604081208181556001015550565b6110026111dc565b60035473ffffffffffffffffffffffffffffffffffffffff16611023575f80fd5b7f0000000000000000000000000000000000000000000000000000000000000000421161104e575f80fd5b6003546040517fb6b55f25000000000000000000000000000000000000000000000000000000008152600481018390525f9173ffffffffffffffffffffffffffffffffffffffff169063b6b55f2590479060240160206040518083038185885af11580156110be573d5f803e3d5ffd5b50505050506040513d601f19601f820116820180604052508101906110e39190612ad8565b90508060045f8282546110f69190612a0f565b90915550505050565b6111076111dc565b73ffffffffffffffffffffffffffffffffffffffff811661115b576040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081525f60048201526024015b60405180910390fd5b6108ff81611782565b5f611197670de0b6b3a76400007f0000000000000000000000000000000000000000000000000000000000000000612a66565b8210158015610c4e57506111d3670de0b6b3a76400007f0000000000000000000000000000000000000000000000000000000000000000612a66565b82111592915050565b3361121b7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1614610913576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401611152565b60405181606052826040528360601b602c526f23b872dd000000000000000000000000600c5260205f6064601c5f895af13d1560015f511417166112b557637939f4245f526004601cfd5b5f60605260405250505050565b81601452806034526f095ea7b30000000000000000000000005f5260205f604460105f875af13d1560015f5114171661130257633e3f8f735f526004601cfd5b5f603452505050565b7f0000000000000000000000000000000000000000000000000000000000000000421115611365576040517f2e8acb0d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61136e81611164565b6113a4576040517f7616640100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7f0000000000000000000000000000000000000000000000000000000000000000826001546113d39190612a0f565b111561140b576040517fa4875a4900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b335f90815260056020526040902080541561143d575f611432825f01548360010154610ac9565b5f8054919091039055505b80545f906114559061144f9086612a0f565b84610ac9565b9050805f808282546114679190612a0f565b925050819055508360015f82825461147f9190612a0f565b9091555050604080518082019091528254819061149c9087612a0f565b8152602090810194909452335f908152600585526040902081518155930151600190930192909255505050565b3073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016148061159657507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1661157d7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1614155b15610913576040517fe07c8dba00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108ff6111dc565b8173ffffffffffffffffffffffffffffffffffffffff166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa92505050801561165a575060408051601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016820190925261165791810190612ad8565b60015b6116a8576040517f4c9c8ce300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff83166004820152602401611152565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8114611704576040517faa1d49a400000000000000000000000000000000000000000000000000000000815260048101829052602401611152565b61170e8383611985565b505050565b3073ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001614610913576040517fe07c8dba00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930080547fffffffffffffffffffffffff0000000000000000000000000000000000000000811673ffffffffffffffffffffffffffffffffffffffff848116918217845560405192169182907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a3505050565b61181f6119e7565b6108ff81611a4e565b6109136119e7565b5f61183e610c4783856129fc565b9392505050565b5f61183e610c4784670de0b6b3a764000085611a56565b5f8282818303611885578015611872575f61187c565b670de0b6b3a76400005b92505050610c4e565b670de0b6b3a764000082036118a657670de0b6b3a764000092505050610c4e565b805f036118bf57670de0b6b3a764000092505050610c4e565b670de0b6b3a764000081036118d8578492505050610c4e565b670de0b6b3a7640000821115611909576119026118fd6118f787611b5c565b86611977565b611cbd565b9250611961565b5f611926610c47846ec097ce7bc90715b34b9f1000000000612a66565b90505f61193e6118fd61193884611b5c565b88611977565b905061195c610c47826ec097ce7bc90715b34b9f1000000000612a66565b945050505b505092915050565b5f61183e610c478385612a0f565b5f61183e610c478484611d32565b61198e82611e36565b60405173ffffffffffffffffffffffffffffffffffffffff8316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a28051156119df5761170e8282611f04565b6108a8611f83565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005468010000000000000000900460ff16610913576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6111076119e7565b5f80807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff858709858702925082811083820303915050805f03611aac57838281611aa257611aa2612a39565b049250505061183e565b838110611af6576040517f63a05778000000000000000000000000000000000000000000000000000000008152600481018790526024810186905260448101859052606401611152565b5f84868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203025f889003889004909101858311909403939093029303949094049190911702949350505050565b5f81670de0b6b3a7640000811015611ba3576040517f36d32ef000000000000000000000000000000000000000000000000000000000815260048101849052602401611152565b5f611c2e670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008101611c6e5750949350505050565b671bc16d674ec800006706f05b59d3b200005b8015611cb157670de0b6b3a7640000838002049250818310611ca9579283019260019290921c915b60011c611c81565b50919695505050505050565b5f81680a688906bd8affffff811115611d05576040517fb3b6ba1f00000000000000000000000000000000000000000000000000000000815260048101849052602401611152565b5f611d1c670de0b6b3a7640000604084901b612a66565b9050611d2a610c4782611fbb565b949350505050565b5f80807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848609848602925082811083820303915050805f03611d825750670de0b6b3a764000090049050610c4e565b670de0b6b3a76400008110611dcd576040517f5173648d0000000000000000000000000000000000000000000000000000000081526004810186905260248101859052604401611152565b5f670de0b6b3a7640000858709620400008185030493109091037d40000000000000000000000000000000000000000000000000000000000002919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b8073ffffffffffffffffffffffffffffffffffffffff163b5f03611e9e576040517f4c9c8ce300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff82166004820152602401611152565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b60605f808473ffffffffffffffffffffffffffffffffffffffff1684604051611f2d9190612aef565b5f60405180830381855af49150503d805f8114611f65576040519150601f19603f3d011682016040523d82523d5f602084013e611f6a565b606091505b5091509150611f7a85838361272f565b95945050505050565b3415610913576040517fb398979f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7780000000000000000000000000000000000000000000000067ff000000000000008216156120dc576780000000000000008216156120035768016a09e667f3bcc9090260401c5b674000000000000000821615612022576801306fe0a31b7152df0260401c5b672000000000000000821615612041576801172b83c7d517adce0260401c5b6710000000000000008216156120605768010b5586cf9890f62a0260401c5b67080000000000000082161561207f576801059b0d31585743ae0260401c5b67040000000000000082161561209e57680102c9a3e778060ee70260401c5b6702000000000000008216156120bd5768010163da9fb33356d80260401c5b6701000000000000008216156120dc57680100b1afa5abcbed610260401c5b66ff0000000000008216156121db5766800000000000008216156121095768010058c86da1c09ea20260401c5b6640000000000000821615612127576801002c605e2e8cec500260401c5b662000000000000082161561214557680100162f3904051fa10260401c5b6610000000000000821615612163576801000b175effdc76ba0260401c5b660800000000000082161561218157680100058ba01fb9f96d0260401c5b660400000000000082161561219f5768010002c5cc37da94920260401c5b66020000000000008216156121bd576801000162e525ee05470260401c5b66010000000000008216156121db5768010000b17255775c040260401c5b65ff00000000008216156122d15765800000000000821615612206576801000058b91b5bc9ae0260401c5b6540000000000082161561222357680100002c5c89d5ec6d0260401c5b652000000000008216156122405768010000162e43f4f8310260401c5b6510000000000082161561225d57680100000b1721bcfc9a0260401c5b6508000000000082161561227a5768010000058b90cf1e6e0260401c5b65040000000000821615612297576801000002c5c863b73f0260401c5b650200000000008216156122b457680100000162e430e5a20260401c5b650100000000008216156122d1576801000000b1721835510260401c5b64ff000000008216156123be576480000000008216156122fa57680100000058b90c0b490260401c5b6440000000008216156123165768010000002c5c8601cc0260401c5b642000000000821615612332576801000000162e42fff00260401c5b64100000000082161561234e5768010000000b17217fbb0260401c5b64080000000082161561236a576801000000058b90bfce0260401c5b64040000000082161561238657680100000002c5c85fe30260401c5b6402000000008216156123a25768010000000162e42ff10260401c5b6401000000008216156123be57680100000000b17217f80260401c5b63ff0000008216156124a25763800000008216156123e55768010000000058b90bfc0260401c5b6340000000821615612400576801000000002c5c85fe0260401c5b632000000082161561241b57680100000000162e42ff0260401c5b6310000000821615612436576801000000000b17217f0260401c5b630800000082161561245157680100000000058b90c00260401c5b630400000082161561246c5768010000000002c5c8600260401c5b6302000000821615612487576801000000000162e4300260401c5b63010000008216156124a25768010000000000b172180260401c5b62ff000082161561257d57628000008216156124c7576801000000000058b90c0260401c5b624000008216156124e157680100000000002c5c860260401c5b622000008216156124fb5768010000000000162e430260401c5b6210000082161561251557680100000000000b17210260401c5b6208000082161561252f5768010000000000058b910260401c5b62040000821615612549576801000000000002c5c80260401c5b6202000082161561256357680100000000000162e40260401c5b6201000082161561257d576801000000000000b1720260401c5b61ff0082161561264f576180008216156125a057680100000000000058b90260401c5b6140008216156125b95768010000000000002c5d0260401c5b6120008216156125d2576801000000000000162e0260401c5b6110008216156125eb5768010000000000000b170260401c5b610800821615612604576801000000000000058c0260401c5b61040082161561261d57680100000000000002c60260401c5b61020082161561263657680100000000000001630260401c5b61010082161561264f57680100000000000000b10260401c5b60ff82161561271857608082161561267057680100000000000000590260401c5b6040821615612688576801000000000000002c0260401c5b60208216156126a057680100000000000000160260401c5b60108216156126b8576801000000000000000b0260401c5b60088216156126d057680100000000000000060260401c5b60048216156126e857680100000000000000030260401c5b600282161561270057680100000000000000010260401c5b600182161561271857680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6060826127445761273f826127be565b61183e565b8151158015612768575073ffffffffffffffffffffffffffffffffffffffff84163b155b156127b7576040517f9996b31500000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85166004820152602401611152565b508061183e565b8051156127ce5780518082602001fd5b6040517f1425ea4200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215612810575f80fd5b5035919050565b73ffffffffffffffffffffffffffffffffffffffff811681146108ff575f80fd5b5f60208284031215612848575f80fd5b813561183e81612817565b5f8060408385031215612864575f80fd5b50508035926020909101359150565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b5f80604083850312156128b1575f80fd5b82356128bc81612817565b9150602083013567ffffffffffffffff808211156128d8575f80fd5b818501915085601f8301126128eb575f80fd5b8135818111156128fd576128fd612873565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190838211818310171561294357612943612873565b8160405282815288602084870101111561295b575f80fd5b826020860160208301375f6020848301015280955050505050509250929050565b602081525f82518060208401528060208501604085015e5f6040828501015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f83011684010191505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b81810381811115610c4e57610c4e6129cf565b80820180821115610c4e57610c4e6129cf565b8082028115828204841417610c4e57610c4e6129cf565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f82612a99577f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b500490565b5f60208284031215612aae575f80fd5b815161183e81612817565b5f60208284031215612ac9575f80fd5b8151801515811461183e575f80fd5b5f60208284031215612ae8575f80fd5b5051919050565b5f82518060208501845e5f92019182525091905056fea164736f6c6343000819000a0000000000000000000000000000000000000000000010f0cf064dd5920000000000000000000000000000000000000000000000000000000000000067000e77000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000340000000000000000000000000000000000000000000000000000000000093a80000000000000000000000000000000000000000000000000016345785d8a00000000000000000000000000000000000000000000000000004563918244f4000000000000000000000000000000000000000000000000000022b1c8c1227a0000
Deployed Bytecode
0x608060405260043610610186575f3560e01c80635358fbda116100d1578063ad3cb1cc1161007c578063da632bd911610057578063da632bd91461051c578063dd9a055314610530578063f2fde38b1461054f575f80fd5b8063ad3cb1cc14610489578063b4b2f88a146104de578063ce5ec92e146104fd575f80fd5b80637d882097116100ac5780637d882097146104175780638129fc1c1461042c5780638da5cb5b14610440575f80fd5b80635358fbda146103dc578063715018a6146103ef57806374478bb314610403575f80fd5b80632e1a7d4d116101315780634f1ef2861161010c5780634f1ef286146103645780634f2bfe5b1461037757806352d1902d146103c8575f80fd5b80632e1a7d4d146102f3578063355274ea14610312578063365297c614610345575f80fd5b80630df19d35116101615780630df19d35146101f857806322f3e2d41461027f57806329dcb0cf146102c0575f80fd5b806301492c6214610191578063066fc8fb146101b25780630b0313a9146101d9575f80fd5b3661018d57005b5f80fd5b34801561019c575f80fd5b506101b06101ab366004612800565b61056e565b005b3480156101bd575f80fd5b506101c65f5481565b6040519081526020015b60405180910390f35b3480156101e4575f80fd5b506101b06101f3366004612838565b61066d565b348015610203575f80fd5b50610264610212366004612838565b604080518082019091525f80825260208201525073ffffffffffffffffffffffffffffffffffffffff165f90815260056020908152604091829020825180840190935280548352600101549082015290565b604080518251815260209283015192810192909252016101d0565b34801561028a575f80fd5b507f0000000000000000000000000000000000000000000000000000000067000e774211155b60405190151581526020016101d0565b3480156102cb575f80fd5b506101c67f0000000000000000000000000000000000000000000000000000000067000e7781565b3480156102fe575f80fd5b506101b061030d366004612800565b6106de565b34801561031d575f80fd5b506101c67f0000000000000000000000000000000000000000000010f0cf064dd59200000081565b348015610350575f80fd5b506101b061035f366004612853565b6107e6565b6101b06103723660046128a0565b6108ac565b348015610382575f80fd5b506002546103a39073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016101d0565b3480156103d3575f80fd5b506101c66108c7565b6101b06103ea366004612800565b6108f5565b3480156103fa575f80fd5b506101b0610902565b34801561040e575f80fd5b506102b0610915565b348015610422575f80fd5b506101c660015481565b348015610437575f80fd5b506101b0610944565b34801561044b575f80fd5b507f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005473ffffffffffffffffffffffffffffffffffffffff166103a3565b348015610494575f80fd5b506104d16040518060400160405280600581526020017f352e302e3000000000000000000000000000000000000000000000000000000081525081565b6040516101d0919061297c565b3480156104e9575f80fd5b506101c66104f8366004612853565b610ac9565b348015610508575f80fd5b506101b0610517366004612838565b610c54565b348015610527575f80fd5b506101b0610cf1565b34801561053b575f80fd5b506101b061054a366004612800565b610ffa565b34801561055a575f80fd5b506101b0610569366004612838565b6110ff565b7f0000000000000000000000000000000000000000000000000000000067000e774211156105c8576040517f2e8acb0d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6105d181611164565b610607576040517f7616640100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b335f908152600560205260408120805460018201549192916106299190610ac9565b9050805f8082825461063b91906129fc565b909155505081545f9061064e9085610ac9565b9050805f808282546106609190612a0f565b9091555050505060010155565b6106756111dc565b60035473ffffffffffffffffffffffffffffffffffffffff1615610697575f80fd5b600380547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b7f0000000000000000000000000000000000000000000000000000000067000e77421115610738576040517f2e8acb0d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b335f9081526005602052604081208054600182015491929161075a9190610ac9565b9050805f8082825461076c91906129fc565b909155505081545f906107809085906129fc565b90505f610791828560010154610ac9565b9050805f808282546107a39190612a0f565b9091555050600180548690039055818455604051339086156108fc029087905f818181858888f193505050501580156107de573d5f803e3d5ffd5b505050505050565b61080673c02aaa39b223fe8d0a0e5c4f27ead9083c756cc233308561126a565b61082573c02aaa39b223fe8d0a0e5c4f27ead9083c756cc280846112c2565b6040517f2e1a7d4d0000000000000000000000000000000000000000000000000000000081526004810183905273c02aaa39b223fe8d0a0e5c4f27ead9083c756cc290632e1a7d4d906024015f604051808303815f87803b158015610888575f80fd5b505af115801561089a573d5f803e3d5ffd5b505050506108a8828261130b565b5050565b6108b46114c9565b6108bd826115cd565b6108a882826115d5565b5f6108d0611713565b507f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc90565b6108ff348261130b565b50565b61090a6111dc565b6109135f611782565b565b6002545f9073ffffffffffffffffffffffffffffffffffffffff161580159061093f57505f600454115b905090565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00805468010000000000000000810460ff16159067ffffffffffffffff165f8115801561098e5750825b90505f8267ffffffffffffffff1660011480156109aa5750303b155b9050811580156109b8575080155b156109ef576040517ff92ee8a900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b84547fffffffffffffffffffffffffffffffffffffffffffffffff00000000000000001660011785558315610a505784547fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff16680100000000000000001785555b610a5933611817565b610a61611828565b8315610ac25784547fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff168555604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d29060200160405180910390a15b5050505050565b5f80610add83670de0b6b3a7640000612a22565b9050610b08817f0000000000000000000000000000000000000000000000000de0b6b3a76400001190565b15610b16575f915050610c4e565b610c4a610c47610c40610bc67f00000000000000000000000000000000000000000000000022b1c8c1227a0000610bc0610b907f000000000000000000000000000000000000000000000002d1a51c7e005000007f0000000000000000000000000000000000000000000000000de0b6b3a7640000611830565b610bba887f0000000000000000000000000000000000000000000000000de0b6b3a7640000611830565b90611845565b9061185c565b610c3a610c137f0000000000000000000000000000000000000000000000004563918244f400007f000000000000000000000000000000000000000000000000016345785d8a0000611830565b7f000000000000000000000000000000000000000000000000016345785d8a000090611969565b90611977565b8690611977565b90565b9150505b92915050565b610c5c6111dc565b60025473ffffffffffffffffffffffffffffffffffffffff1615610c7e575f80fd5b600280547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff9283161790556003805490911674010000000000000000000000000000000000000000426bffffffffffffffffffffffff1602179055565b610cf9610915565b610d2f576040517f6247a84e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b335f9081526005602052604081206003549091907f0000000000000000000000000000000000000000000000000000000000093a8090610d95907401000000000000000000000000000000000000000090046bffffffffffffffffffffffff16426129fc565b610d9f9190612a66565b90505f600154600454845f0154610db69190612a22565b610dc09190612a66565b600354600254919250610ded9173ffffffffffffffffffffffffffffffffffffffff9182169116836112c2565b8183600101541115610eba57600254600184015473ffffffffffffffffffffffffffffffffffffffff909116906383e25f8a9033908490610e2f9087906129fc565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e086901b16815273ffffffffffffffffffffffffffffffffffffffff9093166004840152602483019190915260448201526064015f604051808303815f87803b158015610e9f575f80fd5b505af1158015610eb1573d5f803e3d5ffd5b50505050610fe0565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16635fcbd2856040518163ffffffff1660e01b8152600401602060405180830381865afa158015610f24573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f489190612a9e565b6040517fa9059cbb0000000000000000000000000000000000000000000000000000000081523360048201526024810183905273ffffffffffffffffffffffffffffffffffffffff919091169063a9059cbb906044016020604051808303815f875af1158015610fba573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fde9190612ab9565b505b5050335f9081526005602052604081208181556001015550565b6110026111dc565b60035473ffffffffffffffffffffffffffffffffffffffff16611023575f80fd5b7f0000000000000000000000000000000000000000000000000000000067000e77421161104e575f80fd5b6003546040517fb6b55f25000000000000000000000000000000000000000000000000000000008152600481018390525f9173ffffffffffffffffffffffffffffffffffffffff169063b6b55f2590479060240160206040518083038185885af11580156110be573d5f803e3d5ffd5b50505050506040513d601f19601f820116820180604052508101906110e39190612ad8565b90508060045f8282546110f69190612a0f565b90915550505050565b6111076111dc565b73ffffffffffffffffffffffffffffffffffffffff811661115b576040517f1e4fbdf70000000000000000000000000000000000000000000000000000000081525f60048201526024015b60405180910390fd5b6108ff81611782565b5f611197670de0b6b3a76400007f0000000000000000000000000000000000000000000000000de0b6b3a7640000612a66565b8210158015610c4e57506111d3670de0b6b3a76400007f000000000000000000000000000000000000000000000002d1a51c7e00500000612a66565b82111592915050565b3361121b7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c1993005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1614610913576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401611152565b60405181606052826040528360601b602c526f23b872dd000000000000000000000000600c5260205f6064601c5f895af13d1560015f511417166112b557637939f4245f526004601cfd5b5f60605260405250505050565b81601452806034526f095ea7b30000000000000000000000005f5260205f604460105f875af13d1560015f5114171661130257633e3f8f735f526004601cfd5b5f603452505050565b7f0000000000000000000000000000000000000000000000000000000067000e77421115611365576040517f2e8acb0d00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61136e81611164565b6113a4576040517f7616640100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7f0000000000000000000000000000000000000000000010f0cf064dd592000000826001546113d39190612a0f565b111561140b576040517fa4875a4900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b335f90815260056020526040902080541561143d575f611432825f01548360010154610ac9565b5f8054919091039055505b80545f906114559061144f9086612a0f565b84610ac9565b9050805f808282546114679190612a0f565b925050819055508360015f82825461147f9190612a0f565b9091555050604080518082019091528254819061149c9087612a0f565b8152602090810194909452335f908152600585526040902081518155930151600190930192909255505050565b3073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000623934d891ec4b71bdb937d1eb0aac360bc3c14416148061159657507f000000000000000000000000623934d891ec4b71bdb937d1eb0aac360bc3c14473ffffffffffffffffffffffffffffffffffffffff1661157d7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc5473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff1614155b15610913576040517fe07c8dba00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6108ff6111dc565b8173ffffffffffffffffffffffffffffffffffffffff166352d1902d6040518163ffffffff1660e01b8152600401602060405180830381865afa92505050801561165a575060408051601f3d9081017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe016820190925261165791810190612ad8565b60015b6116a8576040517f4c9c8ce300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff83166004820152602401611152565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8114611704576040517faa1d49a400000000000000000000000000000000000000000000000000000000815260048101829052602401611152565b61170e8383611985565b505050565b3073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000623934d891ec4b71bdb937d1eb0aac360bc3c1441614610913576040517fe07c8dba00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7f9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c19930080547fffffffffffffffffffffffff0000000000000000000000000000000000000000811673ffffffffffffffffffffffffffffffffffffffff848116918217845560405192169182907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a3505050565b61181f6119e7565b6108ff81611a4e565b6109136119e7565b5f61183e610c4783856129fc565b9392505050565b5f61183e610c4784670de0b6b3a764000085611a56565b5f8282818303611885578015611872575f61187c565b670de0b6b3a76400005b92505050610c4e565b670de0b6b3a764000082036118a657670de0b6b3a764000092505050610c4e565b805f036118bf57670de0b6b3a764000092505050610c4e565b670de0b6b3a764000081036118d8578492505050610c4e565b670de0b6b3a7640000821115611909576119026118fd6118f787611b5c565b86611977565b611cbd565b9250611961565b5f611926610c47846ec097ce7bc90715b34b9f1000000000612a66565b90505f61193e6118fd61193884611b5c565b88611977565b905061195c610c47826ec097ce7bc90715b34b9f1000000000612a66565b945050505b505092915050565b5f61183e610c478385612a0f565b5f61183e610c478484611d32565b61198e82611e36565b60405173ffffffffffffffffffffffffffffffffffffffff8316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a28051156119df5761170e8282611f04565b6108a8611f83565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a005468010000000000000000900460ff16610913576040517fd7e6bcf800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6111076119e7565b5f80807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff858709858702925082811083820303915050805f03611aac57838281611aa257611aa2612a39565b049250505061183e565b838110611af6576040517f63a05778000000000000000000000000000000000000000000000000000000008152600481018790526024810186905260448101859052606401611152565b5f84868809600260036001881981018916988990049182028318808302840302808302840302808302840302808302840302808302840302918202909203025f889003889004909101858311909403939093029303949094049190911702949350505050565b5f81670de0b6b3a7640000811015611ba3576040517f36d32ef000000000000000000000000000000000000000000000000000000000815260048101849052602401611152565b5f611c2e670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008101611c6e5750949350505050565b671bc16d674ec800006706f05b59d3b200005b8015611cb157670de0b6b3a7640000838002049250818310611ca9579283019260019290921c915b60011c611c81565b50919695505050505050565b5f81680a688906bd8affffff811115611d05576040517fb3b6ba1f00000000000000000000000000000000000000000000000000000000815260048101849052602401611152565b5f611d1c670de0b6b3a7640000604084901b612a66565b9050611d2a610c4782611fbb565b949350505050565b5f80807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff848609848602925082811083820303915050805f03611d825750670de0b6b3a764000090049050610c4e565b670de0b6b3a76400008110611dcd576040517f5173648d0000000000000000000000000000000000000000000000000000000081526004810186905260248101859052604401611152565b5f670de0b6b3a7640000858709620400008185030493109091037d40000000000000000000000000000000000000000000000000000000000002919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b8073ffffffffffffffffffffffffffffffffffffffff163b5f03611e9e576040517f4c9c8ce300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff82166004820152602401611152565b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff92909216919091179055565b60605f808473ffffffffffffffffffffffffffffffffffffffff1684604051611f2d9190612aef565b5f60405180830381855af49150503d805f8114611f65576040519150601f19603f3d011682016040523d82523d5f602084013e611f6a565b606091505b5091509150611f7a85838361272f565b95945050505050565b3415610913576040517fb398979f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b7780000000000000000000000000000000000000000000000067ff000000000000008216156120dc576780000000000000008216156120035768016a09e667f3bcc9090260401c5b674000000000000000821615612022576801306fe0a31b7152df0260401c5b672000000000000000821615612041576801172b83c7d517adce0260401c5b6710000000000000008216156120605768010b5586cf9890f62a0260401c5b67080000000000000082161561207f576801059b0d31585743ae0260401c5b67040000000000000082161561209e57680102c9a3e778060ee70260401c5b6702000000000000008216156120bd5768010163da9fb33356d80260401c5b6701000000000000008216156120dc57680100b1afa5abcbed610260401c5b66ff0000000000008216156121db5766800000000000008216156121095768010058c86da1c09ea20260401c5b6640000000000000821615612127576801002c605e2e8cec500260401c5b662000000000000082161561214557680100162f3904051fa10260401c5b6610000000000000821615612163576801000b175effdc76ba0260401c5b660800000000000082161561218157680100058ba01fb9f96d0260401c5b660400000000000082161561219f5768010002c5cc37da94920260401c5b66020000000000008216156121bd576801000162e525ee05470260401c5b66010000000000008216156121db5768010000b17255775c040260401c5b65ff00000000008216156122d15765800000000000821615612206576801000058b91b5bc9ae0260401c5b6540000000000082161561222357680100002c5c89d5ec6d0260401c5b652000000000008216156122405768010000162e43f4f8310260401c5b6510000000000082161561225d57680100000b1721bcfc9a0260401c5b6508000000000082161561227a5768010000058b90cf1e6e0260401c5b65040000000000821615612297576801000002c5c863b73f0260401c5b650200000000008216156122b457680100000162e430e5a20260401c5b650100000000008216156122d1576801000000b1721835510260401c5b64ff000000008216156123be576480000000008216156122fa57680100000058b90c0b490260401c5b6440000000008216156123165768010000002c5c8601cc0260401c5b642000000000821615612332576801000000162e42fff00260401c5b64100000000082161561234e5768010000000b17217fbb0260401c5b64080000000082161561236a576801000000058b90bfce0260401c5b64040000000082161561238657680100000002c5c85fe30260401c5b6402000000008216156123a25768010000000162e42ff10260401c5b6401000000008216156123be57680100000000b17217f80260401c5b63ff0000008216156124a25763800000008216156123e55768010000000058b90bfc0260401c5b6340000000821615612400576801000000002c5c85fe0260401c5b632000000082161561241b57680100000000162e42ff0260401c5b6310000000821615612436576801000000000b17217f0260401c5b630800000082161561245157680100000000058b90c00260401c5b630400000082161561246c5768010000000002c5c8600260401c5b6302000000821615612487576801000000000162e4300260401c5b63010000008216156124a25768010000000000b172180260401c5b62ff000082161561257d57628000008216156124c7576801000000000058b90c0260401c5b624000008216156124e157680100000000002c5c860260401c5b622000008216156124fb5768010000000000162e430260401c5b6210000082161561251557680100000000000b17210260401c5b6208000082161561252f5768010000000000058b910260401c5b62040000821615612549576801000000000002c5c80260401c5b6202000082161561256357680100000000000162e40260401c5b6201000082161561257d576801000000000000b1720260401c5b61ff0082161561264f576180008216156125a057680100000000000058b90260401c5b6140008216156125b95768010000000000002c5d0260401c5b6120008216156125d2576801000000000000162e0260401c5b6110008216156125eb5768010000000000000b170260401c5b610800821615612604576801000000000000058c0260401c5b61040082161561261d57680100000000000002c60260401c5b61020082161561263657680100000000000001630260401c5b61010082161561264f57680100000000000000b10260401c5b60ff82161561271857608082161561267057680100000000000000590260401c5b6040821615612688576801000000000000002c0260401c5b60208216156126a057680100000000000000160260401c5b60108216156126b8576801000000000000000b0260401c5b60088216156126d057680100000000000000060260401c5b60048216156126e857680100000000000000030260401c5b600282161561270057680100000000000000010260401c5b600182161561271857680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6060826127445761273f826127be565b61183e565b8151158015612768575073ffffffffffffffffffffffffffffffffffffffff84163b155b156127b7576040517f9996b31500000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff85166004820152602401611152565b508061183e565b8051156127ce5780518082602001fd5b6040517f1425ea4200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f60208284031215612810575f80fd5b5035919050565b73ffffffffffffffffffffffffffffffffffffffff811681146108ff575f80fd5b5f60208284031215612848575f80fd5b813561183e81612817565b5f8060408385031215612864575f80fd5b50508035926020909101359150565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b5f80604083850312156128b1575f80fd5b82356128bc81612817565b9150602083013567ffffffffffffffff808211156128d8575f80fd5b818501915085601f8301126128eb575f80fd5b8135818111156128fd576128fd612873565b604051601f82017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0908116603f0116810190838211818310171561294357612943612873565b8160405282815288602084870101111561295b575f80fd5b826020860160208301375f6020848301015280955050505050509250929050565b602081525f82518060208401528060208501604085015e5f6040828501015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f83011684010191505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b81810381811115610c4e57610c4e6129cf565b80820180821115610c4e57610c4e6129cf565b8082028115828204841417610c4e57610c4e6129cf565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f82612a99577f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b500490565b5f60208284031215612aae575f80fd5b815161183e81612817565b5f60208284031215612ac9575f80fd5b8151801515811461183e575f80fd5b5f60208284031215612ae8575f80fd5b5051919050565b5f82518060208501845e5f92019182525091905056fea164736f6c6343000819000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000010f0cf064dd5920000000000000000000000000000000000000000000000000000000000000067000e77000000000000000000000000000000000000000000000000000000000000000100000000000000000000000000000000000000000000000000000000000000340000000000000000000000000000000000000000000000000000000000093a80000000000000000000000000000000000000000000000000016345785d8a00000000000000000000000000000000000000000000000000004563918244f4000000000000000000000000000000000000000000000000000022b1c8c1227a0000
-----Decoded View---------------
Arg [0] : _config (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]
-----Encoded View---------------
8 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000010f0cf064dd592000000
Arg [1] : 0000000000000000000000000000000000000000000000000000000067000e77
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000034
Arg [4] : 0000000000000000000000000000000000000000000000000000000000093a80
Arg [5] : 000000000000000000000000000000000000000000000000016345785d8a0000
Arg [6] : 0000000000000000000000000000000000000000000000004563918244f40000
Arg [7] : 00000000000000000000000000000000000000000000000022b1c8c1227a0000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.