ETH Price: $3,112.38 (-0.64%)

Contract

0x62ac8D1EBF61636e17D92ec3b24e8e03fb853CdA
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Fetch Price200612882024-06-10 11:59:35162 days ago1718020775IN
0x62ac8D1E...3fb853CdA
0 ETH0.000836727.55923436
Fetch Price200612842024-06-10 11:58:47162 days ago1718020727IN
0x62ac8D1E...3fb853CdA
0 ETH0.000867037.45582501
Fetch Price200612682024-06-10 11:55:35162 days ago1718020535IN
0x62ac8D1E...3fb853CdA
0 ETH0.000303877.41664841
Fetch Price200612292024-06-10 11:47:47162 days ago1718020067IN
0x62ac8D1E...3fb853CdA
0 ETH0.000313437.65004066
Fetch Price200612162024-06-10 11:45:11162 days ago1718019911IN
0x62ac8D1E...3fb853CdA
0 ETH0.000181164.74608148
Fetch Price200609702024-06-10 10:54:59162 days ago1718016899IN
0x62ac8D1E...3fb853CdA
0 ETH0.000214275.229889
Transfer Ownersh...175700462023-06-27 10:14:59511 days ago1687860899IN
0x62ac8D1E...3fb853CdA
0 ETH0.0006687114.00018798
0x60806040175700382023-06-27 10:13:23511 days ago1687860803IN
 Contract Creation
0 ETH0.0214108517.47672123

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x66599E7c...63B69F710
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
PriceFeed

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 200000 runs

Other Settings:
default evmVersion
File 1 of 1 : PriceFeed.f.sol
// SPDX-License-Identifier: BUSL-1.1

pragma solidity 0.8.19;

// OpenZeppelin Contracts (last updated v4.8.0) (access/Ownable2Step.sol)

// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() external {
        address sender = _msgSender();
        require(pendingOwner() == sender, "Ownable2Step: caller is not the new owner");
        _transferOwnership(sender);
    }
}

// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

library Fixed256x18 {
    uint256 internal constant ONE = 1e18; // 18 decimal places

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a * b) / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;

        if (product == 0) {
            return 0;
        } else {
            return ((product - 1) / ONE) + 1;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a * ONE) / b;
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        } else {
            return (((a * ONE) - 1) / b) + 1;
        }
    }

    function complement(uint256 x) internal pure returns (uint256) {
        return (x < ONE) ? (ONE - x) : 0;
    }
}

library MathUtils {
    // --- Constants ---

    /// @notice Represents 100%.
    /// @dev 1e18 is the scaling factor (100% == 1e18).
    uint256 public constant _100_PERCENT = Fixed256x18.ONE;

    /// @notice Precision for Nominal ICR (independent of price).
    /// @dev Rationale for the value:
    /// - Making it “too high” could lead to overflows.
    /// - Making it “too low” could lead to an ICR equal to zero, due to truncation from floor division.
    ///
    /// This value of 1e20 is chosen for safety: the NICR will only overflow for numerator > ~1e39 collateralToken,
    /// and will only truncate to 0 if the denominator is at least 1e20 times greater than the numerator.
    uint256 internal constant _NICR_PRECISION = 1e20;

    /// @notice Number of minutes in 1000 years.
    uint256 internal constant _MINUTES_IN_1000_YEARS = 1000 * 365 days / 1 minutes;

    // --- Functions ---

    /// @notice Multiplies two decimal numbers and use normal rounding rules:
    /// - round product up if 19'th mantissa digit >= 5
    /// - round product down if 19'th mantissa digit < 5.
    /// @param x First number.
    /// @param y Second number.
    function _decMul(uint256 x, uint256 y) internal pure returns (uint256 decProd) {
        decProd = (x * y + Fixed256x18.ONE / 2) / Fixed256x18.ONE;
    }

    /// @notice Exponentiation function for 18-digit decimal base, and integer exponent n.
    ///
    /// @dev Uses the efficient "exponentiation by squaring" algorithm. O(log(n)) complexity. The exponent is capped to
    /// avoid reverting due to overflow.
    ///
    /// If a period of > 1000 years is ever used as an exponent in either of the above functions, the result will be
    /// negligibly different from just passing the cap, since the decayed base rate will be 0 for 1000 years or > 1000
    /// years.
    /// @param base The decimal base.
    /// @param exponent The exponent.
    /// @return The result of the exponentiation.
    function _decPow(uint256 base, uint256 exponent) internal pure returns (uint256) {
        if (exponent == 0) {
            return Fixed256x18.ONE;
        }

        uint256 y = Fixed256x18.ONE;
        uint256 x = base;
        uint256 n = Math.min(exponent, _MINUTES_IN_1000_YEARS); // cap to avoid overflow

        // Exponentiation-by-squaring
        while (n > 1) {
            if (n % 2 != 0) {
                y = _decMul(x, y);
            }
            x = _decMul(x, x);
            n /= 2;
        }

        return _decMul(x, y);
    }

    /// @notice Computes the Nominal Individual Collateral Ratio (NICR) for given collateral and debt. If debt is zero,
    /// it returns the maximal value for uint256 (represents "infinite" CR).
    /// @param collateral Collateral amount.
    /// @param debt Debt amount.
    /// @return NICR.
    function _computeNominalCR(uint256 collateral, uint256 debt) internal pure returns (uint256) {
        return debt > 0 ? collateral * _NICR_PRECISION / debt : type(uint256).max;
    }

    /// @notice Computes the Collateral Ratio for given collateral, debt and price. If debt is zero, it returns the
    /// maximal value for uint256 (represents "infinite" CR).
    /// @param collateral Collateral amount.
    /// @param debt Debt amount.
    /// @param price Collateral price.
    /// @return Collateral ratio.
    function _computeCR(uint256 collateral, uint256 debt, uint256 price) internal pure returns (uint256) {
        return debt > 0 ? collateral * price / debt : type(uint256).max;
    }
}

interface IPriceOracle {
    // --- Errors ---

    /// @dev Contract initialized with an invalid deviation parameter.
    error InvalidDeviation();

    // --- Types ---

    struct PriceOracleResponse {
        bool isBrokenOrFrozen;
        bool priceChangeAboveMax;
        uint256 price;
    }

    // --- Functions ---

    /// @dev Return price oracle response which consists the following information: oracle is broken or frozen, the
    /// price change between two rounds is more than max, and the price.
    function getPriceOracleResponse() external returns (PriceOracleResponse memory);

    /// @dev Maximum time period allowed since oracle latest round data timestamp, beyond which oracle is considered
    /// frozen.
    function timeout() external view returns (uint256);

    /// @dev Used to convert a price answer to an 18-digit precision uint.
    function TARGET_DIGITS() external view returns (uint256);

    /// @dev price deviation for the oracle in percentage.
    function DEVIATION() external view returns (uint256);
}

interface IPriceFeed {
    // --- Events ---

    /// @dev Last good price has been updated.
    event LastGoodPriceUpdated(uint256 lastGoodPrice);

    /// @dev Price difference between oracles has been updated.
    /// @param priceDifferenceBetweenOracles New price difference between oracles.
    event PriceDifferenceBetweenOraclesUpdated(uint256 priceDifferenceBetweenOracles);

    /// @dev Primary oracle has been updated.
    /// @param primaryOracle New primary oracle.
    event PrimaryOracleUpdated(IPriceOracle primaryOracle);

    /// @dev Secondary oracle has been updated.
    /// @param secondaryOracle New secondary oracle.
    event SecondaryOracleUpdated(IPriceOracle secondaryOracle);

    // --- Errors ---

    /// @dev Invalid primary oracle.
    error InvalidPrimaryOracle();

    /// @dev Invalid secondary oracle.
    error InvalidSecondaryOracle();

    /// @dev Primary oracle is broken or frozen or has bad result.
    error PrimaryOracleBrokenOrFrozenOrBadResult();

    /// @dev Invalid price difference between oracles.
    error InvalidPriceDifferenceBetweenOracles();

    // --- Functions ---

    /// @dev Return primary oracle address.
    function primaryOracle() external returns (IPriceOracle);

    /// @dev Return secondary oracle address
    function secondaryOracle() external returns (IPriceOracle);

    /// @dev The last good price seen from an oracle by Raft.
    function lastGoodPrice() external returns (uint256);

    /// @dev The maximum relative price difference between two oracle responses.
    function priceDifferenceBetweenOracles() external returns (uint256);

    /// @dev Set primary oracle address.
    /// @param newPrimaryOracle Primary oracle address.
    function setPrimaryOracle(IPriceOracle newPrimaryOracle) external;

    /// @dev Set secondary oracle address.
    /// @param newSecondaryOracle Secondary oracle address.
    function setSecondaryOracle(IPriceOracle newSecondaryOracle) external;

    /// @dev Set the maximum relative price difference between two oracle responses.
    /// @param newPriceDifferenceBetweenOracles The maximum relative price difference between two oracle responses.
    function setPriceDifferenceBetweenOracles(uint256 newPriceDifferenceBetweenOracles) external;

    /// @dev Returns the latest price obtained from the Oracle. Called by Raft functions that require a current price.
    ///
    /// Also callable by anyone externally.
    /// Non-view function - it stores the last good price seen by Raft.
    ///
    /// Uses a primary oracle and a fallback oracle in case primary fails. If both fail,
    /// it uses the last good price seen by Raft.
    ///
    /// @return currentPrice Returned price.
    /// @return deviation Deviation of the reported price in percentage.
    /// @notice Actual returned price is in range `currentPrice` +/- `currentPrice * deviation / ONE`
    function fetchPrice() external returns (uint256 currentPrice, uint256 deviation);
}

contract PriceFeed is IPriceFeed, Ownable2Step {
    // --- Types ---

    using Fixed256x18 for uint256;

    // --- Constants ---

    uint256 private constant MIN_PRICE_DIFFERENCE_BETWEEN_ORACLES = 1e15; // 0.1%
    uint256 private constant MAX_PRICE_DIFFERENCE_BETWEEN_ORACLES = 1e17; // 10%

    // --- Variables ---

    IPriceOracle public override primaryOracle;
    IPriceOracle public override secondaryOracle;

    uint256 public override lastGoodPrice;

    uint256 public override priceDifferenceBetweenOracles;

    // --- Constructor ---

    constructor(IPriceOracle primaryOracle_, IPriceOracle secondaryOracle_, uint256 priceDifferenceBetweenOracles_) {
        _setPrimaryOracle(primaryOracle_);
        _setSecondaryOracle(secondaryOracle_);
        _setPriceDifferenceBetweenOracle(priceDifferenceBetweenOracles_);
    }

    // --- Functions ---

    function setPrimaryOracle(IPriceOracle newPrimaryOracle) external override onlyOwner {
        _setPrimaryOracle(newPrimaryOracle);
    }

    function setSecondaryOracle(IPriceOracle newSecondaryOracle) external override onlyOwner {
        _setSecondaryOracle(newSecondaryOracle);
    }

    function setPriceDifferenceBetweenOracles(uint256 newPriceDifferenceBetweenOracles) external override onlyOwner {
        _setPriceDifferenceBetweenOracle(newPriceDifferenceBetweenOracles);
    }

    function fetchPrice() external override returns (uint256, uint256) {
        IPriceOracle.PriceOracleResponse memory primaryOracleResponse = primaryOracle.getPriceOracleResponse();
        // If primary oracle is broken or frozen, try secondary oracle
        if (primaryOracleResponse.isBrokenOrFrozen) {
            // If secondary oracle is broken or frozen, then both oracles are untrusted, so return the last good price
            IPriceOracle.PriceOracleResponse memory secondaryOracleResponse = secondaryOracle.getPriceOracleResponse();
            if (secondaryOracleResponse.isBrokenOrFrozen || secondaryOracleResponse.priceChangeAboveMax) {
                return (lastGoodPrice, Math.max(primaryOracle.DEVIATION(), secondaryOracle.DEVIATION()));
            }

            return (_storePrice(secondaryOracleResponse.price), secondaryOracle.DEVIATION());
        }

        // If primary oracle price has changed by > MAX_PRICE_DEVIATION_FROM_PREVIOUS_ROUND between two consecutive
        // rounds, compare it to secondary oracle's price
        if (primaryOracleResponse.priceChangeAboveMax) {
            IPriceOracle.PriceOracleResponse memory secondaryOracleResponse = secondaryOracle.getPriceOracleResponse();
            // If secondary oracle is broken or frozen, then both oracles are untrusted, so return the last good price
            if (secondaryOracleResponse.isBrokenOrFrozen) {
                return (lastGoodPrice, Math.max(primaryOracle.DEVIATION(), secondaryOracle.DEVIATION()));
            }

            /*
            * If the secondary oracle is live and both oracles have a similar price, conclude that the primary oracle's
            * large price deviation between two consecutive rounds were likely a legitimate market price movement, so
            * continue using primary oracle
            */
            if (_bothOraclesSimilarPrice(primaryOracleResponse.price, secondaryOracleResponse.price)) {
                return (_storePrice(primaryOracleResponse.price), primaryOracle.DEVIATION());
            }

            // If both oracle are live and have different prices, return the price that is a lower changed between the
            // two oracle's prices
            uint256 price = _getPriceWithLowerChange(primaryOracleResponse.price, secondaryOracleResponse.price);
            uint256 deviation = (price == primaryOracleResponse.price)
                ? primaryOracle.DEVIATION()
                : (
                    (price == secondaryOracleResponse.price)
                        ? secondaryOracle.DEVIATION()
                        : Math.max(primaryOracle.DEVIATION(), secondaryOracle.DEVIATION())
                );
            return (_storePrice(price), deviation);
        }

        // If primary oracle is working, return primary oracle current price
        return (_storePrice(primaryOracleResponse.price), primaryOracle.DEVIATION());
    }

    // --- Helper functions ---

    function _bothOraclesSimilarPrice(
        uint256 primaryOraclePrice,
        uint256 secondaryOraclePrice
    )
        internal
        view
        returns (bool)
    {
        // Get the relative price difference between the oracles. Use the lower price as the denominator, i.e. the
        // reference for the calculation.
        uint256 minPrice = Math.min(primaryOraclePrice, secondaryOraclePrice);
        uint256 maxPrice = Math.max(primaryOraclePrice, secondaryOraclePrice);
        uint256 percentPriceDifference = (maxPrice - minPrice).divDown(minPrice);

        /*
        * Return true if the relative price difference is <= 3%: if so, we assume both oracles are probably reporting
        * the honest market price, as it is unlikely that both have been broken/hacked and are still in-sync.
        */
        return percentPriceDifference <= priceDifferenceBetweenOracles;
    }

    // @dev Returns one of oracles' prices that deviates least from the last good price.
    //      If both oracles' prices are above the last good price, return the lower one.
    //      If both oracles' prices are below the last good price, return the higher one.
    //      Otherwise, return the last good price.
    function _getPriceWithLowerChange(
        uint256 primaryOraclePrice,
        uint256 secondaryOraclePrice
    )
        internal
        view
        returns (uint256)
    {
        if (primaryOraclePrice > lastGoodPrice && secondaryOraclePrice > lastGoodPrice) {
            return Math.min(primaryOraclePrice, secondaryOraclePrice);
        }
        if (primaryOraclePrice < lastGoodPrice && secondaryOraclePrice < lastGoodPrice) {
            return Math.max(primaryOraclePrice, secondaryOraclePrice);
        }
        return lastGoodPrice;
    }

    function _setPrimaryOracle(IPriceOracle newPrimaryOracle) internal {
        if (address(newPrimaryOracle) == address(0)) {
            revert InvalidPrimaryOracle();
        }

        IPriceOracle.PriceOracleResponse memory primaryOracleResponse = newPrimaryOracle.getPriceOracleResponse();

        if (primaryOracleResponse.isBrokenOrFrozen || primaryOracleResponse.priceChangeAboveMax) {
            revert PrimaryOracleBrokenOrFrozenOrBadResult();
        }

        primaryOracle = newPrimaryOracle;

        // Get an initial price from primary oracle to serve as first reference for lastGoodPrice
        _storePrice(primaryOracleResponse.price);

        emit PrimaryOracleUpdated(newPrimaryOracle);
    }

    function _setSecondaryOracle(IPriceOracle newSecondaryOracle) internal {
        if (address(newSecondaryOracle) == address(0)) {
            revert InvalidSecondaryOracle();
        }

        secondaryOracle = newSecondaryOracle;

        emit SecondaryOracleUpdated(newSecondaryOracle);
    }

    function _setPriceDifferenceBetweenOracle(uint256 newPriceDifferenceBetweenOracles) internal {
        if (
            newPriceDifferenceBetweenOracles < MIN_PRICE_DIFFERENCE_BETWEEN_ORACLES
                || newPriceDifferenceBetweenOracles > MAX_PRICE_DIFFERENCE_BETWEEN_ORACLES
        ) {
            revert InvalidPriceDifferenceBetweenOracles();
        }

        priceDifferenceBetweenOracles = newPriceDifferenceBetweenOracles;

        emit PriceDifferenceBetweenOraclesUpdated(newPriceDifferenceBetweenOracles);
    }

    function _storePrice(uint256 currentPrice) internal returns (uint256) {
        lastGoodPrice = currentPrice;
        emit LastGoodPriceUpdated(currentPrice);
        return currentPrice;
    }
}

Settings
{
  "remappings": [
    "@balancer-labs/=node_modules/@balancer-labs/",
    "@balancer-labs/v2-interfaces/contracts/=lib/balancer-v2-monorepo/pkg/interfaces/contracts/",
    "@chainlink/=node_modules/@chainlink/",
    "@eth-optimism/=node_modules/@eth-optimism/",
    "@openzeppelin/=node_modules/@openzeppelin/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@redstone-finance/=node_modules/@redstone-finance/",
    "@smartcontractkit/chainlink/=lib/chainlink/contracts/src/v0.8/",
    "@tempusfinance/=node_modules/@tempusfinance/",
    "@tempusfinance/tempus-utils/contracts/=lib/tempus-utils/contracts/",
    "balancer-v2-monorepo/=lib/balancer-v2-monorepo/",
    "chainlink/=lib/chainlink/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/chainlink/contracts/foundry-lib/openzeppelin-contracts/lib/erc4626-tests/",
    "eth-gas-reporter/=node_modules/eth-gas-reporter/",
    "forge-std/=lib/forge-std/src/",
    "hardhat/=node_modules/hardhat/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "tempus-utils/=lib/tempus-utils/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200000
  },
  "metadata": {
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract IPriceOracle","name":"primaryOracle_","type":"address"},{"internalType":"contract IPriceOracle","name":"secondaryOracle_","type":"address"},{"internalType":"uint256","name":"priceDifferenceBetweenOracles_","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"InvalidPriceDifferenceBetweenOracles","type":"error"},{"inputs":[],"name":"InvalidPrimaryOracle","type":"error"},{"inputs":[],"name":"InvalidSecondaryOracle","type":"error"},{"inputs":[],"name":"PrimaryOracleBrokenOrFrozenOrBadResult","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"lastGoodPrice","type":"uint256"}],"name":"LastGoodPriceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"priceDifferenceBetweenOracles","type":"uint256"}],"name":"PriceDifferenceBetweenOraclesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IPriceOracle","name":"primaryOracle","type":"address"}],"name":"PrimaryOracleUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IPriceOracle","name":"secondaryOracle","type":"address"}],"name":"SecondaryOracleUpdated","type":"event"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fetchPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lastGoodPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"priceDifferenceBetweenOracles","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"primaryOracle","outputs":[{"internalType":"contract IPriceOracle","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"secondaryOracle","outputs":[{"internalType":"contract IPriceOracle","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newPriceDifferenceBetweenOracles","type":"uint256"}],"name":"setPriceDifferenceBetweenOracles","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IPriceOracle","name":"newPrimaryOracle","type":"address"}],"name":"setPrimaryOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IPriceOracle","name":"newSecondaryOracle","type":"address"}],"name":"setSecondaryOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

Deployed Bytecode

0x60806040908082526004908136101561001757600080fd5b600092833560e01c9182630490be8314610853575081630fdb11cf1461080f578163329d4609146107bc578163715018a61461071457816379ba5097146105e15781638da5cb5b14610590578163bd8f238e1461053d578163c30c84e114610500578163d6e0c3b114610421578163e30c3978146103ce578163e39364a614610313578163f218806614610168575063f2fde38b146100b557600080fd5b346101645760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610164573573ffffffffffffffffffffffffffffffffffffffff8082168092036101605761010c61088d565b817fffffffffffffffffffffffff000000000000000000000000000000000000000060015416176001558254167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e227008380a380f35b8280fd5b5080fd5b9050346101605760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101605781359173ffffffffffffffffffffffffffffffffffffffff831680930361030f576101c261088d565b82156102e8578151907fc3a7a2d5000000000000000000000000000000000000000000000000000000008252606082828188885af19182156102de5785926102ae575b508151158015906102a1575b61027a575091816102716020937fca97f2dbe597d37982ad48b279cb3f013fa061257a016b39b89d9929eadbd7b095847fffffffffffffffffffffffff000000000000000000000000000000000000000060025416176002550151611110565b5051908152a180f35b82517fd351efdc000000000000000000000000000000000000000000000000000000008152fd5b5060208201511515610211565b6102d091925060603d81116102d7575b6102c8818361090c565b81019061098e565b9038610205565b503d6102be565b83513d87823e3d90fd5b90517f20561986000000000000000000000000000000000000000000000000000000008152fd5b8380fd5b9050346101605760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101605781359161034f61088d565b66038d7ea4c68000831080156103bd575b6103965750816020917fffd62eb801204ca19ae05bdc35554c6058ce1f24df980508620691dec68c0bc59360055551908152a180f35b90517f558a3f26000000000000000000000000000000000000000000000000000000008152fd5b5067016345785d8a00008311610360565b83903461016457817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101645760209073ffffffffffffffffffffffffffffffffffffffff600154169051908152f35b9050346101605760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101605781359173ffffffffffffffffffffffffffffffffffffffff831680930361030f5761047b61088d565b82156104d95750816020917f0174d0909260ef21d6371e8219e3128396b7408e6cc92d5f51b8ca7240f6b610937fffffffffffffffffffffffff0000000000000000000000000000000000000000600354161760035551908152a180f35b90517f673b41fb000000000000000000000000000000000000000000000000000000008152fd5b83903461016457817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610164576020906005549051908152f35b83903461016457817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101645760209073ffffffffffffffffffffffffffffffffffffffff600254169051908152f35b83903461016457817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101645773ffffffffffffffffffffffffffffffffffffffff60209254169051908152f35b90503461016057827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610160576001549173ffffffffffffffffffffffffffffffffffffffff9133838516036106915750507fffffffffffffffffffffffff0000000000000000000000000000000000000000809216600155825491339083161783553391167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b90602060849251917f08c379a0000000000000000000000000000000000000000000000000000000008352820152602960248201527f4f776e61626c6532537465703a2063616c6c6572206973206e6f74207468652060448201527f6e6577206f776e657200000000000000000000000000000000000000000000006064820152fd5b83346107b957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126107b95761074b61088d565b8073ffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffff0000000000000000000000000000000000000000806001541660015582549081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b80fd5b83903461016457817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101645760209073ffffffffffffffffffffffffffffffffffffffff600354169051908152f35b83346107b957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126107b957506108476109e0565b82519182526020820152f35b8490843461016057827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101605760209250548152f35b73ffffffffffffffffffffffffffffffffffffffff6000541633036108ae57565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761094d57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b5190811515820361098957565b600080fd5b908160609103126109895760405190606082019082821067ffffffffffffffff83111761094d5760409182526109c38161097c565b83526109d16020820161097c565b60208401520151604082015290565b73ffffffffffffffffffffffffffffffffffffffff90600282815416926040938451917fc3a7a2d5000000000000000000000000000000000000000000000000000000009081845260609360049480828781600080995af19182156110b3578592611094575b508151610f165760209384830151610aea57505090610a688884930151611110565b9554168751948580927fa2db0ba20000000000000000000000000000000000000000000000000000000082525afa958615610adf57508195610aac575b5050509190565b909180939550813d8311610ad8575b610ac5818361090c565b810103126107b957505191388080610aa5565b503d610abb565b51913d9150823e3d90fd5b818691888660039d9a9b96959d5416918a51948593849283525af1998a15610f0c57869a610eed575b50508851610dfa57850180519886018051909981811015610df45780915b80821115610dec5750905b80820391808311610dc05781670de0b6b3a76400008085029485041491141715610d94578015610d685760055491041115610d575790839291519851610b82818b6110bd565b998a03610c0a575054168451958680927fa2db0ba20000000000000000000000000000000000000000000000000000000082525afa928315610adf57508192610bd7575b5050610bd3915092611110565b9190565b90915082813d8311610c03575b610bee818361090c565b810103126107b95750610bd390513880610bc6565b503d610be4565b919250908803610c6257508190600354168451958680927fa2db0ba20000000000000000000000000000000000000000000000000000000082525afa928315610adf57508192610bd7575050610bd391505b92611110565b908094939295915416835194868684817fa2db0ba200000000000000000000000000000000000000000000000000000000958682525afa958615610d4d57908792918597610d1a575b50600354169285518094819382525afa928315610adf57508192610ce6575b50610bd393505080821115610cdf5750610c5c565b9050610c5c565b809250849193943d8311610d13575b610cff818361090c565b810103126101645751610bd3929138610cca565b503d610cf5565b838193949298503d8311610d46575b610d33818361090c565b8101031261030f57908691519538610cab565b503d610d29565b85513d86823e3d90fd5b83929196959850610a689051611110565b60248760128b7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b60248760118b7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b60248860118c7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b905090610b3c565b81610b31565b5096509390848254975416845195828785817fa2db0ba200000000000000000000000000000000000000000000000000000000958682525afa968715610ee3578597610eb0575b50908291600354169386518095819382525afa938415610ea757508293610e77575b50505080821115610e72575090565b905090565b9080929350813d8311610ea0575b610e8f818361090c565b810103126101645751903880610e63565b503d610e85565b513d84823e3d90fd5b9096508281813d8311610edc575b610ec8818361090c565b81010312610ed857519582610e41565b8480fd5b503d610ebe565b86513d87823e3d90fd5b610f04929a50803d106102d7576102c8818361090c565b973880610b13565b87513d88823e3d90fd5b8491508093868460039995995416918b51948593849283525af192831561108a57849361106b575b505081511580159061105e575b610fe35750610f5e866020920151611110565b93600354168651938480927fa2db0ba20000000000000000000000000000000000000000000000000000000082525afa948515610fd957508094610fa3575b50509190565b909193506020823d8211610fd1575b81610fbf6020938361090c565b810103126107b9575051913880610f9d565b3d9150610fb2565b51903d90823e3d90fd5b959290508381549654169383519485917fa2db0ba20000000000000000000000000000000000000000000000000000000091828452838560209586935afa968715610ee3578597610eb05750908291600354169386518095819382525afa938415610ea757508293610e775750505080821115610e72575090565b5060208201511515610f4b565b611082929350803d106102d7576102c8818361090c565b903880610f3e565b88513d86823e3d90fd5b816110ac9293503d84116102d7576102c8818361090c565b9038610a46565b89513d87823e3d90fd5b6004549182821180611107575b6110f857828210806110ef575b6110e057505090565b90915080821115610e72575090565b508281106110d7565b90915080821015610e72575090565b508281116110ca565b806004557f4d29de21de555af78a62fc82dd4bc05e9ae5b0660a37f04729527e0f22780cd36020604051838152a19056fea2646970667358221220d48b0deecf18d4633f7537d04f9216e97136d7f522501d18860e8f82fa6dfc6764736f6c63430008130033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.