| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| - | 13817905 | 1458 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Minimal Proxy Contract for 0x373a292b93ff9017d28e64154ef83b99d5c4e270
Contract Name:
CreditAccount
Compiler Version
v0.7.6+commit.7338295f
Optimization Enabled:
No with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Holdings, 2021
pragma solidity ^0.7.4;
import {Initializable} from "@openzeppelin/contracts/proxy/Initializable.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import {ICreditAccount} from "../interfaces/ICreditAccount.sol";
import {Constants} from "../libraries/helpers/Constants.sol";
import {Errors} from "../libraries/helpers/Errors.sol";
/// @title Credit Account
/// @notice Implements generic credit account logic:
/// - Keeps token balances
/// - Stores general parameters: borrowed amount, cumulative index at open and block when it was initialized
/// - Approves tokens for 3rd party contracts
/// - Transfers assets
/// - Execute financial orders
///
/// More: https://dev.gearbox.fi/developers/credit/credit_account
contract CreditAccount is ICreditAccount, Initializable {
using SafeERC20 for IERC20;
using Address for address;
address public override factory;
// Keeps address of current credit Manager
address public override creditManager;
// Amount borrowed to this account
uint256 public override borrowedAmount;
// Cumulative index at credit account opening
uint256 public override cumulativeIndexAtOpen;
// Block number when it was initialised last time
uint256 public override since;
// Contract version
uint constant public version = 1;
/// @dev Restricts operation for current credit manager only
modifier creditManagerOnly {
require(msg.sender == creditManager, Errors.CA_CONNECTED_CREDIT_MANAGER_ONLY);
_;
}
/// @dev Initialise used instead of constructor cause we use contract cloning
function initialize() external override initializer {
factory = msg.sender;
}
/// @dev Connects credit account to credit account address. Restricted to account factory (owner) only
/// @param _creditManager Credit manager address
function connectTo(
address _creditManager,
uint256 _borrowedAmount,
uint256 _cumulativeIndexAtOpen
) external override {
require(msg.sender == factory, Errors.CA_FACTORY_ONLY);
creditManager = _creditManager; // T:[CA-7]
borrowedAmount = _borrowedAmount; // T:[CA-3,7]
cumulativeIndexAtOpen = _cumulativeIndexAtOpen; // T:[CA-3,7]
since = block.number; // T:[CA-7]
}
/// @dev Updates borrowed amount. Restricted for current credit manager only
/// @param _borrowedAmount Amount which pool lent to credit account
function updateParameters(uint256 _borrowedAmount, uint256 _cumulativeIndexAtOpen)
external
override
creditManagerOnly // T:[CA-2]
{
borrowedAmount = _borrowedAmount; // T:[CA-4]
cumulativeIndexAtOpen = _cumulativeIndexAtOpen;
}
/// @dev Approves token for 3rd party contract. Restricted for current credit manager only
/// @param token ERC20 token for allowance
/// @param swapContract Swap contract address
function approveToken(address token, address swapContract)
external
override
creditManagerOnly // T:[CA-2]
{
IERC20(token).safeApprove(swapContract, 0); // T:[CA-5]
IERC20(token).safeApprove(swapContract, Constants.MAX_INT); // T:[CA-5]
}
/// @dev Removes allowance token for 3rd party contract. Restricted for factory only
/// @param token ERC20 token for allowance
/// @param targetContract Swap contract address
function cancelAllowance(address token, address targetContract)
external
override
{
require(msg.sender == factory, Errors.CA_FACTORY_ONLY);
IERC20(token).safeApprove(targetContract, 0);
}
/// @dev Transfers tokens from credit account to provided address. Restricted for current credit manager only
/// @param token Token which should be transferred from credit account
/// @param to Address of recipient
/// @param amount Amount to be transferred
function safeTransfer(
address token,
address to,
uint256 amount
)
external
override
creditManagerOnly // T:[CA-2]
{
IERC20(token).safeTransfer(to, amount); // T:[CA-6]
}
/// @dev Executes financial order on 3rd party service. Restricted for current credit manager only
/// @param destination Contract address which should be called
/// @param data Call data which should be sent
function execute(address destination, bytes memory data)
external
override
creditManagerOnly
returns (bytes memory)
{
return destination.functionCall(data); // T: [CM-48]
}
}// SPDX-License-Identifier: MIT
// solhint-disable-next-line compiler-version
pragma solidity >=0.4.24 <0.8.0;
import "../utils/Address.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
*/
bool private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializer() {
require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
_initializing = true;
_initialized = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
}
}
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
return !Address.isContract(address(this));
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library Address {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
return functionDelegateCall(target, data, "Address: low-level delegate call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a delegate call.
*
* _Available since v3.4._
*/
function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
require(isContract(target), "Address: delegate call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.delegatecall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
using SafeMath for uint256;
using Address for address;
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
}
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
// solhint-disable-next-line max-line-length
require((value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
}
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).add(value);
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
_callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
if (returndata.length > 0) { // Return data is optional
// solhint-disable-next-line max-line-length
require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
}
}
}// SPDX-License-Identifier: GPL-2.0-or-later
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Holdings, 2021
pragma solidity ^0.7.4;
/// @title Reusable Credit Account interface
/// @notice Implements general credit account:
/// - Keeps token balances
/// - Keeps token balances
/// - Stores general parameters: borrowed amount, cumulative index at open and block when it was initialized
/// - Approves tokens for 3rd party contracts
/// - Transfers assets
/// - Execute financial orders
///
/// More: https://dev.gearbox.fi/developers/creditManager/vanillacreditAccount
interface ICreditAccount {
/// @dev Initializes clone contract
function initialize() external;
/// @dev Connects credit account to credit manager
/// @param _creditManager Credit manager address
function connectTo(
address _creditManager,
uint256 _borrowedAmount,
uint256 _cumulativeIndexAtOpen
) external;
// /// @dev Set general credit account parameters. Restricted to credit managers only
// /// @param _borrowedAmount Amount which pool lent to credit account
// /// @param _cumulativeIndexAtOpen Cumulative index at open. Uses for interest calculation
// function setGenericParameters(
//
// ) external;
/// @dev Updates borrowed amount. Restricted to credit managers only
/// @param _borrowedAmount Amount which pool lent to credit account
function updateParameters(
uint256 _borrowedAmount,
uint256 _cumulativeIndexAtOpen
) external;
/// @dev Approves particular token for swap contract
/// @param token ERC20 token for allowance
/// @param swapContract Swap contract address
function approveToken(address token, address swapContract) external;
/// @dev Cancels allowance for particular contract
/// @param token Address of token for allowance
/// @param targetContract Address of contract to cancel allowance
function cancelAllowance(address token, address targetContract) external;
/// Transfers tokens from credit account to provided address. Restricted for pool calls only
/// @param token Token which should be tranferred from credit account
/// @param to Address of recipient
/// @param amount Amount to be transferred
function safeTransfer(
address token,
address to,
uint256 amount
) external;
/// @dev Returns borrowed amount
function borrowedAmount() external view returns (uint256);
/// @dev Returns cumulative index at time of opening credit account
function cumulativeIndexAtOpen() external view returns (uint256);
/// @dev Returns Block number when it was initialised last time
function since() external view returns (uint256);
/// @dev Address of last connected credit manager
function creditManager() external view returns (address);
/// @dev Address of last connected credit manager
function factory() external view returns (address);
/// @dev Executed financial order on 3rd party service. Restricted for pool calls only
/// @param destination Contract address which should be called
/// @param data Call data which should be sent
function execute(address destination, bytes memory data)
external
returns (bytes memory);
}// SPDX-License-Identifier: GPL-2.0-or-later
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Holdings, 2021
pragma solidity ^0.7.4;
import {PercentageMath} from "../math/PercentageMath.sol";
library Constants {
uint256 constant MAX_INT =
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
// 25% of MAX_INT
uint256 constant MAX_INT_4 =
0x3fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff;
// REWARD FOR LEAN DEPLOYMENT MINING
uint256 constant ACCOUNT_CREATION_REWARD = 1e5;
uint256 constant DEPLOYMENT_COST = 1e17;
// FEE = 10%
uint256 constant FEE_INTEREST = 1000; // 10%
// FEE + LIQUIDATION_FEE 2%
uint256 constant FEE_LIQUIDATION = 200;
// Liquidation premium 5%
uint256 constant LIQUIDATION_DISCOUNTED_SUM = 9500;
// 100% - LIQUIDATION_FEE - LIQUIDATION_PREMIUM
uint256 constant UNDERLYING_TOKEN_LIQUIDATION_THRESHOLD =
LIQUIDATION_DISCOUNTED_SUM - FEE_LIQUIDATION;
// Seconds in a year
uint256 constant SECONDS_PER_YEAR = 365 days;
uint256 constant SECONDS_PER_ONE_AND_HALF_YEAR = SECONDS_PER_YEAR * 3 /2;
// 1e18
uint256 constant RAY = 1e27;
uint256 constant WAD = 1e18;
// OPERATIONS
uint8 constant OPERATION_CLOSURE = 1;
uint8 constant OPERATION_REPAY = 2;
uint8 constant OPERATION_LIQUIDATION = 3;
// Decimals for leverage, so x4 = 4*LEVERAGE_DECIMALS for openCreditAccount function
uint8 constant LEVERAGE_DECIMALS = 100;
// Maximum withdraw fee for pool in percentage math format. 100 = 1%
uint8 constant MAX_WITHDRAW_FEE = 100;
uint256 constant CHI_THRESHOLD = 9950;
uint256 constant HF_CHECK_INTERVAL_DEFAULT = 4;
uint256 constant NO_SWAP = 0;
uint256 constant UNISWAP_V2 = 1;
uint256 constant UNISWAP_V3 = 2;
uint256 constant CURVE_V1 = 3;
uint256 constant LP_YEARN = 4;
uint256 constant EXACT_INPUT = 1;
uint256 constant EXACT_OUTPUT = 2;
}// SPDX-License-Identifier: GPL-2.0-or-later
// Gearbox Protocol. Generalized leverage for DeFi protocols
// (c) Gearbox Holdings, 2021
pragma solidity ^0.7.4;
/// @title Errors library
library Errors {
//
// COMMON
//
string public constant ZERO_ADDRESS_IS_NOT_ALLOWED = "Z0";
string public constant NOT_IMPLEMENTED = "NI";
string public constant INCORRECT_PATH_LENGTH = "PL";
string public constant INCORRECT_ARRAY_LENGTH = "CR";
string public constant REGISTERED_CREDIT_ACCOUNT_MANAGERS_ONLY = "CP";
string public constant REGISTERED_POOLS_ONLY = "RP";
string public constant INCORRECT_PARAMETER = "IP";
//
// MATH
//
string public constant MATH_MULTIPLICATION_OVERFLOW = "M1";
string public constant MATH_ADDITION_OVERFLOW = "M2";
string public constant MATH_DIVISION_BY_ZERO = "M3";
//
// POOL
//
string public constant POOL_CONNECTED_CREDIT_MANAGERS_ONLY = "PS0";
string public constant POOL_INCOMPATIBLE_CREDIT_ACCOUNT_MANAGER = "PS1";
string public constant POOL_MORE_THAN_EXPECTED_LIQUIDITY_LIMIT = "PS2";
string public constant POOL_INCORRECT_WITHDRAW_FEE = "SP3";
string public constant POOL_CANT_ADD_CREDIT_MANAGER_TWICE = "PS4";
//
// CREDIT MANAGER
//
string public constant CM_NO_OPEN_ACCOUNT = "CM1";
string
public constant CM_ZERO_ADDRESS_OR_USER_HAVE_ALREADY_OPEN_CREDIT_ACCOUNT =
"CM2";
string public constant CM_INCORRECT_AMOUNT = "CM3";
string public constant CM_CAN_LIQUIDATE_WITH_SUCH_HEALTH_FACTOR = "CM4";
string public constant CM_CAN_UPDATE_WITH_SUCH_HEALTH_FACTOR = "CM5";
string public constant CM_WETH_GATEWAY_ONLY = "CM6";
string public constant CM_INCORRECT_PARAMS = "CM7";
string public constant CM_INCORRECT_FEES = "CM8";
string public constant CM_MAX_LEVERAGE_IS_TOO_HIGH = "CM9";
string public constant CM_CANT_CLOSE_WITH_LOSS = "CMA";
string public constant CM_TARGET_CONTRACT_iS_NOT_ALLOWED = "CMB";
string public constant CM_TRANSFER_FAILED = "CMC";
string public constant CM_INCORRECT_NEW_OWNER = "CME";
//
// ACCOUNT FACTORY
//
string public constant AF_CANT_CLOSE_CREDIT_ACCOUNT_IN_THE_SAME_BLOCK =
"AF1";
string public constant AF_MINING_IS_FINISHED = "AF2";
string public constant AF_CREDIT_ACCOUNT_NOT_IN_STOCK = "AF3";
string public constant AF_EXTERNAL_ACCOUNTS_ARE_FORBIDDEN = "AF4";
//
// ADDRESS PROVIDER
//
string public constant AS_ADDRESS_NOT_FOUND = "AP1";
//
// CONTRACTS REGISTER
//
string public constant CR_POOL_ALREADY_ADDED = "CR1";
string public constant CR_CREDIT_MANAGER_ALREADY_ADDED = "CR2";
//
// CREDIT_FILTER
//
string public constant CF_UNDERLYING_TOKEN_FILTER_CONFLICT = "CF0";
string public constant CF_INCORRECT_LIQUIDATION_THRESHOLD = "CF1";
string public constant CF_TOKEN_IS_NOT_ALLOWED = "CF2";
string public constant CF_CREDIT_MANAGERS_ONLY = "CF3";
string public constant CF_ADAPTERS_ONLY = "CF4";
string public constant CF_OPERATION_LOW_HEALTH_FACTOR = "CF5";
string public constant CF_TOO_MUCH_ALLOWED_TOKENS = "CF6";
string public constant CF_INCORRECT_CHI_THRESHOLD = "CF7";
string public constant CF_INCORRECT_FAST_CHECK = "CF8";
string public constant CF_NON_TOKEN_CONTRACT = "CF9";
string public constant CF_CONTRACT_IS_NOT_IN_ALLOWED_LIST = "CFA";
string public constant CF_FAST_CHECK_NOT_COVERED_COLLATERAL_DROP = "CFB";
string public constant CF_SOME_LIQUIDATION_THRESHOLD_MORE_THAN_NEW_ONE =
"CFC";
string public constant CF_ADAPTER_CAN_BE_USED_ONLY_ONCE = "CFD";
string public constant CF_INCORRECT_PRICEFEED = "CFE";
string public constant CF_TRANSFER_IS_NOT_ALLOWED = "CFF";
string public constant CF_CREDIT_MANAGER_IS_ALREADY_SET = "CFG";
//
// CREDIT ACCOUNT
//
string public constant CA_CONNECTED_CREDIT_MANAGER_ONLY = "CA1";
string public constant CA_FACTORY_ONLY = "CA2";
//
// PRICE ORACLE
//
string public constant PO_PRICE_FEED_DOESNT_EXIST = "PO0";
string public constant PO_TOKENS_WITH_DECIMALS_MORE_18_ISNT_ALLOWED = "PO1";
string public constant PO_AGGREGATOR_DECIMALS_SHOULD_BE_18 = "PO2";
//
// ACL
//
string public constant ACL_CALLER_NOT_PAUSABLE_ADMIN = "ACL1";
string public constant ACL_CALLER_NOT_CONFIGURATOR = "ACL2";
//
// WETH GATEWAY
//
string public constant WG_DESTINATION_IS_NOT_WETH_COMPATIBLE = "WG1";
string public constant WG_RECEIVE_IS_NOT_ALLOWED = "WG2";
string public constant WG_NOT_ENOUGH_FUNDS = "WG3";
//
// LEVERAGED ACTIONS
//
string public constant LA_INCORRECT_VALUE = "LA1";
string public constant LA_HAS_VALUE_WITH_TOKEN_TRANSFER = "LA2";
string public constant LA_UNKNOWN_SWAP_INTERFACE = "LA3";
string public constant LA_UNKNOWN_LP_INTERFACE = "LA4";
string public constant LA_LOWER_THAN_AMOUNT_MIN = "LA5";
string public constant LA_TOKEN_OUT_IS_NOT_COLLATERAL = "LA6";
//
// YEARN PRICE FEED
//
string public constant YPF_PRICE_PER_SHARE_OUT_OF_RANGE = "YP1";
string public constant YPF_INCORRECT_LIMITER_PARAMETERS = "YP2";
//
// TOKEN DISTRIBUTOR
//
string public constant TD_WALLET_IS_ALREADY_CONNECTED_TO_VC = "TD1";
string public constant TD_INCORRECT_WEIGHTS = "TD2";
string public constant TD_NON_ZERO_BALANCE_AFTER_DISTRIBUTION = "TD3";
string public constant TD_CONTRIBUTOR_IS_NOT_REGISTERED = "TD4";
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}// SPDX-License-Identifier: agpl-3.0
pragma solidity ^0.7.4;
import {Errors} from "../helpers/Errors.sol";
/**
* @title PercentageMath library
* @author Aave
* @notice Provides functions to perform percentage calculations
* @dev Percentages are defined by default with 2 decimals of precision (100.00). The precision is indicated by PERCENTAGE_FACTOR
* @dev Operations are rounded half up
**/
library PercentageMath {
uint256 constant PERCENTAGE_FACTOR = 1e4; //percentage plus two decimals
uint256 constant HALF_PERCENT = PERCENTAGE_FACTOR / 2;
/**
* @dev Executes a percentage multiplication
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return The percentage of value
**/
function percentMul(uint256 value, uint256 percentage)
internal
pure
returns (uint256)
{
if (value == 0 || percentage == 0) {
return 0; // T:[PM-1]
}
require(
value <= (type(uint256).max - HALF_PERCENT) / percentage,
Errors.MATH_MULTIPLICATION_OVERFLOW
); // T:[PM-1]
return (value * percentage + HALF_PERCENT) / PERCENTAGE_FACTOR; // T:[PM-1]
}
/**
* @dev Executes a percentage division
* @param value The value of which the percentage needs to be calculated
* @param percentage The percentage of the value to be calculated
* @return The value divided the percentage
**/
function percentDiv(uint256 value, uint256 percentage)
internal
pure
returns (uint256)
{
require(percentage != 0, Errors.MATH_DIVISION_BY_ZERO); // T:[PM-2]
uint256 halfPercentage = percentage / 2; // T:[PM-2]
require(
value <= (type(uint256).max - halfPercentage) / PERCENTAGE_FACTOR,
Errors.MATH_MULTIPLICATION_OVERFLOW
); // T:[PM-2]
return (value * PERCENTAGE_FACTOR + halfPercentage) / percentage;
}
}{
"optimizer": {
"enabled": false,
"runs": 200
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract ABI
API[{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"swapContract","type":"address"}],"name":"approveToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"borrowedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"targetContract","type":"address"}],"name":"cancelAllowance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_creditManager","type":"address"},{"internalType":"uint256","name":"_borrowedAmount","type":"uint256"},{"internalType":"uint256","name":"_cumulativeIndexAtOpen","type":"uint256"}],"name":"connectTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"creditManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"cumulativeIndexAtOpen","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"destination","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"execute","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"safeTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"since","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_borrowedAmount","type":"uint256"},{"internalType":"uint256","name":"_cumulativeIndexAtOpen","type":"uint256"}],"name":"updateParameters","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.