ETH Price: $1,949.16 (-2.62%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Claim244201222026-02-09 15:31:5944 hrs ago1770651119IN
0x6716C707...3E09A68b1
0 ETH0.000062790.96888918
Claim243926032026-02-05 19:05:235 days ago1770318323IN
0x6716C707...3E09A68b1
0 ETH0.00017912.76348086
Claim243910692026-02-05 13:57:235 days ago1770299843IN
0x6716C707...3E09A68b1
0 ETH0.00021173.2665055
Claim243907292026-02-05 12:48:115 days ago1770295691IN
0x6716C707...3E09A68b1
0 ETH0.000156793.28635207
Claim243861742026-02-04 21:30:596 days ago1770240659IN
0x6716C707...3E09A68b1
0 ETH0.000170232.62664421
Claim243826032026-02-04 9:30:477 days ago1770197447IN
0x6716C707...3E09A68b1
0 ETH0.000139032.1453062
Claim243780912026-02-03 18:22:597 days ago1770142979IN
0x6716C707...3E09A68b1
0 ETH0.000183142.8258335
Claim243775962026-02-03 16:43:357 days ago1770137015IN
0x6716C707...3E09A68b1
0 ETH0.000178542.75489278
Claim243775292026-02-03 16:29:477 days ago1770136187IN
0x6716C707...3E09A68b1
0 ETH0.00004830.74535185
Claim243774862026-02-03 16:21:117 days ago1770135671IN
0x6716C707...3E09A68b1
0 ETH0.000166712.57225287
Claim243771992026-02-03 15:23:117 days ago1770132191IN
0x6716C707...3E09A68b1
0 ETH0.000104442.18911431
Claim243770482026-02-03 14:52:357 days ago1770130355IN
0x6716C707...3E09A68b1
0 ETH0.000016480.34559491
Claim243766092026-02-03 13:24:357 days ago1770125075IN
0x6716C707...3E09A68b1
0 ETH0.000021460.44982084
Claim243760182026-02-03 11:25:598 days ago1770117959IN
0x6716C707...3E09A68b1
0 ETH0.000007670.11837992
Claim243757232026-02-03 10:26:358 days ago1770114395IN
0x6716C707...3E09A68b1
0 ETH0.000010360.21722256
Claim243756962026-02-03 10:20:118 days ago1770114011IN
0x6716C707...3E09A68b1
0 ETH0.000136272.10265954
Claim243755482026-02-03 9:50:358 days ago1770112235IN
0x6716C707...3E09A68b1
0 ETH0.000020890.32247131
Claim243754842026-02-03 9:37:478 days ago1770111467IN
0x6716C707...3E09A68b1
0 ETH0.00003090.47684942
Claim243754532026-02-03 9:31:358 days ago1770111095IN
0x6716C707...3E09A68b1
0 ETH0.000144342.22718193
Claim243754072026-02-03 9:22:238 days ago1770110543IN
0x6716C707...3E09A68b1
0 ETH0.000142672.2013453
Claim243750952026-02-03 8:19:598 days ago1770106799IN
0x6716C707...3E09A68b1
0 ETH0.000012510.19310365
Claim243748022026-02-03 7:20:598 days ago1770103259IN
0x6716C707...3E09A68b1
0 ETH0.00013562.09228753
Claim243747082026-02-03 7:02:118 days ago1770102131IN
0x6716C707...3E09A68b1
0 ETH0.000006210.13029723
Claim243745882026-02-03 6:37:478 days ago1770100667IN
0x6716C707...3E09A68b1
0 ETH0.000134962.08245415
Claim243745472026-02-03 6:29:358 days ago1770100175IN
0x6716C707...3E09A68b1
0 ETH0.000136692.10920697
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ZAMASale

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.24;

import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ReentrancyGuardTransient} from "@openzeppelin/contracts/utils/ReentrancyGuardTransient.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {Errors} from "./libraries/Errors.sol";
import {IZAMASale} from "./interfaces/IZAMASale.sol";
import {IKycAllowlistRegistry} from "./interfaces/IKycAllowlistRegistry.sol";

/**
 * @title ZAMASale
 * @notice NFT-gated fixed-price token sale contract with original claimer tracking
 * @dev This contract implements a token sale where:
 *      - Only designated original claimers can purchase tokens using their assigned NFTs
 *      - Each NFT has a fixed allocation cap (ALLOCATION_PER_NFT)
 *      - Purchases require KYC verification via external registry
 *      - Purchased tokens are held in the contract until claimed
 *      - Claims are available after CLAIM_START_TIME and before CLAIM_END_TIME (if set)
 *      - Optional per-user NFT usage limit (MAX_NFTS_PER_USER)
 *      - Role-based access control: PAUSER, WITHDRAWER, RECOVERER, CLAIMER_ADMIN
 *      - Emergency pause functionality affecting both purchases and claims
 *
 * @dev IMPORTANT TOKEN COMPATIBILITY WARNING:
 *      The SALE_TOKEN must be a standard ERC20 token with stable balanceOf().
 *      The following token types are NOT supported and will cause failures:
 *      - Rebasing tokens (stETH, AMPL, aTokens) - balance changes automatically
 *      - Fee-on-transfer tokens (PAXG, some deflationary tokens) - less tokens received
 *      - Tokens with transfer hooks that modify balances during transfers
 *
 *      Using incompatible tokens will cause purchases/claims to fail unexpectedly.
 *      Payment token should also be standard ERC20 without fees or hooks.
 *
 * @dev Security assumptions:
 *      - NFT_CONTRACT, PAYMENT_TOKEN, SALE_TOKEN, KYC_REGISTRY are trusted contracts
 *      - View functions (balanceOf, ownerOf, isAllowed) cannot trigger callbacks
 *      - Transfer hooks (ERC777) are handled via CEI pattern + nonReentrant
 *
 * @dev Price Calculation Example:
 *      Buying 100 ZAMA (18 decimals) at 0.01 USDT (6 decimals) per ZAMA:
 *      - saleTokenAmount = 100 * 10^18 = 100e18
 *      - PRICE_PER_TOKEN = 0.01 * 10^6 = 10_000 (NOT 0.01!)
 *      - paymentAmount = ceil((100e18 * 10_000) / 1e18) = ceil(1,000,000) = 1,000,000 USDT wei = 1.0 USDT
 *
 *      Ceiling division ensures seller-favorable rounding on dust amounts.
 *      Use calculatePaymentAmount() to get exact payment required for any amount.
 *
 * @custom:security-contact [email protected]
 */
contract ZAMASale is IZAMASale, AccessControl, ReentrancyGuardTransient, Pausable, EIP712 {
    using SafeERC20 for IERC20;

    // ============================================
    // ROLE DEFINITIONS
    // ============================================

    /**
     * @notice Role that can pause/unpause the sale
     * @dev Grant this role to accounts that should be able to pause the sale in emergencies
     */
    bytes32 public constant override PAUSER_ROLE = keccak256("PAUSER_ROLE");

    /**
     * @notice Role that can withdraw collected payment tokens and unsold sale tokens
     * @dev Grant this role to accounts that should manage treasury withdrawals
     */
    bytes32 public constant override WITHDRAWER_ROLE = keccak256("WITHDRAWER_ROLE");

    /**
     * @notice Role that can recover accidentally sent ERC20 tokens and unclaimed tokens after deadline
     * @dev Grant this role to accounts that should handle token recovery operations
     */
    bytes32 public constant override RECOVERER_ROLE = keccak256("RECOVERER_ROLE");

    /**
     * @notice Role that can set/remove original NFT claimers
     * @dev Grant this role to accounts that manage the claimer whitelist
     */
    bytes32 public constant override CLAIMER_ADMIN_ROLE = keccak256("CLAIMER_ADMIN_ROLE");

    // ============================================
    // EIP-712 TYPEHASH
    // ============================================

    /**
     * @notice EIP-712 typehash for claimer registration signatures
     * @dev Used to verify signatures from CLAIMER_ADMIN_ROLE for self-registration
     *      Struct: ClaimerRegistration(address claimer,uint256 nftId,uint256 deadline)
     */
    bytes32 public constant CLAIMER_REGISTRATION_TYPEHASH =
        keccak256("ClaimerRegistration(address claimer,uint256 nftId,uint256 deadline)");

    // ============================================
    // IMMUTABLE CONFIGURATION
    // ============================================

    /**
     * @notice NFT contract address used for gating purchases
     * @dev Immutable after deployment, must implement ERC721 interface via ERC165
     */
    IERC721 public immutable override NFT_CONTRACT;

    /**
     * @notice KYC registry contract for whitelist verification
     * @dev Immutable after deployment, used to verify users have completed KYC
     */
    IKycAllowlistRegistry public immutable override KYC_REGISTRY;

    /**
     * @notice Payment token contract address (USDT, USDC, etc.)
     * @dev Immutable after deployment, must be standard ERC20 without fees or rebasing
     */
    IERC20Metadata public immutable override PAYMENT_TOKEN;

    /**
     * @notice Sale token contract address (the token being sold)
     * @dev Immutable after deployment, must be standard ERC20 without fees or rebasing
     *      See token compatibility warning in contract documentation
     */
    IERC20Metadata public immutable override SALE_TOKEN;

    /**
     * @notice Price per 1 whole sale token, expressed in payment token smallest units
     * @dev For a sale token with 18 decimals and USDC (6 decimals) as payment:
     *      - 100 USDC per token = 100 * 10^6 = 100_000_000
     *      - 0.5 USDC per token = 0.5 * 10^6 = 500_000
     *      - 0.01 USDC per token = 0.01 * 10^6 = 10_000
     *
     *      Formula: paymentAmount = ceil((saleTokenAmount * PRICE_PER_TOKEN) / 10^saleTokenDecimals)
     *      Uses ceiling division (Math.Rounding.Ceil) to protect seller from rounding losses.
     *
     * @dev IMPORTANT: This is NOT the price per smallest unit (wei) but per 1 whole token
     *      Common deployment mistake: Forgetting to multiply by payment token decimals
     *      Example: Want 100 USDC (6 decimals) per token? Use 100_000_000, not 100
     */
    uint256 public immutable override PRICE_PER_TOKEN;

    /**
     * @notice Maximum SALE_TOKEN each NFT can purchase (in sale token smallest units)
     * @dev This is a hard cap per NFT. Once an NFT's purchased amount reaches this limit,
     *      it can no longer be used for purchases
     */
    uint256 public immutable override ALLOCATION_PER_NFT;

    /**
     * @notice UNIX timestamp when the sale starts
     * @dev Purchases are only allowed between SALE_START_TIME and SALE_END_TIME
     */
    uint256 public immutable override SALE_START_TIME;

    /**
     * @notice UNIX timestamp when the sale ends
     * @dev Purchases are only allowed between SALE_START_TIME and SALE_END_TIME
     */
    uint256 public immutable override SALE_END_TIME;

    /**
     * @notice UNIX timestamp when claims become available
     * @dev Claims are only allowed from this time onward (and before CLAIM_END_TIME if set)
     *      Must be after SALE_END_TIME to prevent claims during sale period
     */
    uint256 public immutable override CLAIM_START_TIME;

    /**
     * @notice Optional UNIX timestamp when claim period ends
     * @dev If CLAIM_END_TIME > 0, claims are only allowed between CLAIM_START_TIME and CLAIM_END_TIME.
     *      After CLAIM_END_TIME, unclaimed tokens can be recovered by RECOVERER_ROLE via recoverUnclaimedTokens().
     *      If CLAIM_END_TIME = 0, there is no claim deadline and tokens can be claimed indefinitely.
     */
    uint256 public immutable override CLAIM_END_TIME;

    /**
     * @notice Maximum NFTs per user address (rate limiting, not access control)
     * @dev Rate limit on top of the claimer registry. If a user is registered for 10 NFTs
     *      but MAX_NFTS_PER_USER = 3, they can only use 3 of their choice.
     *      Set to 0 to disable (rely solely on claimer registry).
     *      Note: Bypassable via multiple addresses if NFTs are transferable.
     */
    uint256 public immutable override MAX_NFTS_PER_USER;

    // ============================================
    // DECIMAL-RELATED IMMUTABLES
    // ============================================

    /**
     * @notice Decimals of the sale token (stored at deployment for gas optimization)
     * @dev Queried once from SALE_TOKEN during construction and stored as immutable.
     *      Used as denominator in price calculations via SALE_TOKEN_DECIMALS_FACTOR.
     *      Avoids repeated external calls to SALE_TOKEN.decimals() during purchases.
     */
    uint8 public immutable SALE_TOKEN_DECIMALS;

    /**
     * @notice 10^SALE_TOKEN_DECIMALS (stored at deployment for gas optimization)
     * @dev Computed once during construction: 10 ** SALE_TOKEN.decimals().
     *      Used as denominator in price calculations to convert between token units.
     */
    uint256 private immutable SALE_TOKEN_DECIMALS_FACTOR;

    // ============================================
    // STATE VARIABLES
    // ============================================

    /**
     * @notice Mapping from NFT ID to total purchased amount (in sale token smallest units)
     * @dev Tracks how much each NFT has purchased. Cannot exceed ALLOCATION_PER_NFT
     */
    mapping(uint256 nftId => uint256 purchasedAmount) public override nftPurchased;

    /**
     * @notice Mapping from user address to number of distinct NFTs used for purchases
     * @dev Only used when MAX_NFTS_PER_USER > 0 to enforce per-user NFT limit
     */
    mapping(address user => uint256 count) public userNftCount;

    /**
     * @notice Mapping from user address to NFT ID to whether the user has used this NFT
     * @dev Used to track distinct NFT usage per user when MAX_NFTS_PER_USER > 0
     */
    mapping(address user => mapping(uint256 nftId => bool used)) public userNftUsed;

    /**
     * @notice Mapping from address to NFT ID to original claimer status
     * @dev An address can be the original claimer of multiple NFTs
     *      Only original claimers can purchase tokens with their claimed NFTs
     */
    mapping(address claimer => mapping(uint256 nftId => bool isClaimer)) public override isOriginalClaimer;

    /**
     * @notice Mapping to track claimed signatures for replay protection
     * @dev Each structHash can only be used once
     */
    mapping(bytes32 signatureHash => bool isClaimed) public override claimedSignatures;

    /**
     * @notice Mapping from wallet address to total claimable token balance
     * @dev Updated during purchase, decremented during claim
     *      Simplifies claiming - users claim their full balance without specifying NFT IDs
     */
    mapping(address user => uint256 claimableAmount) public override userClaimable;

    /**
     * @notice Total tokens sold (in sale token smallest units)
     * @dev Sum of all successful purchases
     */
    uint256 public override totalTokensSold;

    /**
     * @notice Total tokens claimed (in sale token smallest units)
     * @dev Sum of all successful claims. totalTokensUnclaimed = totalTokensSold - totalTokensClaimed
     */
    uint256 public override totalTokensClaimed;

    // ============================================
    // CONSTRUCTOR
    // ============================================

    /**
     * @notice Initialize sale contract with all configuration parameters
     * @param nftContract_ Address of the NFT contract (must implement ERC721 via ERC165)
     * @param paymentToken_ Address of the payment token (USDT, USDC, etc.)
     * @dev Must be a standard ERC20 without fees, rebasing, or transfer hooks
     * @param saleToken_ Address of the token being sold
     * @dev Must be a standard ERC20 without fees, rebasing, or transfer hooks
     *      See token compatibility warning in contract documentation
     * @param kycRegistry_ Address of the KYC allowlist registry contract
     * @dev Used to verify users have completed KYC before purchasing
     * @param pricePerToken_ Price per full sale token in payment token smallest units
     * @dev See PRICE_PER_TOKEN documentation for format details and examples
     *      Common mistake: Forgetting to multiply by payment token decimals
     *      Example: Want 100 USDC (6 decimals) per token? Use 100_000_000, not 100
     * @param allocationPerNft_ Maximum tokens each NFT can purchase (in sale token smallest units)
     * @param maxNftsPerUser_ Maximum number of NFTs a user can use for purchases (0 = no limit)
     * @dev Note: This limit is only effective if NFTs are non-transferable during sale.
     *      Transferable NFTs can bypass this limit via multiple addresses (Sybil)
     * @param saleStartTime_ UNIX timestamp when sale starts (must be in future at deployment)
     * @param saleDuration_ Duration of sale in seconds (must be > 0)
     * @param claimStartTime_ UNIX timestamp when claims become available
     * @dev Must be after saleStartTime_ + saleDuration_ (i.e., after sale ends)
     * @param claimEndTime_ Optional UNIX timestamp when claim period ends (0 = no end)
     * @dev If claimEndTime_ > 0, must be after claimStartTime_
     *      If claimEndTime_ > 0, RECOVERER_ROLE can recover unclaimed tokens after this time
     * @param admin Address to grant the DEFAULT_ADMIN_ROLE (can manage all roles)
     * @dev This address will also receive all operational roles initially (PAUSER, WITHDRAWER, RECOVERER, CLAIMER_ADMIN)
     */
    constructor(
        address nftContract_,
        address paymentToken_,
        address saleToken_,
        address kycRegistry_,
        uint256 pricePerToken_,
        uint256 allocationPerNft_,
        uint256 maxNftsPerUser_,
        uint256 saleStartTime_,
        uint256 saleDuration_,
        uint256 claimStartTime_,
        uint256 claimEndTime_,
        address admin
    ) EIP712("ZAMASale", "1") {
        // Validate inputs
        if (
            nftContract_ == address(0) || paymentToken_ == address(0) || saleToken_ == address(0)
                || kycRegistry_ == address(0) || admin == address(0)
        ) {
            revert Errors.InvalidAddress();
        }
        // Prevent payment and sale tokens from being the same
        if (paymentToken_ == saleToken_) {
            revert Errors.InvalidAddress();
        }
        if (saleDuration_ == 0) revert Errors.InvalidDuration();
        if (pricePerToken_ == 0) revert Errors.InvalidPrice();
        if (allocationPerNft_ == 0) revert Errors.InvalidLimit();
        if (claimStartTime_ < saleStartTime_ + saleDuration_) {
            revert Errors.ClaimNotAvailable();
        }
        if (saleStartTime_ < block.timestamp) revert Errors.InvalidStartTime();

        // Optional: Set claim end time (0 = no deadline)
        // If provided, must be after claim start time
        if (claimEndTime_ > 0 && claimEndTime_ <= claimStartTime_) {
            revert Errors.InvalidClaimTime();
        }
        CLAIM_END_TIME = claimEndTime_;

        // Validate NFT contract implements ERC721 interface via ERC165
        try IERC165(nftContract_).supportsInterface(type(IERC721).interfaceId) returns (bool supported) {
            if (!supported) revert Errors.InvalidAddress();
        } catch {
            revert Errors.InvalidAddress();
        }
        // Set immutable references
        NFT_CONTRACT = IERC721(nftContract_);
        KYC_REGISTRY = IKycAllowlistRegistry(kycRegistry_);
        PAYMENT_TOKEN = IERC20Metadata(paymentToken_);
        SALE_TOKEN = IERC20Metadata(saleToken_);

        // Store decimals for calculations
        SALE_TOKEN_DECIMALS = SALE_TOKEN.decimals();
        SALE_TOKEN_DECIMALS_FACTOR = 10 ** SALE_TOKEN_DECIMALS;

        // Set sale configuration
        PRICE_PER_TOKEN = pricePerToken_;
        ALLOCATION_PER_NFT = allocationPerNft_;
        MAX_NFTS_PER_USER = maxNftsPerUser_;
        SALE_START_TIME = saleStartTime_;
        SALE_END_TIME = saleStartTime_ + saleDuration_;
        CLAIM_START_TIME = claimStartTime_;

        // Setup AccessControl roles
        // DEFAULT_ADMIN_ROLE manages all other roles
        _grantRole(DEFAULT_ADMIN_ROLE, admin);
        _grantRole(PAUSER_ROLE, admin);
        _grantRole(WITHDRAWER_ROLE, admin);
        _grantRole(RECOVERER_ROLE, admin);
        _grantRole(CLAIMER_ADMIN_ROLE, admin);

        // Emit initialization event with named parameters for clarity
        emit SaleInitialized({
            nftContract: nftContract_,
            paymentToken: paymentToken_,
            saleToken: saleToken_,
            pricePerToken: pricePerToken_,
            allocationPerNft: allocationPerNft_,
            maxNftsPerUser: maxNftsPerUser_,
            saleStartTime: SALE_START_TIME,
            saleEndTime: SALE_END_TIME,
            claimStartTime: CLAIM_START_TIME,
            claimEndTime: CLAIM_END_TIME
        });
    }

    // ============================================
    // PURCHASE FUNCTIONS
    // ============================================

    /**
     * @notice Purchase tokens using an NFT
     * @param nftId The NFT ID to use for purchase (caller must be original claimer)
     * @param saleTokenAmount Amount of sale tokens to purchase (in smallest units)
     * @dev Purchase requires:
     *      1. Caller is the original claimer of the NFT
     *      2. Caller has completed KYC (isAllowed in KYC registry)
     *      3. NFT has remaining allocation
     *      Claim rights are assigned to the purchaser, not the NFT owner
     * @dev Security: Uses CEI pattern (state updates before external call)
     *      and is protected by ReentrancyGuardTransient
     * @dev Token compatibility: Requires standard ERC20 tokens without fees/rebasing
     */
    function purchase(uint256 nftId, uint256 saleTokenAmount) external override nonReentrant whenNotPaused {
        // 1. Validate sale period
        if (block.timestamp < SALE_START_TIME) revert Errors.SaleNotStarted();
        if (block.timestamp > SALE_END_TIME) revert Errors.SaleEnded();

        // 2. Validate caller is original claimer of this NFT
        if (!isOriginalClaimer[msg.sender][nftId]) {
            revert Errors.NotOriginalClaimer();
        }

        // 3. Validate caller has completed KYC
        if (!KYC_REGISTRY.isAllowed(msg.sender)) revert Errors.NotKYCAllowed();

        // 4. Validate amount
        if (saleTokenAmount == 0) revert Errors.InsufficientPayment();

        // 5. Calculate payment amount - guaranteed non-zero due to:
        // - saleTokenAmount > 0 (validated above)
        // - PRICE_PER_TOKEN > 0 (validated in constructor)
        // - Ceiling division always rounds up non-zero results
        uint256 paymentAmount = calculatePaymentAmount(saleTokenAmount);

        // 6. Check NFT usage limit (per user) if MAX_NFTS_PER_USER > 0
        if (MAX_NFTS_PER_USER > 0) {
            if (!userNftUsed[msg.sender][nftId]) {
                if (userNftCount[msg.sender] >= MAX_NFTS_PER_USER) {
                    revert Errors.ExceedsUserLimit();
                }
                userNftUsed[msg.sender][nftId] = true;
                userNftCount[msg.sender] += 1;
            }
        }

        // 7. Check allocation limit (per NFT)
        uint256 newTotal = nftPurchased[nftId] + saleTokenAmount;
        if (newTotal > ALLOCATION_PER_NFT) revert Errors.ExceedsAllocation();

        // 8. Validate contract has sufficient tokens for this purchase
        uint256 reserved = totalTokensSold - totalTokensClaimed;
        uint256 availableForSale = SALE_TOKEN.balanceOf(address(this)) - reserved;
        if (availableForSale < saleTokenAmount) {
            revert Errors.InsufficientBalance();
        }

        // 9. Update state
        nftPurchased[nftId] = newTotal;
        userClaimable[msg.sender] += saleTokenAmount;
        totalTokensSold += saleTokenAmount;

        // 10. Emit event before external call (CEIE pattern for indexer integrity)
        emit TokensPurchased({
            buyer: msg.sender, nftId: nftId, saleTokenAmount: saleTokenAmount, paymentAmount: paymentAmount
        });

        // 11. Transfer payment (last step - CEI pattern)
        IERC20(address(PAYMENT_TOKEN)).safeTransferFrom(msg.sender, address(this), paymentAmount);
    }

    /**
     * @notice Calculate required payment for given token amount with seller-favorable rounding
     * @dev Uses ceiling division to ensure seller always receives at least fair value.
     *      Users should call this function to determine the exact approval amount needed.
     * @dev Example: Buying 0.000001 tokens at 100 USDC per token:
     *      - saleTokenAmount = 1e12 (0.000001 tokens with 18 decimals)
     *      - PRICE_PER_TOKEN = 100_000_000 (100 USDC in wei)
     *      - paymentAmount = ceil((1e12 * 100_000_000) / 1e18) = ceil(100) = 100 wei USDC
     * @param saleTokenAmount Amount of sale tokens to purchase (in smallest units)
     * @return paymentAmount Required payment amount (in payment token smallest units)
     */
    function calculatePaymentAmount(uint256 saleTokenAmount) public view override returns (uint256) {
        return Math.mulDiv(saleTokenAmount, PRICE_PER_TOKEN, SALE_TOKEN_DECIMALS_FACTOR, Math.Rounding.Ceil);
    }

    // ============================================
    // CLAIM FUNCTIONS
    // ============================================

    /**
     * @notice Claim all purchased tokens for the caller
     * @dev Wallet-based claiming - users claim their full balance without specifying NFT IDs
     * @dev Protected by ReentrancyGuardTransient and whenNotPaused
     */
    function claim() external override nonReentrant whenNotPaused {
        // 1. Validate claim period
        if (block.timestamp < CLAIM_START_TIME) {
            revert Errors.ClaimNotAvailable();
        }
        if (CLAIM_END_TIME > 0 && block.timestamp > CLAIM_END_TIME) {
            revert Errors.ClaimNotAvailable();
        }

        // 2. Get claimable amount for caller
        uint256 claimable = userClaimable[msg.sender];

        // 3. Validate there's something to claim
        if (claimable == 0) revert Errors.NothingToClaim();

        // 4. Validate contract has sufficient tokens
        if (SALE_TOKEN.balanceOf(address(this)) < claimable) {
            revert Errors.InsufficientBalance();
        }

        // 5. Update state BEFORE transfer (CEI pattern)
        userClaimable[msg.sender] = 0;
        totalTokensClaimed += claimable;

        // 6. Emit event before transfer (CEIE pattern)
        emit TokensClaimed({claimer: msg.sender, amount: claimable});

        // 7. Transfer tokens (last step)
        IERC20(address(SALE_TOKEN)).safeTransfer(msg.sender, claimable);
    }

    // ============================================
    // VIEW FUNCTIONS
    // ============================================

    /**
     * @notice Get total payment received (calculated view function instead of storage)
     * @dev Calculated from totalTokensSold using ceiling division (seller-favorable rounding)
     * @return Total payment received in payment token smallest units
     */
    function totalPaymentReceived() external view override returns (uint256) {
        return Math.mulDiv(totalTokensSold, PRICE_PER_TOKEN, SALE_TOKEN_DECIMALS_FACTOR, Math.Rounding.Ceil);
    }

    /**
     * @notice Get total tokens unclaimed
     * @return Total tokens that have been sold but not yet claimed (in sale token smallest units)
     */
    function totalTokensUnclaimed() external view override returns (uint256) {
        return totalTokensSold - totalTokensClaimed;
    }

    /**
     * @notice Get claimable amount for the caller
     * @return Claimable token amount for the caller's wallet
     */
    function getClaimable() external view override returns (uint256) {
        return userClaimable[msg.sender];
    }

    /**
     * @notice Get required payment for token amount (alias for calculatePaymentAmount)
     * @dev Provided for interface compatibility and clearer naming
     * @param saleTokenAmount Amount of sale tokens (in smallest units)
     * @return Required payment amount (in payment token smallest units)
     */
    function getTotalPayment(uint256 saleTokenAmount) external view override returns (uint256) {
        return calculatePaymentAmount(saleTokenAmount);
    }

    /**
     * @notice Check if an NFT can be used for purchase
     * @param nftId NFT ID to check
     * @return True if NFT has remaining allocation AND sale is active AND contract not paused
     */
    function canUseNft(uint256 nftId) external view override returns (bool) {
        uint256 purchased = nftPurchased[nftId];
        return !paused() && purchased < ALLOCATION_PER_NFT && block.timestamp >= SALE_START_TIME
            && block.timestamp <= SALE_END_TIME;
    }

    /**
     * @notice Get remaining allocation for an NFT
     * @param nftId NFT ID to check
     * @return Remaining tokens the NFT can still purchase (0 if allocation exhausted)
     */
    function getRemainingAllocation(uint256 nftId) external view override returns (uint256) {
        uint256 purchased = nftPurchased[nftId];
        if (purchased >= ALLOCATION_PER_NFT) {
            return 0;
        }
        return ALLOCATION_PER_NFT - purchased;
    }

    /**
     * @notice Get the number of NFTs a user has used for purchases
     * @dev Only meaningful when MAX_NFTS_PER_USER > 0
     * @param user User address to check
     * @return Number of distinct NFTs used by the user for purchases
     */
    function getUserNftCount(address user) external view override returns (uint256) {
        return userNftCount[user];
    }

    /**
     * @notice Check if a user has used a specific NFT for purchase
     * @dev Only meaningful when MAX_NFTS_PER_USER > 0
     * @param user User address to check
     * @param nftId NFT ID to check
     * @return True if the user has used this NFT for purchase
     */
    function hasUserUsedNft(address user, uint256 nftId) external view override returns (bool) {
        return userNftUsed[user][nftId];
    }

    /**
     * @notice Check if sale is paused (override for custom error)
     * @return True if sale is paused, false otherwise
     */
    function paused() public view override(IZAMASale, Pausable) returns (bool) {
        return Pausable.paused();
    }

    /**
     * @notice Get remaining NFTs a user can still use for purchases
     * @param user User address to check
     * @return Remaining NFTs the user can use (type(uint256).max if no limit)
     */
    function getRemainingUserNftLimit(address user) external view returns (uint256) {
        if (MAX_NFTS_PER_USER == 0) {
            return type(uint256).max; // No limit
        }
        if (userNftCount[user] >= MAX_NFTS_PER_USER) {
            return 0; // Already at limit
        }
        return MAX_NFTS_PER_USER - userNftCount[user];
    }

    /**
     * @notice Check if a user can purchase with a specific NFT
     * @param user User address to check
     * @param nftId NFT ID to check
     * @return status The purchase eligibility status (Eligible if user can purchase)
     */
    function canUserPurchaseWithNft(address user, uint256 nftId)
        external
        view
        override
        returns (PurchaseStatus status)
    {
        // Check original claimer
        if (!isOriginalClaimer[user][nftId]) {
            return PurchaseStatus.NotOriginalClaimer;
        }

        // Check KYC
        if (!KYC_REGISTRY.isAllowed(user)) return PurchaseStatus.NotKYCAllowed;

        // Check allocation remaining
        if (nftPurchased[nftId] >= ALLOCATION_PER_NFT) {
            return PurchaseStatus.AllocationExhausted;
        }

        // Check sale period
        if (block.timestamp < SALE_START_TIME) {
            return PurchaseStatus.SaleNotStarted;
        }
        if (block.timestamp > SALE_END_TIME) return PurchaseStatus.SaleEnded;

        // Check not paused
        if (paused()) return PurchaseStatus.SalePaused;

        // Check user NFT limit
        if (MAX_NFTS_PER_USER > 0) {
            if (!userNftUsed[user][nftId] && userNftCount[user] >= MAX_NFTS_PER_USER) {
                return PurchaseStatus.UserNftLimitReached;
            }
        }

        // Check contract has tokens available for sale
        uint256 reserved = totalTokensSold - totalTokensClaimed;
        uint256 availableForSale = SALE_TOKEN.balanceOf(address(this)) - reserved;
        if (availableForSale == 0) {
            return PurchaseStatus.InsufficientContractBalance;
        }

        return PurchaseStatus.Eligible;
    }

    // ============================================
    // PAUSE OVERRIDES (for custom errors)
    // ============================================

    /**
     * @dev Override to use custom error instead of OZ Pausable error
     * @dev Reverts with Errors.SalePaused() if contract is paused
     */
    function _requireNotPaused() internal view virtual override {
        if (paused()) {
            revert Errors.SalePaused();
        }
    }

    /**
     * @dev Override to use custom error instead of OZ Pausable error
     * @dev Reverts with Errors.SaleNotPaused() if contract is not paused
     */
    function _requirePaused() internal view virtual override {
        if (!paused()) {
            revert Errors.SaleNotPaused();
        }
    }

    // ============================================
    // PAUSE FUNCTIONS
    // ============================================

    /**
     * @notice Pause the sale (emergency only)
     * @dev Only accounts with PAUSER_ROLE can pause. Pauses both purchases and claims.
     * @dev Emits SalePaused event
     */
    function pause() external override onlyRole(PAUSER_ROLE) {
        _pause(); // Uses OZ internal function
        emit SalePaused({admin: msg.sender, timestamp: block.timestamp});
    }

    /**
     * @notice Unpause the sale
     * @dev Only accounts with PAUSER_ROLE can unpause.
     * @dev Emits SaleUnpaused event
     */
    function unpause() external override onlyRole(PAUSER_ROLE) {
        _unpause(); // Uses OZ internal function
        emit SaleUnpaused({admin: msg.sender, timestamp: block.timestamp});
    }

    // ============================================
    // CLAIMER ADMIN FUNCTIONS
    // ============================================

    /**
     * @notice Set original claimers for NFTs in batch
     * @param claimers Array of claimer addresses
     * @param nftIds Array of NFT IDs (parallel with claimers array)
     * @dev Only CLAIMER_ADMIN_ROLE can call. Max ~1,500 per transaction to avoid gas limit.
     *      Each claimers[i] is marked as original claimer for nftIds[i].
     *      A single address can be original claimer for multiple NFTs.
     */
    function setOriginalClaimers(address[] calldata claimers, uint256[] calldata nftIds)
        external
        override
        onlyRole(CLAIMER_ADMIN_ROLE)
    {
        if (claimers.length == 0) revert Errors.InvalidLength();
        if (claimers.length != nftIds.length) revert Errors.LengthMismatch();
        uint256 length = claimers.length;

        for (uint256 i; i < length; ++i) {
            if (claimers[i] == address(0)) revert Errors.InvalidAddress();
            isOriginalClaimer[claimers[i]][nftIds[i]] = true;
        }

        emit OriginalClaimersSet(claimers.length);
    }

    /**
     * @notice Remove original claimers for NFTs in batch
     * @param claimers Array of claimer addresses
     * @param nftIds Array of NFT IDs (parallel with claimers array)
     * @dev Only CLAIMER_ADMIN_ROLE can call. Use to fix errors or remove eligibility.
     */
    function removeOriginalClaimers(address[] calldata claimers, uint256[] calldata nftIds)
        external
        override
        onlyRole(CLAIMER_ADMIN_ROLE)
    {
        if (claimers.length == 0) revert Errors.InvalidLength();
        if (claimers.length != nftIds.length) revert Errors.LengthMismatch();
        uint256 length = claimers.length;

        for (uint256 i; i < length; ++i) {
            isOriginalClaimer[claimers[i]][nftIds[i]] = false;
        }

        emit OriginalClaimersRemoved(claimers.length);
    }

    /**
     * @notice Self-register as original claimer using an admin-signed EIP-712 signature
     * @param nftId The NFT ID to register as claimer for
     * @param deadline Timestamp after which the signature is no longer valid
     * @param signature ECDSA signature from a CLAIMER_ADMIN_ROLE holder
     */
    function registerAsClaimer(uint256 nftId, uint256 deadline, bytes calldata signature) external override {
        if (block.timestamp > deadline) revert Errors.ExpiredSignature();
        bytes32 structHash = keccak256(abi.encode(CLAIMER_REGISTRATION_TYPEHASH, msg.sender, nftId, deadline));

        if (claimedSignatures[structHash]) {
            revert Errors.SignatureAlreadyClaimed();
        }

        bytes32 digest = _hashTypedDataV4(structHash);
        address signer = ECDSA.recover(digest, signature);

        if (!hasRole(CLAIMER_ADMIN_ROLE, signer)) {
            revert Errors.InvalidSignature();
        }

        claimedSignatures[structHash] = true;
        isOriginalClaimer[msg.sender][nftId] = true;

        emit OriginalClaimerRegistered(msg.sender, nftId);
    }

    /**
     * @notice Check if a registration signature has been claimed
     * @param claimer The claimer address
     * @param nftId The NFT ID
     * @param deadline The signature deadline
     * @return True if already registered via signature
     */
    function isRegistrationSignatureClaimed(address claimer, uint256 nftId, uint256 deadline)
        external
        view
        override
        returns (bool)
    {
        bytes32 structHash = keccak256(abi.encode(CLAIMER_REGISTRATION_TYPEHASH, claimer, nftId, deadline));
        return claimedSignatures[structHash];
    }

    // ============================================
    // WITHDRAWAL FUNCTIONS
    // ============================================

    /**
     * @notice Withdraw collected payment tokens to specified address
     * @param to Address to withdraw to (cannot be zero address)
     * @param amount Amount to withdraw (0 = withdraw all collected payment tokens)
     * @dev Only accounts with WITHDRAWER_ROLE can withdraw
     * @dev Emits PaymentWithdrawn event
     */
    function withdrawPaymentTokens(address to, uint256 amount) external override onlyRole(WITHDRAWER_ROLE) {
        if (to == address(0)) revert Errors.InvalidAddress();

        uint256 balance = PAYMENT_TOKEN.balanceOf(address(this));
        if (balance == 0) revert Errors.InsufficientBalance();

        uint256 withdrawAmount = amount == 0 ? balance : amount;
        if (withdrawAmount > balance) revert Errors.InsufficientBalance();

        emit PaymentWithdrawn({to: to, amount: withdrawAmount});
        IERC20(address(PAYMENT_TOKEN)).safeTransfer(to, withdrawAmount);
    }

    /**
     * @notice Withdraw unsold sale tokens to specified address
     * @param to Address to withdraw to (cannot be zero address)
     * @param amount Amount to withdraw (0 = withdraw all unsold tokens)
     * @dev Only accounts with WITHDRAWER_ROLE can withdraw
     * @dev Only withdraws tokens not yet purchased by users (balance - unclaimed)
     * @dev Emits TokensWithdrawn event
     */
    function withdrawSaleTokens(address to, uint256 amount) external override onlyRole(WITHDRAWER_ROLE) {
        if (to == address(0)) revert Errors.InvalidAddress();

        uint256 totalBalance = SALE_TOKEN.balanceOf(address(this));

        // Calculate truly unsold tokens: total balance minus unclaimed tokens
        uint256 reserved = totalTokensSold - totalTokensClaimed;
        uint256 unsoldBalance = totalBalance - reserved;

        if (unsoldBalance == 0) revert Errors.InsufficientBalance();

        uint256 withdrawAmount = amount == 0 ? unsoldBalance : amount;
        if (withdrawAmount > unsoldBalance) revert Errors.InsufficientBalance();

        emit TokensWithdrawn({to: to, amount: withdrawAmount});

        IERC20(address(SALE_TOKEN)).safeTransfer(to, withdrawAmount);
    }

    // ============================================
    // RECOVERY FUNCTIONS
    // ============================================

    /**
     * @notice Recover ERC20 tokens accidentally sent to contract
     * @dev Only accounts with RECOVERER_ROLE can recover
     * @dev Cannot recover payment or sale tokens (use withdraw functions instead)
     * @param token Token address to recover (cannot be PAYMENT_TOKEN or SALE_TOKEN)
     * @param to Address to send recovered tokens (cannot be zero address)
     * @dev Emits ERC20Recovered event
     */
    function recoverERC20(address token, address to) external override onlyRole(RECOVERER_ROLE) {
        if (token == address(PAYMENT_TOKEN) || token == address(SALE_TOKEN)) {
            revert Errors.InvalidAddress();
        }
        if (to == address(0)) revert Errors.InvalidAddress();

        uint256 balance = IERC20(token).balanceOf(address(this));
        IERC20(token).safeTransfer(to, balance);

        emit ERC20Recovered({token: token, to: to, amount: balance});
    }

    /**
     * @notice Recover unclaimed tokens after claim deadline
     * @dev Only accounts with RECOVERER_ROLE can recover
     * @dev Only callable after CLAIM_END_TIME (if CLAIM_END_TIME > 0)
     * @dev Requires CLAIM_END_TIME > 0 (i.e., claim deadline was set during deployment)
     * @param to Address to send recovered tokens to (cannot be zero address)
     * @dev Reverts if claim period is still active or if no unclaimed tokens exist
     * @dev Emits UnclaimedTokensRecovered event
     */
    function recoverUnclaimedTokens(address to) external override onlyRole(RECOVERER_ROLE) {
        if (to == address(0)) revert Errors.InvalidAddress();
        if (CLAIM_END_TIME == 0) revert Errors.ClaimNotAvailable();
        if (block.timestamp <= CLAIM_END_TIME) {
            revert Errors.ClaimPeriodActive();
        }

        // Get actual balance for robust recovery
        uint256 balance = SALE_TOKEN.balanceOf(address(this));
        if (balance == 0) revert Errors.NothingToClaim();

        // Mark all tokens as claimed (prevents double recovery via accounting)
        totalTokensClaimed = totalTokensSold;

        // Emit event before transfer
        emit UnclaimedTokensRecovered({to: to, amount: balance});

        // Transfer all remaining tokens
        IERC20(address(SALE_TOKEN)).safeTransfer(to, balance);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        if (!_safeTransfer(token, to, value, true)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        if (!_safeTransferFrom(token, from, to, value, true)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _safeTransfer(token, to, value, false);
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _safeTransferFrom(token, from, to, value, false);
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        if (!_safeApprove(token, spender, value, false)) {
            if (!_safeApprove(token, spender, 0, true)) revert SafeERC20FailedOperation(address(token));
            if (!_safeApprove(token, spender, value, true)) revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that relies on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that relies on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Oppositely, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity `token.transfer(to, value)` call, relaxing the requirement on the return value: the
     * return value is optional (but if data is returned, it must not be false).
     *
     * @param token The token targeted by the call.
     * @param to The recipient of the tokens
     * @param value The amount of token to transfer
     * @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
     */
    function _safeTransfer(IERC20 token, address to, uint256 value, bool bubble) private returns (bool success) {
        bytes4 selector = IERC20.transfer.selector;

        assembly ("memory-safe") {
            let fmp := mload(0x40)
            mstore(0x00, selector)
            mstore(0x04, and(to, shr(96, not(0))))
            mstore(0x24, value)
            success := call(gas(), token, 0, 0x00, 0x44, 0x00, 0x20)
            // if call success and return is true, all is good.
            // otherwise (not success or return is not true), we need to perform further checks
            if iszero(and(success, eq(mload(0x00), 1))) {
                // if the call was a failure and bubble is enabled, bubble the error
                if and(iszero(success), bubble) {
                    returndatacopy(fmp, 0x00, returndatasize())
                    revert(fmp, returndatasize())
                }
                // if the return value is not true, then the call is only successful if:
                // - the token address has code
                // - the returndata is empty
                success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
            }
            mstore(0x40, fmp)
        }
    }

    /**
     * @dev Imitates a Solidity `token.transferFrom(from, to, value)` call, relaxing the requirement on the return
     * value: the return value is optional (but if data is returned, it must not be false).
     *
     * @param token The token targeted by the call.
     * @param from The sender of the tokens
     * @param to The recipient of the tokens
     * @param value The amount of token to transfer
     * @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
     */
    function _safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value,
        bool bubble
    ) private returns (bool success) {
        bytes4 selector = IERC20.transferFrom.selector;

        assembly ("memory-safe") {
            let fmp := mload(0x40)
            mstore(0x00, selector)
            mstore(0x04, and(from, shr(96, not(0))))
            mstore(0x24, and(to, shr(96, not(0))))
            mstore(0x44, value)
            success := call(gas(), token, 0, 0x00, 0x64, 0x00, 0x20)
            // if call success and return is true, all is good.
            // otherwise (not success or return is not true), we need to perform further checks
            if iszero(and(success, eq(mload(0x00), 1))) {
                // if the call was a failure and bubble is enabled, bubble the error
                if and(iszero(success), bubble) {
                    returndatacopy(fmp, 0x00, returndatasize())
                    revert(fmp, returndatasize())
                }
                // if the return value is not true, then the call is only successful if:
                // - the token address has code
                // - the returndata is empty
                success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
            }
            mstore(0x40, fmp)
            mstore(0x60, 0)
        }
    }

    /**
     * @dev Imitates a Solidity `token.approve(spender, value)` call, relaxing the requirement on the return value:
     * the return value is optional (but if data is returned, it must not be false).
     *
     * @param token The token targeted by the call.
     * @param spender The spender of the tokens
     * @param value The amount of token to transfer
     * @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
     */
    function _safeApprove(IERC20 token, address spender, uint256 value, bool bubble) private returns (bool success) {
        bytes4 selector = IERC20.approve.selector;

        assembly ("memory-safe") {
            let fmp := mload(0x40)
            mstore(0x00, selector)
            mstore(0x04, and(spender, shr(96, not(0))))
            mstore(0x24, value)
            success := call(gas(), token, 0, 0x00, 0x44, 0x00, 0x20)
            // if call success and return is true, all is good.
            // otherwise (not success or return is not true), we need to perform further checks
            if iszero(and(success, eq(mload(0x00), 1))) {
                // if the call was a failure and bubble is enabled, bubble the error
                if and(iszero(success), bubble) {
                    returndatacopy(fmp, 0x00, returndatasize())
                    revert(fmp, returndatasize())
                }
                // if the return value is not true, then the call is only successful if:
                // - the token address has code
                // - the returndata is empty
                success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
            }
            mstore(0x40, fmp)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    bool private _paused;

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 5 of 31 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `condition ? a : b`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `condition ? a : b`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory buffer) private pure returns (bool) {
        uint256 chunk;
        for (uint256 i = 0; i < buffer.length; i += 0x20) {
            // See _unsafeReadBytesOffset from utils/Bytes.sol
            assembly ("memory-safe") {
                chunk := mload(add(add(buffer, 0x20), i))
            }
            if (chunk >> (8 * saturatingSub(i + 0x20, buffer.length)) != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the first 16 bytes (most significant half).
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }

    /**
     * @dev Counts the number of leading zero bits in a uint256.
     */
    function clz(uint256 x) internal pure returns (uint256) {
        return ternary(x == 0, 256, 255 - log2(x));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ReentrancyGuardTransient.sol)

pragma solidity ^0.8.24;

import {TransientSlot} from "./TransientSlot.sol";

/**
 * @dev Variant of {ReentrancyGuard} that uses transient storage.
 *
 * NOTE: This variant only works on networks where EIP-1153 is available.
 *
 * _Available since v5.1._
 *
 * @custom:stateless
 */
abstract contract ReentrancyGuardTransient {
    using TransientSlot for *;

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant REENTRANCY_GUARD_STORAGE =
        0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    /**
     * @dev A `view` only version of {nonReentrant}. Use to block view functions
     * from being called, preventing reading from inconsistent contract state.
     *
     * CAUTION: This is a "view" modifier and does not change the reentrancy
     * status. Use it only on view functions. For payable or non-payable functions,
     * use the standard {nonReentrant} modifier instead.
     */
    modifier nonReentrantView() {
        _nonReentrantBeforeView();
        _;
    }

    function _nonReentrantBeforeView() private view {
        if (_reentrancyGuardEntered()) {
            revert ReentrancyGuardReentrantCall();
        }
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, REENTRANCY_GUARD_STORAGE.asBoolean().tload() will be false
        _nonReentrantBeforeView();

        // Any calls to nonReentrant after this point will fail
        _reentrancyGuardStorageSlot().asBoolean().tstore(true);
    }

    function _nonReentrantAfter() private {
        _reentrancyGuardStorageSlot().asBoolean().tstore(false);
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _reentrancyGuardStorageSlot().asBoolean().tload();
    }

    function _reentrancyGuardStorageSlot() internal pure virtual returns (bytes32) {
        return REENTRANCY_GUARD_STORAGE;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity >=0.6.2;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721.sol)

pragma solidity >=0.6.2;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol)

pragma solidity ^0.8.20;

import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    mapping(bytes32 role => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with an {AccessControlUnauthorizedAccount} error including the required role.
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /// @inheritdoc ERC165
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual returns (bool) {
        return _roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address callerConfirmation) public virtual {
        if (callerConfirmation != _msgSender()) {
            revert AccessControlBadConfirmation();
        }

        _revokeRole(role, callerConfirmation);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
        if (!hasRole(role, account)) {
            _roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
        if (hasRole(role, account)) {
            _roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, _msgSender());
            return true;
        } else {
            return false;
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.24;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    // slither-disable-next-line constable-states
    string private _nameFallback;
    // slither-disable-next-line constable-states
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /// @inheritdoc IERC5267
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature is invalid.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
     * is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
     * invalidation or nonces for replay protection.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     *
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Variant of {tryRecover} that takes a signature in calldata
     */
    function tryRecoverCalldata(
        bytes32 hash,
        bytes calldata signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, calldata slices would work here, but are
            // significantly more expensive (length check) than using calldataload in assembly.
            assembly ("memory-safe") {
                r := calldataload(signature.offset)
                s := calldataload(add(signature.offset, 0x20))
                v := byte(0, calldataload(add(signature.offset, 0x40)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
     * is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
     * invalidation or nonces for replay protection.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Variant of {recover} that takes a signature in calldata
     */
    function recoverCalldata(bytes32 hash, bytes calldata signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecoverCalldata(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r` and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Parse a signature into its `v`, `r` and `s` components. Supports 65-byte and 64-byte (ERC-2098)
     * formats. Returns (0,0,0) for invalid signatures.
     *
     * For 64-byte signatures, `v` is automatically normalized to 27 or 28.
     * For 65-byte signatures, `v` is returned as-is and MUST already be 27 or 28 for use with ecrecover.
     *
     * Consider validating the result before use, or use {tryRecover}/{recover} which perform full validation.
     */
    function parse(bytes memory signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
        assembly ("memory-safe") {
            // Check the signature length
            switch mload(signature)
            // - case 65: r,s,v signature (standard)
            case 65 {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
            case 64 {
                let vs := mload(add(signature, 0x40))
                r := mload(add(signature, 0x20))
                s := and(vs, shr(1, not(0)))
                v := add(shr(255, vs), 27)
            }
            default {
                r := 0
                s := 0
                v := 0
            }
        }
    }

    /**
     * @dev Variant of {parse} that takes a signature in calldata
     */
    function parseCalldata(bytes calldata signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
        assembly ("memory-safe") {
            // Check the signature length
            switch signature.length
            // - case 65: r,s,v signature (standard)
            case 65 {
                r := calldataload(signature.offset)
                s := calldataload(add(signature.offset, 0x20))
                v := byte(0, calldataload(add(signature.offset, 0x40)))
            }
            // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
            case 64 {
                let vs := calldataload(add(signature.offset, 0x20))
                r := calldataload(signature.offset)
                s := and(vs, shr(1, not(0)))
                v := add(shr(255, vs), 27)
            }
            default {
                r := 0
                s := 0
                v := 0
            }
        }
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 12 of 31 : Errors.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.24;

/**
 * @title Errors
 * @notice Central library for all custom errors used in ZAMASale contract
 * @dev All errors use custom revert reasons for gas efficiency and clarity
 */
library Errors {
    // ============== Address Validation Errors ==============
    /// @notice Thrown when an invalid address (typically zero address) is provided
    error InvalidAddress();

    // ============== Payment Calculation Errors ==============
    /// @notice Thrown when insufficient payment is provided for purchase
    error InsufficientPayment();
    /// @notice Thrown when contract has insufficient balance for operation
    error InsufficientBalance();
    /// @notice Thrown when price per token is zero or invalid
    error InvalidPrice();

    // ============== Sale Timing Errors ==============
    /// @notice Thrown when sale has not started yet
    error SaleNotStarted();
    /// @notice Thrown when sale has ended
    error SaleEnded();
    /// @notice Thrown when sale start time is invalid (in the past)
    error InvalidStartTime();
    /// @notice Thrown when sale duration is zero
    error InvalidDuration();

    // ============== Claim Timing Errors ==============
    /// @notice Thrown when claim is not available (before start or after end)
    error ClaimNotAvailable();
    /// @notice Thrown when claim time configuration is invalid
    error InvalidClaimTime();
    /// @notice Thrown when claim period is still active (for recovery operations)
    error ClaimPeriodActive();

    // ============== NFT-Related Errors ==============
    /// @notice Thrown when purchase would exceed NFT's allocation limit
    error ExceedsAllocation();
    /// @notice Thrown when allocation limit is zero or invalid
    error InvalidLimit();
    /// @notice Thrown when per-user NFT limit is exceeded
    error ExceedsUserLimit();

    // ============== Purchase Validation Errors ==============
    /// @notice Thrown when purchase amount is invalid (zero)
    error InvalidAmount();

    // ============== Claim Errors ==============
    /// @notice Thrown when there are no tokens to claim
    error NothingToClaim();

    // ============== Pause State Errors ==============
    /// @notice Thrown when sale is paused but operation requires it to be active
    error SalePaused();
    /// @notice Thrown when sale is not paused but operation requires it to be paused
    error SaleNotPaused();

    // ============== KYC/Whitelist Errors ==============
    /// @notice Thrown when caller is not the original claimer of the NFT
    error NotOriginalClaimer();
    /// @notice Thrown when caller has not completed KYC
    error NotKYCAllowed();

    // ============== Input Validation Errors ==============
    /// @notice Thrown when array lengths do not match
    error LengthMismatch();
    /// @notice Thrown when provided length is invalid (e.g., zero)
    error InvalidLength();

    // ============== Signature Validation Errors ==============
    /// @notice Thrown when signature deadline has expired
    error ExpiredSignature();
    /// @notice Thrown when signature is invalid or signer lacks required role
    error InvalidSignature();
    /// @notice Thrown when signature has already been used
    error SignatureAlreadyClaimed();
}

File 13 of 31 : IZAMASale.sol
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.24;

import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {IKycAllowlistRegistry} from "./IKycAllowlistRegistry.sol";

/**
 * @title IZAMASale
 * @notice Interface for ZAMA NFT-gated token sale contract
 * @dev All external and public functions of ZAMASale must be declared here
 */
interface IZAMASale {
    // ============================================
    // ENUMS
    // ============================================

    /**
     * @notice Status codes for purchase eligibility checks
     * @dev Used by canUserPurchaseWithNft to provide detailed feedback
     */
    enum PurchaseStatus {
        Eligible, // User can purchase with this NFT
        NotOriginalClaimer, // User is not the original claimer of this NFT
        NotKYCAllowed, // User has not completed KYC or is blocked
        AllocationExhausted, // NFT has reached its purchase limit
        SaleNotStarted, // Sale period has not begun
        SaleEnded, // Sale period has ended
        SalePaused, // Sale is currently paused
        UserNftLimitReached, // User has reached max NFTs per user limit
        InsufficientContractBalance // Contract has no tokens available for sale
    }

    // ============================================
    // IMMUTABLE GETTERS
    // ============================================

    /// @notice Get the NFT contract used for gating purchases
    /// @return The IERC721 NFT contract instance
    function NFT_CONTRACT() external view returns (IERC721);

    /// @notice Get the payment token contract (USDT, USDC, etc.)
    /// @return The IERC20Metadata payment token instance
    function PAYMENT_TOKEN() external view returns (IERC20Metadata);

    /// @notice Get the sale token contract (token being sold)
    /// @return The IERC20Metadata sale token instance
    function SALE_TOKEN() external view returns (IERC20Metadata);

    /// @notice Get the KYC registry contract
    /// @return The IKycAllowlistRegistry instance
    function KYC_REGISTRY() external view returns (IKycAllowlistRegistry);

    /// @notice Get price per 1 whole sale token in payment token smallest units
    /// @return Price per token (see PRICE_PER_TOKEN documentation for format)
    function PRICE_PER_TOKEN() external view returns (uint256);

    /// @notice Get maximum tokens each NFT can purchase
    /// @return Allocation per NFT in sale token smallest units
    function ALLOCATION_PER_NFT() external view returns (uint256);

    /// @notice Get maximum NFTs a single user can use for purchases
    /// @return Max NFTs per user (0 = no limit)
    function MAX_NFTS_PER_USER() external view returns (uint256);

    /// @notice Get UNIX timestamp when sale starts
    /// @return Sale start timestamp
    function SALE_START_TIME() external view returns (uint256);

    /// @notice Get UNIX timestamp when sale ends
    /// @return Sale end timestamp
    function SALE_END_TIME() external view returns (uint256);

    /// @notice Get UNIX timestamp when claims become available
    /// @return Claim start timestamp
    function CLAIM_START_TIME() external view returns (uint256);

    /// @notice Get optional UNIX timestamp when claim period ends (0 = no end)
    /// @return Claim end timestamp (0 if no deadline)
    function CLAIM_END_TIME() external view returns (uint256);

    // ============================================
    // ROLE GETTERS
    // ============================================

    /// @notice Get the PAUSER_ROLE identifier
    /// @return bytes32 role identifier for pausing
    function PAUSER_ROLE() external view returns (bytes32);

    /// @notice Get the WITHDRAWER_ROLE identifier
    /// @return bytes32 role identifier for withdrawals
    function WITHDRAWER_ROLE() external view returns (bytes32);

    /// @notice Get the RECOVERER_ROLE identifier
    /// @return bytes32 role identifier for recovery operations
    function RECOVERER_ROLE() external view returns (bytes32);

    /// @notice Get the CLAIMER_ADMIN_ROLE identifier
    /// @return bytes32 role identifier for setting original claimers
    function CLAIMER_ADMIN_ROLE() external view returns (bytes32);

    // ============================================
    // EIP-712 CONSTANTS
    // ============================================

    /// @notice Get the EIP-712 typehash for claimer registration
    /// @return bytes32 typehash for ClaimerRegistration struct
    function CLAIMER_REGISTRATION_TYPEHASH() external view returns (bytes32);

    // ============================================
    // STATE GETTERS
    // ============================================

    /// @notice Get purchased amount for a specific NFT
    /// @param nftId NFT ID to query
    /// @return Purchased amount in sale token smallest units
    function nftPurchased(uint256 nftId) external view returns (uint256);

    /// @notice Get claimable balance for a wallet
    /// @param user Wallet address to query
    /// @return Claimable amount in sale token smallest units
    function userClaimable(address user) external view returns (uint256);

    /// @notice Get total tokens sold
    /// @return Total sold tokens in sale token smallest units
    function totalTokensSold() external view returns (uint256);

    /// @notice Get total tokens claimed
    /// @return Total claimed tokens in sale token smallest units
    function totalTokensClaimed() external view returns (uint256);

    /// @notice Get total tokens unclaimed (sold but not yet claimed)
    /// @return Total unclaimed tokens in sale token smallest units
    function totalTokensUnclaimed() external view returns (uint256);

    /// @notice Get total payment received (calculated view)
    /// @return Total payment received in payment token smallest units
    function totalPaymentReceived() external view returns (uint256);

    /// @notice Check if sale is paused
    /// @return True if sale is paused, false otherwise
    function paused() external view returns (bool);

    /// @notice Check if an address is the original claimer of an NFT
    /// @param claimer Address to check
    /// @param nftId NFT ID to check
    /// @return True if address is original claimer of this NFT
    function isOriginalClaimer(address claimer, uint256 nftId) external view returns (bool);

    /// @notice Check if a signature has already been claimed
    /// @param signatureHash The struct hash of the signature
    /// @return True if the signature has been claimed
    function claimedSignatures(bytes32 signatureHash) external view returns (bool);

    /// @notice Check if a registration signature has been claimed
    /// @param claimer The claimer address
    /// @param nftId The NFT ID
    /// @param deadline The signature deadline
    /// @return True if already registered via signature
    function isRegistrationSignatureClaimed(address claimer, uint256 nftId, uint256 deadline)
        external
        view
        returns (bool);

    // ============================================
    // PURCHASE FUNCTIONS
    // ============================================

    /**
     * @notice Purchase tokens using an NFT
     * @param nftId The NFT ID to use for purchase (must be owned by caller)
     * @param saleTokenAmount Amount of sale tokens to purchase (in smallest units)
     */
    function purchase(uint256 nftId, uint256 saleTokenAmount) external;

    /**
     * @notice Calculate required payment for given token amount
     * @dev Uses ceiling division for seller-favorable rounding
     * @param saleTokenAmount Amount of sale tokens to purchase (in smallest units)
     * @return paymentAmount Required payment amount (in payment token smallest units)
     */
    function calculatePaymentAmount(uint256 saleTokenAmount) external view returns (uint256);

    // ============================================
    // CLAIM FUNCTIONS
    // ============================================

    /**
     * @notice Claim all purchased tokens for the caller
     * @dev Wallet-based claiming - users claim their full balance without specifying NFT IDs
     */
    function claim() external;

    // ============================================
    // VIEW FUNCTIONS
    // ============================================

    /// @notice Get claimable amount for the caller
    /// @return Claimable token amount for the caller's wallet
    function getClaimable() external view returns (uint256);

    /// @notice Get required payment for token amount
    /// @param saleTokenAmount Amount of sale tokens (in smallest units)
    /// @return Required payment amount (in payment token smallest units)
    function getTotalPayment(uint256 saleTokenAmount) external view returns (uint256);

    /// @notice Check if an NFT can be used for purchase
    /// @param nftId NFT ID to check
    /// @return True if NFT has remaining allocation and sale is active
    function canUseNft(uint256 nftId) external view returns (bool);

    /// @notice Get remaining allocation for an NFT
    /// @param nftId NFT ID to check
    /// @return Remaining tokens the NFT can still purchase
    function getRemainingAllocation(uint256 nftId) external view returns (uint256);

    /// @notice Get the number of NFTs a user has used for purchases
    /// @dev Only meaningful when MAX_NFTS_PER_USER > 0
    /// @param user User address to check
    /// @return Number of distinct NFTs used by the user for purchases
    function getUserNftCount(address user) external view returns (uint256);

    /// @notice Check if a user has used a specific NFT for purchase
    /// @dev Only meaningful when MAX_NFTS_PER_USER > 0
    /// @param user User address to check
    /// @param nftId NFT ID to check
    /// @return True if the user has used this NFT for purchase
    function hasUserUsedNft(address user, uint256 nftId) external view returns (bool);

    /// @notice Get remaining NFTs a user can still use for purchases
    /// @param user User address to check
    /// @return Remaining NFTs the user can use (type(uint256).max if no limit)
    function getRemainingUserNftLimit(address user) external view returns (uint256);

    /// @notice Check if a user can purchase with a specific NFT
    /// @param user User address to check
    /// @param nftId NFT ID to check
    /// @return status The purchase eligibility status (Eligible if user can purchase)
    function canUserPurchaseWithNft(address user, uint256 nftId) external view returns (PurchaseStatus status);

    // ============================================
    // ADMIN FUNCTIONS (ROLE-BASED)
    // ============================================

    /// @notice Pause the sale (emergency only)
    function pause() external;

    /// @notice Unpause the sale
    function unpause() external;

    /// @notice Withdraw collected payment tokens
    /// @param to Address to withdraw to
    /// @param amount Amount to withdraw (0 = withdraw all)
    function withdrawPaymentTokens(address to, uint256 amount) external;

    /// @notice Withdraw unsold sale tokens
    /// @param to Address to withdraw to
    /// @param amount Amount to withdraw (0 = withdraw all unsold)
    function withdrawSaleTokens(address to, uint256 amount) external;

    /// @notice Recover ERC20 tokens accidentally sent to contract
    /// @param token Token address to recover
    /// @param to Address to send recovered tokens
    function recoverERC20(address token, address to) external;

    /// @notice Recover unclaimed tokens after claim deadline
    /// @param to Address to send recovered tokens to
    function recoverUnclaimedTokens(address to) external;

    /// @notice Set original claimers for NFTs in batch
    /// @param claimers Array of claimer addresses
    /// @param nftIds Array of NFT IDs (parallel with claimers)
    function setOriginalClaimers(address[] calldata claimers, uint256[] calldata nftIds) external;

    /// @notice Remove original claimers for NFTs in batch
    /// @param claimers Array of claimer addresses
    /// @param nftIds Array of NFT IDs (parallel with claimers)
    function removeOriginalClaimers(address[] calldata claimers, uint256[] calldata nftIds) external;

    /// @notice Self-register as original claimer using an admin-signed EIP-712 signature
    /// @param nftId The NFT ID to register as claimer for
    /// @param deadline Timestamp after which the signature is no longer valid
    /// @param signature ECDSA signature from a CLAIMER_ADMIN_ROLE holder
    function registerAsClaimer(uint256 nftId, uint256 deadline, bytes calldata signature) external;

    // ============================================
    // EVENTS
    // ============================================

    /// @notice Emitted when sale is initialized with all configuration parameters
    /// @param nftContract Address of the NFT contract
    /// @param paymentToken Address of the payment token
    /// @param saleToken Address of the sale token
    /// @param pricePerToken Price per token in payment token smallest units
    /// @param allocationPerNft Allocation per NFT in sale token smallest units
    /// @param maxNftsPerUser Maximum NFTs per user (0 = no limit)
    /// @param saleStartTime UNIX timestamp when sale starts
    /// @param saleEndTime UNIX timestamp when sale ends
    /// @param claimStartTime UNIX timestamp when claims become available
    /// @param claimEndTime UNIX timestamp when claim period ends (0 = no end)
    event SaleInitialized(
        address indexed nftContract,
        address indexed paymentToken,
        address indexed saleToken,
        uint256 pricePerToken,
        uint256 allocationPerNft,
        uint256 maxNftsPerUser,
        uint256 saleStartTime,
        uint256 saleEndTime,
        uint256 claimStartTime,
        uint256 claimEndTime
    );

    /// @notice Emitted when tokens are purchased
    /// @param buyer Address of the buyer
    /// @param nftId NFT ID used for purchase
    /// @param saleTokenAmount Amount of sale tokens purchased
    /// @param paymentAmount Amount of payment tokens paid
    event TokensPurchased(address indexed buyer, uint256 indexed nftId, uint256 saleTokenAmount, uint256 paymentAmount);

    /// @notice Emitted when tokens are claimed
    /// @param claimer Address of the claimer
    /// @param amount Amount of tokens claimed
    event TokensClaimed(address indexed claimer, uint256 amount);

    /// @notice Emitted when sale is paused
    /// @param admin Address of the admin who paused the sale
    /// @param timestamp When the sale was paused
    event SalePaused(address indexed admin, uint256 timestamp);

    /// @notice Emitted when sale is unpaused
    /// @param admin Address of the admin who unpaused the sale
    /// @param timestamp When the sale was unpaused
    event SaleUnpaused(address indexed admin, uint256 timestamp);

    /// @notice Emitted when payment tokens are withdrawn
    /// @param to Address that received the withdrawn tokens
    /// @param amount Amount withdrawn
    event PaymentWithdrawn(address indexed to, uint256 amount);

    /// @notice Emitted when sale tokens are withdrawn
    /// @param to Address that received the withdrawn tokens
    /// @param amount Amount withdrawn
    event TokensWithdrawn(address indexed to, uint256 amount);

    /// @notice Emitted when ERC20 tokens are recovered
    /// @param token Address of the recovered token
    /// @param to Address that received the recovered tokens
    /// @param amount Amount recovered
    event ERC20Recovered(address indexed token, address indexed to, uint256 amount);

    /// @notice Emitted when unclaimed tokens are recovered after deadline
    /// @param to Address that received the recovered tokens
    /// @param amount Amount of unclaimed tokens recovered
    event UnclaimedTokensRecovered(address indexed to, uint256 amount);

    /// @notice Emitted when original claimers are set in batch
    /// @param count Number of claimers set
    event OriginalClaimersSet(uint256 count);

    /// @notice Emitted when original claimers are removed in batch
    /// @param count Number of claimers removed
    event OriginalClaimersRemoved(uint256 count);

    /// @notice Emitted when a user self-registers as original claimer via signature
    /// @param claimer Address that registered as claimer
    /// @param nftId NFT ID they registered for
    event OriginalClaimerRegistered(address indexed claimer, uint256 indexed nftId);
}

// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;

/// @title IKycAllowlistRegistry
/// @notice Interface for KYC allowlist verification
/// @dev Used by ZAMASale to verify users have completed KYC before purchasing
interface IKycAllowlistRegistry {
    /// @notice Check if an address is allowed (verified AND not blocked)
    /// @param user Address to check
    /// @return True if user is verified and not blocked
    function isAllowed(address user) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)

pragma solidity >=0.4.16;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)

pragma solidity >=0.6.2;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 19 of 31 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in a uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in a uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev A uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/TransientSlot.sol)
// This file was procedurally generated from scripts/generate/templates/TransientSlot.js.

pragma solidity ^0.8.24;

/**
 * @dev Library for reading and writing value-types to specific transient storage slots.
 *
 * Transient slots are often used to store temporary values that are removed after the current transaction.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 *  * Example reading and writing values using transient storage:
 * ```solidity
 * contract Lock {
 *     using TransientSlot for *;
 *
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
 *
 *     modifier locked() {
 *         require(!_LOCK_SLOT.asBoolean().tload());
 *
 *         _LOCK_SLOT.asBoolean().tstore(true);
 *         _;
 *         _LOCK_SLOT.asBoolean().tstore(false);
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library TransientSlot {
    /**
     * @dev UDVT that represents a slot holding an address.
     */
    type AddressSlot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a AddressSlot.
     */
    function asAddress(bytes32 slot) internal pure returns (AddressSlot) {
        return AddressSlot.wrap(slot);
    }

    /**
     * @dev UDVT that represents a slot holding a bool.
     */
    type BooleanSlot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a BooleanSlot.
     */
    function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) {
        return BooleanSlot.wrap(slot);
    }

    /**
     * @dev UDVT that represents a slot holding a bytes32.
     */
    type Bytes32Slot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a Bytes32Slot.
     */
    function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) {
        return Bytes32Slot.wrap(slot);
    }

    /**
     * @dev UDVT that represents a slot holding a uint256.
     */
    type Uint256Slot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a Uint256Slot.
     */
    function asUint256(bytes32 slot) internal pure returns (Uint256Slot) {
        return Uint256Slot.wrap(slot);
    }

    /**
     * @dev UDVT that represents a slot holding a int256.
     */
    type Int256Slot is bytes32;

    /**
     * @dev Cast an arbitrary slot to a Int256Slot.
     */
    function asInt256(bytes32 slot) internal pure returns (Int256Slot) {
        return Int256Slot.wrap(slot);
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(AddressSlot slot) internal view returns (address value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(AddressSlot slot, address value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(BooleanSlot slot) internal view returns (bool value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(BooleanSlot slot, bool value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(Bytes32Slot slot) internal view returns (bytes32 value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(Bytes32Slot slot, bytes32 value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(Uint256Slot slot) internal view returns (uint256 value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(Uint256Slot slot, uint256 value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }

    /**
     * @dev Load the value held at location `slot` in transient storage.
     */
    function tload(Int256Slot slot) internal view returns (int256 value) {
        assembly ("memory-safe") {
            value := tload(slot)
        }
    }

    /**
     * @dev Store `value` at location `slot` in transient storage.
     */
    function tstore(Int256Slot slot, int256 value) internal {
        assembly ("memory-safe") {
            tstore(slot, value)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol)

pragma solidity >=0.8.4;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted to signal this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /// @inheritdoc IERC165
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.24;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    error ERC5267ExtensionsNotSupported();

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
     */
    function toDataWithIntendedValidatorHash(
        address validator,
        bytes32 messageHash
    ) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, hex"19_00")
            mstore(0x02, shl(96, validator))
            mstore(0x16, messageHash)
            digest := keccak256(0x00, 0x36)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns the EIP-712 domain separator constructed from an `eip712Domain`. See {IERC5267-eip712Domain}
     *
     * This function dynamically constructs the domain separator based on which fields are present in the
     * `fields` parameter. It contains flags that indicate which domain fields are present:
     *
     * * Bit 0 (0x01): name
     * * Bit 1 (0x02): version
     * * Bit 2 (0x04): chainId
     * * Bit 3 (0x08): verifyingContract
     * * Bit 4 (0x10): salt
     *
     * Arguments that correspond to fields which are not present in `fields` are ignored. For example, if `fields` is
     * `0x0f` (`0b01111`), then the `salt` parameter is ignored.
     */
    function toDomainSeparator(
        bytes1 fields,
        string memory name,
        string memory version,
        uint256 chainId,
        address verifyingContract,
        bytes32 salt
    ) internal pure returns (bytes32 hash) {
        return
            toDomainSeparator(
                fields,
                keccak256(bytes(name)),
                keccak256(bytes(version)),
                chainId,
                verifyingContract,
                salt
            );
    }

    /// @dev Variant of {toDomainSeparator-bytes1-string-string-uint256-address-bytes32} that uses hashed name and version.
    function toDomainSeparator(
        bytes1 fields,
        bytes32 nameHash,
        bytes32 versionHash,
        uint256 chainId,
        address verifyingContract,
        bytes32 salt
    ) internal pure returns (bytes32 hash) {
        bytes32 domainTypeHash = toDomainTypeHash(fields);

        assembly ("memory-safe") {
            // align fields to the right for easy processing
            fields := shr(248, fields)

            // FMP used as scratch space
            let fmp := mload(0x40)
            mstore(fmp, domainTypeHash)

            let ptr := add(fmp, 0x20)
            if and(fields, 0x01) {
                mstore(ptr, nameHash)
                ptr := add(ptr, 0x20)
            }
            if and(fields, 0x02) {
                mstore(ptr, versionHash)
                ptr := add(ptr, 0x20)
            }
            if and(fields, 0x04) {
                mstore(ptr, chainId)
                ptr := add(ptr, 0x20)
            }
            if and(fields, 0x08) {
                mstore(ptr, verifyingContract)
                ptr := add(ptr, 0x20)
            }
            if and(fields, 0x10) {
                mstore(ptr, salt)
                ptr := add(ptr, 0x20)
            }

            hash := keccak256(fmp, sub(ptr, fmp))
        }
    }

    /// @dev Builds an EIP-712 domain type hash depending on the `fields` provided, following https://eips.ethereum.org/EIPS/eip-5267[ERC-5267]
    function toDomainTypeHash(bytes1 fields) internal pure returns (bytes32 hash) {
        if (fields & 0x20 == 0x20) revert ERC5267ExtensionsNotSupported();

        assembly ("memory-safe") {
            // align fields to the right for easy processing
            fields := shr(248, fields)

            // FMP used as scratch space
            let fmp := mload(0x40)
            mstore(fmp, "EIP712Domain(")

            let ptr := add(fmp, 0x0d)
            // name field
            if and(fields, 0x01) {
                mstore(ptr, "string name,")
                ptr := add(ptr, 0x0c)
            }
            // version field
            if and(fields, 0x02) {
                mstore(ptr, "string version,")
                ptr := add(ptr, 0x0f)
            }
            // chainId field
            if and(fields, 0x04) {
                mstore(ptr, "uint256 chainId,")
                ptr := add(ptr, 0x10)
            }
            // verifyingContract field
            if and(fields, 0x08) {
                mstore(ptr, "address verifyingContract,")
                ptr := add(ptr, 0x1a)
            }
            // salt field
            if and(fields, 0x10) {
                mstore(ptr, "bytes32 salt,")
                ptr := add(ptr, 0x0d)
            }
            // if any field is enabled, remove the trailing comma
            ptr := sub(ptr, iszero(iszero(and(fields, 0x1f))))
            // add the closing brace
            mstore8(ptr, 0x29) // add closing brace
            ptr := add(ptr, 1)

            hash := keccak256(fmp, sub(ptr, fmp))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 0x1f) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(0x20);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 0x1f) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 0x20) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {toShortStringWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 25 of 31 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)

pragma solidity >=0.4.16;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 26 of 31 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)

pragma solidity >=0.4.16;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 27 of 31 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)

pragma solidity >=0.4.16;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Strings.sol)

pragma solidity ^0.8.24;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
import {Bytes} from "./Bytes.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(add(buffer, 0x20), length)
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `bytes` buffer to its ASCII `string` hexadecimal representation.
     */
    function toHexString(bytes memory input) internal pure returns (string memory) {
        unchecked {
            bytes memory buffer = new bytes(2 * input.length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 0; i < input.length; ++i) {
                uint8 v = uint8(input[i]);
                buffer[2 * i + 2] = HEX_DIGITS[v >> 4];
                buffer[2 * i + 3] = HEX_DIGITS[v & 0xf];
            }
            return string(buffer);
        }
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return Bytes.equal(bytes(a), bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     *
     * NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
     * RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
     * characters that are not in this range, but other tooling may provide different results.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i = 0; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Bytes.sol)

pragma solidity ^0.8.24;

import {Math} from "./math/Math.sol";

/**
 * @dev Bytes operations.
 */
library Bytes {
    /**
     * @dev Forward search for `s` in `buffer`
     * * If `s` is present in the buffer, returns the index of the first instance
     * * If `s` is not present in the buffer, returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
     */
    function indexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
        return indexOf(buffer, s, 0);
    }

    /**
     * @dev Forward search for `s` in `buffer` starting at position `pos`
     * * If `s` is present in the buffer (at or after `pos`), returns the index of the next instance
     * * If `s` is not present in the buffer (at or after `pos`), returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
     */
    function indexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
        uint256 length = buffer.length;
        for (uint256 i = pos; i < length; ++i) {
            if (bytes1(_unsafeReadBytesOffset(buffer, i)) == s) {
                return i;
            }
        }
        return type(uint256).max;
    }

    /**
     * @dev Backward search for `s` in `buffer`
     * * If `s` is present in the buffer, returns the index of the last instance
     * * If `s` is not present in the buffer, returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
     */
    function lastIndexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
        return lastIndexOf(buffer, s, type(uint256).max);
    }

    /**
     * @dev Backward search for `s` in `buffer` starting at position `pos`
     * * If `s` is present in the buffer (at or before `pos`), returns the index of the previous instance
     * * If `s` is not present in the buffer (at or before `pos`), returns type(uint256).max
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
     */
    function lastIndexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
        unchecked {
            uint256 length = buffer.length;
            for (uint256 i = Math.min(Math.saturatingAdd(pos, 1), length); i > 0; --i) {
                if (bytes1(_unsafeReadBytesOffset(buffer, i - 1)) == s) {
                    return i - 1;
                }
            }
            return type(uint256).max;
        }
    }

    /**
     * @dev Copies the content of `buffer`, from `start` (included) to the end of `buffer` into a new bytes object in
     * memory.
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
     */
    function slice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
        return slice(buffer, start, buffer.length);
    }

    /**
     * @dev Copies the content of `buffer`, from `start` (included) to `end` (excluded) into a new bytes object in
     * memory. The `end` argument is truncated to the length of the `buffer`.
     *
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
     */
    function slice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
        // sanitize
        end = Math.min(end, buffer.length);
        start = Math.min(start, end);

        // allocate and copy
        bytes memory result = new bytes(end - start);
        assembly ("memory-safe") {
            mcopy(add(result, 0x20), add(add(buffer, 0x20), start), sub(end, start))
        }

        return result;
    }

    /**
     * @dev Moves the content of `buffer`, from `start` (included) to the end of `buffer` to the start of that buffer.
     *
     * NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
     */
    function splice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
        return splice(buffer, start, buffer.length);
    }

    /**
     * @dev Moves the content of `buffer`, from `start` (included) to end (excluded) to the start of that buffer. The
     * `end` argument is truncated to the length of the `buffer`.
     *
     * NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
     * NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
     */
    function splice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
        // sanitize
        end = Math.min(end, buffer.length);
        start = Math.min(start, end);

        // allocate and copy
        assembly ("memory-safe") {
            mcopy(add(buffer, 0x20), add(add(buffer, 0x20), start), sub(end, start))
            mstore(buffer, sub(end, start))
        }

        return buffer;
    }

    /**
     * @dev Replaces bytes in `buffer` starting at `pos` with all bytes from `replacement`.
     *
     * Parameters are clamped to valid ranges (i.e. `pos` is clamped to `[0, buffer.length]`).
     * If `pos >= buffer.length`, no replacement occurs and the buffer is returned unchanged.
     *
     * NOTE: This function modifies the provided buffer in place.
     */
    function replace(bytes memory buffer, uint256 pos, bytes memory replacement) internal pure returns (bytes memory) {
        return replace(buffer, pos, replacement, 0, replacement.length);
    }

    /**
     * @dev Replaces bytes in `buffer` starting at `pos` with bytes from `replacement` starting at `offset`.
     * Copies at most `length` bytes from `replacement` to `buffer`.
     *
     * Parameters are clamped to valid ranges (i.e. `pos` is clamped to `[0, buffer.length]`, `offset` is
     * clamped to `[0, replacement.length]`, and `length` is clamped to `min(length, replacement.length - offset,
     * buffer.length - pos))`. If `pos >= buffer.length` or `offset >= replacement.length`, no replacement occurs
     * and the buffer is returned unchanged.
     *
     * NOTE: This function modifies the provided buffer in place.
     */
    function replace(
        bytes memory buffer,
        uint256 pos,
        bytes memory replacement,
        uint256 offset,
        uint256 length
    ) internal pure returns (bytes memory) {
        // sanitize
        pos = Math.min(pos, buffer.length);
        offset = Math.min(offset, replacement.length);
        length = Math.min(length, Math.min(replacement.length - offset, buffer.length - pos));

        // allocate and copy
        assembly ("memory-safe") {
            mcopy(add(add(buffer, 0x20), pos), add(add(replacement, 0x20), offset), length)
        }

        return buffer;
    }

    /**
     * @dev Concatenate an array of bytes into a single bytes object.
     *
     * For fixed bytes types, we recommend using the solidity built-in `bytes.concat` or (equivalent)
     * `abi.encodePacked`.
     *
     * NOTE: this could be done in assembly with a single loop that expands starting at the FMP, but that would be
     * significantly less readable. It might be worth benchmarking the savings of the full-assembly approach.
     */
    function concat(bytes[] memory buffers) internal pure returns (bytes memory) {
        uint256 length = 0;
        for (uint256 i = 0; i < buffers.length; ++i) {
            length += buffers[i].length;
        }

        bytes memory result = new bytes(length);

        uint256 offset = 0x20;
        for (uint256 i = 0; i < buffers.length; ++i) {
            bytes memory input = buffers[i];
            assembly ("memory-safe") {
                mcopy(add(result, offset), add(input, 0x20), mload(input))
            }
            unchecked {
                offset += input.length;
            }
        }

        return result;
    }

    /**
     * @dev Split each byte in `input` into two nibbles (4 bits each)
     *
     * Example: hex"01234567" → hex"0001020304050607"
     */
    function toNibbles(bytes memory input) internal pure returns (bytes memory output) {
        assembly ("memory-safe") {
            let length := mload(input)
            output := mload(0x40)
            mstore(0x40, add(add(output, 0x20), mul(length, 2)))
            mstore(output, mul(length, 2))
            for {
                let i := 0
            } lt(i, length) {
                i := add(i, 0x10)
            } {
                let chunk := shr(128, mload(add(add(input, 0x20), i)))
                chunk := and(
                    0x0000000000000000ffffffffffffffff0000000000000000ffffffffffffffff,
                    or(shl(64, chunk), chunk)
                )
                chunk := and(
                    0x00000000ffffffff00000000ffffffff00000000ffffffff00000000ffffffff,
                    or(shl(32, chunk), chunk)
                )
                chunk := and(
                    0x0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff,
                    or(shl(16, chunk), chunk)
                )
                chunk := and(
                    0x00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff,
                    or(shl(8, chunk), chunk)
                )
                chunk := and(
                    0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f,
                    or(shl(4, chunk), chunk)
                )
                mstore(add(add(output, 0x20), mul(i, 2)), chunk)
            }
        }
    }

    /**
     * @dev Returns true if the two byte buffers are equal.
     */
    function equal(bytes memory a, bytes memory b) internal pure returns (bool) {
        return a.length == b.length && keccak256(a) == keccak256(b);
    }

    /**
     * @dev Reverses the byte order of a bytes32 value, converting between little-endian and big-endian.
     * Inspired by https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel[Reverse Parallel]
     */
    function reverseBytes32(bytes32 value) internal pure returns (bytes32) {
        value = // swap bytes
            ((value >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) |
            ((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
        value = // swap 2-byte long pairs
            ((value >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) |
            ((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
        value = // swap 4-byte long pairs
            ((value >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) |
            ((value & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);
        value = // swap 8-byte long pairs
            ((value >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) |
            ((value & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);
        return (value >> 128) | (value << 128); // swap 16-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 128-bit values.
    function reverseBytes16(bytes16 value) internal pure returns (bytes16) {
        value = // swap bytes
            ((value & 0xFF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
            ((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
        value = // swap 2-byte long pairs
            ((value & 0xFFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
            ((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
        value = // swap 4-byte long pairs
            ((value & 0xFFFFFFFF00000000FFFFFFFF00000000) >> 32) |
            ((value & 0x00000000FFFFFFFF00000000FFFFFFFF) << 32);
        return (value >> 64) | (value << 64); // swap 8-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 64-bit values.
    function reverseBytes8(bytes8 value) internal pure returns (bytes8) {
        value = ((value & 0xFF00FF00FF00FF00) >> 8) | ((value & 0x00FF00FF00FF00FF) << 8); // swap bytes
        value = ((value & 0xFFFF0000FFFF0000) >> 16) | ((value & 0x0000FFFF0000FFFF) << 16); // swap 2-byte long pairs
        return (value >> 32) | (value << 32); // swap 4-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 32-bit values.
    function reverseBytes4(bytes4 value) internal pure returns (bytes4) {
        value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); // swap bytes
        return (value >> 16) | (value << 16); // swap 2-byte long pairs
    }

    /// @dev Same as {reverseBytes32} but optimized for 16-bit values.
    function reverseBytes2(bytes2 value) internal pure returns (bytes2) {
        return (value >> 8) | (value << 8);
    }

    /**
     * @dev Counts the number of leading zero bits a bytes array. Returns `8 * buffer.length`
     * if the buffer is all zeros.
     */
    function clz(bytes memory buffer) internal pure returns (uint256) {
        for (uint256 i = 0; i < buffer.length; i += 0x20) {
            bytes32 chunk = _unsafeReadBytesOffset(buffer, i);
            if (chunk != bytes32(0)) {
                return Math.min(8 * i + Math.clz(uint256(chunk)), 8 * buffer.length);
            }
        }
        return 8 * buffer.length;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(add(buffer, 0x20), offset))
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": true
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"nftContract_","type":"address"},{"internalType":"address","name":"paymentToken_","type":"address"},{"internalType":"address","name":"saleToken_","type":"address"},{"internalType":"address","name":"kycRegistry_","type":"address"},{"internalType":"uint256","name":"pricePerToken_","type":"uint256"},{"internalType":"uint256","name":"allocationPerNft_","type":"uint256"},{"internalType":"uint256","name":"maxNftsPerUser_","type":"uint256"},{"internalType":"uint256","name":"saleStartTime_","type":"uint256"},{"internalType":"uint256","name":"saleDuration_","type":"uint256"},{"internalType":"uint256","name":"claimStartTime_","type":"uint256"},{"internalType":"uint256","name":"claimEndTime_","type":"uint256"},{"internalType":"address","name":"admin","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ClaimNotAvailable","type":"error"},{"inputs":[],"name":"ClaimPeriodActive","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExceedsAllocation","type":"error"},{"inputs":[],"name":"ExceedsUserLimit","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"ExpiredSignature","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InsufficientPayment","type":"error"},{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"InvalidClaimTime","type":"error"},{"inputs":[],"name":"InvalidDuration","type":"error"},{"inputs":[],"name":"InvalidLength","type":"error"},{"inputs":[],"name":"InvalidLimit","type":"error"},{"inputs":[],"name":"InvalidPrice","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidStartTime","type":"error"},{"inputs":[],"name":"LengthMismatch","type":"error"},{"inputs":[],"name":"NotKYCAllowed","type":"error"},{"inputs":[],"name":"NotOriginalClaimer","type":"error"},{"inputs":[],"name":"NothingToClaim","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SaleEnded","type":"error"},{"inputs":[],"name":"SaleNotPaused","type":"error"},{"inputs":[],"name":"SaleNotStarted","type":"error"},{"inputs":[],"name":"SalePaused","type":"error"},{"inputs":[],"name":"SignatureAlreadyClaimed","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ERC20Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":true,"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"OriginalClaimerRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"count","type":"uint256"}],"name":"OriginalClaimersRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"count","type":"uint256"}],"name":"OriginalClaimersSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PaymentWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"nftContract","type":"address"},{"indexed":true,"internalType":"address","name":"paymentToken","type":"address"},{"indexed":true,"internalType":"address","name":"saleToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"pricePerToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"allocationPerNft","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"maxNftsPerUser","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"saleStartTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"saleEndTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"claimStartTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"claimEndTime","type":"uint256"}],"name":"SaleInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"admin","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"SalePaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"admin","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"SaleUnpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":true,"internalType":"uint256","name":"nftId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"saleTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"paymentAmount","type":"uint256"}],"name":"TokensPurchased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"UnclaimedTokensRecovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"ALLOCATION_PER_NFT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLAIMER_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLAIMER_REGISTRATION_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLAIM_END_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLAIM_START_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"KYC_REGISTRY","outputs":[{"internalType":"contract IKycAllowlistRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_NFTS_PER_USER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NFT_CONTRACT","outputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAYMENT_TOKEN","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRICE_PER_TOKEN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RECOVERER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_END_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_START_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_TOKEN","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_TOKEN_DECIMALS","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WITHDRAWER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"saleTokenAmount","type":"uint256"}],"name":"calculatePaymentAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"canUseNft","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"canUserPurchaseWithNft","outputs":[{"internalType":"enum IZAMASale.PurchaseStatus","name":"status","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"signatureHash","type":"bytes32"}],"name":"claimedSignatures","outputs":[{"internalType":"bool","name":"isClaimed","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getClaimable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"getRemainingAllocation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getRemainingUserNftLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"saleTokenAmount","type":"uint256"}],"name":"getTotalPayment","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserNftCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"hasUserUsedNft","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"isOriginalClaimer","outputs":[{"internalType":"bool","name":"isClaimer","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"isRegistrationSignatureClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"nftPurchased","outputs":[{"internalType":"uint256","name":"purchasedAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"},{"internalType":"uint256","name":"saleTokenAmount","type":"uint256"}],"name":"purchase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"recoverUnclaimedTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"registerAsClaimer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"claimers","type":"address[]"},{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"name":"removeOriginalClaimers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"claimers","type":"address[]"},{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"name":"setOriginalClaimers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalPaymentReceived","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokensClaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokensSold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokensUnclaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userClaimable","outputs":[{"internalType":"uint256","name":"claimableAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userNftCount","outputs":[{"internalType":"uint256","name":"count","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"userNftUsed","outputs":[{"internalType":"bool","name":"used","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawPaymentTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawSaleTokens","outputs":[],"stateMutability":"nonpayable","type":"function"}]

610300604052346200058c57610180620039e08038038091620000258261030062000704565b61030039126200058c576200003c61030062000728565b6200004961032062000728565b906200005761034062000728565b6200006461036062000728565b610380516103a0516103c0516103e05161040051610420516104405195979096919590949392916200009861046062000728565b91604051620000a781620006b8565b600881526020810190675a414d4153616c6560c01b825260405191620000cd83620006b8565b600183526020830191603160f81b8352620000e88162000a29565b61012052620000f78462000bf8565b61014052519020918260e05251902080610100524660a0526040519060208201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8452604083015260608201524660808201523060a082015260a081526200016081620006e8565b5190206080523060c0526001600160a01b038b16158015620006a6575b801562000694575b801562000682575b801562000670575b620005a4576001600160a01b038c811690881614620005a45787156200065e5789156200064d5785156200063b57620001cf88856200073d565b891062000629574284106200061757801515806200060c575b620005fa57610280526040516301ffc9a760e01b81526380ac58cd60e01b60048201526020816024816001600160a01b038f165afa5f9181620005b6575b506200023e5760405163e6c4247b60e01b8152600490fd5b15620005a4576001600160a01b038a811661016052908116610180528a81166101a05285166101c081905260405163313ce56760e01b81529790602090899060049082905afa97881562000599575f9862000550575b50876102c052604d60ff8916116200053c57620002f860e097620003369460ff7fcbcd782e5e8a73171e7abe53465b7a6a8dc34512f8e690baecd2708a7009be2e9b16600a0a6102e0528b6101e0528761020052866102a05280610220526200073d565b61024052610260526200030b816200074b565b506200031781620007bb565b5062000323816200085b565b506200032f81620008f5565b506200098f565b5061022051610240516102605161028051604080519a8b5260208b0196909652948901939093526060880191909152608087015260a086015260c08501526001600160a01b03908116958116941692a4604051612bfd62000da382396080518161278c015260a05181612858015260c05181612756015260e051816127db0152610100518161280101526101205181610af001526101405181610b1a01526101605181611d830152610180518181816107b701528181610f7b015261204401526101a05181818161090801528181610a4c01528181611132015261145a01526101c05181818161068201528181610a1101528181610d730152818161108c0152818161184601528181611b09015261215c01526101e0518181816105cc01528181610c9001528181610fde01526119b001526102005181818161040601528181611041015281816113f80152818161208801526122c8015261022051818181610ef0015281816113cd015281816119ec01526120af015261024051818181610f17015281816113a201528181611d4c01526120d601526102605181818161175c01526117c90152610280518181816117f001528181611adb0152611d1201526102a05181818161100601528181611caf01528181611f0d015261210701526102c0518161071e01526102e0518181816105aa01528181610fbd015261198e0152612bfd90f35b634e487b7160e01b5f52601160045260245ffd5b9097506020813d60201162000590575b816200056f6020938362000704565b810103126200058c575160ff811681036200058c57965f62000294565b5f80fd5b3d915062000560565b6040513d5f823e3d90fd5b60405163e6c4247b60e01b8152600490fd5b9091506020813d602011620005f1575b81620005d56020938362000704565b810103126200058c575180151581036200058c57905f62000226565b3d9150620005c6565b604051631221b97b60e01b8152600490fd5b5088811115620001e8565b604051632ca4094f60e21b8152600490fd5b604051633c21f90f60e01b8152600490fd5b60405163e55fb50960e01b8152600490fd5b60405162bfc92160e01b8152600490fd5b604051637616640160e01b8152600490fd5b506001600160a01b0383161562000195565b506001600160a01b038216156200018d565b506001600160a01b0387161562000185565b506001600160a01b038c16156200017d565b604081019081106001600160401b03821117620006d457604052565b634e487b7160e01b5f52604160045260245ffd5b60c081019081106001600160401b03821117620006d457604052565b601f909101601f19168101906001600160401b03821190821017620006d457604052565b51906001600160a01b03821682036200058c57565b919082018092116200053c57565b6001600160a01b03165f8181525f80516020620039c0833981519152602052604090205460ff16620007b6575f8181525f80516020620039c083398151915260205260408120805460ff191660011790553391905f80516020620039a08339815191528180a4600190565b505f90565b6001600160a01b03165f8181527ff7c9542c591017a21c74b6f3fab6263c7952fc0aaf9db4c22a2a04ddc7f8674f60205260409020547f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a919060ff166200085557815f525f60205260405f20815f5260205260405f20600160ff1982541617905533915f80516020620039a08339815191525f80a4600190565b50505f90565b6001600160a01b03165f8181527f10d7f32a6930100c7e03899d583513ff548ac958e569f497049662337b6f49b960205260409020547f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e4919060ff166200085557815f525f60205260405f20815f5260205260405f20600160ff1982541617905533915f80516020620039a08339815191525f80a4600190565b6001600160a01b03165f8181527fa921dec465a2db617c1283eb3fd0c7be03ef4a04bbcfeba0659a6baa62f9000160205260409020547fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc919060ff166200085557815f525f60205260405f20815f5260205260405f20600160ff1982541617905533915f80516020620039a08339815191525f80a4600190565b6001600160a01b03165f8181527f8ea8301bd621a32004df4f21098767ec870c7628c47ac2806560bce50561f0aa60205260409020547f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d4919060ff166200085557815f525f60205260405f20815f5260205260405f20600160ff1982541617905533915f80516020620039a08339815191525f80a4600190565b80516020908181101562000ac35750601f82511162000a64578082519201519080831062000a5657501790565b825f19910360031b1b161790565b90604051809263305a27a960e01b82528060048301528251908160248401525f935b82851062000aa9575050604492505f838284010152601f80199101168101030190fd5b848101820151868601604401529381019385935062000a86565b906001600160401b038211620006d457600254926001938481811c9116801562000bed575b8382101462000bd957601f811162000ba2575b5081601f841160011462000b3a57509282939183925f9462000b2e575b50501b915f199060031b1c19161760025560ff90565b015192505f8062000b18565b919083601f19811660025f52845f20945f905b8883831062000b87575050501062000b6e575b505050811b0160025560ff90565b01515f1960f88460031b161c191690555f808062000b60565b85870151885590960195948501948793509081019062000b4d565b60025f5284601f845f20920160051c820191601f860160051c015b82811062000bcd57505062000afb565b5f815501859062000bbd565b634e487b7160e01b5f52602260045260245ffd5b90607f169062000ae8565b8051602091908281101562000c86575090601f82511162000c27578082519201519080831062000a5657501790565b90604051809263305a27a960e01b82528060048301528251908160248401525f935b82851062000c6c575050604492505f838284010152601f80199101168101030190fd5b848101820151868601604401529381019385935062000c49565b6001600160401b038111620006d4576003928354926001938481811c9116801562000d97575b8382101462000bd957601f811162000d61575b5081601f841160011462000cfc57509282939183925f9462000cf0575b50501b915f1990841b1c191617905560ff90565b015192505f8062000cdc565b919083601f198116875f52845f20945f905b8883831062000d46575050501062000d2e575b505050811b01905560ff90565b01515f1983861b60f8161c191690555f808062000d21565b85870151885590960195948501948793509081019062000d0e565b855f5284601f845f20920160051c820191601f860160051c015b82811062000d8b57505062000cbf565b5f815501859062000d7b565b90607f169062000cac56fe6080604090808252600480361015610015575f80fd5b5f3560e01c91826301ffc9a714611db2575081631fda9a0214611d6f57816320a0045a14611d355781632209d38c14611cfb578163248a9ca314611cd25781632b6838b314611c985781632f2ff15d14611c705781633073d5b014611c4b5781633418f5651461063757816336568abe14611c075781633a3b476614611aa15781633bb1b2ec146105905781633f4ba83a14611a0f57816344dbb571146119d557816348faade4146119725781634e71d92d146117a557816352135d5e1461177f57816353b3d2ae146117455781635912c046146117275781635c8671be146115485781635c975abb146115255781635cb988e21461142057816360a8753c1461135d57816363b201171461133f57816370876c9814610ec4578163712f7bcb14610e8d57816375dbea4114610d39578163811c302914610cff57816381d687cf14610cb3578163833b949914610c795781638456cb5914610bf757816384b0196e14610ad957816384b39b1b14610ab557816385f438c114610a7b578163877c86fb14610a38578163886f039a146108cf57816389f73e27146107e65781638b7cc1e3146107a3578163917d440f1461078557816391d1485414610742578163937020a314610705578163a217fddf146106eb578163acf1c948146106b1578163b8ac77a41461066e578163ba0fac1514610637578163beeaeb5a146105f2578163c1e714fe14610590578163ce379270146104c8578163d50fc9b61461049e578163d547741f14610463578163d6263df314610429578163d9bc1576146103ef578163e402fb84146103c357508063e5b2eb271461033b578063e63ab1e914610301578063ee28b744146102db5763f961709614610293575f80fd5b346102d757806003193601126102d7576020906001600160a01b036102b6611e1a565b165f5260068252805f206024355f52825260ff815f20541690519015158152f35b5f80fd5b50346102d7575f3660031901126102d757602090335f5260098252805f20549051908152f35b50346102d7575f3660031901126102d757602090517f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a8152f35b50346102d75760603660031901126102d757602090610358611e1a565b8151838101917fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d63835260018060a01b03168382015260243560608201526044356080820152608081526103aa81611f6b565b5190205f526008825260ff815f20541690519015158152f35b82346102d75760203660031901126102d757602091355f526008825260ff815f20541690519015158152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d7575f3660031901126102d757602090517fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d638152f35b82346102d757806003193601126102d75761049c91356104976001610486611e04565b93835f525f6020525f200154612483565b61251a565b005b82346102d7575f3660031901126102d7576020906104c1600a54600b5490611eea565b9051908152f35b9050346102d7576104d836611e9f565b9091936104e3612428565b84156105825781850361057157505f5b848110610526577f1abace8ee6c418628336ee3a659f442ae562c4bfd89e8cf2c6d18650d7d8aac76020868851908152a1005b6001906001600160a01b0361054461053f838989612282565b6122a6565b165f52602060078152875f209061055c838688612282565b355f5252865f2060ff198154169055016104f3565b85516001621398b960e31b03198152fd5b855163251f56a160e21b8152fd5b82346102d75760203660031901126102d7576104c16020927f0000000000000000000000000000000000000000000000000000000000000000907f0000000000000000000000000000000000000000000000000000000000000000903561260a565b82346102d757806003193601126102d7576020906001600160a01b03610616611e1a565b165f5260078252805f206024355f52825260ff815f20541690519015158152f35b82346102d75760203660031901126102d7576020906001600160a01b0361065c611e1a565b165f5260058252805f20549051908152f35b82346102d7575f3660031901126102d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b82346102d7575f3660031901126102d757602090517fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc8152f35b82346102d7575f3660031901126102d757602090515f8152f35b82346102d7575f3660031901126102d7576020905160ff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b82346102d757806003193601126102d75760209161075e611e04565b90355f525f8352815f209060018060a01b03165f52825260ff815f20541690519015158152f35b82346102d75760203660031901126102d7576104c1602092356122ba565b82346102d7575f3660031901126102d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b82346102d7576107f536611e9f565b909194610800612428565b85156108c1578186036108b0575f5b868110610842577f9b94aeec7c892becb5125aabff2341d4072c8a7c686dd526c336a88c5bba0d776020888851908152a1005b6001600160a01b038061085961053f848b8a612282565b16156108a0579060019161087161053f838b8a612282565b165f52602060078152875f2090610889838789612282565b355f5252865f208260ff198254161790550161080f565b865163e6c4247b60e01b81528390fd5b84516001621398b960e31b03198152fd5b845163251f56a160e21b8152fd5b82346102d757806003193601126102d7576108e8611e1a565b906108f1611e04565b926108fa6122f9565b6001600160a01b03928316927f0000000000000000000000000000000000000000000000000000000000000000811684148015610a0d575b6109fe5784169384156109fe578251916370a0823160e01b83523090830152602082602481875afa9182156109f4575f926109a0575b50907faca8fb252cde442184e5f10e0f2e6e4029e8cd7717cae63559079610702436aa92610999826020948761258c565b51908152a3005b91506020823d6020116109ec575b816109bb60209383611fb7565b810103126102d7579051907faca8fb252cde442184e5f10e0f2e6e4029e8cd7717cae63559079610702436aa610968565b3d91506109ae565b83513d5f823e3d90fd5b50905163e6c4247b60e01b8152fd5b50807f0000000000000000000000000000000000000000000000000000000000000000168414610932565b82346102d7575f3660031901126102d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b82346102d7575f3660031901126102d757602090517f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e48152f35b82346102d757806003193601126102d7576020906001600160a01b036102b6611e1a565b9050346102d7575f3660031901126102d757610b147f0000000000000000000000000000000000000000000000000000000000000000612943565b91610b3e7f0000000000000000000000000000000000000000000000000000000000000000612a67565b815191602091602084019484861067ffffffffffffffff871117610be45750610b998260209287610b8c99989795525f85528151988998600f60f81b8a5260e0868b015260e08a0190611e30565b9188830390890152611e30565b914660608701523060808701525f60a087015285830360c087015251918281520192915f5b828110610bcd57505050500390f35b835185528695509381019392810192600101610bbe565b604190634e487b7160e01b5f525260245ffd5b82346102d7575f3660031901126102d757610c10612372565b610c1861267d565b600160ff19815416176001557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25860208251338152a1514281527f0f13b908d3ccb1f51690240e2ced6db67e0fde09ebe58a073763938742d9615460203392a2005b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d757806003193601126102d757610cd8610ccf611e1a565b60243590611ffe565b9051906009811015610cec57602092508152f35b602183634e487b7160e01b5f525260245ffd5b82346102d7575f3660031901126102d757602090517f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d48152f35b9050346102d757816003193601126102d757610d53611e1a565b60243591610d5f6123cd565b6001600160a01b03828116908115610e7d577f0000000000000000000000000000000000000000000000000000000000000000169185516370a0823160e01b81523082820152602081602481875afa8015610e73575f90610e3f575b610dd59150610dcf600a54600b5490611eea565b90611eea565b948515610e305780610e2a5750845b8511610e1c57507f6352c5382c4a4578e712449ca65e83cdb392d045dfcf1cad9615189db2da244b602061049c9651868152a261258c565b8551631e9acf1760e31b8152fd5b94610de4565b508551631e9acf1760e31b8152fd5b506020813d602011610e6b575b81610e5960209383611fb7565b810103126102d757610dd59051610dbb565b3d9150610e4c565b87513d5f823e3d90fd5b855163e6c4247b60e01b81528390fd5b82346102d75760203660031901126102d7576020906001600160a01b03610eb2611e1a565b165f5260098252805f20549051908152f35b82346102d757806003193601126102d757813590602492833591610ee661263e565b610eee61267d565b7f00000000000000000000000000000000000000000000000000000000000000004210611332577f0000000000000000000000000000000000000000000000000000000000000000421161132557335f5260209360078552815f20815f52855260ff825f2054161561131757815163babcc53960e01b815233848201526001600160a01b039190868189817f000000000000000000000000000000000000000000000000000000000000000087165afa90811561130d575f916112e0575b50156112d15784156112c2576110037f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000008761260a565b947f000000000000000000000000000000000000000000000000000000000000000080611239575b50815f5284875261103f81855f2054611fd9565b7f0000000000000000000000000000000000000000000000000000000000000000811161122957611075600a54600b5490611eea565b85516370a0823160e01b8152308882015289818c817f00000000000000000000000000000000000000000000000000000000000000008a165afa908115610e7357908492915f916111f4575b50906110cc91611eea565b106111e457825f52858852845f2055335f5260098752835f206110f0828254611fd9565b90556110fe81600a54611fd9565b600a55835190815285878201527f0d1a0d5e3d583a0e92588799dd06e50fd78c07daf05f0cc06d7b848b1ca445f1843392a37f0000000000000000000000000000000000000000000000000000000000000000169281519485916323b872dd60e01b5f523385523088526044525f60648180885af19160015f51148316156111bf575b525f606052156111b0575f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b635274afe760e01b8352820152fd5b91905060018115166111db578490843b15153d15161691611181565b843d5f823e3d90fd5b8451631e9acf1760e31b81528690fd5b809293508b8092503d8311611222575b61120e8183611fb7565b810103126102d757518391906110cc6110c1565b503d611204565b8451632150464360e21b81528690fd5b335f5260068852845f20835f52885260ff855f20541661102b57335f5260058852845f205410156112b257335f5260068752835f20825f528752835f20600160ff19825416179055335f5260058752835f20805490600182018092116112a057558861102b565b89601188634e487b7160e01b5f52525ffd5b50505051632046b41b60e21b8152fd5b50505163cd1c886760e01b8152fd5b50505163bfbd50bf60e01b8152fd5b6113009150873d8911611306575b6112f88183611fb7565b810190611fe6565b88610fac565b503d6112ee565b84513d5f823e3d90fd5b50516332d0f98960e21b8152fd5b51630bd8a3eb60e01b8152fd5b516316851a3760e11b8152fd5b82346102d7575f3660031901126102d757602090600a549051908152f35b82346102d75760203660031901126102d75781602092355f528252805f20549060ff600154161591826113f6575b50816113cb575b816113a0575b519015158152f35b7f00000000000000000000000000000000000000000000000000000000000000004211159150611398565b7f00000000000000000000000000000000000000000000000000000000000000004210159150611392565b7f00000000000000000000000000000000000000000000000000000000000000001191508361138b565b9050346102d757816003193601126102d75761143a611e1a565b602435916114466123cd565b6001600160a01b03828116908115610e7d577f000000000000000000000000000000000000000000000000000000000000000016918551946370a0823160e01b86523082870152602086602481875afa958615610e73575f966114f1575b508515610e3057806114eb5750845b8511610e1c57507f84511ecc081974f18e7f3e0dcc19db078b55bbd3852ddd0dd85b3aebb7bf94c2602061049c9651868152a261258c565b946114b3565b9095506020813d60201161151d575b8161150d60209383611fb7565b810103126102d75751945f6114a4565b3d9150611500565b82346102d7575f3660031901126102d75760209060ff6001541690519015158152f35b9050346102d75760603660031901126102d7578035916024359167ffffffffffffffff906044358281116102d757366023820112156102d757808201359283116102d75736602484830101116102d75784421161171857835194602095868101917fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d63835233878301528860608301526080820152608081526115e981611f6b565b51902092835f526008865260ff855f2054166117085761165e91611655915f886042611613612753565b8a519061190160f01b8252600282015289602282015220928060248b519661164485601f19601f8601160189611fb7565b82885201838701378401015261287e565b909291926128b8565b7f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d45f525f8552835f209060018060a01b03165f52845260ff835f205416156116fa5750906001915f5260088352805f209260ff19938385825416179055335f5260078152815f2090855f52525f2091825416179055337f651edbbef34cadf73f82c1d926e6e8a65794260bfc5760242cc20e1403abb69e5f80a3005b8251638baa579f60e01b8152fd5b8451639d8009fd60e01b81528390fd5b50825163df4cc36d60e01b8152fd5b82346102d7575f3660031901126102d757602090600b549051908152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d75760203660031901126102d75781602092355f528252805f20549051908152f35b9050346102d7575f3660031901126102d7576117bf61263e565b6117c761267d565b7f0000000000000000000000000000000000000000000000000000000000000000421061195a577f00000000000000000000000000000000000000000000000000000000000000008015159081611968575b5061195a57335f5260209060098252825f205491821561194b5783516370a0823160e01b815230818401527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031692908281602481875afa80156119415785915f91611910575b501061190257507f896e034966eaaf1adc54acc0f257056febbd300c9e47182cf761982cf1f5e4306118dd94335f52600983525f818120556118cb85600b54611fd9565b600b5551918483523392a2339061258c565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b8451631e9acf1760e31b8152fd5b809250848092503d831161193a575b6119298183611fb7565b810103126102d7578490515f611887565b503d61191f565b86513d5f823e3d90fd5b5082516312d37ee560e31b8152fd5b9051633c21f90f60e01b8152fd5b905042115f611819565b82346102d7575f3660031901126102d7576020906104c1600a547f0000000000000000000000000000000000000000000000000000000000000000907f00000000000000000000000000000000000000000000000000000000000000009061260a565b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b9050346102d7575f3660031901126102d757611a29612372565b6001549060ff821615611a93575060ff19166001557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa60208251338152a1514281527f2c4d51fbbe26130b6396f0677dec1c1314a07c38d3f3c5c900767abb36fcf98a60203392a2005b825163fdbd410f60e01b8152fd5b9050346102d757602091826003193601126102d757611abe611e1a565b90611ac76122f9565b6001600160a01b03828116908115611bf7577f00000000000000000000000000000000000000000000000000000000000000008015611be757421115611bd7577f000000000000000000000000000000000000000000000000000000000000000016918051946370a0823160e01b865230818701528686602481875afa958615611bcd575f96611b9e575b508515611b90575061049c957f5348e96f228865459dfe9d1e35b571ad2125bbeeb5e1b5af98e4f82c3746ecb091600a54600b5551868152a261258c565b90516312d37ee560e31b8152fd5b9095508681813d8311611bc6575b611bb68183611fb7565b810103126102d75751945f611b52565b503d611bac565b82513d5f823e3d90fd5b8251637052eceb60e01b81528590fd5b8351633c21f90f60e01b81528690fd5b825163e6c4247b60e01b81528590fd5b82346102d757806003193601126102d757611c20611e04565b90336001600160a01b03831603611c3c575061049c913561251a565b5163334bd91960e11b81529050fd5b82346102d75760203660031901126102d7576020906104c1611c6b611e1a565b611f0b565b82346102d757806003193601126102d75761049c9135611c936001610486611e04565b6124a4565b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d75760203660031901126102d757602091355f525f82526001815f2001549051908152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d7575f3660031901126102d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b90346102d75760203660031901126102d757359063ffffffff60e01b82168092036102d757602091637965db0b60e01b8114908115611df3575b5015158152f35b6301ffc9a760e01b14905083611dec565b602435906001600160a01b03821682036102d757565b600435906001600160a01b03821682036102d757565b91908251928382525f5b848110611e5a575050825f602080949584010152601f8019910116010190565b602081830181015184830182015201611e3a565b9181601f840112156102d75782359167ffffffffffffffff83116102d7576020808501948460051b0101116102d757565b60406003198201126102d75767ffffffffffffffff916004358381116102d75782611ecc91600401611e6e565b939093926024359182116102d757611ee691600401611e6e565b9091565b91908203918211611ef757565b634e487b7160e01b5f52601160045260245ffd5b7f0000000000000000000000000000000000000000000000000000000000000000908115611f64576001600160a01b03165f9081526005602052604090205481811015611f5e57611f5b91611eea565b90565b50505f90565b50505f1990565b60a0810190811067ffffffffffffffff821117611f8757604052565b634e487b7160e01b5f52604160045260245ffd5b6040810190811067ffffffffffffffff821117611f8757604052565b90601f8019910116810190811067ffffffffffffffff821117611f8757604052565b91908201809211611ef757565b908160209103126102d7575180151581036102d75790565b60018060a01b0380911691825f5260209260078452604091825f20815f52855260ff835f2054161561227857825163babcc53960e01b81526004810183905285816024817f000000000000000000000000000000000000000000000000000000000000000089165afa90811561130d575f9161225b575b501561225157805f5260048552825f20547f00000000000000000000000000000000000000000000000000000000000000001115612247577f0000000000000000000000000000000000000000000000000000000000000000421061223d577f000000000000000000000000000000000000000000000000000000000000000042116122335760ff60015416612229577f000000000000000000000000000000000000000000000000000000000000000090816121df575b50505082602493612143600a54600b5490611eea565b938351958680926370a0823160e01b82523060048301527f0000000000000000000000000000000000000000000000000000000000000000165afa9182156121d657505f916121a6575b506121989250611eea565b156121a1575f90565b600890565b905082813d83116121cf575b6121bc8183611fb7565b810103126102d75761219891515f61218d565b503d6121b2565b513d5f823e3d90fd5b825f5260068652835f20905f52855260ff835f205416159182612213575b505061220b575f808061212d565b505050600790565b9091505f5260058452815f205410155f806121fd565b5050505050600690565b5050505050600590565b5050505050600490565b5050505050600390565b5050505050600290565b6122729150863d8811611306576112f88183611fb7565b5f612075565b5050505050600190565b91908110156122925760051b0190565b634e487b7160e01b5f52603260045260245ffd5b356001600160a01b03811681036102d75790565b5f52600460205260405f20547f00000000000000000000000000000000000000000000000000000000000000009081811015611f5e57611f5b91611eea565b335f9081527fa921dec465a2db617c1283eb3fd0c7be03ef4a04bbcfeba0659a6baa62f9000160205260409020547fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc9060ff16156123545750565b6044906040519063e2517d3f60e01b82523360048301526024820152fd5b335f9081527ff7c9542c591017a21c74b6f3fab6263c7952fc0aaf9db4c22a2a04ddc7f8674f60205260409020547f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a9060ff16156123545750565b335f9081527f10d7f32a6930100c7e03899d583513ff548ac958e569f497049662337b6f49b960205260409020547f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e49060ff16156123545750565b335f9081527f8ea8301bd621a32004df4f21098767ec870c7628c47ac2806560bce50561f0aa60205260409020547f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d49060ff16156123545750565b805f525f60205260405f20335f5260205260ff60405f205416156123545750565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f205416155f14611f5e57815f525f60205260405f20815f5260205260405f20600160ff1982541617905533917f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f2054165f14611f5e57815f525f60205260405f20815f5260205260405f2060ff19815416905533917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b60405163a9059cbb60e01b5f9081526001600160a01b039384166004526024949094529260209060448180855af160015f51148116156125eb575b83604052156125d557505050565b635274afe760e01b835216600482015260249150fd5b600181151661260157813b15153d1516166125c7565b833d5f823e3d90fd5b9161261681838561269b565b91811561262a57611f5b9309151590611fd9565b634e487b7160e01b5f52601260045260245ffd5b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00805c61266b576001905d565b604051633ee5aeb560e01b8152600490fd5b60ff6001541661268957565b6040516308a98cbd60e41b8152600490fd5b90915f198383099280830292838086109503948086039514612727578483111561270f5790829109815f038216809204600280826003021880830282030280830282030280830282030280830282030280830282030280920290030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50508092501561262a570490565b6004111561273f57565b634e487b7160e01b5f52602160045260245ffd5b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480612855575b156127ae577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff821117611f875760405251902090565b507f00000000000000000000000000000000000000000000000000000000000000004614612785565b81519190604183036128ae576128a79250602082015190606060408401519301515f1a90612b3a565b9192909190565b50505f9160029190565b6128c181612735565b806128ca575050565b6128d381612735565b600181036128ed5760405163f645eedf60e01b8152600490fd5b6128f681612735565b600281036129175760405163fce698f760e01b815260048101839052602490fd5b80612923600392612735565b1461292b5750565b602490604051906335e2f38360e21b82526004820152fd5b60ff81146129815760ff811690601f821161296f576040519161296583611f9b565b8252602082015290565b604051632cd44ac360e21b8152600490fd5b506040515f600254906001908260011c60018416928315612a5d575b6020948583108514612a49578287528694908115612a2957506001146129cc575b5050611f5b92500382611fb7565b9093915060025f527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace935f915b818310612a11575050611f5b93508201015f806129be565b855487840185015294850194869450918301916129f9565b915050611f5b94925060ff191682840152151560051b8201015f806129be565b634e487b7160e01b5f52602260045260245ffd5b90607f169061299d565b60ff8114612a895760ff811690601f821161296f576040519161296583611f9b565b506040515f600354906001908260011c60018416928315612b30575b6020948583108514612a49578287528694908115612a295750600114612ad3575050611f5b92500382611fb7565b9093915060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b935f915b818310612b18575050611f5b93508201015f806129be565b85548784018501529485019486945091830191612b00565b90607f1690612aa5565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411612bbc579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15612bb1575f516001600160a01b03811615612ba757905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f916003919056fea26469706673582212204f904dacce36f83e50a2e1efcceaf481e373f201e752990dd21b895772dca5e164736f6c634300081800332f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0dad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5000000000000000000000000b3f2ddaed136cf10d5b228ee2eff29b71c7535fc000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3000000000000000000000000172c55db53829feed8855b84ec936fb3652847470000000000000000000000000000000000000000000000000000000000001388000000000000000000000000000000000000000000000878678326eac90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006968d6c0000000000000000000000000000000000000000000000000000000000017bac400000000000000000000000000000000000000000000000000000000698091c00000000000000000000000000000000000000000000000000000000069f5d9300000000000000000000000009b828219ad863491eb9b5225ae2d133eedea9b71

Deployed Bytecode

0x6080604090808252600480361015610015575f80fd5b5f3560e01c91826301ffc9a714611db2575081631fda9a0214611d6f57816320a0045a14611d355781632209d38c14611cfb578163248a9ca314611cd25781632b6838b314611c985781632f2ff15d14611c705781633073d5b014611c4b5781633418f5651461063757816336568abe14611c075781633a3b476614611aa15781633bb1b2ec146105905781633f4ba83a14611a0f57816344dbb571146119d557816348faade4146119725781634e71d92d146117a557816352135d5e1461177f57816353b3d2ae146117455781635912c046146117275781635c8671be146115485781635c975abb146115255781635cb988e21461142057816360a8753c1461135d57816363b201171461133f57816370876c9814610ec4578163712f7bcb14610e8d57816375dbea4114610d39578163811c302914610cff57816381d687cf14610cb3578163833b949914610c795781638456cb5914610bf757816384b0196e14610ad957816384b39b1b14610ab557816385f438c114610a7b578163877c86fb14610a38578163886f039a146108cf57816389f73e27146107e65781638b7cc1e3146107a3578163917d440f1461078557816391d1485414610742578163937020a314610705578163a217fddf146106eb578163acf1c948146106b1578163b8ac77a41461066e578163ba0fac1514610637578163beeaeb5a146105f2578163c1e714fe14610590578163ce379270146104c8578163d50fc9b61461049e578163d547741f14610463578163d6263df314610429578163d9bc1576146103ef578163e402fb84146103c357508063e5b2eb271461033b578063e63ab1e914610301578063ee28b744146102db5763f961709614610293575f80fd5b346102d757806003193601126102d7576020906001600160a01b036102b6611e1a565b165f5260068252805f206024355f52825260ff815f20541690519015158152f35b5f80fd5b50346102d7575f3660031901126102d757602090335f5260098252805f20549051908152f35b50346102d7575f3660031901126102d757602090517f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a8152f35b50346102d75760603660031901126102d757602090610358611e1a565b8151838101917fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d63835260018060a01b03168382015260243560608201526044356080820152608081526103aa81611f6b565b5190205f526008825260ff815f20541690519015158152f35b82346102d75760203660031901126102d757602091355f526008825260ff815f20541690519015158152f35b82346102d7575f3660031901126102d757602090517f000000000000000000000000000000000000000000000878678326eac90000008152f35b82346102d7575f3660031901126102d757602090517fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d638152f35b82346102d757806003193601126102d75761049c91356104976001610486611e04565b93835f525f6020525f200154612483565b61251a565b005b82346102d7575f3660031901126102d7576020906104c1600a54600b5490611eea565b9051908152f35b9050346102d7576104d836611e9f565b9091936104e3612428565b84156105825781850361057157505f5b848110610526577f1abace8ee6c418628336ee3a659f442ae562c4bfd89e8cf2c6d18650d7d8aac76020868851908152a1005b6001906001600160a01b0361054461053f838989612282565b6122a6565b165f52602060078152875f209061055c838688612282565b355f5252865f2060ff198154169055016104f3565b85516001621398b960e31b03198152fd5b855163251f56a160e21b8152fd5b82346102d75760203660031901126102d7576104c16020927f0000000000000000000000000000000000000000000000000de0b6b3a7640000907f0000000000000000000000000000000000000000000000000000000000001388903561260a565b82346102d757806003193601126102d7576020906001600160a01b03610616611e1a565b165f5260078252805f206024355f52825260ff815f20541690519015158152f35b82346102d75760203660031901126102d7576020906001600160a01b0361065c611e1a565b165f5260058252805f20549051908152f35b82346102d7575f3660031901126102d757517f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f36001600160a01b03168152602090f35b82346102d7575f3660031901126102d757602090517fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc8152f35b82346102d7575f3660031901126102d757602090515f8152f35b82346102d7575f3660031901126102d7576020905160ff7f0000000000000000000000000000000000000000000000000000000000000012168152f35b82346102d757806003193601126102d75760209161075e611e04565b90355f525f8352815f209060018060a01b03165f52825260ff815f20541690519015158152f35b82346102d75760203660031901126102d7576104c1602092356122ba565b82346102d7575f3660031901126102d757517f000000000000000000000000172c55db53829feed8855b84ec936fb3652847476001600160a01b03168152602090f35b82346102d7576107f536611e9f565b909194610800612428565b85156108c1578186036108b0575f5b868110610842577f9b94aeec7c892becb5125aabff2341d4072c8a7c686dd526c336a88c5bba0d776020888851908152a1005b6001600160a01b038061085961053f848b8a612282565b16156108a0579060019161087161053f838b8a612282565b165f52602060078152875f2090610889838789612282565b355f5252865f208260ff198254161790550161080f565b865163e6c4247b60e01b81528390fd5b84516001621398b960e31b03198152fd5b845163251f56a160e21b8152fd5b82346102d757806003193601126102d7576108e8611e1a565b906108f1611e04565b926108fa6122f9565b6001600160a01b03928316927f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7811684148015610a0d575b6109fe5784169384156109fe578251916370a0823160e01b83523090830152602082602481875afa9182156109f4575f926109a0575b50907faca8fb252cde442184e5f10e0f2e6e4029e8cd7717cae63559079610702436aa92610999826020948761258c565b51908152a3005b91506020823d6020116109ec575b816109bb60209383611fb7565b810103126102d7579051907faca8fb252cde442184e5f10e0f2e6e4029e8cd7717cae63559079610702436aa610968565b3d91506109ae565b83513d5f823e3d90fd5b50905163e6c4247b60e01b8152fd5b50807f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3168414610932565b82346102d7575f3660031901126102d757517f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec76001600160a01b03168152602090f35b82346102d7575f3660031901126102d757602090517f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e48152f35b82346102d757806003193601126102d7576020906001600160a01b036102b6611e1a565b9050346102d7575f3660031901126102d757610b147f5a414d4153616c65000000000000000000000000000000000000000000000008612943565b91610b3e7f3100000000000000000000000000000000000000000000000000000000000001612a67565b815191602091602084019484861067ffffffffffffffff871117610be45750610b998260209287610b8c99989795525f85528151988998600f60f81b8a5260e0868b015260e08a0190611e30565b9188830390890152611e30565b914660608701523060808701525f60a087015285830360c087015251918281520192915f5b828110610bcd57505050500390f35b835185528695509381019392810192600101610bbe565b604190634e487b7160e01b5f525260245ffd5b82346102d7575f3660031901126102d757610c10612372565b610c1861267d565b600160ff19815416176001557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25860208251338152a1514281527f0f13b908d3ccb1f51690240e2ced6db67e0fde09ebe58a073763938742d9615460203392a2005b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000013888152f35b82346102d757806003193601126102d757610cd8610ccf611e1a565b60243590611ffe565b9051906009811015610cec57602092508152f35b602183634e487b7160e01b5f525260245ffd5b82346102d7575f3660031901126102d757602090517f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d48152f35b9050346102d757816003193601126102d757610d53611e1a565b60243591610d5f6123cd565b6001600160a01b03828116908115610e7d577f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3169185516370a0823160e01b81523082820152602081602481875afa8015610e73575f90610e3f575b610dd59150610dcf600a54600b5490611eea565b90611eea565b948515610e305780610e2a5750845b8511610e1c57507f6352c5382c4a4578e712449ca65e83cdb392d045dfcf1cad9615189db2da244b602061049c9651868152a261258c565b8551631e9acf1760e31b8152fd5b94610de4565b508551631e9acf1760e31b8152fd5b506020813d602011610e6b575b81610e5960209383611fb7565b810103126102d757610dd59051610dbb565b3d9150610e4c565b87513d5f823e3d90fd5b855163e6c4247b60e01b81528390fd5b82346102d75760203660031901126102d7576020906001600160a01b03610eb2611e1a565b165f5260098252805f20549051908152f35b82346102d757806003193601126102d757813590602492833591610ee661263e565b610eee61267d565b7f000000000000000000000000000000000000000000000000000000006968d6c04210611332577f0000000000000000000000000000000000000000000000000000000069809184421161132557335f5260209360078552815f20815f52855260ff825f2054161561131757815163babcc53960e01b815233848201526001600160a01b039190868189817f000000000000000000000000172c55db53829feed8855b84ec936fb36528474787165afa90811561130d575f916112e0575b50156112d15784156112c2576110037f0000000000000000000000000000000000000000000000000de0b6b3a76400007f00000000000000000000000000000000000000000000000000000000000013888761260a565b947f000000000000000000000000000000000000000000000000000000000000000080611239575b50815f5284875261103f81855f2054611fd9565b7f000000000000000000000000000000000000000000000878678326eac9000000811161122957611075600a54600b5490611eea565b85516370a0823160e01b8152308882015289818c817f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f38a165afa908115610e7357908492915f916111f4575b50906110cc91611eea565b106111e457825f52858852845f2055335f5260098752835f206110f0828254611fd9565b90556110fe81600a54611fd9565b600a55835190815285878201527f0d1a0d5e3d583a0e92588799dd06e50fd78c07daf05f0cc06d7b848b1ca445f1843392a37f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7169281519485916323b872dd60e01b5f523385523088526044525f60648180885af19160015f51148316156111bf575b525f606052156111b0575f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b635274afe760e01b8352820152fd5b91905060018115166111db578490843b15153d15161691611181565b843d5f823e3d90fd5b8451631e9acf1760e31b81528690fd5b809293508b8092503d8311611222575b61120e8183611fb7565b810103126102d757518391906110cc6110c1565b503d611204565b8451632150464360e21b81528690fd5b335f5260068852845f20835f52885260ff855f20541661102b57335f5260058852845f205410156112b257335f5260068752835f20825f528752835f20600160ff19825416179055335f5260058752835f20805490600182018092116112a057558861102b565b89601188634e487b7160e01b5f52525ffd5b50505051632046b41b60e21b8152fd5b50505163cd1c886760e01b8152fd5b50505163bfbd50bf60e01b8152fd5b6113009150873d8911611306575b6112f88183611fb7565b810190611fe6565b88610fac565b503d6112ee565b84513d5f823e3d90fd5b50516332d0f98960e21b8152fd5b51630bd8a3eb60e01b8152fd5b516316851a3760e11b8152fd5b82346102d7575f3660031901126102d757602090600a549051908152f35b82346102d75760203660031901126102d75781602092355f528252805f20549060ff600154161591826113f6575b50816113cb575b816113a0575b519015158152f35b7f00000000000000000000000000000000000000000000000000000000698091844211159150611398565b7f000000000000000000000000000000000000000000000000000000006968d6c04210159150611392565b7f000000000000000000000000000000000000000000000878678326eac90000001191508361138b565b9050346102d757816003193601126102d75761143a611e1a565b602435916114466123cd565b6001600160a01b03828116908115610e7d577f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec716918551946370a0823160e01b86523082870152602086602481875afa958615610e73575f966114f1575b508515610e3057806114eb5750845b8511610e1c57507f84511ecc081974f18e7f3e0dcc19db078b55bbd3852ddd0dd85b3aebb7bf94c2602061049c9651868152a261258c565b946114b3565b9095506020813d60201161151d575b8161150d60209383611fb7565b810103126102d75751945f6114a4565b3d9150611500565b82346102d7575f3660031901126102d75760209060ff6001541690519015158152f35b9050346102d75760603660031901126102d7578035916024359167ffffffffffffffff906044358281116102d757366023820112156102d757808201359283116102d75736602484830101116102d75784421161171857835194602095868101917fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d63835233878301528860608301526080820152608081526115e981611f6b565b51902092835f526008865260ff855f2054166117085761165e91611655915f886042611613612753565b8a519061190160f01b8252600282015289602282015220928060248b519661164485601f19601f8601160189611fb7565b82885201838701378401015261287e565b909291926128b8565b7f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d45f525f8552835f209060018060a01b03165f52845260ff835f205416156116fa5750906001915f5260088352805f209260ff19938385825416179055335f5260078152815f2090855f52525f2091825416179055337f651edbbef34cadf73f82c1d926e6e8a65794260bfc5760242cc20e1403abb69e5f80a3005b8251638baa579f60e01b8152fd5b8451639d8009fd60e01b81528390fd5b50825163df4cc36d60e01b8152fd5b82346102d7575f3660031901126102d757602090600b549051908152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000698091c08152f35b82346102d75760203660031901126102d75781602092355f528252805f20549051908152f35b9050346102d7575f3660031901126102d7576117bf61263e565b6117c761267d565b7f00000000000000000000000000000000000000000000000000000000698091c0421061195a577f0000000000000000000000000000000000000000000000000000000069f5d9308015159081611968575b5061195a57335f5260209060098252825f205491821561194b5783516370a0823160e01b815230818401527f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f36001600160a01b031692908281602481875afa80156119415785915f91611910575b501061190257507f896e034966eaaf1adc54acc0f257056febbd300c9e47182cf761982cf1f5e4306118dd94335f52600983525f818120556118cb85600b54611fd9565b600b5551918483523392a2339061258c565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b8451631e9acf1760e31b8152fd5b809250848092503d831161193a575b6119298183611fb7565b810103126102d7578490515f611887565b503d61191f565b86513d5f823e3d90fd5b5082516312d37ee560e31b8152fd5b9051633c21f90f60e01b8152fd5b905042115f611819565b82346102d7575f3660031901126102d7576020906104c1600a547f0000000000000000000000000000000000000000000000000de0b6b3a7640000907f00000000000000000000000000000000000000000000000000000000000013889061260a565b82346102d7575f3660031901126102d757602090517f000000000000000000000000000000000000000000000000000000006968d6c08152f35b9050346102d7575f3660031901126102d757611a29612372565b6001549060ff821615611a93575060ff19166001557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa60208251338152a1514281527f2c4d51fbbe26130b6396f0677dec1c1314a07c38d3f3c5c900767abb36fcf98a60203392a2005b825163fdbd410f60e01b8152fd5b9050346102d757602091826003193601126102d757611abe611e1a565b90611ac76122f9565b6001600160a01b03828116908115611bf7577f0000000000000000000000000000000000000000000000000000000069f5d9308015611be757421115611bd7577f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f316918051946370a0823160e01b865230818701528686602481875afa958615611bcd575f96611b9e575b508515611b90575061049c957f5348e96f228865459dfe9d1e35b571ad2125bbeeb5e1b5af98e4f82c3746ecb091600a54600b5551868152a261258c565b90516312d37ee560e31b8152fd5b9095508681813d8311611bc6575b611bb68183611fb7565b810103126102d75751945f611b52565b503d611bac565b82513d5f823e3d90fd5b8251637052eceb60e01b81528590fd5b8351633c21f90f60e01b81528690fd5b825163e6c4247b60e01b81528590fd5b82346102d757806003193601126102d757611c20611e04565b90336001600160a01b03831603611c3c575061049c913561251a565b5163334bd91960e11b81529050fd5b82346102d75760203660031901126102d7576020906104c1611c6b611e1a565b611f0b565b82346102d757806003193601126102d75761049c9135611c936001610486611e04565b6124a4565b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d75760203660031901126102d757602091355f525f82526001815f2001549051908152f35b82346102d7575f3660031901126102d757602090517f0000000000000000000000000000000000000000000000000000000069f5d9308152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000698091848152f35b82346102d7575f3660031901126102d757517f000000000000000000000000b3f2ddaed136cf10d5b228ee2eff29b71c7535fc6001600160a01b03168152602090f35b90346102d75760203660031901126102d757359063ffffffff60e01b82168092036102d757602091637965db0b60e01b8114908115611df3575b5015158152f35b6301ffc9a760e01b14905083611dec565b602435906001600160a01b03821682036102d757565b600435906001600160a01b03821682036102d757565b91908251928382525f5b848110611e5a575050825f602080949584010152601f8019910116010190565b602081830181015184830182015201611e3a565b9181601f840112156102d75782359167ffffffffffffffff83116102d7576020808501948460051b0101116102d757565b60406003198201126102d75767ffffffffffffffff916004358381116102d75782611ecc91600401611e6e565b939093926024359182116102d757611ee691600401611e6e565b9091565b91908203918211611ef757565b634e487b7160e01b5f52601160045260245ffd5b7f0000000000000000000000000000000000000000000000000000000000000000908115611f64576001600160a01b03165f9081526005602052604090205481811015611f5e57611f5b91611eea565b90565b50505f90565b50505f1990565b60a0810190811067ffffffffffffffff821117611f8757604052565b634e487b7160e01b5f52604160045260245ffd5b6040810190811067ffffffffffffffff821117611f8757604052565b90601f8019910116810190811067ffffffffffffffff821117611f8757604052565b91908201809211611ef757565b908160209103126102d7575180151581036102d75790565b60018060a01b0380911691825f5260209260078452604091825f20815f52855260ff835f2054161561227857825163babcc53960e01b81526004810183905285816024817f000000000000000000000000172c55db53829feed8855b84ec936fb36528474789165afa90811561130d575f9161225b575b501561225157805f5260048552825f20547f000000000000000000000000000000000000000000000878678326eac90000001115612247577f000000000000000000000000000000000000000000000000000000006968d6c0421061223d577f000000000000000000000000000000000000000000000000000000006980918442116122335760ff60015416612229577f000000000000000000000000000000000000000000000000000000000000000090816121df575b50505082602493612143600a54600b5490611eea565b938351958680926370a0823160e01b82523060048301527f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3165afa9182156121d657505f916121a6575b506121989250611eea565b156121a1575f90565b600890565b905082813d83116121cf575b6121bc8183611fb7565b810103126102d75761219891515f61218d565b503d6121b2565b513d5f823e3d90fd5b825f5260068652835f20905f52855260ff835f205416159182612213575b505061220b575f808061212d565b505050600790565b9091505f5260058452815f205410155f806121fd565b5050505050600690565b5050505050600590565b5050505050600490565b5050505050600390565b5050505050600290565b6122729150863d8811611306576112f88183611fb7565b5f612075565b5050505050600190565b91908110156122925760051b0190565b634e487b7160e01b5f52603260045260245ffd5b356001600160a01b03811681036102d75790565b5f52600460205260405f20547f000000000000000000000000000000000000000000000878678326eac90000009081811015611f5e57611f5b91611eea565b335f9081527fa921dec465a2db617c1283eb3fd0c7be03ef4a04bbcfeba0659a6baa62f9000160205260409020547fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc9060ff16156123545750565b6044906040519063e2517d3f60e01b82523360048301526024820152fd5b335f9081527ff7c9542c591017a21c74b6f3fab6263c7952fc0aaf9db4c22a2a04ddc7f8674f60205260409020547f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a9060ff16156123545750565b335f9081527f10d7f32a6930100c7e03899d583513ff548ac958e569f497049662337b6f49b960205260409020547f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e49060ff16156123545750565b335f9081527f8ea8301bd621a32004df4f21098767ec870c7628c47ac2806560bce50561f0aa60205260409020547f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d49060ff16156123545750565b805f525f60205260405f20335f5260205260ff60405f205416156123545750565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f205416155f14611f5e57815f525f60205260405f20815f5260205260405f20600160ff1982541617905533917f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f2054165f14611f5e57815f525f60205260405f20815f5260205260405f2060ff19815416905533917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b60405163a9059cbb60e01b5f9081526001600160a01b039384166004526024949094529260209060448180855af160015f51148116156125eb575b83604052156125d557505050565b635274afe760e01b835216600482015260249150fd5b600181151661260157813b15153d1516166125c7565b833d5f823e3d90fd5b9161261681838561269b565b91811561262a57611f5b9309151590611fd9565b634e487b7160e01b5f52601260045260245ffd5b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00805c61266b576001905d565b604051633ee5aeb560e01b8152600490fd5b60ff6001541661268957565b6040516308a98cbd60e41b8152600490fd5b90915f198383099280830292838086109503948086039514612727578483111561270f5790829109815f038216809204600280826003021880830282030280830282030280830282030280830282030280830282030280920290030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50508092501561262a570490565b6004111561273f57565b634e487b7160e01b5f52602160045260245ffd5b307f0000000000000000000000006716c707573988644b9b9f5a482021b3e09a68b16001600160a01b03161480612855575b156127ae577fcfb159e8e2effbf0dd0946e288219e687e3673f29015d09d3ab3bc971795b5a390565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f32fa413cc7c92ea62024ff8db16917b9c77fc2ae339f3d9910ab384aa76ae5b260408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff821117611f875760405251902090565b507f00000000000000000000000000000000000000000000000000000000000000014614612785565b81519190604183036128ae576128a79250602082015190606060408401519301515f1a90612b3a565b9192909190565b50505f9160029190565b6128c181612735565b806128ca575050565b6128d381612735565b600181036128ed5760405163f645eedf60e01b8152600490fd5b6128f681612735565b600281036129175760405163fce698f760e01b815260048101839052602490fd5b80612923600392612735565b1461292b5750565b602490604051906335e2f38360e21b82526004820152fd5b60ff81146129815760ff811690601f821161296f576040519161296583611f9b565b8252602082015290565b604051632cd44ac360e21b8152600490fd5b506040515f600254906001908260011c60018416928315612a5d575b6020948583108514612a49578287528694908115612a2957506001146129cc575b5050611f5b92500382611fb7565b9093915060025f527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace935f915b818310612a11575050611f5b93508201015f806129be565b855487840185015294850194869450918301916129f9565b915050611f5b94925060ff191682840152151560051b8201015f806129be565b634e487b7160e01b5f52602260045260245ffd5b90607f169061299d565b60ff8114612a895760ff811690601f821161296f576040519161296583611f9b565b506040515f600354906001908260011c60018416928315612b30575b6020948583108514612a49578287528694908115612a295750600114612ad3575050611f5b92500382611fb7565b9093915060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b935f915b818310612b18575050611f5b93508201015f806129be565b85548784018501529485019486945091830191612b00565b90607f1690612aa5565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411612bbc579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15612bb1575f516001600160a01b03811615612ba757905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f916003919056fea26469706673582212204f904dacce36f83e50a2e1efcceaf481e373f201e752990dd21b895772dca5e164736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000b3f2ddaed136cf10d5b228ee2eff29b71c7535fc000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3000000000000000000000000172c55db53829feed8855b84ec936fb3652847470000000000000000000000000000000000000000000000000000000000001388000000000000000000000000000000000000000000000878678326eac90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006968d6c0000000000000000000000000000000000000000000000000000000000017bac400000000000000000000000000000000000000000000000000000000698091c00000000000000000000000000000000000000000000000000000000069f5d9300000000000000000000000009b828219ad863491eb9b5225ae2d133eedea9b71

-----Decoded View---------------
Arg [0] : nftContract_ (address): 0xb3F2dDaEd136Cf10d5b228EE2EfF29B71C7535Fc
Arg [1] : paymentToken_ (address): 0xdAC17F958D2ee523a2206206994597C13D831ec7
Arg [2] : saleToken_ (address): 0xA12CC123ba206d4031D1c7f6223D1C2Ec249f4f3
Arg [3] : kycRegistry_ (address): 0x172c55dB53829FEEd8855B84Ec936FB365284747
Arg [4] : pricePerToken_ (uint256): 5000
Arg [5] : allocationPerNft_ (uint256): 40000000000000000000000
Arg [6] : maxNftsPerUser_ (uint256): 0
Arg [7] : saleStartTime_ (uint256): 1768478400
Arg [8] : saleDuration_ (uint256): 1555140
Arg [9] : claimStartTime_ (uint256): 1770033600
Arg [10] : claimEndTime_ (uint256): 1777719600
Arg [11] : admin (address): 0x9b828219ad863491eb9b5225aE2d133eEDEa9B71

-----Encoded View---------------
12 Constructor Arguments found :
Arg [0] : 000000000000000000000000b3f2ddaed136cf10d5b228ee2eff29b71c7535fc
Arg [1] : 000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7
Arg [2] : 000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3
Arg [3] : 000000000000000000000000172c55db53829feed8855b84ec936fb365284747
Arg [4] : 0000000000000000000000000000000000000000000000000000000000001388
Arg [5] : 000000000000000000000000000000000000000000000878678326eac9000000
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [7] : 000000000000000000000000000000000000000000000000000000006968d6c0
Arg [8] : 000000000000000000000000000000000000000000000000000000000017bac4
Arg [9] : 00000000000000000000000000000000000000000000000000000000698091c0
Arg [10] : 0000000000000000000000000000000000000000000000000000000069f5d930
Arg [11] : 0000000000000000000000009b828219ad863491eb9b5225ae2d133eedea9b71


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.