Source Code
Latest 25 from a total of 8,514 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Claim | 24420122 | 44 hrs ago | IN | 0 ETH | 0.00006279 | ||||
| Claim | 24392603 | 5 days ago | IN | 0 ETH | 0.0001791 | ||||
| Claim | 24391069 | 5 days ago | IN | 0 ETH | 0.0002117 | ||||
| Claim | 24390729 | 5 days ago | IN | 0 ETH | 0.00015679 | ||||
| Claim | 24386174 | 6 days ago | IN | 0 ETH | 0.00017023 | ||||
| Claim | 24382603 | 7 days ago | IN | 0 ETH | 0.00013903 | ||||
| Claim | 24378091 | 7 days ago | IN | 0 ETH | 0.00018314 | ||||
| Claim | 24377596 | 7 days ago | IN | 0 ETH | 0.00017854 | ||||
| Claim | 24377529 | 7 days ago | IN | 0 ETH | 0.0000483 | ||||
| Claim | 24377486 | 7 days ago | IN | 0 ETH | 0.00016671 | ||||
| Claim | 24377199 | 7 days ago | IN | 0 ETH | 0.00010444 | ||||
| Claim | 24377048 | 7 days ago | IN | 0 ETH | 0.00001648 | ||||
| Claim | 24376609 | 7 days ago | IN | 0 ETH | 0.00002146 | ||||
| Claim | 24376018 | 8 days ago | IN | 0 ETH | 0.00000767 | ||||
| Claim | 24375723 | 8 days ago | IN | 0 ETH | 0.00001036 | ||||
| Claim | 24375696 | 8 days ago | IN | 0 ETH | 0.00013627 | ||||
| Claim | 24375548 | 8 days ago | IN | 0 ETH | 0.00002089 | ||||
| Claim | 24375484 | 8 days ago | IN | 0 ETH | 0.0000309 | ||||
| Claim | 24375453 | 8 days ago | IN | 0 ETH | 0.00014434 | ||||
| Claim | 24375407 | 8 days ago | IN | 0 ETH | 0.00014267 | ||||
| Claim | 24375095 | 8 days ago | IN | 0 ETH | 0.00001251 | ||||
| Claim | 24374802 | 8 days ago | IN | 0 ETH | 0.0001356 | ||||
| Claim | 24374708 | 8 days ago | IN | 0 ETH | 0.00000621 | ||||
| Claim | 24374588 | 8 days ago | IN | 0 ETH | 0.00013496 | ||||
| Claim | 24374547 | 8 days ago | IN | 0 ETH | 0.00013669 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
ZAMASale
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.24;
import {SafeERC20, IERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import {Pausable} from "@openzeppelin/contracts/utils/Pausable.sol";
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";
import {ReentrancyGuardTransient} from "@openzeppelin/contracts/utils/ReentrancyGuardTransient.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {AccessControl} from "@openzeppelin/contracts/access/AccessControl.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {Errors} from "./libraries/Errors.sol";
import {IZAMASale} from "./interfaces/IZAMASale.sol";
import {IKycAllowlistRegistry} from "./interfaces/IKycAllowlistRegistry.sol";
/**
* @title ZAMASale
* @notice NFT-gated fixed-price token sale contract with original claimer tracking
* @dev This contract implements a token sale where:
* - Only designated original claimers can purchase tokens using their assigned NFTs
* - Each NFT has a fixed allocation cap (ALLOCATION_PER_NFT)
* - Purchases require KYC verification via external registry
* - Purchased tokens are held in the contract until claimed
* - Claims are available after CLAIM_START_TIME and before CLAIM_END_TIME (if set)
* - Optional per-user NFT usage limit (MAX_NFTS_PER_USER)
* - Role-based access control: PAUSER, WITHDRAWER, RECOVERER, CLAIMER_ADMIN
* - Emergency pause functionality affecting both purchases and claims
*
* @dev IMPORTANT TOKEN COMPATIBILITY WARNING:
* The SALE_TOKEN must be a standard ERC20 token with stable balanceOf().
* The following token types are NOT supported and will cause failures:
* - Rebasing tokens (stETH, AMPL, aTokens) - balance changes automatically
* - Fee-on-transfer tokens (PAXG, some deflationary tokens) - less tokens received
* - Tokens with transfer hooks that modify balances during transfers
*
* Using incompatible tokens will cause purchases/claims to fail unexpectedly.
* Payment token should also be standard ERC20 without fees or hooks.
*
* @dev Security assumptions:
* - NFT_CONTRACT, PAYMENT_TOKEN, SALE_TOKEN, KYC_REGISTRY are trusted contracts
* - View functions (balanceOf, ownerOf, isAllowed) cannot trigger callbacks
* - Transfer hooks (ERC777) are handled via CEI pattern + nonReentrant
*
* @dev Price Calculation Example:
* Buying 100 ZAMA (18 decimals) at 0.01 USDT (6 decimals) per ZAMA:
* - saleTokenAmount = 100 * 10^18 = 100e18
* - PRICE_PER_TOKEN = 0.01 * 10^6 = 10_000 (NOT 0.01!)
* - paymentAmount = ceil((100e18 * 10_000) / 1e18) = ceil(1,000,000) = 1,000,000 USDT wei = 1.0 USDT
*
* Ceiling division ensures seller-favorable rounding on dust amounts.
* Use calculatePaymentAmount() to get exact payment required for any amount.
*
* @custom:security-contact [email protected]
*/
contract ZAMASale is IZAMASale, AccessControl, ReentrancyGuardTransient, Pausable, EIP712 {
using SafeERC20 for IERC20;
// ============================================
// ROLE DEFINITIONS
// ============================================
/**
* @notice Role that can pause/unpause the sale
* @dev Grant this role to accounts that should be able to pause the sale in emergencies
*/
bytes32 public constant override PAUSER_ROLE = keccak256("PAUSER_ROLE");
/**
* @notice Role that can withdraw collected payment tokens and unsold sale tokens
* @dev Grant this role to accounts that should manage treasury withdrawals
*/
bytes32 public constant override WITHDRAWER_ROLE = keccak256("WITHDRAWER_ROLE");
/**
* @notice Role that can recover accidentally sent ERC20 tokens and unclaimed tokens after deadline
* @dev Grant this role to accounts that should handle token recovery operations
*/
bytes32 public constant override RECOVERER_ROLE = keccak256("RECOVERER_ROLE");
/**
* @notice Role that can set/remove original NFT claimers
* @dev Grant this role to accounts that manage the claimer whitelist
*/
bytes32 public constant override CLAIMER_ADMIN_ROLE = keccak256("CLAIMER_ADMIN_ROLE");
// ============================================
// EIP-712 TYPEHASH
// ============================================
/**
* @notice EIP-712 typehash for claimer registration signatures
* @dev Used to verify signatures from CLAIMER_ADMIN_ROLE for self-registration
* Struct: ClaimerRegistration(address claimer,uint256 nftId,uint256 deadline)
*/
bytes32 public constant CLAIMER_REGISTRATION_TYPEHASH =
keccak256("ClaimerRegistration(address claimer,uint256 nftId,uint256 deadline)");
// ============================================
// IMMUTABLE CONFIGURATION
// ============================================
/**
* @notice NFT contract address used for gating purchases
* @dev Immutable after deployment, must implement ERC721 interface via ERC165
*/
IERC721 public immutable override NFT_CONTRACT;
/**
* @notice KYC registry contract for whitelist verification
* @dev Immutable after deployment, used to verify users have completed KYC
*/
IKycAllowlistRegistry public immutable override KYC_REGISTRY;
/**
* @notice Payment token contract address (USDT, USDC, etc.)
* @dev Immutable after deployment, must be standard ERC20 without fees or rebasing
*/
IERC20Metadata public immutable override PAYMENT_TOKEN;
/**
* @notice Sale token contract address (the token being sold)
* @dev Immutable after deployment, must be standard ERC20 without fees or rebasing
* See token compatibility warning in contract documentation
*/
IERC20Metadata public immutable override SALE_TOKEN;
/**
* @notice Price per 1 whole sale token, expressed in payment token smallest units
* @dev For a sale token with 18 decimals and USDC (6 decimals) as payment:
* - 100 USDC per token = 100 * 10^6 = 100_000_000
* - 0.5 USDC per token = 0.5 * 10^6 = 500_000
* - 0.01 USDC per token = 0.01 * 10^6 = 10_000
*
* Formula: paymentAmount = ceil((saleTokenAmount * PRICE_PER_TOKEN) / 10^saleTokenDecimals)
* Uses ceiling division (Math.Rounding.Ceil) to protect seller from rounding losses.
*
* @dev IMPORTANT: This is NOT the price per smallest unit (wei) but per 1 whole token
* Common deployment mistake: Forgetting to multiply by payment token decimals
* Example: Want 100 USDC (6 decimals) per token? Use 100_000_000, not 100
*/
uint256 public immutable override PRICE_PER_TOKEN;
/**
* @notice Maximum SALE_TOKEN each NFT can purchase (in sale token smallest units)
* @dev This is a hard cap per NFT. Once an NFT's purchased amount reaches this limit,
* it can no longer be used for purchases
*/
uint256 public immutable override ALLOCATION_PER_NFT;
/**
* @notice UNIX timestamp when the sale starts
* @dev Purchases are only allowed between SALE_START_TIME and SALE_END_TIME
*/
uint256 public immutable override SALE_START_TIME;
/**
* @notice UNIX timestamp when the sale ends
* @dev Purchases are only allowed between SALE_START_TIME and SALE_END_TIME
*/
uint256 public immutable override SALE_END_TIME;
/**
* @notice UNIX timestamp when claims become available
* @dev Claims are only allowed from this time onward (and before CLAIM_END_TIME if set)
* Must be after SALE_END_TIME to prevent claims during sale period
*/
uint256 public immutable override CLAIM_START_TIME;
/**
* @notice Optional UNIX timestamp when claim period ends
* @dev If CLAIM_END_TIME > 0, claims are only allowed between CLAIM_START_TIME and CLAIM_END_TIME.
* After CLAIM_END_TIME, unclaimed tokens can be recovered by RECOVERER_ROLE via recoverUnclaimedTokens().
* If CLAIM_END_TIME = 0, there is no claim deadline and tokens can be claimed indefinitely.
*/
uint256 public immutable override CLAIM_END_TIME;
/**
* @notice Maximum NFTs per user address (rate limiting, not access control)
* @dev Rate limit on top of the claimer registry. If a user is registered for 10 NFTs
* but MAX_NFTS_PER_USER = 3, they can only use 3 of their choice.
* Set to 0 to disable (rely solely on claimer registry).
* Note: Bypassable via multiple addresses if NFTs are transferable.
*/
uint256 public immutable override MAX_NFTS_PER_USER;
// ============================================
// DECIMAL-RELATED IMMUTABLES
// ============================================
/**
* @notice Decimals of the sale token (stored at deployment for gas optimization)
* @dev Queried once from SALE_TOKEN during construction and stored as immutable.
* Used as denominator in price calculations via SALE_TOKEN_DECIMALS_FACTOR.
* Avoids repeated external calls to SALE_TOKEN.decimals() during purchases.
*/
uint8 public immutable SALE_TOKEN_DECIMALS;
/**
* @notice 10^SALE_TOKEN_DECIMALS (stored at deployment for gas optimization)
* @dev Computed once during construction: 10 ** SALE_TOKEN.decimals().
* Used as denominator in price calculations to convert between token units.
*/
uint256 private immutable SALE_TOKEN_DECIMALS_FACTOR;
// ============================================
// STATE VARIABLES
// ============================================
/**
* @notice Mapping from NFT ID to total purchased amount (in sale token smallest units)
* @dev Tracks how much each NFT has purchased. Cannot exceed ALLOCATION_PER_NFT
*/
mapping(uint256 nftId => uint256 purchasedAmount) public override nftPurchased;
/**
* @notice Mapping from user address to number of distinct NFTs used for purchases
* @dev Only used when MAX_NFTS_PER_USER > 0 to enforce per-user NFT limit
*/
mapping(address user => uint256 count) public userNftCount;
/**
* @notice Mapping from user address to NFT ID to whether the user has used this NFT
* @dev Used to track distinct NFT usage per user when MAX_NFTS_PER_USER > 0
*/
mapping(address user => mapping(uint256 nftId => bool used)) public userNftUsed;
/**
* @notice Mapping from address to NFT ID to original claimer status
* @dev An address can be the original claimer of multiple NFTs
* Only original claimers can purchase tokens with their claimed NFTs
*/
mapping(address claimer => mapping(uint256 nftId => bool isClaimer)) public override isOriginalClaimer;
/**
* @notice Mapping to track claimed signatures for replay protection
* @dev Each structHash can only be used once
*/
mapping(bytes32 signatureHash => bool isClaimed) public override claimedSignatures;
/**
* @notice Mapping from wallet address to total claimable token balance
* @dev Updated during purchase, decremented during claim
* Simplifies claiming - users claim their full balance without specifying NFT IDs
*/
mapping(address user => uint256 claimableAmount) public override userClaimable;
/**
* @notice Total tokens sold (in sale token smallest units)
* @dev Sum of all successful purchases
*/
uint256 public override totalTokensSold;
/**
* @notice Total tokens claimed (in sale token smallest units)
* @dev Sum of all successful claims. totalTokensUnclaimed = totalTokensSold - totalTokensClaimed
*/
uint256 public override totalTokensClaimed;
// ============================================
// CONSTRUCTOR
// ============================================
/**
* @notice Initialize sale contract with all configuration parameters
* @param nftContract_ Address of the NFT contract (must implement ERC721 via ERC165)
* @param paymentToken_ Address of the payment token (USDT, USDC, etc.)
* @dev Must be a standard ERC20 without fees, rebasing, or transfer hooks
* @param saleToken_ Address of the token being sold
* @dev Must be a standard ERC20 without fees, rebasing, or transfer hooks
* See token compatibility warning in contract documentation
* @param kycRegistry_ Address of the KYC allowlist registry contract
* @dev Used to verify users have completed KYC before purchasing
* @param pricePerToken_ Price per full sale token in payment token smallest units
* @dev See PRICE_PER_TOKEN documentation for format details and examples
* Common mistake: Forgetting to multiply by payment token decimals
* Example: Want 100 USDC (6 decimals) per token? Use 100_000_000, not 100
* @param allocationPerNft_ Maximum tokens each NFT can purchase (in sale token smallest units)
* @param maxNftsPerUser_ Maximum number of NFTs a user can use for purchases (0 = no limit)
* @dev Note: This limit is only effective if NFTs are non-transferable during sale.
* Transferable NFTs can bypass this limit via multiple addresses (Sybil)
* @param saleStartTime_ UNIX timestamp when sale starts (must be in future at deployment)
* @param saleDuration_ Duration of sale in seconds (must be > 0)
* @param claimStartTime_ UNIX timestamp when claims become available
* @dev Must be after saleStartTime_ + saleDuration_ (i.e., after sale ends)
* @param claimEndTime_ Optional UNIX timestamp when claim period ends (0 = no end)
* @dev If claimEndTime_ > 0, must be after claimStartTime_
* If claimEndTime_ > 0, RECOVERER_ROLE can recover unclaimed tokens after this time
* @param admin Address to grant the DEFAULT_ADMIN_ROLE (can manage all roles)
* @dev This address will also receive all operational roles initially (PAUSER, WITHDRAWER, RECOVERER, CLAIMER_ADMIN)
*/
constructor(
address nftContract_,
address paymentToken_,
address saleToken_,
address kycRegistry_,
uint256 pricePerToken_,
uint256 allocationPerNft_,
uint256 maxNftsPerUser_,
uint256 saleStartTime_,
uint256 saleDuration_,
uint256 claimStartTime_,
uint256 claimEndTime_,
address admin
) EIP712("ZAMASale", "1") {
// Validate inputs
if (
nftContract_ == address(0) || paymentToken_ == address(0) || saleToken_ == address(0)
|| kycRegistry_ == address(0) || admin == address(0)
) {
revert Errors.InvalidAddress();
}
// Prevent payment and sale tokens from being the same
if (paymentToken_ == saleToken_) {
revert Errors.InvalidAddress();
}
if (saleDuration_ == 0) revert Errors.InvalidDuration();
if (pricePerToken_ == 0) revert Errors.InvalidPrice();
if (allocationPerNft_ == 0) revert Errors.InvalidLimit();
if (claimStartTime_ < saleStartTime_ + saleDuration_) {
revert Errors.ClaimNotAvailable();
}
if (saleStartTime_ < block.timestamp) revert Errors.InvalidStartTime();
// Optional: Set claim end time (0 = no deadline)
// If provided, must be after claim start time
if (claimEndTime_ > 0 && claimEndTime_ <= claimStartTime_) {
revert Errors.InvalidClaimTime();
}
CLAIM_END_TIME = claimEndTime_;
// Validate NFT contract implements ERC721 interface via ERC165
try IERC165(nftContract_).supportsInterface(type(IERC721).interfaceId) returns (bool supported) {
if (!supported) revert Errors.InvalidAddress();
} catch {
revert Errors.InvalidAddress();
}
// Set immutable references
NFT_CONTRACT = IERC721(nftContract_);
KYC_REGISTRY = IKycAllowlistRegistry(kycRegistry_);
PAYMENT_TOKEN = IERC20Metadata(paymentToken_);
SALE_TOKEN = IERC20Metadata(saleToken_);
// Store decimals for calculations
SALE_TOKEN_DECIMALS = SALE_TOKEN.decimals();
SALE_TOKEN_DECIMALS_FACTOR = 10 ** SALE_TOKEN_DECIMALS;
// Set sale configuration
PRICE_PER_TOKEN = pricePerToken_;
ALLOCATION_PER_NFT = allocationPerNft_;
MAX_NFTS_PER_USER = maxNftsPerUser_;
SALE_START_TIME = saleStartTime_;
SALE_END_TIME = saleStartTime_ + saleDuration_;
CLAIM_START_TIME = claimStartTime_;
// Setup AccessControl roles
// DEFAULT_ADMIN_ROLE manages all other roles
_grantRole(DEFAULT_ADMIN_ROLE, admin);
_grantRole(PAUSER_ROLE, admin);
_grantRole(WITHDRAWER_ROLE, admin);
_grantRole(RECOVERER_ROLE, admin);
_grantRole(CLAIMER_ADMIN_ROLE, admin);
// Emit initialization event with named parameters for clarity
emit SaleInitialized({
nftContract: nftContract_,
paymentToken: paymentToken_,
saleToken: saleToken_,
pricePerToken: pricePerToken_,
allocationPerNft: allocationPerNft_,
maxNftsPerUser: maxNftsPerUser_,
saleStartTime: SALE_START_TIME,
saleEndTime: SALE_END_TIME,
claimStartTime: CLAIM_START_TIME,
claimEndTime: CLAIM_END_TIME
});
}
// ============================================
// PURCHASE FUNCTIONS
// ============================================
/**
* @notice Purchase tokens using an NFT
* @param nftId The NFT ID to use for purchase (caller must be original claimer)
* @param saleTokenAmount Amount of sale tokens to purchase (in smallest units)
* @dev Purchase requires:
* 1. Caller is the original claimer of the NFT
* 2. Caller has completed KYC (isAllowed in KYC registry)
* 3. NFT has remaining allocation
* Claim rights are assigned to the purchaser, not the NFT owner
* @dev Security: Uses CEI pattern (state updates before external call)
* and is protected by ReentrancyGuardTransient
* @dev Token compatibility: Requires standard ERC20 tokens without fees/rebasing
*/
function purchase(uint256 nftId, uint256 saleTokenAmount) external override nonReentrant whenNotPaused {
// 1. Validate sale period
if (block.timestamp < SALE_START_TIME) revert Errors.SaleNotStarted();
if (block.timestamp > SALE_END_TIME) revert Errors.SaleEnded();
// 2. Validate caller is original claimer of this NFT
if (!isOriginalClaimer[msg.sender][nftId]) {
revert Errors.NotOriginalClaimer();
}
// 3. Validate caller has completed KYC
if (!KYC_REGISTRY.isAllowed(msg.sender)) revert Errors.NotKYCAllowed();
// 4. Validate amount
if (saleTokenAmount == 0) revert Errors.InsufficientPayment();
// 5. Calculate payment amount - guaranteed non-zero due to:
// - saleTokenAmount > 0 (validated above)
// - PRICE_PER_TOKEN > 0 (validated in constructor)
// - Ceiling division always rounds up non-zero results
uint256 paymentAmount = calculatePaymentAmount(saleTokenAmount);
// 6. Check NFT usage limit (per user) if MAX_NFTS_PER_USER > 0
if (MAX_NFTS_PER_USER > 0) {
if (!userNftUsed[msg.sender][nftId]) {
if (userNftCount[msg.sender] >= MAX_NFTS_PER_USER) {
revert Errors.ExceedsUserLimit();
}
userNftUsed[msg.sender][nftId] = true;
userNftCount[msg.sender] += 1;
}
}
// 7. Check allocation limit (per NFT)
uint256 newTotal = nftPurchased[nftId] + saleTokenAmount;
if (newTotal > ALLOCATION_PER_NFT) revert Errors.ExceedsAllocation();
// 8. Validate contract has sufficient tokens for this purchase
uint256 reserved = totalTokensSold - totalTokensClaimed;
uint256 availableForSale = SALE_TOKEN.balanceOf(address(this)) - reserved;
if (availableForSale < saleTokenAmount) {
revert Errors.InsufficientBalance();
}
// 9. Update state
nftPurchased[nftId] = newTotal;
userClaimable[msg.sender] += saleTokenAmount;
totalTokensSold += saleTokenAmount;
// 10. Emit event before external call (CEIE pattern for indexer integrity)
emit TokensPurchased({
buyer: msg.sender, nftId: nftId, saleTokenAmount: saleTokenAmount, paymentAmount: paymentAmount
});
// 11. Transfer payment (last step - CEI pattern)
IERC20(address(PAYMENT_TOKEN)).safeTransferFrom(msg.sender, address(this), paymentAmount);
}
/**
* @notice Calculate required payment for given token amount with seller-favorable rounding
* @dev Uses ceiling division to ensure seller always receives at least fair value.
* Users should call this function to determine the exact approval amount needed.
* @dev Example: Buying 0.000001 tokens at 100 USDC per token:
* - saleTokenAmount = 1e12 (0.000001 tokens with 18 decimals)
* - PRICE_PER_TOKEN = 100_000_000 (100 USDC in wei)
* - paymentAmount = ceil((1e12 * 100_000_000) / 1e18) = ceil(100) = 100 wei USDC
* @param saleTokenAmount Amount of sale tokens to purchase (in smallest units)
* @return paymentAmount Required payment amount (in payment token smallest units)
*/
function calculatePaymentAmount(uint256 saleTokenAmount) public view override returns (uint256) {
return Math.mulDiv(saleTokenAmount, PRICE_PER_TOKEN, SALE_TOKEN_DECIMALS_FACTOR, Math.Rounding.Ceil);
}
// ============================================
// CLAIM FUNCTIONS
// ============================================
/**
* @notice Claim all purchased tokens for the caller
* @dev Wallet-based claiming - users claim their full balance without specifying NFT IDs
* @dev Protected by ReentrancyGuardTransient and whenNotPaused
*/
function claim() external override nonReentrant whenNotPaused {
// 1. Validate claim period
if (block.timestamp < CLAIM_START_TIME) {
revert Errors.ClaimNotAvailable();
}
if (CLAIM_END_TIME > 0 && block.timestamp > CLAIM_END_TIME) {
revert Errors.ClaimNotAvailable();
}
// 2. Get claimable amount for caller
uint256 claimable = userClaimable[msg.sender];
// 3. Validate there's something to claim
if (claimable == 0) revert Errors.NothingToClaim();
// 4. Validate contract has sufficient tokens
if (SALE_TOKEN.balanceOf(address(this)) < claimable) {
revert Errors.InsufficientBalance();
}
// 5. Update state BEFORE transfer (CEI pattern)
userClaimable[msg.sender] = 0;
totalTokensClaimed += claimable;
// 6. Emit event before transfer (CEIE pattern)
emit TokensClaimed({claimer: msg.sender, amount: claimable});
// 7. Transfer tokens (last step)
IERC20(address(SALE_TOKEN)).safeTransfer(msg.sender, claimable);
}
// ============================================
// VIEW FUNCTIONS
// ============================================
/**
* @notice Get total payment received (calculated view function instead of storage)
* @dev Calculated from totalTokensSold using ceiling division (seller-favorable rounding)
* @return Total payment received in payment token smallest units
*/
function totalPaymentReceived() external view override returns (uint256) {
return Math.mulDiv(totalTokensSold, PRICE_PER_TOKEN, SALE_TOKEN_DECIMALS_FACTOR, Math.Rounding.Ceil);
}
/**
* @notice Get total tokens unclaimed
* @return Total tokens that have been sold but not yet claimed (in sale token smallest units)
*/
function totalTokensUnclaimed() external view override returns (uint256) {
return totalTokensSold - totalTokensClaimed;
}
/**
* @notice Get claimable amount for the caller
* @return Claimable token amount for the caller's wallet
*/
function getClaimable() external view override returns (uint256) {
return userClaimable[msg.sender];
}
/**
* @notice Get required payment for token amount (alias for calculatePaymentAmount)
* @dev Provided for interface compatibility and clearer naming
* @param saleTokenAmount Amount of sale tokens (in smallest units)
* @return Required payment amount (in payment token smallest units)
*/
function getTotalPayment(uint256 saleTokenAmount) external view override returns (uint256) {
return calculatePaymentAmount(saleTokenAmount);
}
/**
* @notice Check if an NFT can be used for purchase
* @param nftId NFT ID to check
* @return True if NFT has remaining allocation AND sale is active AND contract not paused
*/
function canUseNft(uint256 nftId) external view override returns (bool) {
uint256 purchased = nftPurchased[nftId];
return !paused() && purchased < ALLOCATION_PER_NFT && block.timestamp >= SALE_START_TIME
&& block.timestamp <= SALE_END_TIME;
}
/**
* @notice Get remaining allocation for an NFT
* @param nftId NFT ID to check
* @return Remaining tokens the NFT can still purchase (0 if allocation exhausted)
*/
function getRemainingAllocation(uint256 nftId) external view override returns (uint256) {
uint256 purchased = nftPurchased[nftId];
if (purchased >= ALLOCATION_PER_NFT) {
return 0;
}
return ALLOCATION_PER_NFT - purchased;
}
/**
* @notice Get the number of NFTs a user has used for purchases
* @dev Only meaningful when MAX_NFTS_PER_USER > 0
* @param user User address to check
* @return Number of distinct NFTs used by the user for purchases
*/
function getUserNftCount(address user) external view override returns (uint256) {
return userNftCount[user];
}
/**
* @notice Check if a user has used a specific NFT for purchase
* @dev Only meaningful when MAX_NFTS_PER_USER > 0
* @param user User address to check
* @param nftId NFT ID to check
* @return True if the user has used this NFT for purchase
*/
function hasUserUsedNft(address user, uint256 nftId) external view override returns (bool) {
return userNftUsed[user][nftId];
}
/**
* @notice Check if sale is paused (override for custom error)
* @return True if sale is paused, false otherwise
*/
function paused() public view override(IZAMASale, Pausable) returns (bool) {
return Pausable.paused();
}
/**
* @notice Get remaining NFTs a user can still use for purchases
* @param user User address to check
* @return Remaining NFTs the user can use (type(uint256).max if no limit)
*/
function getRemainingUserNftLimit(address user) external view returns (uint256) {
if (MAX_NFTS_PER_USER == 0) {
return type(uint256).max; // No limit
}
if (userNftCount[user] >= MAX_NFTS_PER_USER) {
return 0; // Already at limit
}
return MAX_NFTS_PER_USER - userNftCount[user];
}
/**
* @notice Check if a user can purchase with a specific NFT
* @param user User address to check
* @param nftId NFT ID to check
* @return status The purchase eligibility status (Eligible if user can purchase)
*/
function canUserPurchaseWithNft(address user, uint256 nftId)
external
view
override
returns (PurchaseStatus status)
{
// Check original claimer
if (!isOriginalClaimer[user][nftId]) {
return PurchaseStatus.NotOriginalClaimer;
}
// Check KYC
if (!KYC_REGISTRY.isAllowed(user)) return PurchaseStatus.NotKYCAllowed;
// Check allocation remaining
if (nftPurchased[nftId] >= ALLOCATION_PER_NFT) {
return PurchaseStatus.AllocationExhausted;
}
// Check sale period
if (block.timestamp < SALE_START_TIME) {
return PurchaseStatus.SaleNotStarted;
}
if (block.timestamp > SALE_END_TIME) return PurchaseStatus.SaleEnded;
// Check not paused
if (paused()) return PurchaseStatus.SalePaused;
// Check user NFT limit
if (MAX_NFTS_PER_USER > 0) {
if (!userNftUsed[user][nftId] && userNftCount[user] >= MAX_NFTS_PER_USER) {
return PurchaseStatus.UserNftLimitReached;
}
}
// Check contract has tokens available for sale
uint256 reserved = totalTokensSold - totalTokensClaimed;
uint256 availableForSale = SALE_TOKEN.balanceOf(address(this)) - reserved;
if (availableForSale == 0) {
return PurchaseStatus.InsufficientContractBalance;
}
return PurchaseStatus.Eligible;
}
// ============================================
// PAUSE OVERRIDES (for custom errors)
// ============================================
/**
* @dev Override to use custom error instead of OZ Pausable error
* @dev Reverts with Errors.SalePaused() if contract is paused
*/
function _requireNotPaused() internal view virtual override {
if (paused()) {
revert Errors.SalePaused();
}
}
/**
* @dev Override to use custom error instead of OZ Pausable error
* @dev Reverts with Errors.SaleNotPaused() if contract is not paused
*/
function _requirePaused() internal view virtual override {
if (!paused()) {
revert Errors.SaleNotPaused();
}
}
// ============================================
// PAUSE FUNCTIONS
// ============================================
/**
* @notice Pause the sale (emergency only)
* @dev Only accounts with PAUSER_ROLE can pause. Pauses both purchases and claims.
* @dev Emits SalePaused event
*/
function pause() external override onlyRole(PAUSER_ROLE) {
_pause(); // Uses OZ internal function
emit SalePaused({admin: msg.sender, timestamp: block.timestamp});
}
/**
* @notice Unpause the sale
* @dev Only accounts with PAUSER_ROLE can unpause.
* @dev Emits SaleUnpaused event
*/
function unpause() external override onlyRole(PAUSER_ROLE) {
_unpause(); // Uses OZ internal function
emit SaleUnpaused({admin: msg.sender, timestamp: block.timestamp});
}
// ============================================
// CLAIMER ADMIN FUNCTIONS
// ============================================
/**
* @notice Set original claimers for NFTs in batch
* @param claimers Array of claimer addresses
* @param nftIds Array of NFT IDs (parallel with claimers array)
* @dev Only CLAIMER_ADMIN_ROLE can call. Max ~1,500 per transaction to avoid gas limit.
* Each claimers[i] is marked as original claimer for nftIds[i].
* A single address can be original claimer for multiple NFTs.
*/
function setOriginalClaimers(address[] calldata claimers, uint256[] calldata nftIds)
external
override
onlyRole(CLAIMER_ADMIN_ROLE)
{
if (claimers.length == 0) revert Errors.InvalidLength();
if (claimers.length != nftIds.length) revert Errors.LengthMismatch();
uint256 length = claimers.length;
for (uint256 i; i < length; ++i) {
if (claimers[i] == address(0)) revert Errors.InvalidAddress();
isOriginalClaimer[claimers[i]][nftIds[i]] = true;
}
emit OriginalClaimersSet(claimers.length);
}
/**
* @notice Remove original claimers for NFTs in batch
* @param claimers Array of claimer addresses
* @param nftIds Array of NFT IDs (parallel with claimers array)
* @dev Only CLAIMER_ADMIN_ROLE can call. Use to fix errors or remove eligibility.
*/
function removeOriginalClaimers(address[] calldata claimers, uint256[] calldata nftIds)
external
override
onlyRole(CLAIMER_ADMIN_ROLE)
{
if (claimers.length == 0) revert Errors.InvalidLength();
if (claimers.length != nftIds.length) revert Errors.LengthMismatch();
uint256 length = claimers.length;
for (uint256 i; i < length; ++i) {
isOriginalClaimer[claimers[i]][nftIds[i]] = false;
}
emit OriginalClaimersRemoved(claimers.length);
}
/**
* @notice Self-register as original claimer using an admin-signed EIP-712 signature
* @param nftId The NFT ID to register as claimer for
* @param deadline Timestamp after which the signature is no longer valid
* @param signature ECDSA signature from a CLAIMER_ADMIN_ROLE holder
*/
function registerAsClaimer(uint256 nftId, uint256 deadline, bytes calldata signature) external override {
if (block.timestamp > deadline) revert Errors.ExpiredSignature();
bytes32 structHash = keccak256(abi.encode(CLAIMER_REGISTRATION_TYPEHASH, msg.sender, nftId, deadline));
if (claimedSignatures[structHash]) {
revert Errors.SignatureAlreadyClaimed();
}
bytes32 digest = _hashTypedDataV4(structHash);
address signer = ECDSA.recover(digest, signature);
if (!hasRole(CLAIMER_ADMIN_ROLE, signer)) {
revert Errors.InvalidSignature();
}
claimedSignatures[structHash] = true;
isOriginalClaimer[msg.sender][nftId] = true;
emit OriginalClaimerRegistered(msg.sender, nftId);
}
/**
* @notice Check if a registration signature has been claimed
* @param claimer The claimer address
* @param nftId The NFT ID
* @param deadline The signature deadline
* @return True if already registered via signature
*/
function isRegistrationSignatureClaimed(address claimer, uint256 nftId, uint256 deadline)
external
view
override
returns (bool)
{
bytes32 structHash = keccak256(abi.encode(CLAIMER_REGISTRATION_TYPEHASH, claimer, nftId, deadline));
return claimedSignatures[structHash];
}
// ============================================
// WITHDRAWAL FUNCTIONS
// ============================================
/**
* @notice Withdraw collected payment tokens to specified address
* @param to Address to withdraw to (cannot be zero address)
* @param amount Amount to withdraw (0 = withdraw all collected payment tokens)
* @dev Only accounts with WITHDRAWER_ROLE can withdraw
* @dev Emits PaymentWithdrawn event
*/
function withdrawPaymentTokens(address to, uint256 amount) external override onlyRole(WITHDRAWER_ROLE) {
if (to == address(0)) revert Errors.InvalidAddress();
uint256 balance = PAYMENT_TOKEN.balanceOf(address(this));
if (balance == 0) revert Errors.InsufficientBalance();
uint256 withdrawAmount = amount == 0 ? balance : amount;
if (withdrawAmount > balance) revert Errors.InsufficientBalance();
emit PaymentWithdrawn({to: to, amount: withdrawAmount});
IERC20(address(PAYMENT_TOKEN)).safeTransfer(to, withdrawAmount);
}
/**
* @notice Withdraw unsold sale tokens to specified address
* @param to Address to withdraw to (cannot be zero address)
* @param amount Amount to withdraw (0 = withdraw all unsold tokens)
* @dev Only accounts with WITHDRAWER_ROLE can withdraw
* @dev Only withdraws tokens not yet purchased by users (balance - unclaimed)
* @dev Emits TokensWithdrawn event
*/
function withdrawSaleTokens(address to, uint256 amount) external override onlyRole(WITHDRAWER_ROLE) {
if (to == address(0)) revert Errors.InvalidAddress();
uint256 totalBalance = SALE_TOKEN.balanceOf(address(this));
// Calculate truly unsold tokens: total balance minus unclaimed tokens
uint256 reserved = totalTokensSold - totalTokensClaimed;
uint256 unsoldBalance = totalBalance - reserved;
if (unsoldBalance == 0) revert Errors.InsufficientBalance();
uint256 withdrawAmount = amount == 0 ? unsoldBalance : amount;
if (withdrawAmount > unsoldBalance) revert Errors.InsufficientBalance();
emit TokensWithdrawn({to: to, amount: withdrawAmount});
IERC20(address(SALE_TOKEN)).safeTransfer(to, withdrawAmount);
}
// ============================================
// RECOVERY FUNCTIONS
// ============================================
/**
* @notice Recover ERC20 tokens accidentally sent to contract
* @dev Only accounts with RECOVERER_ROLE can recover
* @dev Cannot recover payment or sale tokens (use withdraw functions instead)
* @param token Token address to recover (cannot be PAYMENT_TOKEN or SALE_TOKEN)
* @param to Address to send recovered tokens (cannot be zero address)
* @dev Emits ERC20Recovered event
*/
function recoverERC20(address token, address to) external override onlyRole(RECOVERER_ROLE) {
if (token == address(PAYMENT_TOKEN) || token == address(SALE_TOKEN)) {
revert Errors.InvalidAddress();
}
if (to == address(0)) revert Errors.InvalidAddress();
uint256 balance = IERC20(token).balanceOf(address(this));
IERC20(token).safeTransfer(to, balance);
emit ERC20Recovered({token: token, to: to, amount: balance});
}
/**
* @notice Recover unclaimed tokens after claim deadline
* @dev Only accounts with RECOVERER_ROLE can recover
* @dev Only callable after CLAIM_END_TIME (if CLAIM_END_TIME > 0)
* @dev Requires CLAIM_END_TIME > 0 (i.e., claim deadline was set during deployment)
* @param to Address to send recovered tokens to (cannot be zero address)
* @dev Reverts if claim period is still active or if no unclaimed tokens exist
* @dev Emits UnclaimedTokensRecovered event
*/
function recoverUnclaimedTokens(address to) external override onlyRole(RECOVERER_ROLE) {
if (to == address(0)) revert Errors.InvalidAddress();
if (CLAIM_END_TIME == 0) revert Errors.ClaimNotAvailable();
if (block.timestamp <= CLAIM_END_TIME) {
revert Errors.ClaimPeriodActive();
}
// Get actual balance for robust recovery
uint256 balance = SALE_TOKEN.balanceOf(address(this));
if (balance == 0) revert Errors.NothingToClaim();
// Mark all tokens as claimed (prevents double recovery via accounting)
totalTokensClaimed = totalTokensSold;
// Emit event before transfer
emit UnclaimedTokensRecovered({to: to, amount: balance});
// Transfer all remaining tokens
IERC20(address(SALE_TOKEN)).safeTransfer(to, balance);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
if (!_safeTransfer(token, to, value, true)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
if (!_safeTransferFrom(token, from, to, value, true)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _safeTransfer(token, to, value, false);
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _safeTransferFrom(token, from, to, value, false);
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
if (!_safeApprove(token, spender, value, false)) {
if (!_safeApprove(token, spender, 0, true)) revert SafeERC20FailedOperation(address(token));
if (!_safeApprove(token, spender, value, true)) revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that relies on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that relies on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Oppositely, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity `token.transfer(to, value)` call, relaxing the requirement on the return value: the
* return value is optional (but if data is returned, it must not be false).
*
* @param token The token targeted by the call.
* @param to The recipient of the tokens
* @param value The amount of token to transfer
* @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
*/
function _safeTransfer(IERC20 token, address to, uint256 value, bool bubble) private returns (bool success) {
bytes4 selector = IERC20.transfer.selector;
assembly ("memory-safe") {
let fmp := mload(0x40)
mstore(0x00, selector)
mstore(0x04, and(to, shr(96, not(0))))
mstore(0x24, value)
success := call(gas(), token, 0, 0x00, 0x44, 0x00, 0x20)
// if call success and return is true, all is good.
// otherwise (not success or return is not true), we need to perform further checks
if iszero(and(success, eq(mload(0x00), 1))) {
// if the call was a failure and bubble is enabled, bubble the error
if and(iszero(success), bubble) {
returndatacopy(fmp, 0x00, returndatasize())
revert(fmp, returndatasize())
}
// if the return value is not true, then the call is only successful if:
// - the token address has code
// - the returndata is empty
success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
}
mstore(0x40, fmp)
}
}
/**
* @dev Imitates a Solidity `token.transferFrom(from, to, value)` call, relaxing the requirement on the return
* value: the return value is optional (but if data is returned, it must not be false).
*
* @param token The token targeted by the call.
* @param from The sender of the tokens
* @param to The recipient of the tokens
* @param value The amount of token to transfer
* @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
*/
function _safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value,
bool bubble
) private returns (bool success) {
bytes4 selector = IERC20.transferFrom.selector;
assembly ("memory-safe") {
let fmp := mload(0x40)
mstore(0x00, selector)
mstore(0x04, and(from, shr(96, not(0))))
mstore(0x24, and(to, shr(96, not(0))))
mstore(0x44, value)
success := call(gas(), token, 0, 0x00, 0x64, 0x00, 0x20)
// if call success and return is true, all is good.
// otherwise (not success or return is not true), we need to perform further checks
if iszero(and(success, eq(mload(0x00), 1))) {
// if the call was a failure and bubble is enabled, bubble the error
if and(iszero(success), bubble) {
returndatacopy(fmp, 0x00, returndatasize())
revert(fmp, returndatasize())
}
// if the return value is not true, then the call is only successful if:
// - the token address has code
// - the returndata is empty
success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
}
mstore(0x40, fmp)
mstore(0x60, 0)
}
}
/**
* @dev Imitates a Solidity `token.approve(spender, value)` call, relaxing the requirement on the return value:
* the return value is optional (but if data is returned, it must not be false).
*
* @param token The token targeted by the call.
* @param spender The spender of the tokens
* @param value The amount of token to transfer
* @param bubble Behavior switch if the transfer call reverts: bubble the revert reason or return a false boolean.
*/
function _safeApprove(IERC20 token, address spender, uint256 value, bool bubble) private returns (bool success) {
bytes4 selector = IERC20.approve.selector;
assembly ("memory-safe") {
let fmp := mload(0x40)
mstore(0x00, selector)
mstore(0x04, and(spender, shr(96, not(0))))
mstore(0x24, value)
success := call(gas(), token, 0, 0x00, 0x44, 0x00, 0x20)
// if call success and return is true, all is good.
// otherwise (not success or return is not true), we need to perform further checks
if iszero(and(success, eq(mload(0x00), 1))) {
// if the call was a failure and bubble is enabled, bubble the error
if and(iszero(success), bubble) {
returndatacopy(fmp, 0x00, returndatasize())
revert(fmp, returndatasize())
}
// if the return value is not true, then the call is only successful if:
// - the token address has code
// - the returndata is empty
success := and(success, and(iszero(returndatasize()), gt(extcodesize(token), 0)))
}
mstore(0x40, fmp)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/IERC165.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Pausable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which allows children to implement an emergency stop
* mechanism that can be triggered by an authorized account.
*
* This module is used through inheritance. It will make available the
* modifiers `whenNotPaused` and `whenPaused`, which can be applied to
* the functions of your contract. Note that they will not be pausable by
* simply including this module, only once the modifiers are put in place.
*/
abstract contract Pausable is Context {
bool private _paused;
/**
* @dev Emitted when the pause is triggered by `account`.
*/
event Paused(address account);
/**
* @dev Emitted when the pause is lifted by `account`.
*/
event Unpaused(address account);
/**
* @dev The operation failed because the contract is paused.
*/
error EnforcedPause();
/**
* @dev The operation failed because the contract is not paused.
*/
error ExpectedPause();
/**
* @dev Modifier to make a function callable only when the contract is not paused.
*
* Requirements:
*
* - The contract must not be paused.
*/
modifier whenNotPaused() {
_requireNotPaused();
_;
}
/**
* @dev Modifier to make a function callable only when the contract is paused.
*
* Requirements:
*
* - The contract must be paused.
*/
modifier whenPaused() {
_requirePaused();
_;
}
/**
* @dev Returns true if the contract is paused, and false otherwise.
*/
function paused() public view virtual returns (bool) {
return _paused;
}
/**
* @dev Throws if the contract is paused.
*/
function _requireNotPaused() internal view virtual {
if (paused()) {
revert EnforcedPause();
}
}
/**
* @dev Throws if the contract is not paused.
*/
function _requirePaused() internal view virtual {
if (!paused()) {
revert ExpectedPause();
}
}
/**
* @dev Triggers stopped state.
*
* Requirements:
*
* - The contract must not be paused.
*/
function _pause() internal virtual whenNotPaused {
_paused = true;
emit Paused(_msgSender());
}
/**
* @dev Returns to normal state.
*
* Requirements:
*
* - The contract must be paused.
*/
function _unpause() internal virtual whenPaused {
_paused = false;
emit Unpaused(_msgSender());
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `condition ? a : b`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `condition ? a : b`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory buffer) private pure returns (bool) {
uint256 chunk;
for (uint256 i = 0; i < buffer.length; i += 0x20) {
// See _unsafeReadBytesOffset from utils/Bytes.sol
assembly ("memory-safe") {
chunk := mload(add(add(buffer, 0x20), i))
}
if (chunk >> (8 * saturatingSub(i + 0x20, buffer.length)) != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the first 16 bytes (most significant half).
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
/**
* @dev Counts the number of leading zero bits in a uint256.
*/
function clz(uint256 x) internal pure returns (uint256) {
return ternary(x == 0, 256, 255 - log2(x));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ReentrancyGuardTransient.sol)
pragma solidity ^0.8.24;
import {TransientSlot} from "./TransientSlot.sol";
/**
* @dev Variant of {ReentrancyGuard} that uses transient storage.
*
* NOTE: This variant only works on networks where EIP-1153 is available.
*
* _Available since v5.1._
*
* @custom:stateless
*/
abstract contract ReentrancyGuardTransient {
using TransientSlot for *;
// keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
bytes32 private constant REENTRANCY_GUARD_STORAGE =
0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
/**
* @dev A `view` only version of {nonReentrant}. Use to block view functions
* from being called, preventing reading from inconsistent contract state.
*
* CAUTION: This is a "view" modifier and does not change the reentrancy
* status. Use it only on view functions. For payable or non-payable functions,
* use the standard {nonReentrant} modifier instead.
*/
modifier nonReentrantView() {
_nonReentrantBeforeView();
_;
}
function _nonReentrantBeforeView() private view {
if (_reentrancyGuardEntered()) {
revert ReentrancyGuardReentrantCall();
}
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, REENTRANCY_GUARD_STORAGE.asBoolean().tload() will be false
_nonReentrantBeforeView();
// Any calls to nonReentrant after this point will fail
_reentrancyGuardStorageSlot().asBoolean().tstore(true);
}
function _nonReentrantAfter() private {
_reentrancyGuardStorageSlot().asBoolean().tstore(false);
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _reentrancyGuardStorageSlot().asBoolean().tload();
}
function _reentrancyGuardStorageSlot() internal pure virtual returns (bytes32) {
return REENTRANCY_GUARD_STORAGE;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/extensions/IERC20Metadata.sol)
pragma solidity >=0.6.2;
import {IERC20} from "../IERC20.sol";
/**
* @dev Interface for the optional metadata functions from the ERC-20 standard.
*/
interface IERC20Metadata is IERC20 {
/**
* @dev Returns the name of the token.
*/
function name() external view returns (string memory);
/**
* @dev Returns the symbol of the token.
*/
function symbol() external view returns (string memory);
/**
* @dev Returns the decimals places of the token.
*/
function decimals() external view returns (uint8);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC721/IERC721.sol)
pragma solidity >=0.6.2;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC-721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
* {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
* a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the address zero.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/AccessControl.sol)
pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";
import {Context} from "../utils/Context.sol";
import {ERC165} from "../utils/introspection/ERC165.sol";
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```solidity
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```solidity
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
* to enforce additional security measures for this role.
*/
abstract contract AccessControl is Context, IAccessControl, ERC165 {
struct RoleData {
mapping(address account => bool) hasRole;
bytes32 adminRole;
}
mapping(bytes32 role => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with an {AccessControlUnauthorizedAccount} error including the required role.
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/// @inheritdoc ERC165
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) public view virtual returns (bool) {
return _roles[role].hasRole[account];
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
* is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
* is missing `role`.
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert AccessControlUnauthorizedAccount(account, role);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) {
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) {
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address callerConfirmation) public virtual {
if (callerConfirmation != _msgSender()) {
revert AccessControlBadConfirmation();
}
_revokeRole(role, callerConfirmation);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual returns (bool) {
if (!hasRole(role, account)) {
_roles[role].hasRole[account] = true;
emit RoleGranted(role, account, _msgSender());
return true;
} else {
return false;
}
}
/**
* @dev Attempts to revoke `role` from `account` and returns a boolean indicating if `role` was revoked.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual returns (bool) {
if (hasRole(role, account)) {
_roles[role].hasRole[account] = false;
emit RoleRevoked(role, account, _msgSender());
return true;
} else {
return false;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/EIP712.sol)
pragma solidity ^0.8.24;
import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
*
* The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
* encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
* does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
* produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
* separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
* separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
*
* @custom:oz-upgrades-unsafe-allow state-variable-immutable
*/
abstract contract EIP712 is IERC5267 {
using ShortStrings for *;
bytes32 private constant TYPE_HASH =
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
// Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
// invalidate the cached domain separator if the chain id changes.
bytes32 private immutable _cachedDomainSeparator;
uint256 private immutable _cachedChainId;
address private immutable _cachedThis;
bytes32 private immutable _hashedName;
bytes32 private immutable _hashedVersion;
ShortString private immutable _name;
ShortString private immutable _version;
// slither-disable-next-line constable-states
string private _nameFallback;
// slither-disable-next-line constable-states
string private _versionFallback;
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_name = name.toShortStringWithFallback(_nameFallback);
_version = version.toShortStringWithFallback(_versionFallback);
_hashedName = keccak256(bytes(name));
_hashedVersion = keccak256(bytes(version));
_cachedChainId = block.chainid;
_cachedDomainSeparator = _buildDomainSeparator();
_cachedThis = address(this);
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
return _cachedDomainSeparator;
} else {
return _buildDomainSeparator();
}
}
function _buildDomainSeparator() private view returns (bytes32) {
return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
}
/// @inheritdoc IERC5267
function eip712Domain()
public
view
virtual
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
)
{
return (
hex"0f", // 01111
_EIP712Name(),
_EIP712Version(),
block.chainid,
address(this),
bytes32(0),
new uint256[](0)
);
}
/**
* @dev The name parameter for the EIP712 domain.
*
* NOTE: By default this function reads _name which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Name() internal view returns (string memory) {
return _name.toStringWithFallback(_nameFallback);
}
/**
* @dev The version parameter for the EIP712 domain.
*
* NOTE: By default this function reads _version which is an immutable value.
* It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
*/
// solhint-disable-next-line func-name-mixedcase
function _EIP712Version() internal view returns (string memory) {
return _version.toStringWithFallback(_versionFallback);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.20;
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS
}
/**
* @dev The signature is invalid.
*/
error ECDSAInvalidSignature();
/**
* @dev The signature has an invalid length.
*/
error ECDSAInvalidSignatureLength(uint256 length);
/**
* @dev The signature has an S value that is in the upper half order.
*/
error ECDSAInvalidSignatureS(bytes32 s);
/**
* @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
* return address(0) without also returning an error description. Errors are documented using an enum (error type)
* and a bytes32 providing additional information about the error.
*
* If no error is returned, then the address can be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
* is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
* invalidation or nonces for replay protection.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
*
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*/
function tryRecover(
bytes32 hash,
bytes memory signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
assembly ("memory-safe") {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Variant of {tryRecover} that takes a signature in calldata
*/
function tryRecoverCalldata(
bytes32 hash,
bytes calldata signature
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, calldata slices would work here, but are
// significantly more expensive (length check) than using calldataload in assembly.
assembly ("memory-safe") {
r := calldataload(signature.offset)
s := calldataload(add(signature.offset, 0x20))
v := byte(0, calldataload(add(signature.offset, 0x40)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* NOTE: This function only supports 65-byte signatures. ERC-2098 short signatures are rejected. This restriction
* is DEPRECATED and will be removed in v6.0. Developers SHOULD NOT use signatures as unique identifiers; use hash
* invalidation or nonces for replay protection.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Variant of {recover} that takes a signature in calldata
*/
function recoverCalldata(bytes32 hash, bytes calldata signature) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecoverCalldata(hash, signature);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
*/
function tryRecover(
bytes32 hash,
bytes32 r,
bytes32 vs
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
unchecked {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
// We do not check for an overflow here since the shift operation results in 0 or 1.
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r` and `vs` short-signature fields separately.
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function tryRecover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS, s);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature, bytes32(0));
}
return (signer, RecoverError.NoError, bytes32(0));
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
_throwError(error, errorArg);
return recovered;
}
/**
* @dev Parse a signature into its `v`, `r` and `s` components. Supports 65-byte and 64-byte (ERC-2098)
* formats. Returns (0,0,0) for invalid signatures.
*
* For 64-byte signatures, `v` is automatically normalized to 27 or 28.
* For 65-byte signatures, `v` is returned as-is and MUST already be 27 or 28 for use with ecrecover.
*
* Consider validating the result before use, or use {tryRecover}/{recover} which perform full validation.
*/
function parse(bytes memory signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
assembly ("memory-safe") {
// Check the signature length
switch mload(signature)
// - case 65: r,s,v signature (standard)
case 65 {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
case 64 {
let vs := mload(add(signature, 0x40))
r := mload(add(signature, 0x20))
s := and(vs, shr(1, not(0)))
v := add(shr(255, vs), 27)
}
default {
r := 0
s := 0
v := 0
}
}
}
/**
* @dev Variant of {parse} that takes a signature in calldata
*/
function parseCalldata(bytes calldata signature) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
assembly ("memory-safe") {
// Check the signature length
switch signature.length
// - case 65: r,s,v signature (standard)
case 65 {
r := calldataload(signature.offset)
s := calldataload(add(signature.offset, 0x20))
v := byte(0, calldataload(add(signature.offset, 0x40)))
}
// - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098)
case 64 {
let vs := calldataload(add(signature.offset, 0x20))
r := calldataload(signature.offset)
s := and(vs, shr(1, not(0)))
v := add(shr(255, vs), 27)
}
default {
r := 0
s := 0
v := 0
}
}
}
/**
* @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
*/
function _throwError(RecoverError error, bytes32 errorArg) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert ECDSAInvalidSignature();
} else if (error == RecoverError.InvalidSignatureLength) {
revert ECDSAInvalidSignatureLength(uint256(errorArg));
} else if (error == RecoverError.InvalidSignatureS) {
revert ECDSAInvalidSignatureS(errorArg);
}
}
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.24;
/**
* @title Errors
* @notice Central library for all custom errors used in ZAMASale contract
* @dev All errors use custom revert reasons for gas efficiency and clarity
*/
library Errors {
// ============== Address Validation Errors ==============
/// @notice Thrown when an invalid address (typically zero address) is provided
error InvalidAddress();
// ============== Payment Calculation Errors ==============
/// @notice Thrown when insufficient payment is provided for purchase
error InsufficientPayment();
/// @notice Thrown when contract has insufficient balance for operation
error InsufficientBalance();
/// @notice Thrown when price per token is zero or invalid
error InvalidPrice();
// ============== Sale Timing Errors ==============
/// @notice Thrown when sale has not started yet
error SaleNotStarted();
/// @notice Thrown when sale has ended
error SaleEnded();
/// @notice Thrown when sale start time is invalid (in the past)
error InvalidStartTime();
/// @notice Thrown when sale duration is zero
error InvalidDuration();
// ============== Claim Timing Errors ==============
/// @notice Thrown when claim is not available (before start or after end)
error ClaimNotAvailable();
/// @notice Thrown when claim time configuration is invalid
error InvalidClaimTime();
/// @notice Thrown when claim period is still active (for recovery operations)
error ClaimPeriodActive();
// ============== NFT-Related Errors ==============
/// @notice Thrown when purchase would exceed NFT's allocation limit
error ExceedsAllocation();
/// @notice Thrown when allocation limit is zero or invalid
error InvalidLimit();
/// @notice Thrown when per-user NFT limit is exceeded
error ExceedsUserLimit();
// ============== Purchase Validation Errors ==============
/// @notice Thrown when purchase amount is invalid (zero)
error InvalidAmount();
// ============== Claim Errors ==============
/// @notice Thrown when there are no tokens to claim
error NothingToClaim();
// ============== Pause State Errors ==============
/// @notice Thrown when sale is paused but operation requires it to be active
error SalePaused();
/// @notice Thrown when sale is not paused but operation requires it to be paused
error SaleNotPaused();
// ============== KYC/Whitelist Errors ==============
/// @notice Thrown when caller is not the original claimer of the NFT
error NotOriginalClaimer();
/// @notice Thrown when caller has not completed KYC
error NotKYCAllowed();
// ============== Input Validation Errors ==============
/// @notice Thrown when array lengths do not match
error LengthMismatch();
/// @notice Thrown when provided length is invalid (e.g., zero)
error InvalidLength();
// ============== Signature Validation Errors ==============
/// @notice Thrown when signature deadline has expired
error ExpiredSignature();
/// @notice Thrown when signature is invalid or signer lacks required role
error InvalidSignature();
/// @notice Thrown when signature has already been used
error SignatureAlreadyClaimed();
}// SPDX-License-Identifier: BUSL-1.1
pragma solidity 0.8.24;
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC721} from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import {IKycAllowlistRegistry} from "./IKycAllowlistRegistry.sol";
/**
* @title IZAMASale
* @notice Interface for ZAMA NFT-gated token sale contract
* @dev All external and public functions of ZAMASale must be declared here
*/
interface IZAMASale {
// ============================================
// ENUMS
// ============================================
/**
* @notice Status codes for purchase eligibility checks
* @dev Used by canUserPurchaseWithNft to provide detailed feedback
*/
enum PurchaseStatus {
Eligible, // User can purchase with this NFT
NotOriginalClaimer, // User is not the original claimer of this NFT
NotKYCAllowed, // User has not completed KYC or is blocked
AllocationExhausted, // NFT has reached its purchase limit
SaleNotStarted, // Sale period has not begun
SaleEnded, // Sale period has ended
SalePaused, // Sale is currently paused
UserNftLimitReached, // User has reached max NFTs per user limit
InsufficientContractBalance // Contract has no tokens available for sale
}
// ============================================
// IMMUTABLE GETTERS
// ============================================
/// @notice Get the NFT contract used for gating purchases
/// @return The IERC721 NFT contract instance
function NFT_CONTRACT() external view returns (IERC721);
/// @notice Get the payment token contract (USDT, USDC, etc.)
/// @return The IERC20Metadata payment token instance
function PAYMENT_TOKEN() external view returns (IERC20Metadata);
/// @notice Get the sale token contract (token being sold)
/// @return The IERC20Metadata sale token instance
function SALE_TOKEN() external view returns (IERC20Metadata);
/// @notice Get the KYC registry contract
/// @return The IKycAllowlistRegistry instance
function KYC_REGISTRY() external view returns (IKycAllowlistRegistry);
/// @notice Get price per 1 whole sale token in payment token smallest units
/// @return Price per token (see PRICE_PER_TOKEN documentation for format)
function PRICE_PER_TOKEN() external view returns (uint256);
/// @notice Get maximum tokens each NFT can purchase
/// @return Allocation per NFT in sale token smallest units
function ALLOCATION_PER_NFT() external view returns (uint256);
/// @notice Get maximum NFTs a single user can use for purchases
/// @return Max NFTs per user (0 = no limit)
function MAX_NFTS_PER_USER() external view returns (uint256);
/// @notice Get UNIX timestamp when sale starts
/// @return Sale start timestamp
function SALE_START_TIME() external view returns (uint256);
/// @notice Get UNIX timestamp when sale ends
/// @return Sale end timestamp
function SALE_END_TIME() external view returns (uint256);
/// @notice Get UNIX timestamp when claims become available
/// @return Claim start timestamp
function CLAIM_START_TIME() external view returns (uint256);
/// @notice Get optional UNIX timestamp when claim period ends (0 = no end)
/// @return Claim end timestamp (0 if no deadline)
function CLAIM_END_TIME() external view returns (uint256);
// ============================================
// ROLE GETTERS
// ============================================
/// @notice Get the PAUSER_ROLE identifier
/// @return bytes32 role identifier for pausing
function PAUSER_ROLE() external view returns (bytes32);
/// @notice Get the WITHDRAWER_ROLE identifier
/// @return bytes32 role identifier for withdrawals
function WITHDRAWER_ROLE() external view returns (bytes32);
/// @notice Get the RECOVERER_ROLE identifier
/// @return bytes32 role identifier for recovery operations
function RECOVERER_ROLE() external view returns (bytes32);
/// @notice Get the CLAIMER_ADMIN_ROLE identifier
/// @return bytes32 role identifier for setting original claimers
function CLAIMER_ADMIN_ROLE() external view returns (bytes32);
// ============================================
// EIP-712 CONSTANTS
// ============================================
/// @notice Get the EIP-712 typehash for claimer registration
/// @return bytes32 typehash for ClaimerRegistration struct
function CLAIMER_REGISTRATION_TYPEHASH() external view returns (bytes32);
// ============================================
// STATE GETTERS
// ============================================
/// @notice Get purchased amount for a specific NFT
/// @param nftId NFT ID to query
/// @return Purchased amount in sale token smallest units
function nftPurchased(uint256 nftId) external view returns (uint256);
/// @notice Get claimable balance for a wallet
/// @param user Wallet address to query
/// @return Claimable amount in sale token smallest units
function userClaimable(address user) external view returns (uint256);
/// @notice Get total tokens sold
/// @return Total sold tokens in sale token smallest units
function totalTokensSold() external view returns (uint256);
/// @notice Get total tokens claimed
/// @return Total claimed tokens in sale token smallest units
function totalTokensClaimed() external view returns (uint256);
/// @notice Get total tokens unclaimed (sold but not yet claimed)
/// @return Total unclaimed tokens in sale token smallest units
function totalTokensUnclaimed() external view returns (uint256);
/// @notice Get total payment received (calculated view)
/// @return Total payment received in payment token smallest units
function totalPaymentReceived() external view returns (uint256);
/// @notice Check if sale is paused
/// @return True if sale is paused, false otherwise
function paused() external view returns (bool);
/// @notice Check if an address is the original claimer of an NFT
/// @param claimer Address to check
/// @param nftId NFT ID to check
/// @return True if address is original claimer of this NFT
function isOriginalClaimer(address claimer, uint256 nftId) external view returns (bool);
/// @notice Check if a signature has already been claimed
/// @param signatureHash The struct hash of the signature
/// @return True if the signature has been claimed
function claimedSignatures(bytes32 signatureHash) external view returns (bool);
/// @notice Check if a registration signature has been claimed
/// @param claimer The claimer address
/// @param nftId The NFT ID
/// @param deadline The signature deadline
/// @return True if already registered via signature
function isRegistrationSignatureClaimed(address claimer, uint256 nftId, uint256 deadline)
external
view
returns (bool);
// ============================================
// PURCHASE FUNCTIONS
// ============================================
/**
* @notice Purchase tokens using an NFT
* @param nftId The NFT ID to use for purchase (must be owned by caller)
* @param saleTokenAmount Amount of sale tokens to purchase (in smallest units)
*/
function purchase(uint256 nftId, uint256 saleTokenAmount) external;
/**
* @notice Calculate required payment for given token amount
* @dev Uses ceiling division for seller-favorable rounding
* @param saleTokenAmount Amount of sale tokens to purchase (in smallest units)
* @return paymentAmount Required payment amount (in payment token smallest units)
*/
function calculatePaymentAmount(uint256 saleTokenAmount) external view returns (uint256);
// ============================================
// CLAIM FUNCTIONS
// ============================================
/**
* @notice Claim all purchased tokens for the caller
* @dev Wallet-based claiming - users claim their full balance without specifying NFT IDs
*/
function claim() external;
// ============================================
// VIEW FUNCTIONS
// ============================================
/// @notice Get claimable amount for the caller
/// @return Claimable token amount for the caller's wallet
function getClaimable() external view returns (uint256);
/// @notice Get required payment for token amount
/// @param saleTokenAmount Amount of sale tokens (in smallest units)
/// @return Required payment amount (in payment token smallest units)
function getTotalPayment(uint256 saleTokenAmount) external view returns (uint256);
/// @notice Check if an NFT can be used for purchase
/// @param nftId NFT ID to check
/// @return True if NFT has remaining allocation and sale is active
function canUseNft(uint256 nftId) external view returns (bool);
/// @notice Get remaining allocation for an NFT
/// @param nftId NFT ID to check
/// @return Remaining tokens the NFT can still purchase
function getRemainingAllocation(uint256 nftId) external view returns (uint256);
/// @notice Get the number of NFTs a user has used for purchases
/// @dev Only meaningful when MAX_NFTS_PER_USER > 0
/// @param user User address to check
/// @return Number of distinct NFTs used by the user for purchases
function getUserNftCount(address user) external view returns (uint256);
/// @notice Check if a user has used a specific NFT for purchase
/// @dev Only meaningful when MAX_NFTS_PER_USER > 0
/// @param user User address to check
/// @param nftId NFT ID to check
/// @return True if the user has used this NFT for purchase
function hasUserUsedNft(address user, uint256 nftId) external view returns (bool);
/// @notice Get remaining NFTs a user can still use for purchases
/// @param user User address to check
/// @return Remaining NFTs the user can use (type(uint256).max if no limit)
function getRemainingUserNftLimit(address user) external view returns (uint256);
/// @notice Check if a user can purchase with a specific NFT
/// @param user User address to check
/// @param nftId NFT ID to check
/// @return status The purchase eligibility status (Eligible if user can purchase)
function canUserPurchaseWithNft(address user, uint256 nftId) external view returns (PurchaseStatus status);
// ============================================
// ADMIN FUNCTIONS (ROLE-BASED)
// ============================================
/// @notice Pause the sale (emergency only)
function pause() external;
/// @notice Unpause the sale
function unpause() external;
/// @notice Withdraw collected payment tokens
/// @param to Address to withdraw to
/// @param amount Amount to withdraw (0 = withdraw all)
function withdrawPaymentTokens(address to, uint256 amount) external;
/// @notice Withdraw unsold sale tokens
/// @param to Address to withdraw to
/// @param amount Amount to withdraw (0 = withdraw all unsold)
function withdrawSaleTokens(address to, uint256 amount) external;
/// @notice Recover ERC20 tokens accidentally sent to contract
/// @param token Token address to recover
/// @param to Address to send recovered tokens
function recoverERC20(address token, address to) external;
/// @notice Recover unclaimed tokens after claim deadline
/// @param to Address to send recovered tokens to
function recoverUnclaimedTokens(address to) external;
/// @notice Set original claimers for NFTs in batch
/// @param claimers Array of claimer addresses
/// @param nftIds Array of NFT IDs (parallel with claimers)
function setOriginalClaimers(address[] calldata claimers, uint256[] calldata nftIds) external;
/// @notice Remove original claimers for NFTs in batch
/// @param claimers Array of claimer addresses
/// @param nftIds Array of NFT IDs (parallel with claimers)
function removeOriginalClaimers(address[] calldata claimers, uint256[] calldata nftIds) external;
/// @notice Self-register as original claimer using an admin-signed EIP-712 signature
/// @param nftId The NFT ID to register as claimer for
/// @param deadline Timestamp after which the signature is no longer valid
/// @param signature ECDSA signature from a CLAIMER_ADMIN_ROLE holder
function registerAsClaimer(uint256 nftId, uint256 deadline, bytes calldata signature) external;
// ============================================
// EVENTS
// ============================================
/// @notice Emitted when sale is initialized with all configuration parameters
/// @param nftContract Address of the NFT contract
/// @param paymentToken Address of the payment token
/// @param saleToken Address of the sale token
/// @param pricePerToken Price per token in payment token smallest units
/// @param allocationPerNft Allocation per NFT in sale token smallest units
/// @param maxNftsPerUser Maximum NFTs per user (0 = no limit)
/// @param saleStartTime UNIX timestamp when sale starts
/// @param saleEndTime UNIX timestamp when sale ends
/// @param claimStartTime UNIX timestamp when claims become available
/// @param claimEndTime UNIX timestamp when claim period ends (0 = no end)
event SaleInitialized(
address indexed nftContract,
address indexed paymentToken,
address indexed saleToken,
uint256 pricePerToken,
uint256 allocationPerNft,
uint256 maxNftsPerUser,
uint256 saleStartTime,
uint256 saleEndTime,
uint256 claimStartTime,
uint256 claimEndTime
);
/// @notice Emitted when tokens are purchased
/// @param buyer Address of the buyer
/// @param nftId NFT ID used for purchase
/// @param saleTokenAmount Amount of sale tokens purchased
/// @param paymentAmount Amount of payment tokens paid
event TokensPurchased(address indexed buyer, uint256 indexed nftId, uint256 saleTokenAmount, uint256 paymentAmount);
/// @notice Emitted when tokens are claimed
/// @param claimer Address of the claimer
/// @param amount Amount of tokens claimed
event TokensClaimed(address indexed claimer, uint256 amount);
/// @notice Emitted when sale is paused
/// @param admin Address of the admin who paused the sale
/// @param timestamp When the sale was paused
event SalePaused(address indexed admin, uint256 timestamp);
/// @notice Emitted when sale is unpaused
/// @param admin Address of the admin who unpaused the sale
/// @param timestamp When the sale was unpaused
event SaleUnpaused(address indexed admin, uint256 timestamp);
/// @notice Emitted when payment tokens are withdrawn
/// @param to Address that received the withdrawn tokens
/// @param amount Amount withdrawn
event PaymentWithdrawn(address indexed to, uint256 amount);
/// @notice Emitted when sale tokens are withdrawn
/// @param to Address that received the withdrawn tokens
/// @param amount Amount withdrawn
event TokensWithdrawn(address indexed to, uint256 amount);
/// @notice Emitted when ERC20 tokens are recovered
/// @param token Address of the recovered token
/// @param to Address that received the recovered tokens
/// @param amount Amount recovered
event ERC20Recovered(address indexed token, address indexed to, uint256 amount);
/// @notice Emitted when unclaimed tokens are recovered after deadline
/// @param to Address that received the recovered tokens
/// @param amount Amount of unclaimed tokens recovered
event UnclaimedTokensRecovered(address indexed to, uint256 amount);
/// @notice Emitted when original claimers are set in batch
/// @param count Number of claimers set
event OriginalClaimersSet(uint256 count);
/// @notice Emitted when original claimers are removed in batch
/// @param count Number of claimers removed
event OriginalClaimersRemoved(uint256 count);
/// @notice Emitted when a user self-registers as original claimer via signature
/// @param claimer Address that registered as claimer
/// @param nftId NFT ID they registered for
event OriginalClaimerRegistered(address indexed claimer, uint256 indexed nftId);
}// SPDX-License-Identifier: MIT
pragma solidity 0.8.24;
/// @title IKycAllowlistRegistry
/// @notice Interface for KYC allowlist verification
/// @dev Used by ZAMASale to verify users have completed KYC before purchasing
interface IKycAllowlistRegistry {
/// @notice Check if an address is allowed (verified AND not blocked)
/// @param user Address to check
/// @return True if user is verified and not blocked
function isAllowed(address user) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (token/ERC20/IERC20.sol)
pragma solidity >=0.4.16;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC1363.sol)
pragma solidity >=0.6.2;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in a uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in a uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev A uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/TransientSlot.sol)
// This file was procedurally generated from scripts/generate/templates/TransientSlot.js.
pragma solidity ^0.8.24;
/**
* @dev Library for reading and writing value-types to specific transient storage slots.
*
* Transient slots are often used to store temporary values that are removed after the current transaction.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* * Example reading and writing values using transient storage:
* ```solidity
* contract Lock {
* using TransientSlot for *;
*
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _LOCK_SLOT = 0xf4678858b2b588224636b8522b729e7722d32fc491da849ed75b3fdf3c84f542;
*
* modifier locked() {
* require(!_LOCK_SLOT.asBoolean().tload());
*
* _LOCK_SLOT.asBoolean().tstore(true);
* _;
* _LOCK_SLOT.asBoolean().tstore(false);
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library TransientSlot {
/**
* @dev UDVT that represents a slot holding an address.
*/
type AddressSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a AddressSlot.
*/
function asAddress(bytes32 slot) internal pure returns (AddressSlot) {
return AddressSlot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a bool.
*/
type BooleanSlot is bytes32;
/**
* @dev Cast an arbitrary slot to a BooleanSlot.
*/
function asBoolean(bytes32 slot) internal pure returns (BooleanSlot) {
return BooleanSlot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a bytes32.
*/
type Bytes32Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Bytes32Slot.
*/
function asBytes32(bytes32 slot) internal pure returns (Bytes32Slot) {
return Bytes32Slot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a uint256.
*/
type Uint256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Uint256Slot.
*/
function asUint256(bytes32 slot) internal pure returns (Uint256Slot) {
return Uint256Slot.wrap(slot);
}
/**
* @dev UDVT that represents a slot holding a int256.
*/
type Int256Slot is bytes32;
/**
* @dev Cast an arbitrary slot to a Int256Slot.
*/
function asInt256(bytes32 slot) internal pure returns (Int256Slot) {
return Int256Slot.wrap(slot);
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(AddressSlot slot) internal view returns (address value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(AddressSlot slot, address value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(BooleanSlot slot) internal view returns (bool value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(BooleanSlot slot, bool value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Bytes32Slot slot) internal view returns (bytes32 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Bytes32Slot slot, bytes32 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Uint256Slot slot) internal view returns (uint256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Uint256Slot slot, uint256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
/**
* @dev Load the value held at location `slot` in transient storage.
*/
function tload(Int256Slot slot) internal view returns (int256 value) {
assembly ("memory-safe") {
value := tload(slot)
}
}
/**
* @dev Store `value` at location `slot` in transient storage.
*/
function tstore(Int256Slot slot, int256 value) internal {
assembly ("memory-safe") {
tstore(slot, value)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (access/IAccessControl.sol)
pragma solidity >=0.8.4;
/**
* @dev External interface of AccessControl declared to support ERC-165 detection.
*/
interface IAccessControl {
/**
* @dev The `account` is missing a role.
*/
error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);
/**
* @dev The caller of a function is not the expected one.
*
* NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
*/
error AccessControlBadConfirmation();
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted to signal this.
*/
event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
* Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
*/
event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account) external view returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `callerConfirmation`.
*/
function renounceRole(bytes32 role, address callerConfirmation) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/// @inheritdoc IERC165
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/cryptography/MessageHashUtils.sol)
pragma solidity ^0.8.24;
import {Strings} from "../Strings.sol";
/**
* @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
*
* The library provides methods for generating a hash of a message that conforms to the
* https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
* specifications.
*/
library MessageHashUtils {
error ERC5267ExtensionsNotSupported();
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing a bytes32 `messageHash` with
* `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
* keccak256, although any bytes32 value can be safely used because the final digest will
* be re-hashed.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
}
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x45` (`personal_sign` messages).
*
* The digest is calculated by prefixing an arbitrary `message` with
* `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
* hash signed when using the https://ethereum.org/en/developers/docs/apis/json-rpc/#eth_sign[`eth_sign`] JSON-RPC method.
*
* See {ECDSA-recover}.
*/
function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
return
keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
}
/**
* @dev Returns the keccak256 digest of an ERC-191 signed data with version
* `0x00` (data with intended validator).
*
* The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
* `validator` address. Then hashing the result.
*
* See {ECDSA-recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(hex"19_00", validator, data));
}
/**
* @dev Variant of {toDataWithIntendedValidatorHash-address-bytes} optimized for cases where `data` is a bytes32.
*/
function toDataWithIntendedValidatorHash(
address validator,
bytes32 messageHash
) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
mstore(0x00, hex"19_00")
mstore(0x02, shl(96, validator))
mstore(0x16, messageHash)
digest := keccak256(0x00, 0x36)
}
}
/**
* @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
*
* The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
* `\x19\x01` and hashing the result. It corresponds to the hash signed by the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
*
* See {ECDSA-recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
assembly ("memory-safe") {
let ptr := mload(0x40)
mstore(ptr, hex"19_01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
digest := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns the EIP-712 domain separator constructed from an `eip712Domain`. See {IERC5267-eip712Domain}
*
* This function dynamically constructs the domain separator based on which fields are present in the
* `fields` parameter. It contains flags that indicate which domain fields are present:
*
* * Bit 0 (0x01): name
* * Bit 1 (0x02): version
* * Bit 2 (0x04): chainId
* * Bit 3 (0x08): verifyingContract
* * Bit 4 (0x10): salt
*
* Arguments that correspond to fields which are not present in `fields` are ignored. For example, if `fields` is
* `0x0f` (`0b01111`), then the `salt` parameter is ignored.
*/
function toDomainSeparator(
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt
) internal pure returns (bytes32 hash) {
return
toDomainSeparator(
fields,
keccak256(bytes(name)),
keccak256(bytes(version)),
chainId,
verifyingContract,
salt
);
}
/// @dev Variant of {toDomainSeparator-bytes1-string-string-uint256-address-bytes32} that uses hashed name and version.
function toDomainSeparator(
bytes1 fields,
bytes32 nameHash,
bytes32 versionHash,
uint256 chainId,
address verifyingContract,
bytes32 salt
) internal pure returns (bytes32 hash) {
bytes32 domainTypeHash = toDomainTypeHash(fields);
assembly ("memory-safe") {
// align fields to the right for easy processing
fields := shr(248, fields)
// FMP used as scratch space
let fmp := mload(0x40)
mstore(fmp, domainTypeHash)
let ptr := add(fmp, 0x20)
if and(fields, 0x01) {
mstore(ptr, nameHash)
ptr := add(ptr, 0x20)
}
if and(fields, 0x02) {
mstore(ptr, versionHash)
ptr := add(ptr, 0x20)
}
if and(fields, 0x04) {
mstore(ptr, chainId)
ptr := add(ptr, 0x20)
}
if and(fields, 0x08) {
mstore(ptr, verifyingContract)
ptr := add(ptr, 0x20)
}
if and(fields, 0x10) {
mstore(ptr, salt)
ptr := add(ptr, 0x20)
}
hash := keccak256(fmp, sub(ptr, fmp))
}
}
/// @dev Builds an EIP-712 domain type hash depending on the `fields` provided, following https://eips.ethereum.org/EIPS/eip-5267[ERC-5267]
function toDomainTypeHash(bytes1 fields) internal pure returns (bytes32 hash) {
if (fields & 0x20 == 0x20) revert ERC5267ExtensionsNotSupported();
assembly ("memory-safe") {
// align fields to the right for easy processing
fields := shr(248, fields)
// FMP used as scratch space
let fmp := mload(0x40)
mstore(fmp, "EIP712Domain(")
let ptr := add(fmp, 0x0d)
// name field
if and(fields, 0x01) {
mstore(ptr, "string name,")
ptr := add(ptr, 0x0c)
}
// version field
if and(fields, 0x02) {
mstore(ptr, "string version,")
ptr := add(ptr, 0x0f)
}
// chainId field
if and(fields, 0x04) {
mstore(ptr, "uint256 chainId,")
ptr := add(ptr, 0x10)
}
// verifyingContract field
if and(fields, 0x08) {
mstore(ptr, "address verifyingContract,")
ptr := add(ptr, 0x1a)
}
// salt field
if and(fields, 0x10) {
mstore(ptr, "bytes32 salt,")
ptr := add(ptr, 0x0d)
}
// if any field is enabled, remove the trailing comma
ptr := sub(ptr, iszero(iszero(and(fields, 0x1f))))
// add the closing brace
mstore8(ptr, 0x29) // add closing brace
ptr := add(ptr, 1)
hash := keccak256(fmp, sub(ptr, fmp))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/ShortStrings.sol)
pragma solidity ^0.8.20;
import {StorageSlot} from "./StorageSlot.sol";
// | string | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
// | length | 0x BB |
type ShortString is bytes32;
/**
* @dev This library provides functions to convert short memory strings
* into a `ShortString` type that can be used as an immutable variable.
*
* Strings of arbitrary length can be optimized using this library if
* they are short enough (up to 31 bytes) by packing them with their
* length (1 byte) in a single EVM word (32 bytes). Additionally, a
* fallback mechanism can be used for every other case.
*
* Usage example:
*
* ```solidity
* contract Named {
* using ShortStrings for *;
*
* ShortString private immutable _name;
* string private _nameFallback;
*
* constructor(string memory contractName) {
* _name = contractName.toShortStringWithFallback(_nameFallback);
* }
*
* function name() external view returns (string memory) {
* return _name.toStringWithFallback(_nameFallback);
* }
* }
* ```
*/
library ShortStrings {
// Used as an identifier for strings longer than 31 bytes.
bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;
error StringTooLong(string str);
error InvalidShortString();
/**
* @dev Encode a string of at most 31 chars into a `ShortString`.
*
* This will trigger a `StringTooLong` error is the input string is too long.
*/
function toShortString(string memory str) internal pure returns (ShortString) {
bytes memory bstr = bytes(str);
if (bstr.length > 0x1f) {
revert StringTooLong(str);
}
return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
}
/**
* @dev Decode a `ShortString` back to a "normal" string.
*/
function toString(ShortString sstr) internal pure returns (string memory) {
uint256 len = byteLength(sstr);
// using `new string(len)` would work locally but is not memory safe.
string memory str = new string(0x20);
assembly ("memory-safe") {
mstore(str, len)
mstore(add(str, 0x20), sstr)
}
return str;
}
/**
* @dev Return the length of a `ShortString`.
*/
function byteLength(ShortString sstr) internal pure returns (uint256) {
uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
if (result > 0x1f) {
revert InvalidShortString();
}
return result;
}
/**
* @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
*/
function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
if (bytes(value).length < 0x20) {
return toShortString(value);
} else {
StorageSlot.getStringSlot(store).value = value;
return ShortString.wrap(FALLBACK_SENTINEL);
}
}
/**
* @dev Decode a string that was encoded to `ShortString` or written to storage using {toShortStringWithFallback}.
*/
function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return toString(value);
} else {
return store;
}
}
/**
* @dev Return the length of a string that was encoded to `ShortString` or written to storage using
* {toShortStringWithFallback}.
*
* WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
* actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
*/
function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
return byteLength(value);
} else {
return bytes(store).length;
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC5267.sol)
pragma solidity >=0.4.16;
interface IERC5267 {
/**
* @dev MAY be emitted to signal that the domain could have changed.
*/
event EIP712DomainChanged();
/**
* @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
* signature.
*/
function eip712Domain()
external
view
returns (
bytes1 fields,
string memory name,
string memory version,
uint256 chainId,
address verifyingContract,
bytes32 salt,
uint256[] memory extensions
);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC20.sol)
pragma solidity >=0.4.16;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.4.0) (interfaces/IERC165.sol)
pragma solidity >=0.4.16;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Strings.sol)
pragma solidity ^0.8.24;
import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";
import {Bytes} from "./Bytes.sol";
/**
* @dev String operations.
*/
library Strings {
using SafeCast for *;
bytes16 private constant HEX_DIGITS = "0123456789abcdef";
uint8 private constant ADDRESS_LENGTH = 20;
uint256 private constant SPECIAL_CHARS_LOOKUP =
(1 << 0x08) | // backspace
(1 << 0x09) | // tab
(1 << 0x0a) | // newline
(1 << 0x0c) | // form feed
(1 << 0x0d) | // carriage return
(1 << 0x22) | // double quote
(1 << 0x5c); // backslash
/**
* @dev The `value` string doesn't fit in the specified `length`.
*/
error StringsInsufficientHexLength(uint256 value, uint256 length);
/**
* @dev The string being parsed contains characters that are not in scope of the given base.
*/
error StringsInvalidChar();
/**
* @dev The string being parsed is not a properly formatted address.
*/
error StringsInvalidAddressFormat();
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
assembly ("memory-safe") {
ptr := add(add(buffer, 0x20), length)
}
while (true) {
ptr--;
assembly ("memory-safe") {
mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toStringSigned(int256 value) internal pure returns (string memory) {
return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
uint256 localValue = value;
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = HEX_DIGITS[localValue & 0xf];
localValue >>= 4;
}
if (localValue != 0) {
revert StringsInsufficientHexLength(value, length);
}
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
* representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
* representation, according to EIP-55.
*/
function toChecksumHexString(address addr) internal pure returns (string memory) {
bytes memory buffer = bytes(toHexString(addr));
// hash the hex part of buffer (skip length + 2 bytes, length 40)
uint256 hashValue;
assembly ("memory-safe") {
hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
}
for (uint256 i = 41; i > 1; --i) {
// possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
// case shift by xoring with 0x20
buffer[i] ^= 0x20;
}
hashValue >>= 4;
}
return string(buffer);
}
/**
* @dev Converts a `bytes` buffer to its ASCII `string` hexadecimal representation.
*/
function toHexString(bytes memory input) internal pure returns (string memory) {
unchecked {
bytes memory buffer = new bytes(2 * input.length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 0; i < input.length; ++i) {
uint8 v = uint8(input[i]);
buffer[2 * i + 2] = HEX_DIGITS[v >> 4];
buffer[2 * i + 3] = HEX_DIGITS[v & 0xf];
}
return string(buffer);
}
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return Bytes.equal(bytes(a), bytes(b));
}
/**
* @dev Parse a decimal string and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input) internal pure returns (uint256) {
return parseUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[0-9]*`
* - The result must fit into an `uint256` type
*/
function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
uint256 result = 0;
for (uint256 i = begin; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 9) return (false, 0);
result *= 10;
result += chr;
}
return (true, result);
}
/**
* @dev Parse a decimal string and returns the value as a `int256`.
*
* Requirements:
* - The string must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input) internal pure returns (int256) {
return parseInt(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `[-+]?[0-9]*`
* - The result must fit in an `int256` type.
*/
function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
(bool success, int256 value) = tryParseInt(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
* the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
}
uint256 private constant ABS_MIN_INT256 = 2 ** 255;
/**
* @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
* character or if the result does not fit in a `int256`.
*
* NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
*/
function tryParseInt(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, int256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseIntUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseIntUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, int256 value) {
bytes memory buffer = bytes(input);
// Check presence of a negative sign.
bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
bool positiveSign = sign == bytes1("+");
bool negativeSign = sign == bytes1("-");
uint256 offset = (positiveSign || negativeSign).toUint();
(bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);
if (absSuccess && absValue < ABS_MIN_INT256) {
return (true, negativeSign ? -int256(absValue) : int256(absValue));
} else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
return (true, type(int256).min);
} else return (false, 0);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input) internal pure returns (uint256) {
return parseHexUint(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
* - The result must fit in an `uint256` type.
*/
function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
(bool success, uint256 value) = tryParseHexUint(input, begin, end);
if (!success) revert StringsInvalidChar();
return value;
}
/**
* @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
* invalid character.
*
* NOTE: This function will revert if the result does not fit in a `uint256`.
*/
function tryParseHexUint(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, uint256 value) {
if (end > bytes(input).length || begin > end) return (false, 0);
return _tryParseHexUintUncheckedBounds(input, begin, end);
}
/**
* @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
* `begin <= end <= input.length`. Other inputs would result in undefined behavior.
*/
function _tryParseHexUintUncheckedBounds(
string memory input,
uint256 begin,
uint256 end
) private pure returns (bool success, uint256 value) {
bytes memory buffer = bytes(input);
// skip 0x prefix if present
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 offset = hasPrefix.toUint() * 2;
uint256 result = 0;
for (uint256 i = begin + offset; i < end; ++i) {
uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
if (chr > 15) return (false, 0);
result *= 16;
unchecked {
// Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
// This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
result += chr;
}
}
return (true, result);
}
/**
* @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
*
* Requirements:
* - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input) internal pure returns (address) {
return parseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
* `end` (excluded).
*
* Requirements:
* - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
*/
function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
(bool success, address value) = tryParseAddress(input, begin, end);
if (!success) revert StringsInvalidAddressFormat();
return value;
}
/**
* @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
* formatted address. See {parseAddress-string} requirements.
*/
function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
return tryParseAddress(input, 0, bytes(input).length);
}
/**
* @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
* formatted address. See {parseAddress-string-uint256-uint256} requirements.
*/
function tryParseAddress(
string memory input,
uint256 begin,
uint256 end
) internal pure returns (bool success, address value) {
if (end > bytes(input).length || begin > end) return (false, address(0));
bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
uint256 expectedLength = 40 + hasPrefix.toUint() * 2;
// check that input is the correct length
if (end - begin == expectedLength) {
// length guarantees that this does not overflow, and value is at most type(uint160).max
(bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
return (s, address(uint160(v)));
} else {
return (false, address(0));
}
}
function _tryParseChr(bytes1 chr) private pure returns (uint8) {
uint8 value = uint8(chr);
// Try to parse `chr`:
// - Case 1: [0-9]
// - Case 2: [a-f]
// - Case 3: [A-F]
// - otherwise not supported
unchecked {
if (value > 47 && value < 58) value -= 48;
else if (value > 96 && value < 103) value -= 87;
else if (value > 64 && value < 71) value -= 55;
else return type(uint8).max;
}
return value;
}
/**
* @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
*
* WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
*
* NOTE: This function escapes all unicode characters, and not just the ones in ranges defined in section 2.5 of
* RFC-4627 (U+0000 to U+001F, U+0022 and U+005C). ECMAScript's `JSON.parse` does recover escaped unicode
* characters that are not in this range, but other tooling may provide different results.
*/
function escapeJSON(string memory input) internal pure returns (string memory) {
bytes memory buffer = bytes(input);
bytes memory output = new bytes(2 * buffer.length); // worst case scenario
uint256 outputLength = 0;
for (uint256 i = 0; i < buffer.length; ++i) {
bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
output[outputLength++] = "\\";
if (char == 0x08) output[outputLength++] = "b";
else if (char == 0x09) output[outputLength++] = "t";
else if (char == 0x0a) output[outputLength++] = "n";
else if (char == 0x0c) output[outputLength++] = "f";
else if (char == 0x0d) output[outputLength++] = "r";
else if (char == 0x5c) output[outputLength++] = "\\";
else if (char == 0x22) {
// solhint-disable-next-line quotes
output[outputLength++] = '"';
}
} else {
output[outputLength++] = char;
}
}
// write the actual length and deallocate unused memory
assembly ("memory-safe") {
mstore(output, outputLength)
mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
}
return string(output);
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.20;
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
}
}
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
// Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
// taking advantage of the most significant (or "sign" bit) in two's complement representation.
// This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
// the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
int256 mask = n >> 255;
// A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
return uint256((n + mask) ^ mask);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.5.0) (utils/Bytes.sol)
pragma solidity ^0.8.24;
import {Math} from "./math/Math.sol";
/**
* @dev Bytes operations.
*/
library Bytes {
/**
* @dev Forward search for `s` in `buffer`
* * If `s` is present in the buffer, returns the index of the first instance
* * If `s` is not present in the buffer, returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
*/
function indexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
return indexOf(buffer, s, 0);
}
/**
* @dev Forward search for `s` in `buffer` starting at position `pos`
* * If `s` is present in the buffer (at or after `pos`), returns the index of the next instance
* * If `s` is not present in the buffer (at or after `pos`), returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/indexOf[Javascript's `Array.indexOf`]
*/
function indexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
uint256 length = buffer.length;
for (uint256 i = pos; i < length; ++i) {
if (bytes1(_unsafeReadBytesOffset(buffer, i)) == s) {
return i;
}
}
return type(uint256).max;
}
/**
* @dev Backward search for `s` in `buffer`
* * If `s` is present in the buffer, returns the index of the last instance
* * If `s` is not present in the buffer, returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
*/
function lastIndexOf(bytes memory buffer, bytes1 s) internal pure returns (uint256) {
return lastIndexOf(buffer, s, type(uint256).max);
}
/**
* @dev Backward search for `s` in `buffer` starting at position `pos`
* * If `s` is present in the buffer (at or before `pos`), returns the index of the previous instance
* * If `s` is not present in the buffer (at or before `pos`), returns type(uint256).max
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/lastIndexOf[Javascript's `Array.lastIndexOf`]
*/
function lastIndexOf(bytes memory buffer, bytes1 s, uint256 pos) internal pure returns (uint256) {
unchecked {
uint256 length = buffer.length;
for (uint256 i = Math.min(Math.saturatingAdd(pos, 1), length); i > 0; --i) {
if (bytes1(_unsafeReadBytesOffset(buffer, i - 1)) == s) {
return i - 1;
}
}
return type(uint256).max;
}
}
/**
* @dev Copies the content of `buffer`, from `start` (included) to the end of `buffer` into a new bytes object in
* memory.
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
*/
function slice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
return slice(buffer, start, buffer.length);
}
/**
* @dev Copies the content of `buffer`, from `start` (included) to `end` (excluded) into a new bytes object in
* memory. The `end` argument is truncated to the length of the `buffer`.
*
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/slice[Javascript's `Array.slice`]
*/
function slice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
// sanitize
end = Math.min(end, buffer.length);
start = Math.min(start, end);
// allocate and copy
bytes memory result = new bytes(end - start);
assembly ("memory-safe") {
mcopy(add(result, 0x20), add(add(buffer, 0x20), start), sub(end, start))
}
return result;
}
/**
* @dev Moves the content of `buffer`, from `start` (included) to the end of `buffer` to the start of that buffer.
*
* NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
*/
function splice(bytes memory buffer, uint256 start) internal pure returns (bytes memory) {
return splice(buffer, start, buffer.length);
}
/**
* @dev Moves the content of `buffer`, from `start` (included) to end (excluded) to the start of that buffer. The
* `end` argument is truncated to the length of the `buffer`.
*
* NOTE: This function modifies the provided buffer in place. If you need to preserve the original buffer, use {slice} instead
* NOTE: replicates the behavior of https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/splice[Javascript's `Array.splice`]
*/
function splice(bytes memory buffer, uint256 start, uint256 end) internal pure returns (bytes memory) {
// sanitize
end = Math.min(end, buffer.length);
start = Math.min(start, end);
// allocate and copy
assembly ("memory-safe") {
mcopy(add(buffer, 0x20), add(add(buffer, 0x20), start), sub(end, start))
mstore(buffer, sub(end, start))
}
return buffer;
}
/**
* @dev Replaces bytes in `buffer` starting at `pos` with all bytes from `replacement`.
*
* Parameters are clamped to valid ranges (i.e. `pos` is clamped to `[0, buffer.length]`).
* If `pos >= buffer.length`, no replacement occurs and the buffer is returned unchanged.
*
* NOTE: This function modifies the provided buffer in place.
*/
function replace(bytes memory buffer, uint256 pos, bytes memory replacement) internal pure returns (bytes memory) {
return replace(buffer, pos, replacement, 0, replacement.length);
}
/**
* @dev Replaces bytes in `buffer` starting at `pos` with bytes from `replacement` starting at `offset`.
* Copies at most `length` bytes from `replacement` to `buffer`.
*
* Parameters are clamped to valid ranges (i.e. `pos` is clamped to `[0, buffer.length]`, `offset` is
* clamped to `[0, replacement.length]`, and `length` is clamped to `min(length, replacement.length - offset,
* buffer.length - pos))`. If `pos >= buffer.length` or `offset >= replacement.length`, no replacement occurs
* and the buffer is returned unchanged.
*
* NOTE: This function modifies the provided buffer in place.
*/
function replace(
bytes memory buffer,
uint256 pos,
bytes memory replacement,
uint256 offset,
uint256 length
) internal pure returns (bytes memory) {
// sanitize
pos = Math.min(pos, buffer.length);
offset = Math.min(offset, replacement.length);
length = Math.min(length, Math.min(replacement.length - offset, buffer.length - pos));
// allocate and copy
assembly ("memory-safe") {
mcopy(add(add(buffer, 0x20), pos), add(add(replacement, 0x20), offset), length)
}
return buffer;
}
/**
* @dev Concatenate an array of bytes into a single bytes object.
*
* For fixed bytes types, we recommend using the solidity built-in `bytes.concat` or (equivalent)
* `abi.encodePacked`.
*
* NOTE: this could be done in assembly with a single loop that expands starting at the FMP, but that would be
* significantly less readable. It might be worth benchmarking the savings of the full-assembly approach.
*/
function concat(bytes[] memory buffers) internal pure returns (bytes memory) {
uint256 length = 0;
for (uint256 i = 0; i < buffers.length; ++i) {
length += buffers[i].length;
}
bytes memory result = new bytes(length);
uint256 offset = 0x20;
for (uint256 i = 0; i < buffers.length; ++i) {
bytes memory input = buffers[i];
assembly ("memory-safe") {
mcopy(add(result, offset), add(input, 0x20), mload(input))
}
unchecked {
offset += input.length;
}
}
return result;
}
/**
* @dev Split each byte in `input` into two nibbles (4 bits each)
*
* Example: hex"01234567" → hex"0001020304050607"
*/
function toNibbles(bytes memory input) internal pure returns (bytes memory output) {
assembly ("memory-safe") {
let length := mload(input)
output := mload(0x40)
mstore(0x40, add(add(output, 0x20), mul(length, 2)))
mstore(output, mul(length, 2))
for {
let i := 0
} lt(i, length) {
i := add(i, 0x10)
} {
let chunk := shr(128, mload(add(add(input, 0x20), i)))
chunk := and(
0x0000000000000000ffffffffffffffff0000000000000000ffffffffffffffff,
or(shl(64, chunk), chunk)
)
chunk := and(
0x00000000ffffffff00000000ffffffff00000000ffffffff00000000ffffffff,
or(shl(32, chunk), chunk)
)
chunk := and(
0x0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff0000ffff,
or(shl(16, chunk), chunk)
)
chunk := and(
0x00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff00ff,
or(shl(8, chunk), chunk)
)
chunk := and(
0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f,
or(shl(4, chunk), chunk)
)
mstore(add(add(output, 0x20), mul(i, 2)), chunk)
}
}
}
/**
* @dev Returns true if the two byte buffers are equal.
*/
function equal(bytes memory a, bytes memory b) internal pure returns (bool) {
return a.length == b.length && keccak256(a) == keccak256(b);
}
/**
* @dev Reverses the byte order of a bytes32 value, converting between little-endian and big-endian.
* Inspired by https://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel[Reverse Parallel]
*/
function reverseBytes32(bytes32 value) internal pure returns (bytes32) {
value = // swap bytes
((value >> 8) & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) |
((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
value = // swap 2-byte long pairs
((value >> 16) & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) |
((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
value = // swap 4-byte long pairs
((value >> 32) & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) |
((value & 0x00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF00000000FFFFFFFF) << 32);
value = // swap 8-byte long pairs
((value >> 64) & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) |
((value & 0x0000000000000000FFFFFFFFFFFFFFFF0000000000000000FFFFFFFFFFFFFFFF) << 64);
return (value >> 128) | (value << 128); // swap 16-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 128-bit values.
function reverseBytes16(bytes16 value) internal pure returns (bytes16) {
value = // swap bytes
((value & 0xFF00FF00FF00FF00FF00FF00FF00FF00) >> 8) |
((value & 0x00FF00FF00FF00FF00FF00FF00FF00FF) << 8);
value = // swap 2-byte long pairs
((value & 0xFFFF0000FFFF0000FFFF0000FFFF0000) >> 16) |
((value & 0x0000FFFF0000FFFF0000FFFF0000FFFF) << 16);
value = // swap 4-byte long pairs
((value & 0xFFFFFFFF00000000FFFFFFFF00000000) >> 32) |
((value & 0x00000000FFFFFFFF00000000FFFFFFFF) << 32);
return (value >> 64) | (value << 64); // swap 8-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 64-bit values.
function reverseBytes8(bytes8 value) internal pure returns (bytes8) {
value = ((value & 0xFF00FF00FF00FF00) >> 8) | ((value & 0x00FF00FF00FF00FF) << 8); // swap bytes
value = ((value & 0xFFFF0000FFFF0000) >> 16) | ((value & 0x0000FFFF0000FFFF) << 16); // swap 2-byte long pairs
return (value >> 32) | (value << 32); // swap 4-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 32-bit values.
function reverseBytes4(bytes4 value) internal pure returns (bytes4) {
value = ((value & 0xFF00FF00) >> 8) | ((value & 0x00FF00FF) << 8); // swap bytes
return (value >> 16) | (value << 16); // swap 2-byte long pairs
}
/// @dev Same as {reverseBytes32} but optimized for 16-bit values.
function reverseBytes2(bytes2 value) internal pure returns (bytes2) {
return (value >> 8) | (value << 8);
}
/**
* @dev Counts the number of leading zero bits a bytes array. Returns `8 * buffer.length`
* if the buffer is all zeros.
*/
function clz(bytes memory buffer) internal pure returns (uint256) {
for (uint256 i = 0; i < buffer.length; i += 0x20) {
bytes32 chunk = _unsafeReadBytesOffset(buffer, i);
if (chunk != bytes32(0)) {
return Math.min(8 * i + Math.clz(uint256(chunk)), 8 * buffer.length);
}
}
return 8 * buffer.length;
}
/**
* @dev Reads a bytes32 from a bytes array without bounds checking.
*
* NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
* assembly block as such would prevent some optimizations.
*/
function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
// This is not memory safe in the general case, but all calls to this private function are within bounds.
assembly ("memory-safe") {
value := mload(add(add(buffer, 0x20), offset))
}
}
}{
"remappings": [
"@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": true
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"nftContract_","type":"address"},{"internalType":"address","name":"paymentToken_","type":"address"},{"internalType":"address","name":"saleToken_","type":"address"},{"internalType":"address","name":"kycRegistry_","type":"address"},{"internalType":"uint256","name":"pricePerToken_","type":"uint256"},{"internalType":"uint256","name":"allocationPerNft_","type":"uint256"},{"internalType":"uint256","name":"maxNftsPerUser_","type":"uint256"},{"internalType":"uint256","name":"saleStartTime_","type":"uint256"},{"internalType":"uint256","name":"saleDuration_","type":"uint256"},{"internalType":"uint256","name":"claimStartTime_","type":"uint256"},{"internalType":"uint256","name":"claimEndTime_","type":"uint256"},{"internalType":"address","name":"admin","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessControlBadConfirmation","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bytes32","name":"neededRole","type":"bytes32"}],"name":"AccessControlUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ClaimNotAvailable","type":"error"},{"inputs":[],"name":"ClaimPeriodActive","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"EnforcedPause","type":"error"},{"inputs":[],"name":"ExceedsAllocation","type":"error"},{"inputs":[],"name":"ExceedsUserLimit","type":"error"},{"inputs":[],"name":"ExpectedPause","type":"error"},{"inputs":[],"name":"ExpiredSignature","type":"error"},{"inputs":[],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InsufficientPayment","type":"error"},{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"InvalidClaimTime","type":"error"},{"inputs":[],"name":"InvalidDuration","type":"error"},{"inputs":[],"name":"InvalidLength","type":"error"},{"inputs":[],"name":"InvalidLimit","type":"error"},{"inputs":[],"name":"InvalidPrice","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[],"name":"InvalidStartTime","type":"error"},{"inputs":[],"name":"LengthMismatch","type":"error"},{"inputs":[],"name":"NotKYCAllowed","type":"error"},{"inputs":[],"name":"NotOriginalClaimer","type":"error"},{"inputs":[],"name":"NothingToClaim","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"SaleEnded","type":"error"},{"inputs":[],"name":"SaleNotPaused","type":"error"},{"inputs":[],"name":"SaleNotStarted","type":"error"},{"inputs":[],"name":"SalePaused","type":"error"},{"inputs":[],"name":"SignatureAlreadyClaimed","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"token","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ERC20Recovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":true,"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"OriginalClaimerRegistered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"count","type":"uint256"}],"name":"OriginalClaimersRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"count","type":"uint256"}],"name":"OriginalClaimersSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PaymentWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"nftContract","type":"address"},{"indexed":true,"internalType":"address","name":"paymentToken","type":"address"},{"indexed":true,"internalType":"address","name":"saleToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"pricePerToken","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"allocationPerNft","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"maxNftsPerUser","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"saleStartTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"saleEndTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"claimStartTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"claimEndTime","type":"uint256"}],"name":"SaleInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"admin","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"SalePaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"admin","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"SaleUnpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensClaimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":true,"internalType":"uint256","name":"nftId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"saleTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"paymentAmount","type":"uint256"}],"name":"TokensPurchased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"UnclaimedTokensRecovered","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"ALLOCATION_PER_NFT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLAIMER_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLAIMER_REGISTRATION_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLAIM_END_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"CLAIM_START_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"KYC_REGISTRY","outputs":[{"internalType":"contract IKycAllowlistRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_NFTS_PER_USER","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NFT_CONTRACT","outputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAYMENT_TOKEN","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRICE_PER_TOKEN","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RECOVERER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_END_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_START_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_TOKEN","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SALE_TOKEN_DECIMALS","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WITHDRAWER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"saleTokenAmount","type":"uint256"}],"name":"calculatePaymentAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"canUseNft","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"canUserPurchaseWithNft","outputs":[{"internalType":"enum IZAMASale.PurchaseStatus","name":"status","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"signatureHash","type":"bytes32"}],"name":"claimedSignatures","outputs":[{"internalType":"bool","name":"isClaimed","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getClaimable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"getRemainingAllocation","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getRemainingUserNftLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"saleTokenAmount","type":"uint256"}],"name":"getTotalPayment","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"getUserNftCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"hasUserUsedNft","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"isOriginalClaimer","outputs":[{"internalType":"bool","name":"isClaimer","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"isRegistrationSignatureClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"nftPurchased","outputs":[{"internalType":"uint256","name":"purchasedAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"},{"internalType":"uint256","name":"saleTokenAmount","type":"uint256"}],"name":"purchase","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"recoverERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"recoverUnclaimedTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"registerAsClaimer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"claimers","type":"address[]"},{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"name":"removeOriginalClaimers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"callerConfirmation","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"claimers","type":"address[]"},{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"name":"setOriginalClaimers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalPaymentReceived","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokensClaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokensSold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalTokensUnclaimed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userClaimable","outputs":[{"internalType":"uint256","name":"claimableAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"userNftCount","outputs":[{"internalType":"uint256","name":"count","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"userNftUsed","outputs":[{"internalType":"bool","name":"used","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawPaymentTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdrawSaleTokens","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
610300604052346200058c57610180620039e08038038091620000258261030062000704565b61030039126200058c576200003c61030062000728565b6200004961032062000728565b906200005761034062000728565b6200006461036062000728565b610380516103a0516103c0516103e05161040051610420516104405195979096919590949392916200009861046062000728565b91604051620000a781620006b8565b600881526020810190675a414d4153616c6560c01b825260405191620000cd83620006b8565b600183526020830191603160f81b8352620000e88162000a29565b61012052620000f78462000bf8565b61014052519020918260e05251902080610100524660a0526040519060208201927f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f8452604083015260608201524660808201523060a082015260a081526200016081620006e8565b5190206080523060c0526001600160a01b038b16158015620006a6575b801562000694575b801562000682575b801562000670575b620005a4576001600160a01b038c811690881614620005a45787156200065e5789156200064d5785156200063b57620001cf88856200073d565b891062000629574284106200061757801515806200060c575b620005fa57610280526040516301ffc9a760e01b81526380ac58cd60e01b60048201526020816024816001600160a01b038f165afa5f9181620005b6575b506200023e5760405163e6c4247b60e01b8152600490fd5b15620005a4576001600160a01b038a811661016052908116610180528a81166101a05285166101c081905260405163313ce56760e01b81529790602090899060049082905afa97881562000599575f9862000550575b50876102c052604d60ff8916116200053c57620002f860e097620003369460ff7fcbcd782e5e8a73171e7abe53465b7a6a8dc34512f8e690baecd2708a7009be2e9b16600a0a6102e0528b6101e0528761020052866102a05280610220526200073d565b61024052610260526200030b816200074b565b506200031781620007bb565b5062000323816200085b565b506200032f81620008f5565b506200098f565b5061022051610240516102605161028051604080519a8b5260208b0196909652948901939093526060880191909152608087015260a086015260c08501526001600160a01b03908116958116941692a4604051612bfd62000da382396080518161278c015260a05181612858015260c05181612756015260e051816127db0152610100518161280101526101205181610af001526101405181610b1a01526101605181611d830152610180518181816107b701528181610f7b015261204401526101a05181818161090801528181610a4c01528181611132015261145a01526101c05181818161068201528181610a1101528181610d730152818161108c0152818161184601528181611b09015261215c01526101e0518181816105cc01528181610c9001528181610fde01526119b001526102005181818161040601528181611041015281816113f80152818161208801526122c8015261022051818181610ef0015281816113cd015281816119ec01526120af015261024051818181610f17015281816113a201528181611d4c01526120d601526102605181818161175c01526117c90152610280518181816117f001528181611adb0152611d1201526102a05181818161100601528181611caf01528181611f0d015261210701526102c0518161071e01526102e0518181816105aa01528181610fbd015261198e0152612bfd90f35b634e487b7160e01b5f52601160045260245ffd5b9097506020813d60201162000590575b816200056f6020938362000704565b810103126200058c575160ff811681036200058c57965f62000294565b5f80fd5b3d915062000560565b6040513d5f823e3d90fd5b60405163e6c4247b60e01b8152600490fd5b9091506020813d602011620005f1575b81620005d56020938362000704565b810103126200058c575180151581036200058c57905f62000226565b3d9150620005c6565b604051631221b97b60e01b8152600490fd5b5088811115620001e8565b604051632ca4094f60e21b8152600490fd5b604051633c21f90f60e01b8152600490fd5b60405163e55fb50960e01b8152600490fd5b60405162bfc92160e01b8152600490fd5b604051637616640160e01b8152600490fd5b506001600160a01b0383161562000195565b506001600160a01b038216156200018d565b506001600160a01b0387161562000185565b506001600160a01b038c16156200017d565b604081019081106001600160401b03821117620006d457604052565b634e487b7160e01b5f52604160045260245ffd5b60c081019081106001600160401b03821117620006d457604052565b601f909101601f19168101906001600160401b03821190821017620006d457604052565b51906001600160a01b03821682036200058c57565b919082018092116200053c57565b6001600160a01b03165f8181525f80516020620039c0833981519152602052604090205460ff16620007b6575f8181525f80516020620039c083398151915260205260408120805460ff191660011790553391905f80516020620039a08339815191528180a4600190565b505f90565b6001600160a01b03165f8181527ff7c9542c591017a21c74b6f3fab6263c7952fc0aaf9db4c22a2a04ddc7f8674f60205260409020547f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a919060ff166200085557815f525f60205260405f20815f5260205260405f20600160ff1982541617905533915f80516020620039a08339815191525f80a4600190565b50505f90565b6001600160a01b03165f8181527f10d7f32a6930100c7e03899d583513ff548ac958e569f497049662337b6f49b960205260409020547f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e4919060ff166200085557815f525f60205260405f20815f5260205260405f20600160ff1982541617905533915f80516020620039a08339815191525f80a4600190565b6001600160a01b03165f8181527fa921dec465a2db617c1283eb3fd0c7be03ef4a04bbcfeba0659a6baa62f9000160205260409020547fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc919060ff166200085557815f525f60205260405f20815f5260205260405f20600160ff1982541617905533915f80516020620039a08339815191525f80a4600190565b6001600160a01b03165f8181527f8ea8301bd621a32004df4f21098767ec870c7628c47ac2806560bce50561f0aa60205260409020547f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d4919060ff166200085557815f525f60205260405f20815f5260205260405f20600160ff1982541617905533915f80516020620039a08339815191525f80a4600190565b80516020908181101562000ac35750601f82511162000a64578082519201519080831062000a5657501790565b825f19910360031b1b161790565b90604051809263305a27a960e01b82528060048301528251908160248401525f935b82851062000aa9575050604492505f838284010152601f80199101168101030190fd5b848101820151868601604401529381019385935062000a86565b906001600160401b038211620006d457600254926001938481811c9116801562000bed575b8382101462000bd957601f811162000ba2575b5081601f841160011462000b3a57509282939183925f9462000b2e575b50501b915f199060031b1c19161760025560ff90565b015192505f8062000b18565b919083601f19811660025f52845f20945f905b8883831062000b87575050501062000b6e575b505050811b0160025560ff90565b01515f1960f88460031b161c191690555f808062000b60565b85870151885590960195948501948793509081019062000b4d565b60025f5284601f845f20920160051c820191601f860160051c015b82811062000bcd57505062000afb565b5f815501859062000bbd565b634e487b7160e01b5f52602260045260245ffd5b90607f169062000ae8565b8051602091908281101562000c86575090601f82511162000c27578082519201519080831062000a5657501790565b90604051809263305a27a960e01b82528060048301528251908160248401525f935b82851062000c6c575050604492505f838284010152601f80199101168101030190fd5b848101820151868601604401529381019385935062000c49565b6001600160401b038111620006d4576003928354926001938481811c9116801562000d97575b8382101462000bd957601f811162000d61575b5081601f841160011462000cfc57509282939183925f9462000cf0575b50501b915f1990841b1c191617905560ff90565b015192505f8062000cdc565b919083601f198116875f52845f20945f905b8883831062000d46575050501062000d2e575b505050811b01905560ff90565b01515f1983861b60f8161c191690555f808062000d21565b85870151885590960195948501948793509081019062000d0e565b855f5284601f845f20920160051c820191601f860160051c015b82811062000d8b57505062000cbf565b5f815501859062000d7b565b90607f169062000cac56fe6080604090808252600480361015610015575f80fd5b5f3560e01c91826301ffc9a714611db2575081631fda9a0214611d6f57816320a0045a14611d355781632209d38c14611cfb578163248a9ca314611cd25781632b6838b314611c985781632f2ff15d14611c705781633073d5b014611c4b5781633418f5651461063757816336568abe14611c075781633a3b476614611aa15781633bb1b2ec146105905781633f4ba83a14611a0f57816344dbb571146119d557816348faade4146119725781634e71d92d146117a557816352135d5e1461177f57816353b3d2ae146117455781635912c046146117275781635c8671be146115485781635c975abb146115255781635cb988e21461142057816360a8753c1461135d57816363b201171461133f57816370876c9814610ec4578163712f7bcb14610e8d57816375dbea4114610d39578163811c302914610cff57816381d687cf14610cb3578163833b949914610c795781638456cb5914610bf757816384b0196e14610ad957816384b39b1b14610ab557816385f438c114610a7b578163877c86fb14610a38578163886f039a146108cf57816389f73e27146107e65781638b7cc1e3146107a3578163917d440f1461078557816391d1485414610742578163937020a314610705578163a217fddf146106eb578163acf1c948146106b1578163b8ac77a41461066e578163ba0fac1514610637578163beeaeb5a146105f2578163c1e714fe14610590578163ce379270146104c8578163d50fc9b61461049e578163d547741f14610463578163d6263df314610429578163d9bc1576146103ef578163e402fb84146103c357508063e5b2eb271461033b578063e63ab1e914610301578063ee28b744146102db5763f961709614610293575f80fd5b346102d757806003193601126102d7576020906001600160a01b036102b6611e1a565b165f5260068252805f206024355f52825260ff815f20541690519015158152f35b5f80fd5b50346102d7575f3660031901126102d757602090335f5260098252805f20549051908152f35b50346102d7575f3660031901126102d757602090517f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a8152f35b50346102d75760603660031901126102d757602090610358611e1a565b8151838101917fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d63835260018060a01b03168382015260243560608201526044356080820152608081526103aa81611f6b565b5190205f526008825260ff815f20541690519015158152f35b82346102d75760203660031901126102d757602091355f526008825260ff815f20541690519015158152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d7575f3660031901126102d757602090517fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d638152f35b82346102d757806003193601126102d75761049c91356104976001610486611e04565b93835f525f6020525f200154612483565b61251a565b005b82346102d7575f3660031901126102d7576020906104c1600a54600b5490611eea565b9051908152f35b9050346102d7576104d836611e9f565b9091936104e3612428565b84156105825781850361057157505f5b848110610526577f1abace8ee6c418628336ee3a659f442ae562c4bfd89e8cf2c6d18650d7d8aac76020868851908152a1005b6001906001600160a01b0361054461053f838989612282565b6122a6565b165f52602060078152875f209061055c838688612282565b355f5252865f2060ff198154169055016104f3565b85516001621398b960e31b03198152fd5b855163251f56a160e21b8152fd5b82346102d75760203660031901126102d7576104c16020927f0000000000000000000000000000000000000000000000000000000000000000907f0000000000000000000000000000000000000000000000000000000000000000903561260a565b82346102d757806003193601126102d7576020906001600160a01b03610616611e1a565b165f5260078252805f206024355f52825260ff815f20541690519015158152f35b82346102d75760203660031901126102d7576020906001600160a01b0361065c611e1a565b165f5260058252805f20549051908152f35b82346102d7575f3660031901126102d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b82346102d7575f3660031901126102d757602090517fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc8152f35b82346102d7575f3660031901126102d757602090515f8152f35b82346102d7575f3660031901126102d7576020905160ff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b82346102d757806003193601126102d75760209161075e611e04565b90355f525f8352815f209060018060a01b03165f52825260ff815f20541690519015158152f35b82346102d75760203660031901126102d7576104c1602092356122ba565b82346102d7575f3660031901126102d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b82346102d7576107f536611e9f565b909194610800612428565b85156108c1578186036108b0575f5b868110610842577f9b94aeec7c892becb5125aabff2341d4072c8a7c686dd526c336a88c5bba0d776020888851908152a1005b6001600160a01b038061085961053f848b8a612282565b16156108a0579060019161087161053f838b8a612282565b165f52602060078152875f2090610889838789612282565b355f5252865f208260ff198254161790550161080f565b865163e6c4247b60e01b81528390fd5b84516001621398b960e31b03198152fd5b845163251f56a160e21b8152fd5b82346102d757806003193601126102d7576108e8611e1a565b906108f1611e04565b926108fa6122f9565b6001600160a01b03928316927f0000000000000000000000000000000000000000000000000000000000000000811684148015610a0d575b6109fe5784169384156109fe578251916370a0823160e01b83523090830152602082602481875afa9182156109f4575f926109a0575b50907faca8fb252cde442184e5f10e0f2e6e4029e8cd7717cae63559079610702436aa92610999826020948761258c565b51908152a3005b91506020823d6020116109ec575b816109bb60209383611fb7565b810103126102d7579051907faca8fb252cde442184e5f10e0f2e6e4029e8cd7717cae63559079610702436aa610968565b3d91506109ae565b83513d5f823e3d90fd5b50905163e6c4247b60e01b8152fd5b50807f0000000000000000000000000000000000000000000000000000000000000000168414610932565b82346102d7575f3660031901126102d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b82346102d7575f3660031901126102d757602090517f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e48152f35b82346102d757806003193601126102d7576020906001600160a01b036102b6611e1a565b9050346102d7575f3660031901126102d757610b147f0000000000000000000000000000000000000000000000000000000000000000612943565b91610b3e7f0000000000000000000000000000000000000000000000000000000000000000612a67565b815191602091602084019484861067ffffffffffffffff871117610be45750610b998260209287610b8c99989795525f85528151988998600f60f81b8a5260e0868b015260e08a0190611e30565b9188830390890152611e30565b914660608701523060808701525f60a087015285830360c087015251918281520192915f5b828110610bcd57505050500390f35b835185528695509381019392810192600101610bbe565b604190634e487b7160e01b5f525260245ffd5b82346102d7575f3660031901126102d757610c10612372565b610c1861267d565b600160ff19815416176001557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25860208251338152a1514281527f0f13b908d3ccb1f51690240e2ced6db67e0fde09ebe58a073763938742d9615460203392a2005b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d757806003193601126102d757610cd8610ccf611e1a565b60243590611ffe565b9051906009811015610cec57602092508152f35b602183634e487b7160e01b5f525260245ffd5b82346102d7575f3660031901126102d757602090517f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d48152f35b9050346102d757816003193601126102d757610d53611e1a565b60243591610d5f6123cd565b6001600160a01b03828116908115610e7d577f0000000000000000000000000000000000000000000000000000000000000000169185516370a0823160e01b81523082820152602081602481875afa8015610e73575f90610e3f575b610dd59150610dcf600a54600b5490611eea565b90611eea565b948515610e305780610e2a5750845b8511610e1c57507f6352c5382c4a4578e712449ca65e83cdb392d045dfcf1cad9615189db2da244b602061049c9651868152a261258c565b8551631e9acf1760e31b8152fd5b94610de4565b508551631e9acf1760e31b8152fd5b506020813d602011610e6b575b81610e5960209383611fb7565b810103126102d757610dd59051610dbb565b3d9150610e4c565b87513d5f823e3d90fd5b855163e6c4247b60e01b81528390fd5b82346102d75760203660031901126102d7576020906001600160a01b03610eb2611e1a565b165f5260098252805f20549051908152f35b82346102d757806003193601126102d757813590602492833591610ee661263e565b610eee61267d565b7f00000000000000000000000000000000000000000000000000000000000000004210611332577f0000000000000000000000000000000000000000000000000000000000000000421161132557335f5260209360078552815f20815f52855260ff825f2054161561131757815163babcc53960e01b815233848201526001600160a01b039190868189817f000000000000000000000000000000000000000000000000000000000000000087165afa90811561130d575f916112e0575b50156112d15784156112c2576110037f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000008761260a565b947f000000000000000000000000000000000000000000000000000000000000000080611239575b50815f5284875261103f81855f2054611fd9565b7f0000000000000000000000000000000000000000000000000000000000000000811161122957611075600a54600b5490611eea565b85516370a0823160e01b8152308882015289818c817f00000000000000000000000000000000000000000000000000000000000000008a165afa908115610e7357908492915f916111f4575b50906110cc91611eea565b106111e457825f52858852845f2055335f5260098752835f206110f0828254611fd9565b90556110fe81600a54611fd9565b600a55835190815285878201527f0d1a0d5e3d583a0e92588799dd06e50fd78c07daf05f0cc06d7b848b1ca445f1843392a37f0000000000000000000000000000000000000000000000000000000000000000169281519485916323b872dd60e01b5f523385523088526044525f60648180885af19160015f51148316156111bf575b525f606052156111b0575f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b635274afe760e01b8352820152fd5b91905060018115166111db578490843b15153d15161691611181565b843d5f823e3d90fd5b8451631e9acf1760e31b81528690fd5b809293508b8092503d8311611222575b61120e8183611fb7565b810103126102d757518391906110cc6110c1565b503d611204565b8451632150464360e21b81528690fd5b335f5260068852845f20835f52885260ff855f20541661102b57335f5260058852845f205410156112b257335f5260068752835f20825f528752835f20600160ff19825416179055335f5260058752835f20805490600182018092116112a057558861102b565b89601188634e487b7160e01b5f52525ffd5b50505051632046b41b60e21b8152fd5b50505163cd1c886760e01b8152fd5b50505163bfbd50bf60e01b8152fd5b6113009150873d8911611306575b6112f88183611fb7565b810190611fe6565b88610fac565b503d6112ee565b84513d5f823e3d90fd5b50516332d0f98960e21b8152fd5b51630bd8a3eb60e01b8152fd5b516316851a3760e11b8152fd5b82346102d7575f3660031901126102d757602090600a549051908152f35b82346102d75760203660031901126102d75781602092355f528252805f20549060ff600154161591826113f6575b50816113cb575b816113a0575b519015158152f35b7f00000000000000000000000000000000000000000000000000000000000000004211159150611398565b7f00000000000000000000000000000000000000000000000000000000000000004210159150611392565b7f00000000000000000000000000000000000000000000000000000000000000001191508361138b565b9050346102d757816003193601126102d75761143a611e1a565b602435916114466123cd565b6001600160a01b03828116908115610e7d577f000000000000000000000000000000000000000000000000000000000000000016918551946370a0823160e01b86523082870152602086602481875afa958615610e73575f966114f1575b508515610e3057806114eb5750845b8511610e1c57507f84511ecc081974f18e7f3e0dcc19db078b55bbd3852ddd0dd85b3aebb7bf94c2602061049c9651868152a261258c565b946114b3565b9095506020813d60201161151d575b8161150d60209383611fb7565b810103126102d75751945f6114a4565b3d9150611500565b82346102d7575f3660031901126102d75760209060ff6001541690519015158152f35b9050346102d75760603660031901126102d7578035916024359167ffffffffffffffff906044358281116102d757366023820112156102d757808201359283116102d75736602484830101116102d75784421161171857835194602095868101917fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d63835233878301528860608301526080820152608081526115e981611f6b565b51902092835f526008865260ff855f2054166117085761165e91611655915f886042611613612753565b8a519061190160f01b8252600282015289602282015220928060248b519661164485601f19601f8601160189611fb7565b82885201838701378401015261287e565b909291926128b8565b7f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d45f525f8552835f209060018060a01b03165f52845260ff835f205416156116fa5750906001915f5260088352805f209260ff19938385825416179055335f5260078152815f2090855f52525f2091825416179055337f651edbbef34cadf73f82c1d926e6e8a65794260bfc5760242cc20e1403abb69e5f80a3005b8251638baa579f60e01b8152fd5b8451639d8009fd60e01b81528390fd5b50825163df4cc36d60e01b8152fd5b82346102d7575f3660031901126102d757602090600b549051908152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d75760203660031901126102d75781602092355f528252805f20549051908152f35b9050346102d7575f3660031901126102d7576117bf61263e565b6117c761267d565b7f0000000000000000000000000000000000000000000000000000000000000000421061195a577f00000000000000000000000000000000000000000000000000000000000000008015159081611968575b5061195a57335f5260209060098252825f205491821561194b5783516370a0823160e01b815230818401527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031692908281602481875afa80156119415785915f91611910575b501061190257507f896e034966eaaf1adc54acc0f257056febbd300c9e47182cf761982cf1f5e4306118dd94335f52600983525f818120556118cb85600b54611fd9565b600b5551918483523392a2339061258c565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b8451631e9acf1760e31b8152fd5b809250848092503d831161193a575b6119298183611fb7565b810103126102d7578490515f611887565b503d61191f565b86513d5f823e3d90fd5b5082516312d37ee560e31b8152fd5b9051633c21f90f60e01b8152fd5b905042115f611819565b82346102d7575f3660031901126102d7576020906104c1600a547f0000000000000000000000000000000000000000000000000000000000000000907f00000000000000000000000000000000000000000000000000000000000000009061260a565b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b9050346102d7575f3660031901126102d757611a29612372565b6001549060ff821615611a93575060ff19166001557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa60208251338152a1514281527f2c4d51fbbe26130b6396f0677dec1c1314a07c38d3f3c5c900767abb36fcf98a60203392a2005b825163fdbd410f60e01b8152fd5b9050346102d757602091826003193601126102d757611abe611e1a565b90611ac76122f9565b6001600160a01b03828116908115611bf7577f00000000000000000000000000000000000000000000000000000000000000008015611be757421115611bd7577f000000000000000000000000000000000000000000000000000000000000000016918051946370a0823160e01b865230818701528686602481875afa958615611bcd575f96611b9e575b508515611b90575061049c957f5348e96f228865459dfe9d1e35b571ad2125bbeeb5e1b5af98e4f82c3746ecb091600a54600b5551868152a261258c565b90516312d37ee560e31b8152fd5b9095508681813d8311611bc6575b611bb68183611fb7565b810103126102d75751945f611b52565b503d611bac565b82513d5f823e3d90fd5b8251637052eceb60e01b81528590fd5b8351633c21f90f60e01b81528690fd5b825163e6c4247b60e01b81528590fd5b82346102d757806003193601126102d757611c20611e04565b90336001600160a01b03831603611c3c575061049c913561251a565b5163334bd91960e11b81529050fd5b82346102d75760203660031901126102d7576020906104c1611c6b611e1a565b611f0b565b82346102d757806003193601126102d75761049c9135611c936001610486611e04565b6124a4565b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d75760203660031901126102d757602091355f525f82526001815f2001549051908152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d7575f3660031901126102d757517f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03168152602090f35b90346102d75760203660031901126102d757359063ffffffff60e01b82168092036102d757602091637965db0b60e01b8114908115611df3575b5015158152f35b6301ffc9a760e01b14905083611dec565b602435906001600160a01b03821682036102d757565b600435906001600160a01b03821682036102d757565b91908251928382525f5b848110611e5a575050825f602080949584010152601f8019910116010190565b602081830181015184830182015201611e3a565b9181601f840112156102d75782359167ffffffffffffffff83116102d7576020808501948460051b0101116102d757565b60406003198201126102d75767ffffffffffffffff916004358381116102d75782611ecc91600401611e6e565b939093926024359182116102d757611ee691600401611e6e565b9091565b91908203918211611ef757565b634e487b7160e01b5f52601160045260245ffd5b7f0000000000000000000000000000000000000000000000000000000000000000908115611f64576001600160a01b03165f9081526005602052604090205481811015611f5e57611f5b91611eea565b90565b50505f90565b50505f1990565b60a0810190811067ffffffffffffffff821117611f8757604052565b634e487b7160e01b5f52604160045260245ffd5b6040810190811067ffffffffffffffff821117611f8757604052565b90601f8019910116810190811067ffffffffffffffff821117611f8757604052565b91908201809211611ef757565b908160209103126102d7575180151581036102d75790565b60018060a01b0380911691825f5260209260078452604091825f20815f52855260ff835f2054161561227857825163babcc53960e01b81526004810183905285816024817f000000000000000000000000000000000000000000000000000000000000000089165afa90811561130d575f9161225b575b501561225157805f5260048552825f20547f00000000000000000000000000000000000000000000000000000000000000001115612247577f0000000000000000000000000000000000000000000000000000000000000000421061223d577f000000000000000000000000000000000000000000000000000000000000000042116122335760ff60015416612229577f000000000000000000000000000000000000000000000000000000000000000090816121df575b50505082602493612143600a54600b5490611eea565b938351958680926370a0823160e01b82523060048301527f0000000000000000000000000000000000000000000000000000000000000000165afa9182156121d657505f916121a6575b506121989250611eea565b156121a1575f90565b600890565b905082813d83116121cf575b6121bc8183611fb7565b810103126102d75761219891515f61218d565b503d6121b2565b513d5f823e3d90fd5b825f5260068652835f20905f52855260ff835f205416159182612213575b505061220b575f808061212d565b505050600790565b9091505f5260058452815f205410155f806121fd565b5050505050600690565b5050505050600590565b5050505050600490565b5050505050600390565b5050505050600290565b6122729150863d8811611306576112f88183611fb7565b5f612075565b5050505050600190565b91908110156122925760051b0190565b634e487b7160e01b5f52603260045260245ffd5b356001600160a01b03811681036102d75790565b5f52600460205260405f20547f00000000000000000000000000000000000000000000000000000000000000009081811015611f5e57611f5b91611eea565b335f9081527fa921dec465a2db617c1283eb3fd0c7be03ef4a04bbcfeba0659a6baa62f9000160205260409020547fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc9060ff16156123545750565b6044906040519063e2517d3f60e01b82523360048301526024820152fd5b335f9081527ff7c9542c591017a21c74b6f3fab6263c7952fc0aaf9db4c22a2a04ddc7f8674f60205260409020547f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a9060ff16156123545750565b335f9081527f10d7f32a6930100c7e03899d583513ff548ac958e569f497049662337b6f49b960205260409020547f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e49060ff16156123545750565b335f9081527f8ea8301bd621a32004df4f21098767ec870c7628c47ac2806560bce50561f0aa60205260409020547f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d49060ff16156123545750565b805f525f60205260405f20335f5260205260ff60405f205416156123545750565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f205416155f14611f5e57815f525f60205260405f20815f5260205260405f20600160ff1982541617905533917f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f2054165f14611f5e57815f525f60205260405f20815f5260205260405f2060ff19815416905533917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b60405163a9059cbb60e01b5f9081526001600160a01b039384166004526024949094529260209060448180855af160015f51148116156125eb575b83604052156125d557505050565b635274afe760e01b835216600482015260249150fd5b600181151661260157813b15153d1516166125c7565b833d5f823e3d90fd5b9161261681838561269b565b91811561262a57611f5b9309151590611fd9565b634e487b7160e01b5f52601260045260245ffd5b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00805c61266b576001905d565b604051633ee5aeb560e01b8152600490fd5b60ff6001541661268957565b6040516308a98cbd60e41b8152600490fd5b90915f198383099280830292838086109503948086039514612727578483111561270f5790829109815f038216809204600280826003021880830282030280830282030280830282030280830282030280830282030280920290030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50508092501561262a570490565b6004111561273f57565b634e487b7160e01b5f52602160045260245ffd5b307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03161480612855575b156127ae577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff821117611f875760405251902090565b507f00000000000000000000000000000000000000000000000000000000000000004614612785565b81519190604183036128ae576128a79250602082015190606060408401519301515f1a90612b3a565b9192909190565b50505f9160029190565b6128c181612735565b806128ca575050565b6128d381612735565b600181036128ed5760405163f645eedf60e01b8152600490fd5b6128f681612735565b600281036129175760405163fce698f760e01b815260048101839052602490fd5b80612923600392612735565b1461292b5750565b602490604051906335e2f38360e21b82526004820152fd5b60ff81146129815760ff811690601f821161296f576040519161296583611f9b565b8252602082015290565b604051632cd44ac360e21b8152600490fd5b506040515f600254906001908260011c60018416928315612a5d575b6020948583108514612a49578287528694908115612a2957506001146129cc575b5050611f5b92500382611fb7565b9093915060025f527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace935f915b818310612a11575050611f5b93508201015f806129be565b855487840185015294850194869450918301916129f9565b915050611f5b94925060ff191682840152151560051b8201015f806129be565b634e487b7160e01b5f52602260045260245ffd5b90607f169061299d565b60ff8114612a895760ff811690601f821161296f576040519161296583611f9b565b506040515f600354906001908260011c60018416928315612b30575b6020948583108514612a49578287528694908115612a295750600114612ad3575050611f5b92500382611fb7565b9093915060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b935f915b818310612b18575050611f5b93508201015f806129be565b85548784018501529485019486945091830191612b00565b90607f1690612aa5565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411612bbc579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15612bb1575f516001600160a01b03811615612ba757905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f916003919056fea26469706673582212204f904dacce36f83e50a2e1efcceaf481e373f201e752990dd21b895772dca5e164736f6c634300081800332f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0dad3228b676f7d3cd4284a5443f17f1962b36e491b30a40b2405849e597ba5fb5000000000000000000000000b3f2ddaed136cf10d5b228ee2eff29b71c7535fc000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3000000000000000000000000172c55db53829feed8855b84ec936fb3652847470000000000000000000000000000000000000000000000000000000000001388000000000000000000000000000000000000000000000878678326eac90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006968d6c0000000000000000000000000000000000000000000000000000000000017bac400000000000000000000000000000000000000000000000000000000698091c00000000000000000000000000000000000000000000000000000000069f5d9300000000000000000000000009b828219ad863491eb9b5225ae2d133eedea9b71
Deployed Bytecode
0x6080604090808252600480361015610015575f80fd5b5f3560e01c91826301ffc9a714611db2575081631fda9a0214611d6f57816320a0045a14611d355781632209d38c14611cfb578163248a9ca314611cd25781632b6838b314611c985781632f2ff15d14611c705781633073d5b014611c4b5781633418f5651461063757816336568abe14611c075781633a3b476614611aa15781633bb1b2ec146105905781633f4ba83a14611a0f57816344dbb571146119d557816348faade4146119725781634e71d92d146117a557816352135d5e1461177f57816353b3d2ae146117455781635912c046146117275781635c8671be146115485781635c975abb146115255781635cb988e21461142057816360a8753c1461135d57816363b201171461133f57816370876c9814610ec4578163712f7bcb14610e8d57816375dbea4114610d39578163811c302914610cff57816381d687cf14610cb3578163833b949914610c795781638456cb5914610bf757816384b0196e14610ad957816384b39b1b14610ab557816385f438c114610a7b578163877c86fb14610a38578163886f039a146108cf57816389f73e27146107e65781638b7cc1e3146107a3578163917d440f1461078557816391d1485414610742578163937020a314610705578163a217fddf146106eb578163acf1c948146106b1578163b8ac77a41461066e578163ba0fac1514610637578163beeaeb5a146105f2578163c1e714fe14610590578163ce379270146104c8578163d50fc9b61461049e578163d547741f14610463578163d6263df314610429578163d9bc1576146103ef578163e402fb84146103c357508063e5b2eb271461033b578063e63ab1e914610301578063ee28b744146102db5763f961709614610293575f80fd5b346102d757806003193601126102d7576020906001600160a01b036102b6611e1a565b165f5260068252805f206024355f52825260ff815f20541690519015158152f35b5f80fd5b50346102d7575f3660031901126102d757602090335f5260098252805f20549051908152f35b50346102d7575f3660031901126102d757602090517f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a8152f35b50346102d75760603660031901126102d757602090610358611e1a565b8151838101917fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d63835260018060a01b03168382015260243560608201526044356080820152608081526103aa81611f6b565b5190205f526008825260ff815f20541690519015158152f35b82346102d75760203660031901126102d757602091355f526008825260ff815f20541690519015158152f35b82346102d7575f3660031901126102d757602090517f000000000000000000000000000000000000000000000878678326eac90000008152f35b82346102d7575f3660031901126102d757602090517fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d638152f35b82346102d757806003193601126102d75761049c91356104976001610486611e04565b93835f525f6020525f200154612483565b61251a565b005b82346102d7575f3660031901126102d7576020906104c1600a54600b5490611eea565b9051908152f35b9050346102d7576104d836611e9f565b9091936104e3612428565b84156105825781850361057157505f5b848110610526577f1abace8ee6c418628336ee3a659f442ae562c4bfd89e8cf2c6d18650d7d8aac76020868851908152a1005b6001906001600160a01b0361054461053f838989612282565b6122a6565b165f52602060078152875f209061055c838688612282565b355f5252865f2060ff198154169055016104f3565b85516001621398b960e31b03198152fd5b855163251f56a160e21b8152fd5b82346102d75760203660031901126102d7576104c16020927f0000000000000000000000000000000000000000000000000de0b6b3a7640000907f0000000000000000000000000000000000000000000000000000000000001388903561260a565b82346102d757806003193601126102d7576020906001600160a01b03610616611e1a565b165f5260078252805f206024355f52825260ff815f20541690519015158152f35b82346102d75760203660031901126102d7576020906001600160a01b0361065c611e1a565b165f5260058252805f20549051908152f35b82346102d7575f3660031901126102d757517f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f36001600160a01b03168152602090f35b82346102d7575f3660031901126102d757602090517fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc8152f35b82346102d7575f3660031901126102d757602090515f8152f35b82346102d7575f3660031901126102d7576020905160ff7f0000000000000000000000000000000000000000000000000000000000000012168152f35b82346102d757806003193601126102d75760209161075e611e04565b90355f525f8352815f209060018060a01b03165f52825260ff815f20541690519015158152f35b82346102d75760203660031901126102d7576104c1602092356122ba565b82346102d7575f3660031901126102d757517f000000000000000000000000172c55db53829feed8855b84ec936fb3652847476001600160a01b03168152602090f35b82346102d7576107f536611e9f565b909194610800612428565b85156108c1578186036108b0575f5b868110610842577f9b94aeec7c892becb5125aabff2341d4072c8a7c686dd526c336a88c5bba0d776020888851908152a1005b6001600160a01b038061085961053f848b8a612282565b16156108a0579060019161087161053f838b8a612282565b165f52602060078152875f2090610889838789612282565b355f5252865f208260ff198254161790550161080f565b865163e6c4247b60e01b81528390fd5b84516001621398b960e31b03198152fd5b845163251f56a160e21b8152fd5b82346102d757806003193601126102d7576108e8611e1a565b906108f1611e04565b926108fa6122f9565b6001600160a01b03928316927f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7811684148015610a0d575b6109fe5784169384156109fe578251916370a0823160e01b83523090830152602082602481875afa9182156109f4575f926109a0575b50907faca8fb252cde442184e5f10e0f2e6e4029e8cd7717cae63559079610702436aa92610999826020948761258c565b51908152a3005b91506020823d6020116109ec575b816109bb60209383611fb7565b810103126102d7579051907faca8fb252cde442184e5f10e0f2e6e4029e8cd7717cae63559079610702436aa610968565b3d91506109ae565b83513d5f823e3d90fd5b50905163e6c4247b60e01b8152fd5b50807f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3168414610932565b82346102d7575f3660031901126102d757517f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec76001600160a01b03168152602090f35b82346102d7575f3660031901126102d757602090517f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e48152f35b82346102d757806003193601126102d7576020906001600160a01b036102b6611e1a565b9050346102d7575f3660031901126102d757610b147f5a414d4153616c65000000000000000000000000000000000000000000000008612943565b91610b3e7f3100000000000000000000000000000000000000000000000000000000000001612a67565b815191602091602084019484861067ffffffffffffffff871117610be45750610b998260209287610b8c99989795525f85528151988998600f60f81b8a5260e0868b015260e08a0190611e30565b9188830390890152611e30565b914660608701523060808701525f60a087015285830360c087015251918281520192915f5b828110610bcd57505050500390f35b835185528695509381019392810192600101610bbe565b604190634e487b7160e01b5f525260245ffd5b82346102d7575f3660031901126102d757610c10612372565b610c1861267d565b600160ff19815416176001557f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a25860208251338152a1514281527f0f13b908d3ccb1f51690240e2ced6db67e0fde09ebe58a073763938742d9615460203392a2005b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000013888152f35b82346102d757806003193601126102d757610cd8610ccf611e1a565b60243590611ffe565b9051906009811015610cec57602092508152f35b602183634e487b7160e01b5f525260245ffd5b82346102d7575f3660031901126102d757602090517f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d48152f35b9050346102d757816003193601126102d757610d53611e1a565b60243591610d5f6123cd565b6001600160a01b03828116908115610e7d577f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3169185516370a0823160e01b81523082820152602081602481875afa8015610e73575f90610e3f575b610dd59150610dcf600a54600b5490611eea565b90611eea565b948515610e305780610e2a5750845b8511610e1c57507f6352c5382c4a4578e712449ca65e83cdb392d045dfcf1cad9615189db2da244b602061049c9651868152a261258c565b8551631e9acf1760e31b8152fd5b94610de4565b508551631e9acf1760e31b8152fd5b506020813d602011610e6b575b81610e5960209383611fb7565b810103126102d757610dd59051610dbb565b3d9150610e4c565b87513d5f823e3d90fd5b855163e6c4247b60e01b81528390fd5b82346102d75760203660031901126102d7576020906001600160a01b03610eb2611e1a565b165f5260098252805f20549051908152f35b82346102d757806003193601126102d757813590602492833591610ee661263e565b610eee61267d565b7f000000000000000000000000000000000000000000000000000000006968d6c04210611332577f0000000000000000000000000000000000000000000000000000000069809184421161132557335f5260209360078552815f20815f52855260ff825f2054161561131757815163babcc53960e01b815233848201526001600160a01b039190868189817f000000000000000000000000172c55db53829feed8855b84ec936fb36528474787165afa90811561130d575f916112e0575b50156112d15784156112c2576110037f0000000000000000000000000000000000000000000000000de0b6b3a76400007f00000000000000000000000000000000000000000000000000000000000013888761260a565b947f000000000000000000000000000000000000000000000000000000000000000080611239575b50815f5284875261103f81855f2054611fd9565b7f000000000000000000000000000000000000000000000878678326eac9000000811161122957611075600a54600b5490611eea565b85516370a0823160e01b8152308882015289818c817f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f38a165afa908115610e7357908492915f916111f4575b50906110cc91611eea565b106111e457825f52858852845f2055335f5260098752835f206110f0828254611fd9565b90556110fe81600a54611fd9565b600a55835190815285878201527f0d1a0d5e3d583a0e92588799dd06e50fd78c07daf05f0cc06d7b848b1ca445f1843392a37f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7169281519485916323b872dd60e01b5f523385523088526044525f60648180885af19160015f51148316156111bf575b525f606052156111b0575f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b635274afe760e01b8352820152fd5b91905060018115166111db578490843b15153d15161691611181565b843d5f823e3d90fd5b8451631e9acf1760e31b81528690fd5b809293508b8092503d8311611222575b61120e8183611fb7565b810103126102d757518391906110cc6110c1565b503d611204565b8451632150464360e21b81528690fd5b335f5260068852845f20835f52885260ff855f20541661102b57335f5260058852845f205410156112b257335f5260068752835f20825f528752835f20600160ff19825416179055335f5260058752835f20805490600182018092116112a057558861102b565b89601188634e487b7160e01b5f52525ffd5b50505051632046b41b60e21b8152fd5b50505163cd1c886760e01b8152fd5b50505163bfbd50bf60e01b8152fd5b6113009150873d8911611306575b6112f88183611fb7565b810190611fe6565b88610fac565b503d6112ee565b84513d5f823e3d90fd5b50516332d0f98960e21b8152fd5b51630bd8a3eb60e01b8152fd5b516316851a3760e11b8152fd5b82346102d7575f3660031901126102d757602090600a549051908152f35b82346102d75760203660031901126102d75781602092355f528252805f20549060ff600154161591826113f6575b50816113cb575b816113a0575b519015158152f35b7f00000000000000000000000000000000000000000000000000000000698091844211159150611398565b7f000000000000000000000000000000000000000000000000000000006968d6c04210159150611392565b7f000000000000000000000000000000000000000000000878678326eac90000001191508361138b565b9050346102d757816003193601126102d75761143a611e1a565b602435916114466123cd565b6001600160a01b03828116908115610e7d577f000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec716918551946370a0823160e01b86523082870152602086602481875afa958615610e73575f966114f1575b508515610e3057806114eb5750845b8511610e1c57507f84511ecc081974f18e7f3e0dcc19db078b55bbd3852ddd0dd85b3aebb7bf94c2602061049c9651868152a261258c565b946114b3565b9095506020813d60201161151d575b8161150d60209383611fb7565b810103126102d75751945f6114a4565b3d9150611500565b82346102d7575f3660031901126102d75760209060ff6001541690519015158152f35b9050346102d75760603660031901126102d7578035916024359167ffffffffffffffff906044358281116102d757366023820112156102d757808201359283116102d75736602484830101116102d75784421161171857835194602095868101917fc8e0416f0dbaf2214c826832a4b9a2e7a22a9c63483589f23d3d1686bfa67d63835233878301528860608301526080820152608081526115e981611f6b565b51902092835f526008865260ff855f2054166117085761165e91611655915f886042611613612753565b8a519061190160f01b8252600282015289602282015220928060248b519661164485601f19601f8601160189611fb7565b82885201838701378401015261287e565b909291926128b8565b7f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d45f525f8552835f209060018060a01b03165f52845260ff835f205416156116fa5750906001915f5260088352805f209260ff19938385825416179055335f5260078152815f2090855f52525f2091825416179055337f651edbbef34cadf73f82c1d926e6e8a65794260bfc5760242cc20e1403abb69e5f80a3005b8251638baa579f60e01b8152fd5b8451639d8009fd60e01b81528390fd5b50825163df4cc36d60e01b8152fd5b82346102d7575f3660031901126102d757602090600b549051908152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000698091c08152f35b82346102d75760203660031901126102d75781602092355f528252805f20549051908152f35b9050346102d7575f3660031901126102d7576117bf61263e565b6117c761267d565b7f00000000000000000000000000000000000000000000000000000000698091c0421061195a577f0000000000000000000000000000000000000000000000000000000069f5d9308015159081611968575b5061195a57335f5260209060098252825f205491821561194b5783516370a0823160e01b815230818401527f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f36001600160a01b031692908281602481875afa80156119415785915f91611910575b501061190257507f896e034966eaaf1adc54acc0f257056febbd300c9e47182cf761982cf1f5e4306118dd94335f52600983525f818120556118cb85600b54611fd9565b600b5551918483523392a2339061258c565b5f7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f005d005b8451631e9acf1760e31b8152fd5b809250848092503d831161193a575b6119298183611fb7565b810103126102d7578490515f611887565b503d61191f565b86513d5f823e3d90fd5b5082516312d37ee560e31b8152fd5b9051633c21f90f60e01b8152fd5b905042115f611819565b82346102d7575f3660031901126102d7576020906104c1600a547f0000000000000000000000000000000000000000000000000de0b6b3a7640000907f00000000000000000000000000000000000000000000000000000000000013889061260a565b82346102d7575f3660031901126102d757602090517f000000000000000000000000000000000000000000000000000000006968d6c08152f35b9050346102d7575f3660031901126102d757611a29612372565b6001549060ff821615611a93575060ff19166001557f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa60208251338152a1514281527f2c4d51fbbe26130b6396f0677dec1c1314a07c38d3f3c5c900767abb36fcf98a60203392a2005b825163fdbd410f60e01b8152fd5b9050346102d757602091826003193601126102d757611abe611e1a565b90611ac76122f9565b6001600160a01b03828116908115611bf7577f0000000000000000000000000000000000000000000000000000000069f5d9308015611be757421115611bd7577f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f316918051946370a0823160e01b865230818701528686602481875afa958615611bcd575f96611b9e575b508515611b90575061049c957f5348e96f228865459dfe9d1e35b571ad2125bbeeb5e1b5af98e4f82c3746ecb091600a54600b5551868152a261258c565b90516312d37ee560e31b8152fd5b9095508681813d8311611bc6575b611bb68183611fb7565b810103126102d75751945f611b52565b503d611bac565b82513d5f823e3d90fd5b8251637052eceb60e01b81528590fd5b8351633c21f90f60e01b81528690fd5b825163e6c4247b60e01b81528590fd5b82346102d757806003193601126102d757611c20611e04565b90336001600160a01b03831603611c3c575061049c913561251a565b5163334bd91960e11b81529050fd5b82346102d75760203660031901126102d7576020906104c1611c6b611e1a565b611f0b565b82346102d757806003193601126102d75761049c9135611c936001610486611e04565b6124a4565b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b82346102d75760203660031901126102d757602091355f525f82526001815f2001549051908152f35b82346102d7575f3660031901126102d757602090517f0000000000000000000000000000000000000000000000000000000069f5d9308152f35b82346102d7575f3660031901126102d757602090517f00000000000000000000000000000000000000000000000000000000698091848152f35b82346102d7575f3660031901126102d757517f000000000000000000000000b3f2ddaed136cf10d5b228ee2eff29b71c7535fc6001600160a01b03168152602090f35b90346102d75760203660031901126102d757359063ffffffff60e01b82168092036102d757602091637965db0b60e01b8114908115611df3575b5015158152f35b6301ffc9a760e01b14905083611dec565b602435906001600160a01b03821682036102d757565b600435906001600160a01b03821682036102d757565b91908251928382525f5b848110611e5a575050825f602080949584010152601f8019910116010190565b602081830181015184830182015201611e3a565b9181601f840112156102d75782359167ffffffffffffffff83116102d7576020808501948460051b0101116102d757565b60406003198201126102d75767ffffffffffffffff916004358381116102d75782611ecc91600401611e6e565b939093926024359182116102d757611ee691600401611e6e565b9091565b91908203918211611ef757565b634e487b7160e01b5f52601160045260245ffd5b7f0000000000000000000000000000000000000000000000000000000000000000908115611f64576001600160a01b03165f9081526005602052604090205481811015611f5e57611f5b91611eea565b90565b50505f90565b50505f1990565b60a0810190811067ffffffffffffffff821117611f8757604052565b634e487b7160e01b5f52604160045260245ffd5b6040810190811067ffffffffffffffff821117611f8757604052565b90601f8019910116810190811067ffffffffffffffff821117611f8757604052565b91908201809211611ef757565b908160209103126102d7575180151581036102d75790565b60018060a01b0380911691825f5260209260078452604091825f20815f52855260ff835f2054161561227857825163babcc53960e01b81526004810183905285816024817f000000000000000000000000172c55db53829feed8855b84ec936fb36528474789165afa90811561130d575f9161225b575b501561225157805f5260048552825f20547f000000000000000000000000000000000000000000000878678326eac90000001115612247577f000000000000000000000000000000000000000000000000000000006968d6c0421061223d577f000000000000000000000000000000000000000000000000000000006980918442116122335760ff60015416612229577f000000000000000000000000000000000000000000000000000000000000000090816121df575b50505082602493612143600a54600b5490611eea565b938351958680926370a0823160e01b82523060048301527f000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3165afa9182156121d657505f916121a6575b506121989250611eea565b156121a1575f90565b600890565b905082813d83116121cf575b6121bc8183611fb7565b810103126102d75761219891515f61218d565b503d6121b2565b513d5f823e3d90fd5b825f5260068652835f20905f52855260ff835f205416159182612213575b505061220b575f808061212d565b505050600790565b9091505f5260058452815f205410155f806121fd565b5050505050600690565b5050505050600590565b5050505050600490565b5050505050600390565b5050505050600290565b6122729150863d8811611306576112f88183611fb7565b5f612075565b5050505050600190565b91908110156122925760051b0190565b634e487b7160e01b5f52603260045260245ffd5b356001600160a01b03811681036102d75790565b5f52600460205260405f20547f000000000000000000000000000000000000000000000878678326eac90000009081811015611f5e57611f5b91611eea565b335f9081527fa921dec465a2db617c1283eb3fd0c7be03ef4a04bbcfeba0659a6baa62f9000160205260409020547fb3e25b5404b87e5a838579cb5d7481d61ad96ee284d38ec1e97c07ba64e7f6fc9060ff16156123545750565b6044906040519063e2517d3f60e01b82523360048301526024820152fd5b335f9081527ff7c9542c591017a21c74b6f3fab6263c7952fc0aaf9db4c22a2a04ddc7f8674f60205260409020547f65d7a28e3265b37a6474929f336521b332c1681b933f6cb9f3376673440d862a9060ff16156123545750565b335f9081527f10d7f32a6930100c7e03899d583513ff548ac958e569f497049662337b6f49b960205260409020547f10dac8c06a04bec0b551627dad28bc00d6516b0caacd1c7b345fcdb5211334e49060ff16156123545750565b335f9081527f8ea8301bd621a32004df4f21098767ec870c7628c47ac2806560bce50561f0aa60205260409020547f556ffbcc2c3cb18c3b476b1220de79624bc57e699ae4a45cda58b8231f6716d49060ff16156123545750565b805f525f60205260405f20335f5260205260ff60405f205416156123545750565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f205416155f14611f5e57815f525f60205260405f20815f5260205260405f20600160ff1982541617905533917f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d5f80a4600190565b90815f525f60205260405f209060018060a01b031690815f5260205260ff60405f2054165f14611f5e57815f525f60205260405f20815f5260205260405f2060ff19815416905533917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b5f80a4600190565b60405163a9059cbb60e01b5f9081526001600160a01b039384166004526024949094529260209060448180855af160015f51148116156125eb575b83604052156125d557505050565b635274afe760e01b835216600482015260249150fd5b600181151661260157813b15153d1516166125c7565b833d5f823e3d90fd5b9161261681838561269b565b91811561262a57611f5b9309151590611fd9565b634e487b7160e01b5f52601260045260245ffd5b7f9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00805c61266b576001905d565b604051633ee5aeb560e01b8152600490fd5b60ff6001541661268957565b6040516308a98cbd60e41b8152600490fd5b90915f198383099280830292838086109503948086039514612727578483111561270f5790829109815f038216809204600280826003021880830282030280830282030280830282030280830282030280830282030280920290030293600183805f03040190848311900302920304170290565b82634e487b715f52156003026011186020526024601cfd5b50508092501561262a570490565b6004111561273f57565b634e487b7160e01b5f52602160045260245ffd5b307f0000000000000000000000006716c707573988644b9b9f5a482021b3e09a68b16001600160a01b03161480612855575b156127ae577fcfb159e8e2effbf0dd0946e288219e687e3673f29015d09d3ab3bc971795b5a390565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f32fa413cc7c92ea62024ff8db16917b9c77fc2ae339f3d9910ab384aa76ae5b260408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff821117611f875760405251902090565b507f00000000000000000000000000000000000000000000000000000000000000014614612785565b81519190604183036128ae576128a79250602082015190606060408401519301515f1a90612b3a565b9192909190565b50505f9160029190565b6128c181612735565b806128ca575050565b6128d381612735565b600181036128ed5760405163f645eedf60e01b8152600490fd5b6128f681612735565b600281036129175760405163fce698f760e01b815260048101839052602490fd5b80612923600392612735565b1461292b5750565b602490604051906335e2f38360e21b82526004820152fd5b60ff81146129815760ff811690601f821161296f576040519161296583611f9b565b8252602082015290565b604051632cd44ac360e21b8152600490fd5b506040515f600254906001908260011c60018416928315612a5d575b6020948583108514612a49578287528694908115612a2957506001146129cc575b5050611f5b92500382611fb7565b9093915060025f527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace935f915b818310612a11575050611f5b93508201015f806129be565b855487840185015294850194869450918301916129f9565b915050611f5b94925060ff191682840152151560051b8201015f806129be565b634e487b7160e01b5f52602260045260245ffd5b90607f169061299d565b60ff8114612a895760ff811690601f821161296f576040519161296583611f9b565b506040515f600354906001908260011c60018416928315612b30575b6020948583108514612a49578287528694908115612a295750600114612ad3575050611f5b92500382611fb7565b9093915060035f527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b935f915b818310612b18575050611f5b93508201015f806129be565b85548784018501529485019486945091830191612b00565b90607f1690612aa5565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411612bbc579160209360809260ff5f9560405194855216868401526040830152606082015282805260015afa15612bb1575f516001600160a01b03811615612ba757905f905f90565b505f906001905f90565b6040513d5f823e3d90fd5b5050505f916003919056fea26469706673582212204f904dacce36f83e50a2e1efcceaf481e373f201e752990dd21b895772dca5e164736f6c63430008180033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000b3f2ddaed136cf10d5b228ee2eff29b71c7535fc000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3000000000000000000000000172c55db53829feed8855b84ec936fb3652847470000000000000000000000000000000000000000000000000000000000001388000000000000000000000000000000000000000000000878678326eac90000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000006968d6c0000000000000000000000000000000000000000000000000000000000017bac400000000000000000000000000000000000000000000000000000000698091c00000000000000000000000000000000000000000000000000000000069f5d9300000000000000000000000009b828219ad863491eb9b5225ae2d133eedea9b71
-----Decoded View---------------
Arg [0] : nftContract_ (address): 0xb3F2dDaEd136Cf10d5b228EE2EfF29B71C7535Fc
Arg [1] : paymentToken_ (address): 0xdAC17F958D2ee523a2206206994597C13D831ec7
Arg [2] : saleToken_ (address): 0xA12CC123ba206d4031D1c7f6223D1C2Ec249f4f3
Arg [3] : kycRegistry_ (address): 0x172c55dB53829FEEd8855B84Ec936FB365284747
Arg [4] : pricePerToken_ (uint256): 5000
Arg [5] : allocationPerNft_ (uint256): 40000000000000000000000
Arg [6] : maxNftsPerUser_ (uint256): 0
Arg [7] : saleStartTime_ (uint256): 1768478400
Arg [8] : saleDuration_ (uint256): 1555140
Arg [9] : claimStartTime_ (uint256): 1770033600
Arg [10] : claimEndTime_ (uint256): 1777719600
Arg [11] : admin (address): 0x9b828219ad863491eb9b5225aE2d133eEDEa9B71
-----Encoded View---------------
12 Constructor Arguments found :
Arg [0] : 000000000000000000000000b3f2ddaed136cf10d5b228ee2eff29b71c7535fc
Arg [1] : 000000000000000000000000dac17f958d2ee523a2206206994597c13d831ec7
Arg [2] : 000000000000000000000000a12cc123ba206d4031d1c7f6223d1c2ec249f4f3
Arg [3] : 000000000000000000000000172c55db53829feed8855b84ec936fb365284747
Arg [4] : 0000000000000000000000000000000000000000000000000000000000001388
Arg [5] : 000000000000000000000000000000000000000000000878678326eac9000000
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [7] : 000000000000000000000000000000000000000000000000000000006968d6c0
Arg [8] : 000000000000000000000000000000000000000000000000000000000017bac4
Arg [9] : 00000000000000000000000000000000000000000000000000000000698091c0
Arg [10] : 0000000000000000000000000000000000000000000000000000000069f5d930
Arg [11] : 0000000000000000000000009b828219ad863491eb9b5225ae2d133eedea9b71
Loading...
Loading
Loading...
Loading
Net Worth in USD
$1,517,802.29
Net Worth in ETH
778.69493
Token Allocations
USDT
62.82%
ZAMA
37.18%
YFTE
0.00%
Multichain Portfolio | 34 Chains
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.