Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Bid | 20785648 | 129 days ago | IN | 0 ETH | 0.00376855 |
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
20785509 | 129 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0x971c890acb9eeb084f292996be667bb9a2889ae9
Contract Name:
DutchTrade
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "../../libraries/Fixed.sol"; import "../../interfaces/IAsset.sol"; import "../../interfaces/IBroker.sol"; import "../../interfaces/ITrade.sol"; import "../../mixins/Versioned.sol"; interface IDutchTradeCallee { function dutchTradeCallback( address buyToken, // {qBuyTok} uint256 buyAmount, bytes calldata data ) external; } enum BidType { NONE, CALLBACK, TRANSFER } // A dutch auction in 4 parts: // 1. 0% - 20%: Geometric decay from 1000x the bestPrice to ~1.5x the bestPrice // 2. 20% - 45%: Linear decay from ~1.5x the bestPrice to the bestPrice // 3. 45% - 95%: Linear decay from the bestPrice to the worstPrice // 4. 95% - 100%: Constant at the worstPrice // // For a trade between 2 assets with 1% oracleError: // A 30-minute auction has a 20% price drop (every 12 seconds) during the 1st period, // ~0.8% during the 2nd period, and ~0.065% during the 3rd period. // // 30-minutes is the recommended length of auction for a chain with 12-second blocktimes. // Period lengths: 6 minutes, 7.5 minutes, 15 minutes, 1.5 minutes. // // Longer and shorter times can be used as well. The pricing method does not degrade // beyond the degree to which less overall blocktime means less overall precision. uint192 constant FIVE_PERCENT = 5e16; // {1} 0.05 uint192 constant TWENTY_PERCENT = 20e16; // {1} 0.2 uint192 constant TWENTY_FIVE_PERCENT = 25e16; // {1} 0.25 uint192 constant FORTY_FIVE_PERCENT = 45e16; // {1} 0.45 uint192 constant FIFTY_PERCENT = 50e16; // {1} 0.5 uint192 constant NINETY_FIVE_PERCENT = 95e16; // {1} 0.95 uint192 constant MAX_EXP = 6502287e18; // {1} (1000000/999999)^6502287 = ~666.6667 uint192 constant BASE = 999999e12; // {1} (999999/1000000) uint192 constant ONE_POINT_FIVE = 150e16; // {1} 1.5 /** * @title DutchTrade * @notice Implements a wholesale dutch auction via a 4-piecewise falling-price mechansim. * The overall idea is to handle 4 cases: * 1. Price manipulation of the exchange rate up to 1000x (eg: via a read-only reentrancy) * 2. Price movement of up to 50% during the auction * 3. Typical case: no significant price movement; clearing price within expected range * 4. No bots online; manual human doing bidding; additional time for tx clearing * * Case 1: Over the first 20% of the auction the price falls from ~1000x the best plausible * price down to 1.5x the best plausible price in a geometric series. * This period DOES NOT expect to receive a bid; it just defends against manipulated prices. * If a bid occurs during this period, a violation is reported to the Broker. * This is still safe for the protocol since other trades, with price discovery, can occur. * * Case 2: Over the next 20% of the auction the price falls from 1.5x the best plausible price * to the best plausible price, linearly. No violation is reported if a bid occurs. This case * exists to handle cases where prices change after the auction is started, naturally. * * Case 3: Over the next 50% of the auction the price falls from the best plausible price to the * worst price, linearly. The worst price is further discounted by the maxTradeSlippage. * This is the phase of the auction where bids will typically occur. * * Case 4: Lastly the price stays at the worst price for the final 5% of the auction to allow * a bid to occur if no bots are online and the only bidders are humans. * * To bid: * 1. Call `bidAmount()` view to check prices at various future timestamps. * 2. Provide approval of sell tokens for precisely the `bidAmount()` desired * 3. Wait until the desired time is reached (hopefully not in the first 20% of the auction) * 4. Call bid() * * Limitation: In order to support all chains, such as Arbitrum, this contract uses block time * instead of block number. This means there may be small ways that validators can * extract MEV by playing around with block.timestamp. However, we think this tradeoff * is worth it in order to not have to maintain multiple DutchTrade contracts. */ contract DutchTrade is ITrade, Versioned { using FixLib for uint192; using SafeERC20 for IERC20Metadata; TradeKind public constant KIND = TradeKind.DUTCH_AUCTION; BidType public bidType; // = BidType.NONE TradeStatus public status; // reentrancy protection IBroker public broker; // The Broker that cloned this contract into existence ITrading public origin; // the address that initialized the contract // === Auction === IERC20Metadata public sell; IERC20Metadata public buy; uint192 public sellAmount; // {sellTok} // The auction runs from [startTime, endTime], inclusive uint48 public startTime; // {s} when the dutch auction begins (one block after init()) lossy! uint48 public endTime; // {s} when the dutch auction ends uint192 public bestPrice; // {buyTok/sellTok} The best plausible price based on oracle data uint192 public worstPrice; // {buyTok/sellTok} The worst plausible price based on oracle data // === Bid === address public bidder; // the bid amount is just whatever token balance is in the contract at settlement time // This modifier both enforces the state-machine pattern and guards against reentrancy. modifier stateTransition(TradeStatus begin, TradeStatus end) { require(status == begin, "Invalid trade state"); status = TradeStatus.PENDING; _; assert(status == TradeStatus.PENDING); status = end; } // === Auction Sizing Views === /// @return {qSellTok} The size of the lot being sold, in token quanta function lot() public view returns (uint256) { return sellAmount.shiftl_toUint(int8(sell.decimals())); } /// Calculates how much buy token is needed to purchase the lot at a particular time /// @param timestamp {s} The timestamp of the bid /// @return {qBuyTok} The amount of buy tokens required to purchase the lot function bidAmount(uint48 timestamp) external view returns (uint256) { return _bidAmount(_price(timestamp)); } // ==== Constructor === constructor() { status = TradeStatus.CLOSED; } // === External === /// @param origin_ The Trader that originated the trade /// @param sell_ The asset being sold by the protocol /// @param buy_ The asset being bought by the protocol /// @param sellAmount_ {qSellTok} The amount to sell in the auction, in token quanta /// @param auctionLength {s} How many seconds the dutch auction should run for function init( ITrading origin_, IAsset sell_, IAsset buy_, uint256 sellAmount_, uint48 auctionLength, TradePrices memory prices ) external stateTransition(TradeStatus.NOT_STARTED, TradeStatus.OPEN) { // 60 sec min auction duration assert(address(sell_) != address(0) && address(buy_) != address(0) && auctionLength >= 60); // Only start dutch auctions under well-defined prices require(prices.sellLow != 0 && prices.sellHigh < FIX_MAX / 1000, "bad sell pricing"); require(prices.buyLow != 0 && prices.buyHigh < FIX_MAX / 1000, "bad buy pricing"); broker = IBroker(msg.sender); origin = origin_; sell = sell_.erc20(); buy = buy_.erc20(); require(sellAmount_ <= sell.balanceOf(address(this)), "unfunded trade"); sellAmount = shiftl_toFix(sellAmount_, -int8(sell.decimals())); // {sellTok} // Track auction end by time, to generalize to all chains uint48 _startTime = uint48(block.timestamp) + 1; // cannot fulfill in current block startTime = _startTime; // gas-saver endTime = _startTime + auctionLength; // {buyTok/sellTok} = {UoA/sellTok} * {1} / {UoA/buyTok} uint192 _worstPrice = prices.sellLow.mulDiv( FIX_ONE - origin.maxTradeSlippage(), prices.buyHigh, FLOOR ); uint192 _bestPrice = prices.sellHigh.div(prices.buyLow, CEIL); // no additional slippage assert(_worstPrice <= _bestPrice); worstPrice = _worstPrice; // gas-saver bestPrice = _bestPrice; // gas-saver } /// Bid for the auction lot at the current price; settle trade in protocol /// @dev Caller must have provided approval /// @return amountIn {qBuyTok} The quantity of tokens the bidder paid function bid() external returns (uint256 amountIn) { require(bidder == address(0), "bid already received"); assert(status == TradeStatus.OPEN); // {buyTok/sellTok} uint192 price = _price(uint48(block.timestamp)); // enforces auction ongoing // {qBuyTok} amountIn = _bidAmount(price); // Mark bidder bidder = msg.sender; bidType = BidType.TRANSFER; // reportViolation if auction cleared in geometric phase if (price > bestPrice.mul(ONE_POINT_FIVE, CEIL)) { broker.reportViolation(); } // Transfer in buy tokens from bidder buy.safeTransferFrom(msg.sender, address(this), amountIn); // settle() in core protocol origin.settleTrade(sell); // confirm .settleTrade() succeeded and .settle() has been called assert(status == TradeStatus.CLOSED); } /// Bid with callback for the auction lot at the current price; settle trade in protocol /// Sold funds are sent back to the callee first via callee.dutchTradeCallback(...) /// Balance of buy token must increase by bidAmount(block.timestamp) after callback /// /// @dev Caller must implement IDutchTradeCallee /// @param data {bytes} The data to pass to the callback /// @return amountIn {qBuyTok} The quantity of tokens the bidder paid function bidWithCallback(bytes calldata data) external returns (uint256 amountIn) { require(bidder == address(0), "bid already received"); assert(status == TradeStatus.OPEN); // {buyTok/sellTok} uint192 price = _price(uint48(block.timestamp)); // enforces auction ongoing // {qBuyTok} amountIn = _bidAmount(price); // Mark bidder bidder = msg.sender; bidType = BidType.CALLBACK; // reportViolation if auction cleared in geometric phase if (price > bestPrice.mul(ONE_POINT_FIVE, CEIL)) { broker.reportViolation(); } // Transfer sell tokens to bidder sell.safeTransfer(bidder, lot()); // {qSellTok} uint256 balanceBefore = buy.balanceOf(address(this)); // {qBuyTok} IDutchTradeCallee(bidder).dutchTradeCallback(address(buy), amountIn, data); require( amountIn <= buy.balanceOf(address(this)) - balanceBefore, "insufficient buy tokens" ); // settle() in core protocol origin.settleTrade(sell); // confirm .settleTrade() succeeded and .settle() has been called assert(status == TradeStatus.CLOSED); } /// Settle the auction, emptying the contract of balances /// @return soldAmt {qSellTok} Token quantity sold by the protocol /// @return boughtAmt {qBuyTok} Token quantity purchased by the protocol function settle() external stateTransition(TradeStatus.OPEN, TradeStatus.CLOSED) returns (uint256 soldAmt, uint256 boughtAmt) { require(msg.sender == address(origin), "only origin can settle"); require(bidder != address(0) || block.timestamp > endTime, "auction not over"); if (bidType == BidType.CALLBACK) { soldAmt = lot(); // {qSellTok} } else if (bidType == BidType.TRANSFER) { soldAmt = lot(); // {qSellTok} sell.safeTransfer(bidder, soldAmt); // {qSellTok} } // Transfer remaining balances back to origin boughtAmt = buy.balanceOf(address(this)); // {qBuyTok} buy.safeTransfer(address(origin), boughtAmt); // {qBuyTok} sell.safeTransfer(address(origin), sell.balanceOf(address(this))); // {qSellTok} } /// Anyone can transfer any ERC20 back to the origin after the trade has been closed /// @dev Escape hatch in case of accidentally transferred tokens after auction end /// @custom:interaction CEI (and respects the state lock) function transferToOriginAfterTradeComplete(IERC20Metadata erc20) external { require(status == TradeStatus.CLOSED, "only after trade is closed"); erc20.safeTransfer(address(origin), erc20.balanceOf(address(this))); } /// @return true iff the trade can be settled. // Guaranteed to be true some time after init(), until settle() is called function canSettle() external view returns (bool) { return status == TradeStatus.OPEN && (bidder != address(0) || block.timestamp > endTime); } // === Private === /// Return the price of the auction at a particular timestamp /// @param timestamp {s} The timestamp to get price for /// @return {buyTok/sellTok} function _price(uint48 timestamp) private view returns (uint192) { uint48 _startTime = startTime; // {s} gas savings uint48 _endTime = endTime; // {s} gas savings require(timestamp >= _startTime, "auction not started"); require(timestamp <= _endTime, "auction over"); /// Price Curve: /// - first 20%: geometrically decrease the price from 1000x the bestPrice to 1.5x it /// - next 25%: linearly decrease the price from 1.5x the bestPrice to 1x it /// - next 50%: linearly decrease the price from bestPrice to worstPrice /// - last 5%: constant at worstPrice uint192 progression = divuu(timestamp - _startTime, _endTime - _startTime); // {1} // Fast geometric decay -- 0%-20% of auction if (progression < TWENTY_PERCENT) { uint192 exp = MAX_EXP.mulDiv(TWENTY_PERCENT - progression, TWENTY_PERCENT, ROUND); // bestPrice * ((1000000/999999) ^ exp) = bestPrice / ((999999/1000000) ^ exp) // safe uint48 downcast: exp is at-most 6502287 // {buyTok/sellTok} = {buyTok/sellTok} / {1} ^ {1} return bestPrice.mulDiv(ONE_POINT_FIVE, BASE.powu(uint48(exp.toUint(ROUND))), CEIL); // this reverts for bestPrice >= 6.21654046e36 * FIX_ONE } else if (progression < FORTY_FIVE_PERCENT) { // First linear decay -- 20%-45% of auction // 1.5x -> 1x the bestPrice uint192 _bestPrice = bestPrice; // gas savings // {buyTok/sellTok} = {buyTok/sellTok} * {1} uint192 highPrice = _bestPrice.mul(ONE_POINT_FIVE, CEIL); return highPrice - (highPrice - _bestPrice).mulDiv(progression - TWENTY_PERCENT, TWENTY_FIVE_PERCENT); } else if (progression < NINETY_FIVE_PERCENT) { // Second linear decay -- 45%-95% of auction // bestPrice -> worstPrice uint192 _bestPrice = bestPrice; // gas savings // {buyTok/sellTok} = {buyTok/sellTok} * {1} return _bestPrice - (_bestPrice - worstPrice).mulDiv(progression - FORTY_FIVE_PERCENT, FIFTY_PERCENT); } // Constant price -- 95%-100% of auction return worstPrice; } /// Calculates how much buy token is needed to purchase the lot at a particular price /// @param price {buyTok/sellTok} /// @return {qBuyTok} The amount of buy tokens required to purchase the lot function _bidAmount(uint192 price) public view returns (uint256) { // {qBuyTok} = {sellTok} * {buyTok/sellTok} * {qBuyTok/buyTok} return sellAmount.mul(price, CEIL).shiftl_toUint(int8(buy.decimals()), CEIL); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); function getRoundData(uint80 _roundId) external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControlUpgradeable { /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; // EIP-2612 is Final as of 2022-11-01. This file is deprecated. import "./IERC20PermitUpgradeable.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20Upgradeable.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20MetadataUpgradeable is IERC20Upgradeable { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20PermitUpgradeable { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove(IERC20 token, address spender, uint256 value) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value)); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value)); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0)); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "../libraries/Fixed.sol"; import "./IMain.sol"; import "./IRewardable.sol"; // Not used directly in the IAsset interface, but used by many consumers to save stack space struct Price { uint192 low; // {UoA/tok} uint192 high; // {UoA/tok} } /** * @title IAsset * @notice Supertype. Any token that interacts with our system must be wrapped in an asset, * whether it is used as RToken backing or not. Any token that can report a price in the UoA * is eligible to be an asset. */ interface IAsset is IRewardable { /// Refresh saved price /// The Reserve protocol calls this at least once per transaction, before relying on /// the Asset's other functions. /// @dev Called immediately after deployment, before use function refresh() external; /// Should not revert /// low should be nonzero if the asset could be worth selling /// @return low {UoA/tok} The lower end of the price estimate /// @return high {UoA/tok} The upper end of the price estimate function price() external view returns (uint192 low, uint192 high); /// Should not revert /// lotLow should be nonzero when the asset might be worth selling /// @dev Deprecated. Phased out in 3.1.0, but left on interface for backwards compatibility /// @return lotLow {UoA/tok} The lower end of the lot price estimate /// @return lotHigh {UoA/tok} The upper end of the lot price estimate function lotPrice() external view returns (uint192 lotLow, uint192 lotHigh); /// @return {tok} The balance of the ERC20 in whole tokens function bal(address account) external view returns (uint192); /// @return The ERC20 contract of the token with decimals() available function erc20() external view returns (IERC20Metadata); /// @return The number of decimals in the ERC20; just for gas optimization function erc20Decimals() external view returns (uint8); /// @return If the asset is an instance of ICollateral or not function isCollateral() external view returns (bool); /// @return {UoA} The max trade volume, in UoA function maxTradeVolume() external view returns (uint192); /// @return {s} The timestamp of the last refresh() that saved prices function lastSave() external view returns (uint48); } // Used only in Testing. Strictly speaking an Asset does not need to adhere to this interface interface TestIAsset is IAsset { /// @return The address of the chainlink feed function chainlinkFeed() external view returns (AggregatorV3Interface); /// {1} The max % deviation allowed by the oracle function oracleError() external view returns (uint192); /// @return {s} Seconds that an oracle value is considered valid function oracleTimeout() external view returns (uint48); /// @return {s} The maximum of all oracle timeouts on the plugin function maxOracleTimeout() external view returns (uint48); /// @return {s} Seconds that the price() should decay over, after stale price function priceTimeout() external view returns (uint48); /// @return {UoA/tok} The last saved low price function savedLowPrice() external view returns (uint192); /// @return {UoA/tok} The last saved high price function savedHighPrice() external view returns (uint192); } /// CollateralStatus must obey a linear ordering. That is: /// - being DISABLED is worse than being IFFY, or SOUND /// - being IFFY is worse than being SOUND. enum CollateralStatus { SOUND, IFFY, // When a peg is not holding or a chainlink feed is stale DISABLED // When the collateral has completely defaulted } /// Upgrade-safe maximum operator for CollateralStatus library CollateralStatusComparator { /// @return Whether a is worse than b function worseThan(CollateralStatus a, CollateralStatus b) internal pure returns (bool) { return uint256(a) > uint256(b); } } /** * @title ICollateral * @notice A subtype of Asset that consists of the tokens eligible to back the RToken. */ interface ICollateral is IAsset { /// Emitted whenever the collateral status is changed /// @param newStatus The old CollateralStatus /// @param newStatus The updated CollateralStatus event CollateralStatusChanged( CollateralStatus indexed oldStatus, CollateralStatus indexed newStatus ); /// @dev refresh() /// Refresh exchange rates and update default status. /// VERY IMPORTANT: In any valid implemntation, status() MUST become DISABLED in refresh() if /// refPerTok() has ever decreased since last call. /// @return The canonical name of this collateral's target unit. function targetName() external view returns (bytes32); /// @return The status of this collateral asset. (Is it defaulting? Might it soon?) function status() external view returns (CollateralStatus); // ==== Exchange Rates ==== /// @return {ref/tok} Quantity of whole reference units per whole collateral tokens function refPerTok() external view returns (uint192); /// @return {target/ref} Quantity of whole target units per whole reference unit in the peg function targetPerRef() external view returns (uint192); } // Used only in Testing. Strictly speaking a Collateral does not need to adhere to this interface interface TestICollateral is TestIAsset, ICollateral { /// @return The epoch timestamp when the collateral will default from IFFY to DISABLED function whenDefault() external view returns (uint256); /// @return The amount of time a collateral must be in IFFY status until being DISABLED function delayUntilDefault() external view returns (uint48); /// @return The underlying refPerTok, likely not included in all collaterals however. function underlyingRefPerTok() external view returns (uint192); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./IAsset.sol"; import "./IComponent.sol"; /// A serialization of the AssetRegistry to be passed around in the P1 impl for gas optimization struct Registry { IERC20[] erc20s; IAsset[] assets; } /** * @title IAssetRegistry * @notice The AssetRegistry is in charge of maintaining the ERC20 tokens eligible * to be handled by the rest of the system. If an asset is in the registry, this means: * 1. Its ERC20 contract has been vetted * 2. The asset is the only asset for that ERC20 * 3. The asset can be priced in the UoA, usually via an oracle */ interface IAssetRegistry is IComponent { /// Emitted when an asset is added to the registry /// @param erc20 The ERC20 contract for the asset /// @param asset The asset contract added to the registry event AssetRegistered(IERC20 indexed erc20, IAsset indexed asset); /// Emitted when an asset is removed from the registry /// @param erc20 The ERC20 contract for the asset /// @param asset The asset contract removed from the registry event AssetUnregistered(IERC20 indexed erc20, IAsset indexed asset); // Initialization function init(IMain main_, IAsset[] memory assets_) external; /// Fully refresh all asset state /// @custom:refresher function refresh() external; /// Register `asset` /// If either the erc20 address or the asset was already registered, fail /// @return true if the erc20 address was not already registered. /// @custom:governance function register(IAsset asset) external returns (bool); /// Register `asset` if and only if its erc20 address is already registered. /// If the erc20 address was not registered, revert. /// @return swapped If the asset was swapped for a previously-registered asset /// @custom:governance function swapRegistered(IAsset asset) external returns (bool swapped); /// Unregister an asset, requiring that it is already registered /// @custom:governance function unregister(IAsset asset) external; /// @return {s} The timestamp of the last refresh function lastRefresh() external view returns (uint48); /// @return The corresponding asset for ERC20, or reverts if not registered function toAsset(IERC20 erc20) external view returns (IAsset); /// @return The corresponding collateral, or reverts if unregistered or not collateral function toColl(IERC20 erc20) external view returns (ICollateral); /// @return If the ERC20 is registered function isRegistered(IERC20 erc20) external view returns (bool); /// @return A list of all registered ERC20s function erc20s() external view returns (IERC20[] memory); /// @return reg The list of registered ERC20s and Assets, in the same order function getRegistry() external view returns (Registry memory reg); /// @return The number of registered ERC20s function size() external view returns (uint256); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./IAssetRegistry.sol"; import "./IBasketHandler.sol"; import "./IComponent.sol"; import "./IRToken.sol"; import "./IStRSR.sol"; import "./ITrading.sol"; /// Memory struct for RecollateralizationLibP1 + RTokenAsset /// Struct purposes: /// 1. Configure trading /// 2. Stay under stack limit with fewer vars /// 3. Cache information such as component addresses and basket quantities, to save on gas struct TradingContext { BasketRange basketsHeld; // {BU} // basketsHeld.top is the number of partial baskets units held // basketsHeld.bottom is the number of full basket units held // Components IBasketHandler bh; IAssetRegistry ar; IStRSR stRSR; IERC20 rsr; IRToken rToken; // Gov Vars uint192 minTradeVolume; // {UoA} uint192 maxTradeSlippage; // {1} // Cached values uint192[] quantities; // {tok/BU} basket quantities uint192[] bals; // {tok} balances in BackingManager + out on trades } /** * @title IBackingManager * @notice The BackingManager handles changes in the ERC20 balances that back an RToken. * - It computes which trades to perform, if any, and initiates these trades with the Broker. * - rebalance() * - If already collateralized, excess assets are transferred to RevenueTraders. * - forwardRevenue(IERC20[] calldata erc20s) */ interface IBackingManager is IComponent, ITrading { /// Emitted when the trading delay is changed /// @param oldVal The old trading delay /// @param newVal The new trading delay event TradingDelaySet(uint48 oldVal, uint48 newVal); /// Emitted when the backing buffer is changed /// @param oldVal The old backing buffer /// @param newVal The new backing buffer event BackingBufferSet(uint192 oldVal, uint192 newVal); // Initialization function init( IMain main_, uint48 tradingDelay_, uint192 backingBuffer_, uint192 maxTradeSlippage_, uint192 minTradeVolume_ ) external; // Give RToken max allowance over a registered token /// @custom:refresher /// @custom:interaction function grantRTokenAllowance(IERC20) external; /// Apply the overall backing policy using the specified TradeKind, taking a haircut if unable /// @param kind TradeKind.DUTCH_AUCTION or TradeKind.BATCH_AUCTION /// @custom:interaction RCEI function rebalance(TradeKind kind) external; /// Forward revenue to RevenueTraders; reverts if not fully collateralized /// @param erc20s The tokens to forward /// @custom:interaction RCEI function forwardRevenue(IERC20[] calldata erc20s) external; /// Structs for trading /// @param basketsHeld The number of baskets held by the BackingManager /// @return ctx The TradingContext /// @return reg Contents of AssetRegistry.getRegistry() function tradingContext(BasketRange memory basketsHeld) external view returns (TradingContext memory ctx, Registry memory reg); } interface TestIBackingManager is IBackingManager, TestITrading { function tradingDelay() external view returns (uint48); function backingBuffer() external view returns (uint192); function setTradingDelay(uint48 val) external; function setBackingBuffer(uint192 val) external; }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../libraries/Fixed.sol"; import "./IAsset.sol"; import "./IComponent.sol"; struct BasketRange { uint192 bottom; // {BU} uint192 top; // {BU} } /** * @title IBasketHandler * @notice The BasketHandler aims to maintain a reference basket of constant target unit amounts. * When a collateral token defaults, a new reference basket of equal target units is set. * When _all_ collateral tokens default for a target unit, only then is the basket allowed to fall * in terms of target unit amounts. The basket is considered defaulted in this case. */ interface IBasketHandler is IComponent { /// Emitted when the prime basket is set /// @param erc20s The collateral tokens for the prime basket /// @param targetAmts {target/BU} A list of quantities of target unit per basket unit /// @param targetNames Each collateral token's targetName event PrimeBasketSet(IERC20[] erc20s, uint192[] targetAmts, bytes32[] targetNames); /// Emitted when the reference basket is set /// @param nonce {basketNonce} The basket nonce /// @param erc20s The list of collateral tokens in the reference basket /// @param refAmts {ref/BU} The reference amounts of the basket collateral tokens /// @param disabled True when the list of erc20s + refAmts may not be correct event BasketSet(uint256 indexed nonce, IERC20[] erc20s, uint192[] refAmts, bool disabled); /// Emitted when a backup config is set for a target unit /// @param targetName The name of the target unit as a bytes32 /// @param max The max number to use from `erc20s` /// @param erc20s The set of backup collateral tokens event BackupConfigSet(bytes32 indexed targetName, uint256 max, IERC20[] erc20s); /// Emitted when the warmup period is changed /// @param oldVal The old warmup period /// @param newVal The new warmup period event WarmupPeriodSet(uint48 oldVal, uint48 newVal); /// Emitted when the status of a basket has changed /// @param oldStatus The previous basket status /// @param newStatus The new basket status event BasketStatusChanged(CollateralStatus oldStatus, CollateralStatus newStatus); /// Emitted when the last basket nonce available for redemption is changed /// @param oldVal The old value of lastCollateralized /// @param newVal The new value of lastCollateralized event LastCollateralizedChanged(uint48 oldVal, uint48 newVal); // Initialization function init( IMain main_, uint48 warmupPeriod_, bool reweightable_ ) external; /// Set the prime basket /// For an index RToken (reweightable = true), use forceSetPrimeBasket to skip normalization /// @param erc20s The collateral tokens for the new prime basket /// @param targetAmts The target amounts (in) {target/BU} for the new prime basket /// required range: 1e9 values; absolute range irrelevant. /// @custom:governance function setPrimeBasket(IERC20[] calldata erc20s, uint192[] calldata targetAmts) external; /// Set the prime basket without normalizing targetAmts by the UoA of the current basket /// Works the same as setPrimeBasket for non-index RTokens (reweightable = false) /// @param erc20s The collateral tokens for the new prime basket /// @param targetAmts The target amounts (in) {target/BU} for the new prime basket /// required range: 1e9 values; absolute range irrelevant. /// @custom:governance function forceSetPrimeBasket(IERC20[] calldata erc20s, uint192[] calldata targetAmts) external; /// Set the backup configuration for a given target /// @param targetName The name of the target as a bytes32 /// @param max The maximum number of collateral tokens to use from this target /// Required range: 1-255 /// @param erc20s A list of ordered backup collateral tokens /// @custom:governance function setBackupConfig( bytes32 targetName, uint256 max, IERC20[] calldata erc20s ) external; /// Default the basket in order to schedule a basket refresh /// @custom:protected function disableBasket() external; /// Governance-controlled setter to cause a basket switch explicitly /// @custom:governance /// @custom:interaction function refreshBasket() external; /// Track basket status and collateralization changes /// @custom:refresher function trackStatus() external; /// @return If the BackingManager has sufficient collateral to redeem the entire RToken supply function fullyCollateralized() external view returns (bool); /// @return status The worst CollateralStatus of all collateral in the basket function status() external view returns (CollateralStatus status); /// @return If the basket is ready to issue and trade function isReady() external view returns (bool); /// @param erc20 The ERC20 token contract for the asset /// @return {tok/BU} The whole token quantity of token in the reference basket /// Returns 0 if erc20 is not registered or not in the basket /// Returns FIX_MAX (in lieu of +infinity) if Collateral.refPerTok() is 0. /// Otherwise, returns (token's basket.refAmts / token's Collateral.refPerTok()) function quantity(IERC20 erc20) external view returns (uint192); /// Like quantity(), but unsafe because it DOES NOT CONFIRM THAT THE ASSET IS CORRECT /// @param erc20 The ERC20 token contract for the asset /// @param asset The registered asset plugin contract for the erc20 /// @return {tok/BU} The whole token quantity of token in the reference basket /// Returns 0 if erc20 is not registered or not in the basket /// Returns FIX_MAX (in lieu of +infinity) if Collateral.refPerTok() is 0. /// Otherwise, returns (token's basket.refAmts / token's Collateral.refPerTok()) function quantityUnsafe(IERC20 erc20, IAsset asset) external view returns (uint192); /// @param amount {BU} /// @return erc20s The addresses of the ERC20 tokens in the reference basket /// @return quantities {qTok} The quantity of each ERC20 token to issue `amount` baskets function quote(uint192 amount, RoundingMode rounding) external view returns (address[] memory erc20s, uint256[] memory quantities); /// Return the redemption value of `amount` BUs for a linear combination of historical baskets /// @param basketNonces An array of basket nonces to do redemption from /// @param portions {1} An array of Fix quantities that must add up to FIX_ONE /// @param amount {BU} /// @return erc20s The backing collateral erc20s /// @return quantities {qTok} ERC20 token quantities equal to `amount` BUs function quoteCustomRedemption( uint48[] memory basketNonces, uint192[] memory portions, uint192 amount ) external view returns (address[] memory erc20s, uint256[] memory quantities); /// @return top {BU} The number of partial basket units: e.g max(coll.map((c) => c.balAsBUs()) /// bottom {BU} The number of whole basket units held by the account function basketsHeldBy(address account) external view returns (BasketRange memory); /// Should not revert /// low should be nonzero when BUs are worth selling /// @return low {UoA/BU} The lower end of the price estimate /// @return high {UoA/BU} The upper end of the price estimate function price() external view returns (uint192 low, uint192 high); /// Should not revert /// lotLow should be nonzero if a BU could be worth selling /// @dev Deprecated. Phased out in 3.1.0, but left on interface for backwards compatibility /// @return lotLow {UoA/tok} The lower end of the lot price estimate /// @return lotHigh {UoA/tok} The upper end of the lot price estimate function lotPrice() external view returns (uint192 lotLow, uint192 lotHigh); /// @return timestamp The timestamp at which the basket was last set function timestamp() external view returns (uint48); /// @return The current basket nonce, regardless of status function nonce() external view returns (uint48); } interface TestIBasketHandler is IBasketHandler { function lastCollateralized() external view returns (uint48); function warmupPeriod() external view returns (uint48); function setWarmupPeriod(uint48 val) external; }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IAsset.sol"; import "./IComponent.sol"; import "./IGnosis.sol"; import "./ITrade.sol"; enum TradeKind { DUTCH_AUCTION, BATCH_AUCTION } /// Cache of all prices for a pair to prevent re-lookup struct TradePrices { uint192 sellLow; // {UoA/sellTok} can be 0 uint192 sellHigh; // {UoA/sellTok} should not be 0 uint192 buyLow; // {UoA/buyTok} should not be 0 uint192 buyHigh; // {UoA/buyTok} should not be 0 or FIX_MAX } /// The data format that describes a request for trade with the Broker struct TradeRequest { IAsset sell; IAsset buy; uint256 sellAmount; // {qSellTok} uint256 minBuyAmount; // {qBuyTok} } /** * @title IBroker * @notice The Broker deploys oneshot Trade contracts for Traders and monitors * the continued proper functioning of trading platforms. */ interface IBroker is IComponent { event GnosisSet(IGnosis oldVal, IGnosis newVal); event BatchTradeImplementationSet(ITrade oldVal, ITrade newVal); event DutchTradeImplementationSet(ITrade oldVal, ITrade newVal); event BatchAuctionLengthSet(uint48 oldVal, uint48 newVal); event DutchAuctionLengthSet(uint48 oldVal, uint48 newVal); event BatchTradeDisabledSet(bool prevVal, bool newVal); event DutchTradeDisabledSet(IERC20Metadata indexed erc20, bool prevVal, bool newVal); // Initialization function init( IMain main_, IGnosis gnosis_, ITrade batchTradeImplemention_, uint48 batchAuctionLength_, ITrade dutchTradeImplemention_, uint48 dutchAuctionLength_ ) external; /// Request a trade from the broker /// @dev Requires setting an allowance in advance /// @custom:interaction function openTrade( TradeKind kind, TradeRequest memory req, TradePrices memory prices ) external returns (ITrade); /// Only callable by one of the trading contracts the broker deploys function reportViolation() external; function batchTradeDisabled() external view returns (bool); function dutchTradeDisabled(IERC20Metadata erc20) external view returns (bool); } interface TestIBroker is IBroker { function gnosis() external view returns (IGnosis); function batchTradeImplementation() external view returns (ITrade); function dutchTradeImplementation() external view returns (ITrade); function batchAuctionLength() external view returns (uint48); function dutchAuctionLength() external view returns (uint48); function setGnosis(IGnosis newGnosis) external; function setBatchTradeImplementation(ITrade newTradeImplementation) external; function setBatchAuctionLength(uint48 newAuctionLength) external; function setDutchTradeImplementation(ITrade newTradeImplementation) external; function setDutchAuctionLength(uint48 newAuctionLength) external; function enableBatchTrade() external; function enableDutchTrade(IERC20Metadata erc20) external; // only present on pre-3.0.0 Brokers; used by EasyAuction regression test function disabled() external view returns (bool); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "./IMain.sol"; import "./IVersioned.sol"; /** * @title IComponent * @notice A Component is the central building block of all our system contracts. Components * contain important state that must be migrated during upgrades, and they delegate * their ownership to Main's owner. */ interface IComponent is IVersioned { function main() external view returns (IMain); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./IComponent.sol"; uint256 constant MAX_DISTRIBUTION = 1e4; // 10,000 uint8 constant MAX_DESTINATIONS = 100; // maximum number of RevenueShare destinations struct RevenueShare { uint16 rTokenDist; // {revShare} A value between [0, 10,000] uint16 rsrDist; // {revShare} A value between [0, 10,000] } /// Assumes no more than 100 independent distributions. struct RevenueTotals { uint24 rTokenTotal; // {revShare} uint24 rsrTotal; // {revShare} } /** * @title IDistributor * @notice The Distributor Component maintains a revenue distribution table that dictates * how to divide revenue across the Furnace, StRSR, and any other destinations. */ interface IDistributor is IComponent { /// Emitted when a distribution is set /// @param dest The address set to receive the distribution /// @param rTokenDist The distribution of RToken that should go to `dest` /// @param rsrDist The distribution of RSR that should go to `dest` event DistributionSet(address indexed dest, uint16 rTokenDist, uint16 rsrDist); /// Emitted when revenue is distributed /// @param erc20 The token being distributed, either RSR or the RToken itself /// @param source The address providing the revenue /// @param amount The amount of the revenue event RevenueDistributed(IERC20 indexed erc20, address indexed source, uint256 amount); // Initialization function init(IMain main_, RevenueShare memory dist) external; /// @custom:governance function setDistribution(address dest, RevenueShare memory share) external; /// Distribute the `erc20` token across all revenue destinations /// Only callable by RevenueTraders /// @custom:protected function distribute(IERC20 erc20, uint256 amount) external; /// @return revTotals The total of all destinations function totals() external view returns (RevenueTotals memory revTotals); } interface TestIDistributor is IDistributor { // solhint-disable-next-line func-name-mixedcase function FURNACE() external view returns (address); // solhint-disable-next-line func-name-mixedcase function ST_RSR() external view returns (address); /// @return rTokenDist The RToken distribution for the address /// @return rsrDist The RSR distribution for the address function distribution(address) external view returns (uint16 rTokenDist, uint16 rsrDist); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "../libraries/Fixed.sol"; import "./IComponent.sol"; /** * @title IFurnace * @notice A helper contract to burn RTokens slowly and permisionlessly. */ interface IFurnace is IComponent { // Initialization function init(IMain main_, uint192 ratio_) external; /// Emitted when the melting ratio is changed /// @param oldRatio The old ratio /// @param newRatio The new ratio event RatioSet(uint192 oldRatio, uint192 newRatio); function ratio() external view returns (uint192); /// Needed value range: [0, 1], granularity 1e-9 /// @custom:governance function setRatio(uint192) external; /// Performs any RToken melting that has vested since the last payout. /// @custom:refresher function melt() external; } interface TestIFurnace is IFurnace { function lastPayout() external view returns (uint256); function lastPayoutBal() external view returns (uint256); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; struct GnosisAuctionData { IERC20 auctioningToken; IERC20 biddingToken; uint256 orderCancellationEndDate; uint256 auctionEndDate; bytes32 initialAuctionOrder; uint256 minimumBiddingAmountPerOrder; uint256 interimSumBidAmount; bytes32 interimOrder; bytes32 clearingPriceOrder; uint96 volumeClearingPriceOrder; bool minFundingThresholdNotReached; bool isAtomicClosureAllowed; uint256 feeNumerator; uint256 minFundingThreshold; } /// The relevant portion of the interface of the live Gnosis EasyAuction contract /// https://github.com/gnosis/ido-contracts/blob/main/contracts/EasyAuction.sol interface IGnosis { function initiateAuction( IERC20 auctioningToken, IERC20 biddingToken, uint256 orderCancellationEndDate, uint256 auctionEndDate, uint96 auctionedSellAmount, uint96 minBuyAmount, uint256 minimumBiddingAmountPerOrder, uint256 minFundingThreshold, bool isAtomicClosureAllowed, address accessManagerContract, bytes memory accessManagerContractData ) external returns (uint256 auctionId); function auctionData(uint256 auctionId) external view returns (GnosisAuctionData memory); /// @param auctionId The external auction id /// @dev See here for decoding: https://git.io/JMang /// @return encodedOrder The order, encoded in a bytes 32 function settleAuction(uint256 auctionId) external returns (bytes32 encodedOrder); /// @return The numerator over a 1000-valued denominator function feeNumerator() external returns (uint256); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts-upgradeable/access/IAccessControlUpgradeable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./IAssetRegistry.sol"; import "./IBasketHandler.sol"; import "./IBackingManager.sol"; import "./IBroker.sol"; import "./IDistributor.sol"; import "./IFurnace.sol"; import "./IGnosis.sol"; import "./IRToken.sol"; import "./IRevenueTrader.sol"; import "./IStRSR.sol"; import "./ITrading.sol"; import "./IVersioned.sol"; // === Auth roles === bytes32 constant OWNER = bytes32(bytes("OWNER")); bytes32 constant SHORT_FREEZER = bytes32(bytes("SHORT_FREEZER")); bytes32 constant LONG_FREEZER = bytes32(bytes("LONG_FREEZER")); bytes32 constant PAUSER = bytes32(bytes("PAUSER")); /** * Main is a central hub that maintains a list of Component contracts. * * Components: * - perform a specific function * - defer auth to Main * - usually (but not always) contain sizeable state that require a proxy */ struct Components { // Definitely need proxy IRToken rToken; IStRSR stRSR; IAssetRegistry assetRegistry; IBasketHandler basketHandler; IBackingManager backingManager; IDistributor distributor; IFurnace furnace; IBroker broker; IRevenueTrader rsrTrader; IRevenueTrader rTokenTrader; } interface IAuth is IAccessControlUpgradeable { /// Emitted when `unfreezeAt` is changed /// @param oldVal The old value of `unfreezeAt` /// @param newVal The new value of `unfreezeAt` event UnfreezeAtSet(uint48 oldVal, uint48 newVal); /// Emitted when the short freeze duration governance param is changed /// @param oldDuration The old short freeze duration /// @param newDuration The new short freeze duration event ShortFreezeDurationSet(uint48 oldDuration, uint48 newDuration); /// Emitted when the long freeze duration governance param is changed /// @param oldDuration The old long freeze duration /// @param newDuration The new long freeze duration event LongFreezeDurationSet(uint48 oldDuration, uint48 newDuration); /// Emitted when the system is paused or unpaused for trading /// @param oldVal The old value of `tradingPaused` /// @param newVal The new value of `tradingPaused` event TradingPausedSet(bool oldVal, bool newVal); /// Emitted when the system is paused or unpaused for issuance /// @param oldVal The old value of `issuancePaused` /// @param newVal The new value of `issuancePaused` event IssuancePausedSet(bool oldVal, bool newVal); /** * Trading Paused: Disable everything except for OWNER actions, RToken.issue, RToken.redeem, * StRSR.stake, and StRSR.payoutRewards * Issuance Paused: Disable RToken.issue * Frozen: Disable everything except for OWNER actions + StRSR.stake (for governance) */ function tradingPausedOrFrozen() external view returns (bool); function issuancePausedOrFrozen() external view returns (bool); function frozen() external view returns (bool); function shortFreeze() external view returns (uint48); function longFreeze() external view returns (uint48); // ==== // onlyRole(OWNER) function freezeForever() external; // onlyRole(SHORT_FREEZER) function freezeShort() external; // onlyRole(LONG_FREEZER) function freezeLong() external; // onlyRole(OWNER) function unfreeze() external; function pauseTrading() external; function unpauseTrading() external; function pauseIssuance() external; function unpauseIssuance() external; } interface IComponentRegistry { // === Component setters/getters === event RTokenSet(IRToken indexed oldVal, IRToken indexed newVal); function rToken() external view returns (IRToken); event StRSRSet(IStRSR oldVal, IStRSR newVal); function stRSR() external view returns (IStRSR); event AssetRegistrySet(IAssetRegistry oldVal, IAssetRegistry newVal); function assetRegistry() external view returns (IAssetRegistry); event BasketHandlerSet(IBasketHandler oldVal, IBasketHandler newVal); function basketHandler() external view returns (IBasketHandler); event BackingManagerSet(IBackingManager oldVal, IBackingManager newVal); function backingManager() external view returns (IBackingManager); event DistributorSet(IDistributor oldVal, IDistributor newVal); function distributor() external view returns (IDistributor); event RSRTraderSet(IRevenueTrader oldVal, IRevenueTrader newVal); function rsrTrader() external view returns (IRevenueTrader); event RTokenTraderSet(IRevenueTrader oldVal, IRevenueTrader newVal); function rTokenTrader() external view returns (IRevenueTrader); event FurnaceSet(IFurnace oldVal, IFurnace newVal); function furnace() external view returns (IFurnace); event BrokerSet(IBroker oldVal, IBroker newVal); function broker() external view returns (IBroker); } /** * @title IMain * @notice The central hub for the entire system. Maintains components and an owner singleton role */ interface IMain is IVersioned, IAuth, IComponentRegistry { function poke() external; // not used in p1 // === Initialization === event MainInitialized(); function init( Components memory components, IERC20 rsr_, uint48 shortFreeze_, uint48 longFreeze_ ) external; function rsr() external view returns (IERC20); } interface TestIMain is IMain { /// @custom:governance function setShortFreeze(uint48) external; /// @custom:governance function setLongFreeze(uint48) external; function shortFreeze() external view returns (uint48); function longFreeze() external view returns (uint48); function longFreezes(address account) external view returns (uint256); function tradingPaused() external view returns (bool); function issuancePaused() external view returns (bool); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "./IComponent.sol"; import "./ITrading.sol"; /** * @title IRevenueTrader * @notice The RevenueTrader is an extension of the trading mixin that trades all * assets at its address for a single target asset. There are two runtime instances * of the RevenueTrader, 1 for RToken and 1 for RSR. */ interface IRevenueTrader is IComponent, ITrading { // Initialization function init( IMain main_, IERC20 tokenToBuy_, uint192 maxTradeSlippage_, uint192 minTradeVolume_ ) external; /// Distribute tokenToBuy to its destinations /// @dev Special-case of manageTokens() /// @custom:interaction function distributeTokenToBuy() external; /// Return registered ERC20s to the BackingManager if distribution for tokenToBuy is 0 /// @custom:interaction function returnTokens(IERC20[] memory erc20s) external; /// Process some number of tokens /// If the tokenToBuy is included in erc20s, RevenueTrader will distribute it at end of the tx /// @param erc20s The ERC20s to manage; can be tokenToBuy or anything registered /// @param kinds The kinds of auctions to launch: DUTCH_AUCTION | BATCH_AUCTION /// @custom:interaction function manageTokens(IERC20[] memory erc20s, TradeKind[] memory kinds) external; function tokenToBuy() external view returns (IERC20); } // solhint-disable-next-line no-empty-blocks interface TestIRevenueTrader is IRevenueTrader, TestITrading { }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title IRewardable * @notice A simple interface mixin to support claiming of rewards. */ interface IRewardable { /// Emitted whenever a reward token balance is claimed /// @param erc20 The ERC20 of the reward token /// @param amount {qTok} event RewardsClaimed(IERC20 indexed erc20, uint256 amount); /// Claim rewards earned by holding a balance of the ERC20 token /// Must emit `RewardsClaimed` for each token rewards are claimed for /// @custom:interaction function claimRewards() external; } /** * @title IRewardableComponent * @notice A simple interface mixin to support claiming of rewards. */ interface IRewardableComponent is IRewardable { /// Claim rewards for a single ERC20 /// Must emit `RewardsClaimed` for each token rewards are claimed for /// @custom:interaction function claimRewardsSingle(IERC20 erc20) external; }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol"; // solhint-disable-next-line max-line-length import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-IERC20PermitUpgradeable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../libraries/Fixed.sol"; import "../libraries/Throttle.sol"; import "./IComponent.sol"; /** * @title IRToken * @notice An RToken is an ERC20 that is permissionlessly issuable/redeemable and tracks an * exchange rate against a single unit: baskets, or {BU} in our type notation. */ interface IRToken is IComponent, IERC20MetadataUpgradeable, IERC20PermitUpgradeable { /// Emitted when an issuance of RToken occurs, whether it occurs via slow minting or not /// @param issuer The address holding collateral tokens /// @param recipient The address of the recipient of the RTokens /// @param amount The quantity of RToken being issued /// @param baskets The corresponding number of baskets event Issuance( address indexed issuer, address indexed recipient, uint256 amount, uint192 baskets ); /// Emitted when a redemption of RToken occurs /// @param redeemer The address holding RToken /// @param recipient The address of the account receiving the backing collateral tokens /// @param amount The quantity of RToken being redeemed /// @param baskets The corresponding number of baskets /// @param amount {qRTok} The amount of RTokens canceled event Redemption( address indexed redeemer, address indexed recipient, uint256 amount, uint192 baskets ); /// Emitted when the number of baskets needed changes /// @param oldBasketsNeeded Previous number of baskets units needed /// @param newBasketsNeeded New number of basket units needed event BasketsNeededChanged(uint192 oldBasketsNeeded, uint192 newBasketsNeeded); /// Emitted when RToken is melted, i.e the RToken supply is decreased but basketsNeeded is not /// @param amount {qRTok} event Melted(uint256 amount); /// Emitted when issuance SupplyThrottle params are set event IssuanceThrottleSet(ThrottleLib.Params oldVal, ThrottleLib.Params newVal); /// Emitted when redemption SupplyThrottle params are set event RedemptionThrottleSet(ThrottleLib.Params oldVal, ThrottleLib.Params newVal); // Initialization function init( IMain main_, string memory name_, string memory symbol_, string memory mandate_, ThrottleLib.Params calldata issuanceThrottleParams, ThrottleLib.Params calldata redemptionThrottleParams ) external; /// Issue an RToken with basket collateral /// @param amount {qRTok} The quantity of RToken to issue /// @custom:interaction function issue(uint256 amount) external; /// Issue an RToken with basket collateral, to a particular recipient /// @param recipient The address to receive the issued RTokens /// @param amount {qRTok} The quantity of RToken to issue /// @custom:interaction function issueTo(address recipient, uint256 amount) external; /// Redeem RToken for basket collateral /// @dev Use redeemCustom for non-current baskets /// @param amount {qRTok} The quantity {qRToken} of RToken to redeem /// @custom:interaction function redeem(uint256 amount) external; /// Redeem RToken for basket collateral to a particular recipient /// @dev Use redeemCustom for non-current baskets /// @param recipient The address to receive the backing collateral tokens /// @param amount {qRTok} The quantity {qRToken} of RToken to redeem /// @custom:interaction function redeemTo(address recipient, uint256 amount) external; /// Redeem RToken for a linear combination of historical baskets, to a particular recipient /// @dev Allows partial redemptions up to the minAmounts /// @param recipient The address to receive the backing collateral tokens /// @param amount {qRTok} The quantity {qRToken} of RToken to redeem /// @param basketNonces An array of basket nonces to do redemption from /// @param portions {1} An array of Fix quantities that must add up to FIX_ONE /// @param expectedERC20sOut An array of ERC20s expected out /// @param minAmounts {qTok} The minimum ERC20 quantities the caller should receive /// @custom:interaction function redeemCustom( address recipient, uint256 amount, uint48[] memory basketNonces, uint192[] memory portions, address[] memory expectedERC20sOut, uint256[] memory minAmounts ) external; /// Mint an amount of RToken equivalent to baskets BUs, scaling basketsNeeded up /// Callable only by BackingManager /// @param baskets {BU} The number of baskets to mint RToken for /// @custom:protected function mint(uint192 baskets) external; /// Melt a quantity of RToken from the caller's account /// @param amount {qRTok} The amount to be melted /// @custom:protected function melt(uint256 amount) external; /// Burn an amount of RToken from caller's account and scale basketsNeeded down /// Callable only by BackingManager /// @custom:protected function dissolve(uint256 amount) external; /// Set the number of baskets needed directly, callable only by the BackingManager /// @param basketsNeeded {BU} The number of baskets to target /// needed range: pretty interesting /// @custom:protected function setBasketsNeeded(uint192 basketsNeeded) external; /// @return {BU} How many baskets are being targeted function basketsNeeded() external view returns (uint192); /// @return {qRTok} The maximum issuance that can be performed in the current block function issuanceAvailable() external view returns (uint256); /// @return {qRTok} The maximum redemption that can be performed in the current block function redemptionAvailable() external view returns (uint256); } interface TestIRToken is IRToken { function setIssuanceThrottleParams(ThrottleLib.Params calldata) external; function setRedemptionThrottleParams(ThrottleLib.Params calldata) external; function issuanceThrottleParams() external view returns (ThrottleLib.Params memory); function redemptionThrottleParams() external view returns (ThrottleLib.Params memory); function increaseAllowance(address, uint256) external returns (bool); function decreaseAllowance(address, uint256) external returns (bool); function monetizeDonations(IERC20) external; }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol"; // solhint-disable-next-line max-line-length import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-IERC20PermitUpgradeable.sol"; import "../libraries/Fixed.sol"; import "./IComponent.sol"; /** * @title IStRSR * @notice An ERC20 token representing shares of the RSR over-collateralization pool. * * StRSR permits the BackingManager to take RSR in times of need. In return, the BackingManager * benefits the StRSR pool with RSR rewards purchased with a portion of its revenue. * * In the absence of collateral default or losses due to slippage, StRSR should have a * monotonically increasing exchange rate with respect to RSR, meaning that over time * StRSR is redeemable for more RSR. It is non-rebasing. */ interface IStRSR is IERC20MetadataUpgradeable, IERC20PermitUpgradeable, IComponent { /// Emitted when RSR is staked /// @param era The era at time of staking /// @param staker The address of the staker /// @param rsrAmount {qRSR} How much RSR was staked /// @param stRSRAmount {qStRSR} How much stRSR was minted by this staking event Staked( uint256 indexed era, address indexed staker, uint256 rsrAmount, uint256 stRSRAmount ); /// Emitted when an unstaking is started /// @param draftId The id of the draft. /// @param draftEra The era of the draft. /// @param staker The address of the unstaker /// The triple (staker, draftEra, draftId) is a unique ID /// @param rsrAmount {qRSR} How much RSR this unstaking will be worth, absent seizures /// @param stRSRAmount {qStRSR} How much stRSR was burned by this unstaking event UnstakingStarted( uint256 indexed draftId, uint256 indexed draftEra, address indexed staker, uint256 rsrAmount, uint256 stRSRAmount, uint256 availableAt ); /// Emitted when RSR is unstaked /// @param firstId The beginning of the range of draft IDs withdrawn in this transaction /// @param endId The end of range of draft IDs withdrawn in this transaction /// (ID i was withdrawn if firstId <= i < endId) /// @param draftEra The era of the draft. /// The triple (staker, draftEra, id) is a unique ID among drafts /// @param staker The address of the unstaker /// @param rsrAmount {qRSR} How much RSR this unstaking was worth event UnstakingCompleted( uint256 indexed firstId, uint256 indexed endId, uint256 draftEra, address indexed staker, uint256 rsrAmount ); /// Emitted when RSR unstaking is cancelled /// @param firstId The beginning of the range of draft IDs withdrawn in this transaction /// @param endId The end of range of draft IDs withdrawn in this transaction /// (ID i was withdrawn if firstId <= i < endId) /// @param draftEra The era of the draft. /// The triple (staker, draftEra, id) is a unique ID among drafts /// @param staker The address of the unstaker /// @param rsrAmount {qRSR} How much RSR this unstaking was worth event UnstakingCancelled( uint256 indexed firstId, uint256 indexed endId, uint256 draftEra, address indexed staker, uint256 rsrAmount ); /// Emitted whenever the exchange rate changes event ExchangeRateSet(uint192 oldVal, uint192 newVal); /// Emitted whenever RSR are paids out event RewardsPaid(uint256 rsrAmt); /// Emitted if all the RSR in the staking pool is seized and all balances are reset to zero. event AllBalancesReset(uint256 indexed newEra); /// Emitted if all the RSR in the unstakin pool is seized, and all ongoing unstaking is voided. event AllUnstakingReset(uint256 indexed newEra); event UnstakingDelaySet(uint48 oldVal, uint48 newVal); event RewardRatioSet(uint192 oldVal, uint192 newVal); event WithdrawalLeakSet(uint192 oldVal, uint192 newVal); // Initialization function init( IMain main_, string memory name_, string memory symbol_, uint48 unstakingDelay_, uint192 rewardRatio_, uint192 withdrawalLeak_ ) external; /// Gather and payout rewards from rsrTrader /// @custom:interaction function payoutRewards() external; /// Stakes an RSR `amount` on the corresponding RToken to earn yield and over-collateralized /// the system /// @param amount {qRSR} /// @custom:interaction function stake(uint256 amount) external; /// Begins a delayed unstaking for `amount` stRSR /// @param amount {qStRSR} /// @custom:interaction function unstake(uint256 amount) external; /// Complete delayed unstaking for the account, up to (but not including!) `endId` /// @custom:interaction function withdraw(address account, uint256 endId) external; /// Cancel unstaking for the account, up to (but not including!) `endId` /// @custom:interaction function cancelUnstake(uint256 endId) external; /// Seize RSR, only callable by main.backingManager() /// @custom:protected function seizeRSR(uint256 amount) external; /// Reset all stakes and advance era /// @custom:governance function resetStakes() external; /// Return the maximum valid value of endId such that withdraw(endId) should immediately work function endIdForWithdraw(address account) external view returns (uint256 endId); /// @return {qRSR/qStRSR} The exchange rate between RSR and StRSR function exchangeRate() external view returns (uint192); } interface TestIStRSR is IStRSR { function rewardRatio() external view returns (uint192); function setRewardRatio(uint192) external; function unstakingDelay() external view returns (uint48); function setUnstakingDelay(uint48) external; function withdrawalLeak() external view returns (uint192); function setWithdrawalLeak(uint192) external; function increaseAllowance(address, uint256) external returns (bool); function decreaseAllowance(address, uint256) external returns (bool); /// @return {qStRSR/qRSR} The exchange rate between StRSR and RSR function exchangeRate() external view returns (uint192); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IBroker.sol"; import "./IVersioned.sol"; enum TradeStatus { NOT_STARTED, // before init() OPEN, // after init() and before settle() CLOSED, // after settle() // === Intermediate-tx state === PENDING // during init() or settle() (reentrancy protection) } /** * Simple generalized trading interface for all Trade contracts to obey * * Usage: if (canSettle()) settle() */ interface ITrade is IVersioned { /// Complete the trade and transfer tokens back to the origin trader /// @return soldAmt {qSellTok} The quantity of tokens sold /// @return boughtAmt {qBuyTok} The quantity of tokens bought function settle() external returns (uint256 soldAmt, uint256 boughtAmt); function sell() external view returns (IERC20Metadata); function buy() external view returns (IERC20Metadata); /// @return {tok} The sell amount of the trade, in whole tokens function sellAmount() external view returns (uint192); /// @return The timestamp at which the trade is projected to become settle-able function endTime() external view returns (uint48); /// @return True if the trade can be settled /// @dev Should be guaranteed to be true eventually as an invariant function canSettle() external view returns (bool); /// @return TradeKind.DUTCH_AUCTION or TradeKind.BATCH_AUCTION // solhint-disable-next-line func-name-mixedcase function KIND() external view returns (TradeKind); }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "../libraries/Fixed.sol"; import "./IComponent.sol"; import "./ITrade.sol"; import "./IRewardable.sol"; /** * @title ITrading * @notice Common events and refresher function for all Trading contracts */ interface ITrading is IComponent, IRewardableComponent { event MaxTradeSlippageSet(uint192 oldVal, uint192 newVal); event MinTradeVolumeSet(uint192 oldVal, uint192 newVal); /// Emitted when a trade is started /// @param trade The one-time-use trade contract that was just deployed /// @param sell The token to sell /// @param buy The token to buy /// @param sellAmount {qSellTok} The quantity of the selling token /// @param minBuyAmount {qBuyTok} The minimum quantity of the buying token to accept event TradeStarted( ITrade indexed trade, IERC20 indexed sell, IERC20 indexed buy, uint256 sellAmount, uint256 minBuyAmount ); /// Emitted after a trade ends /// @param trade The one-time-use trade contract /// @param sell The token to sell /// @param buy The token to buy /// @param sellAmount {qSellTok} The quantity of the token sold /// @param buyAmount {qBuyTok} The quantity of the token bought event TradeSettled( ITrade indexed trade, IERC20 indexed sell, IERC20 indexed buy, uint256 sellAmount, uint256 buyAmount ); /// Settle a single trade, expected to be used with multicall for efficient mass settlement /// @param sell The sell token in the trade /// @return The trade settled /// @custom:refresher function settleTrade(IERC20 sell) external returns (ITrade); /// @return {%} The maximum trade slippage acceptable function maxTradeSlippage() external view returns (uint192); /// @return {UoA} The minimum trade volume in UoA, applies to all assets function minTradeVolume() external view returns (uint192); /// @return The ongoing trade for a sell token, or the zero address function trades(IERC20 sell) external view returns (ITrade); /// @return The number of ongoing trades open function tradesOpen() external view returns (uint48); /// @return The number of total trades ever opened function tradesNonce() external view returns (uint256); } interface TestITrading is ITrading { /// @custom:governance function setMaxTradeSlippage(uint192 val) external; /// @custom:governance function setMinTradeVolume(uint192 val) external; }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; interface IVersioned { function version() external view returns (string memory); }
// SPDX-License-Identifier: BlueOak-1.0.0 // solhint-disable func-name-mixedcase func-visibility // slither-disable-start divide-before-multiply pragma solidity ^0.8.19; /// @title FixedPoint, a fixed-point arithmetic library defining the custom type uint192 /// @author Matt Elder <[email protected]> and the Reserve Team <https://reserve.org> /** The logical type `uint192 ` is a 192 bit value, representing an 18-decimal Fixed-point fractional value. This is what's described in the Solidity documentation as "fixed192x18" -- a value represented by 192 bits, that makes 18 digits available to the right of the decimal point. The range of values that uint192 can represent is about [-1.7e20, 1.7e20]. Unless a function explicitly says otherwise, it will fail on overflow. To be clear, the following should hold: toFix(0) == 0 toFix(1) == 1e18 */ // Analysis notes: // Every function should revert iff its result is out of bounds. // Unless otherwise noted, when a rounding mode is given, that mode is applied to // a single division that may happen as the last step in the computation. // Unless otherwise noted, when a rounding mode is *not* given but is needed, it's FLOOR. // For each, we comment: // - @return is the value expressed in "value space", where uint192(1e18) "is" 1.0 // - as-ints: is the value expressed in "implementation space", where uint192(1e18) "is" 1e18 // The "@return" expression is suitable for actually using the library // The "as-ints" expression is suitable for testing // A uint value passed to this library was out of bounds for uint192 operations error UIntOutOfBounds(); bytes32 constant UIntOutofBoundsHash = keccak256(abi.encodeWithSignature("UIntOutOfBounds()")); // Used by P1 implementation for easier casting uint256 constant FIX_ONE_256 = 1e18; uint8 constant FIX_DECIMALS = 18; // If a particular uint192 is represented by the uint192 n, then the uint192 represents the // value n/FIX_SCALE. uint64 constant FIX_SCALE = 1e18; // FIX_SCALE Squared: uint128 constant FIX_SCALE_SQ = 1e36; // The largest integer that can be converted to uint192 . // This is a bit bigger than 3.1e39 uint192 constant FIX_MAX_INT = type(uint192).max / FIX_SCALE; uint192 constant FIX_ZERO = 0; // The uint192 representation of zero. uint192 constant FIX_ONE = FIX_SCALE; // The uint192 representation of one. uint192 constant FIX_MAX = type(uint192).max; // The largest uint192. (Not an integer!) uint192 constant FIX_MIN = 0; // The smallest uint192. /// An enum that describes a rounding approach for converting to ints enum RoundingMode { FLOOR, // Round towards zero ROUND, // Round to the nearest int CEIL // Round away from zero } RoundingMode constant FLOOR = RoundingMode.FLOOR; RoundingMode constant ROUND = RoundingMode.ROUND; RoundingMode constant CEIL = RoundingMode.CEIL; /* @dev Solidity 0.8.x only allows you to change one of type or size per type conversion. Thus, all the tedious-looking double conversions like uint256(uint256 (foo)) See: https://docs.soliditylang.org/en/v0.8.17/080-breaking-changes.html#new-restrictions */ /// Explicitly convert a uint256 to a uint192. Revert if the input is out of bounds. function _safeWrap(uint256 x) pure returns (uint192) { if (FIX_MAX < x) revert UIntOutOfBounds(); return uint192(x); } /// Convert a uint to its Fix representation. /// @return x // as-ints: x * 1e18 function toFix(uint256 x) pure returns (uint192) { return _safeWrap(x * FIX_SCALE); } /// Convert a uint to its fixed-point representation, and left-shift its value `shiftLeft` /// decimal digits. /// @return x * 10**shiftLeft // as-ints: x * 10**(shiftLeft + 18) function shiftl_toFix(uint256 x, int8 shiftLeft) pure returns (uint192) { return shiftl_toFix(x, shiftLeft, FLOOR); } /// @return x * 10**shiftLeft // as-ints: x * 10**(shiftLeft + 18) function shiftl_toFix( uint256 x, int8 shiftLeft, RoundingMode rounding ) pure returns (uint192) { // conditions for avoiding overflow if (x == 0) return 0; if (shiftLeft <= -96) return (rounding == CEIL ? 1 : 0); // 0 < uint.max / 10**77 < 0.5 if (40 <= shiftLeft) revert UIntOutOfBounds(); // 10**56 < FIX_MAX < 10**57 shiftLeft += 18; uint256 coeff = 10**abs(shiftLeft); uint256 shifted = (shiftLeft >= 0) ? x * coeff : _divrnd(x, coeff, rounding); return _safeWrap(shifted); } /// Divide a uint by a uint192, yielding a uint192 /// This may also fail if the result is MIN_uint192! not fixing this for optimization's sake. /// @return x / y // as-ints: x * 1e36 / y function divFix(uint256 x, uint192 y) pure returns (uint192) { // If we didn't have to worry about overflow, we'd just do `return x * 1e36 / _y` // If it's safe to do this operation the easy way, do it: if (x < uint256(type(uint256).max / FIX_SCALE_SQ)) { return _safeWrap(uint256(x * FIX_SCALE_SQ) / y); } else { return _safeWrap(mulDiv256(x, FIX_SCALE_SQ, y)); } } /// Divide a uint by a uint, yielding a uint192 /// @return x / y // as-ints: x * 1e18 / y function divuu(uint256 x, uint256 y) pure returns (uint192) { return _safeWrap(mulDiv256(FIX_SCALE, x, y)); } /// @return min(x,y) // as-ints: min(x,y) function fixMin(uint192 x, uint192 y) pure returns (uint192) { return x < y ? x : y; } /// @return max(x,y) // as-ints: max(x,y) function fixMax(uint192 x, uint192 y) pure returns (uint192) { return x > y ? x : y; } /// @return absoluteValue(x,y) // as-ints: absoluteValue(x,y) function abs(int256 x) pure returns (uint256) { return x < 0 ? uint256(-x) : uint256(x); } /// Divide two uints, returning a uint, using rounding mode `rounding`. /// @return numerator / divisor // as-ints: numerator / divisor function _divrnd( uint256 numerator, uint256 divisor, RoundingMode rounding ) pure returns (uint256) { uint256 result = numerator / divisor; if (rounding == FLOOR) return result; if (rounding == ROUND) { if (numerator % divisor > (divisor - 1) / 2) { result++; } } else { if (numerator % divisor != 0) { result++; } } return result; } library FixLib { /// Again, all arithmetic functions fail if and only if the result is out of bounds. /// Convert this fixed-point value to a uint. Round towards zero if needed. /// @return x // as-ints: x / 1e18 function toUint(uint192 x) internal pure returns (uint136) { return toUint(x, FLOOR); } /// Convert this uint192 to a uint /// @return x // as-ints: x / 1e18 with rounding function toUint(uint192 x, RoundingMode rounding) internal pure returns (uint136) { return uint136(_divrnd(uint256(x), FIX_SCALE, rounding)); } /// Return the uint192 shifted to the left by `decimal` digits /// (Similar to a bitshift but in base 10) /// @return x * 10**decimals // as-ints: x * 10**decimals function shiftl(uint192 x, int8 decimals) internal pure returns (uint192) { return shiftl(x, decimals, FLOOR); } /// Return the uint192 shifted to the left by `decimal` digits /// (Similar to a bitshift but in base 10) /// @return x * 10**decimals // as-ints: x * 10**decimals function shiftl( uint192 x, int8 decimals, RoundingMode rounding ) internal pure returns (uint192) { // Handle overflow cases if (x == 0) return 0; if (decimals <= -59) return (rounding == CEIL ? 1 : 0); // 59, because 1e58 > 2**192 if (58 <= decimals) revert UIntOutOfBounds(); // 58, because x * 1e58 > 2 ** 192 if x != 0 uint256 coeff = uint256(10**abs(decimals)); return _safeWrap(decimals >= 0 ? x * coeff : _divrnd(x, coeff, rounding)); } /// Add a uint192 to this uint192 /// @return x + y // as-ints: x + y function plus(uint192 x, uint192 y) internal pure returns (uint192) { return x + y; } /// Add a uint to this uint192 /// @return x + y // as-ints: x + y*1e18 function plusu(uint192 x, uint256 y) internal pure returns (uint192) { return _safeWrap(x + y * FIX_SCALE); } /// Subtract a uint192 from this uint192 /// @return x - y // as-ints: x - y function minus(uint192 x, uint192 y) internal pure returns (uint192) { return x - y; } /// Subtract a uint from this uint192 /// @return x - y // as-ints: x - y*1e18 function minusu(uint192 x, uint256 y) internal pure returns (uint192) { return _safeWrap(uint256(x) - uint256(y * FIX_SCALE)); } /// Multiply this uint192 by a uint192 /// Round truncated values to the nearest available value. 5e-19 rounds away from zero. /// @return x * y // as-ints: x * y/1e18 [division using ROUND, not FLOOR] function mul(uint192 x, uint192 y) internal pure returns (uint192) { return mul(x, y, ROUND); } /// Multiply this uint192 by a uint192 /// @return x * y // as-ints: x * y/1e18 function mul( uint192 x, uint192 y, RoundingMode rounding ) internal pure returns (uint192) { return _safeWrap(_divrnd(uint256(x) * uint256(y), FIX_SCALE, rounding)); } /// Multiply this uint192 by a uint /// @return x * y // as-ints: x * y function mulu(uint192 x, uint256 y) internal pure returns (uint192) { return _safeWrap(x * y); } /// Divide this uint192 by a uint192 /// @return x / y // as-ints: x * 1e18 / y function div(uint192 x, uint192 y) internal pure returns (uint192) { return div(x, y, FLOOR); } /// Divide this uint192 by a uint192 /// @return x / y // as-ints: x * 1e18 / y function div( uint192 x, uint192 y, RoundingMode rounding ) internal pure returns (uint192) { // Multiply-in FIX_SCALE before dividing by y to preserve precision. return _safeWrap(_divrnd(uint256(x) * FIX_SCALE, y, rounding)); } /// Divide this uint192 by a uint /// @return x / y // as-ints: x / y function divu(uint192 x, uint256 y) internal pure returns (uint192) { return divu(x, y, FLOOR); } /// Divide this uint192 by a uint /// @return x / y // as-ints: x / y function divu( uint192 x, uint256 y, RoundingMode rounding ) internal pure returns (uint192) { return _safeWrap(_divrnd(x, y, rounding)); } uint64 constant FIX_HALF = uint64(FIX_SCALE) / 2; /// Raise this uint192 to a nonnegative integer power. Requires that x_ <= FIX_ONE /// Gas cost is O(lg(y)), precision is +- 1e-18. /// @return x_ ** y // as-ints: x_ ** y / 1e18**(y-1) <- technically correct for y = 0. :D function powu(uint192 x_, uint48 y) internal pure returns (uint192) { require(x_ <= FIX_ONE); if (y == 1) return x_; if (x_ == FIX_ONE || y == 0) return FIX_ONE; uint256 x = uint256(x_) * FIX_SCALE; // x is D36 uint256 result = FIX_SCALE_SQ; // result is D36 while (true) { if (y & 1 == 1) result = (result * x + FIX_SCALE_SQ / 2) / FIX_SCALE_SQ; if (y <= 1) break; y = (y >> 1); x = (x * x + FIX_SCALE_SQ / 2) / FIX_SCALE_SQ; } return _safeWrap(result / FIX_SCALE); } function sqrt(uint192 x) internal pure returns (uint192) { return _safeWrap(sqrt256(x * FIX_ONE_256)); // FLOOR } /// Comparison operators... function lt(uint192 x, uint192 y) internal pure returns (bool) { return x < y; } function lte(uint192 x, uint192 y) internal pure returns (bool) { return x <= y; } function gt(uint192 x, uint192 y) internal pure returns (bool) { return x > y; } function gte(uint192 x, uint192 y) internal pure returns (bool) { return x >= y; } function eq(uint192 x, uint192 y) internal pure returns (bool) { return x == y; } function neq(uint192 x, uint192 y) internal pure returns (bool) { return x != y; } /// Return whether or not this uint192 is less than epsilon away from y. /// @return |x - y| < epsilon // as-ints: |x - y| < epsilon function near( uint192 x, uint192 y, uint192 epsilon ) internal pure returns (bool) { uint192 diff = x <= y ? y - x : x - y; return diff < epsilon; } // ================ Chained Operations ================ // The operation foo_bar() always means: // Do foo() followed by bar(), and overflow only if the _end_ result doesn't fit in an uint192 /// Shift this uint192 left by `decimals` digits, and convert to a uint /// @return x * 10**decimals // as-ints: x * 10**(decimals - 18) function shiftl_toUint(uint192 x, int8 decimals) internal pure returns (uint256) { return shiftl_toUint(x, decimals, FLOOR); } /// Shift this uint192 left by `decimals` digits, and convert to a uint. /// @return x * 10**decimals // as-ints: x * 10**(decimals - 18) function shiftl_toUint( uint192 x, int8 decimals, RoundingMode rounding ) internal pure returns (uint256) { // Handle overflow cases if (x == 0) return 0; // always computable, no matter what decimals is if (decimals <= -42) return (rounding == CEIL ? 1 : 0); if (96 <= decimals) revert UIntOutOfBounds(); decimals -= 18; // shift so that toUint happens at the same time. uint256 coeff = uint256(10**abs(decimals)); return decimals >= 0 ? uint256(x * coeff) : uint256(_divrnd(x, coeff, rounding)); } /// Multiply this uint192 by a uint, and output the result as a uint /// @return x * y // as-ints: x * y / 1e18 function mulu_toUint(uint192 x, uint256 y) internal pure returns (uint256) { return mulDiv256(uint256(x), y, FIX_SCALE); } /// Multiply this uint192 by a uint, and output the result as a uint /// @return x * y // as-ints: x * y / 1e18 function mulu_toUint( uint192 x, uint256 y, RoundingMode rounding ) internal pure returns (uint256) { return mulDiv256(uint256(x), y, FIX_SCALE, rounding); } /// Multiply this uint192 by a uint192 and output the result as a uint /// @return x * y // as-ints: x * y / 1e36 function mul_toUint(uint192 x, uint192 y) internal pure returns (uint256) { return mulDiv256(uint256(x), uint256(y), FIX_SCALE_SQ); } /// Multiply this uint192 by a uint192 and output the result as a uint /// @return x * y // as-ints: x * y / 1e36 function mul_toUint( uint192 x, uint192 y, RoundingMode rounding ) internal pure returns (uint256) { return mulDiv256(uint256(x), uint256(y), FIX_SCALE_SQ, rounding); } /// Compute x * y / z avoiding intermediate overflow /// @dev Only use if you need to avoid overflow; costlier than x * y / z /// @return x * y / z // as-ints: x * y / z function muluDivu( uint192 x, uint256 y, uint256 z ) internal pure returns (uint192) { return muluDivu(x, y, z, FLOOR); } /// Compute x * y / z, avoiding intermediate overflow /// @dev Only use if you need to avoid overflow; costlier than x * y / z /// @return x * y / z // as-ints: x * y / z function muluDivu( uint192 x, uint256 y, uint256 z, RoundingMode rounding ) internal pure returns (uint192) { return _safeWrap(mulDiv256(x, y, z, rounding)); } /// Compute x * y / z on Fixes, avoiding intermediate overflow /// @dev Only use if you need to avoid overflow; costlier than x * y / z /// @return x * y / z // as-ints: x * y / z function mulDiv( uint192 x, uint192 y, uint192 z ) internal pure returns (uint192) { return mulDiv(x, y, z, FLOOR); } /// Compute x * y / z on Fixes, avoiding intermediate overflow /// @dev Only use if you need to avoid overflow; costlier than x * y / z /// @return x * y / z // as-ints: x * y / z function mulDiv( uint192 x, uint192 y, uint192 z, RoundingMode rounding ) internal pure returns (uint192) { return _safeWrap(mulDiv256(x, y, z, rounding)); } // === safe*() === /// Multiply two fixes, rounding up to FIX_MAX and down to 0 /// @param a First param to multiply /// @param b Second param to multiply function safeMul( uint192 a, uint192 b, RoundingMode rounding ) internal pure returns (uint192) { // untestable: // a will never = 0 here because of the check in _price() if (a == 0 || b == 0) return 0; // untestable: // a = FIX_MAX iff b = 0 if (a == FIX_MAX || b == FIX_MAX) return FIX_MAX; // return FIX_MAX instead of throwing overflow errors. unchecked { // p and mul *are* Fix values, so have 18 decimals (D18) uint256 rawDelta = uint256(b) * a; // {D36} = {D18} * {D18} // if we overflowed, then return FIX_MAX if (rawDelta / b != a) return FIX_MAX; uint256 shiftDelta = rawDelta; // add in rounding if (rounding == RoundingMode.ROUND) shiftDelta += (FIX_ONE / 2); else if (rounding == RoundingMode.CEIL) shiftDelta += FIX_ONE - 1; // untestable (here there be dragons): // (below explanation is for the ROUND case, but it extends to the FLOOR/CEIL too) // A) shiftDelta = rawDelta + (FIX_ONE / 2) // shiftDelta overflows if: // B) shiftDelta = MAX_UINT256 - FIX_ONE/2 + 1 // rawDelta + (FIX_ONE/2) = MAX_UINT256 - FIX_ONE/2 + 1 // b * a = MAX_UINT256 - FIX_ONE + 1 // therefore shiftDelta overflows if: // C) b = (MAX_UINT256 - FIX_ONE + 1) / a // MAX_UINT256 ~= 1e77 , FIX_MAX ~= 6e57 (6e20 difference in magnitude) // a <= 1e21 (MAX_TARGET_AMT) // a must be between 1e19 & 1e20 in order for b in (C) to be uint192, // but a would have to be < 1e18 in order for (A) to overflow if (shiftDelta < rawDelta) return FIX_MAX; // return FIX_MAX if return result would truncate if (shiftDelta / FIX_ONE > FIX_MAX) return FIX_MAX; // return _div(rawDelta, FIX_ONE, rounding) return uint192(shiftDelta / FIX_ONE); // {D18} = {D36} / {D18} } } /// Divide two fixes, rounding up to FIX_MAX and down to 0 /// @param a Numerator /// @param b Denominator function safeDiv( uint192 a, uint192 b, RoundingMode rounding ) internal pure returns (uint192) { if (a == 0) return 0; if (b == 0) return FIX_MAX; uint256 raw = _divrnd(FIX_ONE_256 * a, uint256(b), rounding); if (raw >= FIX_MAX) return FIX_MAX; return uint192(raw); // don't need _safeWrap } /// Multiplies two fixes and divide by a third /// @param a First to multiply /// @param b Second to multiply /// @param c Denominator function safeMulDiv( uint192 a, uint192 b, uint192 c, RoundingMode rounding ) internal pure returns (uint192 result) { if (a == 0 || b == 0) return 0; if (a == FIX_MAX || b == FIX_MAX || c == 0) return FIX_MAX; uint256 result_256; unchecked { (uint256 hi, uint256 lo) = fullMul(a, b); if (hi >= c) return FIX_MAX; uint256 mm = mulmod(a, b, c); if (mm > lo) hi -= 1; lo -= mm; uint256 pow2 = c & (0 - c); uint256 c_256 = uint256(c); // Warning: Should not access c below this line c_256 /= pow2; lo /= pow2; lo += hi * ((0 - pow2) / pow2 + 1); uint256 r = 1; r *= 2 - c_256 * r; r *= 2 - c_256 * r; r *= 2 - c_256 * r; r *= 2 - c_256 * r; r *= 2 - c_256 * r; r *= 2 - c_256 * r; r *= 2 - c_256 * r; r *= 2 - c_256 * r; result_256 = lo * r; // Apply rounding if (rounding == CEIL) { if (mm != 0) result_256 += 1; } else if (rounding == ROUND) { if (mm > ((c_256 - 1) / 2)) result_256 += 1; } } if (result_256 >= FIX_MAX) return FIX_MAX; return uint192(result_256); } } // ================ a couple pure-uint helpers================ // as-ints comments are omitted here, because they're the same as @return statements, because // these are all pure uint functions /// Return (x*y/z), avoiding intermediate overflow. // Adapted from sources: // https://medium.com/coinmonks/4db014e080b1, https://medium.com/wicketh/afa55870a65 // and quite a few of the other excellent "Mathemagic" posts from https://medium.com/wicketh /// @dev Only use if you need to avoid overflow; costlier than x * y / z /// @return result x * y / z function mulDiv256( uint256 x, uint256 y, uint256 z ) pure returns (uint256 result) { unchecked { (uint256 hi, uint256 lo) = fullMul(x, y); if (hi >= z) revert UIntOutOfBounds(); uint256 mm = mulmod(x, y, z); if (mm > lo) hi -= 1; lo -= mm; uint256 pow2 = z & (0 - z); z /= pow2; lo /= pow2; lo += hi * ((0 - pow2) / pow2 + 1); uint256 r = 1; r *= 2 - z * r; r *= 2 - z * r; r *= 2 - z * r; r *= 2 - z * r; r *= 2 - z * r; r *= 2 - z * r; r *= 2 - z * r; r *= 2 - z * r; result = lo * r; } } /// Return (x*y/z), avoiding intermediate overflow. /// @dev Only use if you need to avoid overflow; costlier than x * y / z /// @return x * y / z function mulDiv256( uint256 x, uint256 y, uint256 z, RoundingMode rounding ) pure returns (uint256) { uint256 result = mulDiv256(x, y, z); if (rounding == FLOOR) return result; uint256 mm = mulmod(x, y, z); if (rounding == CEIL) { if (mm != 0) result += 1; } else { if (mm > ((z - 1) / 2)) result += 1; // z should be z-1 } return result; } /// Return (x*y) as a "virtual uint512" (lo, hi), representing (hi*2**256 + lo) /// Adapted from sources: /// https://medium.com/wicketh/27650fec525d, https://medium.com/coinmonks/4db014e080b1 /// @dev Intended to be internal to this library /// @return hi (hi, lo) satisfies hi*(2**256) + lo == x * y /// @return lo (paired with `hi`) function fullMul(uint256 x, uint256 y) pure returns (uint256 hi, uint256 lo) { unchecked { uint256 mm = mulmod(x, y, uint256(0) - uint256(1)); lo = x * y; hi = mm - lo; if (mm < lo) hi -= 1; } } // =============== from prbMath at commit 28055f6cd9a2367f9ad7ab6c8e01c9ac8e9acc61 =============== /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. function sqrt256(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2**128) { xAux >>= 128; result <<= 64; } if (xAux >= 2**64) { xAux >>= 64; result <<= 32; } if (xAux >= 2**32) { xAux >>= 32; result <<= 16; } if (xAux >= 2**16) { xAux >>= 16; result <<= 8; } if (xAux >= 2**8) { xAux >>= 8; result <<= 4; } if (xAux >= 2**4) { xAux >>= 4; result <<= 2; } if (xAux >= 2**2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } } // slither-disable-end divide-before-multiply
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "./Fixed.sol"; uint48 constant ONE_HOUR = 3600; // {seconds/hour} /** * @title ThrottleLib * A library that implements a usage throttle that can be used to ensure net issuance * or net redemption for an RToken never exceeds some bounds per unit time (hour). * * It is expected for the RToken to use this library with two instances, one for issuance * and one for redemption. Issuance causes the available redemption amount to increase, and * visa versa. */ library ThrottleLib { using FixLib for uint192; struct Params { uint256 amtRate; // {qRTok/hour} a quantity of RToken hourly; cannot be 0 uint192 pctRate; // {1/hour} a fraction of RToken hourly; can be 0 } struct Throttle { // === Gov params === Params params; // === Cache === uint48 lastTimestamp; // {seconds} uint256 lastAvailable; // {qRTok} } /// Reverts if usage amount exceeds available amount /// @param supply {qRTok} Total RToken supply beforehand /// @param amount {qRTok} Amount of RToken to use. Should be negative for the issuance /// throttle during redemption and for the redemption throttle during issuance. function useAvailable( Throttle storage throttle, uint256 supply, int256 amount ) internal { // untestable: amtRate will always be > 0 due to previous validations if (throttle.params.amtRate == 0 && throttle.params.pctRate == 0) return; // Calculate hourly limit uint256 limit = hourlyLimit(throttle, supply); // {qRTok} // Calculate available amount before supply change uint256 available = currentlyAvailable(throttle, limit); // Update throttle.timestamp if available amount changed or at limit if (available != throttle.lastAvailable || available == limit) { throttle.lastTimestamp = uint48(block.timestamp); } // Update throttle.lastAvailable if (amount > 0) { require(uint256(amount) <= available, "supply change throttled"); available -= uint256(amount); // untestable: the final else statement, amount will never be 0 } else if (amount < 0) { available += uint256(-amount); } throttle.lastAvailable = available; } /// @param limit {qRTok/hour} The hourly limit /// @return available {qRTok} Amount currently available for consumption function currentlyAvailable(Throttle storage throttle, uint256 limit) internal view returns (uint256 available) { uint48 delta = uint48(block.timestamp) - throttle.lastTimestamp; // {seconds} available = throttle.lastAvailable + (limit * delta) / ONE_HOUR; if (available > limit) available = limit; } /// @return limit {qRTok} The hourly limit function hourlyLimit(Throttle storage throttle, uint256 supply) internal view returns (uint256 limit) { Params storage params = throttle.params; // Calculate hourly limit as: max(params.amtRate, supply.mul(params.pctRate)) limit = (supply * params.pctRate) / FIX_ONE_256; // {qRTok} if (params.amtRate > limit) limit = params.amtRate; } }
// SPDX-License-Identifier: BlueOak-1.0.0 pragma solidity 0.8.19; import "../interfaces/IVersioned.sol"; // This value should be updated on each release string constant VERSION = "3.4.0"; /** * @title Versioned * @notice A mix-in to track semantic versioning uniformly across contracts. */ abstract contract Versioned is IVersioned { function version() public pure virtual override returns (string memory) { return VERSION; } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"UIntOutOfBounds","type":"error"},{"inputs":[],"name":"KIND","outputs":[{"internalType":"enum TradeKind","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint192","name":"price","type":"uint192"}],"name":"_bidAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bestPrice","outputs":[{"internalType":"uint192","name":"","type":"uint192"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bid","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"timestamp","type":"uint48"}],"name":"bidAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bidType","outputs":[{"internalType":"enum BidType","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"bidWithCallback","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"bidder","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"broker","outputs":[{"internalType":"contract IBroker","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"buy","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"canSettle","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"endTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ITrading","name":"origin_","type":"address"},{"internalType":"contract IAsset","name":"sell_","type":"address"},{"internalType":"contract IAsset","name":"buy_","type":"address"},{"internalType":"uint256","name":"sellAmount_","type":"uint256"},{"internalType":"uint48","name":"auctionLength","type":"uint48"},{"components":[{"internalType":"uint192","name":"sellLow","type":"uint192"},{"internalType":"uint192","name":"sellHigh","type":"uint192"},{"internalType":"uint192","name":"buyLow","type":"uint192"},{"internalType":"uint192","name":"buyHigh","type":"uint192"}],"internalType":"struct TradePrices","name":"prices","type":"tuple"}],"name":"init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lot","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"origin","outputs":[{"internalType":"contract ITrading","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sell","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sellAmount","outputs":[{"internalType":"uint192","name":"","type":"uint192"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"settle","outputs":[{"internalType":"uint256","name":"soldAmt","type":"uint256"},{"internalType":"uint256","name":"boughtAmt","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"status","outputs":[{"internalType":"enum TradeStatus","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20Metadata","name":"erc20","type":"address"}],"name":"transferToOriginAfterTradeComplete","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"worstPrice","outputs":[{"internalType":"uint192","name":"","type":"uint192"}],"stateMutability":"view","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.