ETH Price: $3,209.10 (-3.66%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Bid207856482024-09-19 15:50:47129 days ago1726761047IN
0x67362381...365C30b0f
0 ETH0.0037685515.51458841

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block
From
To
207855092024-09-19 15:22:47129 days ago1726759367  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x971c890acb9eeb084f292996be667bb9a2889ae9

Contract Name:
DutchTrade

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 32 : DutchTrade.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../../libraries/Fixed.sol";
import "../../interfaces/IAsset.sol";
import "../../interfaces/IBroker.sol";
import "../../interfaces/ITrade.sol";
import "../../mixins/Versioned.sol";

interface IDutchTradeCallee {
    function dutchTradeCallback(
        address buyToken,
        // {qBuyTok}
        uint256 buyAmount,
        bytes calldata data
    ) external;
}

enum BidType {
    NONE,
    CALLBACK,
    TRANSFER
}

// A dutch auction in 4 parts:
//   1.  0% -  20%: Geometric decay from 1000x the bestPrice to ~1.5x the bestPrice
//   2. 20% -  45%: Linear decay from ~1.5x the bestPrice to the bestPrice
//   3. 45% -  95%: Linear decay from the bestPrice to the worstPrice
//   4. 95% - 100%: Constant at the worstPrice
//
// For a trade between 2 assets with 1% oracleError:
//   A 30-minute auction has a 20% price drop (every 12 seconds) during the 1st period,
//   ~0.8% during the 2nd period, and ~0.065% during the 3rd period.
//
//   30-minutes is the recommended length of auction for a chain with 12-second blocktimes.
//   Period lengths: 6 minutes, 7.5 minutes, 15 minutes, 1.5 minutes.
//
//   Longer and shorter times can be used as well. The pricing method does not degrade
//   beyond the degree to which less overall blocktime means less overall precision.

uint192 constant FIVE_PERCENT = 5e16; // {1} 0.05
uint192 constant TWENTY_PERCENT = 20e16; // {1} 0.2
uint192 constant TWENTY_FIVE_PERCENT = 25e16; // {1} 0.25
uint192 constant FORTY_FIVE_PERCENT = 45e16; // {1} 0.45
uint192 constant FIFTY_PERCENT = 50e16; // {1} 0.5
uint192 constant NINETY_FIVE_PERCENT = 95e16; // {1} 0.95

uint192 constant MAX_EXP = 6502287e18; // {1} (1000000/999999)^6502287 = ~666.6667
uint192 constant BASE = 999999e12; // {1} (999999/1000000)
uint192 constant ONE_POINT_FIVE = 150e16; // {1} 1.5

/**
 * @title DutchTrade
 * @notice Implements a wholesale dutch auction via a 4-piecewise falling-price mechansim.
 *   The overall idea is to handle 4 cases:
 *     1. Price manipulation of the exchange rate up to 1000x (eg: via a read-only reentrancy)
 *     2. Price movement of up to 50% during the auction
 *     3. Typical case: no significant price movement; clearing price within expected range
 *     4. No bots online; manual human doing bidding; additional time for tx clearing
 *
 *   Case 1: Over the first 20% of the auction the price falls from ~1000x the best plausible
 *   price down to 1.5x the best plausible price in a geometric series.
 *   This period DOES NOT expect to receive a bid; it just defends against manipulated prices.
 *   If a bid occurs during this period, a violation is reported to the Broker.
 *   This is still safe for the protocol since other trades, with price discovery, can occur.
 *
 *   Case 2: Over the next 20% of the auction the price falls from 1.5x the best plausible price
 *   to the best plausible price, linearly. No violation is reported if a bid occurs. This case
 *   exists to handle cases where prices change after the auction is started, naturally.
 *
 *   Case 3: Over the next 50% of the auction the price falls from the best plausible price to the
 *   worst price, linearly. The worst price is further discounted by the maxTradeSlippage.
 *   This is the phase of the auction where bids will typically occur.
 *
 *   Case 4: Lastly the price stays at the worst price for the final 5% of the auction to allow
 *   a bid to occur if no bots are online and the only bidders are humans.
 *
 * To bid:
 * 1. Call `bidAmount()` view to check prices at various future timestamps.
 * 2. Provide approval of sell tokens for precisely the `bidAmount()` desired
 * 3. Wait until the desired time is reached (hopefully not in the first 20% of the auction)
 * 4. Call bid()
 *
 * Limitation: In order to support all chains, such as Arbitrum, this contract uses block time
 *             instead of block number. This means there may be small ways that validators can
 *             extract MEV by playing around with block.timestamp. However, we think this tradeoff
 *             is worth it in order to not have to maintain multiple DutchTrade contracts.
 */
contract DutchTrade is ITrade, Versioned {
    using FixLib for uint192;
    using SafeERC20 for IERC20Metadata;

    TradeKind public constant KIND = TradeKind.DUTCH_AUCTION;

    BidType public bidType; // = BidType.NONE

    TradeStatus public status; // reentrancy protection

    IBroker public broker; // The Broker that cloned this contract into existence
    ITrading public origin; // the address that initialized the contract

    // === Auction ===
    IERC20Metadata public sell;
    IERC20Metadata public buy;
    uint192 public sellAmount; // {sellTok}

    // The auction runs from [startTime, endTime], inclusive
    uint48 public startTime; // {s} when the dutch auction begins (one block after init()) lossy!
    uint48 public endTime; // {s} when the dutch auction ends

    uint192 public bestPrice; // {buyTok/sellTok} The best plausible price based on oracle data
    uint192 public worstPrice; // {buyTok/sellTok} The worst plausible price based on oracle data

    // === Bid ===
    address public bidder;
    // the bid amount is just whatever token balance is in the contract at settlement time

    // This modifier both enforces the state-machine pattern and guards against reentrancy.
    modifier stateTransition(TradeStatus begin, TradeStatus end) {
        require(status == begin, "Invalid trade state");
        status = TradeStatus.PENDING;
        _;
        assert(status == TradeStatus.PENDING);
        status = end;
    }

    // === Auction Sizing Views ===

    /// @return {qSellTok} The size of the lot being sold, in token quanta
    function lot() public view returns (uint256) {
        return sellAmount.shiftl_toUint(int8(sell.decimals()));
    }

    /// Calculates how much buy token is needed to purchase the lot at a particular time
    /// @param timestamp {s} The timestamp of the bid
    /// @return {qBuyTok} The amount of buy tokens required to purchase the lot
    function bidAmount(uint48 timestamp) external view returns (uint256) {
        return _bidAmount(_price(timestamp));
    }

    // ==== Constructor ===

    constructor() {
        status = TradeStatus.CLOSED;
    }

    // === External ===

    /// @param origin_ The Trader that originated the trade
    /// @param sell_ The asset being sold by the protocol
    /// @param buy_ The asset being bought by the protocol
    /// @param sellAmount_ {qSellTok} The amount to sell in the auction, in token quanta
    /// @param auctionLength {s} How many seconds the dutch auction should run for
    function init(
        ITrading origin_,
        IAsset sell_,
        IAsset buy_,
        uint256 sellAmount_,
        uint48 auctionLength,
        TradePrices memory prices
    ) external stateTransition(TradeStatus.NOT_STARTED, TradeStatus.OPEN) {
        // 60 sec min auction duration
        assert(address(sell_) != address(0) && address(buy_) != address(0) && auctionLength >= 60);

        // Only start dutch auctions under well-defined prices
        require(prices.sellLow != 0 && prices.sellHigh < FIX_MAX / 1000, "bad sell pricing");
        require(prices.buyLow != 0 && prices.buyHigh < FIX_MAX / 1000, "bad buy pricing");

        broker = IBroker(msg.sender);
        origin = origin_;
        sell = sell_.erc20();
        buy = buy_.erc20();

        require(sellAmount_ <= sell.balanceOf(address(this)), "unfunded trade");
        sellAmount = shiftl_toFix(sellAmount_, -int8(sell.decimals())); // {sellTok}

        // Track auction end by time, to generalize to all chains
        uint48 _startTime = uint48(block.timestamp) + 1; // cannot fulfill in current block
        startTime = _startTime; // gas-saver
        endTime = _startTime + auctionLength;

        // {buyTok/sellTok} = {UoA/sellTok} * {1} / {UoA/buyTok}
        uint192 _worstPrice = prices.sellLow.mulDiv(
            FIX_ONE - origin.maxTradeSlippage(),
            prices.buyHigh,
            FLOOR
        );
        uint192 _bestPrice = prices.sellHigh.div(prices.buyLow, CEIL); // no additional slippage
        assert(_worstPrice <= _bestPrice);
        worstPrice = _worstPrice; // gas-saver
        bestPrice = _bestPrice; // gas-saver
    }

    /// Bid for the auction lot at the current price; settle trade in protocol
    /// @dev Caller must have provided approval
    /// @return amountIn {qBuyTok} The quantity of tokens the bidder paid
    function bid() external returns (uint256 amountIn) {
        require(bidder == address(0), "bid already received");
        assert(status == TradeStatus.OPEN);

        // {buyTok/sellTok}
        uint192 price = _price(uint48(block.timestamp)); // enforces auction ongoing

        // {qBuyTok}
        amountIn = _bidAmount(price);

        // Mark bidder
        bidder = msg.sender;
        bidType = BidType.TRANSFER;

        // reportViolation if auction cleared in geometric phase
        if (price > bestPrice.mul(ONE_POINT_FIVE, CEIL)) {
            broker.reportViolation();
        }

        // Transfer in buy tokens from bidder
        buy.safeTransferFrom(msg.sender, address(this), amountIn);

        // settle() in core protocol
        origin.settleTrade(sell);

        // confirm .settleTrade() succeeded and .settle() has been called
        assert(status == TradeStatus.CLOSED);
    }

    /// Bid with callback for the auction lot at the current price; settle trade in protocol
    ///  Sold funds are sent back to the callee first via callee.dutchTradeCallback(...)
    ///  Balance of buy token must increase by bidAmount(block.timestamp) after callback
    ///
    /// @dev Caller must implement IDutchTradeCallee
    /// @param data {bytes} The data to pass to the callback
    /// @return amountIn {qBuyTok} The quantity of tokens the bidder paid
    function bidWithCallback(bytes calldata data) external returns (uint256 amountIn) {
        require(bidder == address(0), "bid already received");
        assert(status == TradeStatus.OPEN);

        // {buyTok/sellTok}
        uint192 price = _price(uint48(block.timestamp)); // enforces auction ongoing

        // {qBuyTok}
        amountIn = _bidAmount(price);

        // Mark bidder
        bidder = msg.sender;
        bidType = BidType.CALLBACK;

        // reportViolation if auction cleared in geometric phase
        if (price > bestPrice.mul(ONE_POINT_FIVE, CEIL)) {
            broker.reportViolation();
        }

        // Transfer sell tokens to bidder
        sell.safeTransfer(bidder, lot()); // {qSellTok}

        uint256 balanceBefore = buy.balanceOf(address(this)); // {qBuyTok}
        IDutchTradeCallee(bidder).dutchTradeCallback(address(buy), amountIn, data);
        require(
            amountIn <= buy.balanceOf(address(this)) - balanceBefore,
            "insufficient buy tokens"
        );

        // settle() in core protocol
        origin.settleTrade(sell);

        // confirm .settleTrade() succeeded and .settle() has been called
        assert(status == TradeStatus.CLOSED);
    }

    /// Settle the auction, emptying the contract of balances
    /// @return soldAmt {qSellTok} Token quantity sold by the protocol
    /// @return boughtAmt {qBuyTok} Token quantity purchased by the protocol
    function settle()
        external
        stateTransition(TradeStatus.OPEN, TradeStatus.CLOSED)
        returns (uint256 soldAmt, uint256 boughtAmt)
    {
        require(msg.sender == address(origin), "only origin can settle");
        require(bidder != address(0) || block.timestamp > endTime, "auction not over");

        if (bidType == BidType.CALLBACK) {
            soldAmt = lot(); // {qSellTok}
        } else if (bidType == BidType.TRANSFER) {
            soldAmt = lot(); // {qSellTok}
            sell.safeTransfer(bidder, soldAmt); // {qSellTok}
        }

        // Transfer remaining balances back to origin
        boughtAmt = buy.balanceOf(address(this)); // {qBuyTok}
        buy.safeTransfer(address(origin), boughtAmt); // {qBuyTok}
        sell.safeTransfer(address(origin), sell.balanceOf(address(this))); // {qSellTok}
    }

    /// Anyone can transfer any ERC20 back to the origin after the trade has been closed
    /// @dev Escape hatch in case of accidentally transferred tokens after auction end
    /// @custom:interaction CEI (and respects the state lock)
    function transferToOriginAfterTradeComplete(IERC20Metadata erc20) external {
        require(status == TradeStatus.CLOSED, "only after trade is closed");
        erc20.safeTransfer(address(origin), erc20.balanceOf(address(this)));
    }

    /// @return true iff the trade can be settled.
    // Guaranteed to be true some time after init(), until settle() is called
    function canSettle() external view returns (bool) {
        return status == TradeStatus.OPEN && (bidder != address(0) || block.timestamp > endTime);
    }

    // === Private ===

    /// Return the price of the auction at a particular timestamp
    /// @param timestamp {s} The timestamp to get price for
    /// @return {buyTok/sellTok}
    function _price(uint48 timestamp) private view returns (uint192) {
        uint48 _startTime = startTime; // {s} gas savings
        uint48 _endTime = endTime; // {s} gas savings
        require(timestamp >= _startTime, "auction not started");
        require(timestamp <= _endTime, "auction over");

        /// Price Curve:
        ///   - first 20%: geometrically decrease the price from 1000x the bestPrice to 1.5x it
        ///   - next  25%: linearly decrease the price from 1.5x the bestPrice to 1x it
        ///   - next  50%: linearly decrease the price from bestPrice to worstPrice
        ///   - last   5%: constant at worstPrice

        uint192 progression = divuu(timestamp - _startTime, _endTime - _startTime); // {1}

        // Fast geometric decay -- 0%-20% of auction
        if (progression < TWENTY_PERCENT) {
            uint192 exp = MAX_EXP.mulDiv(TWENTY_PERCENT - progression, TWENTY_PERCENT, ROUND);

            // bestPrice * ((1000000/999999) ^ exp) = bestPrice / ((999999/1000000) ^ exp)
            // safe uint48 downcast: exp is at-most 6502287
            // {buyTok/sellTok} = {buyTok/sellTok} / {1} ^ {1}
            return bestPrice.mulDiv(ONE_POINT_FIVE, BASE.powu(uint48(exp.toUint(ROUND))), CEIL);
            // this reverts for bestPrice >= 6.21654046e36 * FIX_ONE
        } else if (progression < FORTY_FIVE_PERCENT) {
            // First linear decay -- 20%-45% of auction
            // 1.5x -> 1x the bestPrice

            uint192 _bestPrice = bestPrice; // gas savings
            // {buyTok/sellTok} = {buyTok/sellTok} * {1}
            uint192 highPrice = _bestPrice.mul(ONE_POINT_FIVE, CEIL);
            return
                highPrice -
                (highPrice - _bestPrice).mulDiv(progression - TWENTY_PERCENT, TWENTY_FIVE_PERCENT);
        } else if (progression < NINETY_FIVE_PERCENT) {
            // Second linear decay -- 45%-95% of auction
            // bestPrice -> worstPrice

            uint192 _bestPrice = bestPrice; // gas savings
            // {buyTok/sellTok} = {buyTok/sellTok} * {1}
            return
                _bestPrice -
                (_bestPrice - worstPrice).mulDiv(progression - FORTY_FIVE_PERCENT, FIFTY_PERCENT);
        }

        // Constant price -- 95%-100% of auction
        return worstPrice;
    }

    /// Calculates how much buy token is needed to purchase the lot at a particular price
    /// @param price {buyTok/sellTok}
    /// @return {qBuyTok} The amount of buy tokens required to purchase the lot
    function _bidAmount(uint192 price) public view returns (uint256) {
        // {qBuyTok} = {sellTok} * {buyTok/sellTok} * {qBuyTok/buyTok}
        return sellAmount.mul(price, CEIL).shiftl_toUint(int8(buy.decimals()), CEIL);
    }
}

File 2 of 32 : AggregatorV3Interface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface AggregatorV3Interface {
  function decimals() external view returns (uint8);

  function description() external view returns (string memory);

  function version() external view returns (uint256);

  function getRoundData(uint80 _roundId)
    external
    view
    returns (
      uint80 roundId,
      int256 answer,
      uint256 startedAt,
      uint256 updatedAt,
      uint80 answeredInRound
    );

  function latestRoundData()
    external
    view
    returns (
      uint80 roundId,
      int256 answer,
      uint256 startedAt,
      uint256 updatedAt,
      uint80 answeredInRound
    );
}

File 3 of 32 : IAccessControlUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControlUpgradeable {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

File 4 of 32 : draft-IERC20PermitUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

// EIP-2612 is Final as of 2022-11-01. This file is deprecated.

import "./IERC20PermitUpgradeable.sol";

File 5 of 32 : IERC20MetadataUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 6 of 32 : IERC20PermitUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20PermitUpgradeable {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 7 of 32 : IERC20Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 8 of 32 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 9 of 32 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 10 of 32 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 11 of 32 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 12 of 32 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 13 of 32 : IAsset.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "../libraries/Fixed.sol";
import "./IMain.sol";
import "./IRewardable.sol";

// Not used directly in the IAsset interface, but used by many consumers to save stack space
struct Price {
    uint192 low; // {UoA/tok}
    uint192 high; // {UoA/tok}
}

/**
 * @title IAsset
 * @notice Supertype. Any token that interacts with our system must be wrapped in an asset,
 * whether it is used as RToken backing or not. Any token that can report a price in the UoA
 * is eligible to be an asset.
 */
interface IAsset is IRewardable {
    /// Refresh saved price
    /// The Reserve protocol calls this at least once per transaction, before relying on
    /// the Asset's other functions.
    /// @dev Called immediately after deployment, before use
    function refresh() external;

    /// Should not revert
    /// low should be nonzero if the asset could be worth selling
    /// @return low {UoA/tok} The lower end of the price estimate
    /// @return high {UoA/tok} The upper end of the price estimate
    function price() external view returns (uint192 low, uint192 high);

    /// Should not revert
    /// lotLow should be nonzero when the asset might be worth selling
    /// @dev Deprecated. Phased out in 3.1.0, but left on interface for backwards compatibility
    /// @return lotLow {UoA/tok} The lower end of the lot price estimate
    /// @return lotHigh {UoA/tok} The upper end of the lot price estimate
    function lotPrice() external view returns (uint192 lotLow, uint192 lotHigh);

    /// @return {tok} The balance of the ERC20 in whole tokens
    function bal(address account) external view returns (uint192);

    /// @return The ERC20 contract of the token with decimals() available
    function erc20() external view returns (IERC20Metadata);

    /// @return The number of decimals in the ERC20; just for gas optimization
    function erc20Decimals() external view returns (uint8);

    /// @return If the asset is an instance of ICollateral or not
    function isCollateral() external view returns (bool);

    /// @return {UoA} The max trade volume, in UoA
    function maxTradeVolume() external view returns (uint192);

    /// @return {s} The timestamp of the last refresh() that saved prices
    function lastSave() external view returns (uint48);
}

// Used only in Testing. Strictly speaking an Asset does not need to adhere to this interface
interface TestIAsset is IAsset {
    /// @return The address of the chainlink feed
    function chainlinkFeed() external view returns (AggregatorV3Interface);

    /// {1} The max % deviation allowed by the oracle
    function oracleError() external view returns (uint192);

    /// @return {s} Seconds that an oracle value is considered valid
    function oracleTimeout() external view returns (uint48);

    /// @return {s} The maximum of all oracle timeouts on the plugin
    function maxOracleTimeout() external view returns (uint48);

    /// @return {s} Seconds that the price() should decay over, after stale price
    function priceTimeout() external view returns (uint48);

    /// @return {UoA/tok} The last saved low price
    function savedLowPrice() external view returns (uint192);

    /// @return {UoA/tok} The last saved high price
    function savedHighPrice() external view returns (uint192);
}

/// CollateralStatus must obey a linear ordering. That is:
/// - being DISABLED is worse than being IFFY, or SOUND
/// - being IFFY is worse than being SOUND.
enum CollateralStatus {
    SOUND,
    IFFY, // When a peg is not holding or a chainlink feed is stale
    DISABLED // When the collateral has completely defaulted
}

/// Upgrade-safe maximum operator for CollateralStatus
library CollateralStatusComparator {
    /// @return Whether a is worse than b
    function worseThan(CollateralStatus a, CollateralStatus b) internal pure returns (bool) {
        return uint256(a) > uint256(b);
    }
}

/**
 * @title ICollateral
 * @notice A subtype of Asset that consists of the tokens eligible to back the RToken.
 */
interface ICollateral is IAsset {
    /// Emitted whenever the collateral status is changed
    /// @param newStatus The old CollateralStatus
    /// @param newStatus The updated CollateralStatus
    event CollateralStatusChanged(
        CollateralStatus indexed oldStatus,
        CollateralStatus indexed newStatus
    );

    /// @dev refresh()
    /// Refresh exchange rates and update default status.
    /// VERY IMPORTANT: In any valid implemntation, status() MUST become DISABLED in refresh() if
    /// refPerTok() has ever decreased since last call.

    /// @return The canonical name of this collateral's target unit.
    function targetName() external view returns (bytes32);

    /// @return The status of this collateral asset. (Is it defaulting? Might it soon?)
    function status() external view returns (CollateralStatus);

    // ==== Exchange Rates ====

    /// @return {ref/tok} Quantity of whole reference units per whole collateral tokens
    function refPerTok() external view returns (uint192);

    /// @return {target/ref} Quantity of whole target units per whole reference unit in the peg
    function targetPerRef() external view returns (uint192);
}

// Used only in Testing. Strictly speaking a Collateral does not need to adhere to this interface
interface TestICollateral is TestIAsset, ICollateral {
    /// @return The epoch timestamp when the collateral will default from IFFY to DISABLED
    function whenDefault() external view returns (uint256);

    /// @return The amount of time a collateral must be in IFFY status until being DISABLED
    function delayUntilDefault() external view returns (uint48);

    /// @return The underlying refPerTok, likely not included in all collaterals however.
    function underlyingRefPerTok() external view returns (uint192);
}

File 14 of 32 : IAssetRegistry.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IAsset.sol";
import "./IComponent.sol";

/// A serialization of the AssetRegistry to be passed around in the P1 impl for gas optimization
struct Registry {
    IERC20[] erc20s;
    IAsset[] assets;
}

/**
 * @title IAssetRegistry
 * @notice The AssetRegistry is in charge of maintaining the ERC20 tokens eligible
 *   to be handled by the rest of the system. If an asset is in the registry, this means:
 *      1. Its ERC20 contract has been vetted
 *      2. The asset is the only asset for that ERC20
 *      3. The asset can be priced in the UoA, usually via an oracle
 */
interface IAssetRegistry is IComponent {
    /// Emitted when an asset is added to the registry
    /// @param erc20 The ERC20 contract for the asset
    /// @param asset The asset contract added to the registry
    event AssetRegistered(IERC20 indexed erc20, IAsset indexed asset);

    /// Emitted when an asset is removed from the registry
    /// @param erc20 The ERC20 contract for the asset
    /// @param asset The asset contract removed from the registry
    event AssetUnregistered(IERC20 indexed erc20, IAsset indexed asset);

    // Initialization
    function init(IMain main_, IAsset[] memory assets_) external;

    /// Fully refresh all asset state
    /// @custom:refresher
    function refresh() external;

    /// Register `asset`
    /// If either the erc20 address or the asset was already registered, fail
    /// @return true if the erc20 address was not already registered.
    /// @custom:governance
    function register(IAsset asset) external returns (bool);

    /// Register `asset` if and only if its erc20 address is already registered.
    /// If the erc20 address was not registered, revert.
    /// @return swapped If the asset was swapped for a previously-registered asset
    /// @custom:governance
    function swapRegistered(IAsset asset) external returns (bool swapped);

    /// Unregister an asset, requiring that it is already registered
    /// @custom:governance
    function unregister(IAsset asset) external;

    /// @return {s} The timestamp of the last refresh
    function lastRefresh() external view returns (uint48);

    /// @return The corresponding asset for ERC20, or reverts if not registered
    function toAsset(IERC20 erc20) external view returns (IAsset);

    /// @return The corresponding collateral, or reverts if unregistered or not collateral
    function toColl(IERC20 erc20) external view returns (ICollateral);

    /// @return If the ERC20 is registered
    function isRegistered(IERC20 erc20) external view returns (bool);

    /// @return A list of all registered ERC20s
    function erc20s() external view returns (IERC20[] memory);

    /// @return reg The list of registered ERC20s and Assets, in the same order
    function getRegistry() external view returns (Registry memory reg);

    /// @return The number of registered ERC20s
    function size() external view returns (uint256);
}

File 15 of 32 : IBackingManager.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IAssetRegistry.sol";
import "./IBasketHandler.sol";
import "./IComponent.sol";
import "./IRToken.sol";
import "./IStRSR.sol";
import "./ITrading.sol";

/// Memory struct for RecollateralizationLibP1 + RTokenAsset
/// Struct purposes:
///   1. Configure trading
///   2. Stay under stack limit with fewer vars
///   3. Cache information such as component addresses and basket quantities, to save on gas
struct TradingContext {
    BasketRange basketsHeld; // {BU}
    // basketsHeld.top is the number of partial baskets units held
    // basketsHeld.bottom is the number of full basket units held

    // Components
    IBasketHandler bh;
    IAssetRegistry ar;
    IStRSR stRSR;
    IERC20 rsr;
    IRToken rToken;
    // Gov Vars
    uint192 minTradeVolume; // {UoA}
    uint192 maxTradeSlippage; // {1}
    // Cached values
    uint192[] quantities; // {tok/BU} basket quantities
    uint192[] bals; // {tok} balances in BackingManager + out on trades
}

/**
 * @title IBackingManager
 * @notice The BackingManager handles changes in the ERC20 balances that back an RToken.
 *   - It computes which trades to perform, if any, and initiates these trades with the Broker.
 *     - rebalance()
 *   - If already collateralized, excess assets are transferred to RevenueTraders.
 *     - forwardRevenue(IERC20[] calldata erc20s)
 */
interface IBackingManager is IComponent, ITrading {
    /// Emitted when the trading delay is changed
    /// @param oldVal The old trading delay
    /// @param newVal The new trading delay
    event TradingDelaySet(uint48 oldVal, uint48 newVal);

    /// Emitted when the backing buffer is changed
    /// @param oldVal The old backing buffer
    /// @param newVal The new backing buffer
    event BackingBufferSet(uint192 oldVal, uint192 newVal);

    // Initialization
    function init(
        IMain main_,
        uint48 tradingDelay_,
        uint192 backingBuffer_,
        uint192 maxTradeSlippage_,
        uint192 minTradeVolume_
    ) external;

    // Give RToken max allowance over a registered token
    /// @custom:refresher
    /// @custom:interaction
    function grantRTokenAllowance(IERC20) external;

    /// Apply the overall backing policy using the specified TradeKind, taking a haircut if unable
    /// @param kind TradeKind.DUTCH_AUCTION or TradeKind.BATCH_AUCTION
    /// @custom:interaction RCEI
    function rebalance(TradeKind kind) external;

    /// Forward revenue to RevenueTraders; reverts if not fully collateralized
    /// @param erc20s The tokens to forward
    /// @custom:interaction RCEI
    function forwardRevenue(IERC20[] calldata erc20s) external;

    /// Structs for trading
    /// @param basketsHeld The number of baskets held by the BackingManager
    /// @return ctx The TradingContext
    /// @return reg Contents of AssetRegistry.getRegistry()
    function tradingContext(BasketRange memory basketsHeld)
        external
        view
        returns (TradingContext memory ctx, Registry memory reg);
}

interface TestIBackingManager is IBackingManager, TestITrading {
    function tradingDelay() external view returns (uint48);

    function backingBuffer() external view returns (uint192);

    function setTradingDelay(uint48 val) external;

    function setBackingBuffer(uint192 val) external;
}

File 16 of 32 : IBasketHandler.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../libraries/Fixed.sol";
import "./IAsset.sol";
import "./IComponent.sol";

struct BasketRange {
    uint192 bottom; // {BU}
    uint192 top; // {BU}
}

/**
 * @title IBasketHandler
 * @notice The BasketHandler aims to maintain a reference basket of constant target unit amounts.
 * When a collateral token defaults, a new reference basket of equal target units is set.
 * When _all_ collateral tokens default for a target unit, only then is the basket allowed to fall
 *   in terms of target unit amounts. The basket is considered defaulted in this case.
 */
interface IBasketHandler is IComponent {
    /// Emitted when the prime basket is set
    /// @param erc20s The collateral tokens for the prime basket
    /// @param targetAmts {target/BU} A list of quantities of target unit per basket unit
    /// @param targetNames Each collateral token's targetName
    event PrimeBasketSet(IERC20[] erc20s, uint192[] targetAmts, bytes32[] targetNames);

    /// Emitted when the reference basket is set
    /// @param nonce {basketNonce} The basket nonce
    /// @param erc20s The list of collateral tokens in the reference basket
    /// @param refAmts {ref/BU} The reference amounts of the basket collateral tokens
    /// @param disabled True when the list of erc20s + refAmts may not be correct
    event BasketSet(uint256 indexed nonce, IERC20[] erc20s, uint192[] refAmts, bool disabled);

    /// Emitted when a backup config is set for a target unit
    /// @param targetName The name of the target unit as a bytes32
    /// @param max The max number to use from `erc20s`
    /// @param erc20s The set of backup collateral tokens
    event BackupConfigSet(bytes32 indexed targetName, uint256 max, IERC20[] erc20s);

    /// Emitted when the warmup period is changed
    /// @param oldVal The old warmup period
    /// @param newVal The new warmup period
    event WarmupPeriodSet(uint48 oldVal, uint48 newVal);

    /// Emitted when the status of a basket has changed
    /// @param oldStatus The previous basket status
    /// @param newStatus The new basket status
    event BasketStatusChanged(CollateralStatus oldStatus, CollateralStatus newStatus);

    /// Emitted when the last basket nonce available for redemption is changed
    /// @param oldVal The old value of lastCollateralized
    /// @param newVal The new value of lastCollateralized
    event LastCollateralizedChanged(uint48 oldVal, uint48 newVal);

    // Initialization
    function init(
        IMain main_,
        uint48 warmupPeriod_,
        bool reweightable_
    ) external;

    /// Set the prime basket
    /// For an index RToken (reweightable = true), use forceSetPrimeBasket to skip normalization
    /// @param erc20s The collateral tokens for the new prime basket
    /// @param targetAmts The target amounts (in) {target/BU} for the new prime basket
    ///                   required range: 1e9 values; absolute range irrelevant.
    /// @custom:governance
    function setPrimeBasket(IERC20[] calldata erc20s, uint192[] calldata targetAmts) external;

    /// Set the prime basket without normalizing targetAmts by the UoA of the current basket
    /// Works the same as setPrimeBasket for non-index RTokens (reweightable = false)
    /// @param erc20s The collateral tokens for the new prime basket
    /// @param targetAmts The target amounts (in) {target/BU} for the new prime basket
    ///                   required range: 1e9 values; absolute range irrelevant.
    /// @custom:governance
    function forceSetPrimeBasket(IERC20[] calldata erc20s, uint192[] calldata targetAmts) external;

    /// Set the backup configuration for a given target
    /// @param targetName The name of the target as a bytes32
    /// @param max The maximum number of collateral tokens to use from this target
    ///            Required range: 1-255
    /// @param erc20s A list of ordered backup collateral tokens
    /// @custom:governance
    function setBackupConfig(
        bytes32 targetName,
        uint256 max,
        IERC20[] calldata erc20s
    ) external;

    /// Default the basket in order to schedule a basket refresh
    /// @custom:protected
    function disableBasket() external;

    /// Governance-controlled setter to cause a basket switch explicitly
    /// @custom:governance
    /// @custom:interaction
    function refreshBasket() external;

    /// Track basket status and collateralization changes
    /// @custom:refresher
    function trackStatus() external;

    /// @return If the BackingManager has sufficient collateral to redeem the entire RToken supply
    function fullyCollateralized() external view returns (bool);

    /// @return status The worst CollateralStatus of all collateral in the basket
    function status() external view returns (CollateralStatus status);

    /// @return If the basket is ready to issue and trade
    function isReady() external view returns (bool);

    /// @param erc20 The ERC20 token contract for the asset
    /// @return {tok/BU} The whole token quantity of token in the reference basket
    /// Returns 0 if erc20 is not registered or not in the basket
    /// Returns FIX_MAX (in lieu of +infinity) if Collateral.refPerTok() is 0.
    /// Otherwise, returns (token's basket.refAmts / token's Collateral.refPerTok())
    function quantity(IERC20 erc20) external view returns (uint192);

    /// Like quantity(), but unsafe because it DOES NOT CONFIRM THAT THE ASSET IS CORRECT
    /// @param erc20 The ERC20 token contract for the asset
    /// @param asset The registered asset plugin contract for the erc20
    /// @return {tok/BU} The whole token quantity of token in the reference basket
    /// Returns 0 if erc20 is not registered or not in the basket
    /// Returns FIX_MAX (in lieu of +infinity) if Collateral.refPerTok() is 0.
    /// Otherwise, returns (token's basket.refAmts / token's Collateral.refPerTok())
    function quantityUnsafe(IERC20 erc20, IAsset asset) external view returns (uint192);

    /// @param amount {BU}
    /// @return erc20s The addresses of the ERC20 tokens in the reference basket
    /// @return quantities {qTok} The quantity of each ERC20 token to issue `amount` baskets
    function quote(uint192 amount, RoundingMode rounding)
        external
        view
        returns (address[] memory erc20s, uint256[] memory quantities);

    /// Return the redemption value of `amount` BUs for a linear combination of historical baskets
    /// @param basketNonces An array of basket nonces to do redemption from
    /// @param portions {1} An array of Fix quantities that must add up to FIX_ONE
    /// @param amount {BU}
    /// @return erc20s The backing collateral erc20s
    /// @return quantities {qTok} ERC20 token quantities equal to `amount` BUs
    function quoteCustomRedemption(
        uint48[] memory basketNonces,
        uint192[] memory portions,
        uint192 amount
    ) external view returns (address[] memory erc20s, uint256[] memory quantities);

    /// @return top {BU} The number of partial basket units: e.g max(coll.map((c) => c.balAsBUs())
    ///         bottom {BU} The number of whole basket units held by the account
    function basketsHeldBy(address account) external view returns (BasketRange memory);

    /// Should not revert
    /// low should be nonzero when BUs are worth selling
    /// @return low {UoA/BU} The lower end of the price estimate
    /// @return high {UoA/BU} The upper end of the price estimate
    function price() external view returns (uint192 low, uint192 high);

    /// Should not revert
    /// lotLow should be nonzero if a BU could be worth selling
    /// @dev Deprecated. Phased out in 3.1.0, but left on interface for backwards compatibility
    /// @return lotLow {UoA/tok} The lower end of the lot price estimate
    /// @return lotHigh {UoA/tok} The upper end of the lot price estimate
    function lotPrice() external view returns (uint192 lotLow, uint192 lotHigh);

    /// @return timestamp The timestamp at which the basket was last set
    function timestamp() external view returns (uint48);

    /// @return The current basket nonce, regardless of status
    function nonce() external view returns (uint48);
}

interface TestIBasketHandler is IBasketHandler {
    function lastCollateralized() external view returns (uint48);

    function warmupPeriod() external view returns (uint48);

    function setWarmupPeriod(uint48 val) external;
}

File 17 of 32 : IBroker.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IAsset.sol";
import "./IComponent.sol";
import "./IGnosis.sol";
import "./ITrade.sol";

enum TradeKind {
    DUTCH_AUCTION,
    BATCH_AUCTION
}

/// Cache of all prices for a pair to prevent re-lookup
struct TradePrices {
    uint192 sellLow; // {UoA/sellTok} can be 0
    uint192 sellHigh; // {UoA/sellTok} should not be 0
    uint192 buyLow; // {UoA/buyTok} should not be 0
    uint192 buyHigh; // {UoA/buyTok} should not be 0 or FIX_MAX
}

/// The data format that describes a request for trade with the Broker
struct TradeRequest {
    IAsset sell;
    IAsset buy;
    uint256 sellAmount; // {qSellTok}
    uint256 minBuyAmount; // {qBuyTok}
}

/**
 * @title IBroker
 * @notice The Broker deploys oneshot Trade contracts for Traders and monitors
 *   the continued proper functioning of trading platforms.
 */
interface IBroker is IComponent {
    event GnosisSet(IGnosis oldVal, IGnosis newVal);
    event BatchTradeImplementationSet(ITrade oldVal, ITrade newVal);
    event DutchTradeImplementationSet(ITrade oldVal, ITrade newVal);
    event BatchAuctionLengthSet(uint48 oldVal, uint48 newVal);
    event DutchAuctionLengthSet(uint48 oldVal, uint48 newVal);
    event BatchTradeDisabledSet(bool prevVal, bool newVal);
    event DutchTradeDisabledSet(IERC20Metadata indexed erc20, bool prevVal, bool newVal);

    // Initialization
    function init(
        IMain main_,
        IGnosis gnosis_,
        ITrade batchTradeImplemention_,
        uint48 batchAuctionLength_,
        ITrade dutchTradeImplemention_,
        uint48 dutchAuctionLength_
    ) external;

    /// Request a trade from the broker
    /// @dev Requires setting an allowance in advance
    /// @custom:interaction
    function openTrade(
        TradeKind kind,
        TradeRequest memory req,
        TradePrices memory prices
    ) external returns (ITrade);

    /// Only callable by one of the trading contracts the broker deploys
    function reportViolation() external;

    function batchTradeDisabled() external view returns (bool);

    function dutchTradeDisabled(IERC20Metadata erc20) external view returns (bool);
}

interface TestIBroker is IBroker {
    function gnosis() external view returns (IGnosis);

    function batchTradeImplementation() external view returns (ITrade);

    function dutchTradeImplementation() external view returns (ITrade);

    function batchAuctionLength() external view returns (uint48);

    function dutchAuctionLength() external view returns (uint48);

    function setGnosis(IGnosis newGnosis) external;

    function setBatchTradeImplementation(ITrade newTradeImplementation) external;

    function setBatchAuctionLength(uint48 newAuctionLength) external;

    function setDutchTradeImplementation(ITrade newTradeImplementation) external;

    function setDutchAuctionLength(uint48 newAuctionLength) external;

    function enableBatchTrade() external;

    function enableDutchTrade(IERC20Metadata erc20) external;

    // only present on pre-3.0.0 Brokers; used by EasyAuction regression test
    function disabled() external view returns (bool);
}

File 18 of 32 : IComponent.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "./IMain.sol";
import "./IVersioned.sol";

/**
 * @title IComponent
 * @notice A Component is the central building block of all our system contracts. Components
 *   contain important state that must be migrated during upgrades, and they delegate
 *   their ownership to Main's owner.
 */
interface IComponent is IVersioned {
    function main() external view returns (IMain);
}

File 19 of 32 : IDistributor.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IComponent.sol";

uint256 constant MAX_DISTRIBUTION = 1e4; // 10,000
uint8 constant MAX_DESTINATIONS = 100; // maximum number of RevenueShare destinations

struct RevenueShare {
    uint16 rTokenDist; // {revShare} A value between [0, 10,000]
    uint16 rsrDist; // {revShare} A value between [0, 10,000]
}

/// Assumes no more than 100 independent distributions.
struct RevenueTotals {
    uint24 rTokenTotal; // {revShare}
    uint24 rsrTotal; // {revShare}
}

/**
 * @title IDistributor
 * @notice The Distributor Component maintains a revenue distribution table that dictates
 *   how to divide revenue across the Furnace, StRSR, and any other destinations.
 */
interface IDistributor is IComponent {
    /// Emitted when a distribution is set
    /// @param dest The address set to receive the distribution
    /// @param rTokenDist The distribution of RToken that should go to `dest`
    /// @param rsrDist The distribution of RSR that should go to `dest`
    event DistributionSet(address indexed dest, uint16 rTokenDist, uint16 rsrDist);

    /// Emitted when revenue is distributed
    /// @param erc20 The token being distributed, either RSR or the RToken itself
    /// @param source The address providing the revenue
    /// @param amount The amount of the revenue
    event RevenueDistributed(IERC20 indexed erc20, address indexed source, uint256 amount);

    // Initialization
    function init(IMain main_, RevenueShare memory dist) external;

    /// @custom:governance
    function setDistribution(address dest, RevenueShare memory share) external;

    /// Distribute the `erc20` token across all revenue destinations
    /// Only callable by RevenueTraders
    /// @custom:protected
    function distribute(IERC20 erc20, uint256 amount) external;

    /// @return revTotals The total of all  destinations
    function totals() external view returns (RevenueTotals memory revTotals);
}

interface TestIDistributor is IDistributor {
    // solhint-disable-next-line func-name-mixedcase
    function FURNACE() external view returns (address);

    // solhint-disable-next-line func-name-mixedcase
    function ST_RSR() external view returns (address);

    /// @return rTokenDist The RToken distribution for the address
    /// @return rsrDist The RSR distribution for the address
    function distribution(address) external view returns (uint16 rTokenDist, uint16 rsrDist);
}

File 20 of 32 : IFurnace.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "../libraries/Fixed.sol";
import "./IComponent.sol";

/**
 * @title IFurnace
 * @notice A helper contract to burn RTokens slowly and permisionlessly.
 */
interface IFurnace is IComponent {
    // Initialization
    function init(IMain main_, uint192 ratio_) external;

    /// Emitted when the melting ratio is changed
    /// @param oldRatio The old ratio
    /// @param newRatio The new ratio
    event RatioSet(uint192 oldRatio, uint192 newRatio);

    function ratio() external view returns (uint192);

    ///    Needed value range: [0, 1], granularity 1e-9
    /// @custom:governance
    function setRatio(uint192) external;

    /// Performs any RToken melting that has vested since the last payout.
    /// @custom:refresher
    function melt() external;
}

interface TestIFurnace is IFurnace {
    function lastPayout() external view returns (uint256);

    function lastPayoutBal() external view returns (uint256);
}

File 21 of 32 : IGnosis.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

struct GnosisAuctionData {
    IERC20 auctioningToken;
    IERC20 biddingToken;
    uint256 orderCancellationEndDate;
    uint256 auctionEndDate;
    bytes32 initialAuctionOrder;
    uint256 minimumBiddingAmountPerOrder;
    uint256 interimSumBidAmount;
    bytes32 interimOrder;
    bytes32 clearingPriceOrder;
    uint96 volumeClearingPriceOrder;
    bool minFundingThresholdNotReached;
    bool isAtomicClosureAllowed;
    uint256 feeNumerator;
    uint256 minFundingThreshold;
}

/// The relevant portion of the interface of the live Gnosis EasyAuction contract
/// https://github.com/gnosis/ido-contracts/blob/main/contracts/EasyAuction.sol
interface IGnosis {
    function initiateAuction(
        IERC20 auctioningToken,
        IERC20 biddingToken,
        uint256 orderCancellationEndDate,
        uint256 auctionEndDate,
        uint96 auctionedSellAmount,
        uint96 minBuyAmount,
        uint256 minimumBiddingAmountPerOrder,
        uint256 minFundingThreshold,
        bool isAtomicClosureAllowed,
        address accessManagerContract,
        bytes memory accessManagerContractData
    ) external returns (uint256 auctionId);

    function auctionData(uint256 auctionId) external view returns (GnosisAuctionData memory);

    /// @param auctionId The external auction id
    /// @dev See here for decoding: https://git.io/JMang
    /// @return encodedOrder The order, encoded in a bytes 32
    function settleAuction(uint256 auctionId) external returns (bytes32 encodedOrder);

    /// @return The numerator over a 1000-valued denominator
    function feeNumerator() external returns (uint256);
}

File 22 of 32 : IMain.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts-upgradeable/access/IAccessControlUpgradeable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IAssetRegistry.sol";
import "./IBasketHandler.sol";
import "./IBackingManager.sol";
import "./IBroker.sol";
import "./IDistributor.sol";
import "./IFurnace.sol";
import "./IGnosis.sol";
import "./IRToken.sol";
import "./IRevenueTrader.sol";
import "./IStRSR.sol";
import "./ITrading.sol";
import "./IVersioned.sol";

// === Auth roles ===

bytes32 constant OWNER = bytes32(bytes("OWNER"));
bytes32 constant SHORT_FREEZER = bytes32(bytes("SHORT_FREEZER"));
bytes32 constant LONG_FREEZER = bytes32(bytes("LONG_FREEZER"));
bytes32 constant PAUSER = bytes32(bytes("PAUSER"));

/**
 * Main is a central hub that maintains a list of Component contracts.
 *
 * Components:
 *   - perform a specific function
 *   - defer auth to Main
 *   - usually (but not always) contain sizeable state that require a proxy
 */
struct Components {
    // Definitely need proxy
    IRToken rToken;
    IStRSR stRSR;
    IAssetRegistry assetRegistry;
    IBasketHandler basketHandler;
    IBackingManager backingManager;
    IDistributor distributor;
    IFurnace furnace;
    IBroker broker;
    IRevenueTrader rsrTrader;
    IRevenueTrader rTokenTrader;
}

interface IAuth is IAccessControlUpgradeable {
    /// Emitted when `unfreezeAt` is changed
    /// @param oldVal The old value of `unfreezeAt`
    /// @param newVal The new value of `unfreezeAt`
    event UnfreezeAtSet(uint48 oldVal, uint48 newVal);

    /// Emitted when the short freeze duration governance param is changed
    /// @param oldDuration The old short freeze duration
    /// @param newDuration The new short freeze duration
    event ShortFreezeDurationSet(uint48 oldDuration, uint48 newDuration);

    /// Emitted when the long freeze duration governance param is changed
    /// @param oldDuration The old long freeze duration
    /// @param newDuration The new long freeze duration
    event LongFreezeDurationSet(uint48 oldDuration, uint48 newDuration);

    /// Emitted when the system is paused or unpaused for trading
    /// @param oldVal The old value of `tradingPaused`
    /// @param newVal The new value of `tradingPaused`
    event TradingPausedSet(bool oldVal, bool newVal);

    /// Emitted when the system is paused or unpaused for issuance
    /// @param oldVal The old value of `issuancePaused`
    /// @param newVal The new value of `issuancePaused`
    event IssuancePausedSet(bool oldVal, bool newVal);

    /**
     * Trading Paused: Disable everything except for OWNER actions, RToken.issue, RToken.redeem,
     * StRSR.stake, and StRSR.payoutRewards
     * Issuance Paused: Disable RToken.issue
     * Frozen: Disable everything except for OWNER actions + StRSR.stake (for governance)
     */

    function tradingPausedOrFrozen() external view returns (bool);

    function issuancePausedOrFrozen() external view returns (bool);

    function frozen() external view returns (bool);

    function shortFreeze() external view returns (uint48);

    function longFreeze() external view returns (uint48);

    // ====

    // onlyRole(OWNER)
    function freezeForever() external;

    // onlyRole(SHORT_FREEZER)
    function freezeShort() external;

    // onlyRole(LONG_FREEZER)
    function freezeLong() external;

    // onlyRole(OWNER)
    function unfreeze() external;

    function pauseTrading() external;

    function unpauseTrading() external;

    function pauseIssuance() external;

    function unpauseIssuance() external;
}

interface IComponentRegistry {
    // === Component setters/getters ===

    event RTokenSet(IRToken indexed oldVal, IRToken indexed newVal);

    function rToken() external view returns (IRToken);

    event StRSRSet(IStRSR oldVal, IStRSR newVal);

    function stRSR() external view returns (IStRSR);

    event AssetRegistrySet(IAssetRegistry oldVal, IAssetRegistry newVal);

    function assetRegistry() external view returns (IAssetRegistry);

    event BasketHandlerSet(IBasketHandler oldVal, IBasketHandler newVal);

    function basketHandler() external view returns (IBasketHandler);

    event BackingManagerSet(IBackingManager oldVal, IBackingManager newVal);

    function backingManager() external view returns (IBackingManager);

    event DistributorSet(IDistributor oldVal, IDistributor newVal);

    function distributor() external view returns (IDistributor);

    event RSRTraderSet(IRevenueTrader oldVal, IRevenueTrader newVal);

    function rsrTrader() external view returns (IRevenueTrader);

    event RTokenTraderSet(IRevenueTrader oldVal, IRevenueTrader newVal);

    function rTokenTrader() external view returns (IRevenueTrader);

    event FurnaceSet(IFurnace oldVal, IFurnace newVal);

    function furnace() external view returns (IFurnace);

    event BrokerSet(IBroker oldVal, IBroker newVal);

    function broker() external view returns (IBroker);
}

/**
 * @title IMain
 * @notice The central hub for the entire system. Maintains components and an owner singleton role
 */
interface IMain is IVersioned, IAuth, IComponentRegistry {
    function poke() external; // not used in p1

    // === Initialization ===

    event MainInitialized();

    function init(
        Components memory components,
        IERC20 rsr_,
        uint48 shortFreeze_,
        uint48 longFreeze_
    ) external;

    function rsr() external view returns (IERC20);
}

interface TestIMain is IMain {
    /// @custom:governance
    function setShortFreeze(uint48) external;

    /// @custom:governance
    function setLongFreeze(uint48) external;

    function shortFreeze() external view returns (uint48);

    function longFreeze() external view returns (uint48);

    function longFreezes(address account) external view returns (uint256);

    function tradingPaused() external view returns (bool);

    function issuancePaused() external view returns (bool);
}

File 23 of 32 : IRevenueTrader.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "./IComponent.sol";
import "./ITrading.sol";

/**
 * @title IRevenueTrader
 * @notice The RevenueTrader is an extension of the trading mixin that trades all
 *   assets at its address for a single target asset. There are two runtime instances
 *   of the RevenueTrader, 1 for RToken and 1 for RSR.
 */
interface IRevenueTrader is IComponent, ITrading {
    // Initialization
    function init(
        IMain main_,
        IERC20 tokenToBuy_,
        uint192 maxTradeSlippage_,
        uint192 minTradeVolume_
    ) external;

    /// Distribute tokenToBuy to its destinations
    /// @dev Special-case of manageTokens()
    /// @custom:interaction
    function distributeTokenToBuy() external;

    /// Return registered ERC20s to the BackingManager if distribution for tokenToBuy is 0
    /// @custom:interaction
    function returnTokens(IERC20[] memory erc20s) external;

    /// Process some number of tokens
    /// If the tokenToBuy is included in erc20s, RevenueTrader will distribute it at end of the tx
    /// @param erc20s The ERC20s to manage; can be tokenToBuy or anything registered
    /// @param kinds The kinds of auctions to launch: DUTCH_AUCTION | BATCH_AUCTION
    /// @custom:interaction
    function manageTokens(IERC20[] memory erc20s, TradeKind[] memory kinds) external;

    function tokenToBuy() external view returns (IERC20);
}

// solhint-disable-next-line no-empty-blocks
interface TestIRevenueTrader is IRevenueTrader, TestITrading {

}

File 24 of 32 : IRewardable.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title IRewardable
 * @notice A simple interface mixin to support claiming of rewards.
 */
interface IRewardable {
    /// Emitted whenever a reward token balance is claimed
    /// @param erc20 The ERC20 of the reward token
    /// @param amount {qTok}
    event RewardsClaimed(IERC20 indexed erc20, uint256 amount);

    /// Claim rewards earned by holding a balance of the ERC20 token
    /// Must emit `RewardsClaimed` for each token rewards are claimed for
    /// @custom:interaction
    function claimRewards() external;
}

/**
 * @title IRewardableComponent
 * @notice A simple interface mixin to support claiming of rewards.
 */
interface IRewardableComponent is IRewardable {
    /// Claim rewards for a single ERC20
    /// Must emit `RewardsClaimed` for each token rewards are claimed for
    /// @custom:interaction
    function claimRewardsSingle(IERC20 erc20) external;
}

File 25 of 32 : IRToken.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol";
// solhint-disable-next-line max-line-length
import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-IERC20PermitUpgradeable.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../libraries/Fixed.sol";
import "../libraries/Throttle.sol";
import "./IComponent.sol";

/**
 * @title IRToken
 * @notice An RToken is an ERC20 that is permissionlessly issuable/redeemable and tracks an
 *   exchange rate against a single unit: baskets, or {BU} in our type notation.
 */
interface IRToken is IComponent, IERC20MetadataUpgradeable, IERC20PermitUpgradeable {
    /// Emitted when an issuance of RToken occurs, whether it occurs via slow minting or not
    /// @param issuer The address holding collateral tokens
    /// @param recipient The address of the recipient of the RTokens
    /// @param amount The quantity of RToken being issued
    /// @param baskets The corresponding number of baskets
    event Issuance(
        address indexed issuer,
        address indexed recipient,
        uint256 amount,
        uint192 baskets
    );

    /// Emitted when a redemption of RToken occurs
    /// @param redeemer The address holding RToken
    /// @param recipient The address of the account receiving the backing collateral tokens
    /// @param amount The quantity of RToken being redeemed
    /// @param baskets The corresponding number of baskets
    /// @param amount {qRTok} The amount of RTokens canceled
    event Redemption(
        address indexed redeemer,
        address indexed recipient,
        uint256 amount,
        uint192 baskets
    );

    /// Emitted when the number of baskets needed changes
    /// @param oldBasketsNeeded Previous number of baskets units needed
    /// @param newBasketsNeeded New number of basket units needed
    event BasketsNeededChanged(uint192 oldBasketsNeeded, uint192 newBasketsNeeded);

    /// Emitted when RToken is melted, i.e the RToken supply is decreased but basketsNeeded is not
    /// @param amount {qRTok}
    event Melted(uint256 amount);

    /// Emitted when issuance SupplyThrottle params are set
    event IssuanceThrottleSet(ThrottleLib.Params oldVal, ThrottleLib.Params newVal);

    /// Emitted when redemption SupplyThrottle params are set
    event RedemptionThrottleSet(ThrottleLib.Params oldVal, ThrottleLib.Params newVal);

    // Initialization
    function init(
        IMain main_,
        string memory name_,
        string memory symbol_,
        string memory mandate_,
        ThrottleLib.Params calldata issuanceThrottleParams,
        ThrottleLib.Params calldata redemptionThrottleParams
    ) external;

    /// Issue an RToken with basket collateral
    /// @param amount {qRTok} The quantity of RToken to issue
    /// @custom:interaction
    function issue(uint256 amount) external;

    /// Issue an RToken with basket collateral, to a particular recipient
    /// @param recipient The address to receive the issued RTokens
    /// @param amount {qRTok} The quantity of RToken to issue
    /// @custom:interaction
    function issueTo(address recipient, uint256 amount) external;

    /// Redeem RToken for basket collateral
    /// @dev Use redeemCustom for non-current baskets
    /// @param amount {qRTok} The quantity {qRToken} of RToken to redeem
    /// @custom:interaction
    function redeem(uint256 amount) external;

    /// Redeem RToken for basket collateral to a particular recipient
    /// @dev Use redeemCustom for non-current baskets
    /// @param recipient The address to receive the backing collateral tokens
    /// @param amount {qRTok} The quantity {qRToken} of RToken to redeem
    /// @custom:interaction
    function redeemTo(address recipient, uint256 amount) external;

    /// Redeem RToken for a linear combination of historical baskets, to a particular recipient
    /// @dev Allows partial redemptions up to the minAmounts
    /// @param recipient The address to receive the backing collateral tokens
    /// @param amount {qRTok} The quantity {qRToken} of RToken to redeem
    /// @param basketNonces An array of basket nonces to do redemption from
    /// @param portions {1} An array of Fix quantities that must add up to FIX_ONE
    /// @param expectedERC20sOut An array of ERC20s expected out
    /// @param minAmounts {qTok} The minimum ERC20 quantities the caller should receive
    /// @custom:interaction
    function redeemCustom(
        address recipient,
        uint256 amount,
        uint48[] memory basketNonces,
        uint192[] memory portions,
        address[] memory expectedERC20sOut,
        uint256[] memory minAmounts
    ) external;

    /// Mint an amount of RToken equivalent to baskets BUs, scaling basketsNeeded up
    /// Callable only by BackingManager
    /// @param baskets {BU} The number of baskets to mint RToken for
    /// @custom:protected
    function mint(uint192 baskets) external;

    /// Melt a quantity of RToken from the caller's account
    /// @param amount {qRTok} The amount to be melted
    /// @custom:protected
    function melt(uint256 amount) external;

    /// Burn an amount of RToken from caller's account and scale basketsNeeded down
    /// Callable only by BackingManager
    /// @custom:protected
    function dissolve(uint256 amount) external;

    /// Set the number of baskets needed directly, callable only by the BackingManager
    /// @param basketsNeeded {BU} The number of baskets to target
    ///                      needed range: pretty interesting
    /// @custom:protected
    function setBasketsNeeded(uint192 basketsNeeded) external;

    /// @return {BU} How many baskets are being targeted
    function basketsNeeded() external view returns (uint192);

    /// @return {qRTok} The maximum issuance that can be performed in the current block
    function issuanceAvailable() external view returns (uint256);

    /// @return {qRTok} The maximum redemption that can be performed in the current block
    function redemptionAvailable() external view returns (uint256);
}

interface TestIRToken is IRToken {
    function setIssuanceThrottleParams(ThrottleLib.Params calldata) external;

    function setRedemptionThrottleParams(ThrottleLib.Params calldata) external;

    function issuanceThrottleParams() external view returns (ThrottleLib.Params memory);

    function redemptionThrottleParams() external view returns (ThrottleLib.Params memory);

    function increaseAllowance(address, uint256) external returns (bool);

    function decreaseAllowance(address, uint256) external returns (bool);

    function monetizeDonations(IERC20) external;
}

File 26 of 32 : IStRSR.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/IERC20MetadataUpgradeable.sol";
// solhint-disable-next-line max-line-length
import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-IERC20PermitUpgradeable.sol";
import "../libraries/Fixed.sol";
import "./IComponent.sol";

/**
 * @title IStRSR
 * @notice An ERC20 token representing shares of the RSR over-collateralization pool.
 *
 * StRSR permits the BackingManager to take RSR in times of need. In return, the BackingManager
 * benefits the StRSR pool with RSR rewards purchased with a portion of its revenue.
 *
 * In the absence of collateral default or losses due to slippage, StRSR should have a
 * monotonically increasing exchange rate with respect to RSR, meaning that over time
 * StRSR is redeemable for more RSR. It is non-rebasing.
 */
interface IStRSR is IERC20MetadataUpgradeable, IERC20PermitUpgradeable, IComponent {
    /// Emitted when RSR is staked
    /// @param era The era at time of staking
    /// @param staker The address of the staker
    /// @param rsrAmount {qRSR} How much RSR was staked
    /// @param stRSRAmount {qStRSR} How much stRSR was minted by this staking
    event Staked(
        uint256 indexed era,
        address indexed staker,
        uint256 rsrAmount,
        uint256 stRSRAmount
    );

    /// Emitted when an unstaking is started
    /// @param draftId The id of the draft.
    /// @param draftEra The era of the draft.
    /// @param staker The address of the unstaker
    ///   The triple (staker, draftEra, draftId) is a unique ID
    /// @param rsrAmount {qRSR} How much RSR this unstaking will be worth, absent seizures
    /// @param stRSRAmount {qStRSR} How much stRSR was burned by this unstaking
    event UnstakingStarted(
        uint256 indexed draftId,
        uint256 indexed draftEra,
        address indexed staker,
        uint256 rsrAmount,
        uint256 stRSRAmount,
        uint256 availableAt
    );

    /// Emitted when RSR is unstaked
    /// @param firstId The beginning of the range of draft IDs withdrawn in this transaction
    /// @param endId The end of range of draft IDs withdrawn in this transaction
    ///   (ID i was withdrawn if firstId <= i < endId)
    /// @param draftEra The era of the draft.
    ///   The triple (staker, draftEra, id) is a unique ID among drafts
    /// @param staker The address of the unstaker

    /// @param rsrAmount {qRSR} How much RSR this unstaking was worth
    event UnstakingCompleted(
        uint256 indexed firstId,
        uint256 indexed endId,
        uint256 draftEra,
        address indexed staker,
        uint256 rsrAmount
    );

    /// Emitted when RSR unstaking is cancelled
    /// @param firstId The beginning of the range of draft IDs withdrawn in this transaction
    /// @param endId The end of range of draft IDs withdrawn in this transaction
    ///   (ID i was withdrawn if firstId <= i < endId)
    /// @param draftEra The era of the draft.
    ///   The triple (staker, draftEra, id) is a unique ID among drafts
    /// @param staker The address of the unstaker

    /// @param rsrAmount {qRSR} How much RSR this unstaking was worth
    event UnstakingCancelled(
        uint256 indexed firstId,
        uint256 indexed endId,
        uint256 draftEra,
        address indexed staker,
        uint256 rsrAmount
    );

    /// Emitted whenever the exchange rate changes
    event ExchangeRateSet(uint192 oldVal, uint192 newVal);

    /// Emitted whenever RSR are paids out
    event RewardsPaid(uint256 rsrAmt);

    /// Emitted if all the RSR in the staking pool is seized and all balances are reset to zero.
    event AllBalancesReset(uint256 indexed newEra);
    /// Emitted if all the RSR in the unstakin pool is seized, and all ongoing unstaking is voided.
    event AllUnstakingReset(uint256 indexed newEra);

    event UnstakingDelaySet(uint48 oldVal, uint48 newVal);
    event RewardRatioSet(uint192 oldVal, uint192 newVal);
    event WithdrawalLeakSet(uint192 oldVal, uint192 newVal);

    // Initialization
    function init(
        IMain main_,
        string memory name_,
        string memory symbol_,
        uint48 unstakingDelay_,
        uint192 rewardRatio_,
        uint192 withdrawalLeak_
    ) external;

    /// Gather and payout rewards from rsrTrader
    /// @custom:interaction
    function payoutRewards() external;

    /// Stakes an RSR `amount` on the corresponding RToken to earn yield and over-collateralized
    /// the system
    /// @param amount {qRSR}
    /// @custom:interaction
    function stake(uint256 amount) external;

    /// Begins a delayed unstaking for `amount` stRSR
    /// @param amount {qStRSR}
    /// @custom:interaction
    function unstake(uint256 amount) external;

    /// Complete delayed unstaking for the account, up to (but not including!) `endId`
    /// @custom:interaction
    function withdraw(address account, uint256 endId) external;

    /// Cancel unstaking for the account, up to (but not including!) `endId`
    /// @custom:interaction
    function cancelUnstake(uint256 endId) external;

    /// Seize RSR, only callable by main.backingManager()
    /// @custom:protected
    function seizeRSR(uint256 amount) external;

    /// Reset all stakes and advance era
    /// @custom:governance
    function resetStakes() external;

    /// Return the maximum valid value of endId such that withdraw(endId) should immediately work
    function endIdForWithdraw(address account) external view returns (uint256 endId);

    /// @return {qRSR/qStRSR} The exchange rate between RSR and StRSR
    function exchangeRate() external view returns (uint192);
}

interface TestIStRSR is IStRSR {
    function rewardRatio() external view returns (uint192);

    function setRewardRatio(uint192) external;

    function unstakingDelay() external view returns (uint48);

    function setUnstakingDelay(uint48) external;

    function withdrawalLeak() external view returns (uint192);

    function setWithdrawalLeak(uint192) external;

    function increaseAllowance(address, uint256) external returns (bool);

    function decreaseAllowance(address, uint256) external returns (bool);

    /// @return {qStRSR/qRSR} The exchange rate between StRSR and RSR
    function exchangeRate() external view returns (uint192);
}

File 27 of 32 : ITrade.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IBroker.sol";
import "./IVersioned.sol";

enum TradeStatus {
    NOT_STARTED, // before init()
    OPEN, // after init() and before settle()
    CLOSED, // after settle()
    // === Intermediate-tx state ===
    PENDING // during init() or settle() (reentrancy protection)
}

/**
 * Simple generalized trading interface for all Trade contracts to obey
 *
 * Usage: if (canSettle()) settle()
 */
interface ITrade is IVersioned {
    /// Complete the trade and transfer tokens back to the origin trader
    /// @return soldAmt {qSellTok} The quantity of tokens sold
    /// @return boughtAmt {qBuyTok} The quantity of tokens bought
    function settle() external returns (uint256 soldAmt, uint256 boughtAmt);

    function sell() external view returns (IERC20Metadata);

    function buy() external view returns (IERC20Metadata);

    /// @return {tok} The sell amount of the trade, in whole tokens
    function sellAmount() external view returns (uint192);

    /// @return The timestamp at which the trade is projected to become settle-able
    function endTime() external view returns (uint48);

    /// @return True if the trade can be settled
    /// @dev Should be guaranteed to be true eventually as an invariant
    function canSettle() external view returns (bool);

    /// @return TradeKind.DUTCH_AUCTION or TradeKind.BATCH_AUCTION
    // solhint-disable-next-line func-name-mixedcase
    function KIND() external view returns (TradeKind);
}

File 28 of 32 : ITrading.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../libraries/Fixed.sol";
import "./IComponent.sol";
import "./ITrade.sol";
import "./IRewardable.sol";

/**
 * @title ITrading
 * @notice Common events and refresher function for all Trading contracts
 */
interface ITrading is IComponent, IRewardableComponent {
    event MaxTradeSlippageSet(uint192 oldVal, uint192 newVal);
    event MinTradeVolumeSet(uint192 oldVal, uint192 newVal);

    /// Emitted when a trade is started
    /// @param trade The one-time-use trade contract that was just deployed
    /// @param sell The token to sell
    /// @param buy The token to buy
    /// @param sellAmount {qSellTok} The quantity of the selling token
    /// @param minBuyAmount {qBuyTok} The minimum quantity of the buying token to accept
    event TradeStarted(
        ITrade indexed trade,
        IERC20 indexed sell,
        IERC20 indexed buy,
        uint256 sellAmount,
        uint256 minBuyAmount
    );

    /// Emitted after a trade ends
    /// @param trade The one-time-use trade contract
    /// @param sell The token to sell
    /// @param buy The token to buy
    /// @param sellAmount {qSellTok} The quantity of the token sold
    /// @param buyAmount {qBuyTok} The quantity of the token bought
    event TradeSettled(
        ITrade indexed trade,
        IERC20 indexed sell,
        IERC20 indexed buy,
        uint256 sellAmount,
        uint256 buyAmount
    );

    /// Settle a single trade, expected to be used with multicall for efficient mass settlement
    /// @param sell The sell token in the trade
    /// @return The trade settled
    /// @custom:refresher
    function settleTrade(IERC20 sell) external returns (ITrade);

    /// @return {%} The maximum trade slippage acceptable
    function maxTradeSlippage() external view returns (uint192);

    /// @return {UoA} The minimum trade volume in UoA, applies to all assets
    function minTradeVolume() external view returns (uint192);

    /// @return The ongoing trade for a sell token, or the zero address
    function trades(IERC20 sell) external view returns (ITrade);

    /// @return The number of ongoing trades open
    function tradesOpen() external view returns (uint48);

    /// @return The number of total trades ever opened
    function tradesNonce() external view returns (uint256);
}

interface TestITrading is ITrading {
    /// @custom:governance
    function setMaxTradeSlippage(uint192 val) external;

    /// @custom:governance
    function setMinTradeVolume(uint192 val) external;
}

File 29 of 32 : IVersioned.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

interface IVersioned {
    function version() external view returns (string memory);
}

File 30 of 32 : Fixed.sol
// SPDX-License-Identifier: BlueOak-1.0.0
// solhint-disable func-name-mixedcase func-visibility
// slither-disable-start divide-before-multiply
pragma solidity ^0.8.19;

/// @title FixedPoint, a fixed-point arithmetic library defining the custom type uint192
/// @author Matt Elder <[email protected]> and the Reserve Team <https://reserve.org>

/** The logical type `uint192 ` is a 192 bit value, representing an 18-decimal Fixed-point
    fractional value.  This is what's described in the Solidity documentation as
    "fixed192x18" -- a value represented by 192 bits, that makes 18 digits available to
    the right of the decimal point.

    The range of values that uint192 can represent is about [-1.7e20, 1.7e20].
    Unless a function explicitly says otherwise, it will fail on overflow.
    To be clear, the following should hold:
    toFix(0) == 0
    toFix(1) == 1e18
*/

// Analysis notes:
//   Every function should revert iff its result is out of bounds.
//   Unless otherwise noted, when a rounding mode is given, that mode is applied to
//     a single division that may happen as the last step in the computation.
//   Unless otherwise noted, when a rounding mode is *not* given but is needed, it's FLOOR.
//   For each, we comment:
//   - @return is the value expressed  in "value space", where uint192(1e18) "is" 1.0
//   - as-ints: is the value expressed in "implementation space", where uint192(1e18) "is" 1e18
//   The "@return" expression is suitable for actually using the library
//   The "as-ints" expression is suitable for testing

// A uint value passed to this library was out of bounds for uint192 operations
error UIntOutOfBounds();
bytes32 constant UIntOutofBoundsHash = keccak256(abi.encodeWithSignature("UIntOutOfBounds()"));

// Used by P1 implementation for easier casting
uint256 constant FIX_ONE_256 = 1e18;
uint8 constant FIX_DECIMALS = 18;

// If a particular uint192 is represented by the uint192 n, then the uint192 represents the
// value n/FIX_SCALE.
uint64 constant FIX_SCALE = 1e18;

// FIX_SCALE Squared:
uint128 constant FIX_SCALE_SQ = 1e36;

// The largest integer that can be converted to uint192 .
// This is a bit bigger than 3.1e39
uint192 constant FIX_MAX_INT = type(uint192).max / FIX_SCALE;

uint192 constant FIX_ZERO = 0; // The uint192 representation of zero.
uint192 constant FIX_ONE = FIX_SCALE; // The uint192 representation of one.
uint192 constant FIX_MAX = type(uint192).max; // The largest uint192. (Not an integer!)
uint192 constant FIX_MIN = 0; // The smallest uint192.

/// An enum that describes a rounding approach for converting to ints
enum RoundingMode {
    FLOOR, // Round towards zero
    ROUND, // Round to the nearest int
    CEIL // Round away from zero
}

RoundingMode constant FLOOR = RoundingMode.FLOOR;
RoundingMode constant ROUND = RoundingMode.ROUND;
RoundingMode constant CEIL = RoundingMode.CEIL;

/* @dev Solidity 0.8.x only allows you to change one of type or size per type conversion.
   Thus, all the tedious-looking double conversions like uint256(uint256 (foo))
   See: https://docs.soliditylang.org/en/v0.8.17/080-breaking-changes.html#new-restrictions
 */

/// Explicitly convert a uint256 to a uint192. Revert if the input is out of bounds.
function _safeWrap(uint256 x) pure returns (uint192) {
    if (FIX_MAX < x) revert UIntOutOfBounds();
    return uint192(x);
}

/// Convert a uint to its Fix representation.
/// @return x
// as-ints: x * 1e18
function toFix(uint256 x) pure returns (uint192) {
    return _safeWrap(x * FIX_SCALE);
}

/// Convert a uint to its fixed-point representation, and left-shift its value `shiftLeft`
/// decimal digits.
/// @return x * 10**shiftLeft
// as-ints: x * 10**(shiftLeft + 18)
function shiftl_toFix(uint256 x, int8 shiftLeft) pure returns (uint192) {
    return shiftl_toFix(x, shiftLeft, FLOOR);
}

/// @return x * 10**shiftLeft
// as-ints: x * 10**(shiftLeft + 18)
function shiftl_toFix(
    uint256 x,
    int8 shiftLeft,
    RoundingMode rounding
) pure returns (uint192) {
    // conditions for avoiding overflow
    if (x == 0) return 0;
    if (shiftLeft <= -96) return (rounding == CEIL ? 1 : 0); // 0 < uint.max / 10**77 < 0.5
    if (40 <= shiftLeft) revert UIntOutOfBounds(); // 10**56 < FIX_MAX < 10**57

    shiftLeft += 18;

    uint256 coeff = 10**abs(shiftLeft);
    uint256 shifted = (shiftLeft >= 0) ? x * coeff : _divrnd(x, coeff, rounding);

    return _safeWrap(shifted);
}

/// Divide a uint by a uint192, yielding a uint192
/// This may also fail if the result is MIN_uint192! not fixing this for optimization's sake.
/// @return x / y
// as-ints: x * 1e36 / y
function divFix(uint256 x, uint192 y) pure returns (uint192) {
    // If we didn't have to worry about overflow, we'd just do `return x * 1e36 / _y`
    // If it's safe to do this operation the easy way, do it:
    if (x < uint256(type(uint256).max / FIX_SCALE_SQ)) {
        return _safeWrap(uint256(x * FIX_SCALE_SQ) / y);
    } else {
        return _safeWrap(mulDiv256(x, FIX_SCALE_SQ, y));
    }
}

/// Divide a uint by a uint, yielding a  uint192
/// @return x / y
// as-ints: x * 1e18 / y
function divuu(uint256 x, uint256 y) pure returns (uint192) {
    return _safeWrap(mulDiv256(FIX_SCALE, x, y));
}

/// @return min(x,y)
// as-ints: min(x,y)
function fixMin(uint192 x, uint192 y) pure returns (uint192) {
    return x < y ? x : y;
}

/// @return max(x,y)
// as-ints: max(x,y)
function fixMax(uint192 x, uint192 y) pure returns (uint192) {
    return x > y ? x : y;
}

/// @return absoluteValue(x,y)
// as-ints: absoluteValue(x,y)
function abs(int256 x) pure returns (uint256) {
    return x < 0 ? uint256(-x) : uint256(x);
}

/// Divide two uints, returning a uint, using rounding mode `rounding`.
/// @return numerator / divisor
// as-ints: numerator / divisor
function _divrnd(
    uint256 numerator,
    uint256 divisor,
    RoundingMode rounding
) pure returns (uint256) {
    uint256 result = numerator / divisor;

    if (rounding == FLOOR) return result;

    if (rounding == ROUND) {
        if (numerator % divisor > (divisor - 1) / 2) {
            result++;
        }
    } else {
        if (numerator % divisor != 0) {
            result++;
        }
    }

    return result;
}

library FixLib {
    /// Again, all arithmetic functions fail if and only if the result is out of bounds.

    /// Convert this fixed-point value to a uint. Round towards zero if needed.
    /// @return x
    // as-ints: x / 1e18
    function toUint(uint192 x) internal pure returns (uint136) {
        return toUint(x, FLOOR);
    }

    /// Convert this uint192 to a uint
    /// @return x
    // as-ints: x / 1e18 with rounding
    function toUint(uint192 x, RoundingMode rounding) internal pure returns (uint136) {
        return uint136(_divrnd(uint256(x), FIX_SCALE, rounding));
    }

    /// Return the uint192 shifted to the left by `decimal` digits
    /// (Similar to a bitshift but in base 10)
    /// @return x * 10**decimals
    // as-ints: x * 10**decimals
    function shiftl(uint192 x, int8 decimals) internal pure returns (uint192) {
        return shiftl(x, decimals, FLOOR);
    }

    /// Return the uint192 shifted to the left by `decimal` digits
    /// (Similar to a bitshift but in base 10)
    /// @return x * 10**decimals
    // as-ints: x * 10**decimals
    function shiftl(
        uint192 x,
        int8 decimals,
        RoundingMode rounding
    ) internal pure returns (uint192) {
        // Handle overflow cases
        if (x == 0) return 0;
        if (decimals <= -59) return (rounding == CEIL ? 1 : 0); // 59, because 1e58 > 2**192
        if (58 <= decimals) revert UIntOutOfBounds(); // 58, because x * 1e58 > 2 ** 192 if x != 0

        uint256 coeff = uint256(10**abs(decimals));
        return _safeWrap(decimals >= 0 ? x * coeff : _divrnd(x, coeff, rounding));
    }

    /// Add a uint192 to this uint192
    /// @return x + y
    // as-ints: x + y
    function plus(uint192 x, uint192 y) internal pure returns (uint192) {
        return x + y;
    }

    /// Add a uint to this uint192
    /// @return x + y
    // as-ints: x + y*1e18
    function plusu(uint192 x, uint256 y) internal pure returns (uint192) {
        return _safeWrap(x + y * FIX_SCALE);
    }

    /// Subtract a uint192 from this uint192
    /// @return x - y
    // as-ints: x - y
    function minus(uint192 x, uint192 y) internal pure returns (uint192) {
        return x - y;
    }

    /// Subtract a uint from this uint192
    /// @return x - y
    // as-ints: x - y*1e18
    function minusu(uint192 x, uint256 y) internal pure returns (uint192) {
        return _safeWrap(uint256(x) - uint256(y * FIX_SCALE));
    }

    /// Multiply this uint192 by a uint192
    /// Round truncated values to the nearest available value. 5e-19 rounds away from zero.
    /// @return x * y
    // as-ints: x * y/1e18  [division using ROUND, not FLOOR]
    function mul(uint192 x, uint192 y) internal pure returns (uint192) {
        return mul(x, y, ROUND);
    }

    /// Multiply this uint192 by a uint192
    /// @return x * y
    // as-ints: x * y/1e18
    function mul(
        uint192 x,
        uint192 y,
        RoundingMode rounding
    ) internal pure returns (uint192) {
        return _safeWrap(_divrnd(uint256(x) * uint256(y), FIX_SCALE, rounding));
    }

    /// Multiply this uint192 by a uint
    /// @return x * y
    // as-ints: x * y
    function mulu(uint192 x, uint256 y) internal pure returns (uint192) {
        return _safeWrap(x * y);
    }

    /// Divide this uint192 by a uint192
    /// @return x / y
    // as-ints: x * 1e18 / y
    function div(uint192 x, uint192 y) internal pure returns (uint192) {
        return div(x, y, FLOOR);
    }

    /// Divide this uint192 by a uint192
    /// @return x / y
    // as-ints: x * 1e18 / y
    function div(
        uint192 x,
        uint192 y,
        RoundingMode rounding
    ) internal pure returns (uint192) {
        // Multiply-in FIX_SCALE before dividing by y to preserve precision.
        return _safeWrap(_divrnd(uint256(x) * FIX_SCALE, y, rounding));
    }

    /// Divide this uint192 by a uint
    /// @return x / y
    // as-ints: x / y
    function divu(uint192 x, uint256 y) internal pure returns (uint192) {
        return divu(x, y, FLOOR);
    }

    /// Divide this uint192 by a uint
    /// @return x / y
    // as-ints: x / y
    function divu(
        uint192 x,
        uint256 y,
        RoundingMode rounding
    ) internal pure returns (uint192) {
        return _safeWrap(_divrnd(x, y, rounding));
    }

    uint64 constant FIX_HALF = uint64(FIX_SCALE) / 2;

    /// Raise this uint192 to a nonnegative integer power. Requires that x_ <= FIX_ONE
    /// Gas cost is O(lg(y)), precision is +- 1e-18.
    /// @return x_ ** y
    // as-ints: x_ ** y / 1e18**(y-1)    <- technically correct for y = 0. :D
    function powu(uint192 x_, uint48 y) internal pure returns (uint192) {
        require(x_ <= FIX_ONE);
        if (y == 1) return x_;
        if (x_ == FIX_ONE || y == 0) return FIX_ONE;
        uint256 x = uint256(x_) * FIX_SCALE; // x is D36
        uint256 result = FIX_SCALE_SQ; // result is D36
        while (true) {
            if (y & 1 == 1) result = (result * x + FIX_SCALE_SQ / 2) / FIX_SCALE_SQ;
            if (y <= 1) break;
            y = (y >> 1);
            x = (x * x + FIX_SCALE_SQ / 2) / FIX_SCALE_SQ;
        }
        return _safeWrap(result / FIX_SCALE);
    }

    function sqrt(uint192 x) internal pure returns (uint192) {
        return _safeWrap(sqrt256(x * FIX_ONE_256)); // FLOOR
    }

    /// Comparison operators...
    function lt(uint192 x, uint192 y) internal pure returns (bool) {
        return x < y;
    }

    function lte(uint192 x, uint192 y) internal pure returns (bool) {
        return x <= y;
    }

    function gt(uint192 x, uint192 y) internal pure returns (bool) {
        return x > y;
    }

    function gte(uint192 x, uint192 y) internal pure returns (bool) {
        return x >= y;
    }

    function eq(uint192 x, uint192 y) internal pure returns (bool) {
        return x == y;
    }

    function neq(uint192 x, uint192 y) internal pure returns (bool) {
        return x != y;
    }

    /// Return whether or not this uint192 is less than epsilon away from y.
    /// @return |x - y| < epsilon
    // as-ints: |x - y| < epsilon
    function near(
        uint192 x,
        uint192 y,
        uint192 epsilon
    ) internal pure returns (bool) {
        uint192 diff = x <= y ? y - x : x - y;
        return diff < epsilon;
    }

    // ================ Chained Operations ================
    // The operation foo_bar() always means:
    //   Do foo() followed by bar(), and overflow only if the _end_ result doesn't fit in an uint192

    /// Shift this uint192 left by `decimals` digits, and convert to a uint
    /// @return x * 10**decimals
    // as-ints: x * 10**(decimals - 18)
    function shiftl_toUint(uint192 x, int8 decimals) internal pure returns (uint256) {
        return shiftl_toUint(x, decimals, FLOOR);
    }

    /// Shift this uint192 left by `decimals` digits, and convert to a uint.
    /// @return x * 10**decimals
    // as-ints: x * 10**(decimals - 18)
    function shiftl_toUint(
        uint192 x,
        int8 decimals,
        RoundingMode rounding
    ) internal pure returns (uint256) {
        // Handle overflow cases
        if (x == 0) return 0; // always computable, no matter what decimals is
        if (decimals <= -42) return (rounding == CEIL ? 1 : 0);
        if (96 <= decimals) revert UIntOutOfBounds();

        decimals -= 18; // shift so that toUint happens at the same time.

        uint256 coeff = uint256(10**abs(decimals));
        return decimals >= 0 ? uint256(x * coeff) : uint256(_divrnd(x, coeff, rounding));
    }

    /// Multiply this uint192 by a uint, and output the result as a uint
    /// @return x * y
    // as-ints: x * y / 1e18
    function mulu_toUint(uint192 x, uint256 y) internal pure returns (uint256) {
        return mulDiv256(uint256(x), y, FIX_SCALE);
    }

    /// Multiply this uint192 by a uint, and output the result as a uint
    /// @return x * y
    // as-ints: x * y / 1e18
    function mulu_toUint(
        uint192 x,
        uint256 y,
        RoundingMode rounding
    ) internal pure returns (uint256) {
        return mulDiv256(uint256(x), y, FIX_SCALE, rounding);
    }

    /// Multiply this uint192 by a uint192 and output the result as a uint
    /// @return x * y
    // as-ints: x * y / 1e36
    function mul_toUint(uint192 x, uint192 y) internal pure returns (uint256) {
        return mulDiv256(uint256(x), uint256(y), FIX_SCALE_SQ);
    }

    /// Multiply this uint192 by a uint192 and output the result as a uint
    /// @return x * y
    // as-ints: x * y / 1e36
    function mul_toUint(
        uint192 x,
        uint192 y,
        RoundingMode rounding
    ) internal pure returns (uint256) {
        return mulDiv256(uint256(x), uint256(y), FIX_SCALE_SQ, rounding);
    }

    /// Compute x * y / z avoiding intermediate overflow
    /// @dev Only use if you need to avoid overflow; costlier than x * y / z
    /// @return x * y / z
    // as-ints: x * y / z
    function muluDivu(
        uint192 x,
        uint256 y,
        uint256 z
    ) internal pure returns (uint192) {
        return muluDivu(x, y, z, FLOOR);
    }

    /// Compute x * y / z, avoiding intermediate overflow
    /// @dev Only use if you need to avoid overflow; costlier than x * y / z
    /// @return x * y / z
    // as-ints: x * y / z
    function muluDivu(
        uint192 x,
        uint256 y,
        uint256 z,
        RoundingMode rounding
    ) internal pure returns (uint192) {
        return _safeWrap(mulDiv256(x, y, z, rounding));
    }

    /// Compute x * y / z on Fixes, avoiding intermediate overflow
    /// @dev Only use if you need to avoid overflow; costlier than x * y / z
    /// @return x * y / z
    // as-ints: x * y / z
    function mulDiv(
        uint192 x,
        uint192 y,
        uint192 z
    ) internal pure returns (uint192) {
        return mulDiv(x, y, z, FLOOR);
    }

    /// Compute x * y / z on Fixes, avoiding intermediate overflow
    /// @dev Only use if you need to avoid overflow; costlier than x * y / z
    /// @return x * y / z
    // as-ints: x * y / z
    function mulDiv(
        uint192 x,
        uint192 y,
        uint192 z,
        RoundingMode rounding
    ) internal pure returns (uint192) {
        return _safeWrap(mulDiv256(x, y, z, rounding));
    }

    // === safe*() ===

    /// Multiply two fixes, rounding up to FIX_MAX and down to 0
    /// @param a First param to multiply
    /// @param b Second param to multiply
    function safeMul(
        uint192 a,
        uint192 b,
        RoundingMode rounding
    ) internal pure returns (uint192) {
        // untestable:
        //      a will never = 0 here because of the check in _price()
        if (a == 0 || b == 0) return 0;
        // untestable:
        //      a = FIX_MAX iff b = 0
        if (a == FIX_MAX || b == FIX_MAX) return FIX_MAX;

        // return FIX_MAX instead of throwing overflow errors.
        unchecked {
            // p and mul *are* Fix values, so have 18 decimals (D18)
            uint256 rawDelta = uint256(b) * a; // {D36} = {D18} * {D18}
            // if we overflowed, then return FIX_MAX
            if (rawDelta / b != a) return FIX_MAX;
            uint256 shiftDelta = rawDelta;

            // add in rounding
            if (rounding == RoundingMode.ROUND) shiftDelta += (FIX_ONE / 2);
            else if (rounding == RoundingMode.CEIL) shiftDelta += FIX_ONE - 1;

            // untestable (here there be dragons):
            // (below explanation is for the ROUND case, but it extends to the FLOOR/CEIL too)
            //          A)  shiftDelta = rawDelta + (FIX_ONE / 2)
            //      shiftDelta overflows if:
            //          B)  shiftDelta = MAX_UINT256 - FIX_ONE/2 + 1
            //              rawDelta + (FIX_ONE/2) = MAX_UINT256 - FIX_ONE/2 + 1
            //              b * a = MAX_UINT256 - FIX_ONE + 1
            //      therefore shiftDelta overflows if:
            //          C)  b = (MAX_UINT256 - FIX_ONE + 1) / a
            //      MAX_UINT256 ~= 1e77 , FIX_MAX ~= 6e57 (6e20 difference in magnitude)
            //      a <= 1e21 (MAX_TARGET_AMT)
            //      a must be between 1e19 & 1e20 in order for b in (C) to be uint192,
            //      but a would have to be < 1e18 in order for (A) to overflow
            if (shiftDelta < rawDelta) return FIX_MAX;

            // return FIX_MAX if return result would truncate
            if (shiftDelta / FIX_ONE > FIX_MAX) return FIX_MAX;

            // return _div(rawDelta, FIX_ONE, rounding)
            return uint192(shiftDelta / FIX_ONE); // {D18} = {D36} / {D18}
        }
    }

    /// Divide two fixes, rounding up to FIX_MAX and down to 0
    /// @param a Numerator
    /// @param b Denominator
    function safeDiv(
        uint192 a,
        uint192 b,
        RoundingMode rounding
    ) internal pure returns (uint192) {
        if (a == 0) return 0;
        if (b == 0) return FIX_MAX;

        uint256 raw = _divrnd(FIX_ONE_256 * a, uint256(b), rounding);
        if (raw >= FIX_MAX) return FIX_MAX;
        return uint192(raw); // don't need _safeWrap
    }

    /// Multiplies two fixes and divide by a third
    /// @param a First to multiply
    /// @param b Second to multiply
    /// @param c Denominator
    function safeMulDiv(
        uint192 a,
        uint192 b,
        uint192 c,
        RoundingMode rounding
    ) internal pure returns (uint192 result) {
        if (a == 0 || b == 0) return 0;
        if (a == FIX_MAX || b == FIX_MAX || c == 0) return FIX_MAX;

        uint256 result_256;
        unchecked {
            (uint256 hi, uint256 lo) = fullMul(a, b);
            if (hi >= c) return FIX_MAX;
            uint256 mm = mulmod(a, b, c);
            if (mm > lo) hi -= 1;
            lo -= mm;
            uint256 pow2 = c & (0 - c);

            uint256 c_256 = uint256(c);
            // Warning: Should not access c below this line

            c_256 /= pow2;
            lo /= pow2;
            lo += hi * ((0 - pow2) / pow2 + 1);
            uint256 r = 1;
            r *= 2 - c_256 * r;
            r *= 2 - c_256 * r;
            r *= 2 - c_256 * r;
            r *= 2 - c_256 * r;
            r *= 2 - c_256 * r;
            r *= 2 - c_256 * r;
            r *= 2 - c_256 * r;
            r *= 2 - c_256 * r;
            result_256 = lo * r;

            // Apply rounding
            if (rounding == CEIL) {
                if (mm != 0) result_256 += 1;
            } else if (rounding == ROUND) {
                if (mm > ((c_256 - 1) / 2)) result_256 += 1;
            }
        }

        if (result_256 >= FIX_MAX) return FIX_MAX;
        return uint192(result_256);
    }
}

// ================ a couple pure-uint helpers================
// as-ints comments are omitted here, because they're the same as @return statements, because
// these are all pure uint functions

/// Return (x*y/z), avoiding intermediate overflow.
//  Adapted from sources:
//    https://medium.com/coinmonks/4db014e080b1, https://medium.com/wicketh/afa55870a65
//    and quite a few of the other excellent "Mathemagic" posts from https://medium.com/wicketh
/// @dev Only use if you need to avoid overflow; costlier than x * y / z
/// @return result x * y / z
function mulDiv256(
    uint256 x,
    uint256 y,
    uint256 z
) pure returns (uint256 result) {
    unchecked {
        (uint256 hi, uint256 lo) = fullMul(x, y);
        if (hi >= z) revert UIntOutOfBounds();
        uint256 mm = mulmod(x, y, z);
        if (mm > lo) hi -= 1;
        lo -= mm;
        uint256 pow2 = z & (0 - z);
        z /= pow2;
        lo /= pow2;
        lo += hi * ((0 - pow2) / pow2 + 1);
        uint256 r = 1;
        r *= 2 - z * r;
        r *= 2 - z * r;
        r *= 2 - z * r;
        r *= 2 - z * r;
        r *= 2 - z * r;
        r *= 2 - z * r;
        r *= 2 - z * r;
        r *= 2 - z * r;
        result = lo * r;
    }
}

/// Return (x*y/z), avoiding intermediate overflow.
/// @dev Only use if you need to avoid overflow; costlier than x * y / z
/// @return x * y / z
function mulDiv256(
    uint256 x,
    uint256 y,
    uint256 z,
    RoundingMode rounding
) pure returns (uint256) {
    uint256 result = mulDiv256(x, y, z);
    if (rounding == FLOOR) return result;

    uint256 mm = mulmod(x, y, z);
    if (rounding == CEIL) {
        if (mm != 0) result += 1;
    } else {
        if (mm > ((z - 1) / 2)) result += 1; // z should be z-1
    }
    return result;
}

/// Return (x*y) as a "virtual uint512" (lo, hi), representing (hi*2**256 + lo)
///   Adapted from sources:
///   https://medium.com/wicketh/27650fec525d, https://medium.com/coinmonks/4db014e080b1
/// @dev Intended to be internal to this library
/// @return hi (hi, lo) satisfies  hi*(2**256) + lo == x * y
/// @return lo (paired with `hi`)
function fullMul(uint256 x, uint256 y) pure returns (uint256 hi, uint256 lo) {
    unchecked {
        uint256 mm = mulmod(x, y, uint256(0) - uint256(1));
        lo = x * y;
        hi = mm - lo;
        if (mm < lo) hi -= 1;
    }
}

// =============== from prbMath at commit 28055f6cd9a2367f9ad7ab6c8e01c9ac8e9acc61 ===============
/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
function sqrt256(uint256 x) pure returns (uint256 result) {
    if (x == 0) {
        return 0;
    }

    // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
    //
    // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
    //
    // $$
    // msb(x) <= x <= 2*msb(x)$
    // $$
    //
    // We write $msb(x)$ as $2^k$, and we get:
    //
    // $$
    // k = log_2(x)
    // $$
    //
    // Thus, we can write the initial inequality as:
    //
    // $$
    // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
    // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
    // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
    // $$
    //
    // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
    uint256 xAux = uint256(x);
    result = 1;
    if (xAux >= 2**128) {
        xAux >>= 128;
        result <<= 64;
    }
    if (xAux >= 2**64) {
        xAux >>= 64;
        result <<= 32;
    }
    if (xAux >= 2**32) {
        xAux >>= 32;
        result <<= 16;
    }
    if (xAux >= 2**16) {
        xAux >>= 16;
        result <<= 8;
    }
    if (xAux >= 2**8) {
        xAux >>= 8;
        result <<= 4;
    }
    if (xAux >= 2**4) {
        xAux >>= 4;
        result <<= 2;
    }
    if (xAux >= 2**2) {
        result <<= 1;
    }

    // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
    // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
    // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
    // precision into the expected uint128 result.
    unchecked {
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;

        // If x is not a perfect square, round the result toward zero.
        uint256 roundedResult = x / result;
        if (result >= roundedResult) {
            result = roundedResult;
        }
    }
}
// slither-disable-end divide-before-multiply

File 31 of 32 : Throttle.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "./Fixed.sol";

uint48 constant ONE_HOUR = 3600; // {seconds/hour}

/**
 * @title ThrottleLib
 * A library that implements a usage throttle that can be used to ensure net issuance
 * or net redemption for an RToken never exceeds some bounds per unit time (hour).
 *
 * It is expected for the RToken to use this library with two instances, one for issuance
 * and one for redemption. Issuance causes the available redemption amount to increase, and
 * visa versa.
 */
library ThrottleLib {
    using FixLib for uint192;

    struct Params {
        uint256 amtRate; // {qRTok/hour} a quantity of RToken hourly; cannot be 0
        uint192 pctRate; // {1/hour} a fraction of RToken hourly; can be 0
    }

    struct Throttle {
        // === Gov params ===
        Params params;
        // === Cache ===
        uint48 lastTimestamp; // {seconds}
        uint256 lastAvailable; // {qRTok}
    }

    /// Reverts if usage amount exceeds available amount
    /// @param supply {qRTok} Total RToken supply beforehand
    /// @param amount {qRTok} Amount of RToken to use. Should be negative for the issuance
    ///   throttle during redemption and for the redemption throttle during issuance.
    function useAvailable(
        Throttle storage throttle,
        uint256 supply,
        int256 amount
    ) internal {
        // untestable: amtRate will always be > 0 due to previous validations
        if (throttle.params.amtRate == 0 && throttle.params.pctRate == 0) return;

        // Calculate hourly limit
        uint256 limit = hourlyLimit(throttle, supply); // {qRTok}

        // Calculate available amount before supply change
        uint256 available = currentlyAvailable(throttle, limit);

        // Update throttle.timestamp if available amount changed or at limit
        if (available != throttle.lastAvailable || available == limit) {
            throttle.lastTimestamp = uint48(block.timestamp);
        }

        // Update throttle.lastAvailable
        if (amount > 0) {
            require(uint256(amount) <= available, "supply change throttled");
            available -= uint256(amount);
            // untestable: the final else statement, amount will never be 0
        } else if (amount < 0) {
            available += uint256(-amount);
        }
        throttle.lastAvailable = available;
    }

    /// @param limit {qRTok/hour} The hourly limit
    /// @return available {qRTok} Amount currently available for consumption
    function currentlyAvailable(Throttle storage throttle, uint256 limit)
        internal
        view
        returns (uint256 available)
    {
        uint48 delta = uint48(block.timestamp) - throttle.lastTimestamp; // {seconds}
        available = throttle.lastAvailable + (limit * delta) / ONE_HOUR;
        if (available > limit) available = limit;
    }

    /// @return limit {qRTok} The hourly limit
    function hourlyLimit(Throttle storage throttle, uint256 supply)
        internal
        view
        returns (uint256 limit)
    {
        Params storage params = throttle.params;

        // Calculate hourly limit as: max(params.amtRate, supply.mul(params.pctRate))
        limit = (supply * params.pctRate) / FIX_ONE_256; // {qRTok}
        if (params.amtRate > limit) limit = params.amtRate;
    }
}

File 32 of 32 : Versioned.sol
// SPDX-License-Identifier: BlueOak-1.0.0
pragma solidity 0.8.19;

import "../interfaces/IVersioned.sol";

// This value should be updated on each release
string constant VERSION = "3.4.0";

/**
 * @title Versioned
 * @notice A mix-in to track semantic versioning uniformly across contracts.
 */
abstract contract Versioned is IVersioned {
    function version() public pure virtual override returns (string memory) {
        return VERSION;
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"UIntOutOfBounds","type":"error"},{"inputs":[],"name":"KIND","outputs":[{"internalType":"enum TradeKind","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint192","name":"price","type":"uint192"}],"name":"_bidAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bestPrice","outputs":[{"internalType":"uint192","name":"","type":"uint192"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bid","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint48","name":"timestamp","type":"uint48"}],"name":"bidAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bidType","outputs":[{"internalType":"enum BidType","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"data","type":"bytes"}],"name":"bidWithCallback","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"bidder","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"broker","outputs":[{"internalType":"contract IBroker","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"buy","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"canSettle","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"endTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract ITrading","name":"origin_","type":"address"},{"internalType":"contract IAsset","name":"sell_","type":"address"},{"internalType":"contract IAsset","name":"buy_","type":"address"},{"internalType":"uint256","name":"sellAmount_","type":"uint256"},{"internalType":"uint48","name":"auctionLength","type":"uint48"},{"components":[{"internalType":"uint192","name":"sellLow","type":"uint192"},{"internalType":"uint192","name":"sellHigh","type":"uint192"},{"internalType":"uint192","name":"buyLow","type":"uint192"},{"internalType":"uint192","name":"buyHigh","type":"uint192"}],"internalType":"struct TradePrices","name":"prices","type":"tuple"}],"name":"init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lot","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"origin","outputs":[{"internalType":"contract ITrading","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sell","outputs":[{"internalType":"contract IERC20Metadata","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"sellAmount","outputs":[{"internalType":"uint192","name":"","type":"uint192"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"settle","outputs":[{"internalType":"uint256","name":"soldAmt","type":"uint256"},{"internalType":"uint256","name":"boughtAmt","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startTime","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"status","outputs":[{"internalType":"enum TradeStatus","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20Metadata","name":"erc20","type":"address"}],"name":"transferToOriginAfterTradeComplete","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"worstPrice","outputs":[{"internalType":"uint192","name":"","type":"uint192"}],"stateMutability":"view","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.