ETH Price: $3,406.08 (+6.16%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Remove Liquidity208779132024-10-02 12:47:59113 days ago1727873279IN
0x69f7Ba38...5754a970a
0 ETH0.000412017.53734597
Remove Liquidity195325652024-03-28 12:19:11301 days ago1711628351IN
0x69f7Ba38...5754a970a
0 ETH0.0023029332.10157679
Update X Chain P...195324162024-03-28 11:49:11301 days ago1711626551IN
0x69f7Ba38...5754a970a
0 ETH0.0026121330.13499562
Update X Chain M...195276842024-03-27 19:36:35302 days ago1711568195IN
0x69f7Ba38...5754a970a
0 ETH0.0026045544.39791641

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block
From
To
195196312024-03-26 15:55:59303 days ago1711468559  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0xca310b1b942a30ff4b40a5e1b69ab4607ec79bc1

Contract Name:
HashflowPool

Compiler Version
v0.8.18+commit.87f61d96

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 16 : HashflowPool.sol
/**
 * SPDX-License-Identifier: UNLICENSED
 */
pragma solidity 0.8.18;

import '@openzeppelin/contracts/proxy/utils/Initializable.sol';
import '@openzeppelin/contracts/token/ERC20/IERC20.sol';
import '@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol';
import '@openzeppelin/contracts/utils/cryptography/ECDSA.sol';
import '@openzeppelin/contracts/utils/Context.sol';

import '../interfaces/external/IWETH.sol';
import '../interfaces/IHashflowPool.sol';
import '../interfaces/IHashflowRouter.sol';

interface IERC20AllowanceExtension {
    function increaseAllowance(address spender, uint256 addedValue)
        external
        returns (bool);

    function decreaseAllowance(address spender, uint256 subtractedValue)
        external
        returns (bool);
}

contract HashflowPool is IHashflowPool, Initializable, Context {
    using Address for address payable;
    using SafeERC20 for IERC20;
    using ECDSA for bytes32;

    string public name;

    SignerConfiguration public signerConfiguration;
    address public operations;

    address public router;

    mapping(address => uint256) public nonces;
    mapping(bytes32 => uint256) public xChainNonces;

    mapping(address => bool) internal _withrawalAccountAuth;
    mapping(bytes32 => bool) internal _filledXChainTxids;

    address public immutable _WETH;

    constructor(address weth) {
        require(
            weth != address(0),
            'HashflowPool::constructor WETH cannot be 0 address.'
        );
        _WETH = weth;
    }

    /// @dev Fallback function to receive native token.
    receive() external payable {}

    /// @inheritdoc IHashflowPool
    function initialize(
        string memory _name,
        address _signer,
        address _operations,
        address _router
    ) public override initializer {
        require(
            _signer != address(0),
            'HashflowPool::initialize Signer cannot be 0 address.'
        );
        require(
            _operations != address(0),
            'HashflowPool::initialize Operations cannot be 0 address.'
        );
        require(
            _router != address(0),
            'HashflowPool::initialize Router cannot be 0 address.'
        );
        require(
            bytes(_name).length > 0,
            'HashflowPool::initialize Name cannot be empty'
        );

        name = _name;

        SignerConfiguration memory signerConfig;
        signerConfig.enabled = true;
        signerConfig.signer = _signer;

        emit UpdateSigner(_signer, address(0));

        signerConfiguration = signerConfig;

        operations = _operations;
        router = _router;
    }

    modifier authorizedOperations() {
        require(
            _msgSender() == operations,
            'HashflowPool:authorizedOperations Sender must be operator.'
        );
        _;
    }

    modifier authorizedRouter() {
        require(
            _msgSender() == router,
            'HashflowPool::authorizedRouter Sender must be Router.'
        );
        _;
    }

    /// @inheritdoc IHashflowPool
    function tradeRFQT(RFQTQuote memory quote)
        external
        payable
        override
        authorizedRouter
    {
        /// Trust assumption: the Router has transferred baseToken.
        require(
            quote.baseToken != address(0) ||
                quote.externalAccount != address(0) ||
                msg.value == quote.effectiveBaseTokenAmount,
            'HashflowPool::tradeRFQT msg.value must equal effectiveBaseTokenAmount'
        );
        bytes32 quoteHash = _hashQuoteRFQT(quote);

        SignerConfiguration memory signerConfig = signerConfiguration;
        require(signerConfig.enabled, 'HashflowPool::tradeRFQT Disabled.');

        require(
            quoteHash.recover(quote.signature) == signerConfig.signer,
            'HashflowPool::tradeRFQT Invalid signer.'
        );
        _updateNonce(quote.effectiveTrader, quote.nonce);

        uint256 quoteTokenAmount = quote.quoteTokenAmount;
        if (quote.effectiveBaseTokenAmount < quote.baseTokenAmount) {
            quoteTokenAmount =
                (quote.effectiveBaseTokenAmount * quote.quoteTokenAmount) /
                quote.baseTokenAmount;
        }

        emit Trade(
            quote.trader,
            quote.effectiveTrader,
            quote.txid,
            quote.baseToken,
            quote.quoteToken,
            quote.effectiveBaseTokenAmount,
            quoteTokenAmount
        );

        if (quote.externalAccount == address(0)) {
            _transferFromPool(quote.quoteToken, quote.trader, quoteTokenAmount);
        } else {
            _transferFromExternalAccount(
                quote.externalAccount,
                quote.quoteToken,
                quote.trader,
                quoteTokenAmount
            );
        }
    }

    /// @inheritdoc IHashflowPool
    function tradeRFQM(RFQMQuote memory quote)
        external
        override
        authorizedRouter
    {
        SignerConfiguration memory signerConfig = signerConfiguration;
        require(signerConfig.enabled, 'HashflowPool::tradeRFQM Disabled.');

        bytes32 quoteHash = _hashQuoteRFQM(quote);
        require(
            quoteHash.recover(quote.makerSignature) == signerConfig.signer,
            'HashflowPool::tradeRFQM Invalid signer.'
        );

        emit Trade(
            quote.trader,
            quote.trader,
            quote.txid,
            quote.baseToken,
            quote.quoteToken,
            quote.baseTokenAmount,
            quote.quoteTokenAmount
        );

        if (quote.externalAccount == address(0)) {
            _transferFromPool(
                quote.quoteToken,
                quote.trader,
                quote.quoteTokenAmount
            );
        } else {
            _transferFromExternalAccount(
                quote.externalAccount,
                quote.quoteToken,
                quote.trader,
                quote.quoteTokenAmount
            );
        }
    }

    /// @inheritdoc IHashflowPool
    function tradeXChainRFQT(XChainRFQTQuote memory quote, address trader)
        external
        payable
        override
        authorizedRouter
    {
        require(
            quote.srcExternalAccount != address(0) ||
                quote.baseToken != address(0) ||
                msg.value == quote.effectiveBaseTokenAmount,
            'HashflowPool::tradeXChainRFQT msg.value must = amount'
        );

        SignerConfiguration memory signerConfig = signerConfiguration;
        require(
            signerConfig.enabled,
            'HashflowPool::tradeXChainRFQT Disabled.'
        );

        _updateNonceXChain(quote.dstTrader, quote.nonce);
        bytes32 quoteHash = _hashXChainQuoteRFQT(quote);
        require(
            quoteHash.recover(quote.signature) == signerConfig.signer,
            'HashflowPool::tradeXChainRFQT Invalid signer'
        );

        uint256 effectiveQuoteTokenAmount = quote.quoteTokenAmount;
        if (quote.effectiveBaseTokenAmount < quote.baseTokenAmount) {
            effectiveQuoteTokenAmount =
                (quote.quoteTokenAmount * quote.effectiveBaseTokenAmount) /
                quote.baseTokenAmount;
        }

        emit XChainTrade(
            quote.dstChainId,
            quote.dstPool,
            trader,
            quote.dstTrader,
            quote.txid,
            quote.baseToken,
            quote.quoteToken,
            quote.effectiveBaseTokenAmount,
            effectiveQuoteTokenAmount
        );
    }

    /// @inheritdoc IHashflowPool
    function fillXChain(
        address externalAccount,
        bytes32 txid,
        address trader,
        address quoteToken,
        uint256 quoteTokenAmount
    ) external override authorizedRouter {
        require(
            !_filledXChainTxids[txid],
            'HashflowPool::fillXChain Quote has been executed previously.'
        );
        _filledXChainTxids[txid] = true;

        emit XChainTradeFill(txid);

        if (externalAccount == address(0)) {
            _transferFromPool(quoteToken, trader, quoteTokenAmount);
        } else {
            _transferFromExternalAccount(
                externalAccount,
                quoteToken,
                trader,
                quoteTokenAmount
            );
        }
    }

    /// @inheritdoc IHashflowPool
    function tradeXChainRFQM(XChainRFQMQuote memory quote)
        external
        override
        authorizedRouter
    {
        SignerConfiguration memory signerConfig = signerConfiguration;
        require(
            signerConfig.enabled,
            'HashflowPool::tradeXChainRFQM Disabled.'
        );

        bytes32 quoteHash = _hashXChainQuoteRFQM(quote);
        require(
            quoteHash.recover(quote.makerSignature) == signerConfig.signer,
            'HashflowPool::tradeXChainRFQM Invalid signer'
        );
        emit XChainTrade(
            quote.dstChainId,
            quote.dstPool,
            quote.trader,
            quote.dstTrader,
            quote.txid,
            quote.baseToken,
            quote.quoteToken,
            quote.baseTokenAmount,
            quote.quoteTokenAmount
        );
    }

    /// @inheritdoc IHashflowPool
    function updateXChainPoolAuthorization(
        AuthorizedXChainPool[] calldata pools,
        bool status
    ) external override authorizedOperations {
        for (uint256 i = 0; i < pools.length; i++) {
            require(pools[i].pool != bytes32(0));
            IHashflowRouter(router).updateXChainPoolAuthorization(
                pools[i].chainId,
                pools[i].pool,
                status
            );
        }
    }

    /// @inheritdoc IHashflowPool
    function updateXChainMessengerAuthorization(
        address xChainMessenger,
        bool authorized
    ) external override authorizedOperations {
        require(
            xChainMessenger != address(0),
            'HashflowPool::updateXChainMessengerAuthorization Invalid messenger address.'
        );
        IHashflowRouter(router).updateXChainMessengerAuthorization(
            xChainMessenger,
            authorized
        );
    }

    /// @dev ERC1271 implementation.
    function isValidSignature(bytes32 hash, bytes memory signature)
        external
        view
        override
        returns (bytes4 magicValue)
    {
        if (hash.recover(signature) == signerConfiguration.signer) {
            magicValue = 0x1626ba7e;
        }
    }

    /// @inheritdoc IHashflowPool
    function approveToken(
        address token,
        address spender,
        uint256 amount
    ) external override authorizedOperations {
        IERC20(token).forceApprove(spender, amount);
    }

    /// @inheritdoc IHashflowPool
    function increaseTokenAllowance(
        address token,
        address spender,
        uint256 amount
    ) external override authorizedOperations {
        IERC20(token).safeIncreaseAllowance(spender, amount);
    }

    /// @inheritdoc IHashflowPool
    function decreaseTokenAllowance(
        address token,
        address spender,
        uint256 amount
    ) external override authorizedOperations {
        IERC20(token).safeDecreaseAllowance(spender, amount);
    }

    /// @inheritdoc IHashflowPool
    function removeLiquidity(
        address token,
        address recipient,
        uint256 amount
    ) external override authorizedOperations {
        SignerConfiguration memory signerConfig = signerConfiguration;
        require(
            signerConfig.enabled,
            'HashflowPool::removeLiquidity Disabled.'
        );

        require(amount > 0, 'HashflowPool::removeLiquidity Invalid amount');
        address _recipient;
        if (recipient != address(0)) {
            require(
                _withrawalAccountAuth[recipient],
                'HashflowPool::removeLiquidity Recipient must be hedging account'
            );

            _recipient = recipient;
        } else {
            _recipient = _msgSender();
        }

        emit RemoveLiquidity(token, _recipient, amount);

        _transferFromPool(token, _recipient, amount);
    }

    /// @inheritdoc IHashflowPool
    function updateWithdrawalAccount(
        address[] memory withdrawalAccounts,
        bool authorized
    ) external override authorizedOperations {
        for (uint256 i = 0; i < withdrawalAccounts.length; i++) {
            require(withdrawalAccounts[i] != address(0));
            _withrawalAccountAuth[withdrawalAccounts[i]] = authorized;
            emit UpdateWithdrawalAccount(withdrawalAccounts[i], authorized);
        }
    }

    /// @inheritdoc IHashflowPool
    function updateSigner(address newSigner)
        external
        override
        authorizedOperations
    {
        require(newSigner != address(0));

        SignerConfiguration memory signerConfig = signerConfiguration;

        emit UpdateSigner(newSigner, signerConfig.signer);

        signerConfig.signer = newSigner;
        signerConfiguration = signerConfig;
    }

    /// @inheritdoc IHashflowPool
    function killswitchOperations(bool enabled)
        external
        override
        authorizedRouter
    {
        SignerConfiguration memory signerConfig = signerConfiguration;

        signerConfig.enabled = enabled;

        signerConfiguration = signerConfig;
    }

    function getReserves(address token)
        external
        view
        override
        returns (uint256)
    {
        return _getReserves(token);
    }

    /**
     * @dev Prevents against replay for RFQ-T. Checks that nonces are strictly increasing.
     */
    function _updateNonce(address trader, uint256 nonce) internal {
        require(
            nonce > nonces[trader],
            'HashflowPool::_updateNonce Invalid nonce.'
        );
        nonces[trader] = nonce;
    }

    /**
     * @dev Prevents against replay for X-Chain RFQ-T. Checks that nonces are strictly increasing.
     */
    function _updateNonceXChain(bytes32 trader, uint256 nonce) internal {
        require(
            nonce > xChainNonces[trader],
            'HashflowPool::_updateNonceXChain Invalid nonce.'
        );
        xChainNonces[trader] = nonce;
    }

    function _transferFromPool(
        address token,
        address recipient,
        uint256 value
    ) internal {
        if (token == address(0)) {
            payable(recipient).sendValue(value);
        } else {
            IERC20(token).safeTransfer(recipient, value);
        }
    }

    /// @dev Helper function to transfer quoteToken from external account.
    function _transferFromExternalAccount(
        address externalAccount,
        address token,
        address receiver,
        uint256 value
    ) private {
        if (token == address(0)) {
            IERC20(_WETH).safeTransferFrom(
                externalAccount,
                address(this),
                value
            );

            IWETH(_WETH).withdraw(value);
            payable(receiver).sendValue(value);
        } else {
            IERC20(token).safeTransferFrom(externalAccount, receiver, value);
        }
    }

    function _getReserves(address token) internal view returns (uint256) {
        return
            token == address(0)
                ? address(this).balance
                : IERC20(token).balanceOf(address(this));
    }

    /**
     * @dev Generates a quote hash for RFQ-t.
     */
    function _hashQuoteRFQT(RFQTQuote memory quote)
        private
        view
        returns (bytes32)
    {
        return
            keccak256(
                abi.encodePacked(
                    '\x19Ethereum Signed Message:\n32',
                    keccak256(
                        abi.encodePacked(
                            address(this),
                            quote.trader,
                            quote.effectiveTrader,
                            quote.externalAccount,
                            quote.baseToken,
                            quote.quoteToken,
                            quote.baseTokenAmount,
                            quote.quoteTokenAmount,
                            quote.nonce,
                            quote.quoteExpiry,
                            quote.txid,
                            block.chainid
                        )
                    )
                )
            );
    }

    function _hashQuoteRFQM(RFQMQuote memory quote)
        private
        view
        returns (bytes32)
    {
        return
            keccak256(
                abi.encodePacked(
                    '\x19Ethereum Signed Message:\n32',
                    keccak256(
                        abi.encodePacked(
                            quote.pool,
                            quote.externalAccount,
                            quote.trader,
                            quote.baseToken,
                            quote.quoteToken,
                            quote.baseTokenAmount,
                            quote.quoteTokenAmount,
                            quote.quoteExpiry,
                            quote.txid,
                            block.chainid
                        )
                    )
                )
            );
    }

    function _hashXChainQuoteRFQT(XChainRFQTQuote memory quote)
        private
        pure
        returns (bytes32)
    {
        bytes32 digest = keccak256(
            abi.encodePacked(
                keccak256(
                    abi.encodePacked(
                        quote.srcChainId,
                        quote.dstChainId,
                        quote.srcPool,
                        quote.dstPool,
                        quote.srcExternalAccount,
                        quote.dstExternalAccount
                    )
                ),
                quote.dstTrader,
                quote.baseToken,
                quote.quoteToken,
                quote.baseTokenAmount,
                quote.quoteTokenAmount,
                quote.quoteExpiry,
                quote.nonce,
                quote.txid,
                quote.xChainMessenger
            )
        );
        return
            keccak256(
                abi.encodePacked('\x19Ethereum Signed Message:\n32', digest)
            );
    }

    function _hashXChainQuoteRFQM(XChainRFQMQuote memory quote)
        private
        pure
        returns (bytes32)
    {
        return
            keccak256(
                abi.encodePacked(
                    '\x19Ethereum Signed Message:\n32',
                    keccak256(
                        abi.encodePacked(
                            keccak256(
                                abi.encodePacked(
                                    quote.srcChainId,
                                    quote.dstChainId,
                                    quote.srcPool,
                                    quote.dstPool,
                                    quote.srcExternalAccount,
                                    quote.dstExternalAccount
                                )
                            ),
                            quote.trader,
                            quote.baseToken,
                            quote.quoteToken,
                            quote.baseTokenAmount,
                            quote.quoteTokenAmount,
                            quote.quoteExpiry,
                            quote.txid,
                            quote.xChainMessenger
                        )
                    )
                )
            );
    }
}

File 2 of 16 : IERC1271.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 *
 * _Available since v4.1._
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

File 3 of 16 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/Address.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

File 4 of 16 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 5 of 16 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 6 of 16 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to
     * 0 before setting it to a non-zero value.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 7 of 16 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 8 of 16 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 9 of 16 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 10 of 16 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 11 of 16 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 12 of 16 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 13 of 16 : IWETH.sol
/**
 * SPDX-License-Identifier: UNLICENSED
 */
pragma solidity >=0.8.0;

interface IWETH {
    function deposit() external payable;

    function transfer(address to, uint256 value) external returns (bool);

    function withdraw(uint256) external;
}

File 14 of 16 : IHashflowPool.sol
/**
 * SPDX-License-Identifier: UNLICENSED
 */
pragma solidity >=0.8.0;

import '@openzeppelin/contracts/interfaces/IERC1271.sol';

import './IQuote.sol';

/// @title IHashflowPool
/// @author Victor Ionescu
/**
 * Pool contract used for trading. The Pool can either hold funds or
 * rely on external accounts. External accounts are used in order to preserve
 * Capital Efficiency on the Market Maker side. This way, a Market Maker can
 * make markets using funds that are also used on other venues.
 */
interface IHashflowPool is IQuote, IERC1271 {
    /// @notice Specifies a HashflowPool on a foreign chain.
    struct AuthorizedXChainPool {
        uint16 chainId;
        bytes32 pool;
    }

    /// @notice Contains a signer verification address, and whether trading is enabled.
    struct SignerConfiguration {
        address signer;
        bool enabled;
    }

    /// @notice Emitted when the authorization status of a withdrawal account changes.
    /// @param account The account for which the status changes.
    /// @param authorized The new authorization status.
    event UpdateWithdrawalAccount(address account, bool authorized);

    /// @notice Emitted when the signer key used for the pool has changed.
    /// @param signer The new signer key.
    /// @param prevSigner The old signer key.
    event UpdateSigner(address signer, address prevSigner);

    /// @notice Emitted when liquidity is withdrawn from the pool.
    /// @param token Token being withdrawn.
    /// @param recipient Address receiving the token.
    /// @param withdrawAmount Amount being withdrawn.
    event RemoveLiquidity(
        address token,
        address recipient,
        uint256 withdrawAmount
    );

    /// @notice Emitted when an intra-chain trade happens.
    /// @param trader The trader.
    /// @param effectiveTrader The effective Trader.
    /// @param txid The txid of the quote.
    /// @param baseToken The token the trader sold.
    /// @param quoteToken The token the trader bought.
    /// @param baseTokenAmount The amount of baseToken sold.
    /// @param quoteTokenAmount The amount of quoteToken bought.
    event Trade(
        address trader,
        address effectiveTrader,
        bytes32 txid,
        address baseToken,
        address quoteToken,
        uint256 baseTokenAmount,
        uint256 quoteTokenAmount
    );

    /// @notice Emitted when a cross-chain trade happens.
    /// @param dstChainId The Hashflow Chain ID for the destination chain.
    /// @param dstPool The pool address on the destination chain.
    /// @param trader The trader address.
    /// @param txid The txid of the quote.
    /// @param baseToken The token the trader sold.
    /// @param quoteToken The token the trader bought.
    /// @param baseTokenAmount The amount of baseToken sold.
    /// @param quoteTokenAmount The amount of quoteToken bought.
    event XChainTrade(
        uint16 dstChainId,
        bytes32 dstPool,
        address trader,
        bytes32 dstTrader,
        bytes32 txid,
        address baseToken,
        bytes32 quoteToken,
        uint256 baseTokenAmount,
        uint256 quoteTokenAmount
    );

    /// @notice Emitted when a cross-chain trade is filled.
    /// @param txid The txid identified the quote that was filled.
    event XChainTradeFill(bytes32 txid);

    /// @notice Main initializer.
    /// @param name Name of the pool.
    /// @param signer Signer key used for quote / deposit verification.
    /// @param operations Operations key that governs the pool.
    /// @param router Address of the HashflowRouter contract.
    function initialize(
        string calldata name,
        address signer,
        address operations,
        address router
    ) external;

    /// @notice Returns the pool name.
    function name() external view returns (string memory);

    /// @notice Returns the signer address and whether the pool is enabled.
    function signerConfiguration() external view returns (address, bool);

    /// @notice Returns the Operations address of this pool.
    function operations() external view returns (address);

    /// @notice Returns the Router contract address.
    function router() external view returns (address);

    /// @notice Returns the current nonce for a trader.
    function nonces(address trader) external view returns (uint256);

    /// @notice Removes liquidity from the pool.
    /// @param token Token to withdraw.
    /// @param recipient Address to send token to.
    /// @param amount Amount to withdraw.
    function removeLiquidity(
        address token,
        address recipient,
        uint256 amount
    ) external;

    /// @notice Execute an RFQ-T trade.
    /// @param quote The quote to be executed.
    function tradeRFQT(RFQTQuote memory quote) external payable;

    /// @notice Execute an RFQ-M trade.
    /// @param quote The quote to be executed.
    function tradeRFQM(RFQMQuote memory quote) external;

    /// @notice Execute a cross-chain RFQ-T trade.
    /// @param quote The quote to be executed.
    /// @param trader The account that sends baseToken on this chain.
    function tradeXChainRFQT(XChainRFQTQuote memory quote, address trader)
        external
        payable;

    /// @notice Execute a cross-chain RFQ-M trade.
    /// @param quote The quote to be executed.
    function tradeXChainRFQM(XChainRFQMQuote memory quote) external;

    /// @notice Changes authorization for a set of pools to send X-Chain messages.
    /// @param pools The pools to change authorization status for.
    /// @param authorized The new authorization status.
    function updateXChainPoolAuthorization(
        AuthorizedXChainPool[] calldata pools,
        bool authorized
    ) external;

    /// @notice Changes authorization for an X-Chain Messenger app.
    /// @param xChainMessenger The address of the Messenger app.
    /// @param authorized The new authorization status.
    function updateXChainMessengerAuthorization(
        address xChainMessenger,
        bool authorized
    ) external;

    /// @notice Fills an x-chain order that completed on the source chain.
    /// @param externalAccount The external account to fill from, if any.
    /// @param txid The txid of the quote.
    /// @param trader The trader to receive the funds.
    /// @param quoteToken The token to be sent.
    /// @param quoteTokenAmount The amount of quoteToken to be sent.
    function fillXChain(
        address externalAccount,
        bytes32 txid,
        address trader,
        address quoteToken,
        uint256 quoteTokenAmount
    ) external;

    /// @notice Updates withdrawal account authorization.
    /// @param withdrawalAccounts the accounts for which to update authorization status.
    /// @param authorized The new authorization status.
    function updateWithdrawalAccount(
        address[] memory withdrawalAccounts,
        bool authorized
    ) external;

    /// @notice Updates the signer key.
    /// @param signer The new signer key.
    function updateSigner(address signer) external;

    /// @notice Used by the router to disable pool actions (Trade, Withdraw, Deposit)
    function killswitchOperations(bool enabled) external;

    /// @notice Returns the token reserves for this pool.
    /// @param token The token to check reserves for.
    function getReserves(address token) external view returns (uint256);

    /// @notice Approves a token for spend. Used for 1inch RFQ protocol.
    /// @param token The address of the ERC-20 token.
    /// @param spender The spender address (typically the 1inch RFQ order router)
    /// @param amount The approval amount.
    function approveToken(
        address token,
        address spender,
        uint256 amount
    ) external;

    /// @notice Increases allowance for a token. Used for 1inch RFQ protocol.
    /// @param token The address of the ERC-20 token.
    /// @param spender The spender address (typically the 1inch RFQ order router).
    /// @param amount The approval amount.
    function increaseTokenAllowance(
        address token,
        address spender,
        uint256 amount
    ) external;

    /// @notice Decreases allowance for a token. Used for 1inch RFQ protocol.
    /// @param token The address of the ERC-20 token.
    /// @param spender The spender address (typically the 1inch RFQ order router)
    /// @param amount The approval amount.
    function decreaseTokenAllowance(
        address token,
        address spender,
        uint256 amount
    ) external;
}

File 15 of 16 : IHashflowRouter.sol
/**
 * SPDX-License-Identifier: UNLICENSED
 */
pragma solidity >=0.8.0;

import './IQuote.sol';

/// @title IHashflowRouter
/// @author Victor Ionescu
/**
 * @notice In terms of user-facing functionality, the Router is responsible for:
 * - orchestrating trades
 * - managing cross-chain permissions
 *
 * Every trade requires consent from two parties: the Trader and the Market Maker.
 * However, there are two models to establish consent:
 * - RFQ-T: in this model, the Market Maker provides an EIP-191 signature for the quote,
 *   while the Trader signs the transaction and submits it on-chain
 * - RFQ-M: in this model, the Trader provides an EIP-712 signature for the quote,
 *   the Market Maker provides an EIP-191 signature, and a 3rd party relays the trade.
 *   The 3rd party can be the Market Maker itself.
 *
 * In terms of Hashflow internals, the Router maintains a set of authorized pool
 * contracts that are allowed to be used for trading. This allowlist creates
 * guarantees against malicious behavior, as documented in specific places.
 *
 * The Router contract is not upgradeable. In order to change functionality, a new
 * Router has to be deployed, and new HashflowPool contracts have to be deployed
 * by the Market Makers.
 */
/// @dev Trade / liquidity events are emitted at the HashflowPool level, rather than the router.
interface IHashflowRouter is IQuote {
    /**
     * @notice X-Chain message received from an X-Chain Messenger. This is used by the
     * Router to communicate a fill to a HashflowPool.
     */
    struct XChainFillMessage {
        /// @notice The Hashflow Chain ID of the source chain.
        uint16 srcHashflowChainId;
        /// @notice The address of the HashflowPool on the source chain.
        bytes32 srcPool;
        /// @notice The HashflowPool to disburse funds on the destination chain.
        address dstPool;
        /**
         * @notice The external account linked to the HashflowPool on the destination chain.
         * If the HashflowPool holds funds, this should be bytes32(0).
         */
        address dstExternalAccount;
        /// @notice The recipient of the quoteToken on the destination chain.
        address dstTrader;
        /// @notice The token that the trader buys on the destination chain.
        address quoteToken;
        /// @notice The amount of quoteToken bought.
        uint256 quoteTokenAmount;
        /// @notice Unique identifier for the quote.
        /// @dev Generated off-chain via a distributed UUID generator.
        bytes32 txid;
        /// @notice The caller of the trade function on the source chain.
        bytes32 srcCaller;
        /// @notice The contract to call, if any.
        address dstContract;
        /// @notice The calldata for the contract.
        bytes dstContractCalldata;
    }

    /// @notice Emitted when the authorization status of a pool changes.
    /// @param pool The pool whose status changed.
    /// @param authorized The new auth status.
    event UpdatePoolAuthorizaton(address pool, bool authorized);

    /// @notice Emitted when a sender pool authorization changes.
    /// @param pool Pool address on this chain.
    /// @param otherHashflowChainId Hashflow Chain ID of the other chain.
    /// @param otherChainPool Pool address on the other chain.
    /// @param authorized Whether the pool is authorized.
    event UpdateXChainPoolAuthorization(
        address indexed pool,
        uint16 otherHashflowChainId,
        bytes32 otherChainPool,
        bool authorized
    );

    /// @notice Emitted when the authorization of an x-caller changes.
    /// @param pool Pool address on this chain.
    /// @param otherHashflowChainId Hashflow Chain ID of the other chain.
    /// @param caller Caller address on the other chain.
    /// @param authorized Whether the caller is authorized.
    event UpdateXChainCallerAuthorization(
        address indexed pool,
        uint16 otherHashflowChainId,
        bytes32 caller,
        bool authorized
    );

    /// @notice Emitted when the authorization status of an X-Chain Messenger changes for a pool.
    /// @param pool Pool address for which the Messenger authorization changes.
    /// @param xChainMessenger Address of the Messenger.
    /// @param authorized Whether the X-Chain Messenger is authorized.
    event UpdateXChainMessengerAuthorization(
        address indexed pool,
        address xChainMessenger,
        bool authorized
    );

    /// @notice Emitted when the authorized status of an X-Chain Messenger changes for a callee.
    /// @param callee Address of the callee.
    /// @param xChainMessenger Address of the Messenger.
    /// @param authorized Whether the X-Chain Messenger is authorized.
    event UpdateXChainMessengerCallerAuthorization(
        address indexed callee,
        address xChainMessenger,
        bool authorized
    );

    /// @notice Emitted when the Limit Order Guardian address is updated.
    /// @param guardian The new Guardian address.
    event UpdateLimitOrderGuardian(address guardian);

    /// @notice Initializes the Router. Called one time.
    /// @param factory The address of the HashflowFactory contract.
    function initialize(address factory) external;

    /// @notice Returns the address of the associated HashflowFactor contract.
    function factory() external view returns (address);

    function authorizedXChainPools(
        bytes32 dstPool,
        uint16 srcHChainId,
        bytes32 srcPool
    ) external view returns (bool);

    function authorizedXChainCallers(
        address dstContract,
        uint16 srcHashflowChainId,
        bytes32 caller
    ) external view returns (bool);

    function authorizedXChainMessengersByPool(address pool, address messenger)
        external
        view
        returns (bool);

    function authorizedXChainMessengersByCallee(
        address callee,
        address messenger
    ) external view returns (bool);

    /// @notice Executes an intra-chain RFQ-T trade.
    /// @param quote The quote data to be executed.
    function tradeRFQT(RFQTQuote memory quote) external payable;

    /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit.
    /// @param quote The quote data to be executed.
    /// @dev Does not support native tokens for the baseToken.
    function tradeRFQTWithPermit(
        RFQTQuote memory quote,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s,
        uint256 amountToApprove
    ) external;

    /// @notice Executes an intra-chain RFQ-T trade.
    /// @param quote The quote to be executed.
    function tradeRFQM(RFQMQuote memory quote) external;

    /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit.
    /// @param quote The quote to be executed.
    /// @param deadline The deadline of the ERC-20 permit.
    /// @param v v-part of the signature.
    /// @param r r-part of the signature.
    /// @param s s-part of the signature.
    /// @param amountToApprove The amount being approved.
    function tradeRFQMWithPermit(
        RFQMQuote memory quote,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s,
        uint256 amountToApprove
    ) external;

    /// @notice Executes an intra-chain RFQ-T trade.
    /// @param quote The quote to be executed.
    /// @param guardianSignature A signature issued by the Limit Order Guardian.
    function tradeRFQMLimitOrder(
        RFQMQuote memory quote,
        bytes memory guardianSignature
    ) external;

    /// @notice Executes an intra-chain RFQ-T trade, leveraging an ERC-20 permit.
    /// @param quote The quote to be executed.
    /// @param guardianSignature A signature issued by the Limit Order Guardian.
    /// @param deadline The deadline of the ERC-20 permit.
    /// @param v v-part of the signature.
    /// @param r r-part of the signature.
    /// @param s s-part of the signature.
    /// @param amountToApprove The amount being approved.
    function tradeRFQMLimitOrderWithPermit(
        RFQMQuote memory quote,
        bytes memory guardianSignature,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s,
        uint256 amountToApprove
    ) external;

    /// @notice Executes an RFQ-T cross-chain trade.
    /// @param quote The quote to be executed.
    /// @param dstContract The address of the contract to be called on the destination chain.
    /// @param dstCalldata The calldata for the smart contract call.
    function tradeXChainRFQT(
        XChainRFQTQuote memory quote,
        bytes32 dstContract,
        bytes memory dstCalldata
    ) external payable;

    /// @notice Executes an RFQ-T cross-chain trade, leveraging an ERC-20 permit.
    /// @param quote The quote to be executed.
    /// @param dstContract The address of the contract to be called on the destination chain.
    /// @param dstCalldata The calldata for the smart contract call.
    /// @param deadline The deadline of the ERC-20 permit.
    /// @param v v-part of the signature.
    /// @param r r-part of the signature.
    /// @param s s-part of the signature.
    /// @param amountToApprove The amount being approved.
    function tradeXChainRFQTWithPermit(
        XChainRFQTQuote memory quote,
        bytes32 dstContract,
        bytes memory dstCalldata,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s,
        uint256 amountToApprove
    ) external payable;

    /// @notice Executes an RFQ-M cross-chain trade.
    /// @param quote The quote to be executed.
    /// @param dstContract The address of the contract to be called on the destination chain.
    /// @param dstCalldata The calldata for the smart contract call.
    function tradeXChainRFQM(
        XChainRFQMQuote memory quote,
        bytes32 dstContract,
        bytes memory dstCalldata
    ) external payable;

    /// @notice Similar to tradeXChainRFQm, but includes a spend permit for the baseToken.
    /// @param quote The quote to be executed.
    /// @param dstContract The address of the contract to be called on the destination chain.
    /// @param dstCalldata The calldata for the smart contract call.
    /// @param deadline The deadline of the ERC-20 permit.
    /// @param v v-part of the signature.
    /// @param r r-part of the signature.
    /// @param s s-part of the signature.
    /// @param amountToApprove The amount to approve.
    function tradeXChainRFQMWithPermit(
        XChainRFQMQuote memory quote,
        bytes32 dstContract,
        bytes memory dstCalldata,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s,
        uint256 amountToApprove
    ) external payable;

    /// @notice Completes the second leg of a cross-chain trade.
    /// @param fillMessage Payload containing information necessary to complete the trade.
    function fillXChain(XChainFillMessage memory fillMessage) external;

    /// @notice Returns whether the pool is authorized for trading.
    /// @param pool The address of the HashflowPool.
    function authorizedPools(address pool) external view returns (bool);

    /// @notice Allows the owner to unauthorize a potentially compromised pool. Cannot be reverted.
    /// @param pool The address of the HashflowPool.
    function forceUnauthorizePool(address pool) external;

    /// @notice Authorizes a HashflowPool for trading.
    /// @dev Can only be called by the HashflowFactory or the admin.
    function updatePoolAuthorization(address pool, bool authorized) external;

    /// @notice Updates the authorization status of an X-Chain pool pair.
    /// @param otherHashflowChainId The Hashflow Chain ID of the peer chain.
    /// @param otherPool The 32-byte representation of the Pool address on the peer chain.
    /// @param authorized Whether the pool is authorized to communicate with the sender pool.
    function updateXChainPoolAuthorization(
        uint16 otherHashflowChainId,
        bytes32 otherPool,
        bool authorized
    ) external;

    /// @notice Updates the authorization status of an X-Chain caller.
    /// @param otherHashflowChainId The Hashflow Chain ID of the peer chain.
    /// @param caller The caller address.
    /// @param authorized Whether the caller is authorized to send an x-call to the sender pool.
    function updateXChainCallerAuthorization(
        uint16 otherHashflowChainId,
        bytes32 caller,
        bool authorized
    ) external;

    /// @notice Updates the authorization status of an X-Chain Messenger app.
    /// @param xChainMessenger The address of the Messenger App.
    /// @param authorized The new authorization status.
    function updateXChainMessengerAuthorization(
        address xChainMessenger,
        bool authorized
    ) external;

    /// @notice Updates the authorization status of an X-Chain Messenger app.
    /// @param xChainMessenger The address of the Messenger App.
    /// @param authorized The new authorization status.
    function updateXChainMessengerCallerAuthorization(
        address xChainMessenger,
        bool authorized
    ) external;

    /// @notice Used to stop all operations on a pool, in case of an emergency.
    /// @param pool The address of the HashflowPool.
    /// @param enabled Whether the pool is enabled.
    function killswitchPool(address pool, bool enabled) external;

    /// @notice Used to update the Limit Order Guardian.
    /// @param guardian The address of the new Guardian.
    function updateLimitOrderGuardian(address guardian) external;

    /// @notice Allows the owner to withdraw excess funds from the Router.
    /// @dev Under normal operations, the Router should not have excess funds.
    function withdrawFunds(address token) external;
}

File 16 of 16 : IQuote.sol
/**
 * SPDX-License-Identifier: UNLICENSED
 */
pragma solidity >=0.8.0;

/// @title IQuote
/// @author Victor Ionescu
/**
 * @notice Interface for quote structs used for trading. There are two major types of trades:
 * - intra-chain: atomic transactions within one chain
 * - cross-chain: multi-leg transactions between two chains, which utilize interoperability protocols
 *                such as Wormhole.
 *
 * Separately, there are two trading modes:
 * - RFQ-T: the trader signs the transaction, the market maker signs the quote
 * - RFQ-M: both the trader and Market Maker sign the quote, any relayer can sign the transaction
 */
interface IQuote {
    /// @notice Used for intra-chain RFQ-T trades.
    struct RFQTQuote {
        /// @notice The address of the HashflowPool to trade against.
        address pool;
        /**
         * @notice The external account linked to the HashflowPool.
         * If the HashflowPool holds funds, this should be address(0).
         */
        address externalAccount;
        /// @notice The recipient of the quoteToken at the end of the trade.
        address trader;
        /**
         * @notice The account "effectively" making the trade (ultimately receiving the funds).
         * This is commonly used by aggregators, where a proxy contract (the 'trader')
         * receives the quoteToken, and the effective trader is the user initiating the call.
         *
         * This field DOES NOT influence movement of funds. However, it is used to check against
         * quote replay.
         */
        address effectiveTrader;
        /// @notice The token that the trader sells.
        address baseToken;
        /// @notice The token that the trader buys.
        address quoteToken;
        /**
         * @notice The amount of baseToken sold in this trade. The exchange rate
         * is going to be preserved as the quoteTokenAmount / baseTokenAmount ratio.
         *
         * Most commonly, effectiveBaseTokenAmount will == baseTokenAmount.
         */
        uint256 effectiveBaseTokenAmount;
        /// @notice The max amount of baseToken sold.
        uint256 baseTokenAmount;
        /// @notice The amount of quoteToken bought when baseTokenAmount is sold.
        uint256 quoteTokenAmount;
        /// @notice The Unix timestamp (in seconds) when the quote expires.
        /// @dev This gets checked against block.timestamp.
        uint256 quoteExpiry;
        /// @notice The nonce used by this effectiveTrader. Nonces are used to protect against replay.
        uint256 nonce;
        /// @notice Unique identifier for the quote.
        /// @dev Generated off-chain via a distributed UUID generator.
        bytes32 txid;
        /// @notice Signature provided by the market maker (EIP-191).
        bytes signature;
    }

    /// @notice Used for intra-chain RFQ-M trades.
    struct RFQMQuote {
        /// @notice The address of the HashflowPool to trade against.
        address pool;
        /**
         * @notice The external account linked to the HashflowPool.
         * If the HashflowPool holds funds, this should be address(0).
         */
        address externalAccount;
        /// @notice The account that will be debited baseToken / credited quoteToken.
        address trader;
        /// @notice The token that the trader sells.
        address baseToken;
        /// @notice The token that the trader buys.
        address quoteToken;
        /// @notice The amount of baseToken sold.
        uint256 baseTokenAmount;
        /// @notice The amount of quoteToken bought.
        uint256 quoteTokenAmount;
        /// @notice The Unix timestamp (in seconds) when the quote expires.
        /// @dev This gets checked against block.timestamp.
        uint256 quoteExpiry;
        /// @notice Unique identifier for the quote.
        /// @dev Generated off-chain via a distributed UUID generator.
        bytes32 txid;
        /// @notice Signature provided by the trader (EIP-712).
        bytes takerSignature;
        /// @notice Signature provided by the market maker (EIP-191).
        bytes makerSignature;
    }

    /// @notice Used for cross-chain RFQ-T trades.
    struct XChainRFQTQuote {
        /// @notice The Hashflow Chain ID of the source chain.
        uint16 srcChainId;
        /// @notice The Hashflow Chain ID of the destination chain.
        uint16 dstChainId;
        /// @notice The address of the HashflowPool to trade against on the source chain.
        address srcPool;
        /// @notice The HashflowPool to disburse funds on the destination chain.
        /// @dev This is bytes32 in order to anticipate non-EVM chains.
        bytes32 dstPool;
        /**
         * @notice The external account linked to the HashflowPool on the source chain.
         * If the HashflowPool holds funds, this should be address(0).
         */
        address srcExternalAccount;
        /**
         * @notice The external account linked to the HashflowPool on the destination chain.
         * If the HashflowPool holds funds, this should be bytes32(0).
         */
        bytes32 dstExternalAccount;
        /// @notice The recipient of the quoteToken on the destination chain.
        bytes32 dstTrader;
        /// @notice The token that the trader sells on the source chain.
        address baseToken;
        /// @notice The token that the trader buys on the destination chain.
        bytes32 quoteToken;
        /**
         * @notice The amount of baseToken sold in this trade. The exchange rate
         * is going to be preserved as the quoteTokenAmount / baseTokenAmount ratio.
         *
         * Most commonly, effectiveBaseTokenAmount will == baseTokenAmount.
         */
        uint256 effectiveBaseTokenAmount;
        /// @notice The amount of baseToken sold.
        uint256 baseTokenAmount;
        /// @notice The amount of quoteToken bought.
        uint256 quoteTokenAmount;
        /**
         * @notice The Unix timestamp (in seconds) when the quote expire. Only enforced
         * on the source chain.
         */
        /// @dev This gets checked against block.timestamp.
        uint256 quoteExpiry;
        /// @notice The nonce used by this trader.
        uint256 nonce;
        /// @notice Unique identifier for the quote.
        /// @dev Generated off-chain via a distributed UUID generator.
        bytes32 txid;
        /**
         * @notice The address of the IHashflowXChainMessenger contract used for
         * cross-chain communication.
         */
        address xChainMessenger;
        /// @notice Signature provided by the market maker (EIP-191).
        bytes signature;
    }

    /// @notice Used for Cross-Chain RFQ-M trades.
    struct XChainRFQMQuote {
        /// @notice The Hashflow Chain ID of the source chain.
        uint16 srcChainId;
        /// @notice The Hashflow Chain ID of the destination chain.
        uint16 dstChainId;
        /// @notice The address of the HashflowPool to trade against on the source chain.
        address srcPool;
        /// @notice The HashflowPool to disburse funds on the destination chain.
        /// @dev This is bytes32 in order to anticipate non-EVM chains.
        bytes32 dstPool;
        /**
         * @notice The external account linked to the HashflowPool on the source chain.
         * If the HashflowPool holds funds, this should be address(0).
         */
        address srcExternalAccount;
        /**
         * @notice The external account linked to the HashflowPool on the destination chain.
         * If the HashflowPool holds funds, this should be bytes32(0).
         */
        bytes32 dstExternalAccount;
        /// @notice The account that will be debited baseToken on the source chain.
        address trader;
        /// @notice The recipient of the quoteToken on the destination chain.
        bytes32 dstTrader;
        /// @notice The token that the trader sells on the source chain.
        address baseToken;
        /// @notice The token that the trader buys on the destination chain.
        bytes32 quoteToken;
        /// @notice The amount of baseToken sold.
        uint256 baseTokenAmount;
        /// @notice The amount of quoteToken bought.
        uint256 quoteTokenAmount;
        /**
         * @notice The Unix timestamp (in seconds) when the quote expire. Only enforced
         * on the source chain.
         */
        /// @dev This gets checked against block.timestamp.
        uint256 quoteExpiry;
        /// @notice Unique identifier for the quote.
        /// @dev Generated off-chain via a distributed UUID generator.
        bytes32 txid;
        /**
         * @notice The address of the IHashflowXChainMessenger contract used for
         * cross-chain communication.
         */
        address xChainMessenger;
        /// @notice Signature provided by the trader (EIP-712).
        bytes takerSignature;
        /// @notice Signature provided by the market maker (EIP-191).
        bytes makerSignature;
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"weth","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"token","type":"address"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"withdrawAmount","type":"uint256"}],"name":"RemoveLiquidity","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"trader","type":"address"},{"indexed":false,"internalType":"address","name":"effectiveTrader","type":"address"},{"indexed":false,"internalType":"bytes32","name":"txid","type":"bytes32"},{"indexed":false,"internalType":"address","name":"baseToken","type":"address"},{"indexed":false,"internalType":"address","name":"quoteToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"baseTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"quoteTokenAmount","type":"uint256"}],"name":"Trade","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"signer","type":"address"},{"indexed":false,"internalType":"address","name":"prevSigner","type":"address"}],"name":"UpdateSigner","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"authorized","type":"bool"}],"name":"UpdateWithdrawalAccount","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint16","name":"dstChainId","type":"uint16"},{"indexed":false,"internalType":"bytes32","name":"dstPool","type":"bytes32"},{"indexed":false,"internalType":"address","name":"trader","type":"address"},{"indexed":false,"internalType":"bytes32","name":"dstTrader","type":"bytes32"},{"indexed":false,"internalType":"bytes32","name":"txid","type":"bytes32"},{"indexed":false,"internalType":"address","name":"baseToken","type":"address"},{"indexed":false,"internalType":"bytes32","name":"quoteToken","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"baseTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"quoteTokenAmount","type":"uint256"}],"name":"XChainTrade","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"txid","type":"bytes32"}],"name":"XChainTradeFill","type":"event"},{"inputs":[],"name":"_WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approveToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseTokenAllowance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"externalAccount","type":"address"},{"internalType":"bytes32","name":"txid","type":"bytes32"},{"internalType":"address","name":"trader","type":"address"},{"internalType":"address","name":"quoteToken","type":"address"},{"internalType":"uint256","name":"quoteTokenAmount","type":"uint256"}],"name":"fillXChain","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"getReserves","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"increaseTokenAllowance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"address","name":"_signer","type":"address"},{"internalType":"address","name":"_operations","type":"address"},{"internalType":"address","name":"_router","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bytes4","name":"magicValue","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"killswitchOperations","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"operations","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"removeLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"router","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"signerConfiguration","outputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"bool","name":"enabled","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"address","name":"externalAccount","type":"address"},{"internalType":"address","name":"trader","type":"address"},{"internalType":"address","name":"baseToken","type":"address"},{"internalType":"address","name":"quoteToken","type":"address"},{"internalType":"uint256","name":"baseTokenAmount","type":"uint256"},{"internalType":"uint256","name":"quoteTokenAmount","type":"uint256"},{"internalType":"uint256","name":"quoteExpiry","type":"uint256"},{"internalType":"bytes32","name":"txid","type":"bytes32"},{"internalType":"bytes","name":"takerSignature","type":"bytes"},{"internalType":"bytes","name":"makerSignature","type":"bytes"}],"internalType":"struct IQuote.RFQMQuote","name":"quote","type":"tuple"}],"name":"tradeRFQM","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"pool","type":"address"},{"internalType":"address","name":"externalAccount","type":"address"},{"internalType":"address","name":"trader","type":"address"},{"internalType":"address","name":"effectiveTrader","type":"address"},{"internalType":"address","name":"baseToken","type":"address"},{"internalType":"address","name":"quoteToken","type":"address"},{"internalType":"uint256","name":"effectiveBaseTokenAmount","type":"uint256"},{"internalType":"uint256","name":"baseTokenAmount","type":"uint256"},{"internalType":"uint256","name":"quoteTokenAmount","type":"uint256"},{"internalType":"uint256","name":"quoteExpiry","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"txid","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct IQuote.RFQTQuote","name":"quote","type":"tuple"}],"name":"tradeRFQT","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"uint16","name":"srcChainId","type":"uint16"},{"internalType":"uint16","name":"dstChainId","type":"uint16"},{"internalType":"address","name":"srcPool","type":"address"},{"internalType":"bytes32","name":"dstPool","type":"bytes32"},{"internalType":"address","name":"srcExternalAccount","type":"address"},{"internalType":"bytes32","name":"dstExternalAccount","type":"bytes32"},{"internalType":"address","name":"trader","type":"address"},{"internalType":"bytes32","name":"dstTrader","type":"bytes32"},{"internalType":"address","name":"baseToken","type":"address"},{"internalType":"bytes32","name":"quoteToken","type":"bytes32"},{"internalType":"uint256","name":"baseTokenAmount","type":"uint256"},{"internalType":"uint256","name":"quoteTokenAmount","type":"uint256"},{"internalType":"uint256","name":"quoteExpiry","type":"uint256"},{"internalType":"bytes32","name":"txid","type":"bytes32"},{"internalType":"address","name":"xChainMessenger","type":"address"},{"internalType":"bytes","name":"takerSignature","type":"bytes"},{"internalType":"bytes","name":"makerSignature","type":"bytes"}],"internalType":"struct IQuote.XChainRFQMQuote","name":"quote","type":"tuple"}],"name":"tradeXChainRFQM","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint16","name":"srcChainId","type":"uint16"},{"internalType":"uint16","name":"dstChainId","type":"uint16"},{"internalType":"address","name":"srcPool","type":"address"},{"internalType":"bytes32","name":"dstPool","type":"bytes32"},{"internalType":"address","name":"srcExternalAccount","type":"address"},{"internalType":"bytes32","name":"dstExternalAccount","type":"bytes32"},{"internalType":"bytes32","name":"dstTrader","type":"bytes32"},{"internalType":"address","name":"baseToken","type":"address"},{"internalType":"bytes32","name":"quoteToken","type":"bytes32"},{"internalType":"uint256","name":"effectiveBaseTokenAmount","type":"uint256"},{"internalType":"uint256","name":"baseTokenAmount","type":"uint256"},{"internalType":"uint256","name":"quoteTokenAmount","type":"uint256"},{"internalType":"uint256","name":"quoteExpiry","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"txid","type":"bytes32"},{"internalType":"address","name":"xChainMessenger","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct IQuote.XChainRFQTQuote","name":"quote","type":"tuple"},{"internalType":"address","name":"trader","type":"address"}],"name":"tradeXChainRFQT","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newSigner","type":"address"}],"name":"updateSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"withdrawalAccounts","type":"address[]"},{"internalType":"bool","name":"authorized","type":"bool"}],"name":"updateWithdrawalAccount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"xChainMessenger","type":"address"},{"internalType":"bool","name":"authorized","type":"bool"}],"name":"updateXChainMessengerAuthorization","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint16","name":"chainId","type":"uint16"},{"internalType":"bytes32","name":"pool","type":"bytes32"}],"internalType":"struct IHashflowPool.AuthorizedXChainPool[]","name":"pools","type":"tuple[]"},{"internalType":"bool","name":"status","type":"bool"}],"name":"updateXChainPoolAuthorization","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"xChainNonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.