ETH Price: $3,091.19 (+0.07%)
Gas: 0.03 Gwei
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Withdraw233404452025-09-11 14:33:47121 days ago1757601227IN
0x6ea7B4a0...7E34A145C
0 ETH0.000071411.82193632
Claim233402652025-09-11 13:57:35121 days ago1757599055IN
0x6ea7B4a0...7E34A145C
0 ETH0.000155551.52127155
Claim233402152025-09-11 13:47:35121 days ago1757598455IN
0x6ea7B4a0...7E34A145C
0 ETH0.000177631.73631207
Claim233401912025-09-11 13:42:47121 days ago1757598167IN
0x6ea7B4a0...7E34A145C
0 ETH0.000173841.69904184
Claim233401412025-09-11 13:32:47121 days ago1757597567IN
0x6ea7B4a0...7E34A145C
0 ETH0.000179431.75373571
Claim233401252025-09-11 13:29:35121 days ago1757597375IN
0x6ea7B4a0...7E34A145C
0 ETH0.000068580.67060762
Claim233401092025-09-11 13:26:23121 days ago1757597183IN
0x6ea7B4a0...7E34A145C
0 ETH0.000192621.88259011
Claim233401072025-09-11 13:25:59121 days ago1757597159IN
0x6ea7B4a0...7E34A145C
0 ETH0.000088310.86303957
Claim233400552025-09-11 13:15:35121 days ago1757596535IN
0x6ea7B4a0...7E34A145C
0 ETH0.000193971.89553767
Claim233400182025-09-11 13:08:11121 days ago1757596091IN
0x6ea7B4a0...7E34A145C
0 ETH0.000192021.87724837
Claim233400092025-09-11 13:06:23121 days ago1757595983IN
0x6ea7B4a0...7E34A145C
0 ETH0.000194011.89706299
Claim233400012025-09-11 13:04:47121 days ago1757595887IN
0x6ea7B4a0...7E34A145C
0 ETH0.000194121.89823022
Claim233399992025-09-11 13:04:23121 days ago1757595863IN
0x6ea7B4a0...7E34A145C
0 ETH0.000187831.83522615
Claim233399912025-09-11 13:02:47121 days ago1757595767IN
0x6ea7B4a0...7E34A145C
0 ETH0.000189561.85268382
Claim233399822025-09-11 13:00:59121 days ago1757595659IN
0x6ea7B4a0...7E34A145C
0 ETH0.00018911.8492842
Claim233399762025-09-11 12:59:47121 days ago1757595587IN
0x6ea7B4a0...7E34A145C
0 ETH0.000183431.79342593
Claim233399762025-09-11 12:59:47121 days ago1757595587IN
0x6ea7B4a0...7E34A145C
0 ETH0.000183441.79342593
Claim233399432025-09-11 12:53:11121 days ago1757595191IN
0x6ea7B4a0...7E34A145C
0 ETH0.000196411.9199708
Claim233399402025-09-11 12:52:35121 days ago1757595155IN
0x6ea7B4a0...7E34A145C
0 ETH0.000103411.01110316
Claim233399392025-09-11 12:52:23121 days ago1757595143IN
0x6ea7B4a0...7E34A145C
0 ETH0.000197441.93012911
Claim233399302025-09-11 12:50:35121 days ago1757595035IN
0x6ea7B4a0...7E34A145C
0 ETH0.000200521.95979127
Claim233399212025-09-11 12:48:47121 days ago1757594927IN
0x6ea7B4a0...7E34A145C
0 ETH0.000174511.70683785
Claim233399212025-09-11 12:48:47121 days ago1757594927IN
0x6ea7B4a0...7E34A145C
0 ETH0.000182521.78533785
Claim233399142025-09-11 12:47:23121 days ago1757594843IN
0x6ea7B4a0...7E34A145C
0 ETH0.000081270.79440792
Claim233398922025-09-11 12:42:59121 days ago1757594579IN
0x6ea7B4a0...7E34A145C
0 ETH0.000130871.29254582
View all transactions

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x588198dd...9077C9a3f
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
TieredKongClaim

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
No with 200 runs

Other Settings:
cancun EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.10;

import "lib/openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol";
import "lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import { Ownable } from "lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/access/Ownable.sol";

contract TieredKongClaim is Ownable {
    using SafeERC20 for IERC20;
    bytes32 private root;
    uint256 public amount;
    IERC20 public kong;
    mapping(address => bool) public claimed;

    constructor(bytes32 _root, address _kong, uint256 _amount) Ownable(msg.sender) {
        root = _root;
        kong = IERC20(_kong);
        amount = _amount;
    }

    function claim(
        bytes32[] memory proof
    ) public {
        require(!claimed[msg.sender], "You already claimed!");
        bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(msg.sender))));
        require(MerkleProof.verify(proof, root, leaf), "Invalid proof");
        claimed[msg.sender] = true;
        kong.transfer(msg.sender, amount);
    }

    function withdraw() external onlyOwner {
        kong.safeTransfer(msg.sender, kong.balanceOf(address(this)));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/Hashes.sol)

pragma solidity ^0.8.20;

/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? efficientKeccak256(a, b) : efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function efficientKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 9 of 11 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 10 of 11 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/"
  ],
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"bytes32","name":"_root","type":"bytes32"},{"internalType":"address","name":"_kong","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"amount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"kong","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

0x608060405234801561000f575f5ffd5b506040516111403803806111408339818101604052810190610031919061028d565b335f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036100a2575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161009991906102ec565b60405180910390fd5b6100b18161010860201b60201c565b50826001819055508160035f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555080600281905550505050610305565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f5ffd5b5f819050919050565b6101df816101cd565b81146101e9575f5ffd5b50565b5f815190506101fa816101d6565b92915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f61022982610200565b9050919050565b6102398161021f565b8114610243575f5ffd5b50565b5f8151905061025481610230565b92915050565b5f819050919050565b61026c8161025a565b8114610276575f5ffd5b50565b5f8151905061028781610263565b92915050565b5f5f5f606084860312156102a4576102a36101c9565b5b5f6102b1868287016101ec565b93505060206102c286828701610246565b92505060406102d386828701610279565b9150509250925092565b6102e68161021f565b82525050565b5f6020820190506102ff5f8301846102dd565b92915050565b610e2e806103125f395ff3fe608060405234801561000f575f5ffd5b5060043610610086575f3560e01c8063aa8c217c11610059578063aa8c217c146100da578063b391c508146100f8578063c884ef8314610114578063f2fde38b1461014457610086565b80633ccfd60b1461008a57806351ce658314610094578063715018a6146100b25780638da5cb5b146100bc575b5f5ffd5b610092610160565b005b61009c61024e565b6040516100a991906108fa565b60405180910390f35b6100ba610273565b005b6100c4610286565b6040516100d19190610933565b60405180910390f35b6100e26102ad565b6040516100ef9190610964565b60405180910390f35b610112600480360381019061010d9190610b11565b6102b3565b005b61012e60048036038101906101299190610b82565b6104d1565b60405161013b9190610bc7565b60405180910390f35b61015e60048036038101906101599190610b82565b6104ee565b005b610168610572565b61024c3360035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016101c69190610933565b602060405180830381865afa1580156101e1573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102059190610c0a565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166105f99092919063ffffffff16565b565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61027b610572565b6102845f610678565b565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b60025481565b60045f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161561033d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161033490610c8f565b60405180910390fd5b5f3360405160200161034f9190610933565b604051602081830303815290604052805190602001206040516020016103759190610ccd565b60405160208183030381529060405280519060200120905061039a8260015483610739565b6103d9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103d090610d31565b60405180910390fd5b600160045f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff02191690831515021790555060035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a9059cbb336002546040518363ffffffff1660e01b815260040161048c929190610d4f565b6020604051808303815f875af11580156104a8573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104cc9190610da0565b505050565b6004602052805f5260405f205f915054906101000a900460ff1681565b6104f6610572565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610566575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161055d9190610933565b60405180910390fd5b61056f81610678565b50565b61057a61074f565b73ffffffffffffffffffffffffffffffffffffffff16610598610286565b73ffffffffffffffffffffffffffffffffffffffff16146105f7576105bb61074f565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016105ee9190610933565b60405180910390fd5b565b610673838473ffffffffffffffffffffffffffffffffffffffff1663a9059cbb858560405160240161062c929190610d4f565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050610756565b505050565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f8261074585846107f1565b1490509392505050565b5f33905090565b5f5f60205f8451602086015f885af180610775576040513d5f823e3d81fd5b3d92505f519150505f821461078e5760018114156107a9565b5f8473ffffffffffffffffffffffffffffffffffffffff163b145b156107eb57836040517f5274afe70000000000000000000000000000000000000000000000000000000081526004016107e29190610933565b60405180910390fd5b50505050565b5f5f8290505f5f90505b8451811015610837576108288286838151811061081b5761081a610dcb565b5b6020026020010151610842565b915080806001019150506107fb565b508091505092915050565b5f81831061085957610854828461086c565b610864565b610863838361086c565b5b905092915050565b5f825f528160205260405f20905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f819050919050565b5f6108c26108bd6108b884610880565b61089f565b610880565b9050919050565b5f6108d3826108a8565b9050919050565b5f6108e4826108c9565b9050919050565b6108f4816108da565b82525050565b5f60208201905061090d5f8301846108eb565b92915050565b5f61091d82610880565b9050919050565b61092d81610913565b82525050565b5f6020820190506109465f830184610924565b92915050565b5f819050919050565b61095e8161094c565b82525050565b5f6020820190506109775f830184610955565b92915050565b5f604051905090565b5f5ffd5b5f5ffd5b5f5ffd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6109d882610992565b810181811067ffffffffffffffff821117156109f7576109f66109a2565b5b80604052505050565b5f610a0961097d565b9050610a1582826109cf565b919050565b5f67ffffffffffffffff821115610a3457610a336109a2565b5b602082029050602081019050919050565b5f5ffd5b5f819050919050565b610a5b81610a49565b8114610a65575f5ffd5b50565b5f81359050610a7681610a52565b92915050565b5f610a8e610a8984610a1a565b610a00565b90508083825260208201905060208402830185811115610ab157610ab0610a45565b5b835b81811015610ada5780610ac68882610a68565b845260208401935050602081019050610ab3565b5050509392505050565b5f82601f830112610af857610af761098e565b5b8135610b08848260208601610a7c565b91505092915050565b5f60208284031215610b2657610b25610986565b5b5f82013567ffffffffffffffff811115610b4357610b4261098a565b5b610b4f84828501610ae4565b91505092915050565b610b6181610913565b8114610b6b575f5ffd5b50565b5f81359050610b7c81610b58565b92915050565b5f60208284031215610b9757610b96610986565b5b5f610ba484828501610b6e565b91505092915050565b5f8115159050919050565b610bc181610bad565b82525050565b5f602082019050610bda5f830184610bb8565b92915050565b610be98161094c565b8114610bf3575f5ffd5b50565b5f81519050610c0481610be0565b92915050565b5f60208284031215610c1f57610c1e610986565b5b5f610c2c84828501610bf6565b91505092915050565b5f82825260208201905092915050565b7f596f7520616c726561647920636c61696d6564210000000000000000000000005f82015250565b5f610c79601483610c35565b9150610c8482610c45565b602082019050919050565b5f6020820190508181035f830152610ca681610c6d565b9050919050565b5f819050919050565b610cc7610cc282610a49565b610cad565b82525050565b5f610cd88284610cb6565b60208201915081905092915050565b7f496e76616c69642070726f6f66000000000000000000000000000000000000005f82015250565b5f610d1b600d83610c35565b9150610d2682610ce7565b602082019050919050565b5f6020820190508181035f830152610d4881610d0f565b9050919050565b5f604082019050610d625f830185610924565b610d6f6020830184610955565b9392505050565b610d7f81610bad565b8114610d89575f5ffd5b50565b5f81519050610d9a81610d76565b92915050565b5f60208284031215610db557610db4610986565b5b5f610dc284828501610d8c565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffdfea26469706673582212208df643054ef4828992f2910f107320b5d1ad40aea59ee719a31f327b7b4087bb64736f6c634300081c003384d0a7edbf02e1c2b52cf6e894a6def0d906545793776265034f6f9333af0dca0000000000000000000000008db036f007841c21b97eff7dfc2c187241d59baf000000000000000000000000000000000000000000000059725991ece2880000

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610086575f3560e01c8063aa8c217c11610059578063aa8c217c146100da578063b391c508146100f8578063c884ef8314610114578063f2fde38b1461014457610086565b80633ccfd60b1461008a57806351ce658314610094578063715018a6146100b25780638da5cb5b146100bc575b5f5ffd5b610092610160565b005b61009c61024e565b6040516100a991906108fa565b60405180910390f35b6100ba610273565b005b6100c4610286565b6040516100d19190610933565b60405180910390f35b6100e26102ad565b6040516100ef9190610964565b60405180910390f35b610112600480360381019061010d9190610b11565b6102b3565b005b61012e60048036038101906101299190610b82565b6104d1565b60405161013b9190610bc7565b60405180910390f35b61015e60048036038101906101599190610b82565b6104ee565b005b610168610572565b61024c3360035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166370a08231306040518263ffffffff1660e01b81526004016101c69190610933565b602060405180830381865afa1580156101e1573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102059190610c0a565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166105f99092919063ffffffff16565b565b60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61027b610572565b6102845f610678565b565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b60025481565b60045f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161561033d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161033490610c8f565b60405180910390fd5b5f3360405160200161034f9190610933565b604051602081830303815290604052805190602001206040516020016103759190610ccd565b60405160208183030381529060405280519060200120905061039a8260015483610739565b6103d9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016103d090610d31565b60405180910390fd5b600160045f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff02191690831515021790555060035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a9059cbb336002546040518363ffffffff1660e01b815260040161048c929190610d4f565b6020604051808303815f875af11580156104a8573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104cc9190610da0565b505050565b6004602052805f5260405f205f915054906101000a900460ff1681565b6104f6610572565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610566575f6040517f1e4fbdf700000000000000000000000000000000000000000000000000000000815260040161055d9190610933565b60405180910390fd5b61056f81610678565b50565b61057a61074f565b73ffffffffffffffffffffffffffffffffffffffff16610598610286565b73ffffffffffffffffffffffffffffffffffffffff16146105f7576105bb61074f565b6040517f118cdaa70000000000000000000000000000000000000000000000000000000081526004016105ee9190610933565b60405180910390fd5b565b610673838473ffffffffffffffffffffffffffffffffffffffff1663a9059cbb858560405160240161062c929190610d4f565b604051602081830303815290604052915060e01b6020820180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff8381831617835250505050610756565b505050565b5f5f5f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f5f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f8261074585846107f1565b1490509392505050565b5f33905090565b5f5f60205f8451602086015f885af180610775576040513d5f823e3d81fd5b3d92505f519150505f821461078e5760018114156107a9565b5f8473ffffffffffffffffffffffffffffffffffffffff163b145b156107eb57836040517f5274afe70000000000000000000000000000000000000000000000000000000081526004016107e29190610933565b60405180910390fd5b50505050565b5f5f8290505f5f90505b8451811015610837576108288286838151811061081b5761081a610dcb565b5b6020026020010151610842565b915080806001019150506107fb565b508091505092915050565b5f81831061085957610854828461086c565b610864565b610863838361086c565b5b905092915050565b5f825f528160205260405f20905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f819050919050565b5f6108c26108bd6108b884610880565b61089f565b610880565b9050919050565b5f6108d3826108a8565b9050919050565b5f6108e4826108c9565b9050919050565b6108f4816108da565b82525050565b5f60208201905061090d5f8301846108eb565b92915050565b5f61091d82610880565b9050919050565b61092d81610913565b82525050565b5f6020820190506109465f830184610924565b92915050565b5f819050919050565b61095e8161094c565b82525050565b5f6020820190506109775f830184610955565b92915050565b5f604051905090565b5f5ffd5b5f5ffd5b5f5ffd5b5f601f19601f8301169050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6109d882610992565b810181811067ffffffffffffffff821117156109f7576109f66109a2565b5b80604052505050565b5f610a0961097d565b9050610a1582826109cf565b919050565b5f67ffffffffffffffff821115610a3457610a336109a2565b5b602082029050602081019050919050565b5f5ffd5b5f819050919050565b610a5b81610a49565b8114610a65575f5ffd5b50565b5f81359050610a7681610a52565b92915050565b5f610a8e610a8984610a1a565b610a00565b90508083825260208201905060208402830185811115610ab157610ab0610a45565b5b835b81811015610ada5780610ac68882610a68565b845260208401935050602081019050610ab3565b5050509392505050565b5f82601f830112610af857610af761098e565b5b8135610b08848260208601610a7c565b91505092915050565b5f60208284031215610b2657610b25610986565b5b5f82013567ffffffffffffffff811115610b4357610b4261098a565b5b610b4f84828501610ae4565b91505092915050565b610b6181610913565b8114610b6b575f5ffd5b50565b5f81359050610b7c81610b58565b92915050565b5f60208284031215610b9757610b96610986565b5b5f610ba484828501610b6e565b91505092915050565b5f8115159050919050565b610bc181610bad565b82525050565b5f602082019050610bda5f830184610bb8565b92915050565b610be98161094c565b8114610bf3575f5ffd5b50565b5f81519050610c0481610be0565b92915050565b5f60208284031215610c1f57610c1e610986565b5b5f610c2c84828501610bf6565b91505092915050565b5f82825260208201905092915050565b7f596f7520616c726561647920636c61696d6564210000000000000000000000005f82015250565b5f610c79601483610c35565b9150610c8482610c45565b602082019050919050565b5f6020820190508181035f830152610ca681610c6d565b9050919050565b5f819050919050565b610cc7610cc282610a49565b610cad565b82525050565b5f610cd88284610cb6565b60208201915081905092915050565b7f496e76616c69642070726f6f66000000000000000000000000000000000000005f82015250565b5f610d1b600d83610c35565b9150610d2682610ce7565b602082019050919050565b5f6020820190508181035f830152610d4881610d0f565b9050919050565b5f604082019050610d625f830185610924565b610d6f6020830184610955565b9392505050565b610d7f81610bad565b8114610d89575f5ffd5b50565b5f81519050610d9a81610d76565b92915050565b5f60208284031215610db557610db4610986565b5b5f610dc284828501610d8c565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffdfea26469706673582212208df643054ef4828992f2910f107320b5d1ad40aea59ee719a31f327b7b4087bb64736f6c634300081c0033

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.