ETH Price: $3,876.03 (+0.54%)

Contract

0x71B058d2b5ad1059f4e5CBc21Ce35bE7b0e8743B
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Deploy230640802025-08-04 0:20:2380 days ago1754266823IN
0x71B058d2...7b0e8743B
0 ETH0.001448180.21671426
Set Params3230640802025-08-04 0:20:2380 days ago1754266823IN
0x71B058d2...7b0e8743B
0 ETH0.000034230.21671426
Set Params2230640802025-08-04 0:20:2380 days ago1754266823IN
0x71B058d2...7b0e8743B
0 ETH0.000034440.21671426
Set Params1230640802025-08-04 0:20:2380 days ago1754266823IN
0x71B058d2...7b0e8743B
0 ETH0.000024670.21671426

Latest 4 internal transactions

Advanced mode:
Parent Transaction Hash Method Block
From
To
0x60806040230640802025-08-04 0:20:2380 days ago1754266823
0x71B058d2...7b0e8743B
 Contract Creation0 ETH
0x61018060230640802025-08-04 0:20:2380 days ago1754266823
0x71B058d2...7b0e8743B
 Contract Creation0 ETH
0x6101a060230640802025-08-04 0:20:2380 days ago1754266823
0x71B058d2...7b0e8743B
 Contract Creation0 ETH
0x60806040230640802025-08-04 0:20:2380 days ago1754266823
0x71B058d2...7b0e8743B
 Contract Creation0 ETH
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
AtomicDeployer

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 100 runs

Other Settings:
prague EvmVersion
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {SuccinctStaking} from "../../src/SuccinctStaking.sol";
import {SuccinctVApp} from "../../src/SuccinctVApp.sol";
import {IntermediateSuccinct} from "../../src/tokens/IntermediateSuccinct.sol";
import {ERC1967Proxy} from
    "../../lib/openzeppelin-contracts/contracts/proxy/ERC1967/ERC1967Proxy.sol";

contract AtomicDeployer {
    // Staking proxy param
    address public stakingImpl;

    // IntermediateSuccinct param
    address public prove;

    // Governor params
    uint48 public votingDelay;
    uint32 public votingPeriod;
    uint256 public proposalThreshold;
    uint256 public quorumFraction;

    // VApp params
    address public vappImpl;
    address public owner;
    address public auctioneer;
    address public verifier;
    uint256 public minDepositAmount;
    bytes32 public vkey;

    // Staking params
    address public dispenser;
    uint256 public minStakeAmount;
    uint256 public maxUnstakeRequests;
    uint256 public unstakePeriod;
    uint256 public slashCancellationPeriod;
    bytes32 public genesisStateRoot;

    address public deployerOwner;

    constructor() {
        deployerOwner = msg.sender;
    }

    modifier onlyOwner() {
        require(msg.sender == deployerOwner);
        _;
    }

    function setParams1(
        address _stakingImpl,
        address _prove,
        uint48 _votingDelay,
        uint32 _votingPeriod,
        uint256 _proposalThreshold,
        uint256 _quorumFraction
    ) external onlyOwner {
        stakingImpl = _stakingImpl;
        prove = _prove;
        votingDelay = _votingDelay;
        votingPeriod = _votingPeriod;
        proposalThreshold = _proposalThreshold;
        quorumFraction = _quorumFraction;
    }

    function setParams2(
        address _vappImpl,
        address _owner,
        address _auctioneer,
        address _verifier,
        uint256 _minDepositAmount,
        bytes32 _vkey
    ) external onlyOwner {
        vappImpl = _vappImpl;
        owner = _owner;
        auctioneer = _auctioneer;
        verifier = _verifier;
        minDepositAmount = _minDepositAmount;
        vkey = _vkey;
    }

    function setParams3(
        address _dispenser,
        uint256 _minStakeAmount,
        uint256 _maxUnstakeRequests,
        uint256 _unstakePeriod,
        uint256 _slashCancellationPeriod,
        bytes32 _genesisStateRoot
    ) external onlyOwner {
        dispenser = _dispenser;
        minStakeAmount = _minStakeAmount;
        maxUnstakeRequests = _maxUnstakeRequests;
        unstakePeriod = _unstakePeriod;
        slashCancellationPeriod = _slashCancellationPeriod;
        genesisStateRoot = _genesisStateRoot;
    }

    function deploy(bytes32 salt, bytes calldata iproveCode, bytes calldata governorCode)
        external
        onlyOwner
        returns (address, address, address, address)
    {
        address STAKING;
        {
            STAKING = address(new ERC1967Proxy{salt: salt}(stakingImpl, ""));
        }

        address I_PROVE;
        {
            // I_PROVE = address(new IntermediateSuccinct{salt: salt}(prove, STAKING));
            bytes memory args = abi.encode(prove, STAKING);
            bytes memory initCode = abi.encodePacked(iproveCode, args);

            assembly {
                I_PROVE := create2(0, add(initCode, 0x20), mload(initCode), salt)
                if iszero(extcodesize(I_PROVE)) { revert(0, 0) }
            }
        }

        address GOVERNOR;
        {
            bytes memory args =
                abi.encode(I_PROVE, votingDelay, votingPeriod, proposalThreshold, quorumFraction);
            bytes memory initCode = abi.encodePacked(governorCode, args);

            assembly {
                GOVERNOR := create2(0, add(initCode, 0x20), mload(initCode), salt)
                if iszero(extcodesize(GOVERNOR)) { revert(0, 0) }
            }
        }

        address VAPP;
        {
            // Encode the initialize function call data
            bytes memory vappInitData;
            {
                vappInitData = abi.encodeCall(
                    SuccinctVApp.initialize,
                    (
                        owner,
                        prove,
                        I_PROVE,
                        auctioneer,
                        STAKING,
                        verifier,
                        minDepositAmount,
                        vkey,
                        genesisStateRoot
                    )
                );
            }
            VAPP = address(new ERC1967Proxy{salt: salt}(vappImpl, vappInitData));
        }

        SuccinctStaking(STAKING).initialize(
            owner,
            GOVERNOR,
            VAPP,
            prove,
            I_PROVE,
            dispenser,
            minStakeAmount,
            maxUnstakeRequests,
            unstakePeriod,
            slashCancellationPeriod
        );

        return (STAKING, VAPP, I_PROVE, GOVERNOR);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {ProverRegistry} from "./libraries/ProverRegistry.sol";
import {StakedSuccinct} from "./tokens/StakedSuccinct.sol";
import {ISuccinctStaking} from "./interfaces/ISuccinctStaking.sol";
import {IIntermediateSuccinct} from "./interfaces/IIntermediateSuccinct.sol";
import {IProver} from "./interfaces/IProver.sol";
import {SuccinctGovernor} from "./SuccinctGovernor.sol";
import {Initializable} from
    "../lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol";
import {OwnableUpgradeable} from
    "../lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import {IERC20Permit} from
    "../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {IERC4626} from "../lib/openzeppelin-contracts/contracts/interfaces/IERC4626.sol";
import {SafeERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {Math} from "../lib/openzeppelin-contracts/contracts/utils/math/Math.sol";
import {UUPSUpgradeable} from
    "../lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";

/// @title SuccinctStaking
/// @author Succinct Labs
/// @notice Manages staking, unstaking, dispensing, and slashing for the Succinct Prover Network.
contract SuccinctStaking is
    Initializable,
    OwnableUpgradeable,
    ProverRegistry,
    StakedSuccinct,
    UUPSUpgradeable,
    ISuccinctStaking
{
    using SafeERC20 for IERC20;

    /// @dev Fixed‑point base used for slash‑factor math.
    ///
    ///      This allows for the multiplication of two 1e27‑scaled values without
    ///      overflowing 256 bits while keeping sub‑wei precision.
    uint256 internal constant SCALAR = 1e27;

    /// @inheritdoc ISuccinctStaking
    address public override dispenser;

    /// @inheritdoc ISuccinctStaking
    uint256 public override minStakeAmount;

    /// @inheritdoc ISuccinctStaking
    uint256 public override maxUnstakeRequests;

    /// @inheritdoc ISuccinctStaking
    uint256 public override unstakePeriod;

    /// @inheritdoc ISuccinctStaking
    uint256 public override slashCancellationPeriod;

    /// @inheritdoc ISuccinctStaking
    uint256 public override dispenseRate;

    /// @inheritdoc ISuccinctStaking
    uint256 public override dispenseRateTimestamp;

    /// @inheritdoc ISuccinctStaking
    uint256 public override dispenseEarned;

    /// @inheritdoc ISuccinctStaking
    uint256 public override dispenseDistributed;

    /// @dev A mapping from staker to the prover they are staked with.
    mapping(address => address) internal stakerToProver;

    /// @dev A mapping from staker to their unstake claims.
    mapping(address => UnstakeClaim[]) internal unstakeClaims;

    /// @dev A mapping from prover to their slash claims.
    mapping(address => SlashClaim[]) internal slashClaims;

    /// @dev A mapping from prover to their unresolved slash claim count.
    mapping(address => uint256) internal slashClaimCount;

    /// @dev A mapping from prover to their unstaking escrow pool.
    mapping(address => EscrowPool) internal escrowPools;

    /*//////////////////////////////////////////////////////////////
                                MODIFIER
    //////////////////////////////////////////////////////////////*/

    modifier onlyDispenser() {
        if (msg.sender != dispenser) revert NotDispenser();
        _;
    }

    /*//////////////////////////////////////////////////////////////
                              INITIALIZER
    //////////////////////////////////////////////////////////////*/

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /// @dev We don't do this in the constructor because we must deploy this contract
    ///      first.
    function initialize(
        address _owner,
        address _governor,
        address _vApp,
        address _prove,
        address _intermediateProve,
        address _dispenser,
        uint256 _minStakeAmount,
        uint256 _maxUnstakeRequests,
        uint256 _unstakePeriod,
        uint256 _slashCancellationPeriod
    ) external initializer {
        // Ensure that parameters critical for functionality are non-zero.
        _requireNonZeroAddress(_owner);
        _requireNonZeroAddress(_governor);
        _requireNonZeroAddress(_vApp);
        _requireNonZeroAddress(_prove);
        _requireNonZeroAddress(_intermediateProve);
        _requireNonZeroAddress(_dispenser);
        _requireNonZeroNumber(_maxUnstakeRequests);
        _requireNonZeroNumber(_unstakePeriod);
        _requireNonZeroNumber(_slashCancellationPeriod);

        // Setup the initial state.
        __UUPSUpgradeable_init();
        __Ownable_init(_owner);
        __StakedSuccinct_init();
        __ProverRegistry_init(_governor, _vApp, _prove, _intermediateProve);
        dispenser = _dispenser;
        minStakeAmount = _minStakeAmount;
        maxUnstakeRequests = _maxUnstakeRequests;
        unstakePeriod = _unstakePeriod;
        slashCancellationPeriod = _slashCancellationPeriod;

        // Approve the $iPROVE contract to transfer $PROVE from this contract during stake().
        IERC20(prove).approve(iProve, type(uint256).max);
    }

    /*//////////////////////////////////////////////////////////////
                                 VIEW
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISuccinctStaking
    function stakedTo(address _staker) external view override returns (address) {
        return stakerToProver[_staker];
    }

    /// @inheritdoc ISuccinctStaking
    function staked(address _staker) external view override returns (uint256) {
        // Get the prover that the staker is staked with.
        address prover = stakerToProver[_staker];
        if (prover == address(0)) return 0;

        // Get the amount of $PROVE the staker would get if the staker's full $stPROVE balance was
        // unstaked.
        return previewUnstake(prover, balanceOf(_staker));
    }

    /// @inheritdoc ISuccinctStaking
    function proverStaked(address _prover) public view override returns (uint256) {
        // Get the amount of $iPROVE in the prover.
        uint256 iPROVE = IERC20(iProve).balanceOf(_prover);

        // Get the amount of $PROVE that would be received if the $iPROVE was redeemed.
        return IERC4626(iProve).previewRedeem(iPROVE);
    }

    /// @inheritdoc ISuccinctStaking
    function unstakeRequests(address _staker)
        external
        view
        override
        returns (UnstakeClaim[] memory)
    {
        return unstakeClaims[_staker];
    }

    /// @inheritdoc ISuccinctStaking
    function slashRequests(address _prover) external view override returns (SlashClaim[] memory) {
        return slashClaims[_prover];
    }

    /// @inheritdoc ISuccinctStaking
    function escrowPool(address _prover) external view override returns (EscrowPool memory) {
        return escrowPools[_prover];
    }

    /// @inheritdoc ISuccinctStaking
    function unstakePending(address _staker) external view override returns (uint256 PROVE) {
        // Get the prover that the staker is staked with.
        address prover = stakerToProver[_staker];
        if (prover == address(0)) return 0;

        // Calculate the pending $PROVE by iterating through claims and applying slash factor.
        UnstakeClaim[] memory claims = unstakeClaims[_staker];
        EscrowPool memory pool = escrowPools[prover];

        // If everything has been slashed to zero no claim can redeem anything.
        uint256 currentFactor = pool.slashFactor;
        if (currentFactor == 0) return 0;

        for (uint256 i = 0; i < claims.length; i++) {
            // Apply cumulative slash factor to the escrowed $iPROVE.
            uint256 iPROVEScaled =
                Math.mulDiv(claims[i].iPROVEEscrow, currentFactor, claims[i].slashFactor);
            // Convert $iPROVE to $PROVE.
            PROVE += IERC4626(iProve).previewRedeem(iPROVEScaled);
        }
    }

    /// @inheritdoc ISuccinctStaking
    function previewUnstake(address _prover, uint256 _stPROVE)
        public
        view
        override
        returns (uint256)
    {
        // Get the amount of $iPROVE this staker has for this prover.
        uint256 iPROVE = IERC4626(_prover).previewRedeem(_stPROVE);

        // Get the amount of $PROVE that would be received if the $iPROVE was redeemed.
        return IERC4626(iProve).previewRedeem(iPROVE);
    }

    /// @inheritdoc ISuccinctStaking
    function maxDispense() public view override returns (uint256) {
        // The total earned is the historical accrual plus the current period earnings.
        uint256 totalEarned =
            dispenseEarned + (block.timestamp - dispenseRateTimestamp) * dispenseRate;

        // The maximum amount that can currently be dispensed is the total amount earned minus the
        // amount already dispensed.
        return totalEarned - dispenseDistributed;
    }

    /*//////////////////////////////////////////////////////////////
                                 CORE
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISuccinctStaking
    function stake(address _prover, uint256 _PROVE)
        external
        override
        onlyForProver(_prover)
        returns (uint256)
    {
        // Transfer $PROVE from the staker to this contract.
        IERC20(prove).safeTransferFrom(msg.sender, address(this), _PROVE);

        return _stake(msg.sender, _prover, _PROVE);
    }

    /// @inheritdoc ISuccinctStaking
    function permitAndStake(
        address _prover,
        address _from,
        uint256 _PROVE,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external override onlyForProver(_prover) returns (uint256) {
        // If the $PROVE allowance is not equal to the amount being staked, permit the prover to
        // spend the $PROVE from the staker.
        if (IERC20(prove).allowance(_from, _prover) != _PROVE) {
            IERC20Permit(prove).permit(_from, _prover, _PROVE, _deadline, _v, _r, _s);
        }

        // Transfer $PROVE from the staker to this contract, by utilizing the prover as the
        // spender.
        IProver(_prover).transferProveToStaking(_from, _PROVE);

        return _stake(_from, _prover, _PROVE);
    }

    /// @inheritdoc ISuccinctStaking
    function requestUnstake(uint256 _stPROVE) external override stakingOperation {
        // Ensure unstaking a non-zero amount.
        _requireNonZeroNumber(_stPROVE);

        // Get the prover that the staker is staked with.
        address prover = stakerToProver[msg.sender];
        if (prover == address(0)) revert NotStaked();

        // Check that this staker has not already requested too many unstake requests.
        if (unstakeClaims[msg.sender].length >= maxUnstakeRequests) revert TooManyUnstakeRequests();

        // Check that this prover is not in the process of being slashed.
        _requireProverWithoutSlashRequests(prover);

        // Get the amount of $stPROVE this staker currently has.
        uint256 stPROVEBalance = balanceOf(msg.sender);

        // Check that this staker has enough $stPROVE to unstake this amount.
        if (stPROVEBalance < _stPROVE) revert InsufficientStakeBalance();

        // Escrow the $iPROVE.
        uint256 iPROVEEscrow = _escrowUnstakeRequest(msg.sender, prover, _stPROVE);

        // Get the prover's escrow pool.
        EscrowPool storage pool = escrowPools[prover];

        // If the escrow pool hasn't been initialized yet (or a prover was fully slashed),
        // set the slash factor to the starting value.
        if (pool.slashFactor == 0) pool.slashFactor = SCALAR;

        // Update the prover's escrow pool to account for the new escrowed $iPROVE.
        pool.iPROVEEscrow += iPROVEEscrow;

        // Record the unstake request.
        unstakeClaims[msg.sender].push(
            UnstakeClaim({
                iPROVEEscrow: iPROVEEscrow,
                slashFactor: pool.slashFactor,
                timestamp: block.timestamp
            })
        );

        emit UnstakeRequest(msg.sender, prover, _stPROVE, iPROVEEscrow);
    }

    /// @inheritdoc ISuccinctStaking
    function finishUnstake(address _staker) external override returns (uint256 PROVE) {
        // Get the prover that the staker is staked with.
        address prover = stakerToProver[_staker];
        if (prover == address(0)) revert NotStaked();

        // Get the unstake claims for this staker.
        UnstakeClaim[] storage claims = unstakeClaims[_staker];
        if (claims.length == 0) revert NoUnstakeRequests();

        // Check that this prover is not in the process of being slashed.
        _requireProverWithoutSlashRequests(prover);

        // Process the available unstake claims.
        PROVE += _finishUnstake(_staker, prover, claims);

        // Reset the slash factor if all $iPROVE has been removed.
        EscrowPool storage pool = escrowPools[prover];
        if (pool.iPROVEEscrow == 0 && pool.slashFactor != SCALAR) {
            pool.slashFactor = SCALAR;
        }

        // If the staker has no remaining balance and no pending unstakes, remove the staker's
        // delegate. This allows them to choose a different prover if they stake again.
        if (balanceOf(_staker) == 0 && claims.length == 0) {
            // Remove the staker's prover delegation.
            stakerToProver[_staker] = address(0);

            emit ProverUnbound(_staker, prover);
        }
    }

    /*//////////////////////////////////////////////////////////////
                              AUTHORIZED
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISuccinctStaking
    function requestSlash(address _prover, uint256 _iPROVE)
        external
        override
        onlyVApp
        onlyForProver(_prover)
        returns (uint256 index)
    {
        // Ensure slashing a non-zero amount.
        _requireNonZeroNumber(_iPROVE);

        // Create the slash claim.
        index = slashClaims[_prover].length;
        slashClaims[_prover].push(
            SlashClaim({iPROVE: _iPROVE, timestamp: block.timestamp, resolved: false})
        );

        // Increment the unresolved claim counter.
        unchecked {
            ++slashClaimCount[_prover];
        }

        emit SlashRequest(_prover, _iPROVE, index);
    }

    /// @inheritdoc ISuccinctStaking
    function cancelSlash(address _prover, uint256 _index)
        external
        override
        onlyForProver(_prover)
    {
        // Get the slash claim.
        SlashClaim storage claim = slashClaims[_prover][_index];

        // Ensure the claim hasn't already been resolved.
        if (claim.resolved) revert SlashRequestAlreadyResolved();

        // Calculate the deadline for cancellation. Must be after the slash cancellation period
        // and governance latency has passed. This ensures that governance has had adequate time
        // to execute a proposal to call `finishSlash()`.
        uint256 votingDelay = SuccinctGovernor(payable(governor)).votingDelay();
        uint256 votingPeriod = SuccinctGovernor(payable(governor)).votingPeriod();
        uint256 cancelDeadline =
            claim.timestamp + slashCancellationPeriod + votingDelay + votingPeriod;

        // Check if the deadline has passed.
        if (block.timestamp < cancelDeadline) revert SlashRequestNotReadyToCancel();

        // Mark the claim as resolved.
        claim.resolved = true;

        // Decrement the unresolved claim counter.
        unchecked {
            --slashClaimCount[_prover];
        }

        emit SlashCancel(_prover, claim.iPROVE, _index);
    }

    /// @inheritdoc ISuccinctStaking
    function finishSlash(address _prover, uint256 _index)
        external
        override
        onlyOwner
        onlyForProver(_prover)
        returns (uint256 iPROVEBurned)
    {
        // Get the slash claim.
        SlashClaim storage claim = slashClaims[_prover][_index];

        // Ensure the claim hasn't already been resolved.
        if (claim.resolved) revert SlashRequestAlreadyResolved();

        // Determine how much can actually be slashed (cannot exceed the prover's current balance).
        uint256 iPROVEBalance = IERC20(iProve).balanceOf(_prover);

        // Get the prover's escrow pool to include escrowed funds in total.
        EscrowPool storage pool = escrowPools[_prover];
        uint256 iPROVETotal = iPROVEBalance + pool.iPROVEEscrow;
        uint256 iPROVEToSlash = claim.iPROVE > iPROVETotal ? iPROVETotal : claim.iPROVE;

        // Mark the claim as resolved.
        claim.resolved = true;

        // Decrement the unresolved claim counter.
        unchecked {
            --slashClaimCount[_prover];
        }

        uint256 PROVEBurned = 0;
        iPROVEBurned = 0;
        if (iPROVEToSlash > 0) {
            // Pro‑rata split between vault and escrow.
            uint256 burnFromEscrow = Math.mulDiv(iPROVEToSlash, pool.iPROVEEscrow, iPROVETotal);
            uint256 burnFromVault = iPROVEToSlash - burnFromEscrow;

            // Burn in escrow.
            if (burnFromEscrow != 0) {
                pool.iPROVEEscrow -= burnFromEscrow;
                PROVEBurned += IIntermediateSuccinct(iProve).burn(address(this), burnFromEscrow);
                iPROVEBurned += burnFromEscrow;
            }

            // Burn in vault.
            if (burnFromVault != 0) {
                PROVEBurned += IIntermediateSuccinct(iProve).burn(_prover, burnFromVault);
                iPROVEBurned += burnFromVault;
            }

            // Update the prover's slash factor.
            uint256 iPROVERemaining = iPROVETotal - iPROVEToSlash;
            if (iPROVERemaining == 0) {
                // If there is nothing left to slash, set the slash factor to 0.
                pool.slashFactor = 0;
            } else {
                // If there is something left to slash, update the slash factor to the new ratio.
                uint256 ratio = Math.mulDiv(iPROVERemaining, SCALAR, iPROVETotal);
                if (pool.slashFactor == 0) pool.slashFactor = SCALAR;
                pool.slashFactor = Math.mulDiv(pool.slashFactor, ratio, SCALAR);
            }
        }

        emit Slash(_prover, PROVEBurned, iPROVEBurned, _index);

        // If the slashing caused the price-per-share to drop below the minimum, deactivate the
        // prover.
        _deactivateProverIfPriceBelowMin(_prover);
    }

    /// @inheritdoc ISuccinctStaking
    function dispense(uint256 _PROVE) external override onlyDispenser {
        // Get the maximum amount of $PROVE that can be dispensed.
        uint256 available = maxDispense();

        // If caller passed in type(uint256).max, attempt to dispense the full available amount.
        uint256 amount = _PROVE == type(uint256).max ? available : _PROVE;

        // Ensure dispensing a non-zero amount.
        _requireNonZeroNumber(amount);

        // If caller passed a specific number, make sure it doesn't exceed available.
        if (amount > available) revert AmountExceedsAvailableDispense();

        // Update the total dispensed amount.
        dispenseDistributed += amount;

        // Transfer the amount to the iPROVE vault. This distributes the $PROVE to all stakers.
        IERC20(prove).safeTransfer(iProve, amount);

        emit Dispense(amount);
    }

    /// @inheritdoc ISuccinctStaking
    function setDispenser(address _dispenser) external override onlyOwner {
        _setDispenser(_dispenser);
    }

    /// @inheritdoc ISuccinctStaking
    function updateDispenseRate(uint256 _rate) external override onlyOwner {
        _updateDispenseRate(_rate);
    }

    /*//////////////////////////////////////////////////////////////
                               INTERNAL
    //////////////////////////////////////////////////////////////*/

    /// @dev Deposit a staker's $PROVE to mint $iPROVE, then deposit $iPROVE to mint $PROVER-N, and
    ///      then directly mint $stPROVE to the staker, which acts as the receipt token for staking.
    function _stake(address _staker, address _prover, uint256 _PROVE)
        internal
        stakingOperation
        returns (uint256 stPROVE)
    {
        // Ensure staking a non-zero amount.
        _requireNonZeroNumber(_PROVE);

        // Ensure the staking amount is greater than the minimum stake amount.
        if (_PROVE < minStakeAmount) revert StakeBelowMinimum();

        // Check that this prover is active.
        if (deactivatedProvers[_prover]) revert ProverNotActive();

        // Check that this prover is not in the process of being slashed.
        _requireProverWithoutSlashRequests(_prover);

        // Ensure the staker is not already staked with a different prover.
        address existingProver = stakerToProver[_staker];
        if (existingProver != address(0) && existingProver != _prover) {
            revert AlreadyStakedWithDifferentProver(existingProver);
        }

        // Set the prover as the staker's delegate.
        if (existingProver == address(0)) {
            stakerToProver[_staker] = _prover;

            emit ProverBound(_staker, _prover);
        }

        // Deposit $PROVE to mint $iPROVE, sending it to this contract.
        uint256 iPROVE = IERC4626(iProve).deposit(_PROVE, address(this));

        // Ensure this contract received non-zero $iPROVE.
        if (iPROVE == 0) revert ZeroReceiptAmount();

        // Deposit $iPROVE to mint $PROVER-N, sending it to this contract.
        // Note: The $stPROVE variable is used because it is 1:1 with the received $PROVER-N.
        stPROVE = IERC4626(_prover).deposit(iPROVE, address(this));

        // Ensure this contract received non-zero $PROVER-N.
        if (stPROVE == 0) revert ZeroReceiptAmount();

        // Mint $stPROVE to the staker as a receipt token representing their ownership of $PROVER-N.
        _mint(_staker, stPROVE);

        emit Stake(_staker, _prover, _PROVE, iPROVE, stPROVE);
    }

    /// @dev Burn a staker's $stPROVE and withdraw $PROVER-N to receive $iPROVE.
    function _escrowUnstakeRequest(address _staker, address _prover, uint256 _stPROVE)
        internal
        returns (uint256 iPROVE)
    {
        // Burn the $stPROVE from the staker.
        _burn(_staker, _stPROVE);

        // Withdraw $PROVER-N from this contract to receive $iPROVE.
        // Note: This can return 0 if the prover has been fully slashed.
        iPROVE = IERC4626(_prover).redeem(_stPROVE, address(this), address(this));
    }

    /// @dev Withdraw the escrowed $iPROVE to receive $PROVE, which gets sent to the staker.
    function _finishUnstakeRequest(address _staker, address _prover, UnstakeClaim memory _claim)
        internal
        returns (uint256 PROVE)
    {
        // Get the prover's escrow pool.
        EscrowPool storage pool = escrowPools[_prover];

        // Apply cumulative slash factor to the escrowed $iPROVE.
        uint256 iPROVEScaled =
            Math.mulDiv(_claim.iPROVEEscrow, pool.slashFactor, _claim.slashFactor);

        // Clamp to the pool’s remaining balance (protects against rounding).
        if (iPROVEScaled > pool.iPROVEEscrow) {
            iPROVEScaled = pool.iPROVEEscrow;
        }

        // If there is $iPROVE left to redeem, update the escrow pool and redeem.
        if (iPROVEScaled != 0) {
            unchecked {
                pool.iPROVEEscrow -= iPROVEScaled;
            }

            // Withdraw $iPROVE from this contract to have the staker receive $PROVE.
            PROVE = IERC4626(iProve).redeem(iPROVEScaled, _staker, address(this));
        }

        emit Unstake(_staker, _prover, PROVE, iPROVEScaled);
    }

    /// @dev Iterate over the unstake claims, processing each one that has passed the unstake
    ///      period.
    function _finishUnstake(address _staker, address _prover, UnstakeClaim[] storage _claims)
        internal
        returns (uint256 PROVE)
    {
        uint256 i = 0;
        while (i < _claims.length) {
            if (block.timestamp >= _claims[i].timestamp + unstakePeriod) {
                // Store claim before modifying the array.
                UnstakeClaim memory claim = _claims[i];

                // Swap with the last element and pop.
                _claims[i] = _claims[_claims.length - 1];
                _claims.pop();

                // Process the unstake.
                PROVE += _finishUnstakeRequest(_staker, _prover, claim);
            } else {
                i++;
            }
        }
    }

    /// @dev Set the new dispenser.
    function _setDispenser(address _dispenser) internal {
        emit DispenserUpdate(dispenser, _dispenser);

        dispenser = _dispenser;
    }

    /// @dev Set the new dispense rate.
    function _updateDispenseRate(uint256 _dispenseRate) internal {
        // Accrue all earnings up to this point at the old rate.
        dispenseEarned += (block.timestamp - dispenseRateTimestamp) * dispenseRate;

        // Update the timestamp to mark this new rate taking effect. All time before this timestamp
        // uses the old rate (already accrued above), and all time after uses the new rate.
        dispenseRateTimestamp = block.timestamp;

        emit DispenseRateUpdate(dispenseRate, _dispenseRate);

        dispenseRate = _dispenseRate;
    }

    /// @dev Thrown if a zero address is passed.
    function _requireNonZeroAddress(address _address) internal pure {
        if (_address == address(0)) revert ZeroAddress();
    }

    /// @dev Thrown if a zero number is passed.
    function _requireNonZeroNumber(uint256 _number) internal pure {
        if (_number == 0) revert ZeroAmount();
    }

    /// @dev Validates that a prover has no pending slash requests.
    function _requireProverWithoutSlashRequests(address _prover) private view {
        if (slashClaimCount[_prover] > 0) revert ProverHasSlashRequest();
    }

    /// @dev Authorizes an ERC1967 proxy upgrade to a new implementation contract.
    function _authorizeUpgrade(address _newImplementation) internal override onlyOwner {}
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Receipts} from "./libraries/Receipts.sol";
import {
    StepPublicValues,
    TransactionStatus,
    Receipt,
    Transaction,
    TransactionVariant,
    DepositAction,
    WithdrawAction,
    CreateProverAction
} from "./libraries/PublicValues.sol";
import {IProver} from "./interfaces/IProver.sol";
import {ISuccinctVApp} from "./interfaces/ISuccinctVApp.sol";
import {ISuccinctStaking} from "./interfaces/ISuccinctStaking.sol";
import {ISP1Verifier} from "../lib/sp1-contracts/contracts/src/ISP1Verifier.sol";
import {Initializable} from
    "../lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol";
import {OwnableUpgradeable} from
    "../lib/openzeppelin-contracts-upgradeable/contracts/access/OwnableUpgradeable.sol";
import {SafeERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {UUPSUpgradeable} from
    "../lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol";
import {IERC20Permit} from
    "../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import {IERC4626} from "../lib/openzeppelin-contracts/contracts/interfaces/IERC4626.sol";
import {PausableUpgradeable} from
    "../lib/openzeppelin-contracts-upgradeable/contracts/utils/PausableUpgradeable.sol";

/// @title SuccinctVApp
/// @author Succinct Labs
/// @notice Settlement layer for the Succinct Prover Network.
/// @dev Processes actions resulting from state transitions.
contract SuccinctVApp is
    Initializable,
    OwnableUpgradeable,
    PausableUpgradeable,
    UUPSUpgradeable,
    ISuccinctVApp
{
    using SafeERC20 for IERC20;

    /// @inheritdoc ISuccinctVApp
    bytes32 public override vkey;

    /// @inheritdoc ISuccinctVApp
    address public override prove;

    /// @inheritdoc ISuccinctVApp
    address public override iProve;

    /// @inheritdoc ISuccinctVApp
    address public override auctioneer;

    /// @inheritdoc ISuccinctVApp
    address public override staking;

    /// @inheritdoc ISuccinctVApp
    address public override verifier;

    /// @inheritdoc ISuccinctVApp
    uint64 public override blockNumber;

    /// @inheritdoc ISuccinctVApp
    uint256 public override minDepositAmount;

    /// @inheritdoc ISuccinctVApp
    uint64 public override currentOnchainTxId;

    /// @inheritdoc ISuccinctVApp
    uint64 public override finalizedOnchainTxId;

    /// @inheritdoc ISuccinctVApp
    mapping(uint64 => bytes32) public override roots;

    /// @inheritdoc ISuccinctVApp
    mapping(uint64 => uint64) public override timestamps;

    /// @inheritdoc ISuccinctVApp
    mapping(uint64 => Transaction) public override transactions;

    /*//////////////////////////////////////////////////////////////
                                MODIFIER
    //////////////////////////////////////////////////////////////*/

    /// @dev Modifier to ensure that the caller is the auctioneer.
    modifier onlyAuctioneer() {
        if (msg.sender != auctioneer) revert NotAuctioneer();
        _;
    }

    /// @dev Modifier to ensure that the caller is the staking contract.
    modifier onlyStaking() {
        if (msg.sender != staking) revert NotStaking();
        _;
    }

    /*//////////////////////////////////////////////////////////////
                              INITIALIZER
    //////////////////////////////////////////////////////////////*/

    /// @custom:oz-upgrades-unsafe-allow constructor
    constructor() {
        _disableInitializers();
    }

    /// @custom:oz-upgrades-unsafe-allow-initializers
    function initialize(
        address _owner,
        address _prove,
        address _iProve,
        address _auctioneer,
        address _staking,
        address _verifier,
        uint256 _minDepositAmount,
        bytes32 _vkey,
        bytes32 _genesisStateRoot
    ) external initializer {
        // Ensure that parameters critical for functionality are non-zero.
        if (
            _owner == address(0) || _prove == address(0) || _iProve == address(0)
                || _auctioneer == address(0) || _staking == address(0) || _verifier == address(0)
        ) {
            revert ZeroAddress();
        }
        if (_vkey == bytes32(0) || _genesisStateRoot == bytes32(0)) {
            revert ZeroHash();
        }

        // Set the state variables.
        __UUPSUpgradeable_init();
        __Ownable_init(_owner);
        vkey = _vkey;
        prove = _prove;
        iProve = _iProve;
        _updateAuctioneer(_auctioneer);
        _updateStaking(_staking);
        _updateVerifier(_verifier);
        _updateMinDepositAmount(_minDepositAmount);

        // Set the genesis state root.
        roots[0] = _genesisStateRoot;

        // Approve the $iPROVE contract to transfer $PROVE from this contract during prover withdrawal.
        IERC20(prove).approve(_iProve, type(uint256).max);

        // Emit the events.
        emit Fork(0, bytes32(0), _vkey);
        emit Block(0, bytes32(0), _genesisStateRoot);
    }

    /*//////////////////////////////////////////////////////////////
                                 VIEW
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISuccinctVApp
    function root() external view override returns (bytes32) {
        return roots[blockNumber];
    }

    /// @inheritdoc ISuccinctVApp
    function timestamp() external view override returns (uint64) {
        return timestamps[blockNumber];
    }

    /*//////////////////////////////////////////////////////////////
                                 CORE
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISuccinctVApp
    function deposit(uint256 _amount) external override whenNotPaused returns (uint64 receipt) {
        return _deposit(msg.sender, _amount);
    }

    /// @inheritdoc ISuccinctVApp
    function permitAndDeposit(
        address _from,
        uint256 _amount,
        uint256 _deadline,
        uint8 _v,
        bytes32 _r,
        bytes32 _s
    ) external override whenNotPaused returns (uint64 receipt) {
        // If the $PROVE allowance is not equal to the amount being deposited, permit this contract
        // to spend the $PROVE from the depositor.
        if (IERC20(prove).allowance(_from, address(this)) != _amount) {
            IERC20Permit(prove).permit(_from, address(this), _amount, _deadline, _v, _r, _s);
        }

        return _deposit(_from, _amount);
    }

    /// @inheritdoc ISuccinctVApp
    function createProver(address _prover, address _owner, uint256 _stakerFeeBips)
        external
        onlyStaking
        whenNotPaused
        returns (uint64 receipt)
    {
        // Validate.
        if (_owner == address(0)) revert ZeroAddress();
        if (_owner != IProver(_prover).owner()) {
            revert ProverNotOwned();
        }

        // Create the receipt.
        bytes memory data = abi.encode(
            CreateProverAction({prover: _prover, owner: _owner, stakerFeeBips: _stakerFeeBips})
        );
        receipt = _createTransaction(TransactionVariant.CreateProver, data);
    }

    /// @inheritdoc ISuccinctVApp
    function step(bytes calldata _publicValues, bytes calldata _proofBytes)
        external
        onlyAuctioneer
        whenNotPaused
        returns (uint64, bytes32, bytes32)
    {
        // Verify the proof.
        ISP1Verifier(verifier).verifyProof(vkey, _publicValues, _proofBytes);
        StepPublicValues memory publicValues = abi.decode(_publicValues, (StepPublicValues));
        if (publicValues.newRoot == bytes32(0)) revert InvalidRoot();

        // Verify the old root.
        if (roots[blockNumber] != publicValues.oldRoot) {
            revert InvalidOldRoot();
        }

        // Assert that the timestamp is not in the future and is increasing.
        if (publicValues.timestamp > block.timestamp) revert InvalidTimestamp();
        if (timestamps[blockNumber] > publicValues.timestamp) {
            revert TimestampInPast();
        }

        // Ensure the timestamp is not too far in the past (older than 1 hour).
        if (block.timestamp - publicValues.timestamp > 1 hours) {
            revert TimestampTooOld();
        }

        // Update the state root.
        uint64 newBlock = ++blockNumber;
        roots[newBlock] = publicValues.newRoot;
        timestamps[newBlock] = publicValues.timestamp;

        // Handle the receipts.
        _handleReceipts(publicValues);

        // Emit the event.
        emit Block(newBlock, publicValues.oldRoot, publicValues.newRoot);

        return (newBlock, publicValues.oldRoot, publicValues.newRoot);
    }

    /*//////////////////////////////////////////////////////////////
                              AUTHORIZED
    //////////////////////////////////////////////////////////////*/

    /// @inheritdoc ISuccinctVApp
    function fork(bytes32 _vkey, bytes32 _root)
        external
        override
        onlyOwner
        returns (uint64, bytes32, bytes32)
    {
        // Check that the new vkey and root are not zero.
        if (_vkey == bytes32(0) || _root == bytes32(0)) revert ZeroHash();

        // Save the old vkey for event.
        bytes32 oldVkey = vkey;

        // Update the vkey.
        vkey = _vkey;

        // Get the old root.
        bytes32 oldRoot = roots[blockNumber];

        // Update the root, timestamp, and produce a new block.
        uint64 newBlock = ++blockNumber;
        roots[newBlock] = _root;
        timestamps[newBlock] = uint64(block.timestamp);

        // Emit the events.
        emit Fork(newBlock, oldVkey, _vkey);
        emit Block(newBlock, oldRoot, _root);

        return (newBlock, oldRoot, _root);
    }

    /// @inheritdoc ISuccinctVApp
    function updateAuctioneer(address _auctioneer) external override onlyOwner {
        _updateAuctioneer(_auctioneer);
    }

    /// @inheritdoc ISuccinctVApp
    function updateStaking(address _staking) external override onlyOwner {
        _updateStaking(_staking);
    }

    /// @inheritdoc ISuccinctVApp
    function updateVerifier(address _verifier) external override onlyOwner {
        _updateVerifier(_verifier);
    }

    /// @inheritdoc ISuccinctVApp
    function updateMinDepositAmount(uint256 _amount) external override onlyOwner {
        _updateMinDepositAmount(_amount);
    }

    /// @inheritdoc ISuccinctVApp
    function pause() external override onlyOwner whenNotPaused {
        _pause();
    }

    /// @inheritdoc ISuccinctVApp
    function unpause() external override onlyOwner whenPaused {
        _unpause();
    }

    /*//////////////////////////////////////////////////////////////
                               INTERNAL
    //////////////////////////////////////////////////////////////*/

    /// @dev Credits a deposit receipt and transfers $PROVE from the sender to the VApp.
    function _deposit(address _from, uint256 _amount) internal returns (uint64 receipt) {
        // Validate.
        if (_amount < minDepositAmount) {
            revert TransferBelowMinimum();
        }

        // Create the receipt.
        bytes memory data = abi.encode(DepositAction({account: _from, amount: _amount}));
        receipt = _createTransaction(TransactionVariant.Deposit, data);

        // Transfer $PROVE from the sender to the VApp.
        IERC20(prove).safeTransferFrom(_from, address(this), _amount);

        emit Deposit(_from, _amount);
    }

    /// @dev Creates a receipt for an action.
    function _createTransaction(TransactionVariant _transactionVariant, bytes memory _data)
        internal
        returns (uint64 onchainTx)
    {
        onchainTx = ++currentOnchainTxId;
        transactions[onchainTx] = Transaction({
            variant: _transactionVariant,
            status: TransactionStatus.Pending,
            onchainTxId: onchainTx,
            action: _data
        });

        emit TransactionPending(onchainTx, _transactionVariant, _data);
    }

    /// @dev Handles committed actions, reverts if the actions are invalid
    function _handleReceipts(StepPublicValues memory _publicValues) internal {
        // Execute the receipts.
        for (uint64 i = 0; i < _publicValues.receipts.length; i++) {
            if (_publicValues.receipts[i].onchainTxId != type(uint64).max) {
                _handleOnchainReceipt(_publicValues.receipts[i]);
            } else {
                _handleOffchainReceipt(_publicValues.receipts[i]);
            }
        }
    }

    /// @dev Handles a receipt sourced from an onchain transaction.
    function _handleOnchainReceipt(Receipt memory _receipt) internal {
        // Increment the finalized onchain transaction ID.
        uint64 onchainTxId = ++finalizedOnchainTxId;

        // Ensure that the receipt is the next one to be processed.
        if (onchainTxId != _receipt.onchainTxId) {
            revert ReceiptOutOfOrder(onchainTxId, _receipt.onchainTxId);
        }

        // Ensure that the receipt has of the expected statuses.
        if (
            _receipt.status == TransactionStatus.None
                || _receipt.status == TransactionStatus.Pending
        ) {
            revert ReceiptStatusInvalid(_receipt.status);
        }

        // Ensure that the receipt is consistent with the transaction.
        Receipts.assertEq(transactions[onchainTxId], _receipt);

        // Update the transaction status.
        transactions[onchainTxId].status = _receipt.status;

        // If the transaction failed, emit the revert event and skip the rest of the loop.
        if (_receipt.status == TransactionStatus.Reverted) {
            emit TransactionReverted(onchainTxId, _receipt.variant, _receipt.action);
            return;
        }

        // If the transaction completed, run a handler for the transaction.
        if (_receipt.variant == TransactionVariant.Deposit) {
            // No-op.
        } else if (_receipt.variant == TransactionVariant.CreateProver) {
            // No-op.
        } else {
            revert TransactionVariantInvalid();
        }

        // Emit the completed event.
        emit TransactionCompleted(onchainTxId, _receipt.variant, _receipt.action);
    }

    /// @dev Handles a receipt sourced from an offchain transaction.
    function _handleOffchainReceipt(Receipt memory _receipt) internal {
        // Ensure that the receipt has of the expected statuses.
        if (
            _receipt.status == TransactionStatus.None
                || _receipt.status == TransactionStatus.Pending
        ) {
            revert ReceiptStatusInvalid(_receipt.status);
        }

        // If the transaction reverted, don't do anything.
        if (_receipt.status == TransactionStatus.Reverted) {
            emit TransactionReverted(_receipt.onchainTxId, _receipt.variant, _receipt.action);
            return;
        }

        if (_receipt.variant == TransactionVariant.Withdraw) {
            WithdrawAction memory withdraw = abi.decode(_receipt.action, (WithdrawAction));
            _processWithdraw(withdraw.account, withdraw.amount);
        } else {
            revert TransactionVariantInvalid();
        }
    }

    /// @dev Processes a withdrawal.
    function _processWithdraw(address _to, uint256 _amount) internal {
        // If the `_to` is a prover vault, we need to first deposit it to get $iPROVE and then
        // transfer the $iPROVE to the prover vault. This splits the $PROVE amount amongst all
        // of the prover stakers.
        //
        // Otherwise if the `_to` is not a prover vault, we can just transfer the $PROVE directly.
        if (ISuccinctStaking(staking).isProver(_to)) {
            // Deposit $PROVE to mint $iPROVE, sending it to the prover vault.
            IERC4626(iProve).deposit(_amount, _to);
        } else {
            // Transfer the $PROVE from this contract to the `_to` address.
            IERC20(prove).safeTransfer(_to, _amount);
        }

        emit Withdraw(_to, _amount);
    }

    /// @dev Updates the auctioneer.
    function _updateAuctioneer(address _auctioneer) internal {
        emit AuctioneerUpdate(auctioneer, _auctioneer);

        auctioneer = _auctioneer;
    }

    /// @dev Updates the staking contract.
    function _updateStaking(address _staking) internal {
        emit StakingUpdate(staking, _staking);

        staking = _staking;
    }

    /// @dev Updates the verifier.
    function _updateVerifier(address _verifier) internal {
        emit VerifierUpdate(verifier, _verifier);

        verifier = _verifier;
    }

    /// @dev Updates the minimum amount for deposit/withdraw operations.
    function _updateMinDepositAmount(uint256 _amount) internal {
        emit MinDepositAmountUpdate(minDepositAmount, _amount);

        minDepositAmount = _amount;
    }

    /// @dev Authorizes an ERC1967 proxy upgrade to a new implementation contract.
    function _authorizeUpgrade(address _newImplementation) internal override onlyOwner {}
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IProverRegistry} from "../interfaces/IProverRegistry.sol";
import {IIntermediateSuccinct} from "../interfaces/IIntermediateSuccinct.sol";
import {ERC20} from "../../lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {ERC20Burnable} from
    "../../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {IERC20} from "../../lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import {ERC20Permit} from
    "../../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {ERC20Votes} from
    "../../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC20Votes.sol";
import {ERC4626} from
    "../../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC4626.sol";
import {Nonces} from "../../lib/openzeppelin-contracts/contracts/utils/Nonces.sol";

string constant NAME = "IntermediateSuccinct";
string constant SYMBOL = "iPROVE";

/// @title IntermediateSuccinct
/// @author Succinct Labs
/// @notice The intermediary receipt token for receiving periodic $PROVE rewards.
/// @dev This contract accepts $PROVE and mints $iPROVE. It is non-transferable outside of
///      staking operations.
contract IntermediateSuccinct is ERC4626, ERC20Permit, ERC20Votes, IIntermediateSuccinct {
    /// @inheritdoc IIntermediateSuccinct
    address public override staking;

    constructor(address _underlying, address _staking)
        ERC20(NAME, SYMBOL)
        ERC4626(IERC20(_underlying))
        ERC20Permit(NAME)
    {
        staking = _staking;
    }

    /// @inheritdoc IIntermediateSuccinct
    function burn(address _from, uint256 _iPROVE) external override returns (uint256) {
        if (msg.sender != staking) {
            revert NonTransferable();
        }

        // Burn the $PROVE
        uint256 PROVE = previewRedeem(_iPROVE);
        ERC20Burnable(asset()).burn(PROVE);

        // Burn the $iPROVE
        _burn(_from, _iPROVE);

        return PROVE;
    }

    /// @dev Only the staking contract, the vApp, or the prover can transfer in certain
    ///      situations.
    ///
    ///      Each situation is as follows:
    ///      1a. The staking contract needs to transfer $iPROVE to a prover during stake():
    ///         - $iPROVE.deposit() - transfer from address(0) to staking
    ///         - $PROVER-N.deposit() - transfer from staking to prover
    ///      1b. The staking contract needs to transfer $iPROVE to a prover during unstake():
    ///         - $PROVER-N.redeem() - transfer from prover to staking
    ///         - $iPROVE.redeem() - transfer from staking to address(0)
    ///      2. The vApp contract needs to deposit to $iPROVE directly to a prover during
    ///         processWithdraw(to), when `to` is a prover to process it as a prover reward:
    ///         - $iPROVE.deposit() - transfer from address(0) to prover
    ///
    ///      This function is maximally constrained to only allow for the above situations.
    function _update(address _from, address _to, uint256 _value)
        internal
        override(ERC20, ERC20Votes)
    {
        // Check for (1).
        bool isStakeOrUnstake = msg.sender == staking
            || (IProverRegistry(staking).isProver(msg.sender) && (_from == staking || _to == staking));

        // If not (1), check for (2).
        bool isProverReward;
        if (!isStakeOrUnstake) {
            // vApp can deposit to provers only.
            isProverReward = msg.sender == IProverRegistry(staking).vapp() && _from == address(0)
                && IProverRegistry(staking).isProver(_to);
        }

        // If not (1) or (2), revert.
        if (!isStakeOrUnstake && !isProverReward) {
            revert NonTransferable();
        }

        super._update(_from, _to, _value);
    }

    /// @dev Override to allow the staking contract to spend $iPROVE.
    function _spendAllowance(address _owner, address _spender, uint256 _amount) internal override {
        if (_spender == staking) {
            return;
        }

        super._spendAllowance(_owner, _spender, _amount);
    }

    // The following functions are for overriding the clock and clock mode for IERC6372. This
    // allows governance to be based on time instead of block number.

    function clock() public view override returns (uint48) {
        return uint48(block.timestamp);
    }

    function CLOCK_MODE() public pure override returns (string memory) {
        return "mode=timestamp";
    }

    // The following functions are overrides required by Solidity.

    function nonces(address _owner) public view override(ERC20Permit, Nonces) returns (uint256) {
        return super.nonces(_owner);
    }

    function decimals() public view virtual override(ERC20, ERC4626) returns (uint8) {
        return super.decimals();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Proxy.sol)

pragma solidity ^0.8.22;

import {Proxy} from "../Proxy.sol";
import {ERC1967Utils} from "./ERC1967Utils.sol";

/**
 * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
 * implementation address that can be changed. This address is stored in storage in the location specified by
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the
 * implementation behind the proxy.
 */
contract ERC1967Proxy is Proxy {
    /**
     * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
     *
     * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
     * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
     *
     * Requirements:
     *
     * - If `data` is empty, `msg.value` must be zero.
     */
    constructor(address implementation, bytes memory _data) payable {
        ERC1967Utils.upgradeToAndCall(implementation, _data);
    }

    /**
     * @dev Returns the current implementation address.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
     */
    function _implementation() internal view virtual override returns (address) {
        return ERC1967Utils.getImplementation();
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {SuccinctProver} from "../tokens/SuccinctProver.sol";
import {IProver} from "../interfaces/IProver.sol";
import {IProverRegistry} from "../interfaces/IProverRegistry.sol";
import {ISuccinctVApp} from "../interfaces/ISuccinctVApp.sol";
import {Create2} from "../../lib/openzeppelin-contracts/contracts/utils/Create2.sol";
import {IERC20} from "../../lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import {Math} from "../../lib/openzeppelin-contracts/contracts/utils/math/Math.sol";

/// @title ProverRegistry
/// @author Succinct Labs
/// @notice This contract is used to manage provers.
/// @dev Because provers are approved to spend $iPROVE, it is important that tracked
///      provers are only contracts with `type(SuccinctProver).creationCode`.
abstract contract ProverRegistry is IProverRegistry {
    /// @dev Minimum price-per-share threshold a prover can be at if slashed.
    ///
    ///      If slashing would drop the price-per-share below this threshold, the prover is
    ///      permanently deactivated and can no longer be staked to.
    uint256 internal constant MIN_PROVER_PRICE_PER_SHARE = 1e9;

    /// @inheritdoc IProverRegistry
    address public override governor;

    /// @inheritdoc IProverRegistry
    address public override vapp;

    /// @inheritdoc IProverRegistry
    address public override prove;

    /// @inheritdoc IProverRegistry
    address public override iProve;

    /// @inheritdoc IProverRegistry
    uint256 public override proverCount;

    /// @dev A mapping from prover owner to prover vault.
    mapping(address => address) internal ownerToProver;

    /// @dev A mapping from prover vault to whether it exists.
    mapping(address => bool) internal provers;

    /// @dev A mapping from prover vault to whether it is deactivated.
    mapping(address => bool) internal deactivatedProvers;

    /// @dev This empty reserved space to add new variables without shifting down storage.
    uint256[10] private __gap;

    /// @dev This call must be sent by the VApp contract. This also acts as a check to ensure that the contract
    ///      has been initialized.
    modifier onlyVApp() {
        if (msg.sender != vapp) {
            revert NotAuthorized();
        }
        _;
    }

    /// @dev This call must target a prover that exists in the registry.
    modifier onlyForProver(address _prover) {
        if (!provers[_prover]) {
            revert ProverNotFound();
        }
        _;
    }

    function __ProverRegistry_init(
        address _governor,
        address _vapp,
        address _prove,
        address _iProve
    ) internal {
        governor = _governor;
        vapp = _vapp;
        prove = _prove;
        iProve = _iProve;
    }

    /// @inheritdoc IProverRegistry
    function isProver(address _prover) external view override returns (bool) {
        return provers[_prover];
    }

    /// @inheritdoc IProverRegistry
    function isDeactivatedProver(address _prover) external view override returns (bool) {
        return deactivatedProvers[_prover];
    }

    /// @inheritdoc IProverRegistry
    function getProver(address _owner) external view override returns (address) {
        return ownerToProver[_owner];
    }

    /// @inheritdoc IProverRegistry
    function createProver(uint256 _stakerFeeBips) external override returns (address) {
        if (_stakerFeeBips > 10000) {
            revert InvalidStakerFeeBips();
        }

        if (ownerToProver[msg.sender] != address(0)) {
            revert ProverAlreadyExists();
        }

        return _deployProver(msg.sender, _stakerFeeBips);
    }

    /// @dev Uses CREATE2 to deploy an instance of SuccinctProver and adds it to the mapping.
    function _deployProver(address _owner, uint256 _stakerFeeBips)
        internal
        returns (address prover)
    {
        // Ensure that the contract is initialized.
        if (iProve == address(0)) {
            revert NotInitialized();
        }

        // Increment the number of provers.
        unchecked {
            ++proverCount;
        }

        // Deploy the prover.
        prover = Create2.deploy(
            0,
            bytes32(uint256(uint160(_owner))),
            abi.encodePacked(
                type(SuccinctProver).creationCode,
                abi.encode(governor, prove, iProve, _owner, proverCount, _stakerFeeBips)
            )
        );

        // Update the mappings.
        ownerToProver[_owner] = prover;
        provers[prover] = true;

        // Register the prover with the VApp.
        ISuccinctVApp(vapp).createProver(prover, _owner, _stakerFeeBips);

        // Approve the prover as a spender of $iPROVE, so that $iPROVE can be transferred to the
        // prover during stake().
        IERC20(iProve).approve(prover, type(uint256).max);

        emit ProverDeploy(prover, _owner, _stakerFeeBips);
    }

    /// @dev Deactivates a prover if its price-per-share is below the minimum.
    ///
    ///      Repeatedly slashing a prover and then staking to it reduces the prover's `totalAssets`
    ///      without reducing its `totalSupply`.  This drives the price-per-share toward zero.
    ///      After enough cycles, this exponential share inflation would cause an overflow.
    ///
    ///      By deactivating a prover as soon as its price-per-share falls below
    ///      `MIN_PROVER_PRICE_PER_SHARE`, this overflow vector is eliminated.
    function _deactivateProverIfPriceBelowMin(address _prover) internal {
        // If the prover is already deactivated, skip.
        if (deactivatedProvers[_prover]) return;

        // If the prover has no shares, skip.
        uint256 totalSupply = IERC20(_prover).totalSupply();
        if (totalSupply == 0) return;

        // Calculate the prover's price-per-share.
        uint256 totalAssets = IERC20(iProve).balanceOf(_prover);
        uint256 pricePerShare = Math.mulDiv(totalAssets, 1e18, totalSupply);

        // If the prover's price-per-share is below the minimum, deactivate it.
        if (pricePerShare < MIN_PROVER_PRICE_PER_SHARE) {
            deactivatedProvers[_prover] = true;

            emit ProverDeactivation(_prover);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {ERC20Upgradeable} from
    "../../lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/ERC20Upgradeable.sol";

string constant NAME = "StakedSuccinct";
string constant SYMBOL = "stPROVE";

/// @title StakedSuccinct
/// @author Succinct Labs
/// @notice The terminal receipt token for staking in the Succinct Prover Network.
/// @dev This contract balance stays 1:1 with $PROVER-N vaults to give one unified
///      source of truth to track staked $PROVE. It is non-transferable outside of
///      staking operations.
abstract contract StakedSuccinct is ERC20Upgradeable {
    error NonTransferable();

    /// @dev Only true if in the process of staking or unstaking.
    bool internal transient isStakingOperation;

    /// @dev This empty reserved space to add new variables without shifting down storage.
    uint256[10] private __gap;

    modifier stakingOperation() {
        isStakingOperation = true;
        _;
        isStakingOperation = false;
    }

    function __StakedSuccinct_init() internal onlyInitializing {
        __ERC20_init(NAME, SYMBOL);
    }

    function name() public pure virtual override returns (string memory) {
        return NAME;
    }

    function symbol() public pure virtual override returns (string memory) {
        return SYMBOL;
    }

    /// @dev Only can update balances when staking operations are occuring. This is equivalent to
    /// the only staking checks that we have on $iPROVE and $PROVER-N tokens.
    function _update(address _from, address _to, uint256 _value)
        internal
        override(ERC20Upgradeable)
    {
        if (!isStakingOperation) {
            revert NonTransferable();
        }

        super._update(_from, _to, _value);
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IProverRegistry} from "./IProverRegistry.sol";

interface ISuccinctStaking is IProverRegistry {
    /// @dev Represents a claim for unstaking.
    /// @param iPROVEEscrow The escrowed amount of $iPROVE at request time.
    /// @param slashFactor The slash factor for the prover when the claim was created (1e27 fp).
    /// @param timestamp The timestamp when the unstake was requested. Used for comparing against
    ///        the `unstakePeriod()` to determine if the claim can be finished.
    struct UnstakeClaim {
        uint256 iPROVEEscrow;
        uint256 slashFactor;
        uint256 timestamp;
    }

    /// @dev Represents a claim to slash a prover for some amount of $iPROVE.
    /// @param iPROVE The requested amount of $iPROVE to slash.
    /// @param timestamp The timestamp when the slash was requested. Used for comparing against
    ///        the `slashCancellationPeriod()` to determine if the claim can be cancelled.
    /// @param resolved Whether the claim has been resolved (either cancelled or finished).
    struct SlashClaim {
        uint256 iPROVE;
        uint256 timestamp;
        bool resolved;
    }

    /// @dev Represents the escrowed $iPROVE and slash factor for a prover. Escrowed $iPROVE is
    ///      held when a staker unstakes, and allows unstaking to not receive prover rewards but
    ///      still receive the effects of slashing.
    /// @param iPROVEEscrow The amount of $iPROVE held by this contract for pending unstakes.
    /// @param slashFactor The slash factor for the prover (1e27 fp).
    struct EscrowPool {
        uint256 iPROVEEscrow;
        uint256 slashFactor;
    }

    /// @dev Emitted when a staker first stakes to their delegated prover. This indicates that any
    ///      additional stake from the staker can only be added to this prover, unless unbound.
    event ProverBound(address indexed staker, address indexed prover);

    /// @dev Emitted when a staker fully unstakes from their delegated prover. This indicates that
    ///      the staker can now stake to a different prover.
    event ProverUnbound(address indexed staker, address indexed prover);

    /// @dev Emitted when a staker stakes into a prover.
    event Stake(
        address indexed staker,
        address indexed prover,
        uint256 PROVE,
        uint256 iPROVE,
        uint256 stPROVE
    );

    /// @dev Emitted when a staker requests to unstake $stPROVE from a prover.
    event UnstakeRequest(
        address indexed staker, address indexed prover, uint256 stPROVE, uint256 iPROVESnapshot
    );

    /// @dev Emitted when a staker unstakes from a prover.
    event Unstake(address indexed staker, address indexed prover, uint256 PROVE, uint256 iPROVE);

    /// @dev Emitted when a prover is requested to be slashed.
    event SlashRequest(address indexed prover, uint256 iPROVE, uint256 index);

    /// @dev Emitted when a prover slash request is canceled.
    event SlashCancel(address indexed prover, uint256 iPROVE, uint256 index);

    /// @dev Emitted when a prover slash request is executed.
    event Slash(address indexed prover, uint256 PROVE, uint256 iPROVE, uint256 index);

    /// @dev Emitted when stakers are dispensed $PROVE.
    event Dispense(uint256 PROVE);

    /// @dev Emitted when the dispenser is updated.
    event DispenserUpdate(address oldDispenser, address newDispenser);

    /// @dev Emitted when the dispense rate is updated.
    event DispenseRateUpdate(uint256 oldDispenseRate, uint256 newDispenseRate);

    /// @dev Thrown if the staker has insufficient balance to unstake, or if attempting to slash
    ///      more than the prover has.
    error InsufficientStakeBalance();

    /// @dev Thrown if the staker tries to unstake while not staked with the prover.
    error NotStaked();

    /// @dev Thrown if the staker tries to unstake while there is no unstake requests.
    error NoUnstakeRequests();

    /// @dev Thrown if the staker tries to unstake while they already have too many unstake
    ///      requests.
    error TooManyUnstakeRequests();

    /// @dev Thrown if the staker tries to stake or unstake a zero amount.
    error ZeroAmount();

    /// @dev Thrown if staking would result in a receipt token with a zero amount.
    error ZeroReceiptAmount();

    /// @dev Thrown if the staker tries to stake less than the minimum stake amount.
    error StakeBelowMinimum();

    /// @dev Thrown if the staker tries to deposit while already staked with a different prover.
    error AlreadyStakedWithDifferentProver(address existingProver);

    /// @dev Thrown if staking or unstaking while the prover has one or more pending slash requests.
    error ProverHasSlashRequest();

    /// @dev Thrown if a slash request has already been resolved.
    error SlashRequestAlreadyResolved();

    /// @dev Thrown if attempting to cancel a slash request before the deadline.
    error SlashRequestNotReadyToCancel();

    /// @dev Thrown if the dispenser is not the owner.
    error NotDispenser();

    /// @dev Thrown if the specified dispense amount exceeds the maximum dispense amount.
    error AmountExceedsAvailableDispense();

    /// @notice The dispenser that can dispense $PROVE to stakers.
    /// @dev Does not actually hold any $PROVE themselves, simply has the ability to transfer
    ///      $PROVE from the staking contract to the $iPROVE vault, bounded by `maxDispense`
    ///      which itself is bound by `dispenseRate`. Mutable after deployment by owner.
    function dispenser() external view returns (address);

    /// @notice The minimum amount of $PROVE that a staker needs to stake.
    /// @dev The actual `staked` amount may go below this value. Only used as one part in a
    ///      multi-part deterrence against ERC4626 inflation attacks.
    ///      Immutable after deployment.
    function minStakeAmount() external view returns (uint256);

    /// @notice The maximum amount of unstake requests a staker can have at a time.
    /// @dev Ensures that a staker cannot unintentionally self-DoS themselves by creating enough
    ///      unstake requests to cause an out-of-gas error when calling `finishUnstake`.
    ///      Immutable after deployment.
    function maxUnstakeRequests() external view returns (uint256);

    /// @notice The minimum delay (in seconds) for an unstake request be finished.
    /// @dev Ensures that a staker cannot frontrun an upcoming prover slash by unstaking early.
    ///      Should be greater than the longest length that a VApp `step` can be delayed by.
    ///      Immutable after deployment.
    function unstakePeriod() external view returns (uint256);

    /// @notice The minimum delay (in seconds), plus governance parameters, for a slash request
    ///         to be cancelled.
    /// @dev Cancelling a slash requires `slashCancellationPeriod` + `votingDelay` +
    ///      `votingPeriod` to ensure that governance has had sufficient time finish a slash if
    ///      needed. Immutable after deployment.
    function slashCancellationPeriod() external view returns (uint256);

    /// @notice The maximum amount of $PROVE that can be dispensed per second.
    /// @dev Mutable after deployment by owner.
    function dispenseRate() external view returns (uint256);

    /// @notice The timestamp when the dispense rate was last updated.
    function dispenseRateTimestamp() external view returns (uint256);

    /// @notice The total amount of $PROVE earned through dispense emissions from inception up to dispenseRateTimestamp.
    function dispenseEarned() external view returns (uint256);

    /// @notice The total amount of $PROVE distributed through the dispense mechanism.
    function dispenseDistributed() external view returns (uint256);

    /// @notice The prover that a staker is staked with.
    /// @dev A staker can only be staked with one prover at a time. To switch provers, they must
    ///      fully unstake from their current prover first.
    /// @param staker The address of the staker.
    /// @return The address of the prover.
    function stakedTo(address staker) external view returns (address);

    /// @notice The amount $PROVE that a staker would receive if their full $stPROVE balance was
    ///         unstaked.
    /// @dev This does not account for any slashing that could occur during the unstaking period.
    /// @param staker The address of the staker.
    /// @return The amount of $PROVE.
    function staked(address staker) external view returns (uint256);

    /// @notice The amount of $PROVE that a prover has staked to them.
    /// @param prover The address of the prover.
    /// @return The amount of $PROVE.
    function proverStaked(address prover) external view returns (uint256);

    /// @notice The unstake requests for a staker.
    /// @param staker The address of the staker.
    /// @return The unstake requests.
    function unstakeRequests(address staker) external view returns (UnstakeClaim[] memory);

    /// @notice The slash requests for a prover.
    /// @param prover The address of the prover.
    /// @return The slash requests.
    function slashRequests(address prover) external view returns (SlashClaim[] memory);

    /// @notice The escrow pool for a prover.
    /// @param prover The address of the prover.
    /// @return The escrow pool.
    function escrowPool(address prover) external view returns (EscrowPool memory);

    /// @notice The amount of $PROVE that a staker would receive with their pending unstake requests.
    /// @dev Returns the sum of snapshotted $PROVE values for all pending unstake claims, adjusted
    ///      for any slashing that occurred after the requests were made.
    /// @param staker The address of the staker.
    /// @return The amount of $PROVE.
    function unstakePending(address staker) external view returns (uint256);

    /// @notice The amount of $PROVE that a staker would receive if they unstaked from a prover.
    /// @param prover The address of the prover.
    /// @param stPROVE The amount of $stPROVE to unstake.
    /// @return The amount of $PROVE.
    function previewUnstake(address prover, uint256 stPROVE) external view returns (uint256);

    /// @notice The maximum amount of $PROVE that can be dispensed currently.
    /// @dev Calculates the total earned minus total distributed. The total earned includes both
    ///      historical earnings and current period earnings.
    /// @return The maximum amount of $PROVE available to dispense.
    function maxDispense() external view returns (uint256);

    /// @notice Stake $PROVE to a prover. Must have approved $PROVE with this contract as the
    ///         spender. You may only stake to one prover at a time.
    /// @dev Deposits $PROVE into the iPROVE vault to mint $iPROVE, then deposits $iPROVE into the
    ///      chosen prover to mint $PROVER-N/$stPROVE.
    /// @param prover The address of the prover to delegate $iPROVE to.
    /// @param PROVE The amount of $PROVE to deposit.
    /// @return The amount of $stPROVE received.
    function stake(address prover, uint256 PROVE) external returns (uint256);

    /// @notice Stake $PROVE to a prover. You may only stake to one prover at a time.
    /// @dev Deposits $PROVE to mint $iPROVE, then deposits $iPROVE into the chosen
    ///      prover to mint $PROVER-N/$stPROVE. The prover is the spender of the permit, rather
    ///      than the staking contract, to avoid someone using the permit signature for an
    ///      unintended prover.
    /// @param prover The address of the prover to delegate $PROVE to.
    /// @param staker The address if the staker. Must correspond to the signer of the permit
    ///        signature.
    /// @param PROVE The amount of $PROVE to spend for the deposit.
    /// @param deadline The deadline for the permit signature.
    /// @param v The v component of the permit signature.
    /// @param r The r component of the permit signature.
    /// @param s The s component of the permit signature.
    /// @return The amount of $stPROVE the staker received.
    function permitAndStake(
        address prover,
        address staker,
        uint256 PROVE,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (uint256);

    /// @notice Creates a request to unstake $stPROVE from the prover for the specified amount. Only
    ///         callable by the staker.
    /// @dev The staker must have enough $stPROVE that is not already in the unstake request queue.
    ///      The $iPROVE value is snapshotted at request time to prevent earning rewards during
    ///      the unstaking period.
    /// @param stPROVE The amount of $stPROVE to unstake.
    function requestUnstake(uint256 stPROVE) external;

    /// @notice Finishes the unstaking process for the specified address. Callable by anyone.
    ///         Must have first called `requestUnstake()` and waited for the unstake period to pass.
    /// @dev For each claim, if any snapshotted $iPROVE is lower than the actual $iPROVE that was
    ///      received, then the difference is given back to the prover.
    /// @param staker The address whose unstake claims to finish.
    /// @return The amount of $PROVE received.
    function finishUnstake(address staker) external returns (uint256);

    /// @notice Creates a request to slash a prover for the specified amount. Only callable by the
    ///         VApp.
    /// @param prover The address of the prover to slash.
    /// @param iPROVE The amount of $iPROVE to slash.
    /// @return The index of the new slash request in this prover's slash requests storage array.
    ///         Because when slash requests are processed, it alters the order of the array, it is
    ///         best to first call `slashRequests(prover)` to get the index of the specific slash
    ///         request that is intended to be executed.
    function requestSlash(address prover, uint256 iPROVE) external returns (uint256);

    /// @notice Cancels a slash request. Only possible to call if `requestSlash()` has been called
    ///         for this index, and the `slashPeriod()` plus governance latency has passed.
    /// @param prover The address of the prover to slash.
    /// @param index The index of the slash request to cancel.
    function cancelSlash(address prover, uint256 index) external;

    /// @notice Finishes the slashing process. Only possible to call if `requestSlash()` has been
    ///         called for this index, and only callable by the owner. Decreases the value of $stPROVE
    ///         for all stakers of that prover.
    /// @param prover The address of the prover to slash.
    /// @param index The index of the slash request to finish.
    /// @return The amount of $iPROVE slashed.
    function finishSlash(address prover, uint256 index) external returns (uint256);

    /// @notice Distributes $PROVE rewards to all stakers by transferring to the iPROVE vault.
    ///         Only callable by the dispenser.
    /// @dev The transferred $PROVE increases the value of iPROVE shares, proportionally benefiting
    ///      all stakers. The amount must not exceed maxDispense() unless type(uint256).max is
    ///      passed, which dispenses the full available amount.
    /// @param PROVE The amount of $PROVE to dispense. Pass `type(uint256).max` to dispense all
    ///        available rewards.
    function dispense(uint256 PROVE) external;

    /// @notice Updates the dispenser. Only callable by the owner.
    /// @param dispenser The new dispenser.
    function setDispenser(address dispenser) external;

    /// @notice Updates the dispense rate. Only callable by the owner.
    /// @dev When called, this function first accrues all earnings at the old rate up to the
    ///      current timestamp, then sets the new rate for future earnings.
    /// @param dispenseRate The new dispense rate in $PROVE per second.
    function updateDispenseRate(uint256 dispenseRate) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface IIntermediateSuccinct {
    /// @dev Thrown when a transfer is attempted.
    error NonTransferable();

    /// @notice Returns the address of the staking contract.
    function staking() external view returns (address);

    /// @notice Burn $iPROVE. Only callable by the staking contract.
    /// @param from The address of the staker.
    /// @param iPROVE The amount of $iPROVE to burn.
    /// @return The amount of $PROVE burned.
    function burn(address from, uint256 iPROVE) external returns (uint256);
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface IProver {
    /// @dev Thrown when a zero address is provided.
    error ZeroAddress();

    /// @dev Thrown when the caller is not the prover owner.
    error NotProverOwner();

    /// @dev Thrown when the caller is not the staking contract.
    error NotStaking();

    /// @dev Thrown when a transfer is attempted.
    error NonTransferable();

    /// @notice The staking contract that corresponding to this prover.
    /// @dev This address cannot be changed.
    /// @return The address of the staking contract.
    function staking() external view returns (address);

    /// @notice The governor used in protocol governance.
    /// @dev This address cannot be changed.
    /// @return The address of the governor contract.
    function governor() external view returns (address);

    /// @notice The $PROVE token
    /// @dev This address cannot be changed.
    /// @return The address of the $PROVE token.
    function prove() external view returns (address);

    /// @notice The owner of this prover. The owner was the address that created this prover by
    ///         calling `createProver()` on the staking contract. The owner has control over
    ///         particpiation in governance, collection of prover owner rewards, and the signing
    ///         rights of verifiable prover network actions such as bidding and fulfilling proofs.
    /// @dev This address cannot be changed.
    /// @return The address of the prover owner.
    function owner() external view returns (address);

    /// @notice The ID of this prover. IDs are assigned sequentially, incrementing
    ///         each time a prover is created.
    /// @dev This is purely for informational purposes. This ID cannot be changed.
    /// @return The ID of the prover.
    function id() external view returns (uint256);

    /// @notice The staker fee percentage in basis points (one-hundredth of a percent). For a
    ///         given $PROVE reward for fulfilling proofs, this much goes into this prover.
    /// @dev This fee cannot be changed.
    /// @return The staker fee percentage in basis points.
    function stakerFeeBips() external view returns (uint256);

    /// @notice Create a governance proposal. Only callable by the prover owner.
    /// @dev This function is a wrapper around `IGovernor.propose`.
    /// @param targets The addresses of the contracts to call.
    /// @param values The amounts of ETH to send.
    /// @param calldatas The calldata for each call.
    /// @param description The proposal description.
    /// @return The proposal ID.
    function propose(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        string memory description
    ) external returns (uint256);

    /// @notice Cancel a governance proposal. Only callable by the prover owner.
    /// @dev This function is a wrapper around `IGovernor.cancel`.
    /// @param targets The addresses of the contracts to call.
    /// @param values The amounts of ETH to send.
    /// @param calldatas The calldata for each call.
    /// @param descriptionHash The hash of the proposal description.
    /// @return The proposal ID.
    function cancel(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) external returns (uint256);

    /// @notice Cast a vote on a governance proposal. Only callable by the prover owner.
    /// @dev This function is a wrapper around `IGovernor.castVote`.
    /// @param proposalId The ID of the proposal.
    /// @param support The vote type (0 = Against, 1 = For, 2 = Abstain).
    /// @return The voting weight used.
    function castVote(uint256 proposalId, uint8 support) external returns (uint256);

    /// @notice Transfer $PROVE to the staking contract. Only callable by the staking contract.
    /// @dev Since in `SuccinctStaking.permitAndStake()`, the staker approves the prover to spend $PROVE, the
    ///      staking contract needs to transfer the $PROVE utilizing this contract as the spender.
    /// @param from The address to transfer $PROVE from.
    /// @param amount The amount of $PROVE to transfer.
    function transferProveToStaking(address from, uint256 amount) external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {Governor} from "../lib/openzeppelin-contracts/contracts/governance/Governor.sol";
import {GovernorCountingSimple} from
    "../lib/openzeppelin-contracts/contracts/governance/extensions/GovernorCountingSimple.sol";
import {GovernorSettings} from
    "../lib/openzeppelin-contracts/contracts/governance/extensions/GovernorSettings.sol";
import {GovernorVotes} from
    "../lib/openzeppelin-contracts/contracts/governance/extensions/GovernorVotes.sol";
import {GovernorVotesQuorumFraction} from
    "../lib/openzeppelin-contracts/contracts/governance/extensions/GovernorVotesQuorumFraction.sol";
import {IVotes} from "../lib/openzeppelin-contracts/contracts/governance/utils/IVotes.sol";

string constant NAME = "SuccinctGovernor";

/// @title SuccinctGovernor
/// @author Succinct Labs
/// @notice Governor for governance operations in the Succinct Prover Network.
/// @dev This contract should only be made owner of the relevant contracts (e.g. SuccinctStaking)
///      once sufficient staking (minting of $iPROVE) has occurred.
contract SuccinctGovernor is
    Governor,
    GovernorSettings,
    GovernorCountingSimple,
    GovernorVotes,
    GovernorVotesQuorumFraction
{
    constructor(
        address _iPROVE,
        uint48 _votingDelay,
        uint32 _votingPeriod,
        uint256 _proposalThreshold,
        uint256 _quorumFraction
    )
        Governor(NAME)
        GovernorSettings(_votingDelay, _votingPeriod, _proposalThreshold)
        GovernorVotes(IVotes(_iPROVE))
        GovernorVotesQuorumFraction(_quorumFraction)
    {}

    // The following functions are overrides required by Solidity.

    function votingDelay() public view override(Governor, GovernorSettings) returns (uint256) {
        return super.votingDelay();
    }

    function votingPeriod() public view override(Governor, GovernorSettings) returns (uint256) {
        return super.votingPeriod();
    }

    function quorum(uint256 _blockNumber)
        public
        view
        override(Governor, GovernorVotesQuorumFraction)
        returns (uint256)
    {
        return super.quorum(_blockNumber);
    }

    function proposalThreshold()
        public
        view
        override(Governor, GovernorSettings)
        returns (uint256)
    {
        return super.proposalThreshold();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Ownable
    struct OwnableStorage {
        address _owner;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Ownable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant OwnableStorageLocation = 0x9016d09d72d40fdae2fd8ceac6b6234c7706214fd39c1cd1e609a0528c199300;

    function _getOwnableStorage() private pure returns (OwnableStorage storage $) {
        assembly {
            $.slot := OwnableStorageLocation
        }
    }

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    function __Ownable_init(address initialOwner) internal onlyInitializing {
        __Ownable_init_unchained(initialOwner);
    }

    function __Ownable_init_unchained(address initialOwner) internal onlyInitializing {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        OwnableStorage storage $ = _getOwnableStorage();
        return $._owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        OwnableStorage storage $ = _getOwnableStorage();
        address oldOwner = $._owner;
        $._owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 14 of 77 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol";

/**
 * @dev Interface of the ERC-4626 "Tokenized Vault Standard", as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 */
interface IERC4626 is IERC20, IERC20Metadata {
    event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed sender,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /**
     * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing.
     *
     * - MUST be an ERC-20 token contract.
     * - MUST NOT revert.
     */
    function asset() external view returns (address assetTokenAddress);

    /**
     * @dev Returns the total amount of the underlying asset that is “managed” by Vault.
     *
     * - SHOULD include any compounding that occurs from yield.
     * - MUST be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT revert.
     */
    function totalAssets() external view returns (uint256 totalManagedAssets);

    /**
     * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToShares(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal
     * scenario where all the conditions are met.
     *
     * - MUST NOT be inclusive of any fees that are charged against assets in the Vault.
     * - MUST NOT show any variations depending on the caller.
     * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange.
     * - MUST NOT revert.
     *
     * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the
     * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and
     * from.
     */
    function convertToAssets(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver,
     * through a deposit call.
     *
     * - MUST return a limited value if receiver is subject to some deposit limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited.
     * - MUST NOT revert.
     */
    function maxDeposit(address receiver) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit
     *   call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called
     *   in the same transaction.
     * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the
     *   deposit would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewDeposit(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   deposit execution, and are accounted for during deposit.
     * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function deposit(uint256 assets, address receiver) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call.
     * - MUST return a limited value if receiver is subject to some mint limit.
     * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted.
     * - MUST NOT revert.
     */
    function maxMint(address receiver) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given
     * current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call
     *   in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the
     *   same transaction.
     * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint
     *   would be accepted, regardless if the user has enough tokens approved, etc.
     * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by minting.
     */
    function previewMint(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens.
     *
     * - MUST emit the Deposit event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint
     *   execution, and are accounted for during mint.
     * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not
     *   approving enough underlying tokens to the Vault contract, etc).
     *
     * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token.
     */
    function mint(uint256 shares, address receiver) external returns (uint256 assets);

    /**
     * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the
     * Vault, through a withdraw call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxWithdraw(address owner) external view returns (uint256 maxAssets);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw
     *   call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if
     *   called
     *   in the same transaction.
     * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though
     *   the withdrawal would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by depositing.
     */
    function previewWithdraw(uint256 assets) external view returns (uint256 shares);

    /**
     * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   withdraw execution, and are accounted for during withdraw.
     * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares);

    /**
     * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault,
     * through a redeem call.
     *
     * - MUST return a limited value if owner is subject to some withdrawal limit or timelock.
     * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock.
     * - MUST NOT revert.
     */
    function maxRedeem(address owner) external view returns (uint256 maxShares);

    /**
     * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block,
     * given current on-chain conditions.
     *
     * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call
     *   in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the
     *   same transaction.
     * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the
     *   redemption would be accepted, regardless if the user has enough shares, etc.
     * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees.
     * - MUST NOT revert.
     *
     * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in
     * share price or some other type of condition, meaning the depositor will lose assets by redeeming.
     */
    function previewRedeem(uint256 shares) external view returns (uint256 assets);

    /**
     * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver.
     *
     * - MUST emit the Withdraw event.
     * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the
     *   redeem execution, and are accounted for during redeem.
     * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner
     *   not having enough shares, etc).
     *
     * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed.
     * Those methods should be performed separately.
     */
    function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.22;

import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol";
import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol";
import {Initializable} from "./Initializable.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 */
abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable
    address private immutable __self = address(this);

    /**
     * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)`
     * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
     * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string.
     * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must
     * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
     * during an upgrade.
     */
    string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";

    /**
     * @dev The call is from an unauthorized context.
     */
    error UUPSUnauthorizedCallContext();

    /**
     * @dev The storage `slot` is unsupported as a UUID.
     */
    error UUPSUnsupportedProxiableUUID(bytes32 slot);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC-1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC-1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        _checkProxy();
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        _checkNotDelegated();
        _;
    }

    function __UUPSUpgradeable_init() internal onlyInitializing {
    }

    function __UUPSUpgradeable_init_unchained() internal onlyInitializing {
    }
    /**
     * @dev Implementation of the ERC-1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate the implementation's compatibility when performing an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual notDelegated returns (bytes32) {
        return ERC1967Utils.IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     *
     * @custom:oz-upgrades-unsafe-allow-reachable delegatecall
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data);
    }

    /**
     * @dev Reverts if the execution is not performed via delegatecall or the execution
     * context is not of a proxy with an ERC-1967 compliant implementation pointing to self.
     * See {_onlyProxy}.
     */
    function _checkProxy() internal view virtual {
        if (
            address(this) == __self || // Must be called through delegatecall
            ERC1967Utils.getImplementation() != __self // Must be called through an active proxy
        ) {
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Reverts if the execution is performed via delegatecall.
     * See {notDelegated}.
     */
    function _checkNotDelegated() internal view virtual {
        if (address(this) != __self) {
            // Must not be called through delegatecall
            revert UUPSUnauthorizedCallContext();
        }
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /**
     * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call.
     *
     * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value
     * is expected to be the implementation slot in ERC-1967.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private {
        try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
            if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) {
                revert UUPSUnsupportedProxiableUUID(slot);
            }
            ERC1967Utils.upgradeToAndCall(newImplementation, data);
        } catch {
            // The implementation is not UUPS
            revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation);
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {
    TransactionVariant,
    Transaction,
    DepositAction,
    CreateProverAction,
    Receipt
} from "./PublicValues.sol";

/// @notice Library for handling receipts
library Receipts {
    /// @dev Thrown when an unsupported transaction is encountered.
    error UnsupportedTransactionVariant();

    /// @dev Thrown when the transaction variant does not match the receipt variant.
    error TransactionVariantMismatch(TransactionVariant variant, TransactionVariant receipt);

    /// @dev Thrown when the transaction does not match the receipt.
    error TransactionReceiptMismatch(TransactionVariant variant, uint64 receipt);

    /// @dev Asserts that the transaction and receipt are consistent.
    function assertEq(Transaction memory _transaction, Receipt memory _receipt) internal pure {
        if (_receipt.variant == TransactionVariant.Deposit) {
            _assertDepositEq(_receipt, _transaction);
        } else if (_receipt.variant == TransactionVariant.CreateProver) {
            _assertProverEq(_receipt, _transaction);
        } else {
            revert UnsupportedTransactionVariant();
        }
    }

    /// @dev Asserts that the deposit transaction matches the receipt.
    function _assertDepositEq(Receipt memory _receipt, Transaction memory _transaction)
        internal
        pure
    {
        if (_receipt.variant != TransactionVariant.Deposit) {
            revert TransactionVariantMismatch(_transaction.variant, _receipt.variant);
        } else if (_transaction.variant != TransactionVariant.Deposit) {
            revert TransactionVariantMismatch(_transaction.variant, _receipt.variant);
        }

        DepositAction memory deposit = abi.decode(_transaction.action, (DepositAction));
        DepositAction memory depositReceipt = abi.decode(_receipt.action, (DepositAction));

        if (deposit.account != depositReceipt.account) {
            revert TransactionReceiptMismatch(TransactionVariant.Deposit, _receipt.onchainTxId);
        }
        if (deposit.amount != depositReceipt.amount) {
            revert TransactionReceiptMismatch(TransactionVariant.Deposit, _receipt.onchainTxId);
        }
    }

    /// @dev Asserts that the prover transaction matches the receipt.
    function _assertProverEq(Receipt memory _receipt, Transaction memory _transaction)
        internal
        pure
    {
        if (_receipt.variant != TransactionVariant.CreateProver) {
            revert TransactionVariantMismatch(_transaction.variant, _receipt.variant);
        } else if (_transaction.variant != TransactionVariant.CreateProver) {
            revert TransactionVariantMismatch(_transaction.variant, _receipt.variant);
        }

        CreateProverAction memory prover = abi.decode(_transaction.action, (CreateProverAction));
        CreateProverAction memory proverReceipt = abi.decode(_receipt.action, (CreateProverAction));

        if (prover.prover != proverReceipt.prover) {
            revert TransactionReceiptMismatch(TransactionVariant.CreateProver, _receipt.onchainTxId);
        }
        if (prover.owner != proverReceipt.owner) {
            revert TransactionReceiptMismatch(TransactionVariant.CreateProver, _receipt.onchainTxId);
        }
        if (prover.stakerFeeBips != proverReceipt.stakerFeeBips) {
            revert TransactionReceiptMismatch(TransactionVariant.CreateProver, _receipt.onchainTxId);
        }
    }
}

File 21 of 77 : PublicValues.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

/// @notice A transaction.
struct Transaction {
    /// @notice The variant of the transaction.
    TransactionVariant variant;
    /// @notice The status of the transaction.
    TransactionStatus status;
    /// @notice The onchain transaction ID.
    uint64 onchainTxId;
    /// @notice The action of one of {Deposit, Withdraw, CreateProver}.
    bytes action;
}

/// @notice The receipt for a transaction.
struct Receipt {
    /// @notice The variant of the transaction.
    TransactionVariant variant;
    /// @notice The status of the transaction.
    TransactionStatus status;
    /// @notice The onchain transaction ID.
    uint64 onchainTxId;
    /// @notice The action of one of {Deposit, Withdraw, CreateProver}.
    bytes action;
}

/// @notice The type of transaction.
enum TransactionVariant {
    Deposit,
    Withdraw,
    CreateProver
}

/// @notice The status of a transaction.
enum TransactionStatus {
    /// The transaction has no initialiezd status.
    None,
    /// The transaction has been included in the ledger but is not yet executed.
    Pending,
    /// The transaction executed successfully.
    Completed,
    /// The transaction reverted during execution.
    Reverted
}

/// @notice The action data for a deposit.
struct DepositAction {
    address account;
    uint256 amount;
}

/// @notice The action data for a withdraw.
struct WithdrawAction {
    address account;
    uint256 amount;
}

/// @notice The action data for an add signer.
struct CreateProverAction {
    address prover;
    address owner;
    uint256 stakerFeeBips;
}

/// @notice The public values encoded as a struct that can be easily deserialized inside Solidity.
struct StepPublicValues {
    bytes32 oldRoot;
    bytes32 newRoot;
    uint64 timestamp;
    Receipt[] receipts;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {TransactionVariant} from "../libraries/PublicValues.sol";
import {TransactionStatus} from "../libraries/PublicValues.sol";

interface ISuccinctVApp {
    /// @notice Emitted when a receipt is completed.
    event TransactionCompleted(
        uint64 indexed onchainTx, TransactionVariant indexed variant, bytes data
    );

    /// @notice Emitted when a receipt is failed.
    event TransactionReverted(
        uint64 indexed onchainTx, TransactionVariant indexed variant, bytes data
    );

    /// @notice Emitted when a receipt is pending.
    event TransactionPending(
        uint64 indexed onchainTx, TransactionVariant indexed variant, bytes data
    );

    /// @notice Emitted when a new block was committed.
    event Block(uint64 indexed block, bytes32 oldRoot, bytes32 newRoot);

    /// @notice Emitted when the program was forked.
    event Fork(uint64 indexed block, bytes32 oldVkey, bytes32 newVkey);

    /// @notice Emitted when a deposit is processed.
    event Deposit(address indexed from, uint256 amount);

    /// @notice Emitted when a withdrawal is processed.
    event Withdraw(address indexed to, uint256 amount);

    /// @notice Emitted when the auctioneer address was updated.
    event AuctioneerUpdate(address oldAuctioneer, address newAuctioneer);

    /// @notice Emitted when the staking address was updated.
    event StakingUpdate(address oldStaking, address newStaking);

    /// @notice Emitted when the verifier address was updated.
    event VerifierUpdate(address oldVerifier, address newVerifier);

    /// @notice Emitted when the minimum deposit was updated.
    event MinDepositAmountUpdate(uint256 oldMinDepositAmount, uint256 newMinDepositAmount);

    /// @dev Thrown when the caller is not the auctioneer.
    error NotAuctioneer();

    /// @dev Thrown when the caller is not the staking contract.
    error NotStaking();

    /// @dev Thrown when an address parameter is zero.
    error ZeroAddress();

    /// @dev Thrown when a hash parameter is zero.
    error ZeroHash();

    /// @dev Thrown if the actual balance does not match the expected balance.
    error BalanceMismatch();

    /// @dev Thrown when an amount parameter is invalid.
    error InvalidAmount();

    /// @dev Thrown when a root parameter is invalid.
    error InvalidRoot();

    /// @dev Thrown when an old root parameter is invalid.
    error InvalidOldRoot();

    /// @dev Thrown when a sweep transfer fails.
    error SweepTransferFailed();

    /// @dev Thrown when an invalid vkey is encountered.
    error InvalidVkey();

    /// @dev Thrown when the state is not frozen.
    error NotFrozen();

    /// @dev Thrown when an invalid proof is encountered.
    error InvalidProof();

    /// @dev Thrown when an invalid timestamp is encountered.
    error InvalidTimestamp();

    /// @dev Thrown when a timestamp is in the past.
    error TimestampInPast();

    /// @dev Thrown when a timestamp is too far in the past (more than 1 hour before the current block time).
    error TimestampTooOld();

    /// @dev Thrown when a proof fails.
    error ProofFailed();

    /// @dev Thrown when a deposit is below the minimum.
    error TransferBelowMinimum();

    /// @dev Thrown when trying to register a prover and the owner mismatches the staking contract's
    ///      owner of the prover.
    error ProverNotOwned();

    /// @dev Thrown when public values receipts are sent in an order that does not match the
    ///      onchain transaction order.
    error ReceiptOutOfOrder(uint64 expected, uint64 given);

    /// @dev Thrown when a receipt status is invalid.
    error ReceiptStatusInvalid(TransactionStatus status);

    /// @dev Thrown when a transaction variant is invalid.
    error TransactionVariantInvalid();

    /// @notice The verification key for the vApp program.
    function vkey() external view returns (bytes32);

    /// @notice The address of the $PROVE token.
    function prove() external view returns (address);

    /// @notice The address of the $iPROVE token.
    function iProve() external view returns (address);

    /// @notice The auctioneer of the VApp.
    /// @dev This is the only address that can call `step` function on the VApp.
    ///      Mutable after deployment by owner.
    function auctioneer() external view returns (address);

    /// @notice The address of the staking contract.
    function staking() external view returns (address);

    /// @notice The address of the SP1 verifier contract.
    /// @dev This can either be a specific SP1Verifier for a specific version, or the
    ///      SP1VerifierGateway which can be used to verify proofs for any version of SP1.
    ///      For the list of supported verifiers on each chain, see:
    ///      https://github.com/succinctlabs/sp1-contracts/tree/main/contracts/deployments
    function verifier() external view returns (address);

    /// @notice The block number of the last state update.
    function blockNumber() external view returns (uint64);

    /// @notice The minimum amount of $PROVE needed to deposit.
    /// @dev Since each deposit must be processed by the VApp, this prevents DoS from dust
    ///      amounts. Mutable after deployment by owner.
    function minDepositAmount() external view returns (uint256);

    /// @notice The state root for the current block.
    function root() external view returns (bytes32);

    /// @notice The timestamp for the current block.
    function timestamp() external view returns (uint64);

    /// @notice Tracks the incrementing onchainTx counter.
    function currentOnchainTxId() external view returns (uint64);

    /// @notice The onchainTx of the last finalized deposit.
    function finalizedOnchainTxId() external view returns (uint64);

    /// @notice State root for each block.
    function roots(uint64 block) external view returns (bytes32);

    /// @notice Timestamp for each block.
    function timestamps(uint64 block) external view returns (uint64);

    /// @notice Transactions for pending actions.
    function transactions(uint64 onchainTx)
        external
        view
        returns (
            TransactionVariant action,
            TransactionStatus status,
            uint64 timestamp,
            bytes memory data
        );

    /// @notice Deposit $PROVE into the prover network, must have already approved the contract as
    ///         a spender. The depositing account is credited with the $PROVE. Do not deposit with a
    ///         multisig or contract account, as funds will be unrecoverable on the prover network.
    /// @dev Because the prover network does not support contracts, only secp256k1 ECDSA EOAs can
    ///      interact with this balance. Therefor only EOAs should call this function, and funds
    ///      should only ever be transferred between EOAs on the prover network.
    /// @param amount The amount of $PROVE to deposit.
    /// @return receipt The receipt for the deposit.
    function deposit(uint256 amount) external returns (uint64 receipt);

    /// @notice Approve and deposit $PROVE in a single call using a permit signature. The depositing
    ///         account is credited with the $PROVE. Do not deposit with a multisig or contract
    ///         account, as funds will be unrecoverable on the prover network.
    /// @dev Assumes $PROVE implements permit (https://eips.ethereum.org/EIPS/eip-2612).
    ///      Because the prover network does not support contracts, only secp256k1 ECDSA EOAs can
    ///      interact with this balance. Therefor only EOAs should call this function, and funds
    ///      should only ever be transferred between EOAs on the prover network.
    /// @param from The address to spend the $PROVE from. Must correspond to the signer of the permit
    /// signature.
    /// @param amount The amount of $PROVE to spend for the deposit.
    /// @param deadline The deadline for the permit signature.
    /// @param v The v component of the permit signature.
    /// @param r The r component of the permit signature.
    /// @param s The s component of the permit signature.
    /// @return receipt The receipt for the deposit.
    function permitAndDeposit(
        address from,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (uint64 receipt);

    /// @notice Register a newly created prover. Only callable by the staking contract.
    /// @param prover The address of the prover.
    /// @param owner The address of the prover owner.
    /// @param stakerFeeBips The staker fee in basis points.
    function createProver(address prover, address owner, uint256 stakerFeeBips)
        external
        returns (uint64 receipt);

    /// @notice Update the state of the vApp.
    /// @dev Reverts if the committed actions are invalid.
    /// @param publicValues The public values for the state update.
    /// @param proofBytes The proof bytes for the state update.
    /// @return block The new block number.
    /// @return oldRoot The old state root.
    /// @return newRoot The new state root.
    function step(bytes calldata publicValues, bytes calldata proofBytes)
        external
        returns (uint64 block, bytes32 oldRoot, bytes32 newRoot);

    /// @notice Updates the vapp program verification key, forks the state root.
    /// @dev Only callable by the owner, executes a state update. Also increments
    ///      the block number.
    /// @param vkey The new vkey.
    /// @param root The new root.
    /// @return block The new block number.
    /// @return oldRoot The old state root.
    /// @return newRoot The new state root.
    function fork(bytes32 vkey, bytes32 root)
        external
        returns (uint64 block, bytes32 oldRoot, bytes32 newRoot);

    /// @notice Updates the auctioneer address.
    /// @dev Only callable by the owner.
    /// @param auctioneer The new auctioneer address.
    function updateAuctioneer(address auctioneer) external;

    /// @notice Updates the succinct staking contract address.
    /// @dev Only callable by the owner.
    /// @param staking The new staking contract address.
    function updateStaking(address staking) external;

    /// @notice Updates the verifier address.
    /// @dev Only callable by the owner.
    /// @param verifier The new verifier address.
    function updateVerifier(address verifier) external;

    /// @notice Updates the minimum amount for deposit operations.
    /// @dev Only callable by the owner.
    /// @param amount The new minimum amount.
    function updateMinDepositAmount(uint256 amount) external;

    /// @notice Pauses deposit, prover creation, and step.
    /// @dev Only callable by the owner.
    function pause() external;

    /// @notice Unpauses deposit, prover creation, and step.
    /// @dev Only callable by the owner.
    function unpause() external;
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

/// @title SP1 Verifier Interface
/// @author Succinct Labs
/// @notice This contract is the interface for the SP1 Verifier.
interface ISP1Verifier {
    /// @notice Verifies a proof with given public values and vkey.
    /// @dev It is expected that the first 4 bytes of proofBytes must match the first 4 bytes of
    /// target verifier's VERIFIER_HASH.
    /// @param programVKey The verification key for the RISC-V program.
    /// @param publicValues The public values encoded as bytes.
    /// @param proofBytes The proof of the program execution the SP1 zkVM encoded as bytes.
    function verifyProof(
        bytes32 programVKey,
        bytes calldata publicValues,
        bytes calldata proofBytes
    ) external view;
}

interface ISP1VerifierWithHash is ISP1Verifier {
    /// @notice Returns the hash of the verifier.
    function VERIFIER_HASH() external pure returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol)

pragma solidity ^0.8.20;

import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol";
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract PausableUpgradeable is Initializable, ContextUpgradeable {
    /// @custom:storage-location erc7201:openzeppelin.storage.Pausable
    struct PausableStorage {
        bool _paused;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300;

    function _getPausableStorage() private pure returns (PausableStorage storage $) {
        assembly {
            $.slot := PausableStorageLocation
        }
    }

    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    /**
     * @dev The operation failed because the contract is paused.
     */
    error EnforcedPause();

    /**
     * @dev The operation failed because the contract is not paused.
     */
    error ExpectedPause();

    /**
     * @dev Initializes the contract in unpaused state.
     */
    function __Pausable_init() internal onlyInitializing {
        __Pausable_init_unchained();
    }

    function __Pausable_init_unchained() internal onlyInitializing {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        PausableStorage storage $ = _getPausableStorage();
        return $._paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        if (paused()) {
            revert EnforcedPause();
        }
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        if (!paused()) {
            revert ExpectedPause();
        }
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        PausableStorage storage $ = _getPausableStorage();
        $._paused = false;
        emit Unpaused(_msgSender());
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

interface IProverRegistry {
    /// @dev Emitted when a prover is deployed.
    event ProverDeploy(address indexed prover, address owner, uint256 stakerFeeBips);

    /// @dev Emitted when a prover is deactivated.
    event ProverDeactivation(address indexed prover);

    /// @dev Thrown creating a prover before the registry is initialized.
    error NotInitialized();

    /// @dev Thrown if the caller is not authorized to perform the action.
    error NotAuthorized();

    /// @dev Thrown when an address parameter is zero.
    error ZeroAddress();

    /// @dev Thrown if the specified prover does not exist.
    error ProverNotFound();

    /// @dev Thrown if a prover already exists for this owner.
    error ProverAlreadyExists();

    /// @dev Thrown if the staker fee is greater than 100%.
    error InvalidStakerFeeBips();

    /// @dev Thrown when attempting to stake to a deactivated prover.
    error ProverNotActive();

    /// @notice The address of the governor contract.
    function governor() external view returns (address);

    /// @notice The address of the VApp.
    function vapp() external view returns (address);

    /// @notice The address of the $PROVE token.
    function prove() external view returns (address);

    /// @notice The address of the $iPROVE token.
    function iProve() external view returns (address);

    /// @notice The number of provers in the registry.
    function proverCount() external view returns (uint256);

    /// @notice Check if a given address is a prover.
    /// @dev This does not check if the prover is deactivated, use `isDeactivatedProver` to check
    ///      if the prover is deactivated.
    /// @param prover The address of the prover.
    /// @return True if the address is a prover, false otherwise.
    function isProver(address prover) external view returns (bool);

    /// @notice Check if a given prover is deactivated and cannot be staked to.
    /// @dev A prover can be deactivated if it is slashed to the point where its price-per-share
    ///      drops below the minimum.
    /// @param prover The address of the prover.
    /// @return True if the prover is deactivated, false otherwise.
    function isDeactivatedProver(address prover) external view returns (bool);

    /// @notice Get the address of a prover for a given owner.
    /// @param owner The address of the owner.
    /// @return The address of the prover.
    function getProver(address owner) external view returns (address);

    /// @notice Create a new prover.
    /// @dev The caller becomes the owner of the new prover. Only one prover can be created per
    ///      owner. It is recommended to use a cold wallet to create a prover, and then
    ///      immediately set a delegated signer to a hot wallet for the prover.
    /// @param stakerFeeBips The reward percentage in basis points (one-hundredth of a percent) that
    ///        goes to the prover's stakers. This cannot be changed after the prover is created.
    /// @return The address of the new prover.
    function createProver(uint256 stakerFeeBips) external returns (address);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Votes.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Votes} from "../../../governance/utils/Votes.sol";
import {Checkpoints} from "../../../utils/structs/Checkpoints.sol";

/**
 * @dev Extension of ERC-20 to support Compound-like voting and delegation. This version is more generic than Compound's,
 * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
 *
 * NOTE: This contract does not provide interface compatibility with Compound's COMP token.
 *
 * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
 * by calling the {Votes-delegate} function directly, or by providing a signature to be used with {Votes-delegateBySig}. Voting
 * power can be queried through the public accessors {Votes-getVotes} and {Votes-getPastVotes}.
 *
 * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
 * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
 */
abstract contract ERC20Votes is ERC20, Votes {
    /**
     * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
     */
    error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);

    /**
     * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
     *
     * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
     * so that checkpoints can be stored in the Trace208 structure used by {Votes}. Increasing this value will not
     * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
     * {Votes-_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if
     * additional logic requires it. When resolving override conflicts on this function, the minimum should be
     * returned.
     */
    function _maxSupply() internal view virtual returns (uint256) {
        return type(uint208).max;
    }

    /**
     * @dev Move voting power when tokens are transferred.
     *
     * Emits a {IVotes-DelegateVotesChanged} event.
     */
    function _update(address from, address to, uint256 value) internal virtual override {
        super._update(from, to, value);
        if (from == address(0)) {
            uint256 supply = totalSupply();
            uint256 cap = _maxSupply();
            if (supply > cap) {
                revert ERC20ExceededSafeSupply(supply, cap);
            }
        }
        _transferVotingUnits(from, to, value);
    }

    /**
     * @dev Returns the voting units of an `account`.
     *
     * WARNING: Overriding this function may compromise the internal vote accounting.
     * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
     */
    function _getVotingUnits(address account) internal view virtual override returns (uint256) {
        return balanceOf(account);
    }

    /**
     * @dev Get number of checkpoints for `account`.
     */
    function numCheckpoints(address account) public view virtual returns (uint32) {
        return _numCheckpoints(account);
    }

    /**
     * @dev Get the `pos`-th checkpoint for `account`.
     */
    function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
        return _checkpoints(account, pos);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC4626.sol)

pragma solidity ^0.8.20;

import {IERC20, IERC20Metadata, ERC20} from "../ERC20.sol";
import {SafeERC20} from "../utils/SafeERC20.sol";
import {IERC4626} from "../../../interfaces/IERC4626.sol";
import {Math} from "../../../utils/math/Math.sol";

/**
 * @dev Implementation of the ERC-4626 "Tokenized Vault Standard" as defined in
 * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626].
 *
 * This extension allows the minting and burning of "shares" (represented using the ERC-20 inheritance) in exchange for
 * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends
 * the ERC-20 standard. Any additional extensions included along it would affect the "shares" token represented by this
 * contract and not the "assets" token which is an independent contract.
 *
 * [CAUTION]
 * ====
 * In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning
 * with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation
 * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial
 * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may
 * similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by
 * verifying the amount received is as expected, using a wrapper that performs these checks such as
 * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router].
 *
 * Since v4.9, this implementation introduces configurable virtual assets and shares to help developers mitigate that risk.
 * The `_decimalsOffset()` corresponds to an offset in the decimal representation between the underlying asset's decimals
 * and the vault decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which
 * itself determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default
 * offset (0) makes it non-profitable even if an attacker is able to capture value from multiple user deposits, as a result
 * of the value being captured by the virtual shares (out of the attacker's donation) matching the attacker's expected gains.
 * With a larger offset, the attack becomes orders of magnitude more expensive than it is profitable. More details about the
 * underlying math can be found xref:erc4626.adoc#inflation-attack[here].
 *
 * The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued
 * to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets
 * will cause the first user to exit to experience reduced losses in detriment to the last users that will experience
 * bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the
 * `_convertToShares` and `_convertToAssets` functions.
 *
 * To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide].
 * ====
 */
abstract contract ERC4626 is ERC20, IERC4626 {
    using Math for uint256;

    IERC20 private immutable _asset;
    uint8 private immutable _underlyingDecimals;

    /**
     * @dev Attempted to deposit more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max);

    /**
     * @dev Attempted to mint more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max);

    /**
     * @dev Attempted to withdraw more assets than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max);

    /**
     * @dev Attempted to redeem more shares than the max amount for `receiver`.
     */
    error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max);

    /**
     * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC-20 or ERC-777).
     */
    constructor(IERC20 asset_) {
        (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_);
        _underlyingDecimals = success ? assetDecimals : 18;
        _asset = asset_;
    }

    /**
     * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way.
     */
    function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool ok, uint8 assetDecimals) {
        (bool success, bytes memory encodedDecimals) = address(asset_).staticcall(
            abi.encodeCall(IERC20Metadata.decimals, ())
        );
        if (success && encodedDecimals.length >= 32) {
            uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256));
            if (returnedDecimals <= type(uint8).max) {
                return (true, uint8(returnedDecimals));
            }
        }
        return (false, 0);
    }

    /**
     * @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This
     * "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the
     * asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals.
     *
     * See {IERC20Metadata-decimals}.
     */
    function decimals() public view virtual override(IERC20Metadata, ERC20) returns (uint8) {
        return _underlyingDecimals + _decimalsOffset();
    }

    /** @dev See {IERC4626-asset}. */
    function asset() public view virtual returns (address) {
        return address(_asset);
    }

    /** @dev See {IERC4626-totalAssets}. */
    function totalAssets() public view virtual returns (uint256) {
        return _asset.balanceOf(address(this));
    }

    /** @dev See {IERC4626-convertToShares}. */
    function convertToShares(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-convertToAssets}. */
    function convertToAssets(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-maxDeposit}. */
    function maxDeposit(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxMint}. */
    function maxMint(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    /** @dev See {IERC4626-maxWithdraw}. */
    function maxWithdraw(address owner) public view virtual returns (uint256) {
        return _convertToAssets(balanceOf(owner), Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-maxRedeem}. */
    function maxRedeem(address owner) public view virtual returns (uint256) {
        return balanceOf(owner);
    }

    /** @dev See {IERC4626-previewDeposit}. */
    function previewDeposit(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-previewMint}. */
    function previewMint(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Ceil);
    }

    /** @dev See {IERC4626-previewWithdraw}. */
    function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
        return _convertToShares(assets, Math.Rounding.Ceil);
    }

    /** @dev See {IERC4626-previewRedeem}. */
    function previewRedeem(uint256 shares) public view virtual returns (uint256) {
        return _convertToAssets(shares, Math.Rounding.Floor);
    }

    /** @dev See {IERC4626-deposit}. */
    function deposit(uint256 assets, address receiver) public virtual returns (uint256) {
        uint256 maxAssets = maxDeposit(receiver);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets);
        }

        uint256 shares = previewDeposit(assets);
        _deposit(_msgSender(), receiver, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-mint}. */
    function mint(uint256 shares, address receiver) public virtual returns (uint256) {
        uint256 maxShares = maxMint(receiver);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxMint(receiver, shares, maxShares);
        }

        uint256 assets = previewMint(shares);
        _deposit(_msgSender(), receiver, assets, shares);

        return assets;
    }

    /** @dev See {IERC4626-withdraw}. */
    function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxAssets = maxWithdraw(owner);
        if (assets > maxAssets) {
            revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets);
        }

        uint256 shares = previewWithdraw(assets);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return shares;
    }

    /** @dev See {IERC4626-redeem}. */
    function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) {
        uint256 maxShares = maxRedeem(owner);
        if (shares > maxShares) {
            revert ERC4626ExceededMaxRedeem(owner, shares, maxShares);
        }

        uint256 assets = previewRedeem(shares);
        _withdraw(_msgSender(), receiver, owner, assets, shares);

        return assets;
    }

    /**
     * @dev Internal conversion function (from assets to shares) with support for rounding direction.
     */
    function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) {
        return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding);
    }

    /**
     * @dev Internal conversion function (from shares to assets) with support for rounding direction.
     */
    function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) {
        return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding);
    }

    /**
     * @dev Deposit/mint common workflow.
     */
    function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual {
        // If _asset is ERC-777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the
        // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the
        // assets are transferred and before the shares are minted, which is a valid state.
        // slither-disable-next-line reentrancy-no-eth
        SafeERC20.safeTransferFrom(_asset, caller, address(this), assets);
        _mint(receiver, shares);

        emit Deposit(caller, receiver, assets, shares);
    }

    /**
     * @dev Withdraw/redeem common workflow.
     */
    function _withdraw(
        address caller,
        address receiver,
        address owner,
        uint256 assets,
        uint256 shares
    ) internal virtual {
        if (caller != owner) {
            _spendAllowance(owner, caller, shares);
        }

        // If _asset is ERC-777, `transfer` can trigger a reentrancy AFTER the transfer happens through the
        // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer,
        // calls the vault, which is assumed not malicious.
        //
        // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the
        // shares are burned and after the assets are transferred, which is a valid state.
        _burn(owner, shares);
        SafeERC20.safeTransfer(_asset, receiver, assets);

        emit Withdraw(caller, receiver, owner, assets, shares);
    }

    function _decimalsOffset() internal view virtual returns (uint8) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)

pragma solidity ^0.8.20;

/**
 * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
 * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
 * be specified by overriding the virtual {_implementation} function.
 *
 * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
 * different contract through the {_delegate} function.
 *
 * The success and return data of the delegated call will be returned back to the caller of the proxy.
 */
abstract contract Proxy {
    /**
     * @dev Delegates the current call to `implementation`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _delegate(address implementation) internal virtual {
        assembly {
            // Copy msg.data. We take full control of memory in this inline assembly
            // block because it will not return to Solidity code. We overwrite the
            // Solidity scratch pad at memory position 0.
            calldatacopy(0, 0, calldatasize())

            // Call the implementation.
            // out and outsize are 0 because we don't know the size yet.
            let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

            // Copy the returned data.
            returndatacopy(0, 0, returndatasize())

            switch result
            // delegatecall returns 0 on error.
            case 0 {
                revert(0, returndatasize())
            }
            default {
                return(0, returndatasize())
            }
        }
    }

    /**
     * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
     * function and {_fallback} should delegate.
     */
    function _implementation() internal view virtual returns (address);

    /**
     * @dev Delegates the current call to the address returned by `_implementation()`.
     *
     * This function does not return to its internal call site, it will return directly to the external caller.
     */
    function _fallback() internal virtual {
        _delegate(_implementation());
    }

    /**
     * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
     * function in the contract matches the call data.
     */
    fallback() external payable virtual {
        _fallback();
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (proxy/ERC1967/ERC1967Utils.sol)

pragma solidity ^0.8.22;

import {IBeacon} from "../beacon/IBeacon.sol";
import {IERC1967} from "../../interfaces/IERC1967.sol";
import {Address} from "../../utils/Address.sol";
import {StorageSlot} from "../../utils/StorageSlot.sol";

/**
 * @dev This library provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots.
 */
library ERC1967Utils {
    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev The `implementation` of the proxy is invalid.
     */
    error ERC1967InvalidImplementation(address implementation);

    /**
     * @dev The `admin` of the proxy is invalid.
     */
    error ERC1967InvalidAdmin(address admin);

    /**
     * @dev The `beacon` of the proxy is invalid.
     */
    error ERC1967InvalidBeacon(address beacon);

    /**
     * @dev An upgrade function sees `msg.value > 0` that may be lost.
     */
    error ERC1967NonPayable();

    /**
     * @dev Returns the current implementation address.
     */
    function getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        if (newImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(newImplementation);
        }
        StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Performs implementation upgrade with additional setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) internal {
        _setImplementation(newImplementation);
        emit IERC1967.Upgraded(newImplementation);

        if (data.length > 0) {
            Address.functionDelegateCall(newImplementation, data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Returns the current admin.
     *
     * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using
     * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
     * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
     */
    function getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the ERC-1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        if (newAdmin == address(0)) {
            revert ERC1967InvalidAdmin(address(0));
        }
        StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {IERC1967-AdminChanged} event.
     */
    function changeAdmin(address newAdmin) internal {
        emit IERC1967.AdminChanged(getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
     */
    // solhint-disable-next-line private-vars-leading-underscore
    bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Returns the current beacon.
     */
    function getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the ERC-1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        if (newBeacon.code.length == 0) {
            revert ERC1967InvalidBeacon(newBeacon);
        }

        StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;

        address beaconImplementation = IBeacon(newBeacon).implementation();
        if (beaconImplementation.code.length == 0) {
            revert ERC1967InvalidImplementation(beaconImplementation);
        }
    }

    /**
     * @dev Change the beacon and trigger a setup call if data is nonempty.
     * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
     * to avoid stuck value in the contract.
     *
     * Emits an {IERC1967-BeaconUpgraded} event.
     *
     * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
     * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
     * efficiency.
     */
    function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
        _setBeacon(newBeacon);
        emit IERC1967.BeaconUpgraded(newBeacon);

        if (data.length > 0) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        } else {
            _checkNonPayable();
        }
    }

    /**
     * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
     * if an upgrade doesn't perform an initialization call.
     */
    function _checkNonPayable() private {
        if (msg.value > 0) {
            revert ERC1967NonPayable();
        }
    }
}

// SPDX-License-Identifier: MIT
pragma solidity ^0.8.28;

import {IProver} from "../interfaces/IProver.sol";
import {IGovernor} from "../../lib/openzeppelin-contracts/contracts/governance/IGovernor.sol";
import {ERC20} from "../../lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "../../lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import {ERC20Votes} from
    "../../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC20Votes.sol";
import {ERC4626} from
    "../../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC4626.sol";
import {SafeERC20} from "../../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {Strings} from "../../lib/openzeppelin-contracts/contracts/utils/Strings.sol";

string constant NAME_PREFIX = "SuccinctProver-";
string constant SYMBOL_PREFIX = "PROVER-";

/// @title SuccinctProver
/// @author Succinct Labs
/// @notice The per-prover receipt token for delegating stake to a prover.
/// @dev This contract accepts $iPROVE and mints $PROVER-N. It is non-transferable
///      outside of staking operations.
contract SuccinctProver is ERC4626, IProver {
    using SafeERC20 for IERC20;
    using Strings for uint256;

    /// @inheritdoc IProver
    address public immutable override staking;

    /// @inheritdoc IProver
    address public immutable override governor;

    /// @inheritdoc IProver
    address public immutable override prove;

    /// @inheritdoc IProver
    address public immutable override owner;

    /// @inheritdoc IProver
    uint256 public immutable override id;

    /// @inheritdoc IProver
    uint256 public immutable override stakerFeeBips;

    /// @dev Modifier to ensure that the caller is the prover owner.
    modifier onlyOwner() {
        if (msg.sender != owner) revert NotProverOwner();
        _;
    }

    /// @dev Initializes this vault with $iPROVE as the underlying, with additional parameters.
    constructor(
        address _governor,
        address _prove,
        address _iProve,
        address _owner,
        uint256 _id,
        uint256 _stakerFeeBips
    )
        ERC20(string.concat(NAME_PREFIX, _id.toString()), string.concat(SYMBOL_PREFIX, _id.toString()))
        ERC4626(IERC20(_iProve))
    {
        if (
            _governor == address(0) || _prove == address(0) || _iProve == address(0)
                || _owner == address(0)
        ) {
            revert ZeroAddress();
        }

        staking = msg.sender;
        governor = _governor;
        prove = _prove;
        owner = _owner;
        id = _id;
        stakerFeeBips = _stakerFeeBips;

        // Self-delegate so that this prover can participate in governance.
        ERC20Votes(_iProve).delegate(address(this));
    }

    /// @inheritdoc IProver
    function propose(
        address[] memory _targets,
        uint256[] memory _values,
        bytes[] memory _calldatas,
        string memory _description
    ) external override onlyOwner returns (uint256) {
        return IGovernor(governor).propose(_targets, _values, _calldatas, _description);
    }

    /// @inheritdoc IProver
    function cancel(
        address[] memory _targets,
        uint256[] memory _values,
        bytes[] memory _calldatas,
        bytes32 _descriptionHash
    ) external override onlyOwner returns (uint256) {
        return IGovernor(governor).cancel(_targets, _values, _calldatas, _descriptionHash);
    }

    /// @inheritdoc IProver
    function castVote(uint256 _proposalId, uint8 _support)
        external
        override
        onlyOwner
        returns (uint256)
    {
        return IGovernor(governor).castVote(_proposalId, _support);
    }

    /// @inheritdoc IProver
    function transferProveToStaking(address _from, uint256 _amount) external override {
        if (msg.sender != staking) {
            revert NotStaking();
        }

        IERC20(prove).safeTransferFrom(_from, staking, _amount);
    }

    /// @dev Override to prevent transfers of $PROVER-N tokens except for stake/unstake.
    function _update(address _from, address _to, uint256 _value) internal override(ERC20) {
        if (msg.sender != staking) {
            revert NonTransferable();
        }

        super._update(_from, _to, _value);
    }

    /// @dev Override to allow the staking contract to spend $PROVER-N.
    function _spendAllowance(address _owner, address _spender, uint256 _amount) internal override {
        if (_spender == staking) {
            return;
        }

        super._spendAllowance(_owner, _spender, _amount);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        assembly ("memory-safe") {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
            // if no address was created, and returndata is not empty, bubble revert
            if and(iszero(addr), not(iszero(returndatasize()))) {
                let p := mload(0x40)
                returndatacopy(p, 0, returndatasize())
                revert(p, returndatasize())
            }
        }
        if (addr == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
    /// @custom:storage-location erc7201:openzeppelin.storage.ERC20
    struct ERC20Storage {
        mapping(address account => uint256) _balances;

        mapping(address account => mapping(address spender => uint256)) _allowances;

        uint256 _totalSupply;

        string _name;
        string _symbol;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;

    function _getERC20Storage() private pure returns (ERC20Storage storage $) {
        assembly {
            $.slot := ERC20StorageLocation
        }
    }

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
        __ERC20_init_unchained(name_, symbol_);
    }

    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
        ERC20Storage storage $ = _getERC20Storage();
        $._name = name_;
        $._symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        ERC20Storage storage $ = _getERC20Storage();
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            $._totalSupply += value;
        } else {
            uint256 fromBalance = $._balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                $._balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                $._totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                $._balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        ERC20Storage storage $ = _getERC20Storage();
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        $._allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance < type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 37 of 77 : Governor.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (governance/Governor.sol)

pragma solidity ^0.8.20;

import {IERC721Receiver} from "../token/ERC721/IERC721Receiver.sol";
import {IERC1155Receiver} from "../token/ERC1155/IERC1155Receiver.sol";
import {EIP712} from "../utils/cryptography/EIP712.sol";
import {SignatureChecker} from "../utils/cryptography/SignatureChecker.sol";
import {IERC165, ERC165} from "../utils/introspection/ERC165.sol";
import {SafeCast} from "../utils/math/SafeCast.sol";
import {DoubleEndedQueue} from "../utils/structs/DoubleEndedQueue.sol";
import {Address} from "../utils/Address.sol";
import {Context} from "../utils/Context.sol";
import {Nonces} from "../utils/Nonces.sol";
import {Strings} from "../utils/Strings.sol";
import {IGovernor, IERC6372} from "./IGovernor.sol";

/**
 * @dev Core of the governance system, designed to be extended through various modules.
 *
 * This contract is abstract and requires several functions to be implemented in various modules:
 *
 * - A counting module must implement {quorum}, {_quorumReached}, {_voteSucceeded} and {_countVote}
 * - A voting module must implement {_getVotes}
 * - Additionally, {votingPeriod} must also be implemented
 */
abstract contract Governor is Context, ERC165, EIP712, Nonces, IGovernor, IERC721Receiver, IERC1155Receiver {
    using DoubleEndedQueue for DoubleEndedQueue.Bytes32Deque;

    bytes32 public constant BALLOT_TYPEHASH =
        keccak256("Ballot(uint256 proposalId,uint8 support,address voter,uint256 nonce)");
    bytes32 public constant EXTENDED_BALLOT_TYPEHASH =
        keccak256(
            "ExtendedBallot(uint256 proposalId,uint8 support,address voter,uint256 nonce,string reason,bytes params)"
        );

    struct ProposalCore {
        address proposer;
        uint48 voteStart;
        uint32 voteDuration;
        bool executed;
        bool canceled;
        uint48 etaSeconds;
    }

    bytes32 private constant ALL_PROPOSAL_STATES_BITMAP = bytes32((2 ** (uint8(type(ProposalState).max) + 1)) - 1);
    string private _name;

    mapping(uint256 proposalId => ProposalCore) private _proposals;

    // This queue keeps track of the governor operating on itself. Calls to functions protected by the {onlyGovernance}
    // modifier needs to be whitelisted in this queue. Whitelisting is set in {execute}, consumed by the
    // {onlyGovernance} modifier and eventually reset after {_executeOperations} completes. This ensures that the
    // execution of {onlyGovernance} protected calls can only be achieved through successful proposals.
    DoubleEndedQueue.Bytes32Deque private _governanceCall;

    /**
     * @dev Restricts a function so it can only be executed through governance proposals. For example, governance
     * parameter setters in {GovernorSettings} are protected using this modifier.
     *
     * The governance executing address may be different from the Governor's own address, for example it could be a
     * timelock. This can be customized by modules by overriding {_executor}. The executor is only able to invoke these
     * functions during the execution of the governor's {execute} function, and not under any other circumstances. Thus,
     * for example, additional timelock proposers are not able to change governance parameters without going through the
     * governance protocol (since v4.6).
     */
    modifier onlyGovernance() {
        _checkGovernance();
        _;
    }

    /**
     * @dev Sets the value for {name} and {version}
     */
    constructor(string memory name_) EIP712(name_, version()) {
        _name = name_;
    }

    /**
     * @dev Function to receive ETH that will be handled by the governor (disabled if executor is a third party contract)
     */
    receive() external payable virtual {
        if (_executor() != address(this)) {
            revert GovernorDisabledDeposit();
        }
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
        return
            interfaceId == type(IGovernor).interfaceId ||
            interfaceId == type(IERC1155Receiver).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IGovernor-name}.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IGovernor-version}.
     */
    function version() public view virtual returns (string memory) {
        return "1";
    }

    /**
     * @dev See {IGovernor-hashProposal}.
     *
     * The proposal id is produced by hashing the ABI encoded `targets` array, the `values` array, the `calldatas` array
     * and the descriptionHash (bytes32 which itself is the keccak256 hash of the description string). This proposal id
     * can be produced from the proposal data which is part of the {ProposalCreated} event. It can even be computed in
     * advance, before the proposal is submitted.
     *
     * Note that the chainId and the governor address are not part of the proposal id computation. Consequently, the
     * same proposal (with same operation and same description) will have the same id if submitted on multiple governors
     * across multiple networks. This also means that in order to execute the same operation twice (on the same
     * governor) the proposer will have to change the description in order to avoid proposal id conflicts.
     */
    function hashProposal(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) public pure virtual returns (uint256) {
        return uint256(keccak256(abi.encode(targets, values, calldatas, descriptionHash)));
    }

    /**
     * @dev See {IGovernor-state}.
     */
    function state(uint256 proposalId) public view virtual returns (ProposalState) {
        // We read the struct fields into the stack at once so Solidity emits a single SLOAD
        ProposalCore storage proposal = _proposals[proposalId];
        bool proposalExecuted = proposal.executed;
        bool proposalCanceled = proposal.canceled;

        if (proposalExecuted) {
            return ProposalState.Executed;
        }

        if (proposalCanceled) {
            return ProposalState.Canceled;
        }

        uint256 snapshot = proposalSnapshot(proposalId);

        if (snapshot == 0) {
            revert GovernorNonexistentProposal(proposalId);
        }

        uint256 currentTimepoint = clock();

        if (snapshot >= currentTimepoint) {
            return ProposalState.Pending;
        }

        uint256 deadline = proposalDeadline(proposalId);

        if (deadline >= currentTimepoint) {
            return ProposalState.Active;
        } else if (!_quorumReached(proposalId) || !_voteSucceeded(proposalId)) {
            return ProposalState.Defeated;
        } else if (proposalEta(proposalId) == 0) {
            return ProposalState.Succeeded;
        } else {
            return ProposalState.Queued;
        }
    }

    /**
     * @dev See {IGovernor-proposalThreshold}.
     */
    function proposalThreshold() public view virtual returns (uint256) {
        return 0;
    }

    /**
     * @dev See {IGovernor-proposalSnapshot}.
     */
    function proposalSnapshot(uint256 proposalId) public view virtual returns (uint256) {
        return _proposals[proposalId].voteStart;
    }

    /**
     * @dev See {IGovernor-proposalDeadline}.
     */
    function proposalDeadline(uint256 proposalId) public view virtual returns (uint256) {
        return _proposals[proposalId].voteStart + _proposals[proposalId].voteDuration;
    }

    /**
     * @dev See {IGovernor-proposalProposer}.
     */
    function proposalProposer(uint256 proposalId) public view virtual returns (address) {
        return _proposals[proposalId].proposer;
    }

    /**
     * @dev See {IGovernor-proposalEta}.
     */
    function proposalEta(uint256 proposalId) public view virtual returns (uint256) {
        return _proposals[proposalId].etaSeconds;
    }

    /**
     * @dev See {IGovernor-proposalNeedsQueuing}.
     */
    function proposalNeedsQueuing(uint256) public view virtual returns (bool) {
        return false;
    }

    /**
     * @dev Reverts if the `msg.sender` is not the executor. In case the executor is not this contract
     * itself, the function reverts if `msg.data` is not whitelisted as a result of an {execute}
     * operation. See {onlyGovernance}.
     */
    function _checkGovernance() internal virtual {
        if (_executor() != _msgSender()) {
            revert GovernorOnlyExecutor(_msgSender());
        }
        if (_executor() != address(this)) {
            bytes32 msgDataHash = keccak256(_msgData());
            // loop until popping the expected operation - throw if deque is empty (operation not authorized)
            while (_governanceCall.popFront() != msgDataHash) {}
        }
    }

    /**
     * @dev Amount of votes already cast passes the threshold limit.
     */
    function _quorumReached(uint256 proposalId) internal view virtual returns (bool);

    /**
     * @dev Is the proposal successful or not.
     */
    function _voteSucceeded(uint256 proposalId) internal view virtual returns (bool);

    /**
     * @dev Get the voting weight of `account` at a specific `timepoint`, for a vote as described by `params`.
     */
    function _getVotes(address account, uint256 timepoint, bytes memory params) internal view virtual returns (uint256);

    /**
     * @dev Register a vote for `proposalId` by `account` with a given `support`, voting `weight` and voting `params`.
     *
     * Note: Support is generic and can represent various things depending on the voting system used.
     */
    function _countVote(
        uint256 proposalId,
        address account,
        uint8 support,
        uint256 totalWeight,
        bytes memory params
    ) internal virtual returns (uint256);

    /**
     * @dev Hook that should be called every time the tally for a proposal is updated.
     *
     * Note: This function must run successfully. Reverts will result in the bricking of governance
     */
    function _tallyUpdated(uint256 proposalId) internal virtual {}

    /**
     * @dev Default additional encoded parameters used by castVote methods that don't include them
     *
     * Note: Should be overridden by specific implementations to use an appropriate value, the
     * meaning of the additional params, in the context of that implementation
     */
    function _defaultParams() internal view virtual returns (bytes memory) {
        return "";
    }

    /**
     * @dev See {IGovernor-propose}. This function has opt-in frontrunning protection, described in {_isValidDescriptionForProposer}.
     */
    function propose(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        string memory description
    ) public virtual returns (uint256) {
        address proposer = _msgSender();

        // check description restriction
        if (!_isValidDescriptionForProposer(proposer, description)) {
            revert GovernorRestrictedProposer(proposer);
        }

        // check proposal threshold
        uint256 votesThreshold = proposalThreshold();
        if (votesThreshold > 0) {
            uint256 proposerVotes = getVotes(proposer, clock() - 1);
            if (proposerVotes < votesThreshold) {
                revert GovernorInsufficientProposerVotes(proposer, proposerVotes, votesThreshold);
            }
        }

        return _propose(targets, values, calldatas, description, proposer);
    }

    /**
     * @dev Internal propose mechanism. Can be overridden to add more logic on proposal creation.
     *
     * Emits a {IGovernor-ProposalCreated} event.
     */
    function _propose(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        string memory description,
        address proposer
    ) internal virtual returns (uint256 proposalId) {
        proposalId = hashProposal(targets, values, calldatas, keccak256(bytes(description)));

        if (targets.length != values.length || targets.length != calldatas.length || targets.length == 0) {
            revert GovernorInvalidProposalLength(targets.length, calldatas.length, values.length);
        }
        if (_proposals[proposalId].voteStart != 0) {
            revert GovernorUnexpectedProposalState(proposalId, state(proposalId), bytes32(0));
        }

        uint256 snapshot = clock() + votingDelay();
        uint256 duration = votingPeriod();

        ProposalCore storage proposal = _proposals[proposalId];
        proposal.proposer = proposer;
        proposal.voteStart = SafeCast.toUint48(snapshot);
        proposal.voteDuration = SafeCast.toUint32(duration);

        emit ProposalCreated(
            proposalId,
            proposer,
            targets,
            values,
            new string[](targets.length),
            calldatas,
            snapshot,
            snapshot + duration,
            description
        );

        // Using a named return variable to avoid stack too deep errors
    }

    /**
     * @dev See {IGovernor-queue}.
     */
    function queue(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) public virtual returns (uint256) {
        uint256 proposalId = hashProposal(targets, values, calldatas, descriptionHash);

        _validateStateBitmap(proposalId, _encodeStateBitmap(ProposalState.Succeeded));

        uint48 etaSeconds = _queueOperations(proposalId, targets, values, calldatas, descriptionHash);

        if (etaSeconds != 0) {
            _proposals[proposalId].etaSeconds = etaSeconds;
            emit ProposalQueued(proposalId, etaSeconds);
        } else {
            revert GovernorQueueNotImplemented();
        }

        return proposalId;
    }

    /**
     * @dev Internal queuing mechanism. Can be overridden (without a super call) to modify the way queuing is
     * performed (for example adding a vault/timelock).
     *
     * This is empty by default, and must be overridden to implement queuing.
     *
     * This function returns a timestamp that describes the expected ETA for execution. If the returned value is 0
     * (which is the default value), the core will consider queueing did not succeed, and the public {queue} function
     * will revert.
     *
     * NOTE: Calling this function directly will NOT check the current state of the proposal, or emit the
     * `ProposalQueued` event. Queuing a proposal should be done using {queue}.
     */
    function _queueOperations(
        uint256 /*proposalId*/,
        address[] memory /*targets*/,
        uint256[] memory /*values*/,
        bytes[] memory /*calldatas*/,
        bytes32 /*descriptionHash*/
    ) internal virtual returns (uint48) {
        return 0;
    }

    /**
     * @dev See {IGovernor-execute}.
     */
    function execute(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) public payable virtual returns (uint256) {
        uint256 proposalId = hashProposal(targets, values, calldatas, descriptionHash);

        _validateStateBitmap(
            proposalId,
            _encodeStateBitmap(ProposalState.Succeeded) | _encodeStateBitmap(ProposalState.Queued)
        );

        // mark as executed before calls to avoid reentrancy
        _proposals[proposalId].executed = true;

        // before execute: register governance call in queue.
        if (_executor() != address(this)) {
            for (uint256 i = 0; i < targets.length; ++i) {
                if (targets[i] == address(this)) {
                    _governanceCall.pushBack(keccak256(calldatas[i]));
                }
            }
        }

        _executeOperations(proposalId, targets, values, calldatas, descriptionHash);

        // after execute: cleanup governance call queue.
        if (_executor() != address(this) && !_governanceCall.empty()) {
            _governanceCall.clear();
        }

        emit ProposalExecuted(proposalId);

        return proposalId;
    }

    /**
     * @dev Internal execution mechanism. Can be overridden (without a super call) to modify the way execution is
     * performed (for example adding a vault/timelock).
     *
     * NOTE: Calling this function directly will NOT check the current state of the proposal, set the executed flag to
     * true or emit the `ProposalExecuted` event. Executing a proposal should be done using {execute} or {_execute}.
     */
    function _executeOperations(
        uint256 /* proposalId */,
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 /*descriptionHash*/
    ) internal virtual {
        for (uint256 i = 0; i < targets.length; ++i) {
            (bool success, bytes memory returndata) = targets[i].call{value: values[i]}(calldatas[i]);
            Address.verifyCallResult(success, returndata);
        }
    }

    /**
     * @dev See {IGovernor-cancel}.
     */
    function cancel(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) public virtual returns (uint256) {
        // The proposalId will be recomputed in the `_cancel` call further down. However we need the value before we
        // do the internal call, because we need to check the proposal state BEFORE the internal `_cancel` call
        // changes it. The `hashProposal` duplication has a cost that is limited, and that we accept.
        uint256 proposalId = hashProposal(targets, values, calldatas, descriptionHash);

        // public cancel restrictions (on top of existing _cancel restrictions).
        _validateStateBitmap(proposalId, _encodeStateBitmap(ProposalState.Pending));
        if (_msgSender() != proposalProposer(proposalId)) {
            revert GovernorOnlyProposer(_msgSender());
        }

        return _cancel(targets, values, calldatas, descriptionHash);
    }

    /**
     * @dev Internal cancel mechanism with minimal restrictions. A proposal can be cancelled in any state other than
     * Canceled, Expired, or Executed. Once cancelled a proposal can't be re-submitted.
     *
     * Emits a {IGovernor-ProposalCanceled} event.
     */
    function _cancel(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) internal virtual returns (uint256) {
        uint256 proposalId = hashProposal(targets, values, calldatas, descriptionHash);

        _validateStateBitmap(
            proposalId,
            ALL_PROPOSAL_STATES_BITMAP ^
                _encodeStateBitmap(ProposalState.Canceled) ^
                _encodeStateBitmap(ProposalState.Expired) ^
                _encodeStateBitmap(ProposalState.Executed)
        );

        _proposals[proposalId].canceled = true;
        emit ProposalCanceled(proposalId);

        return proposalId;
    }

    /**
     * @dev See {IGovernor-getVotes}.
     */
    function getVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
        return _getVotes(account, timepoint, _defaultParams());
    }

    /**
     * @dev See {IGovernor-getVotesWithParams}.
     */
    function getVotesWithParams(
        address account,
        uint256 timepoint,
        bytes memory params
    ) public view virtual returns (uint256) {
        return _getVotes(account, timepoint, params);
    }

    /**
     * @dev See {IGovernor-castVote}.
     */
    function castVote(uint256 proposalId, uint8 support) public virtual returns (uint256) {
        address voter = _msgSender();
        return _castVote(proposalId, voter, support, "");
    }

    /**
     * @dev See {IGovernor-castVoteWithReason}.
     */
    function castVoteWithReason(
        uint256 proposalId,
        uint8 support,
        string calldata reason
    ) public virtual returns (uint256) {
        address voter = _msgSender();
        return _castVote(proposalId, voter, support, reason);
    }

    /**
     * @dev See {IGovernor-castVoteWithReasonAndParams}.
     */
    function castVoteWithReasonAndParams(
        uint256 proposalId,
        uint8 support,
        string calldata reason,
        bytes memory params
    ) public virtual returns (uint256) {
        address voter = _msgSender();
        return _castVote(proposalId, voter, support, reason, params);
    }

    /**
     * @dev See {IGovernor-castVoteBySig}.
     */
    function castVoteBySig(
        uint256 proposalId,
        uint8 support,
        address voter,
        bytes memory signature
    ) public virtual returns (uint256) {
        bool valid = SignatureChecker.isValidSignatureNow(
            voter,
            _hashTypedDataV4(keccak256(abi.encode(BALLOT_TYPEHASH, proposalId, support, voter, _useNonce(voter)))),
            signature
        );

        if (!valid) {
            revert GovernorInvalidSignature(voter);
        }

        return _castVote(proposalId, voter, support, "");
    }

    /**
     * @dev See {IGovernor-castVoteWithReasonAndParamsBySig}.
     */
    function castVoteWithReasonAndParamsBySig(
        uint256 proposalId,
        uint8 support,
        address voter,
        string calldata reason,
        bytes memory params,
        bytes memory signature
    ) public virtual returns (uint256) {
        bool valid = SignatureChecker.isValidSignatureNow(
            voter,
            _hashTypedDataV4(
                keccak256(
                    abi.encode(
                        EXTENDED_BALLOT_TYPEHASH,
                        proposalId,
                        support,
                        voter,
                        _useNonce(voter),
                        keccak256(bytes(reason)),
                        keccak256(params)
                    )
                )
            ),
            signature
        );

        if (!valid) {
            revert GovernorInvalidSignature(voter);
        }

        return _castVote(proposalId, voter, support, reason, params);
    }

    /**
     * @dev Internal vote casting mechanism: Check that the vote is pending, that it has not been cast yet, retrieve
     * voting weight using {IGovernor-getVotes} and call the {_countVote} internal function. Uses the _defaultParams().
     *
     * Emits a {IGovernor-VoteCast} event.
     */
    function _castVote(
        uint256 proposalId,
        address account,
        uint8 support,
        string memory reason
    ) internal virtual returns (uint256) {
        return _castVote(proposalId, account, support, reason, _defaultParams());
    }

    /**
     * @dev Internal vote casting mechanism: Check that the vote is pending, that it has not been cast yet, retrieve
     * voting weight using {IGovernor-getVotes} and call the {_countVote} internal function.
     *
     * Emits a {IGovernor-VoteCast} event.
     */
    function _castVote(
        uint256 proposalId,
        address account,
        uint8 support,
        string memory reason,
        bytes memory params
    ) internal virtual returns (uint256) {
        _validateStateBitmap(proposalId, _encodeStateBitmap(ProposalState.Active));

        uint256 totalWeight = _getVotes(account, proposalSnapshot(proposalId), params);
        uint256 votedWeight = _countVote(proposalId, account, support, totalWeight, params);

        if (params.length == 0) {
            emit VoteCast(account, proposalId, support, votedWeight, reason);
        } else {
            emit VoteCastWithParams(account, proposalId, support, votedWeight, reason, params);
        }

        _tallyUpdated(proposalId);

        return votedWeight;
    }

    /**
     * @dev Relays a transaction or function call to an arbitrary target. In cases where the governance executor
     * is some contract other than the governor itself, like when using a timelock, this function can be invoked
     * in a governance proposal to recover tokens or Ether that was sent to the governor contract by mistake.
     * Note that if the executor is simply the governor itself, use of `relay` is redundant.
     */
    function relay(address target, uint256 value, bytes calldata data) external payable virtual onlyGovernance {
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        Address.verifyCallResult(success, returndata);
    }

    /**
     * @dev Address through which the governor executes action. Will be overloaded by module that execute actions
     * through another contract such as a timelock.
     */
    function _executor() internal view virtual returns (address) {
        return address(this);
    }

    /**
     * @dev See {IERC721Receiver-onERC721Received}.
     * Receiving tokens is disabled if the governance executor is other than the governor itself (eg. when using with a timelock).
     */
    function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) {
        if (_executor() != address(this)) {
            revert GovernorDisabledDeposit();
        }
        return this.onERC721Received.selector;
    }

    /**
     * @dev See {IERC1155Receiver-onERC1155Received}.
     * Receiving tokens is disabled if the governance executor is other than the governor itself (eg. when using with a timelock).
     */
    function onERC1155Received(address, address, uint256, uint256, bytes memory) public virtual returns (bytes4) {
        if (_executor() != address(this)) {
            revert GovernorDisabledDeposit();
        }
        return this.onERC1155Received.selector;
    }

    /**
     * @dev See {IERC1155Receiver-onERC1155BatchReceived}.
     * Receiving tokens is disabled if the governance executor is other than the governor itself (eg. when using with a timelock).
     */
    function onERC1155BatchReceived(
        address,
        address,
        uint256[] memory,
        uint256[] memory,
        bytes memory
    ) public virtual returns (bytes4) {
        if (_executor() != address(this)) {
            revert GovernorDisabledDeposit();
        }
        return this.onERC1155BatchReceived.selector;
    }

    /**
     * @dev Encodes a `ProposalState` into a `bytes32` representation where each bit enabled corresponds to
     * the underlying position in the `ProposalState` enum. For example:
     *
     * 0x000...10000
     *   ^^^^^^------ ...
     *         ^----- Succeeded
     *          ^---- Defeated
     *           ^--- Canceled
     *            ^-- Active
     *             ^- Pending
     */
    function _encodeStateBitmap(ProposalState proposalState) internal pure returns (bytes32) {
        return bytes32(1 << uint8(proposalState));
    }

    /**
     * @dev Check that the current state of a proposal matches the requirements described by the `allowedStates` bitmap.
     * This bitmap should be built using `_encodeStateBitmap`.
     *
     * If requirements are not met, reverts with a {GovernorUnexpectedProposalState} error.
     */
    function _validateStateBitmap(uint256 proposalId, bytes32 allowedStates) internal view returns (ProposalState) {
        ProposalState currentState = state(proposalId);
        if (_encodeStateBitmap(currentState) & allowedStates == bytes32(0)) {
            revert GovernorUnexpectedProposalState(proposalId, currentState, allowedStates);
        }
        return currentState;
    }

    /*
     * @dev Check if the proposer is authorized to submit a proposal with the given description.
     *
     * If the proposal description ends with `#proposer=0x???`, where `0x???` is an address written as a hex string
     * (case insensitive), then the submission of this proposal will only be authorized to said address.
     *
     * This is used for frontrunning protection. By adding this pattern at the end of their proposal, one can ensure
     * that no other address can submit the same proposal. An attacker would have to either remove or change that part,
     * which would result in a different proposal id.
     *
     * If the description does not match this pattern, it is unrestricted and anyone can submit it. This includes:
     * - If the `0x???` part is not a valid hex string.
     * - If the `0x???` part is a valid hex string, but does not contain exactly 40 hex digits.
     * - If it ends with the expected suffix followed by newlines or other whitespace.
     * - If it ends with some other similar suffix, e.g. `#other=abc`.
     * - If it does not end with any such suffix.
     */
    function _isValidDescriptionForProposer(
        address proposer,
        string memory description
    ) internal view virtual returns (bool) {
        unchecked {
            uint256 length = bytes(description).length;

            // Length is too short to contain a valid proposer suffix
            if (length < 52) {
                return true;
            }

            // Extract what would be the `#proposer=` marker beginning the suffix
            bytes10 marker = bytes10(_unsafeReadBytesOffset(bytes(description), length - 52));

            // If the marker is not found, there is no proposer suffix to check
            if (marker != bytes10("#proposer=")) {
                return true;
            }

            // Check that the last 42 characters (after the marker) are a properly formatted address.
            (bool success, address recovered) = Strings.tryParseAddress(description, length - 42, length);
            return !success || recovered == proposer;
        }
    }

    /**
     * @inheritdoc IERC6372
     */
    function clock() public view virtual returns (uint48);

    /**
     * @inheritdoc IERC6372
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() public view virtual returns (string memory);

    /**
     * @inheritdoc IGovernor
     */
    function votingDelay() public view virtual returns (uint256);

    /**
     * @inheritdoc IGovernor
     */
    function votingPeriod() public view virtual returns (uint256);

    /**
     * @inheritdoc IGovernor
     */
    function quorum(uint256 timepoint) public view virtual returns (uint256);

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (governance/extensions/GovernorCountingSimple.sol)

pragma solidity ^0.8.20;

import {Governor} from "../Governor.sol";

/**
 * @dev Extension of {Governor} for simple, 3 options, vote counting.
 */
abstract contract GovernorCountingSimple is Governor {
    /**
     * @dev Supported vote types. Matches Governor Bravo ordering.
     */
    enum VoteType {
        Against,
        For,
        Abstain
    }

    struct ProposalVote {
        uint256 againstVotes;
        uint256 forVotes;
        uint256 abstainVotes;
        mapping(address voter => bool) hasVoted;
    }

    mapping(uint256 proposalId => ProposalVote) private _proposalVotes;

    /**
     * @dev See {IGovernor-COUNTING_MODE}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function COUNTING_MODE() public pure virtual override returns (string memory) {
        return "support=bravo&quorum=for,abstain";
    }

    /**
     * @dev See {IGovernor-hasVoted}.
     */
    function hasVoted(uint256 proposalId, address account) public view virtual override returns (bool) {
        return _proposalVotes[proposalId].hasVoted[account];
    }

    /**
     * @dev Accessor to the internal vote counts.
     */
    function proposalVotes(
        uint256 proposalId
    ) public view virtual returns (uint256 againstVotes, uint256 forVotes, uint256 abstainVotes) {
        ProposalVote storage proposalVote = _proposalVotes[proposalId];
        return (proposalVote.againstVotes, proposalVote.forVotes, proposalVote.abstainVotes);
    }

    /**
     * @dev See {Governor-_quorumReached}.
     */
    function _quorumReached(uint256 proposalId) internal view virtual override returns (bool) {
        ProposalVote storage proposalVote = _proposalVotes[proposalId];

        return quorum(proposalSnapshot(proposalId)) <= proposalVote.forVotes + proposalVote.abstainVotes;
    }

    /**
     * @dev See {Governor-_voteSucceeded}. In this module, the forVotes must be strictly over the againstVotes.
     */
    function _voteSucceeded(uint256 proposalId) internal view virtual override returns (bool) {
        ProposalVote storage proposalVote = _proposalVotes[proposalId];

        return proposalVote.forVotes > proposalVote.againstVotes;
    }

    /**
     * @dev See {Governor-_countVote}. In this module, the support follows the `VoteType` enum (from Governor Bravo).
     */
    function _countVote(
        uint256 proposalId,
        address account,
        uint8 support,
        uint256 totalWeight,
        bytes memory // params
    ) internal virtual override returns (uint256) {
        ProposalVote storage proposalVote = _proposalVotes[proposalId];

        if (proposalVote.hasVoted[account]) {
            revert GovernorAlreadyCastVote(account);
        }
        proposalVote.hasVoted[account] = true;

        if (support == uint8(VoteType.Against)) {
            proposalVote.againstVotes += totalWeight;
        } else if (support == uint8(VoteType.For)) {
            proposalVote.forVotes += totalWeight;
        } else if (support == uint8(VoteType.Abstain)) {
            proposalVote.abstainVotes += totalWeight;
        } else {
            revert GovernorInvalidVoteType();
        }

        return totalWeight;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/extensions/GovernorSettings.sol)

pragma solidity ^0.8.20;

import {Governor} from "../Governor.sol";

/**
 * @dev Extension of {Governor} for settings updatable through governance.
 */
abstract contract GovernorSettings is Governor {
    // amount of token
    uint256 private _proposalThreshold;
    // timepoint: limited to uint48 in core (same as clock() type)
    uint48 private _votingDelay;
    // duration: limited to uint32 in core
    uint32 private _votingPeriod;

    event VotingDelaySet(uint256 oldVotingDelay, uint256 newVotingDelay);
    event VotingPeriodSet(uint256 oldVotingPeriod, uint256 newVotingPeriod);
    event ProposalThresholdSet(uint256 oldProposalThreshold, uint256 newProposalThreshold);

    /**
     * @dev Initialize the governance parameters.
     */
    constructor(uint48 initialVotingDelay, uint32 initialVotingPeriod, uint256 initialProposalThreshold) {
        _setVotingDelay(initialVotingDelay);
        _setVotingPeriod(initialVotingPeriod);
        _setProposalThreshold(initialProposalThreshold);
    }

    /**
     * @dev See {IGovernor-votingDelay}.
     */
    function votingDelay() public view virtual override returns (uint256) {
        return _votingDelay;
    }

    /**
     * @dev See {IGovernor-votingPeriod}.
     */
    function votingPeriod() public view virtual override returns (uint256) {
        return _votingPeriod;
    }

    /**
     * @dev See {Governor-proposalThreshold}.
     */
    function proposalThreshold() public view virtual override returns (uint256) {
        return _proposalThreshold;
    }

    /**
     * @dev Update the voting delay. This operation can only be performed through a governance proposal.
     *
     * Emits a {VotingDelaySet} event.
     */
    function setVotingDelay(uint48 newVotingDelay) public virtual onlyGovernance {
        _setVotingDelay(newVotingDelay);
    }

    /**
     * @dev Update the voting period. This operation can only be performed through a governance proposal.
     *
     * Emits a {VotingPeriodSet} event.
     */
    function setVotingPeriod(uint32 newVotingPeriod) public virtual onlyGovernance {
        _setVotingPeriod(newVotingPeriod);
    }

    /**
     * @dev Update the proposal threshold. This operation can only be performed through a governance proposal.
     *
     * Emits a {ProposalThresholdSet} event.
     */
    function setProposalThreshold(uint256 newProposalThreshold) public virtual onlyGovernance {
        _setProposalThreshold(newProposalThreshold);
    }

    /**
     * @dev Internal setter for the voting delay.
     *
     * Emits a {VotingDelaySet} event.
     */
    function _setVotingDelay(uint48 newVotingDelay) internal virtual {
        emit VotingDelaySet(_votingDelay, newVotingDelay);
        _votingDelay = newVotingDelay;
    }

    /**
     * @dev Internal setter for the voting period.
     *
     * Emits a {VotingPeriodSet} event.
     */
    function _setVotingPeriod(uint32 newVotingPeriod) internal virtual {
        if (newVotingPeriod == 0) {
            revert GovernorInvalidVotingPeriod(0);
        }
        emit VotingPeriodSet(_votingPeriod, newVotingPeriod);
        _votingPeriod = newVotingPeriod;
    }

    /**
     * @dev Internal setter for the proposal threshold.
     *
     * Emits a {ProposalThresholdSet} event.
     */
    function _setProposalThreshold(uint256 newProposalThreshold) internal virtual {
        emit ProposalThresholdSet(_proposalThreshold, newProposalThreshold);
        _proposalThreshold = newProposalThreshold;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (governance/extensions/GovernorVotes.sol)

pragma solidity ^0.8.20;

import {Governor} from "../Governor.sol";
import {IVotes} from "../utils/IVotes.sol";
import {IERC5805} from "../../interfaces/IERC5805.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {Time} from "../../utils/types/Time.sol";

/**
 * @dev Extension of {Governor} for voting weight extraction from an {ERC20Votes} token, or since v4.5 an {ERC721Votes}
 * token.
 */
abstract contract GovernorVotes is Governor {
    IERC5805 private immutable _token;

    constructor(IVotes tokenAddress) {
        _token = IERC5805(address(tokenAddress));
    }

    /**
     * @dev The token that voting power is sourced from.
     */
    function token() public view virtual returns (IERC5805) {
        return _token;
    }

    /**
     * @dev Clock (as specified in ERC-6372) is set to match the token's clock. Fallback to block numbers if the token
     * does not implement ERC-6372.
     */
    function clock() public view virtual override returns (uint48) {
        try token().clock() returns (uint48 timepoint) {
            return timepoint;
        } catch {
            return Time.blockNumber();
        }
    }

    /**
     * @dev Machine-readable description of the clock as specified in ERC-6372.
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() public view virtual override returns (string memory) {
        try token().CLOCK_MODE() returns (string memory clockmode) {
            return clockmode;
        } catch {
            return "mode=blocknumber&from=default";
        }
    }

    /**
     * Read the voting weight from the token's built in snapshot mechanism (see {Governor-_getVotes}).
     */
    function _getVotes(
        address account,
        uint256 timepoint,
        bytes memory /*params*/
    ) internal view virtual override returns (uint256) {
        return token().getPastVotes(account, timepoint);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/extensions/GovernorVotesQuorumFraction.sol)

pragma solidity ^0.8.20;

import {GovernorVotes} from "./GovernorVotes.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {Checkpoints} from "../../utils/structs/Checkpoints.sol";

/**
 * @dev Extension of {Governor} for voting weight extraction from an {ERC20Votes} token and a quorum expressed as a
 * fraction of the total supply.
 */
abstract contract GovernorVotesQuorumFraction is GovernorVotes {
    using Checkpoints for Checkpoints.Trace208;

    Checkpoints.Trace208 private _quorumNumeratorHistory;

    event QuorumNumeratorUpdated(uint256 oldQuorumNumerator, uint256 newQuorumNumerator);

    /**
     * @dev The quorum set is not a valid fraction.
     */
    error GovernorInvalidQuorumFraction(uint256 quorumNumerator, uint256 quorumDenominator);

    /**
     * @dev Initialize quorum as a fraction of the token's total supply.
     *
     * The fraction is specified as `numerator / denominator`. By default the denominator is 100, so quorum is
     * specified as a percent: a numerator of 10 corresponds to quorum being 10% of total supply. The denominator can be
     * customized by overriding {quorumDenominator}.
     */
    constructor(uint256 quorumNumeratorValue) {
        _updateQuorumNumerator(quorumNumeratorValue);
    }

    /**
     * @dev Returns the current quorum numerator. See {quorumDenominator}.
     */
    function quorumNumerator() public view virtual returns (uint256) {
        return _quorumNumeratorHistory.latest();
    }

    /**
     * @dev Returns the quorum numerator at a specific timepoint. See {quorumDenominator}.
     */
    function quorumNumerator(uint256 timepoint) public view virtual returns (uint256) {
        uint256 length = _quorumNumeratorHistory._checkpoints.length;

        // Optimistic search, check the latest checkpoint
        Checkpoints.Checkpoint208 storage latest = _quorumNumeratorHistory._checkpoints[length - 1];
        uint48 latestKey = latest._key;
        uint208 latestValue = latest._value;
        if (latestKey <= timepoint) {
            return latestValue;
        }

        // Otherwise, do the binary search
        return _quorumNumeratorHistory.upperLookupRecent(SafeCast.toUint48(timepoint));
    }

    /**
     * @dev Returns the quorum denominator. Defaults to 100, but may be overridden.
     */
    function quorumDenominator() public view virtual returns (uint256) {
        return 100;
    }

    /**
     * @dev Returns the quorum for a timepoint, in terms of number of votes: `supply * numerator / denominator`.
     */
    function quorum(uint256 timepoint) public view virtual override returns (uint256) {
        return (token().getPastTotalSupply(timepoint) * quorumNumerator(timepoint)) / quorumDenominator();
    }

    /**
     * @dev Changes the quorum numerator.
     *
     * Emits a {QuorumNumeratorUpdated} event.
     *
     * Requirements:
     *
     * - Must be called through a governance proposal.
     * - New numerator must be smaller or equal to the denominator.
     */
    function updateQuorumNumerator(uint256 newQuorumNumerator) external virtual onlyGovernance {
        _updateQuorumNumerator(newQuorumNumerator);
    }

    /**
     * @dev Changes the quorum numerator.
     *
     * Emits a {QuorumNumeratorUpdated} event.
     *
     * Requirements:
     *
     * - New numerator must be smaller or equal to the denominator.
     */
    function _updateQuorumNumerator(uint256 newQuorumNumerator) internal virtual {
        uint256 denominator = quorumDenominator();
        if (newQuorumNumerator > denominator) {
            revert GovernorInvalidQuorumFraction(newQuorumNumerator, denominator);
        }

        uint256 oldQuorumNumerator = quorumNumerator();
        _quorumNumeratorHistory.push(clock(), SafeCast.toUint208(newQuorumNumerator));

        emit QuorumNumeratorUpdated(oldQuorumNumerator, newQuorumNumerator);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.20;

/**
 * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
 */
interface IVotes {
    /**
     * @dev The signature used has expired.
     */
    error VotesExpiredSignature(uint256 expiry);

    /**
     * @dev Emitted when an account changes their delegate.
     */
    event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);

    /**
     * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
     */
    event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);

    /**
     * @dev Returns the current amount of votes that `account` has.
     */
    function getVotes(address account) external view returns (uint256);

    /**
     * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     */
    function getPastVotes(address account, uint256 timepoint) external view returns (uint256);

    /**
     * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
     * Votes that have not been delegated are still part of total supply, even though they would not participate in a
     * vote.
     */
    function getPastTotalSupply(uint256 timepoint) external view returns (uint256);

    /**
     * @dev Returns the delegate that `account` has chosen.
     */
    function delegates(address account) external view returns (address);

    /**
     * @dev Delegates votes from the sender to `delegatee`.
     */
    function delegate(address delegatee) external;

    /**
     * @dev Delegates votes from signer to `delegatee`.
     */
    function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 48 of 77 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 49 of 77 : draft-IERC1822.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (governance/utils/Votes.sol)
pragma solidity ^0.8.20;

import {IERC5805} from "../../interfaces/IERC5805.sol";
import {Context} from "../../utils/Context.sol";
import {Nonces} from "../../utils/Nonces.sol";
import {EIP712} from "../../utils/cryptography/EIP712.sol";
import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {ECDSA} from "../../utils/cryptography/ECDSA.sol";
import {Time} from "../../utils/types/Time.sol";

/**
 * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
 * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
 * "representative" that will pool delegated voting units from different accounts and can then use it to vote in
 * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
 * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
 *
 * This contract is often combined with a token contract such that voting units correspond to token units. For an
 * example, see {ERC721Votes}.
 *
 * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
 * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
 * cost of this history tracking optional.
 *
 * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
 * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
 * previous example, it would be included in {ERC721-_update}).
 */
abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
    using Checkpoints for Checkpoints.Trace208;

    bytes32 private constant DELEGATION_TYPEHASH =
        keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");

    mapping(address account => address) private _delegatee;

    mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;

    Checkpoints.Trace208 private _totalCheckpoints;

    /**
     * @dev The clock was incorrectly modified.
     */
    error ERC6372InconsistentClock();

    /**
     * @dev Lookup to future votes is not available.
     */
    error ERC5805FutureLookup(uint256 timepoint, uint48 clock);

    /**
     * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
     * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
     */
    function clock() public view virtual returns (uint48) {
        return Time.blockNumber();
    }

    /**
     * @dev Machine-readable description of the clock as specified in ERC-6372.
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() public view virtual returns (string memory) {
        // Check that the clock was not modified
        if (clock() != Time.blockNumber()) {
            revert ERC6372InconsistentClock();
        }
        return "mode=blocknumber&from=default";
    }

    /**
     * @dev Validate that a timepoint is in the past, and return it as a uint48.
     */
    function _validateTimepoint(uint256 timepoint) internal view returns (uint48) {
        uint48 currentTimepoint = clock();
        if (timepoint >= currentTimepoint) revert ERC5805FutureLookup(timepoint, currentTimepoint);
        return SafeCast.toUint48(timepoint);
    }

    /**
     * @dev Returns the current amount of votes that `account` has.
     */
    function getVotes(address account) public view virtual returns (uint256) {
        return _delegateCheckpoints[account].latest();
    }

    /**
     * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * Requirements:
     *
     * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
     */
    function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
        return _delegateCheckpoints[account].upperLookupRecent(_validateTimepoint(timepoint));
    }

    /**
     * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
     * Votes that have not been delegated are still part of total supply, even though they would not participate in a
     * vote.
     *
     * Requirements:
     *
     * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
     */
    function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
        return _totalCheckpoints.upperLookupRecent(_validateTimepoint(timepoint));
    }

    /**
     * @dev Returns the current total supply of votes.
     */
    function _getTotalSupply() internal view virtual returns (uint256) {
        return _totalCheckpoints.latest();
    }

    /**
     * @dev Returns the delegate that `account` has chosen.
     */
    function delegates(address account) public view virtual returns (address) {
        return _delegatee[account];
    }

    /**
     * @dev Delegates votes from the sender to `delegatee`.
     */
    function delegate(address delegatee) public virtual {
        address account = _msgSender();
        _delegate(account, delegatee);
    }

    /**
     * @dev Delegates votes from signer to `delegatee`.
     */
    function delegateBySig(
        address delegatee,
        uint256 nonce,
        uint256 expiry,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > expiry) {
            revert VotesExpiredSignature(expiry);
        }
        address signer = ECDSA.recover(
            _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
            v,
            r,
            s
        );
        _useCheckedNonce(signer, nonce);
        _delegate(signer, delegatee);
    }

    /**
     * @dev Delegate all of `account`'s voting units to `delegatee`.
     *
     * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
     */
    function _delegate(address account, address delegatee) internal virtual {
        address oldDelegate = delegates(account);
        _delegatee[account] = delegatee;

        emit DelegateChanged(account, oldDelegate, delegatee);
        _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
    }

    /**
     * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
     * should be zero. Total supply of voting units will be adjusted with mints and burns.
     */
    function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
        if (from == address(0)) {
            _push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
        }
        if (to == address(0)) {
            _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
        }
        _moveDelegateVotes(delegates(from), delegates(to), amount);
    }

    /**
     * @dev Moves delegated votes from one delegate to another.
     */
    function _moveDelegateVotes(address from, address to, uint256 amount) internal virtual {
        if (from != to && amount > 0) {
            if (from != address(0)) {
                (uint256 oldValue, uint256 newValue) = _push(
                    _delegateCheckpoints[from],
                    _subtract,
                    SafeCast.toUint208(amount)
                );
                emit DelegateVotesChanged(from, oldValue, newValue);
            }
            if (to != address(0)) {
                (uint256 oldValue, uint256 newValue) = _push(
                    _delegateCheckpoints[to],
                    _add,
                    SafeCast.toUint208(amount)
                );
                emit DelegateVotesChanged(to, oldValue, newValue);
            }
        }
    }

    /**
     * @dev Get number of checkpoints for `account`.
     */
    function _numCheckpoints(address account) internal view virtual returns (uint32) {
        return SafeCast.toUint32(_delegateCheckpoints[account].length());
    }

    /**
     * @dev Get the `pos`-th checkpoint for `account`.
     */
    function _checkpoints(
        address account,
        uint32 pos
    ) internal view virtual returns (Checkpoints.Checkpoint208 memory) {
        return _delegateCheckpoints[account].at(pos);
    }

    function _push(
        Checkpoints.Trace208 storage store,
        function(uint208, uint208) view returns (uint208) op,
        uint208 delta
    ) private returns (uint208 oldValue, uint208 newValue) {
        return store.push(clock(), op(store.latest(), delta));
    }

    function _add(uint208 a, uint208 b) private pure returns (uint208) {
        return a + b;
    }

    function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
        return a - b;
    }

    /**
     * @dev Must return the voting units held by an account.
     */
    function _getVotingUnits(address) internal view virtual returns (uint256);
}

File 55 of 77 : Checkpoints.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by block number. See {Votes} as an example.
 *
 * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
 * checkpoint for the current transaction block using the {push} function.
 */
library Checkpoints {
    /**
     * @dev A value was attempted to be inserted on a past checkpoint.
     */
    error CheckpointUnorderedInsertion();

    struct Trace224 {
        Checkpoint224[] _checkpoints;
    }

    struct Checkpoint224 {
        uint32 _key;
        uint224 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
     * library.
     */
    function push(
        Trace224 storage self,
        uint32 key,
        uint224 value
    ) internal returns (uint224 oldValue, uint224 newValue) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace224 storage self) internal view returns (uint224) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint224 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace224 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(
        Checkpoint224[] storage self,
        uint32 key,
        uint224 value
    ) private returns (uint224 oldValue, uint224 newValue) {
        uint256 pos = self.length;

        if (pos > 0) {
            Checkpoint224 storage last = _unsafeAccess(self, pos - 1);
            uint32 lastKey = last._key;
            uint224 lastValue = last._value;

            // Checkpoint keys must be non-decreasing.
            if (lastKey > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (lastKey == key) {
                last._value = value;
            } else {
                self.push(Checkpoint224({_key: key, _value: value}));
            }
            return (lastValue, value);
        } else {
            self.push(Checkpoint224({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint224[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint224 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace208 {
        Checkpoint208[] _checkpoints;
    }

    struct Checkpoint208 {
        uint48 _key;
        uint208 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
     * library.
     */
    function push(
        Trace208 storage self,
        uint48 key,
        uint208 value
    ) internal returns (uint208 oldValue, uint208 newValue) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace208 storage self) internal view returns (uint208) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint208 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace208 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(
        Checkpoint208[] storage self,
        uint48 key,
        uint208 value
    ) private returns (uint208 oldValue, uint208 newValue) {
        uint256 pos = self.length;

        if (pos > 0) {
            Checkpoint208 storage last = _unsafeAccess(self, pos - 1);
            uint48 lastKey = last._key;
            uint208 lastValue = last._value;

            // Checkpoint keys must be non-decreasing.
            if (lastKey > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (lastKey == key) {
                last._value = value;
            } else {
                self.push(Checkpoint208({_key: key, _value: value}));
            }
            return (lastValue, value);
        } else {
            self.push(Checkpoint208({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint208[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint208 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace160 {
        Checkpoint160[] _checkpoints;
    }

    struct Checkpoint160 {
        uint96 _key;
        uint160 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
     * library.
     */
    function push(
        Trace160 storage self,
        uint96 key,
        uint160 value
    ) internal returns (uint160 oldValue, uint160 newValue) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace160 storage self) internal view returns (uint160) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint160 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace160 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(
        Checkpoint160[] storage self,
        uint96 key,
        uint160 value
    ) private returns (uint160 oldValue, uint160 newValue) {
        uint256 pos = self.length;

        if (pos > 0) {
            Checkpoint160 storage last = _unsafeAccess(self, pos - 1);
            uint96 lastKey = last._key;
            uint160 lastValue = last._value;

            // Checkpoint keys must be non-decreasing.
            if (lastKey > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (lastKey == key) {
                last._value = value;
            } else {
                self.push(Checkpoint160({_key: key, _value: value}));
            }
            return (lastValue, value);
        } else {
            self.push(Checkpoint160({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint160[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint160 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {UpgradeableBeacon} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

File 57 of 77 : IERC1967.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)

pragma solidity ^0.8.20;

/**
 * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
 */
interface IERC1967 {
    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Emitted when the beacon is changed.
     */
    event BeaconUpgraded(address indexed beacon);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, bytes memory returndata) = recipient.call{value: amount}("");
        if (!success) {
            _revert(returndata);
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (governance/IGovernor.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../interfaces/IERC165.sol";
import {IERC6372} from "../interfaces/IERC6372.sol";

/**
 * @dev Interface of the {Governor} core.
 *
 * NOTE: Event parameters lack the `indexed` keyword for compatibility with GovernorBravo events.
 * Making event parameters `indexed` affects how events are decoded, potentially breaking existing indexers.
 */
interface IGovernor is IERC165, IERC6372 {
    enum ProposalState {
        Pending,
        Active,
        Canceled,
        Defeated,
        Succeeded,
        Queued,
        Expired,
        Executed
    }

    /**
     * @dev Empty proposal or a mismatch between the parameters length for a proposal call.
     */
    error GovernorInvalidProposalLength(uint256 targets, uint256 calldatas, uint256 values);

    /**
     * @dev The vote was already cast.
     */
    error GovernorAlreadyCastVote(address voter);

    /**
     * @dev Token deposits are disabled in this contract.
     */
    error GovernorDisabledDeposit();

    /**
     * @dev The `account` is not a proposer.
     */
    error GovernorOnlyProposer(address account);

    /**
     * @dev The `account` is not the governance executor.
     */
    error GovernorOnlyExecutor(address account);

    /**
     * @dev The `proposalId` doesn't exist.
     */
    error GovernorNonexistentProposal(uint256 proposalId);

    /**
     * @dev The current state of a proposal is not the required for performing an operation.
     * The `expectedStates` is a bitmap with the bits enabled for each ProposalState enum position
     * counting from right to left.
     *
     * NOTE: If `expectedState` is `bytes32(0)`, the proposal is expected to not be in any state (i.e. not exist).
     * This is the case when a proposal that is expected to be unset is already initiated (the proposal is duplicated).
     *
     * See {Governor-_encodeStateBitmap}.
     */
    error GovernorUnexpectedProposalState(uint256 proposalId, ProposalState current, bytes32 expectedStates);

    /**
     * @dev The voting period set is not a valid period.
     */
    error GovernorInvalidVotingPeriod(uint256 votingPeriod);

    /**
     * @dev The `proposer` does not have the required votes to create a proposal.
     */
    error GovernorInsufficientProposerVotes(address proposer, uint256 votes, uint256 threshold);

    /**
     * @dev The `proposer` is not allowed to create a proposal.
     */
    error GovernorRestrictedProposer(address proposer);

    /**
     * @dev The vote type used is not valid for the corresponding counting module.
     */
    error GovernorInvalidVoteType();

    /**
     * @dev The provided params buffer is not supported by the counting module.
     */
    error GovernorInvalidVoteParams();

    /**
     * @dev Queue operation is not implemented for this governor. Execute should be called directly.
     */
    error GovernorQueueNotImplemented();

    /**
     * @dev The proposal hasn't been queued yet.
     */
    error GovernorNotQueuedProposal(uint256 proposalId);

    /**
     * @dev The proposal has already been queued.
     */
    error GovernorAlreadyQueuedProposal(uint256 proposalId);

    /**
     * @dev The provided signature is not valid for the expected `voter`.
     * If the `voter` is a contract, the signature is not valid using {IERC1271-isValidSignature}.
     */
    error GovernorInvalidSignature(address voter);

    /**
     * @dev Emitted when a proposal is created.
     */
    event ProposalCreated(
        uint256 proposalId,
        address proposer,
        address[] targets,
        uint256[] values,
        string[] signatures,
        bytes[] calldatas,
        uint256 voteStart,
        uint256 voteEnd,
        string description
    );

    /**
     * @dev Emitted when a proposal is queued.
     */
    event ProposalQueued(uint256 proposalId, uint256 etaSeconds);

    /**
     * @dev Emitted when a proposal is executed.
     */
    event ProposalExecuted(uint256 proposalId);

    /**
     * @dev Emitted when a proposal is canceled.
     */
    event ProposalCanceled(uint256 proposalId);

    /**
     * @dev Emitted when a vote is cast without params.
     *
     * Note: `support` values should be seen as buckets. Their interpretation depends on the voting module used.
     */
    event VoteCast(address indexed voter, uint256 proposalId, uint8 support, uint256 weight, string reason);

    /**
     * @dev Emitted when a vote is cast with params.
     *
     * Note: `support` values should be seen as buckets. Their interpretation depends on the voting module used.
     * `params` are additional encoded parameters. Their interpretation  also depends on the voting module used.
     */
    event VoteCastWithParams(
        address indexed voter,
        uint256 proposalId,
        uint8 support,
        uint256 weight,
        string reason,
        bytes params
    );

    /**
     * @notice module:core
     * @dev Name of the governor instance (used in building the EIP-712 domain separator).
     */
    function name() external view returns (string memory);

    /**
     * @notice module:core
     * @dev Version of the governor instance (used in building the EIP-712 domain separator). Default: "1"
     */
    function version() external view returns (string memory);

    /**
     * @notice module:voting
     * @dev A description of the possible `support` values for {castVote} and the way these votes are counted, meant to
     * be consumed by UIs to show correct vote options and interpret the results. The string is a URL-encoded sequence of
     * key-value pairs that each describe one aspect, for example `support=bravo&quorum=for,abstain`.
     *
     * There are 2 standard keys: `support` and `quorum`.
     *
     * - `support=bravo` refers to the vote options 0 = Against, 1 = For, 2 = Abstain, as in `GovernorBravo`.
     * - `quorum=bravo` means that only For votes are counted towards quorum.
     * - `quorum=for,abstain` means that both For and Abstain votes are counted towards quorum.
     *
     * If a counting module makes use of encoded `params`, it should  include this under a `params` key with a unique
     * name that describes the behavior. For example:
     *
     * - `params=fractional` might refer to a scheme where votes are divided fractionally between for/against/abstain.
     * - `params=erc721` might refer to a scheme where specific NFTs are delegated to vote.
     *
     * NOTE: The string can be decoded by the standard
     * https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams[`URLSearchParams`]
     * JavaScript class.
     */
    // solhint-disable-next-line func-name-mixedcase
    function COUNTING_MODE() external view returns (string memory);

    /**
     * @notice module:core
     * @dev Hashing function used to (re)build the proposal id from the proposal details..
     */
    function hashProposal(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) external pure returns (uint256);

    /**
     * @notice module:core
     * @dev Current state of a proposal, following Compound's convention
     */
    function state(uint256 proposalId) external view returns (ProposalState);

    /**
     * @notice module:core
     * @dev The number of votes required in order for a voter to become a proposer.
     */
    function proposalThreshold() external view returns (uint256);

    /**
     * @notice module:core
     * @dev Timepoint used to retrieve user's votes and quorum. If using block number (as per Compound's Comp), the
     * snapshot is performed at the end of this block. Hence, voting for this proposal starts at the beginning of the
     * following block.
     */
    function proposalSnapshot(uint256 proposalId) external view returns (uint256);

    /**
     * @notice module:core
     * @dev Timepoint at which votes close. If using block number, votes close at the end of this block, so it is
     * possible to cast a vote during this block.
     */
    function proposalDeadline(uint256 proposalId) external view returns (uint256);

    /**
     * @notice module:core
     * @dev The account that created a proposal.
     */
    function proposalProposer(uint256 proposalId) external view returns (address);

    /**
     * @notice module:core
     * @dev The time when a queued proposal becomes executable ("ETA"). Unlike {proposalSnapshot} and
     * {proposalDeadline}, this doesn't use the governor clock, and instead relies on the executor's clock which may be
     * different. In most cases this will be a timestamp.
     */
    function proposalEta(uint256 proposalId) external view returns (uint256);

    /**
     * @notice module:core
     * @dev Whether a proposal needs to be queued before execution.
     */
    function proposalNeedsQueuing(uint256 proposalId) external view returns (bool);

    /**
     * @notice module:user-config
     * @dev Delay, between the proposal is created and the vote starts. The unit this duration is expressed in depends
     * on the clock (see ERC-6372) this contract uses.
     *
     * This can be increased to leave time for users to buy voting power, or delegate it, before the voting of a
     * proposal starts.
     *
     * NOTE: While this interface returns a uint256, timepoints are stored as uint48 following the ERC-6372 clock type.
     * Consequently this value must fit in a uint48 (when added to the current clock). See {IERC6372-clock}.
     */
    function votingDelay() external view returns (uint256);

    /**
     * @notice module:user-config
     * @dev Delay between the vote start and vote end. The unit this duration is expressed in depends on the clock
     * (see ERC-6372) this contract uses.
     *
     * NOTE: The {votingDelay} can delay the start of the vote. This must be considered when setting the voting
     * duration compared to the voting delay.
     *
     * NOTE: This value is stored when the proposal is submitted so that possible changes to the value do not affect
     * proposals that have already been submitted. The type used to save it is a uint32. Consequently, while this
     * interface returns a uint256, the value it returns should fit in a uint32.
     */
    function votingPeriod() external view returns (uint256);

    /**
     * @notice module:user-config
     * @dev Minimum number of cast voted required for a proposal to be successful.
     *
     * NOTE: The `timepoint` parameter corresponds to the snapshot used for counting vote. This allows to scale the
     * quorum depending on values such as the totalSupply of a token at this timepoint (see {ERC20Votes}).
     */
    function quorum(uint256 timepoint) external view returns (uint256);

    /**
     * @notice module:reputation
     * @dev Voting power of an `account` at a specific `timepoint`.
     *
     * Note: this can be implemented in a number of ways, for example by reading the delegated balance from one (or
     * multiple), {ERC20Votes} tokens.
     */
    function getVotes(address account, uint256 timepoint) external view returns (uint256);

    /**
     * @notice module:reputation
     * @dev Voting power of an `account` at a specific `timepoint` given additional encoded parameters.
     */
    function getVotesWithParams(
        address account,
        uint256 timepoint,
        bytes memory params
    ) external view returns (uint256);

    /**
     * @notice module:voting
     * @dev Returns whether `account` has cast a vote on `proposalId`.
     */
    function hasVoted(uint256 proposalId, address account) external view returns (bool);

    /**
     * @dev Create a new proposal. Vote start after a delay specified by {IGovernor-votingDelay} and lasts for a
     * duration specified by {IGovernor-votingPeriod}.
     *
     * Emits a {ProposalCreated} event.
     *
     * NOTE: The state of the Governor and `targets` may change between the proposal creation and its execution.
     * This may be the result of third party actions on the targeted contracts, or other governor proposals.
     * For example, the balance of this contract could be updated or its access control permissions may be modified,
     * possibly compromising the proposal's ability to execute successfully (e.g. the governor doesn't have enough
     * value to cover a proposal with multiple transfers).
     */
    function propose(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        string memory description
    ) external returns (uint256 proposalId);

    /**
     * @dev Queue a proposal. Some governors require this step to be performed before execution can happen. If queuing
     * is not necessary, this function may revert.
     * Queuing a proposal requires the quorum to be reached, the vote to be successful, and the deadline to be reached.
     *
     * Emits a {ProposalQueued} event.
     */
    function queue(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) external returns (uint256 proposalId);

    /**
     * @dev Execute a successful proposal. This requires the quorum to be reached, the vote to be successful, and the
     * deadline to be reached. Depending on the governor it might also be required that the proposal was queued and
     * that some delay passed.
     *
     * Emits a {ProposalExecuted} event.
     *
     * NOTE: Some modules can modify the requirements for execution, for example by adding an additional timelock.
     */
    function execute(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) external payable returns (uint256 proposalId);

    /**
     * @dev Cancel a proposal. A proposal is cancellable by the proposer, but only while it is Pending state, i.e.
     * before the vote starts.
     *
     * Emits a {ProposalCanceled} event.
     */
    function cancel(
        address[] memory targets,
        uint256[] memory values,
        bytes[] memory calldatas,
        bytes32 descriptionHash
    ) external returns (uint256 proposalId);

    /**
     * @dev Cast a vote
     *
     * Emits a {VoteCast} event.
     */
    function castVote(uint256 proposalId, uint8 support) external returns (uint256 balance);

    /**
     * @dev Cast a vote with a reason
     *
     * Emits a {VoteCast} event.
     */
    function castVoteWithReason(
        uint256 proposalId,
        uint8 support,
        string calldata reason
    ) external returns (uint256 balance);

    /**
     * @dev Cast a vote with a reason and additional encoded parameters
     *
     * Emits a {VoteCast} or {VoteCastWithParams} event depending on the length of params.
     */
    function castVoteWithReasonAndParams(
        uint256 proposalId,
        uint8 support,
        string calldata reason,
        bytes memory params
    ) external returns (uint256 balance);

    /**
     * @dev Cast a vote using the voter's signature, including ERC-1271 signature support.
     *
     * Emits a {VoteCast} event.
     */
    function castVoteBySig(
        uint256 proposalId,
        uint8 support,
        address voter,
        bytes memory signature
    ) external returns (uint256 balance);

    /**
     * @dev Cast a vote with a reason and additional encoded parameters using the voter's signature,
     * including ERC-1271 signature support.
     *
     * Emits a {VoteCast} or {VoteCastWithParams} event depending on the length of params.
     */
    function castVoteWithReasonAndParamsBySig(
        uint256 proposalId,
        uint8 support,
        address voter,
        string calldata reason,
        bytes memory params,
        bytes memory signature
    ) external returns (uint256 balance);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

File 62 of 77 : Errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

File 63 of 77 : IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC-721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC-721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC-1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC-1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.20;

import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC-1271 signatures from smart contract wallets like
 * Argent and Safe Wallet (previously Gnosis Safe).
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC-1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
        if (signer.code.length == 0) {
            (address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(hash, signature);
            return err == ECDSA.RecoverError.NoError && recovered == signer;
        } else {
            return isValidERC1271SignatureNow(signer, hash, signature);
        }
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC-1271.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/DoubleEndedQueue.sol)
pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";

/**
 * @dev A sequence of items with the ability to efficiently push and pop items (i.e. insert and remove) on both ends of
 * the sequence (called front and back). Among other access patterns, it can be used to implement efficient LIFO and
 * FIFO queues. Storage use is optimized, and all operations are O(1) constant time. This includes {clear}, given that
 * the existing queue contents are left in storage.
 *
 * The struct is called `Bytes32Deque`. Other types can be cast to and from `bytes32`. This data structure can only be
 * used in storage, and not in memory.
 * ```solidity
 * DoubleEndedQueue.Bytes32Deque queue;
 * ```
 */
library DoubleEndedQueue {
    /**
     * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
     *
     * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
     * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
     * lead to unexpected behavior.
     *
     * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
     */
    struct Bytes32Deque {
        uint128 _begin;
        uint128 _end;
        mapping(uint128 index => bytes32) _data;
    }

    /**
     * @dev Inserts an item at the end of the queue.
     *
     * Reverts with {Panic-RESOURCE_ERROR} if the queue is full.
     */
    function pushBack(Bytes32Deque storage deque, bytes32 value) internal {
        unchecked {
            uint128 backIndex = deque._end;
            if (backIndex + 1 == deque._begin) Panic.panic(Panic.RESOURCE_ERROR);
            deque._data[backIndex] = value;
            deque._end = backIndex + 1;
        }
    }

    /**
     * @dev Removes the item at the end of the queue and returns it.
     *
     * Reverts with {Panic-EMPTY_ARRAY_POP} if the queue is empty.
     */
    function popBack(Bytes32Deque storage deque) internal returns (bytes32 value) {
        unchecked {
            uint128 backIndex = deque._end;
            if (backIndex == deque._begin) Panic.panic(Panic.EMPTY_ARRAY_POP);
            --backIndex;
            value = deque._data[backIndex];
            delete deque._data[backIndex];
            deque._end = backIndex;
        }
    }

    /**
     * @dev Inserts an item at the beginning of the queue.
     *
     * Reverts with {Panic-RESOURCE_ERROR} if the queue is full.
     */
    function pushFront(Bytes32Deque storage deque, bytes32 value) internal {
        unchecked {
            uint128 frontIndex = deque._begin - 1;
            if (frontIndex == deque._end) Panic.panic(Panic.RESOURCE_ERROR);
            deque._data[frontIndex] = value;
            deque._begin = frontIndex;
        }
    }

    /**
     * @dev Removes the item at the beginning of the queue and returns it.
     *
     * Reverts with {Panic-EMPTY_ARRAY_POP} if the queue is empty.
     */
    function popFront(Bytes32Deque storage deque) internal returns (bytes32 value) {
        unchecked {
            uint128 frontIndex = deque._begin;
            if (frontIndex == deque._end) Panic.panic(Panic.EMPTY_ARRAY_POP);
            value = deque._data[frontIndex];
            delete deque._data[frontIndex];
            deque._begin = frontIndex + 1;
        }
    }

    /**
     * @dev Returns the item at the beginning of the queue.
     *
     * Reverts with {Panic-ARRAY_OUT_OF_BOUNDS} if the queue is empty.
     */
    function front(Bytes32Deque storage deque) internal view returns (bytes32 value) {
        if (empty(deque)) Panic.panic(Panic.ARRAY_OUT_OF_BOUNDS);
        return deque._data[deque._begin];
    }

    /**
     * @dev Returns the item at the end of the queue.
     *
     * Reverts with {Panic-ARRAY_OUT_OF_BOUNDS} if the queue is empty.
     */
    function back(Bytes32Deque storage deque) internal view returns (bytes32 value) {
        if (empty(deque)) Panic.panic(Panic.ARRAY_OUT_OF_BOUNDS);
        unchecked {
            return deque._data[deque._end - 1];
        }
    }

    /**
     * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
     * `length(deque) - 1`.
     *
     * Reverts with {Panic-ARRAY_OUT_OF_BOUNDS} if the index is out of bounds.
     */
    function at(Bytes32Deque storage deque, uint256 index) internal view returns (bytes32 value) {
        if (index >= length(deque)) Panic.panic(Panic.ARRAY_OUT_OF_BOUNDS);
        // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
        unchecked {
            return deque._data[deque._begin + uint128(index)];
        }
    }

    /**
     * @dev Resets the queue back to being empty.
     *
     * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
     * out on potential gas refunds.
     */
    function clear(Bytes32Deque storage deque) internal {
        deque._begin = 0;
        deque._end = 0;
    }

    /**
     * @dev Returns the number of items in the queue.
     */
    function length(Bytes32Deque storage deque) internal view returns (uint256) {
        unchecked {
            return uint256(deque._end - deque._begin);
        }
    }

    /**
     * @dev Returns true if the queue is empty.
     */
    function empty(Bytes32Deque storage deque) internal view returns (bool) {
        return deque._end == deque._begin;
    }
}

File 68 of 77 : IERC5805.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)

pragma solidity ^0.8.20;

import {IVotes} from "../governance/utils/IVotes.sol";
import {IERC6372} from "./IERC6372.sol";

interface IERC5805 is IERC6372, IVotes {}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/types/Time.sol)

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";

/**
 * @dev This library provides helpers for manipulating time-related objects.
 *
 * It uses the following types:
 * - `uint48` for timepoints
 * - `uint32` for durations
 *
 * While the library doesn't provide specific types for timepoints and duration, it does provide:
 * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
 * - additional helper functions
 */
library Time {
    using Time for *;

    /**
     * @dev Get the block timestamp as a Timepoint.
     */
    function timestamp() internal view returns (uint48) {
        return SafeCast.toUint48(block.timestamp);
    }

    /**
     * @dev Get the block number as a Timepoint.
     */
    function blockNumber() internal view returns (uint48) {
        return SafeCast.toUint48(block.number);
    }

    // ==================================================== Delay =====================================================
    /**
     * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
     * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
     * This allows updating the delay applied to some operation while keeping some guarantees.
     *
     * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
     * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
     * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
     * still apply for some time.
     *
     *
     * The `Delay` type is 112 bits long, and packs the following:
     *
     * ```
     *   | [uint48]: effect date (timepoint)
     *   |           | [uint32]: value before (duration)
     *   ↓           ↓       ↓ [uint32]: value after (duration)
     * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
     * ```
     *
     * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
     * supported.
     */
    type Delay is uint112;

    /**
     * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
     */
    function toDelay(uint32 duration) internal pure returns (Delay) {
        return Delay.wrap(duration);
    }

    /**
     * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
     * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
     */
    function _getFullAt(
        Delay self,
        uint48 timepoint
    ) private pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        (valueBefore, valueAfter, effect) = self.unpack();
        return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
    }

    /**
     * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
     * effect timepoint is 0, then the pending value should not be considered.
     */
    function getFull(Delay self) internal view returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        return _getFullAt(self, timestamp());
    }

    /**
     * @dev Get the current value.
     */
    function get(Delay self) internal view returns (uint32) {
        (uint32 delay, , ) = self.getFull();
        return delay;
    }

    /**
     * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
     * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
     * new delay becomes effective.
     */
    function withUpdate(
        Delay self,
        uint32 newValue,
        uint32 minSetback
    ) internal view returns (Delay updatedDelay, uint48 effect) {
        uint32 value = self.get();
        uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
        effect = timestamp() + setback;
        return (pack(value, newValue, effect), effect);
    }

    /**
     * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
     */
    function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        uint112 raw = Delay.unwrap(self);

        valueAfter = uint32(raw);
        valueBefore = uint32(raw >> 32);
        effect = uint48(raw >> 64);

        return (valueBefore, valueAfter, effect);
    }

    /**
     * @dev pack the components into a Delay object.
     */
    function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
        return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
    }
}

File 70 of 77 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 73 of 77 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)

pragma solidity ^0.8.20;

interface IERC6372 {
    /**
     * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
     */
    function clock() external view returns (uint48);

    /**
     * @dev Description of the clock
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/sp1-contracts/contracts/lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "sp1-contracts/=lib/sp1-contracts/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 100
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

API
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"auctioneer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"bytes","name":"iproveCode","type":"bytes"},{"internalType":"bytes","name":"governorCode","type":"bytes"}],"name":"deploy","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deployerOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dispenser","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"genesisStateRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxUnstakeRequests","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minDepositAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minStakeAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proposalThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"prove","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"quorumFraction","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stakingImpl","type":"address"},{"internalType":"address","name":"_prove","type":"address"},{"internalType":"uint48","name":"_votingDelay","type":"uint48"},{"internalType":"uint32","name":"_votingPeriod","type":"uint32"},{"internalType":"uint256","name":"_proposalThreshold","type":"uint256"},{"internalType":"uint256","name":"_quorumFraction","type":"uint256"}],"name":"setParams1","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vappImpl","type":"address"},{"internalType":"address","name":"_owner","type":"address"},{"internalType":"address","name":"_auctioneer","type":"address"},{"internalType":"address","name":"_verifier","type":"address"},{"internalType":"uint256","name":"_minDepositAmount","type":"uint256"},{"internalType":"bytes32","name":"_vkey","type":"bytes32"}],"name":"setParams2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_dispenser","type":"address"},{"internalType":"uint256","name":"_minStakeAmount","type":"uint256"},{"internalType":"uint256","name":"_maxUnstakeRequests","type":"uint256"},{"internalType":"uint256","name":"_unstakePeriod","type":"uint256"},{"internalType":"uint256","name":"_slashCancellationPeriod","type":"uint256"},{"internalType":"bytes32","name":"_genesisStateRoot","type":"bytes32"}],"name":"setParams3","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"slashCancellationPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"stakingImpl","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unstakePeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vappImpl","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"verifier","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vkey","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"votingDelay","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"votingPeriod","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"}]

6080604052348015600e575f5ffd5b50601080546001600160a01b03191633179055610e128061002e5f395ff3fe608060405234801561000f575f5ffd5b5060043610610148575f3560e01c8063a7602c7e116100bf578063e09d894d11610079578063e09d894d146102f2578063e4aa64ab14610305578063e76e84ed1461030e578063e886aeea14610321578063f18876841461032a578063f38c1af714610333575f5ffd5b8063a7602c7e146102a9578063b4113cc8146102b2578063b58131b0146102c4578063c69b0eb1146102cd578063c7dfb1d6146102d6578063e06ff5ca146102df575f5ffd5b806345152ae31161011057806345152ae3146102315780635ec2c7bf14610244578063645006ca146102575780637200acaf1461026e5780638da5cb5b14610281578063a169f52e14610294575f5ffd5b806302a251a31461014c57806319cdeff11461017d5780631c8319d2146101c35780632b7ac3f3146101ee5780633932abb114610201575b5f5ffd5b60015461016390600160d01b900463ffffffff1681565b60405163ffffffff90911681526020015b60405180910390f35b61019061018b36600461080b565b61033c565b604080516001600160a01b0395861681529385166020850152918416918301919091529091166060820152608001610174565b6004546101d6906001600160a01b031681565b6040516001600160a01b039091168152602001610174565b6007546101d6906001600160a01b031681565b60015461021a90600160a01b900465ffffffffffff1681565b60405165ffffffffffff9091168152602001610174565b6001546101d6906001600160a01b031681565b6006546101d6906001600160a01b031681565b61026060085481565b604051908152602001610174565b6010546101d6906001600160a01b031681565b6005546101d6906001600160a01b031681565b6102a76102a236600461089f565b610673565b005b610260600c5481565b5f546101d6906001600160a01b031681565b61026060025481565b61026060095481565b61026060035481565b6102a76102ed366004610901565b6106e2565b600a546101d6906001600160a01b031681565b610260600d5481565b6102a761031c366004610947565b610730565b610260600f5481565b610260600b5481565b610260600e5481565b6010545f908190819081906001600160a01b0316331461035a575f5ffd5b5f80546040518b916001600160a01b031690610375906107b9565b6001600160a01b0390911681526040602082018190525f908201526060018190604051809103905ff59050801580156103b0573d5f5f3e3d5ffd5b50600154604080516001600160a01b03928316602082015291831682820152805180830382018152606083019091529192505f919082906103f9908d908d9085906080016109a5565b60405160208183030381529060405290508c8151602083015ff59250823b61041f575f5ffd5b5050600154600254600354604080516001600160a01b0386166020820152600160a01b850465ffffffffffff1691810191909152600160d01b90930463ffffffff166060840152608083019190915260a08201525f90819060c00160405160208183030381529060405290505f8a8a836040516020016104a1939291906109a5565b60405160208183030381529060405290508d8151602083015ff59250823b6104c7575f5ffd5b5050600554600154600654600754600854600954600f546040516001600160a01b03978816602482015295871660448701528887166064870152938616608486015288861660a48601529490911660c484015260e48301526101048201929092526101248101919091525f906060906101440160408051601f198184030181529181526020820180516001600160e01b031663156c32ab60e31b17905260045490519192508f916001600160a01b03909116908390610585906107b9565b6105909291906109c8565b8190604051809103905ff59050801580156105ad573d5f5f3e3d5ffd5b50600554600154600a54600b54600c54600d54600e54604051631cc36f3560e11b81526001600160a01b0397881660048201528b88166024820152878916604482015295871660648701528b8716608487015293861660a486015260c485019290925260e484015261010483015261012482015291935086169150633986de6a90610144015f604051808303815f87803b158015610649575f5ffd5b505af115801561065b573d5f5f3e3d5ffd5b50959f929e50939c50919a5098505050505050505050565b6010546001600160a01b03163314610689575f5ffd5b600480546001600160a01b039788166001600160a01b0319918216179091556005805496881696821696909617909555600680549487169486169490941790935560078054929095169190931617909255600855600955565b6010546001600160a01b031633146106f8575f5ffd5b600a80546001600160a01b0319166001600160a01b039790971696909617909555600b93909355600c91909155600d55600e55600f55565b6010546001600160a01b03163314610746575f5ffd5b5f80546001600160a01b039788166001600160a01b03199091161790556001805463ffffffff909416600160d01b0263ffffffff60d01b1965ffffffffffff909616600160a01b026001600160d01b03199095169690971695909517929092179290921693909317909155600255600355565b6103d080610a0d83390190565b5f5f83601f8401126107d6575f5ffd5b50813567ffffffffffffffff8111156107ed575f5ffd5b602083019150836020828501011115610804575f5ffd5b9250929050565b5f5f5f5f5f6060868803121561081f575f5ffd5b85359450602086013567ffffffffffffffff81111561083c575f5ffd5b610848888289016107c6565b909550935050604086013567ffffffffffffffff811115610867575f5ffd5b610873888289016107c6565b969995985093965092949392505050565b80356001600160a01b038116811461089a575f5ffd5b919050565b5f5f5f5f5f5f60c087890312156108b4575f5ffd5b6108bd87610884565b95506108cb60208801610884565b94506108d960408801610884565b93506108e760608801610884565b9598949750929560808101359460a0909101359350915050565b5f5f5f5f5f5f60c08789031215610916575f5ffd5b61091f87610884565b9860208801359850604088013597606081013597506080810135965060a00135945092505050565b5f5f5f5f5f5f60c0878903121561095c575f5ffd5b61096587610884565b955061097360208801610884565b9450604087013565ffffffffffff8116811461098d575f5ffd5b9350606087013563ffffffff811681146108e7575f5ffd5b828482375f8382015f815283518060208601835e5f910190815295945050505050565b60018060a01b0383168152604060208201525f82518060408401528060208501606085015e5f606082850101526060601f19601f830116840101915050939250505056fe60806040526040516103d03803806103d08339810160408190526100229161023c565b61002c8282610033565b5050610321565b61003c82610091565b6040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a280511561008557610080828261010c565b505050565b61008d61017f565b5050565b806001600160a01b03163b5f036100cb57604051634c9c8ce360e01b81526001600160a01b03821660048201526024015b60405180910390fd5b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc80546001600160a01b0319166001600160a01b0392909216919091179055565b60605f5f846001600160a01b031684604051610128919061030b565b5f60405180830381855af49150503d805f8114610160576040519150601f19603f3d011682016040523d82523d5f602084013e610165565b606091505b5090925090506101768583836101a0565b95945050505050565b341561019e5760405163b398979f60e01b815260040160405180910390fd5b565b6060826101b5576101b0826101ff565b6101f8565b81511580156101cc57506001600160a01b0384163b155b156101f557604051639996b31560e01b81526001600160a01b03851660048201526024016100c2565b50805b9392505050565b80511561020f5780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b634e487b7160e01b5f52604160045260245ffd5b5f5f6040838503121561024d575f5ffd5b82516001600160a01b0381168114610263575f5ffd5b60208401519092506001600160401b0381111561027e575f5ffd5b8301601f8101851361028e575f5ffd5b80516001600160401b038111156102a7576102a7610228565b604051601f8201601f19908116603f011681016001600160401b03811182821017156102d5576102d5610228565b6040528181528282016020018710156102ec575f5ffd5b8160208401602083015e5f602083830101528093505050509250929050565b5f82518060208501845e5f920191825250919050565b60a38061032d5f395ff3fe6080604052600a600c565b005b60186014601a565b6050565b565b5f604b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc546001600160a01b031690565b905090565b365f5f375f5f365f845af43d5f5f3e8080156069573d5ff35b3d5ffdfea2646970667358221220aea4cc825fe42e4ee841f157c96189dbcabb0fd9ce7239b9d4cabcb90261b88364736f6c634300081c0033a264697066735822122027cecd8ac1171958fd89b8f085ceb3568fccca696a4c0e8be6cd6e634bfadacf64736f6c634300081c0033

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610148575f3560e01c8063a7602c7e116100bf578063e09d894d11610079578063e09d894d146102f2578063e4aa64ab14610305578063e76e84ed1461030e578063e886aeea14610321578063f18876841461032a578063f38c1af714610333575f5ffd5b8063a7602c7e146102a9578063b4113cc8146102b2578063b58131b0146102c4578063c69b0eb1146102cd578063c7dfb1d6146102d6578063e06ff5ca146102df575f5ffd5b806345152ae31161011057806345152ae3146102315780635ec2c7bf14610244578063645006ca146102575780637200acaf1461026e5780638da5cb5b14610281578063a169f52e14610294575f5ffd5b806302a251a31461014c57806319cdeff11461017d5780631c8319d2146101c35780632b7ac3f3146101ee5780633932abb114610201575b5f5ffd5b60015461016390600160d01b900463ffffffff1681565b60405163ffffffff90911681526020015b60405180910390f35b61019061018b36600461080b565b61033c565b604080516001600160a01b0395861681529385166020850152918416918301919091529091166060820152608001610174565b6004546101d6906001600160a01b031681565b6040516001600160a01b039091168152602001610174565b6007546101d6906001600160a01b031681565b60015461021a90600160a01b900465ffffffffffff1681565b60405165ffffffffffff9091168152602001610174565b6001546101d6906001600160a01b031681565b6006546101d6906001600160a01b031681565b61026060085481565b604051908152602001610174565b6010546101d6906001600160a01b031681565b6005546101d6906001600160a01b031681565b6102a76102a236600461089f565b610673565b005b610260600c5481565b5f546101d6906001600160a01b031681565b61026060025481565b61026060095481565b61026060035481565b6102a76102ed366004610901565b6106e2565b600a546101d6906001600160a01b031681565b610260600d5481565b6102a761031c366004610947565b610730565b610260600f5481565b610260600b5481565b610260600e5481565b6010545f908190819081906001600160a01b0316331461035a575f5ffd5b5f80546040518b916001600160a01b031690610375906107b9565b6001600160a01b0390911681526040602082018190525f908201526060018190604051809103905ff59050801580156103b0573d5f5f3e3d5ffd5b50600154604080516001600160a01b03928316602082015291831682820152805180830382018152606083019091529192505f919082906103f9908d908d9085906080016109a5565b60405160208183030381529060405290508c8151602083015ff59250823b61041f575f5ffd5b5050600154600254600354604080516001600160a01b0386166020820152600160a01b850465ffffffffffff1691810191909152600160d01b90930463ffffffff166060840152608083019190915260a08201525f90819060c00160405160208183030381529060405290505f8a8a836040516020016104a1939291906109a5565b60405160208183030381529060405290508d8151602083015ff59250823b6104c7575f5ffd5b5050600554600154600654600754600854600954600f546040516001600160a01b03978816602482015295871660448701528887166064870152938616608486015288861660a48601529490911660c484015260e48301526101048201929092526101248101919091525f906060906101440160408051601f198184030181529181526020820180516001600160e01b031663156c32ab60e31b17905260045490519192508f916001600160a01b03909116908390610585906107b9565b6105909291906109c8565b8190604051809103905ff59050801580156105ad573d5f5f3e3d5ffd5b50600554600154600a54600b54600c54600d54600e54604051631cc36f3560e11b81526001600160a01b0397881660048201528b88166024820152878916604482015295871660648701528b8716608487015293861660a486015260c485019290925260e484015261010483015261012482015291935086169150633986de6a90610144015f604051808303815f87803b158015610649575f5ffd5b505af115801561065b573d5f5f3e3d5ffd5b50959f929e50939c50919a5098505050505050505050565b6010546001600160a01b03163314610689575f5ffd5b600480546001600160a01b039788166001600160a01b0319918216179091556005805496881696821696909617909555600680549487169486169490941790935560078054929095169190931617909255600855600955565b6010546001600160a01b031633146106f8575f5ffd5b600a80546001600160a01b0319166001600160a01b039790971696909617909555600b93909355600c91909155600d55600e55600f55565b6010546001600160a01b03163314610746575f5ffd5b5f80546001600160a01b039788166001600160a01b03199091161790556001805463ffffffff909416600160d01b0263ffffffff60d01b1965ffffffffffff909616600160a01b026001600160d01b03199095169690971695909517929092179290921693909317909155600255600355565b6103d080610a0d83390190565b5f5f83601f8401126107d6575f5ffd5b50813567ffffffffffffffff8111156107ed575f5ffd5b602083019150836020828501011115610804575f5ffd5b9250929050565b5f5f5f5f5f6060868803121561081f575f5ffd5b85359450602086013567ffffffffffffffff81111561083c575f5ffd5b610848888289016107c6565b909550935050604086013567ffffffffffffffff811115610867575f5ffd5b610873888289016107c6565b969995985093965092949392505050565b80356001600160a01b038116811461089a575f5ffd5b919050565b5f5f5f5f5f5f60c087890312156108b4575f5ffd5b6108bd87610884565b95506108cb60208801610884565b94506108d960408801610884565b93506108e760608801610884565b9598949750929560808101359460a0909101359350915050565b5f5f5f5f5f5f60c08789031215610916575f5ffd5b61091f87610884565b9860208801359850604088013597606081013597506080810135965060a00135945092505050565b5f5f5f5f5f5f60c0878903121561095c575f5ffd5b61096587610884565b955061097360208801610884565b9450604087013565ffffffffffff8116811461098d575f5ffd5b9350606087013563ffffffff811681146108e7575f5ffd5b828482375f8382015f815283518060208601835e5f910190815295945050505050565b60018060a01b0383168152604060208201525f82518060408401528060208501606085015e5f606082850101526060601f19601f830116840101915050939250505056fe60806040526040516103d03803806103d08339810160408190526100229161023c565b61002c8282610033565b5050610321565b61003c82610091565b6040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b905f90a280511561008557610080828261010c565b505050565b61008d61017f565b5050565b806001600160a01b03163b5f036100cb57604051634c9c8ce360e01b81526001600160a01b03821660048201526024015b60405180910390fd5b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc80546001600160a01b0319166001600160a01b0392909216919091179055565b60605f5f846001600160a01b031684604051610128919061030b565b5f60405180830381855af49150503d805f8114610160576040519150601f19603f3d011682016040523d82523d5f602084013e610165565b606091505b5090925090506101768583836101a0565b95945050505050565b341561019e5760405163b398979f60e01b815260040160405180910390fd5b565b6060826101b5576101b0826101ff565b6101f8565b81511580156101cc57506001600160a01b0384163b155b156101f557604051639996b31560e01b81526001600160a01b03851660048201526024016100c2565b50805b9392505050565b80511561020f5780518082602001fd5b60405163d6bda27560e01b815260040160405180910390fd5b634e487b7160e01b5f52604160045260245ffd5b5f5f6040838503121561024d575f5ffd5b82516001600160a01b0381168114610263575f5ffd5b60208401519092506001600160401b0381111561027e575f5ffd5b8301601f8101851361028e575f5ffd5b80516001600160401b038111156102a7576102a7610228565b604051601f8201601f19908116603f011681016001600160401b03811182821017156102d5576102d5610228565b6040528181528282016020018710156102ec575f5ffd5b8160208401602083015e5f602083830101528093505050509250929050565b5f82518060208501845e5f920191825250919050565b60a38061032d5f395ff3fe6080604052600a600c565b005b60186014601a565b6050565b565b5f604b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc546001600160a01b031690565b905090565b365f5f375f5f365f845af43d5f5f3e8080156069573d5ff35b3d5ffdfea2646970667358221220aea4cc825fe42e4ee841f157c96189dbcabb0fd9ce7239b9d4cabcb90261b88364736f6c634300081c0033a264697066735822122027cecd8ac1171958fd89b8f085ceb3568fccca696a4c0e8be6cd6e634bfadacf64736f6c634300081c0033

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.