Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 162 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Deposit | 21757937 | 15 hrs ago | IN | 0.5 ETH | 0.0012321 | ||||
Deposit | 21757926 | 15 hrs ago | IN | 0 ETH | 0.00126334 | ||||
Deposit | 21757816 | 15 hrs ago | IN | 0.15 ETH | 0.00106376 | ||||
Deposit | 21757739 | 15 hrs ago | IN | 0.168 ETH | 0.00119558 | ||||
Deposit | 21757689 | 16 hrs ago | IN | 0.21 ETH | 0.00123625 | ||||
Deposit | 21756568 | 19 hrs ago | IN | 14.3 ETH | 0.00083604 | ||||
Deposit | 21754319 | 27 hrs ago | IN | 0.165 ETH | 0.0019124 | ||||
Deposit | 21752291 | 34 hrs ago | IN | 0.165 ETH | 0.00079363 | ||||
Deposit | 21750516 | 40 hrs ago | IN | 0.064 ETH | 0.00108869 | ||||
Deposit | 21750024 | 41 hrs ago | IN | 0.145 ETH | 0.00062731 | ||||
Deposit | 21749977 | 41 hrs ago | IN | 4.95 ETH | 0.00110589 | ||||
Deposit | 21748343 | 47 hrs ago | IN | 1 ETH | 0.0008655 | ||||
Deposit | 21747307 | 2 days ago | IN | 4 ETH | 0.00114977 | ||||
Deposit | 21746506 | 2 days ago | IN | 0.0395 ETH | 0.00240934 | ||||
Deposit | 21746440 | 2 days ago | IN | 4.44 ETH | 0.00189758 | ||||
Deposit | 21746036 | 2 days ago | IN | 0.004 ETH | 0.00304429 | ||||
Deposit | 21745432 | 2 days ago | IN | 0 ETH | 0.00679866 | ||||
Deposit | 21745048 | 2 days ago | IN | 8.1 ETH | 0.00385507 | ||||
Deposit | 21743623 | 2 days ago | IN | 0 ETH | 0.00154592 | ||||
Deposit | 21743585 | 2 days ago | IN | 0 ETH | 0.0012809 | ||||
Deposit | 21743518 | 2 days ago | IN | 0 ETH | 0.00132269 | ||||
Deposit | 21743473 | 2 days ago | IN | 0 ETH | 0.00144275 | ||||
Deposit | 21743386 | 2 days ago | IN | 0 ETH | 0.0013465 | ||||
Deposit | 21743331 | 2 days ago | IN | 0.02 ETH | 0.00085175 | ||||
Deposit | 21743301 | 2 days ago | IN | 0 ETH | 0.00150635 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
21757937 | 15 hrs ago | 0.5 ETH | ||||
21757926 | 15 hrs ago | 0.13614879 ETH | ||||
21757926 | 15 hrs ago | 0.13614879 ETH | ||||
21757816 | 15 hrs ago | 0.15 ETH | ||||
21757739 | 15 hrs ago | 0.168 ETH | ||||
21757689 | 16 hrs ago | 0.21 ETH | ||||
21756568 | 19 hrs ago | 14.3 ETH | ||||
21754319 | 27 hrs ago | 0.165 ETH | ||||
21752291 | 34 hrs ago | 0.165 ETH | ||||
21750516 | 40 hrs ago | 0.064 ETH | ||||
21750024 | 41 hrs ago | 0.145 ETH | ||||
21749977 | 41 hrs ago | 4.95 ETH | ||||
21748343 | 47 hrs ago | 1 ETH | ||||
21747307 | 2 days ago | 4 ETH | ||||
21746506 | 2 days ago | 0.0395 ETH | ||||
21746440 | 2 days ago | 4.44 ETH | ||||
21746036 | 2 days ago | 0.004 ETH | ||||
21745048 | 2 days ago | 8.1 ETH | ||||
21743331 | 2 days ago | 0.02 ETH | ||||
21742885 | 2 days ago | 0.038 ETH | ||||
21742772 | 2 days ago | 0.68 ETH | ||||
21742440 | 2 days ago | 5.42 ETH | ||||
21740210 | 3 days ago | 0.12 ETH | ||||
21739803 | 3 days ago | 0.208 ETH | ||||
21738968 | 3 days ago | 6 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
EthWrapper
Compiler Version
v0.8.25+commit.b61c2a91
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; import "./interfaces/utils/IEthWrapper.sol"; contract EthWrapper is IEthWrapper { using SafeERC20 for IERC20; /// @inheritdoc IEthWrapper address public immutable WETH; /// @inheritdoc IEthWrapper address public immutable wstETH; /// @inheritdoc IEthWrapper address public immutable stETH; /// @inheritdoc IEthWrapper address public constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; constructor(address WETH_, address wstETH_, address stETH_) { WETH = WETH_; wstETH = wstETH_; stETH = stETH_; } /** * @notice Wraps the specified `depositToken` into `wstETH` if applicable. * @param depositToken The address of the token being deposited, which must be one of: ETH, WETH, stETH, or wstETH. * @param amount The amount of `depositToken` to be wrapped. * @return The resulting amount of `wstETH` after the wrapping process. * * @custom:requirements * - `depositToken` MUST be one of the following: ETH, WETH, stETH, or wstETH. * - `amount` MUST be greater than 0. * * @dev The function handles the wrapping of different types of tokens into `wstETH`. If the token is ETH, it is first converted * to stETH and then wrapped into `wstETH`. If the token is WETH, it is unwrapped to ETH first, and if the token is stETH, * it is directly wrapped into `wstETH`. * * @dev `msg.value` is expected only when the deposit token is ETH. The function enforces that no ETH is sent for other deposit tokens. */ function _wrap(address depositToken, uint256 amount) internal returns (uint256) { require(amount > 0, "EthWrapper: amount must be greater than 0"); require( depositToken == ETH || depositToken == WETH || depositToken == stETH || depositToken == wstETH, "EthWrapper: invalid depositToken" ); // If the deposit token is not ETH, ensure no ETH is sent and transfer the deposit tokens from the sender if (depositToken != ETH) { require(msg.value == 0, "EthWrapper: cannot send ETH with depositToken"); IERC20(depositToken).safeTransferFrom(msg.sender, address(this), amount); } else { // If the deposit token is ETH, ensure the correct ETH amount is sent require(msg.value == amount, "EthWrapper: incorrect amount of ETH"); } // Unwrap WETH to ETH if the deposit token is WETH if (depositToken == WETH) { IWETH(WETH).withdraw(amount); depositToken = ETH; } // Convert ETH to stETH and wrap it to wstETH if (depositToken == ETH) { (bool success,) = payable(wstETH).call{value: amount}(""); require(success, "EthWrapper: ETH transfer failed"); amount = IERC20(wstETH).balanceOf(address(this)); } // Wrap stETH to wstETH if (depositToken == stETH) { IERC20(stETH).safeIncreaseAllowance(wstETH, amount); amount = IWSTETH(wstETH).wrap(amount); } return amount; } receive() external payable { require(msg.sender == WETH, "EthWrapper: invalid sender"); } /// @inheritdoc IEthWrapper function deposit( address depositToken, uint256 amount, address vault, address receiver, address referral ) external payable returns (uint256 shares) { amount = _wrap(depositToken, amount); IERC20(wstETH).safeIncreaseAllowance(vault, amount); return IERC4626Vault(vault).deposit(amount, receiver, referral); } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import {IERC20, SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {ISTETH} from "../tokens/ISTETH.sol"; import {IWETH} from "../tokens/IWETH.sol"; import {IWSTETH} from "../tokens/IWSTETH.sol"; import {IERC4626Vault} from "../vaults/IERC4626Vault.sol"; /** * @title IEthWrapper * @notice Interface for wrapping and converting input tokens (WETH, wstETH, stETH, ETH) into wstETH and depositing them into an ERC4626Vault. * @dev This contract acts as an intermediary to handle deposits using various ETH derivatives and wraps them into wstETH for ERC4626 vault deposits. */ interface IEthWrapper { /** * @notice Returns the address of the WETH token. * @return The address of WETH. */ function WETH() external view returns (address); /** * @notice Returns the address of the wstETH token. * @return The address of wstETH. */ function wstETH() external view returns (address); /** * @notice Returns the address of the stETH token. * @return The address of stETH. */ function stETH() external view returns (address); /** * @notice Returns the address used to represent ETH (0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE). * @return The special address representing ETH. */ function ETH() external view returns (address); /** * @notice Deposits a specified `amount` of the `depositToken` into the provided `vault`, crediting the specified `receiver` with shares. * @param depositToken The address of the token being deposited (WETH, wstETH, stETH, or ETH). * @param amount The amount of `depositToken` to deposit. * @param vault The address of the ERC4626 vault where the deposit will be made. * @param receiver The address of the account receiving shares from the deposit. * @param referral The address of the referral, if applicable. * @return shares The amount of vault shares received after the deposit. * * @dev The `depositToken` must be one of WETH, wstETH, stETH, or ETH. * @dev If `depositToken` is ETH, the `amount` must match `msg.value`. * @dev If `depositToken` is not ETH, `msg.value` must be zero and the specified `amount` must be transferred from the sender. */ function deposit( address depositToken, uint256 amount, address vault, address receiver, address referral ) external payable returns (uint256 shares); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol"; import {IERC20Metadata} from "../token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Interface of the ERC4626 "Tokenized Vault Standard", as defined in * https://eips.ethereum.org/EIPS/eip-4626[ERC-4626]. */ interface IERC4626 is IERC20, IERC20Metadata { event Deposit(address indexed sender, address indexed owner, uint256 assets, uint256 shares); event Withdraw( address indexed sender, address indexed receiver, address indexed owner, uint256 assets, uint256 shares ); /** * @dev Returns the address of the underlying token used for the Vault for accounting, depositing, and withdrawing. * * - MUST be an ERC-20 token contract. * - MUST NOT revert. */ function asset() external view returns (address assetTokenAddress); /** * @dev Returns the total amount of the underlying asset that is “managed” by Vault. * * - SHOULD include any compounding that occurs from yield. * - MUST be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT revert. */ function totalAssets() external view returns (uint256 totalManagedAssets); /** * @dev Returns the amount of shares that the Vault would exchange for the amount of assets provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToShares(uint256 assets) external view returns (uint256 shares); /** * @dev Returns the amount of assets that the Vault would exchange for the amount of shares provided, in an ideal * scenario where all the conditions are met. * * - MUST NOT be inclusive of any fees that are charged against assets in the Vault. * - MUST NOT show any variations depending on the caller. * - MUST NOT reflect slippage or other on-chain conditions, when performing the actual exchange. * - MUST NOT revert. * * NOTE: This calculation MAY NOT reflect the “per-user” price-per-share, and instead should reflect the * “average-user’s” price-per-share, meaning what the average user should expect to see when exchanging to and * from. */ function convertToAssets(uint256 shares) external view returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be deposited into the Vault for the receiver, * through a deposit call. * * - MUST return a limited value if receiver is subject to some deposit limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of assets that may be deposited. * - MUST NOT revert. */ function maxDeposit(address receiver) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their deposit at the current block, given * current on-chain conditions. * * - MUST return as close to and no more than the exact amount of Vault shares that would be minted in a deposit * call in the same transaction. I.e. deposit should return the same or more shares as previewDeposit if called * in the same transaction. * - MUST NOT account for deposit limits like those returned from maxDeposit and should always act as though the * deposit would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewDeposit SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewDeposit(uint256 assets) external view returns (uint256 shares); /** * @dev Mints shares Vault shares to receiver by depositing exactly amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * deposit execution, and are accounted for during deposit. * - MUST revert if all of assets cannot be deposited (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function deposit(uint256 assets, address receiver) external returns (uint256 shares); /** * @dev Returns the maximum amount of the Vault shares that can be minted for the receiver, through a mint call. * - MUST return a limited value if receiver is subject to some mint limit. * - MUST return 2 ** 256 - 1 if there is no limit on the maximum amount of shares that may be minted. * - MUST NOT revert. */ function maxMint(address receiver) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their mint at the current block, given * current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of assets that would be deposited in a mint call * in the same transaction. I.e. mint should return the same or fewer assets as previewMint if called in the * same transaction. * - MUST NOT account for mint limits like those returned from maxMint and should always act as though the mint * would be accepted, regardless if the user has enough tokens approved, etc. * - MUST be inclusive of deposit fees. Integrators should be aware of the existence of deposit fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewMint SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by minting. */ function previewMint(uint256 shares) external view returns (uint256 assets); /** * @dev Mints exactly shares Vault shares to receiver by depositing amount of underlying tokens. * * - MUST emit the Deposit event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the mint * execution, and are accounted for during mint. * - MUST revert if all of shares cannot be minted (due to deposit limit being reached, slippage, the user not * approving enough underlying tokens to the Vault contract, etc). * * NOTE: most implementations will require pre-approval of the Vault with the Vault’s underlying asset token. */ function mint(uint256 shares, address receiver) external returns (uint256 assets); /** * @dev Returns the maximum amount of the underlying asset that can be withdrawn from the owner balance in the * Vault, through a withdraw call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST NOT revert. */ function maxWithdraw(address owner) external view returns (uint256 maxAssets); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their withdrawal at the current block, * given current on-chain conditions. * * - MUST return as close to and no fewer than the exact amount of Vault shares that would be burned in a withdraw * call in the same transaction. I.e. withdraw should return the same or fewer shares as previewWithdraw if * called * in the same transaction. * - MUST NOT account for withdrawal limits like those returned from maxWithdraw and should always act as though * the withdrawal would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToShares and previewWithdraw SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by depositing. */ function previewWithdraw(uint256 assets) external view returns (uint256 shares); /** * @dev Burns shares from owner and sends exactly assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * withdraw execution, and are accounted for during withdraw. * - MUST revert if all of assets cannot be withdrawn (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * Note that some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function withdraw(uint256 assets, address receiver, address owner) external returns (uint256 shares); /** * @dev Returns the maximum amount of Vault shares that can be redeemed from the owner balance in the Vault, * through a redeem call. * * - MUST return a limited value if owner is subject to some withdrawal limit or timelock. * - MUST return balanceOf(owner) if owner is not subject to any withdrawal limit or timelock. * - MUST NOT revert. */ function maxRedeem(address owner) external view returns (uint256 maxShares); /** * @dev Allows an on-chain or off-chain user to simulate the effects of their redeemption at the current block, * given current on-chain conditions. * * - MUST return as close to and no more than the exact amount of assets that would be withdrawn in a redeem call * in the same transaction. I.e. redeem should return the same or more assets as previewRedeem if called in the * same transaction. * - MUST NOT account for redemption limits like those returned from maxRedeem and should always act as though the * redemption would be accepted, regardless if the user has enough shares, etc. * - MUST be inclusive of withdrawal fees. Integrators should be aware of the existence of withdrawal fees. * - MUST NOT revert. * * NOTE: any unfavorable discrepancy between convertToAssets and previewRedeem SHOULD be considered slippage in * share price or some other type of condition, meaning the depositor will lose assets by redeeming. */ function previewRedeem(uint256 shares) external view returns (uint256 assets); /** * @dev Burns exactly shares from owner and sends assets of underlying tokens to receiver. * * - MUST emit the Withdraw event. * - MAY support an additional flow in which the underlying tokens are owned by the Vault contract before the * redeem execution, and are accounted for during redeem. * - MUST revert if all of shares cannot be redeemed (due to withdrawal limit being reached, slippage, the owner * not having enough shares, etc). * * NOTE: some implementations will require pre-requesting to the Vault before a withdrawal may be performed. * Those methods should be performed separately. */ function redeem(uint256 shares, address receiver, address owner) external returns (uint256 assets); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC20Permit} from "../extensions/IERC20Permit.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; interface ISTETH { function submit(address _referral) external payable; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; interface IWETH { function deposit() external payable; function withdraw(uint256 _wad) external; }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; interface IWSTETH { function wrap(uint256 _stETHAmount) external returns (uint256); function getWstETHByStETH(uint256 _stETHAmount) external view returns (uint256); function getStETHByWstETH(uint256 _wstETHAmount) external view returns (uint256); }
// SPDX-License-Identifier: BUSL-1.1 pragma solidity 0.8.25; import { ERC4626Upgradeable, IERC4626 } from "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC4626Upgradeable.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /** * @title IERC4626Vault * @notice Extension of the IERC4626 interface that introduces a `deposit` method with an additional referral address parameter. * @dev This interface enhances the standard ERC4626 vault by adding referral-based deposits. * @dev Also extends the VaultControl interface for managing deposit limits, deposit pause and withdrawal pause. */ interface IERC4626Vault is IERC4626 { /** * @notice Emitted when a deposit is made through a referral. * @param assets The amount of underlying tokens deposited. * @param receiver The address receiving the vault shares. * @param referral The address of the referral involved in the deposit. */ event ReferralDeposit(uint256 assets, address receiver, address referral); /** * @notice Mints vault shares to the `receiver` by depositing a specified amount of `assets` with an associated `referral`. * @param assets The amount of underlying tokens to be deposited. * @param receiver The address that will receive the vault shares. * @param referral The address of the referral associated with the deposit. * @return shares The amount of vault shares minted to the `receiver`. * * @custom:requirements * - The `assets` to be deposited MUST be greater than 0. * * @custom:effects * - Transfers the underlying tokens (`assets`) from the sender to the vault. * - Mints the corresponding `shares` to the `receiver`. * - Deposits the `assets` into the underlying bond. * - Emits a `ReferralDeposit` event. */ function deposit(uint256 assets, address receiver, address referral) external returns (uint256 shares); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC4626.sol) pragma solidity ^0.8.20; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {ERC20Upgradeable} from "../ERC20Upgradeable.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import {IERC4626} from "@openzeppelin/contracts/interfaces/IERC4626.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {Initializable} from "../../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the ERC4626 "Tokenized Vault Standard" as defined in * https://eips.ethereum.org/EIPS/eip-4626[EIP-4626]. * * This extension allows the minting and burning of "shares" (represented using the ERC20 inheritance) in exchange for * underlying "assets" through standardized {deposit}, {mint}, {redeem} and {burn} workflows. This contract extends * the ERC20 standard. Any additional extensions included along it would affect the "shares" token represented by this * contract and not the "assets" token which is an independent contract. * * [CAUTION] * ==== * In empty (or nearly empty) ERC-4626 vaults, deposits are at high risk of being stolen through frontrunning * with a "donation" to the vault that inflates the price of a share. This is variously known as a donation or inflation * attack and is essentially a problem of slippage. Vault deployers can protect against this attack by making an initial * deposit of a non-trivial amount of the asset, such that price manipulation becomes infeasible. Withdrawals may * similarly be affected by slippage. Users can protect against this attack as well as unexpected slippage in general by * verifying the amount received is as expected, using a wrapper that performs these checks such as * https://github.com/fei-protocol/ERC4626#erc4626router-and-base[ERC4626Router]. * * Since v4.9, this implementation uses virtual assets and shares to mitigate that risk. The `_decimalsOffset()` * corresponds to an offset in the decimal representation between the underlying asset's decimals and the vault * decimals. This offset also determines the rate of virtual shares to virtual assets in the vault, which itself * determines the initial exchange rate. While not fully preventing the attack, analysis shows that the default offset * (0) makes it non-profitable, as a result of the value being captured by the virtual shares (out of the attacker's * donation) matching the attacker's expected gains. With a larger offset, the attack becomes orders of magnitude more * expensive than it is profitable. More details about the underlying math can be found * xref:erc4626.adoc#inflation-attack[here]. * * The drawback of this approach is that the virtual shares do capture (a very small) part of the value being accrued * to the vault. Also, if the vault experiences losses, the users try to exit the vault, the virtual shares and assets * will cause the first user to exit to experience reduced losses in detriment to the last users that will experience * bigger losses. Developers willing to revert back to the pre-v4.9 behavior just need to override the * `_convertToShares` and `_convertToAssets` functions. * * To learn more, check out our xref:ROOT:erc4626.adoc[ERC-4626 guide]. * ==== */ abstract contract ERC4626Upgradeable is Initializable, ERC20Upgradeable, IERC4626 { using Math for uint256; /// @custom:storage-location erc7201:openzeppelin.storage.ERC4626 struct ERC4626Storage { IERC20 _asset; uint8 _underlyingDecimals; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC4626")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ERC4626StorageLocation = 0x0773e532dfede91f04b12a73d3d2acd361424f41f76b4fb79f090161e36b4e00; function _getERC4626Storage() private pure returns (ERC4626Storage storage $) { assembly { $.slot := ERC4626StorageLocation } } /** * @dev Attempted to deposit more assets than the max amount for `receiver`. */ error ERC4626ExceededMaxDeposit(address receiver, uint256 assets, uint256 max); /** * @dev Attempted to mint more shares than the max amount for `receiver`. */ error ERC4626ExceededMaxMint(address receiver, uint256 shares, uint256 max); /** * @dev Attempted to withdraw more assets than the max amount for `receiver`. */ error ERC4626ExceededMaxWithdraw(address owner, uint256 assets, uint256 max); /** * @dev Attempted to redeem more shares than the max amount for `receiver`. */ error ERC4626ExceededMaxRedeem(address owner, uint256 shares, uint256 max); /** * @dev Set the underlying asset contract. This must be an ERC20-compatible contract (ERC20 or ERC777). */ function __ERC4626_init(IERC20 asset_) internal onlyInitializing { __ERC4626_init_unchained(asset_); } function __ERC4626_init_unchained(IERC20 asset_) internal onlyInitializing { ERC4626Storage storage $ = _getERC4626Storage(); (bool success, uint8 assetDecimals) = _tryGetAssetDecimals(asset_); $._underlyingDecimals = success ? assetDecimals : 18; $._asset = asset_; } /** * @dev Attempts to fetch the asset decimals. A return value of false indicates that the attempt failed in some way. */ function _tryGetAssetDecimals(IERC20 asset_) private view returns (bool, uint8) { (bool success, bytes memory encodedDecimals) = address(asset_).staticcall( abi.encodeCall(IERC20Metadata.decimals, ()) ); if (success && encodedDecimals.length >= 32) { uint256 returnedDecimals = abi.decode(encodedDecimals, (uint256)); if (returnedDecimals <= type(uint8).max) { return (true, uint8(returnedDecimals)); } } return (false, 0); } /** * @dev Decimals are computed by adding the decimal offset on top of the underlying asset's decimals. This * "original" value is cached during construction of the vault contract. If this read operation fails (e.g., the * asset has not been created yet), a default of 18 is used to represent the underlying asset's decimals. * * See {IERC20Metadata-decimals}. */ function decimals() public view virtual override(IERC20Metadata, ERC20Upgradeable) returns (uint8) { ERC4626Storage storage $ = _getERC4626Storage(); return $._underlyingDecimals + _decimalsOffset(); } /** @dev See {IERC4626-asset}. */ function asset() public view virtual returns (address) { ERC4626Storage storage $ = _getERC4626Storage(); return address($._asset); } /** @dev See {IERC4626-totalAssets}. */ function totalAssets() public view virtual returns (uint256) { ERC4626Storage storage $ = _getERC4626Storage(); return $._asset.balanceOf(address(this)); } /** @dev See {IERC4626-convertToShares}. */ function convertToShares(uint256 assets) public view virtual returns (uint256) { return _convertToShares(assets, Math.Rounding.Floor); } /** @dev See {IERC4626-convertToAssets}. */ function convertToAssets(uint256 shares) public view virtual returns (uint256) { return _convertToAssets(shares, Math.Rounding.Floor); } /** @dev See {IERC4626-maxDeposit}. */ function maxDeposit(address) public view virtual returns (uint256) { return type(uint256).max; } /** @dev See {IERC4626-maxMint}. */ function maxMint(address) public view virtual returns (uint256) { return type(uint256).max; } /** @dev See {IERC4626-maxWithdraw}. */ function maxWithdraw(address owner) public view virtual returns (uint256) { return _convertToAssets(balanceOf(owner), Math.Rounding.Floor); } /** @dev See {IERC4626-maxRedeem}. */ function maxRedeem(address owner) public view virtual returns (uint256) { return balanceOf(owner); } /** @dev See {IERC4626-previewDeposit}. */ function previewDeposit(uint256 assets) public view virtual returns (uint256) { return _convertToShares(assets, Math.Rounding.Floor); } /** @dev See {IERC4626-previewMint}. */ function previewMint(uint256 shares) public view virtual returns (uint256) { return _convertToAssets(shares, Math.Rounding.Ceil); } /** @dev See {IERC4626-previewWithdraw}. */ function previewWithdraw(uint256 assets) public view virtual returns (uint256) { return _convertToShares(assets, Math.Rounding.Ceil); } /** @dev See {IERC4626-previewRedeem}. */ function previewRedeem(uint256 shares) public view virtual returns (uint256) { return _convertToAssets(shares, Math.Rounding.Floor); } /** @dev See {IERC4626-deposit}. */ function deposit(uint256 assets, address receiver) public virtual returns (uint256) { uint256 maxAssets = maxDeposit(receiver); if (assets > maxAssets) { revert ERC4626ExceededMaxDeposit(receiver, assets, maxAssets); } uint256 shares = previewDeposit(assets); _deposit(_msgSender(), receiver, assets, shares); return shares; } /** @dev See {IERC4626-mint}. * * As opposed to {deposit}, minting is allowed even if the vault is in a state where the price of a share is zero. * In this case, the shares will be minted without requiring any assets to be deposited. */ function mint(uint256 shares, address receiver) public virtual returns (uint256) { uint256 maxShares = maxMint(receiver); if (shares > maxShares) { revert ERC4626ExceededMaxMint(receiver, shares, maxShares); } uint256 assets = previewMint(shares); _deposit(_msgSender(), receiver, assets, shares); return assets; } /** @dev See {IERC4626-withdraw}. */ function withdraw(uint256 assets, address receiver, address owner) public virtual returns (uint256) { uint256 maxAssets = maxWithdraw(owner); if (assets > maxAssets) { revert ERC4626ExceededMaxWithdraw(owner, assets, maxAssets); } uint256 shares = previewWithdraw(assets); _withdraw(_msgSender(), receiver, owner, assets, shares); return shares; } /** @dev See {IERC4626-redeem}. */ function redeem(uint256 shares, address receiver, address owner) public virtual returns (uint256) { uint256 maxShares = maxRedeem(owner); if (shares > maxShares) { revert ERC4626ExceededMaxRedeem(owner, shares, maxShares); } uint256 assets = previewRedeem(shares); _withdraw(_msgSender(), receiver, owner, assets, shares); return assets; } /** * @dev Internal conversion function (from assets to shares) with support for rounding direction. */ function _convertToShares(uint256 assets, Math.Rounding rounding) internal view virtual returns (uint256) { return assets.mulDiv(totalSupply() + 10 ** _decimalsOffset(), totalAssets() + 1, rounding); } /** * @dev Internal conversion function (from shares to assets) with support for rounding direction. */ function _convertToAssets(uint256 shares, Math.Rounding rounding) internal view virtual returns (uint256) { return shares.mulDiv(totalAssets() + 1, totalSupply() + 10 ** _decimalsOffset(), rounding); } /** * @dev Deposit/mint common workflow. */ function _deposit(address caller, address receiver, uint256 assets, uint256 shares) internal virtual { ERC4626Storage storage $ = _getERC4626Storage(); // If _asset is ERC777, `transferFrom` can trigger a reentrancy BEFORE the transfer happens through the // `tokensToSend` hook. On the other hand, the `tokenReceived` hook, that is triggered after the transfer, // calls the vault, which is assumed not malicious. // // Conclusion: we need to do the transfer before we mint so that any reentrancy would happen before the // assets are transferred and before the shares are minted, which is a valid state. // slither-disable-next-line reentrancy-no-eth SafeERC20.safeTransferFrom($._asset, caller, address(this), assets); _mint(receiver, shares); emit Deposit(caller, receiver, assets, shares); } /** * @dev Withdraw/redeem common workflow. */ function _withdraw( address caller, address receiver, address owner, uint256 assets, uint256 shares ) internal virtual { ERC4626Storage storage $ = _getERC4626Storage(); if (caller != owner) { _spendAllowance(owner, caller, shares); } // If _asset is ERC777, `transfer` can trigger a reentrancy AFTER the transfer happens through the // `tokensReceived` hook. On the other hand, the `tokensToSend` hook, that is triggered before the transfer, // calls the vault, which is assumed not malicious. // // Conclusion: we need to do the transfer after the burn so that any reentrancy would happen after the // shares are burned and after the assets are transferred, which is a valid state. _burn(owner, shares); SafeERC20.safeTransfer($._asset, receiver, assets); emit Withdraw(caller, receiver, owner, assets, shares); } function _decimalsOffset() internal view virtual returns (uint8) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol"; import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors { /// @custom:storage-location erc7201:openzeppelin.storage.ERC20 struct ERC20Storage { mapping(address account => uint256) _balances; mapping(address account => mapping(address spender => uint256)) _allowances; uint256 _totalSupply; string _name; string _symbol; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00; function _getERC20Storage() private pure returns (ERC20Storage storage $) { assembly { $.slot := ERC20StorageLocation } } /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { ERC20Storage storage $ = _getERC20Storage(); $._name = name_; $._symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows $._totalSupply += value; } else { uint256 fromBalance = $._balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. $._balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. $._totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. $._balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } $._allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@symbiotic/core/=lib/core/src/", "@symbiotic/core-test/=lib/core/test/", "@symbiotic/rewards/=lib/rewards/src/", "@symbiotic/burners/=lib/burners/src/", "@symbioticfi/core/=lib/burners/lib/core/", "burners/=lib/burners/", "core/=lib/core/", "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "rewards/=lib/rewards/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"WETH_","type":"address"},{"internalType":"address","name":"wstETH_","type":"address"},{"internalType":"address","name":"stETH_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"ETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"depositToken","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"referral","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"stETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"wstETH","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60e060405234801561000f575f80fd5b50604051610e52380380610e5283398101604081905261002e91610066565b6001600160a01b0392831660805290821660a0521660c0526100a6565b80516001600160a01b0381168114610061575f80fd5b919050565b5f805f60608486031215610078575f80fd5b6100818461004b565b925061008f6020850161004b565b915061009d6040850161004b565b90509250925092565b60805160a05160c051610d2861012a5f395f81816101b00152818161035b0152818161074a015261078e01525f818161010b015281816101ec0152818161039701528181610602015281816106d3015281816107b001526107eb01525f8181605c0152818161017d0152818161031f0152818161051601526105630152610d285ff3fe60806040526004361061004c575f3560e01c80630bb9f5e1146100d45780634aa07e64146100fa5780638322fff214610145578063ad5c46481461016c578063c1fe3e481461019f575f80fd5b366100d057336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146100ce5760405162461bcd60e51b815260206004820152601a60248201527f457468577261707065723a20696e76616c69642073656e64657200000000000060448201526064015b60405180910390fd5b005b5f80fd5b6100e76100e2366004610c2d565b6101d2565b6040519081526020015b60405180910390f35b348015610105575f80fd5b5061012d7f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b0390911681526020016100f1565b348015610150575f80fd5b5061012d73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee81565b348015610177575f80fd5b5061012d7f000000000000000000000000000000000000000000000000000000000000000081565b3480156101aa575f80fd5b5061012d7f000000000000000000000000000000000000000000000000000000000000000081565b5f6101dd8686610295565b94506102136001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168587610869565b604051630b8b4a6160e21b8152600481018690526001600160a01b0384811660248301528381166044830152851690632e2d2984906064016020604051808303815f875af1158015610267573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061028b9190610c87565b9695505050505050565b5f8082116102f75760405162461bcd60e51b815260206004820152602960248201527f457468577261707065723a20616d6f756e74206d75737420626520677265617460448201526806572207468616e20360bc1b60648201526084016100c5565b6001600160a01b03831673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee148061035357507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b0316145b8061038f57507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b0316145b806103cb57507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b0316145b6104175760405162461bcd60e51b815260206004820181905260248201527f457468577261707065723a20696e76616c6964206465706f736974546f6b656e60448201526064016100c5565b6001600160a01b03831673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee146104b957341561049f5760405162461bcd60e51b815260206004820152602d60248201527f457468577261707065723a2063616e6e6f742073656e6420455448207769746860448201526c103232b837b9b4ba2a37b5b2b760991b60648201526084016100c5565b6104b46001600160a01b0384163330856108f6565b610514565b8134146105145760405162461bcd60e51b815260206004820152602360248201527f457468577261707065723a20696e636f727265637420616d6f756e74206f662060448201526208aa8960eb1b60648201526084016100c5565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b0316036105da57604051632e1a7d4d60e01b8152600481018390527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690632e1a7d4d906024015f604051808303815f87803b1580156105ac575f80fd5b505af11580156105be573d5f803e3d5ffd5b5050505073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee92505b73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b03841601610748575f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836040515f6040518083038185875af1925050503d805f8114610668576040519150601f19603f3d011682016040523d82523d5f602084013e61066d565b606091505b50509050806106be5760405162461bcd60e51b815260206004820152601f60248201527f457468577261707065723a20455448207472616e73666572206661696c65640060448201526064016100c5565b6040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610720573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107449190610c87565b9250505b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b031603610860576107d56001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000167f000000000000000000000000000000000000000000000000000000000000000084610869565b604051630ea598cb60e41b8152600481018390527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063ea598cb0906024016020604051808303815f875af1158015610839573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061085d9190610c87565b91505b50805b92915050565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa1580156108b6573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108da9190610c87565b90506108f084846108eb8585610c9e565b61095d565b50505050565b6040516001600160a01b0384811660248301528381166044830152606482018390526108f09186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506109e8565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b1790526109ae8482610a4e565b6108f0576040516001600160a01b0384811660248301525f60448301526109e291869182169063095ea7b39060640161092b565b6108f084825b5f6109fc6001600160a01b03841683610aef565b905080515f14158015610a20575080806020019051810190610a1e9190610cbd565b155b15610a4957604051635274afe760e01b81526001600160a01b03841660048201526024016100c5565b505050565b5f805f846001600160a01b031684604051610a699190610cdc565b5f604051808303815f865af19150503d805f8114610aa2576040519150601f19603f3d011682016040523d82523d5f602084013e610aa7565b606091505b5091509150818015610ad1575080511580610ad1575080806020019051810190610ad19190610cbd565b8015610ae657505f856001600160a01b03163b115b95945050505050565b6060610afc83835f610b03565b9392505050565b606081471015610b285760405163cd78605960e01b81523060048201526024016100c5565b5f80856001600160a01b03168486604051610b439190610cdc565b5f6040518083038185875af1925050503d805f8114610b7d576040519150601f19603f3d011682016040523d82523d5f602084013e610b82565b606091505b509150915061028b868383606082610ba257610b9d82610be9565b610afc565b8151158015610bb957506001600160a01b0384163b155b15610be257604051639996b31560e01b81526001600160a01b03851660048201526024016100c5565b5080610afc565b805115610bf95780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b80356001600160a01b0381168114610c28575f80fd5b919050565b5f805f805f60a08688031215610c41575f80fd5b610c4a86610c12565b945060208601359350610c5f60408701610c12565b9250610c6d60608701610c12565b9150610c7b60808701610c12565b90509295509295909350565b5f60208284031215610c97575f80fd5b5051919050565b8082018082111561086357634e487b7160e01b5f52601160045260245ffd5b5f60208284031215610ccd575f80fd5b81518015158114610afc575f80fd5b5f82518060208501845e5f92019182525091905056fea2646970667358221220228ca6f0d7775974c644c19d6a7c32f13e0cdb017c4bbde00ba2656155aba23d64736f6c63430008190033000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc20000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca0000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe84
Deployed Bytecode
0x60806040526004361061004c575f3560e01c80630bb9f5e1146100d45780634aa07e64146100fa5780638322fff214610145578063ad5c46481461016c578063c1fe3e481461019f575f80fd5b366100d057336001600160a01b037f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc216146100ce5760405162461bcd60e51b815260206004820152601a60248201527f457468577261707065723a20696e76616c69642073656e64657200000000000060448201526064015b60405180910390fd5b005b5f80fd5b6100e76100e2366004610c2d565b6101d2565b6040519081526020015b60405180910390f35b348015610105575f80fd5b5061012d7f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca081565b6040516001600160a01b0390911681526020016100f1565b348015610150575f80fd5b5061012d73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee81565b348015610177575f80fd5b5061012d7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc281565b3480156101aa575f80fd5b5061012d7f000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe8481565b5f6101dd8686610295565b94506102136001600160a01b037f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca0168587610869565b604051630b8b4a6160e21b8152600481018690526001600160a01b0384811660248301528381166044830152851690632e2d2984906064016020604051808303815f875af1158015610267573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061028b9190610c87565b9695505050505050565b5f8082116102f75760405162461bcd60e51b815260206004820152602960248201527f457468577261707065723a20616d6f756e74206d75737420626520677265617460448201526806572207468616e20360bc1b60648201526084016100c5565b6001600160a01b03831673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee148061035357507f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b0316836001600160a01b0316145b8061038f57507f000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe846001600160a01b0316836001600160a01b0316145b806103cb57507f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca06001600160a01b0316836001600160a01b0316145b6104175760405162461bcd60e51b815260206004820181905260248201527f457468577261707065723a20696e76616c6964206465706f736974546f6b656e60448201526064016100c5565b6001600160a01b03831673eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee146104b957341561049f5760405162461bcd60e51b815260206004820152602d60248201527f457468577261707065723a2063616e6e6f742073656e6420455448207769746860448201526c103232b837b9b4ba2a37b5b2b760991b60648201526084016100c5565b6104b46001600160a01b0384163330856108f6565b610514565b8134146105145760405162461bcd60e51b815260206004820152602360248201527f457468577261707065723a20696e636f727265637420616d6f756e74206f662060448201526208aa8960eb1b60648201526084016100c5565b7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b0316836001600160a01b0316036105da57604051632e1a7d4d60e01b8152600481018390527f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b031690632e1a7d4d906024015f604051808303815f87803b1580156105ac575f80fd5b505af11580156105be573d5f803e3d5ffd5b5050505073eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee92505b73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeed196001600160a01b03841601610748575f7f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca06001600160a01b0316836040515f6040518083038185875af1925050503d805f8114610668576040519150601f19603f3d011682016040523d82523d5f602084013e61066d565b606091505b50509050806106be5760405162461bcd60e51b815260206004820152601f60248201527f457468577261707065723a20455448207472616e73666572206661696c65640060448201526064016100c5565b6040516370a0823160e01b81523060048201527f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca06001600160a01b0316906370a0823190602401602060405180830381865afa158015610720573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107449190610c87565b9250505b7f000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe846001600160a01b0316836001600160a01b031603610860576107d56001600160a01b037f000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe84167f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca084610869565b604051630ea598cb60e41b8152600481018390527f0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca06001600160a01b03169063ea598cb0906024016020604051808303815f875af1158015610839573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061085d9190610c87565b91505b50805b92915050565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301525f919085169063dd62ed3e90604401602060405180830381865afa1580156108b6573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108da9190610c87565b90506108f084846108eb8585610c9e565b61095d565b50505050565b6040516001600160a01b0384811660248301528381166044830152606482018390526108f09186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b0383818316178352505050506109e8565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b1790526109ae8482610a4e565b6108f0576040516001600160a01b0384811660248301525f60448301526109e291869182169063095ea7b39060640161092b565b6108f084825b5f6109fc6001600160a01b03841683610aef565b905080515f14158015610a20575080806020019051810190610a1e9190610cbd565b155b15610a4957604051635274afe760e01b81526001600160a01b03841660048201526024016100c5565b505050565b5f805f846001600160a01b031684604051610a699190610cdc565b5f604051808303815f865af19150503d805f8114610aa2576040519150601f19603f3d011682016040523d82523d5f602084013e610aa7565b606091505b5091509150818015610ad1575080511580610ad1575080806020019051810190610ad19190610cbd565b8015610ae657505f856001600160a01b03163b115b95945050505050565b6060610afc83835f610b03565b9392505050565b606081471015610b285760405163cd78605960e01b81523060048201526024016100c5565b5f80856001600160a01b03168486604051610b439190610cdc565b5f6040518083038185875af1925050503d805f8114610b7d576040519150601f19603f3d011682016040523d82523d5f602084013e610b82565b606091505b509150915061028b868383606082610ba257610b9d82610be9565b610afc565b8151158015610bb957506001600160a01b0384163b155b15610be257604051639996b31560e01b81526001600160a01b03851660048201526024016100c5565b5080610afc565b805115610bf95780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b80356001600160a01b0381168114610c28575f80fd5b919050565b5f805f805f60a08688031215610c41575f80fd5b610c4a86610c12565b945060208601359350610c5f60408701610c12565b9250610c6d60608701610c12565b9150610c7b60808701610c12565b90509295509295909350565b5f60208284031215610c97575f80fd5b5051919050565b8082018082111561086357634e487b7160e01b5f52601160045260245ffd5b5f60208284031215610ccd575f80fd5b81518015158114610afc575f80fd5b5f82518060208501845e5f92019182525091905056fea2646970667358221220228ca6f0d7775974c644c19d6a7c32f13e0cdb017c4bbde00ba2656155aba23d64736f6c63430008190033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc20000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca0000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe84
-----Decoded View---------------
Arg [0] : WETH_ (address): 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
Arg [1] : wstETH_ (address): 0x7f39C581F595B53c5cb19bD0b3f8dA6c935E2Ca0
Arg [2] : stETH_ (address): 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
Arg [1] : 0000000000000000000000007f39c581f595b53c5cb19bd0b3f8da6c935e2ca0
Arg [2] : 000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe84
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.