Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
15371008 | 897 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
LiquidityBootstrappingPool
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 9999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ReentrancyGuard.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "../BaseWeightedPool.sol"; import "./WeightCompression.sol"; /** * @dev Weighted Pool with mutable weights, designed to support V2 Liquidity Bootstrapping */ contract LiquidityBootstrappingPool is BaseWeightedPool, ReentrancyGuard { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time using FixedPoint for uint256; using WordCodec for bytes32; using WeightCompression for uint256; // LBPs often involve only two tokens - we support up to four since we're able to pack the entire config in a single // storage slot. uint256 private constant _MAX_LBP_TOKENS = 4; // State variables uint256 private immutable _totalTokens; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; IERC20 internal immutable _token3; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; uint256 internal immutable _scalingFactor2; uint256 internal immutable _scalingFactor3; // For gas optimization, store start/end weights and timestamps in one bytes32 // Start weights need to be high precision, since restarting the update resets them to "spot" // values. Target end weights do not need as much precision. // [ 32 bits | 32 bits | 64 bits | 124 bits | 3 bits | 1 bit ] // [ end timestamp | start timestamp | 4x16 end weights | 4x31 start weights | not used | swap enabled ] // |MSB LSB| bytes32 private _poolState; // Offsets for data elements in _poolState uint256 private constant _SWAP_ENABLED_OFFSET = 0; uint256 private constant _START_WEIGHT_OFFSET = 4; uint256 private constant _END_WEIGHT_OFFSET = 128; uint256 private constant _START_TIME_OFFSET = 192; uint256 private constant _END_TIME_OFFSET = 224; // Event declarations event SwapEnabledSet(bool swapEnabled); event GradualWeightUpdateScheduled( uint256 startTime, uint256 endTime, uint256[] startWeights, uint256[] endWeights ); constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, uint256[] memory normalizedWeights, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner, bool swapEnabledOnStart ) BaseWeightedPool( vault, name, symbol, tokens, new address[](tokens.length), // Pass the zero address: LBPs can't have asset managers swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { uint256 totalTokens = tokens.length; InputHelpers.ensureInputLengthMatch(totalTokens, normalizedWeights.length); _totalTokens = totalTokens; // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _token0 = tokens[0]; _token1 = tokens[1]; _token2 = totalTokens > 2 ? tokens[2] : IERC20(0); _token3 = totalTokens > 3 ? tokens[3] : IERC20(0); _scalingFactor0 = _computeScalingFactor(tokens[0]); _scalingFactor1 = _computeScalingFactor(tokens[1]); _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0; _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0; uint256 currentTime = block.timestamp; _startGradualWeightChange(currentTime, currentTime, normalizedWeights, normalizedWeights); // If false, the pool will start in the disabled state (prevents front-running the enable swaps transaction) _setSwapEnabled(swapEnabledOnStart); } // External functions /** * @dev Tells whether swaps are enabled or not for the given pool. */ function getSwapEnabled() public view returns (bool) { return _poolState.decodeBool(_SWAP_ENABLED_OFFSET); } /** * @dev Return start time, end time, and endWeights as an array. * Current weights should be retrieved via `getNormalizedWeights()`. */ function getGradualWeightUpdateParams() external view returns ( uint256 startTime, uint256 endTime, uint256[] memory endWeights ) { // Load current pool state from storage bytes32 poolState = _poolState; startTime = poolState.decodeUint32(_START_TIME_OFFSET); endTime = poolState.decodeUint32(_END_TIME_OFFSET); uint256 totalTokens = _getTotalTokens(); endWeights = new uint256[](totalTokens); for (uint256 i = 0; i < totalTokens; i++) { endWeights[i] = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16(); } } /** * @dev Can pause/unpause trading */ function setSwapEnabled(bool swapEnabled) external authenticate whenNotPaused nonReentrant { _setSwapEnabled(swapEnabled); } /** * @dev Schedule a gradual weight change, from the current weights to the given endWeights, * over startTime to endTime */ function updateWeightsGradually( uint256 startTime, uint256 endTime, uint256[] memory endWeights ) external authenticate whenNotPaused nonReentrant { InputHelpers.ensureInputLengthMatch(_getTotalTokens(), endWeights.length); // If the start time is in the past, "fast forward" to start now // This avoids discontinuities in the weight curve. Otherwise, if you set the start/end times with // only 10% of the period in the future, the weights would immediately jump 90% uint256 currentTime = block.timestamp; startTime = Math.max(currentTime, startTime); _require(startTime <= endTime, Errors.GRADUAL_UPDATE_TIME_TRAVEL); _startGradualWeightChange(startTime, endTime, _getNormalizedWeights(), endWeights); } // Internal functions function _getNormalizedWeight(IERC20 token) internal view override returns (uint256) { uint256 i; // First, convert token address to a token index // prettier-ignore if (token == _token0) { i = 0; } else if (token == _token1) { i = 1; } else if (token == _token2) { i = 2; } else if (token == _token3) { i = 3; } else { _revert(Errors.INVALID_TOKEN); } return _getNormalizedWeightByIndex(i, _poolState); } function _getNormalizedWeightByIndex(uint256 i, bytes32 poolState) internal view returns (uint256) { uint256 startWeight = poolState.decodeUint31(_START_WEIGHT_OFFSET + i * 31).uncompress31(); uint256 endWeight = poolState.decodeUint16(_END_WEIGHT_OFFSET + i * 16).uncompress16(); uint256 pctProgress = _calculateWeightChangeProgress(poolState); return _interpolateWeight(startWeight, endWeight, pctProgress); } function _getNormalizedWeights() internal view override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory normalizedWeights = new uint256[](totalTokens); bytes32 poolState = _poolState; // prettier-ignore { normalizedWeights[0] = _getNormalizedWeightByIndex(0, poolState); normalizedWeights[1] = _getNormalizedWeightByIndex(1, poolState); if (totalTokens == 2) return normalizedWeights; normalizedWeights[2] = _getNormalizedWeightByIndex(2, poolState); if (totalTokens == 3) return normalizedWeights; normalizedWeights[3] = _getNormalizedWeightByIndex(3, poolState); } return normalizedWeights; } function _getNormalizedWeightsAndMaxWeightIndex() internal view override returns (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) { normalizedWeights = _getNormalizedWeights(); maxWeightTokenIndex = 0; uint256 maxNormalizedWeight = normalizedWeights[0]; for (uint256 i = 1; i < normalizedWeights.length; i++) { if (normalizedWeights[i] > maxNormalizedWeight) { maxWeightTokenIndex = i; maxNormalizedWeight = normalizedWeights[i]; } } } // Pool callback functions // Prevent any account other than the owner from joining the pool function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal override returns (uint256, uint256[] memory) { // Only the owner can initialize the pool _require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER); return super._onInitializePool(poolId, sender, recipient, scalingFactors, userData); } function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal override returns ( uint256, uint256[] memory, uint256[] memory ) { // Only the owner can add liquidity; block public LPs _require(sender == getOwner(), Errors.CALLER_IS_NOT_LBP_OWNER); return super._onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); } // Swap overrides - revert unless swaps are enabled function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view override returns (uint256) { _require(getSwapEnabled(), Errors.SWAPS_DISABLED); return super._onSwapGivenIn(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view override returns (uint256) { _require(getSwapEnabled(), Errors.SWAPS_DISABLED); return super._onSwapGivenOut(swapRequest, currentBalanceTokenIn, currentBalanceTokenOut); } /** * @dev Extend ownerOnly functions to include the LBP control functions */ function _isOwnerOnlyAction(bytes32 actionId) internal view override returns (bool) { return (actionId == getActionId(LiquidityBootstrappingPool.setSwapEnabled.selector)) || (actionId == getActionId(LiquidityBootstrappingPool.updateWeightsGradually.selector)) || super._isOwnerOnlyAction(actionId); } // Private functions /** * @dev Returns a fixed-point number representing how far along the current weight change is, where 0 means the * change has not yet started, and FixedPoint.ONE means it has fully completed. */ function _calculateWeightChangeProgress(bytes32 poolState) private view returns (uint256) { uint256 currentTime = block.timestamp; uint256 startTime = poolState.decodeUint32(_START_TIME_OFFSET); uint256 endTime = poolState.decodeUint32(_END_TIME_OFFSET); if (currentTime > endTime) { return FixedPoint.ONE; } else if (currentTime < startTime) { return 0; } // No need for SafeMath as it was checked right above: endTime >= currentTime >= startTime uint256 totalSeconds = endTime - startTime; uint256 secondsElapsed = currentTime - startTime; // In the degenerate case of a zero duration change, consider it completed (and avoid division by zero) return totalSeconds == 0 ? FixedPoint.ONE : secondsElapsed.divDown(totalSeconds); } /** * @dev When calling updateWeightsGradually again during an update, reset the start weights to the current weights, * if necessary. */ function _startGradualWeightChange( uint256 startTime, uint256 endTime, uint256[] memory startWeights, uint256[] memory endWeights ) internal virtual { bytes32 newPoolState = _poolState; uint256 normalizedSum = 0; for (uint256 i = 0; i < endWeights.length; i++) { uint256 endWeight = endWeights[i]; _require(endWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT); newPoolState = newPoolState .insertUint31(startWeights[i].compress31(), _START_WEIGHT_OFFSET + i * 31) .insertUint16(endWeight.compress16(), _END_WEIGHT_OFFSET + i * 16); normalizedSum = normalizedSum.add(endWeight); } // Ensure that the normalized weights sum to ONE _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT); _poolState = newPoolState.insertUint32(startTime, _START_TIME_OFFSET).insertUint32(endTime, _END_TIME_OFFSET); emit GradualWeightUpdateScheduled(startTime, endTime, startWeights, endWeights); } function _interpolateWeight( uint256 startWeight, uint256 endWeight, uint256 pctProgress ) private pure returns (uint256) { if (pctProgress == 0 || startWeight == endWeight) return startWeight; if (pctProgress >= FixedPoint.ONE) return endWeight; if (startWeight > endWeight) { uint256 weightDelta = pctProgress.mulDown(startWeight - endWeight); return startWeight.sub(weightDelta); } else { uint256 weightDelta = pctProgress.mulDown(endWeight - startWeight); return startWeight.add(weightDelta); } } function _setSwapEnabled(bool swapEnabled) private { _poolState = _poolState.insertBool(swapEnabled, _SWAP_ENABLED_OFFSET); emit SwapEnabledSet(swapEnabled); } function _getMaxTokens() internal pure override returns (uint256) { return _MAX_LBP_TOKENS; } function _getTotalTokens() internal view virtual override returns (uint256) { return _totalTokens; } function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (token == _token0) { return _scalingFactor0; } else if (token == _token1) { return _scalingFactor1; } else if (token == _token2) { return _scalingFactor2; } else if (token == _token3) { return _scalingFactor3; } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; } if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; } if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; } if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; } } return scalingFactors; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol"; import "./WeightedMath.sol"; import "./WeightedPoolUserDataHelpers.sol"; /** * @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of * the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic * based on local or external logic. */ abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool, WeightedMath { using FixedPoint for uint256; using WeightedPoolUserDataHelpers for bytes; uint256 private _lastInvariant; enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT } constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, // Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers or // deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free // gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO, name, symbol, tokens, assetManagers, swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { // solhint-disable-previous-line no-empty-blocks } // Virtual functions /** * @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE. */ function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens. */ function _getNormalizedWeights() internal view virtual returns (uint256[] memory); /** * @dev Returns all normalized weights, in the same order as the Pool's tokens, along with the index of the token * with the highest weight. */ function _getNormalizedWeightsAndMaxWeightIndex() internal view virtual returns (uint256[] memory, uint256); function getLastInvariant() external view returns (uint256) { return _lastInvariant; } /** * @dev Returns the current value of the invariant. */ function getInvariant() public view returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // Since the Pool hooks always work with upscaled balances, we manually // upscale here for consistency _upscaleArray(balances, _scalingFactors()); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function getNormalizedWeights() external view returns (uint256[] memory) { return _getNormalizedWeights(); } // Base Pool handlers // Swap function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcOutGivenIn( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) internal view virtual override whenNotPaused returns (uint256) { // Swaps are disabled while the contract is paused. return WeightedMath._calcInGivenOut( currentBalanceTokenIn, _getNormalizedWeight(swapRequest.tokenIn), currentBalanceTokenOut, _getNormalizedWeight(swapRequest.tokenOut), swapRequest.amount ); } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) { // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. JoinKind kind = userData.joinKind(); _require(kind == JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256[] memory normalizedWeights, ) = _getNormalizedWeightsAndMaxWeightIndex(); uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn); // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more // consistent in Pools with similar compositions but different number of tokens. uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens()); _lastInvariant = invariantAfterJoin; return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns ( uint256, uint256[] memory, uint256[] memory ) { // All joins are disabled while the contract is paused. (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas // computing them on each individual swap uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances); uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeJoin, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin( balances, normalizedWeights, scalingFactors, userData ); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { JoinKind kind = userData.joinKind(); if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, userData); } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); uint256 bptAmountOut = WeightedMath._calcBptOutGivenExactTokensIn( balances, normalizedWeights, amountsIn, totalSupply(), getSwapFeePercentage() ); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); uint256[] memory amountsIn = new uint256[](_getTotalTokens()); amountsIn[tokenIndex] = WeightedMath._calcTokenInGivenExactBptOut( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountOut, totalSupply(), getSwapFeePercentage() ); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { (uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex) = _getNormalizedWeightsAndMaxWeightIndex(); // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating the fees on each individual swap. uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances); dueProtocolFeeAmounts = _getDueProtocolFeeAmounts( balances, normalizedWeights, maxWeightTokenIndex, _lastInvariant, invariantBeforeExit, protocolSwapFeePercentage ); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and // reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fees due in future joins and exits. _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { ExitKind kind = userData.exitKind(); if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData); } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else { // ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, userData); } } function _exitExactBPTInForTokenOut( uint256[] memory balances, uint256[] memory normalizedWeights, bytes memory userData ) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); // We exit in a single token, so we initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token amountsOut[tokenIndex] = WeightedMath._calcTokenOutGivenExactBptIn( balances[tokenIndex], normalizedWeights[tokenIndex], bptAmountIn, totalSupply(), getSwapFeePercentage() ); return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory scalingFactors, bytes memory userData ) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); uint256 bptAmountIn = WeightedMath._calcBptInGivenExactTokensOut( balances, normalizedWeights, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); return (bptAmountIn, amountsOut); } // Helpers function _getDueProtocolFeeAmounts( uint256[] memory balances, uint256[] memory normalizedWeights, uint256 maxWeightTokenIndex, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool. dueProtocolFeeAmounts[maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount( balances[maxWeightTokenIndex], normalizedWeights[maxWeightTokenIndex], previousInvariant, currentInvariant, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All * amounts are expected to be upscaled. */ function _invariantAfterJoin( uint256[] memory balances, uint256[] memory amountsIn, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsIn, FixedPoint.add); return WeightedMath._calculateInvariant(normalizedWeights, balances); } function _invariantAfterExit( uint256[] memory balances, uint256[] memory amountsOut, uint256[] memory normalizedWeights ) private view returns (uint256) { _mutateAmounts(balances, amountsOut, FixedPoint.sub); return WeightedMath._calculateInvariant(normalizedWeights, balances); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view returns (uint256) { // The initial BPT supply is equal to the invariant times the number of tokens. return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply()); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LogExpMath.sol"; import "../helpers/BalancerErrors.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal * Swap Info specialization settings. */ abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override returns (uint256) { uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn); uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. request.amount = _subtractSwapFeeAmount(request.amount); // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. return _addSwapFeeAmount(amountIn); } } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already * been deducted from `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; /* solhint-disable private-vars-leading-underscore */ contract WeightedMath { using FixedPoint for uint256; // A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the // implementation of the power function, as these ratios are often exponents. uint256 internal constant _MIN_WEIGHT = 0.01e18; // Having a minimum normalized weight imposes a limit on the maximum number of tokens; // i.e., the largest possible pool is one where all tokens have exactly the minimum weight. uint256 internal constant _MAX_WEIGHTED_TOKENS = 100; // Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight // ratio). // Swap limits: amounts swapped may not be larger than this percentage of total balance. uint256 internal constant _MAX_IN_RATIO = 0.3e18; uint256 internal constant _MAX_OUT_RATIO = 0.3e18; // Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio. uint256 internal constant _MAX_INVARIANT_RATIO = 3e18; // Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio. uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18; // Invariant is used to collect protocol swap fees by comparing its value between two times. // So we can round always to the same direction. It is also used to initiate the BPT amount // and, because there is a minimum BPT, we round down the invariant. function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances) internal pure returns (uint256 invariant) { /********************************************************************************************** // invariant _____ // // wi = weight index i | | wi // // bi = balance index i | | bi ^ = i // // i = invariant // **********************************************************************************************/ invariant = FixedPoint.ONE; for (uint256 i = 0; i < normalizedWeights.length; i++) { invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i])); } _require(invariant > 0, Errors.ZERO_INVARIANT); } // Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the // current balances and weights. function _calcOutGivenIn( uint256 balanceIn, uint256 weightIn, uint256 balanceOut, uint256 weightOut, uint256 amountIn ) internal pure returns (uint256) { /********************************************************************************************** // outGivenIn // // aO = amountOut // // bO = balanceOut // // bI = balanceIn / / bI \ (wI / wO) \ // // aI = amountIn aO = bO * | 1 - | -------------------------- | ^ | // // wI = weightIn \ \ ( bI + aI ) / / // // wO = weightOut // **********************************************************************************************/ // Amount out, so we round down overall. // The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too). // Because bI / (bI + aI) <= 1, the exponent rounds down. // Cannot exceed maximum in ratio _require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO); uint256 denominator = balanceIn.add(amountIn); uint256 base = balanceIn.divUp(denominator); uint256 exponent = weightIn.divDown(weightOut); uint256 power = base.powUp(exponent); return balanceOut.mulDown(power.complement()); } // Computes how many tokens must be sent to a pool in order to take `amountOut`, given the // current balances and weights. function _calcInGivenOut( uint256 balanceIn, uint256 weightIn, uint256 balanceOut, uint256 weightOut, uint256 amountOut ) internal pure returns (uint256) { /********************************************************************************************** // inGivenOut // // aO = amountOut // // bO = balanceOut // // bI = balanceIn / / bO \ (wO / wI) \ // // aI = amountIn aI = bI * | | -------------------------- | ^ - 1 | // // wI = weightIn \ \ ( bO - aO ) / / // // wO = weightOut // **********************************************************************************************/ // Amount in, so we round up overall. // The multiplication rounds up, and the power rounds up (so the base rounds up too). // Because b0 / (b0 - a0) >= 1, the exponent rounds up. // Cannot exceed maximum out ratio _require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO); uint256 base = balanceOut.divUp(balanceOut.sub(amountOut)); uint256 exponent = weightOut.divUp(weightIn); uint256 power = base.powUp(exponent); // Because the base is larger than one (and the power rounds up), the power should always be larger than one, so // the following subtraction should never revert. uint256 ratio = power.sub(FixedPoint.ONE); return balanceIn.mulUp(ratio); } function _calcBptOutGivenExactTokensIn( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT out, so we round down overall. uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i])); } uint256 invariantRatio = FixedPoint.ONE; for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE.sub(swapFeePercentage))); } else { amountInWithoutFee = amountsIn[i]; } uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]); invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i])); } if (invariantRatio > FixedPoint.ONE) { return bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE)); } else { return 0; } } function _calcTokenInGivenExactBptOut( uint256 balance, uint256 normalizedWeight, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { /****************************************************************************************** // tokenInForExactBPTOut // // a = amountIn // // b = balance / / totalBPT + bptOut \ (1 / w) \ // // bptOut = bptAmountOut a = b * | | -------------------------- | ^ - 1 | // // bpt = totalBPT \ \ totalBPT / / // // w = weight // ******************************************************************************************/ // Token in, so we round up overall. // Calculate the factor by which the invariant will increase after minting BPTAmountOut uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply); _require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN); // Calculate by how much the token balance has to increase to match the invariantRatio uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight)); uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE)); // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 taxablePercentage = normalizedWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage))); } function _calcBptInGivenExactTokensOut( uint256[] memory balances, uint256[] memory normalizedWeights, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT in, so we round up overall. uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add( balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i]) ); } uint256 invariantRatio = FixedPoint.ONE; for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE.sub(swapFeePercentage))); } else { amountOutWithFee = amountsOut[i]; } uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]); invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i])); } return bptTotalSupply.mulUp(invariantRatio.complement()); } function _calcTokenOutGivenExactBptIn( uint256 balance, uint256 normalizedWeight, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { /***************************************************************************************** // exactBPTInForTokenOut // // a = amountOut // // b = balance / / totalBPT - bptIn \ (1 / w) \ // // bptIn = bptAmountIn a = b * | 1 - | -------------------------- | ^ | // // bpt = totalBPT \ \ totalBPT / / // // w = weight // *****************************************************************************************/ // Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base // rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down. // Calculate the factor by which the invariant will decrease after burning BPTAmountIn uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply); _require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT); // Calculate by how much the token balance has to decrease to match invariantRatio uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight)); // Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts. uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement()); // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 taxablePercentage = normalizedWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE.sub(swapFeePercentage))); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 totalBPT ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = amountOut / bptIn \ // // b = balance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ totalBPT / // // bpt = totalBPT // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(totalBPT); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } function _calcDueTokenProtocolSwapFeeAmount( uint256 balance, uint256 normalizedWeight, uint256 previousInvariant, uint256 currentInvariant, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /********************************************************************************* /* protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken)) *********************************************************************************/ if (currentInvariant <= previousInvariant) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol // fees to the Vault. // Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the // base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down. uint256 base = previousInvariant.divUp(currentInvariant); uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight); // Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this // value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than // 1 / min exponent) the Pool will pay less in protocol fees than it should. base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT); uint256 power = base.powUp(exponent); uint256 tokenAccruedFees = balance.mulDown(power.complement()); return tokenAccruedFees.mulDown(protocolSwapFeePercentage); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./BaseWeightedPool.sol"; library WeightedPoolUserDataHelpers { function joinKind(bytes memory self) internal pure returns (BaseWeightedPool.JoinKind) { return abi.decode(self, (BaseWeightedPool.JoinKind)); } function exitKind(bytes memory self) internal pure returns (BaseWeightedPool.ExitKind) { return abi.decode(self, (BaseWeightedPool.ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (BaseWeightedPool.JoinKind, uint256, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (BaseWeightedPool.ExitKind, uint256[], uint256)); } }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x < 2**255, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol"; import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol"; import "./BalancerPoolToken.sol"; import "./BasePoolAuthorization.sol"; // solhint-disable max-states-count /** * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable { using WordCodec for bytes32; using FixedPoint for uint256; uint256 private constant _MIN_TOKENS = 2; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% uint256 private constant _MINIMUM_BPT = 1e6; // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information. // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be // used to store any other piece of information. bytes32 private _miscData; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192; IVault private immutable _vault; bytes32 private immutable _poolId; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction _vault = vault; _poolId = poolId; } // Getters / Setters function getVault() public view returns (IVault) { return _vault; } function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view virtual returns (uint256); function _getMaxTokens() internal pure virtual returns (uint256); function getSwapFeePercentage() public view returns (uint256) { return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET); } function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET); emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } function setPaused(bool paused) external authenticate { _setPaused(paused); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } function _getMiscData() internal view returns (bytes32) { return _miscData; } /** * Inserts data into the least-significant 192 bits of the misc data storage slot. * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded. */ function _setMiscData(bytes32 newData) internal { _miscData = _miscData.insertBits192(newData, 0); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from // ever being fully drained. _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _MINIMUM_BPT); _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's * lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); // Internal functions /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage())); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(getSwapFeePercentage()); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) internal view returns (uint256) { // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256); /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory); function getScalingFactors() external view returns (uint256[] memory) { return _scalingFactors(); } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant * to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IMinimalSwapInfoPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library */ library Math { /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_10 = 2**(10) - 1; uint256 private constant _MASK_16 = 2**(16) - 1; uint256 private constant _MASK_22 = 2**(22) - 1; uint256 private constant _MASK_31 = 2**(31) - 1; uint256 private constant _MASK_32 = 2**(32) - 1; uint256 private constant _MASK_53 = 2**(53) - 1; uint256 private constant _MASK_64 = 2**(64) - 1; uint256 private constant _MASK_128 = 2**(128) - 1; uint256 private constant _MASK_192 = 2**(192) - 1; // Largest positive values that can be represented as N bits signed integers. int256 private constant _MAX_INT_22 = 2**(21) - 1; int256 private constant _MAX_INT_53 = 2**(52) - 1; // In-place insertion /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBool( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Unsigned /** * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes. */ function insertUint10( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. * Returns the new word. * * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes. */ function insertUint16( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 31 bits. */ function insertUint31( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes. */ function insertUint32( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes. */ function insertUint64( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset)); return clearedWord | bytes32(value << offset); } // Signed /** * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 22 bits. */ function insertInt22( bytes32 word, int256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & _MASK_22) << offset); } // Bytes /** * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word. * * Assumes `value` can be represented using 192 bits. */ function insertBits192( bytes32 word, bytes32 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset)); return clearedWord | bytes32((uint256(value) & _MASK_192) << offset); } // Encoding // Unsigned /** * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to * ensure that the values are bounded. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) { return bytes32(value << offset); } // Signed /** * @dev Encodes a 22 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_22) << offset); } /** * @dev Encodes a 53 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_53) << offset); } // Decoding /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } // Unsigned /** * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_10; } /** * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_16; } /** * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_31; } /** * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_32; } /** * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_64; } /** * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_128; } // Signed /** * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_22); // In case the decoded value is greater than the max positive integer that can be represented with 22 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value; } /** * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_53); // In case the decoded value is greater than the max positive integer that can be represented with 53 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * Note: No function to read the asset manager config is included in IAssetManager * as the signature is expected to vary between asset manager implementations */ /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; /** * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals * @param poolId - the poolId of the pool to withdraw funds back to * @param amount - the amount of tokens to withdraw back to the pool */ function capitalOut(bytes32 poolId, uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` */ contract BalancerPoolToken is ERC20, ERC20Permit { constructor(string memory tokenName, string memory tokenSymbol) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { // solhint-disable-previous-line no-empty-blocks } // Overrides /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol"; import "./BasePool.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./ERC20.sol"; import "./IERC20Permit.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: MIT // Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size. // Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using // private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { _enterNonReentrant(); _; _exitNonReentrant(); } function _enterNonReentrant() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED _require(_status != _ENTERED, Errors.REENTRANCY); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _exitNonReentrant() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; /** * @dev Library for compressing and uncompresing numbers by using smaller types. * All values are 18 decimal fixed-point numbers in the [0.0, 1.0] range, * so heavier compression (fewer bits) results in fewer decimals. */ library WeightCompression { uint256 private constant _UINT31_MAX = 2**(31) - 1; using FixedPoint for uint256; /** * @dev Convert a 16-bit value to full FixedPoint */ function uncompress16(uint256 value) internal pure returns (uint256) { return value.mulUp(FixedPoint.ONE).divUp(type(uint16).max); } /** * @dev Compress a FixedPoint value to 16 bits */ function compress16(uint256 value) internal pure returns (uint256) { return value.mulUp(type(uint16).max).divUp(FixedPoint.ONE); } /** * @dev Convert a 31-bit value to full FixedPoint */ function uncompress31(uint256 value) internal pure returns (uint256) { return value.mulUp(FixedPoint.ONE).divUp(_UINT31_MAX); } /** * @dev Compress a FixedPoint value to 31 bits */ function compress31(uint256 value) internal pure returns (uint256) { return value.mulUp(_UINT31_MAX).divUp(FixedPoint.ONE); } }
{ "optimizer": { "enabled": true, "runs": 9999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"normalizedWeights","type":"uint256[]"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"bool","name":"swapEnabledOnStart","type":"bool"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"startWeights","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"name":"GradualWeightUpdateScheduled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"swapEnabled","type":"bool"}],"name":"SwapEnabledSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getGradualWeightUpdateParams","outputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNormalizedWeights","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256","name":"balanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"balanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"swapEnabled","type":"bool"}],"name":"setSwapEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"uint256[]","name":"endWeights","type":"uint256[]"}],"name":"updateWeightsGradually","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6102e06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b506040516200603c3803806200603c8339810160408190526200005a9162000d48565b898989898a516001600160401b03811180156200007657600080fd5b50604051908082528060200260200182016040528015620000a1578160200160208202803683370190505b5089898989888651600214620000b9576001620000bc565b60025b8989898989898989828289898180604051806040016040528060018152602001603160f81b815250848489336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b815250505081600390805190602001906200013392919062000b00565b5080516200014990600490602084019062000b00565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005250620001a86276a70083111561019462000511565b620001bc62278d0082111561019562000511565b4290910161014081905201610160528551620001de906002111560c862000511565b620001f8620001ec62000526565b8751111560c962000511565b6200020e866200052b60201b620010291760201c565b620002198462000537565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200024a908d9060040162000f5d565b602060405180830381600087803b1580156200026557600080fd5b505af11580156200027a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002a0919062000d2f565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002d59084908b908b9060040162000ec1565b600060405180830381600087803b158015620002f057600080fd5b505af115801562000305573d6000803e3d6000fd5b505050508a6001600160a01b0316610180816001600160a01b031660601b81525050806101a0818152505050505050505050505050505050505050505050506001600a819055506000875190506200036a818851620005c360201b620010331760201c565b6101c0819052875188906000906200037e57fe5b60200260200101516001600160a01b03166101e0816001600160a01b031660601b8152505087600181518110620003b157fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b8152505060028111620003e7576000620003fe565b87600281518110620003f557fe5b60200260200101515b60601b6001600160601b03191661022052600381116200042057600062000437565b876003815181106200042e57fe5b60200260200101515b6001600160a01b0316610240816001600160a01b031660601b815250506200047a886000815181106200046657fe5b6020026020010151620005d260201b60201c565b6102605287516200049390899060019081106200046657fe5b6102805260028111620004a8576000620004ba565b620004ba886002815181106200046657fe5b6102a05260038111620004cf576000620004e1565b620004e1886003815181106200046657fe5b6102c05242620004f481808a806200067e565b620004ff836200080c565b50505050505050505050505062001024565b816200052257620005228162000860565b5050565b600490565b806200052281620008b3565b6200054c64e8d4a5100082101560cb62000511565b6200056467016345785d8a000082111560ca62000511565b620005838160c06008546200094060201b62001040179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90620005b890839062000f72565b60405180910390a150565b62000522828214606762000511565b600080826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200060f57600080fd5b505afa15801562000624573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200064a919062000e57565b60ff1690506000620006696012836200095560201b620010561760201c565b600a0a670de0b6b3a764000002949350505050565b600b546000805b83518110156200076f5760008482815181106200069e57fe5b60200260200101519050620006c6662386f26fc1000082101561012e6200051160201b60201c565b62000747620006e0826200097260201b6200106c1760201c565b8360100260800162000732620007158a8781518110620006fc57fe5b6020026020010151620009b360201b6200108c1760201c565b86601f0260040189620009e060201b620010a8179092919060201c565b620009f260201b620010ba179092919060201c565b935062000763818462000a0260201b620010ca1790919060201c565b92505060010162000685565b5062000788670de0b6b3a7640000821461013462000511565b620007c18560e0620007ac8960c08762000a1d60201b620010dc179092919060201c565b62000a1d60201b620010dc179092919060201c565b600b556040517f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be090620007fc90889088908890889062000f7b565b60405180910390a1505050505050565b6200082b816000600b5462000a2f60201b620010ee179092919060201c565b600b556040517f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f90620005b890839062000eb6565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600281511015620008c4576200093d565b600081600081518110620008d457fe5b602002602001015190506000600190505b82518110156200093a576000838281518110620008fe57fe5b602002602001015190506200092f816001600160a01b0316846001600160a01b03161060656200051160201b60201c565b9150600101620008e5565b50505b50565b6001600160401b03811b1992909216911b1790565b60006200096783831115600162000511565b508082035b92915050565b60006200096c670de0b6b3a76400006200099f61ffff80168562000a5860201b620011151790919060201c565b62000aad60201b620011811790919060201c565b60006200096c670de0b6b3a76400006200099f637fffffff8562000a5860201b620011151790919060201c565b637fffffff811b1992909216911b1790565b61ffff811b1992909216911b1790565b600082820162000a16848210158362000511565b9392505050565b63ffffffff811b1992909216911b1790565b60006001821b198416828462000a4757600062000a4a565b60015b60ff16901b17949350505050565b600082820262000a8084158062000a7857508385838162000a7557fe5b04145b600362000511565b8062000a915760009150506200096c565b670de0b6b3a764000060001982015b046001019150506200096c565b600062000abe821515600462000511565b8262000acd575060006200096c565b670de0b6b3a76400008381029062000af39085838162000ae957fe5b0414600562000511565b82600182038162000aa057fe5b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000b4357805160ff191683800117855562000b73565b8280016001018555821562000b73579182015b8281111562000b7357825182559160200191906001019062000b56565b5062000b8192915062000b85565b5090565b5b8082111562000b81576000815560010162000b86565b80516200096c816200100e565b600082601f83011262000bba578081fd5b815162000bd162000bcb8262000fe2565b62000fbb565b81815291506020808301908481018184028601820187101562000bf357600080fd5b60005b8481101562000c1f57815162000c0c816200100e565b8452928201929082019060010162000bf6565b505050505092915050565b600082601f83011262000c3b578081fd5b815162000c4c62000bcb8262000fe2565b81815291506020808301908481018184028601820187101562000c6e57600080fd5b60005b8481101562000c1f5781518452928201929082019060010162000c71565b805180151581146200096c57600080fd5b600082601f83011262000cb1578081fd5b81516001600160401b0381111562000cc7578182fd5b602062000cdd601f8301601f1916820162000fbb565b9250818352848183860101111562000cf457600080fd5b60005b8281101562000d1457848101820151848201830152810162000cf7565b8281111562000d265760008284860101525b50505092915050565b60006020828403121562000d41578081fd5b5051919050565b6000806000806000806000806000806101408b8d03121562000d68578586fd5b62000d748c8c62000b9c565b60208c0151909a506001600160401b038082111562000d91578788fd5b62000d9f8e838f0162000ca0565b9a5060408d015191508082111562000db5578788fd5b62000dc38e838f0162000ca0565b995060608d015191508082111562000dd9578788fd5b62000de78e838f0162000ba9565b985060808d015191508082111562000dfd578788fd5b5062000e0c8d828e0162000c2a565b96505060a08b0151945060c08b0151935060e08b0151925062000e348c6101008d0162000b9c565b915062000e468c6101208d0162000c8f565b90509295989b9194979a5092959850565b60006020828403121562000e69578081fd5b815160ff8116811462000a16578182fd5b6000815180845260208085019450808401835b8381101562000eab5781518752958201959082019060010162000e8d565b509495945050505050565b901515815260200190565b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562000f0d5762000efa855162001002565b8352938301939183019160010162000ee5565b505084810360408601528551808252908201925081860190845b8181101562000f4f5762000f3c835162001002565b8552938301939183019160010162000f27565b509298975050505050505050565b602081016003831062000f6c57fe5b91905290565b90815260200190565b60008582528460208301526080604083015262000f9c608083018562000e7a565b828103606084015262000fb0818562000e7a565b979650505050505050565b6040518181016001600160401b038111828210171562000fda57600080fd5b604052919050565b60006001600160401b0382111562000ff8578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b03811681146200093d57600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c61026051610280516102a0516102c051614f126200112a600039806114ae528061207852508061146b52806120175250806114285280611fb65250806113d75280611f5552508061203d5280612f83525080611fdc5280612f41525080611f7b5280612eff525080611f1a5280612ebd525080611712525080610716525080610ab5525080611359525080611335525080610d925250806115de5250806116205250806115ff525080610a91525080610a1b5250614f126000f3fe608060405234801561001057600080fd5b50600436106102925760003560e01c806374f3b009116101605780639d2c110c116100d8578063d505accf1161008c578063dd62ed3e11610071578063dd62ed3e14610508578063e01af92c1461051b578063f89f27ed1461052e57610292565b8063d505accf146104e2578063d5c096c4146104f557610292565b8063a9059cbb116100bd578063a9059cbb146104bf578063aaabadc5146104d2578063c0ff1a15146104da57610292565b80639d2c110c14610499578063a457c2d7146104ac57610292565b806387ec68171161012f5780638d928af8116101145780638d928af81461048157806395d89b41146104895780639b02cdde1461049157610292565b806387ec681714610459578063893d20e81461046c57610292565b806374f3b009146103fb5780637beed2201461041c5780637ecebe0014610433578063851c1bb31461044657610292565b806338e9922e1161020e57806350dd6ed9116101c25780636028bfd4116101a75780636028bfd4146103bf578063679aefce146103e057806370a08231146103e857610292565b806350dd6ed9146103a457806355c67628146103b757610292565b806339509351116101f357806339509351146103765780633e5692051461038957806347bc4d921461039c57610292565b806338e9922e1461035b57806338fff2d01461036e57610292565b80631c0de0511161026557806323b872dd1161024a57806323b872dd1461032b578063313ce5671461033e5780633644e5151461035357610292565b80631c0de051146102ff5780631dd746ea1461031657610292565b806306fdde0314610297578063095ea7b3146102b557806316c38b3c146102d557806318160ddd146102ea575b600080fd5b61029f610536565b6040516102ac9190614ddb565b60405180910390f35b6102c86102c3366004614672565b6105eb565b6040516102ac9190614ce2565b6102e86102e3366004614769565b610602565b005b6102f2610616565b6040516102ac9190614d05565b61030761061c565b6040516102ac93929190614ced565b61031e610645565b6040516102ac9190614caa565b6102c86103393660046145bd565b610654565b6103466106e8565b6040516102ac9190614e57565b6102f26106f1565b6102e8610369366004614af5565b6106fb565b6102f2610714565b6102c8610384366004614672565b610738565b6102e8610397366004614b0d565b610773565b6102c86107da565b6102e86103b23660046148a0565b6107ea565b6102f2610808565b6103d26103cd3660046147a1565b610819565b6040516102ac929190614dee565b6102f2610850565b6102f26103f6366004614569565b61087b565b61040e6104093660046147a1565b61089a565b6040516102ac929190614cbd565b61042461093d565b6040516102ac93929190614e07565b6102f2610441366004614569565b6109fc565b6102f2610454366004614844565b610a17565b6103d26104673660046147a1565b610a69565b610474610a8f565b6040516102ac9190614c96565b610474610ab3565b61029f610ad7565b6102f2610b56565b6102f26104a73660046149f9565b610b5c565b6102c86104ba366004614672565b610c43565b6102c86104cd366004614672565b610c81565b610474610c8e565b6102f2610c98565b6102e86104f03660046145fd565b610d5d565b61040e6105033660046147a1565b610ea6565b6102f2610516366004614585565b610fcb565b6102e8610529366004614769565b610ff6565b61031e61101f565b60038054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105e05780601f106105b5576101008083540402835291602001916105e0565b820191906000526020600020905b8154815290600101906020018083116105c357829003601f168201915b505050505090505b90565b60006105f83384846111cc565b5060015b92915050565b61060a611234565b6106138161127a565b50565b60025490565b6000806000610629611316565b159250610634611333565b915061063e611357565b9050909192565b606061064f61137b565b905090565b6000806106618533610fcb565b9050610685336001600160a01b038716148061067d5750838210155b61019e6114ec565b6106908585856114fa565b336001600160a01b038616148015906106c957507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114155b156106db576106db85338584036111cc565b60019150505b9392505050565b60055460ff1690565b600061064f6115da565b610703611234565b61070b611677565b6106138161168c565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916105f891859061076e90866110ca565b6111cc565b61077b611234565b610783611677565b61078b6116f7565b61079d610796611710565b8251611033565b426107a88185611734565b93506107b9838511156101466114ec565b6107cc84846107c661174b565b8561185f565b506107d5611974565b505050565b600b5460009061064f908261197b565b6107f2611234565b6107fa611677565b6108048282611985565b5050565b60085460009061064f9060c0611a9d565b6000606061082f865161082a611710565b611033565b61084489898989898989611aab611b7b611bdc565b97509795505050505050565b600061064f61085d610616565b610875610868610c98565b610870611710565b611d6c565b90611d86565b6001600160a01b0381166000908152602081905260409020545b919050565b606080886108c46108a9610ab3565b6001600160a01b0316336001600160a01b03161460cd6114ec565b6108d96108cf610714565b82146101f46114ec565b60606108e361137b565b90506108ef8882611dce565b60006060806109048e8e8e8e8e8e8a8f611aab565b9250925092506109148d84611e2f565b61091e8285611b7b565b6109288185611b7b565b909550935050505b5097509795505050505050565b600b5460009081906060906109538160c0611e39565b93506109608160e0611e39565b9250600061096c611710565b90508067ffffffffffffffff8111801561098557600080fd5b506040519080825280602002602001820160405280156109af578160200160208202803683370190505b50925060005b818110156109f4576109d56109d08460806010850201611e43565b611e4b565b8482815181106109e157fe5b60209081029190910101526001016109b5565b505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610a4c929190614c20565b604051602081830303815290604052805190602001209050919050565b60006060610a7a865161082a611710565b61084489898989898989611e65611eb5611bdc565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105e05780601f106105b5576101008083540402835291602001916105e0565b60095490565b600080610b6c8560200151611f16565b90506000610b7d8660400151611f16565b9050600086516001811115610b8e57fe5b1415610bf457610ba186606001516120a7565b6060870152610bb085836120c8565b9450610bbc84826120c8565b9350610bcc8660600151836120c8565b60608701526000610bde8787876120d4565b9050610bea81836120fc565b93505050506106e1565b610bfe85836120c8565b9450610c0a84826120c8565b9350610c1a8660600151826120c8565b60608701526000610c2c878787612108565b9050610c388184612120565b9050610bea8161212c565b600080610c503385610fcb565b9050808310610c6a57610c65338560006111cc565b610c77565b610c7733858584036111cc565b5060019392505050565b60006105f83384846114fa565b600061064f612152565b60006060610ca4610ab3565b6001600160a01b031663f94d4668610cba610714565b6040518263ffffffff1660e01b8152600401610cd69190614d05565b60006040518083038186803b158015610cee57600080fd5b505afa158015610d02573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d2a919081019061469d565b50915050610d3f81610d3a61137b565b611dce565b6060610d496121cc565b509050610d56818361224a565b9250505090565b610d6b8442111560d16114ec565b6001600160a01b0387166000908152600660209081526040808320549051909291610dc2917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101614d2d565b6040516020818303038152906040528051906020012090506000610de5826122bc565b9050600060018288888860405160008152602001604052604051610e0c9493929190614dbd565b6020604051602081039080840390855afa158015610e2e573d6000803e3d6000fd5b5050604051601f1901519150610e7090506001600160a01b03821615801590610e6857508b6001600160a01b0316826001600160a01b0316145b6101f86114ec565b6001600160a01b038b166000908152600660205260409020600185019055610e998b8b8b6111cc565b5050505050505050505050565b60608088610eb56108a9610ab3565b610ec06108cf610714565b6060610eca61137b565b9050610ed4610616565b610f7b5760006060610ee98d8d8d868b6122d8565b91509150610efe620f424083101560cc6114ec565b610f0c6000620f424061231e565b610f1b8b620f4240840361231e565b610f258184611eb5565b80610f2e611710565b67ffffffffffffffff81118015610f4457600080fd5b50604051908082528060200260200182016040528015610f6e578160200160208202803683370190505b5095509550505050610930565b610f858882611dce565b6000606080610f9a8e8e8e8e8e8e8a8f611e65565b925092509250610faa8c8461231e565b610fb48285611eb5565b610fbe8185611b7b565b9095509350610930915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b610ffe611234565b611006611677565b61100e6116f7565b61101781612328565b610613611974565b606061064f61174b565b806108048161236a565b61080481831460676114ec565b67ffffffffffffffff811b1992909216911b1790565b60006110668383111560016114ec565b50900390565b60006105fc670de0b6b3a76400006110868461ffff611115565b90611181565b60006105fc670de0b6b3a764000061108684637fffffff611115565b637fffffff811b1992909216911b1790565b61ffff811b1992909216911b1790565b60008282016106e184821015836114ec565b63ffffffff811b1992909216911b1790565b60006001821b1984168284611104576000611107565b60015b60ff16901b17949350505050565b600082820261113984158061113257508385838161112f57fe5b04145b60036114ec565b806111485760009150506105fc565b670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82015b046001019150506105fc565b600061119082151560046114ec565b8261119d575060006105fc565b670de0b6b3a7640000838102906111c0908583816111b757fe5b041460056114ec565b82600182038161117557fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611227908590614d05565b60405180910390a3505050565b60006112636000357fffffffff0000000000000000000000000000000000000000000000000000000016610a17565b905061061361127282336123e3565b6101916114ec565b801561129a5761129561128b611333565b42106101936114ec565b6112af565b6112af6112a5611357565b42106101a96114ec565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be649061130b908390614ce2565b60405180910390a150565b6000611320611357565b42118061064f57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60606000611387611710565b905060608167ffffffffffffffff811180156113a257600080fd5b506040519080825280602002602001820160405280156113cc578160200160208202803683370190505b5090508115611414577f00000000000000000000000000000000000000000000000000000000000000008160008151811061140357fe5b60200260200101818152505061141d565b91506105e89050565b6001821115611414577f00000000000000000000000000000000000000000000000000000000000000008160018151811061145457fe5b6020026020010181815250506002821115611414577f00000000000000000000000000000000000000000000000000000000000000008160028151811061149757fe5b6020026020010181815250506003821115611414577f0000000000000000000000000000000000000000000000000000000000000000816003815181106114da57fe5b60200260200101818152505091505090565b8161080457610804816124d3565b6115116001600160a01b03841615156101986114ec565b6115286001600160a01b03831615156101996114ec565b6115338383836107d5565b6001600160a01b03831660009081526020819052604090205461155990826101a0612540565b6001600160a01b03808516600090815260208190526040808220939093559084168152205461158890826110ca565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611227908590614d05565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611647612556565b3060405160200161165c959493929190614d61565b60405160208183030381529060405280519060200120905090565b61168a611682611316565b6101926114ec565b565b61169f64e8d4a5100082101560cb6114ec565b6116b567016345785d8a000082111560ca6114ec565b6008546116c4908260c0611040565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9061130b908390614d05565b6117096002600a5414156101906114ec565b6002600a55565b7f000000000000000000000000000000000000000000000000000000000000000090565b60008183101561174457816106e1565b5090919050565b60606000611757611710565b905060608167ffffffffffffffff8111801561177257600080fd5b5060405190808252806020026020018201604052801561179c578160200160208202803683370190505b50600b549091506117ae60008261255a565b826000815181106117bb57fe5b6020026020010181815250506117d260018261255a565b826001815181106117df57fe5b60200260200101818152505082600214156117fe575091506105e89050565b61180960028261255a565b8260028151811061181657fe5b6020026020010181815250508260031415611835575091506105e89050565b61184060038261255a565b8260038151811061184d57fe5b60209081029190910101525091505090565b600b546000805b83518110156118fb57600084828151811061187d57fe5b6020026020010151905061189d662386f26fc1000082101561012e6114ec565b6118e46118a98261106c565b836010026080016118dd6118cf8a87815181106118c257fe5b602002602001015161108c565b88906004601f8902016110a8565b91906110ba565b93506118f083826110ca565b925050600101611866565b50611912670de0b6b3a764000082146101346114ec565b61192b8560e0611924858a60c06110dc565b91906110dc565b600b556040517f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be090611964908890889088908890614e26565b60405180910390a1505050505050565b6001600a55565b1c60019081161490565b600061198f610714565b9050600061199b610ab3565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016119c8929190614da6565b60806040518083038186803b1580156119e057600080fd5b505afa1580156119f4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a189190614b5b565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d49250611a65915085908790600401614d8d565b600060405180830381600087803b158015611a7f57600080fd5b505af1158015611a93573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b600060608060606000611abc6121cc565b91509150611ac8611316565b15611b00576000611ad9838c61224a565b9050611aeb8b8484600954858e6125b0565b9350611afa8b8561105661265f565b50611b4c565b611b08611710565b67ffffffffffffffff81118015611b1e57600080fd5b50604051908082528060200260200182016040528015611b48578160200160208202803683370190505b5092505b611b588a8389896126ca565b9095509350611b688a8584612739565b6009555050985098509895505050505050565b60005b611b86611710565b8110156107d557611bbd838281518110611b9c57fe5b6020026020010151838381518110611bb057fe5b6020026020010151611d86565b838281518110611bc957fe5b6020908102919091010152600101611b7e565b333014611ccb576000306001600160a01b0316600036604051611c00929190614c50565b6000604051808303816000865af19150503d8060008114611c3d576040519150601f19603f3d011682016040523d82523d6000602084013e611c42565b606091505b505090508060008114611c5157fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611cad573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611cd561137b565b9050611ce18782611dce565b60006060611cf98c8c8c8c8c8c898d8d63ffffffff16565b5091509150611d0c81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60008282026106e184158061113257508385838161112f57fe5b6000611d9582151560046114ec565b82611da2575060006105fc565b670de0b6b3a764000083810290611dbc908583816111b757fe5b828181611dc557fe5b049150506105fc565b60005b611dd9611710565b8110156107d557611e10838281518110611def57fe5b6020026020010151838381518110611e0357fe5b6020026020010151612752565b838281518110611e1c57fe5b6020908102919091010152600101611dd1565b610804828261277e565b1c63ffffffff1690565b1c61ffff1690565b60006105fc61ffff61108684670de0b6b3a7640000611115565b6000606080611e91611e75610a8f565b6001600160a01b03168b6001600160a01b0316146101486114ec565b611ea18b8b8b8b8b8b8b8b61283a565b925092509250985098509895505050505050565b60005b611ec0611710565b8110156107d557611ef7838281518110611ed657fe5b6020026020010151838381518110611eea57fe5b6020026020010151611181565b838281518110611f0357fe5b6020908102919091010152600101611eb8565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611f7957507f0000000000000000000000000000000000000000000000000000000000000000610895565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611fda57507f0000000000000000000000000000000000000000000000000000000000000000610895565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561203b57507f0000000000000000000000000000000000000000000000000000000000000000610895565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561209c57507f0000000000000000000000000000000000000000000000000000000000000000610895565b6108956101356124d3565b6000806120bc6120b5610808565b8490611115565b90506106e18382611056565b60006106e18383612752565b60006120e96120e16107da565b6101476114ec565b6120f48484846128c0565b949350505050565b60006106e18383611d86565b60006121156120e16107da565b6120f48484846128f3565b60006106e18383611181565b60006105fc61214b61213c610808565b670de0b6b3a764000090611056565b8390611181565b600061215c610ab3565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561219457600080fd5b505afa1580156121a8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061064f9190614884565b606060006121d861174b565b9150600090506000826000815181106121ed57fe5b602002602001015190506000600190505b8351811015612244578184828151811061221457fe5b6020026020010151111561223c5780925083818151811061223157fe5b602002602001015191505b6001016121fe565b50509091565b670de0b6b3a764000060005b83518110156122ac576122a261229b85838151811061227157fe5b602002602001015185848151811061228557fe5b602002602001015161292690919063ffffffff16565b8390612752565b9150600101612256565b506105fc600082116101376114ec565b60006122c66115da565b82604051602001610a4c929190614c60565b600060606123036122e7610a8f565b6001600160a01b0316876001600160a01b0316146101486114ec565b6123108787878787612975565b915091509550959350505050565b6108048282612a09565b600b54612337908260006110ee565b600b556040517f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f9061130b908390614ce2565b60028151101561237957610613565b60008160008151811061238857fe5b602002602001015190506000600190505b82518110156107d55760008382815181106123b057fe5b602002602001015190506123d9816001600160a01b0316846001600160a01b03161060656114ec565b9150600101612399565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612402610a8f565b6001600160a01b03161415801561241d575061241d83612a97565b156124455761242a610a8f565b6001600160a01b0316336001600160a01b03161490506105fc565b61244d612152565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161247c93929190614d0e565b60206040518083038186803b15801561249457600080fd5b505afa1580156124a8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906124cc9190614785565b90506105fc565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600061254f84841115836114ec565b5050900390565b4690565b600080612575612570846004601f880201612b05565b612b0f565b9050600061258c6109d08560806010890201611e43565b9050600061259985612b2b565b90506125a6838383612baa565b9695505050505050565b6060806125bb611710565b67ffffffffffffffff811180156125d157600080fd5b506040519080825280602002602001820160405280156125fb578160200160208202803683370190505b5090508261260a5790506125a6565b61263d88878151811061261957fe5b602002602001015188888151811061262d57fe5b6020026020010151878787612c1e565b81878151811061264957fe5b6020908102919091010152979650505050505050565b60005b61266a611710565b8110156126c4576126a584828151811061268057fe5b602002602001015184838151811061269457fe5b60200260200101518463ffffffff16565b8482815181106126b157fe5b6020908102919091010152600101612662565b50505050565b6000606060006126d984612ca6565b905060008160028111156126e957fe5b1415612704576126fa878786612cbc565b9250925050612730565b600181600281111561271257fe5b1415612722576126fa8785612d9f565b6126fa87878787612dd1565b505b94509492505050565b6000612748848461105661265f565b6120f4828561224a565b600082820261276c84158061113257508385838161112f57fe5b670de0b6b3a764000090049392505050565b6127956001600160a01b038316151561019b6114ec565b6127a1826000836107d5565b6001600160a01b0382166000908152602081905260409020546127c790826101a1612540565b6001600160a01b0383166000908152602081905260409020556002546127ed9082612e40565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061282e908590614d05565b60405180910390a35050565b6000606080612847611677565b606060006128536121cc565b915091506000612863838c61224a565b905060606128778c8585600954868f6125b0565b90506128868c8261105661265f565b600060606128968e878d8d612e4e565b915091506128a58e8288612ea9565b60095590975095509350505050985098509895505050505050565b60006128ca611677565b6120f4836128db8660200151612eb8565b846128e98860400151612eb8565b8860600151612fda565b60006128fd611677565b6120f48361290e8660200151612eb8565b8461291c8860400151612eb8565b8860600151613047565b60008061293384846130bd565b9050600061294d61294683612710611115565b60016110ca565b905080821015612962576000925050506105fc565b61296c8282611056565b925050506105fc565b60006060612981611677565b600061298c84612ca6565b90506129a7600082600281111561299f57fe5b1460ce6114ec565b60606129b2856131f0565b90506129bf610796611710565b6129c98187611dce565b60606129d36121cc565b50905060006129e2828461224a565b905060006129f282610870611710565b600992909255509a91995090975050505050505050565b612a15600083836107d5565b600254612a2290826110ca565b6002556001600160a01b038216600090815260208190526040902054612a4890826110ca565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061282e908590614d05565b6000612ac27fe01af92c00000000000000000000000000000000000000000000000000000000610a17565b821480612af65750612af37f3e56920500000000000000000000000000000000000000000000000000000000610a17565b82145b806105fc57506105fc82613206565b1c637fffffff1690565b60006105fc637fffffff61108684670de0b6b3a7640000611115565b60004281612b3a8460c0611e39565b90506000612b498560e0611e39565b905080831115612b6657670de0b6b3a76400009350505050610895565b81831015612b7a5760009350505050610895565b8181038284038115612b9557612b908183611d86565b612b9f565b670de0b6b3a76400005b979650505050505050565b6000811580612bb857508284145b15612bc45750826106e1565b670de0b6b3a76400008210612bda5750816106e1565b82841115612c04576000612bf083858703612752565b9050612bfc8582611056565b9150506106e1565b6000612c1283868603612752565b9050612bfc85826110ca565b6000838311612c2f57506000612c9d565b6000612c3b8585611181565b90506000612c51670de0b6b3a764000088611d86565b9050612c65826709b6e64a8ec60000611734565b91506000612c73838361326a565b90506000612c8a612c8383613296565b8b90612752565b9050612c968187612752565b9450505050505b95945050505050565b6000818060200190518101906105fc91906148ee565b60006060612cc8611677565b600080612cd4856132bc565b91509150612cec612ce3611710565b821060646114ec565b6060612cf6611710565b67ffffffffffffffff81118015612d0c57600080fd5b50604051908082528060200260200182016040528015612d36578160200160208202803683370190505b509050612d7a888381518110612d4857fe5b6020026020010151888481518110612d5c57fe5b602002602001015185612d6d610616565b612d75610808565b6132de565b818381518110612d8657fe5b6020908102919091010152919791965090945050505050565b600060606000612dae8461339e565b90506060612dc48683612dbf610616565b6133b4565b9196919550909350505050565b60006060612ddd611677565b60606000612dea85613466565b91509150612dfb825161082a611710565b612e058287611dce565b6000612e22898985612e15610616565b612e1d610808565b61347e565b9050612e328282111560cf6114ec565b989197509095505050505050565b60006106e183836001612540565b600060606000612e5d84612ca6565b90506001816002811115612e6d57fe5b1415612e7f576126fa878787876136ac565b6002816002811115612e8d57fe5b1415612e9e576126fa878786613709565b61272e6101366124d3565b600061274884846110ca61265f565b6000807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612efd57506000612fce565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612f3f57506001612fce565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612f8157506002612fce565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612fc357506003612fce565b612fce6101356124d3565b6106e181600b5461255a565b6000612ffc612ff187670429d069189e0000612752565b8311156101306114ec565b600061300887846110ca565b905060006130168883611181565b905060006130248887611d86565b90506000613032838361326a565b9050612c9661304082613296565b8990612752565b600061306961305e85670429d069189e0000612752565b8311156101316114ec565b600061307f6130788685611056565b8690611181565b9050600061308d8588611181565b9050600061309b838361326a565b905060006130b182670de0b6b3a7640000611056565b9050612c968a82611115565b6000816130d35750670de0b6b3a76400006105fc565b826130e0575060006105fc565b61310d7f8000000000000000000000000000000000000000000000000000000000000000841060066114ec565b82613133770bce5086492111aea88f4bb1ca6bcf584181ea8059f76532841060076114ec565b826000670c7d713b49da0000831380156131545750670f43fc2c04ee000083125b1561318b576000613164846137b6565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050613199565b81613195846138ed565b0290505b670de0b6b3a764000090056131e77ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000082128015906131e0575068070c1cc73b00c800008213155b60086114ec565b6125a681613c8d565b6060818060200190518101906106e191906149b4565b60006132317f38e9922e00000000000000000000000000000000000000000000000000000000610a17565b8214806105fc57506132627f50dd6ed900000000000000000000000000000000000000000000000000000000610a17565b909114919050565b60008061327784846130bd565b9050600061328a61294683612710611115565b9050612c9d82826110ca565b6000670de0b6b3a764000082106132ae5760006105fc565b50670de0b6b3a76400000390565b600080828060200190518101906132d3919061497e565b909590945092505050565b6000806132ef846110868188611056565b90506133086709b6e64a8ec600008210156101326114ec565b600061332661331f670de0b6b3a764000089611d86565b839061326a565b9050600061333d61333683613296565b8a90612752565b9050600061334a89613296565b905060006133588383611115565b905060006133668483611056565b905061338e613387613380670de0b6b3a76400008b611056565b8490612752565b82906110ca565b9c9b505050505050505050505050565b6000818060200190518101906106e19190614951565b606060006133c28484611d86565b90506060855167ffffffffffffffff811180156133de57600080fd5b50604051908082528060200260200182016040528015613408578160200160208202803683370190505b50905060005b865181101561345c5761343d8388838151811061342757fe5b602002602001015161275290919063ffffffff16565b82828151811061344957fe5b602090810291909101015260010161340e565b5095945050505050565b60606000828060200190518101906132d3919061490a565b60006060845167ffffffffffffffff8111801561349a57600080fd5b506040519080825280602002602001820160405280156134c4578160200160208202803683370190505b5090506000805b8851811015613589576135248982815181106134e357fe5b60200260200101516110868984815181106134fa57fe5b60200260200101518c858151811061350e57fe5b602002602001015161105690919063ffffffff16565b83828151811061353057fe5b60200260200101818152505061357f61357889838151811061354e57fe5b602002602001015185848151811061356257fe5b602002602001015161111590919063ffffffff16565b83906110ca565b91506001016134cb565b50670de0b6b3a764000060005b895181101561368b5760008482815181106135ad57fe5b602002602001015184111561360d5760006135d66135ca86613296565b8d858151811061342757fe5b905060006135ea828c868151811061350e57fe5b905061360461357861214b670de0b6b3a76400008c611056565b92505050613624565b88828151811061361957fe5b602002602001015190505b600061364d8c848151811061363557fe5b6020026020010151610875848f878151811061350e57fe5b905061367f6136788c858151811061366157fe5b60200260200101518361292690919063ffffffff16565b8590612752565b93505050600101613596565b5061369f61369882613296565b8790611115565b9998505050505050505050565b600060608060006136bc85613466565b915091506136d26136cb611710565b8351611033565b6136dc8287611dce565b60006136f98989856136ec610616565b6136f4610808565b61415d565b9050612e328282101560d06114ec565b60006060600080613719856132bc565b91509150613728612ce3611710565b6060613732611710565b67ffffffffffffffff8111801561374857600080fd5b50604051908082528060200260200182016040528015613772578160200160208202803683370190505b509050612d7a88838151811061378457fe5b602002602001015188848151811061379857fe5b6020026020010151856137a9610616565b6137b1610808565b61436f565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f0000000008501028161380257fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a764000082121561392a57613920826ec097ce7bc90715b34b9f10000000008161391a57fe5b056138ed565b6000039050610895565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261397b57770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e00000083126139b3576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126139fb576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613a36576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613a6d57693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613aa457690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613ad95768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613b0457680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312613b39576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312613b6e576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312613ba2576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312613bd6576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d631000008086030281613bf957fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6000613cd27ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008312158015613ccb575068070c1cc73b00c800008313155b60096114ec565b6000821215613d0657613ce782600003613c8d565b6ec097ce7bc90715b34b9f100000000081613cfe57fe5b059050610895565b60006806f05b59d3b20000008312613d5c57507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec630262827000000000613da8565b6803782dace9d90000008312613da457507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef7380613da8565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412613e0e577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412613e60577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b188000008412613eb0577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412613f00577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412613f4f577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412613f9e577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b18800008412613fed577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261403c577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60006060845167ffffffffffffffff8111801561417957600080fd5b506040519080825280602002602001820160405280156141a3578160200160208202803683370190505b5090506000805b885181101561424b576142038982815181106141c257fe5b60200260200101516108758984815181106141d957fe5b60200260200101518c85815181106141ed57fe5b60200260200101516110ca90919063ffffffff16565b83828151811061420f57fe5b60200260200101818152505061424161357889838151811061422d57fe5b602002602001015185848151811061342757fe5b91506001016141aa565b50670de0b6b3a764000060005b895181101561432c5760008385838151811061427057fe5b602002602001015111156142cc5760006142956135ca86670de0b6b3a7640000611056565b905060006142a9828c868151811061350e57fe5b90506142c361357861229b670de0b6b3a76400008c611056565b925050506142e3565b8882815181106142d857fe5b602002602001015190505b600061430c8c84815181106142f457fe5b6020026020010151610875848f87815181106141ed57fe5b90506143206136788c858151811061366157fe5b93505050600101614258565b50670de0b6b3a76400008111156143635761435961435282670de0b6b3a7640000611056565b8790612752565b9350505050612c9d565b60009350505050612c9d565b6000806143808461108681886110ca565b90506143996729a2241af62c00008211156101336114ec565b60006143b061331f670de0b6b3a764000089611181565b905060006143d06143c983670de0b6b3a7640000611056565b8a90611115565b905060006143dd89613296565b905060006143eb8383611115565b905060006143f98483611056565b905061338e613387614413670de0b6b3a76400008b611056565b8490611181565b80356105fc81614eac565b600082601f830112614435578081fd5b813561444861444382614e8c565b614e65565b81815291506020808301908481018184028601820187101561446957600080fd5b60005b848110156144885781358452928201929082019060010161446c565b505050505092915050565b600082601f8301126144a3578081fd5b81516144b161444382614e8c565b8181529150602080830190848101818402860182018710156144d257600080fd5b60005b84811015614488578151845292820192908201906001016144d5565b600082601f830112614501578081fd5b813567ffffffffffffffff811115614517578182fd5b61452a6020601f19601f84011601614e65565b915080825283602082850101111561454157600080fd5b8060208401602084013760009082016020015292915050565b8035600281106105fc57600080fd5b60006020828403121561457a578081fd5b81356106e181614eac565b60008060408385031215614597578081fd5b82356145a281614eac565b915060208301356145b281614eac565b809150509250929050565b6000806000606084860312156145d1578081fd5b83356145dc81614eac565b925060208401356145ec81614eac565b929592945050506040919091013590565b600080600080600080600060e0888a031215614617578283fd5b873561462281614eac565b9650602088013561463281614eac565b95506040880135945060608801359350608088013560ff81168114614655578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614684578182fd5b823561468f81614eac565b946020939093013593505050565b6000806000606084860312156146b1578081fd5b835167ffffffffffffffff808211156146c8578283fd5b818601915086601f8301126146db578283fd5b81516146e961444382614e8c565b80828252602080830192508086018b828387028901011115614709578788fd5b8796505b8487101561473457805161472081614eac565b84526001969096019592810192810161470d565b50890151909750935050508082111561474b578283fd5b5061475886828701614493565b925050604084015190509250925092565b60006020828403121561477a578081fd5b81356106e181614ec1565b600060208284031215614796578081fd5b81516106e181614ec1565b600080600080600080600060e0888a0312156147bb578081fd5b8735965060208801356147cd81614eac565b955060408801356147dd81614eac565b9450606088013567ffffffffffffffff808211156147f9578283fd5b6148058b838c01614425565b955060808a0135945060a08a0135935060c08a0135915080821115614828578283fd5b506148358a828b016144f1565b91505092959891949750929550565b600060208284031215614855578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146106e1578182fd5b600060208284031215614895578081fd5b81516106e181614eac565b600080604083850312156148b2578182fd5b82356148bd81614eac565b9150602083013567ffffffffffffffff8111156148d8578182fd5b6148e4858286016144f1565b9150509250929050565b6000602082840312156148ff578081fd5b81516106e181614ecf565b60008060006060848603121561491e578081fd5b835161492981614ecf565b602085015190935067ffffffffffffffff811115614945578182fd5b61475886828701614493565b60008060408385031215614963578182fd5b825161496e81614ecf565b6020939093015192949293505050565b600080600060608486031215614992578081fd5b835161499d81614ecf565b602085015160409095015190969495509392505050565b600080604083850312156149c6578182fd5b82516149d181614ecf565b602084015190925067ffffffffffffffff8111156149ed578182fd5b6148e485828601614493565b600080600060608486031215614a0d578081fd5b833567ffffffffffffffff80821115614a24578283fd5b8186019150610120808389031215614a3a578384fd5b614a4381614e65565b9050614a4f888461455a565b8152614a5e886020850161441a565b6020820152614a70886040850161441a565b6040820152606083013560608201526080830135608082015260a083013560a0820152614aa08860c0850161441a565b60c0820152614ab28860e0850161441a565b60e08201526101008084013583811115614aca578586fd5b614ad68a8287016144f1565b9183019190915250976020870135975060409096013595945050505050565b600060208284031215614b06578081fd5b5035919050565b600080600060608486031215614b21578081fd5b8335925060208401359150604084013567ffffffffffffffff811115614b45578182fd5b614b5186828701614425565b9150509250925092565b60008060008060808587031215614b70578182fd5b8451935060208501519250604085015191506060850151614b9081614eac565b939692955090935050565b6000815180845260208085019450808401835b83811015614bca57815187529582019590820190600101614bae565b509495945050505050565b60008151808452815b81811015614bfa57602081850181015186830182015201614bde565b81811115614c0b5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6000602082526106e16020830184614b9b565b600060408252614cd06040830185614b9b565b8281036020840152612c9d8185614b9b565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526120f46040830184614bd5565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526106e16020830184614bd5565b6000838252604060208301526120f46040830184614b9b565b600084825283602083015260606040830152612c9d6060830184614b9b565b600085825284602083015260806040830152614e456080830185614b9b565b8281036060840152612b9f8185614b9b565b60ff91909116815260200190565b60405181810167ffffffffffffffff81118282101715614e8457600080fd5b604052919050565b600067ffffffffffffffff821115614ea2578081fd5b5060209081020190565b6001600160a01b038116811461061357600080fd5b801515811461061357600080fd5b6003811061061357600080fdfea264697066735822122043fe62b932fca361924bc6d1251a9cf53e36adde19308c6e5b13753d3adc23ee64736f6c63430007010033000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c80000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000220000000000000000000000000000000000000000000000000001c6bf5263400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000097f31b64c9b4ce4ab96e6e550026b122485ee18e0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c4d7963656c69756d204c4250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000034d5943000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000004b13006980acb09645131b91d259eaa111eaf5ba000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4800000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000dbd2fc137a30000000000000000000000000000000000000000000000000000002386f26fc10000
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102925760003560e01c806374f3b009116101605780639d2c110c116100d8578063d505accf1161008c578063dd62ed3e11610071578063dd62ed3e14610508578063e01af92c1461051b578063f89f27ed1461052e57610292565b8063d505accf146104e2578063d5c096c4146104f557610292565b8063a9059cbb116100bd578063a9059cbb146104bf578063aaabadc5146104d2578063c0ff1a15146104da57610292565b80639d2c110c14610499578063a457c2d7146104ac57610292565b806387ec68171161012f5780638d928af8116101145780638d928af81461048157806395d89b41146104895780639b02cdde1461049157610292565b806387ec681714610459578063893d20e81461046c57610292565b806374f3b009146103fb5780637beed2201461041c5780637ecebe0014610433578063851c1bb31461044657610292565b806338e9922e1161020e57806350dd6ed9116101c25780636028bfd4116101a75780636028bfd4146103bf578063679aefce146103e057806370a08231146103e857610292565b806350dd6ed9146103a457806355c67628146103b757610292565b806339509351116101f357806339509351146103765780633e5692051461038957806347bc4d921461039c57610292565b806338e9922e1461035b57806338fff2d01461036e57610292565b80631c0de0511161026557806323b872dd1161024a57806323b872dd1461032b578063313ce5671461033e5780633644e5151461035357610292565b80631c0de051146102ff5780631dd746ea1461031657610292565b806306fdde0314610297578063095ea7b3146102b557806316c38b3c146102d557806318160ddd146102ea575b600080fd5b61029f610536565b6040516102ac9190614ddb565b60405180910390f35b6102c86102c3366004614672565b6105eb565b6040516102ac9190614ce2565b6102e86102e3366004614769565b610602565b005b6102f2610616565b6040516102ac9190614d05565b61030761061c565b6040516102ac93929190614ced565b61031e610645565b6040516102ac9190614caa565b6102c86103393660046145bd565b610654565b6103466106e8565b6040516102ac9190614e57565b6102f26106f1565b6102e8610369366004614af5565b6106fb565b6102f2610714565b6102c8610384366004614672565b610738565b6102e8610397366004614b0d565b610773565b6102c86107da565b6102e86103b23660046148a0565b6107ea565b6102f2610808565b6103d26103cd3660046147a1565b610819565b6040516102ac929190614dee565b6102f2610850565b6102f26103f6366004614569565b61087b565b61040e6104093660046147a1565b61089a565b6040516102ac929190614cbd565b61042461093d565b6040516102ac93929190614e07565b6102f2610441366004614569565b6109fc565b6102f2610454366004614844565b610a17565b6103d26104673660046147a1565b610a69565b610474610a8f565b6040516102ac9190614c96565b610474610ab3565b61029f610ad7565b6102f2610b56565b6102f26104a73660046149f9565b610b5c565b6102c86104ba366004614672565b610c43565b6102c86104cd366004614672565b610c81565b610474610c8e565b6102f2610c98565b6102e86104f03660046145fd565b610d5d565b61040e6105033660046147a1565b610ea6565b6102f2610516366004614585565b610fcb565b6102e8610529366004614769565b610ff6565b61031e61101f565b60038054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105e05780601f106105b5576101008083540402835291602001916105e0565b820191906000526020600020905b8154815290600101906020018083116105c357829003601f168201915b505050505090505b90565b60006105f83384846111cc565b5060015b92915050565b61060a611234565b6106138161127a565b50565b60025490565b6000806000610629611316565b159250610634611333565b915061063e611357565b9050909192565b606061064f61137b565b905090565b6000806106618533610fcb565b9050610685336001600160a01b038716148061067d5750838210155b61019e6114ec565b6106908585856114fa565b336001600160a01b038616148015906106c957507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114155b156106db576106db85338584036111cc565b60019150505b9392505050565b60055460ff1690565b600061064f6115da565b610703611234565b61070b611677565b6106138161168c565b7f7bb9c67f6f459dce19f5d2f838aa1ea5bf37335900020000000000000000033990565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916105f891859061076e90866110ca565b6111cc565b61077b611234565b610783611677565b61078b6116f7565b61079d610796611710565b8251611033565b426107a88185611734565b93506107b9838511156101466114ec565b6107cc84846107c661174b565b8561185f565b506107d5611974565b505050565b600b5460009061064f908261197b565b6107f2611234565b6107fa611677565b6108048282611985565b5050565b60085460009061064f9060c0611a9d565b6000606061082f865161082a611710565b611033565b61084489898989898989611aab611b7b611bdc565b97509795505050505050565b600061064f61085d610616565b610875610868610c98565b610870611710565b611d6c565b90611d86565b6001600160a01b0381166000908152602081905260409020545b919050565b606080886108c46108a9610ab3565b6001600160a01b0316336001600160a01b03161460cd6114ec565b6108d96108cf610714565b82146101f46114ec565b60606108e361137b565b90506108ef8882611dce565b60006060806109048e8e8e8e8e8e8a8f611aab565b9250925092506109148d84611e2f565b61091e8285611b7b565b6109288185611b7b565b909550935050505b5097509795505050505050565b600b5460009081906060906109538160c0611e39565b93506109608160e0611e39565b9250600061096c611710565b90508067ffffffffffffffff8111801561098557600080fd5b506040519080825280602002602001820160405280156109af578160200160208202803683370190505b50925060005b818110156109f4576109d56109d08460806010850201611e43565b611e4b565b8482815181106109e157fe5b60209081029190910101526001016109b5565b505050909192565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000751a0bc0e3f75b38e01cf25bfce7ff36de1c87de82604051602001610a4c929190614c20565b604051602081830303815290604052805190602001209050919050565b60006060610a7a865161082a611710565b61084489898989898989611e65611eb5611bdc565b7f00000000000000000000000097f31b64c9b4ce4ab96e6e550026b122485ee18e90565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b60048054604080516020601f60027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105e05780601f106105b5576101008083540402835291602001916105e0565b60095490565b600080610b6c8560200151611f16565b90506000610b7d8660400151611f16565b9050600086516001811115610b8e57fe5b1415610bf457610ba186606001516120a7565b6060870152610bb085836120c8565b9450610bbc84826120c8565b9350610bcc8660600151836120c8565b60608701526000610bde8787876120d4565b9050610bea81836120fc565b93505050506106e1565b610bfe85836120c8565b9450610c0a84826120c8565b9350610c1a8660600151826120c8565b60608701526000610c2c878787612108565b9050610c388184612120565b9050610bea8161212c565b600080610c503385610fcb565b9050808310610c6a57610c65338560006111cc565b610c77565b610c7733858584036111cc565b5060019392505050565b60006105f83384846114fa565b600061064f612152565b60006060610ca4610ab3565b6001600160a01b031663f94d4668610cba610714565b6040518263ffffffff1660e01b8152600401610cd69190614d05565b60006040518083038186803b158015610cee57600080fd5b505afa158015610d02573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610d2a919081019061469d565b50915050610d3f81610d3a61137b565b611dce565b6060610d496121cc565b509050610d56818361224a565b9250505090565b610d6b8442111560d16114ec565b6001600160a01b0387166000908152600660209081526040808320549051909291610dc2917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d9101614d2d565b6040516020818303038152906040528051906020012090506000610de5826122bc565b9050600060018288888860405160008152602001604052604051610e0c9493929190614dbd565b6020604051602081039080840390855afa158015610e2e573d6000803e3d6000fd5b5050604051601f1901519150610e7090506001600160a01b03821615801590610e6857508b6001600160a01b0316826001600160a01b0316145b6101f86114ec565b6001600160a01b038b166000908152600660205260409020600185019055610e998b8b8b6111cc565b5050505050505050505050565b60608088610eb56108a9610ab3565b610ec06108cf610714565b6060610eca61137b565b9050610ed4610616565b610f7b5760006060610ee98d8d8d868b6122d8565b91509150610efe620f424083101560cc6114ec565b610f0c6000620f424061231e565b610f1b8b620f4240840361231e565b610f258184611eb5565b80610f2e611710565b67ffffffffffffffff81118015610f4457600080fd5b50604051908082528060200260200182016040528015610f6e578160200160208202803683370190505b5095509550505050610930565b610f858882611dce565b6000606080610f9a8e8e8e8e8e8e8a8f611e65565b925092509250610faa8c8461231e565b610fb48285611eb5565b610fbe8185611b7b565b9095509350610930915050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b610ffe611234565b611006611677565b61100e6116f7565b61101781612328565b610613611974565b606061064f61174b565b806108048161236a565b61080481831460676114ec565b67ffffffffffffffff811b1992909216911b1790565b60006110668383111560016114ec565b50900390565b60006105fc670de0b6b3a76400006110868461ffff611115565b90611181565b60006105fc670de0b6b3a764000061108684637fffffff611115565b637fffffff811b1992909216911b1790565b61ffff811b1992909216911b1790565b60008282016106e184821015836114ec565b63ffffffff811b1992909216911b1790565b60006001821b1984168284611104576000611107565b60015b60ff16901b17949350505050565b600082820261113984158061113257508385838161112f57fe5b04145b60036114ec565b806111485760009150506105fc565b670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82015b046001019150506105fc565b600061119082151560046114ec565b8261119d575060006105fc565b670de0b6b3a7640000838102906111c0908583816111b757fe5b041460056114ec565b82600182038161117557fe5b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611227908590614d05565b60405180910390a3505050565b60006112636000357fffffffff0000000000000000000000000000000000000000000000000000000016610a17565b905061061361127282336123e3565b6101916114ec565b801561129a5761129561128b611333565b42106101936114ec565b6112af565b6112af6112a5611357565b42106101a96114ec565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be649061130b908390614ce2565b60405180910390a150565b6000611320611357565b42118061064f57505060075460ff161590565b7f0000000000000000000000000000000000000000000000000000000062ff732a90565b7f0000000000000000000000000000000000000000000000000000000062ff732a90565b60606000611387611710565b905060608167ffffffffffffffff811180156113a257600080fd5b506040519080825280602002602001820160405280156113cc578160200160208202803683370190505b5090508115611414577f0000000000000000000000000000000000000000000000000de0b6b3a76400008160008151811061140357fe5b60200260200101818152505061141d565b91506105e89050565b6001821115611414577f000000000000000000000000000000000000000c9f2c9cd04674edea400000008160018151811061145457fe5b6020026020010181815250506002821115611414577f00000000000000000000000000000000000000000000000000000000000000008160028151811061149757fe5b6020026020010181815250506003821115611414577f0000000000000000000000000000000000000000000000000000000000000000816003815181106114da57fe5b60200260200101818152505091505090565b8161080457610804816124d3565b6115116001600160a01b03841615156101986114ec565b6115286001600160a01b03831615156101996114ec565b6115338383836107d5565b6001600160a01b03831660009081526020819052604090205461155990826101a0612540565b6001600160a01b03808516600090815260208190526040808220939093559084168152205461158890826110ca565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611227908590614d05565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7f5053d04f5a95b15c09e8aa60a3f30035c8d87f35d442c9ec1455af9e2fdb88ea7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6611647612556565b3060405160200161165c959493929190614d61565b60405160208183030381529060405280519060200120905090565b61168a611682611316565b6101926114ec565b565b61169f64e8d4a5100082101560cb6114ec565b6116b567016345785d8a000082111560ca6114ec565b6008546116c4908260c0611040565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9061130b908390614d05565b6117096002600a5414156101906114ec565b6002600a55565b7f000000000000000000000000000000000000000000000000000000000000000290565b60008183101561174457816106e1565b5090919050565b60606000611757611710565b905060608167ffffffffffffffff8111801561177257600080fd5b5060405190808252806020026020018201604052801561179c578160200160208202803683370190505b50600b549091506117ae60008261255a565b826000815181106117bb57fe5b6020026020010181815250506117d260018261255a565b826001815181106117df57fe5b60200260200101818152505082600214156117fe575091506105e89050565b61180960028261255a565b8260028151811061181657fe5b6020026020010181815250508260031415611835575091506105e89050565b61184060038261255a565b8260038151811061184d57fe5b60209081029190910101525091505090565b600b546000805b83518110156118fb57600084828151811061187d57fe5b6020026020010151905061189d662386f26fc1000082101561012e6114ec565b6118e46118a98261106c565b836010026080016118dd6118cf8a87815181106118c257fe5b602002602001015161108c565b88906004601f8902016110a8565b91906110ba565b93506118f083826110ca565b925050600101611866565b50611912670de0b6b3a764000082146101346114ec565b61192b8560e0611924858a60c06110dc565b91906110dc565b600b556040517f0f3631f9dab08169d1db21c6dc5f32536fb2b0a6b9bb5330d71c52132f968be090611964908890889088908890614e26565b60405180910390a1505050505050565b6001600a55565b1c60019081161490565b600061198f610714565b9050600061199b610ab3565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016119c8929190614da6565b60806040518083038186803b1580156119e057600080fd5b505afa1580156119f4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611a189190614b5b565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d49250611a65915085908790600401614d8d565b600060405180830381600087803b158015611a7f57600080fd5b505af1158015611a93573d6000803e3d6000fd5b5050505050505050565b1c67ffffffffffffffff1690565b600060608060606000611abc6121cc565b91509150611ac8611316565b15611b00576000611ad9838c61224a565b9050611aeb8b8484600954858e6125b0565b9350611afa8b8561105661265f565b50611b4c565b611b08611710565b67ffffffffffffffff81118015611b1e57600080fd5b50604051908082528060200260200182016040528015611b48578160200160208202803683370190505b5092505b611b588a8389896126ca565b9095509350611b688a8584612739565b6009555050985098509895505050505050565b60005b611b86611710565b8110156107d557611bbd838281518110611b9c57fe5b6020026020010151838381518110611bb057fe5b6020026020010151611d86565b838281518110611bc957fe5b6020908102919091010152600101611b7e565b333014611ccb576000306001600160a01b0316600036604051611c00929190614c50565b6000604051808303816000865af19150503d8060008114611c3d576040519150601f19603f3d011682016040523d82523d6000602084013e611c42565b606091505b505090508060008114611c5157fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114611cad573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611cd561137b565b9050611ce18782611dce565b60006060611cf98c8c8c8c8c8c898d8d63ffffffff16565b5091509150611d0c81848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b60008282026106e184158061113257508385838161112f57fe5b6000611d9582151560046114ec565b82611da2575060006105fc565b670de0b6b3a764000083810290611dbc908583816111b757fe5b828181611dc557fe5b049150506105fc565b60005b611dd9611710565b8110156107d557611e10838281518110611def57fe5b6020026020010151838381518110611e0357fe5b6020026020010151612752565b838281518110611e1c57fe5b6020908102919091010152600101611dd1565b610804828261277e565b1c63ffffffff1690565b1c61ffff1690565b60006105fc61ffff61108684670de0b6b3a7640000611115565b6000606080611e91611e75610a8f565b6001600160a01b03168b6001600160a01b0316146101486114ec565b611ea18b8b8b8b8b8b8b8b61283a565b925092509250985098509895505050505050565b60005b611ec0611710565b8110156107d557611ef7838281518110611ed657fe5b6020026020010151838381518110611eea57fe5b6020026020010151611181565b838281518110611f0357fe5b6020908102919091010152600101611eb8565b60007f0000000000000000000000004b13006980acb09645131b91d259eaa111eaf5ba6001600160a01b0316826001600160a01b03161415611f7957507f0000000000000000000000000000000000000000000000000de0b6b3a7640000610895565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b0316826001600160a01b03161415611fda57507f000000000000000000000000000000000000000c9f2c9cd04674edea40000000610895565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561203b57507f0000000000000000000000000000000000000000000000000000000000000000610895565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561209c57507f0000000000000000000000000000000000000000000000000000000000000000610895565b6108956101356124d3565b6000806120bc6120b5610808565b8490611115565b90506106e18382611056565b60006106e18383612752565b60006120e96120e16107da565b6101476114ec565b6120f48484846128c0565b949350505050565b60006106e18383611d86565b60006121156120e16107da565b6120f48484846128f3565b60006106e18383611181565b60006105fc61214b61213c610808565b670de0b6b3a764000090611056565b8390611181565b600061215c610ab3565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561219457600080fd5b505afa1580156121a8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061064f9190614884565b606060006121d861174b565b9150600090506000826000815181106121ed57fe5b602002602001015190506000600190505b8351811015612244578184828151811061221457fe5b6020026020010151111561223c5780925083818151811061223157fe5b602002602001015191505b6001016121fe565b50509091565b670de0b6b3a764000060005b83518110156122ac576122a261229b85838151811061227157fe5b602002602001015185848151811061228557fe5b602002602001015161292690919063ffffffff16565b8390612752565b9150600101612256565b506105fc600082116101376114ec565b60006122c66115da565b82604051602001610a4c929190614c60565b600060606123036122e7610a8f565b6001600160a01b0316876001600160a01b0316146101486114ec565b6123108787878787612975565b915091509550959350505050565b6108048282612a09565b600b54612337908260006110ee565b600b556040517f5a9e84f78f7957cb4ed7478eb0fcad35ee4ecbe2e0f298420b28a3955392573f9061130b908390614ce2565b60028151101561237957610613565b60008160008151811061238857fe5b602002602001015190506000600190505b82518110156107d55760008382815181106123b057fe5b602002602001015190506123d9816001600160a01b0316846001600160a01b03161060656114ec565b9150600101612399565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612402610a8f565b6001600160a01b03161415801561241d575061241d83612a97565b156124455761242a610a8f565b6001600160a01b0316336001600160a01b03161490506105fc565b61244d612152565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161247c93929190614d0e565b60206040518083038186803b15801561249457600080fd5b505afa1580156124a8573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906124cc9190614785565b90506105fc565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600061254f84841115836114ec565b5050900390565b4690565b600080612575612570846004601f880201612b05565b612b0f565b9050600061258c6109d08560806010890201611e43565b9050600061259985612b2b565b90506125a6838383612baa565b9695505050505050565b6060806125bb611710565b67ffffffffffffffff811180156125d157600080fd5b506040519080825280602002602001820160405280156125fb578160200160208202803683370190505b5090508261260a5790506125a6565b61263d88878151811061261957fe5b602002602001015188888151811061262d57fe5b6020026020010151878787612c1e565b81878151811061264957fe5b6020908102919091010152979650505050505050565b60005b61266a611710565b8110156126c4576126a584828151811061268057fe5b602002602001015184838151811061269457fe5b60200260200101518463ffffffff16565b8482815181106126b157fe5b6020908102919091010152600101612662565b50505050565b6000606060006126d984612ca6565b905060008160028111156126e957fe5b1415612704576126fa878786612cbc565b9250925050612730565b600181600281111561271257fe5b1415612722576126fa8785612d9f565b6126fa87878787612dd1565b505b94509492505050565b6000612748848461105661265f565b6120f4828561224a565b600082820261276c84158061113257508385838161112f57fe5b670de0b6b3a764000090049392505050565b6127956001600160a01b038316151561019b6114ec565b6127a1826000836107d5565b6001600160a01b0382166000908152602081905260409020546127c790826101a1612540565b6001600160a01b0383166000908152602081905260409020556002546127ed9082612e40565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061282e908590614d05565b60405180910390a35050565b6000606080612847611677565b606060006128536121cc565b915091506000612863838c61224a565b905060606128778c8585600954868f6125b0565b90506128868c8261105661265f565b600060606128968e878d8d612e4e565b915091506128a58e8288612ea9565b60095590975095509350505050985098509895505050505050565b60006128ca611677565b6120f4836128db8660200151612eb8565b846128e98860400151612eb8565b8860600151612fda565b60006128fd611677565b6120f48361290e8660200151612eb8565b8461291c8860400151612eb8565b8860600151613047565b60008061293384846130bd565b9050600061294d61294683612710611115565b60016110ca565b905080821015612962576000925050506105fc565b61296c8282611056565b925050506105fc565b60006060612981611677565b600061298c84612ca6565b90506129a7600082600281111561299f57fe5b1460ce6114ec565b60606129b2856131f0565b90506129bf610796611710565b6129c98187611dce565b60606129d36121cc565b50905060006129e2828461224a565b905060006129f282610870611710565b600992909255509a91995090975050505050505050565b612a15600083836107d5565b600254612a2290826110ca565b6002556001600160a01b038216600090815260208190526040902054612a4890826110ca565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061282e908590614d05565b6000612ac27fe01af92c00000000000000000000000000000000000000000000000000000000610a17565b821480612af65750612af37f3e56920500000000000000000000000000000000000000000000000000000000610a17565b82145b806105fc57506105fc82613206565b1c637fffffff1690565b60006105fc637fffffff61108684670de0b6b3a7640000611115565b60004281612b3a8460c0611e39565b90506000612b498560e0611e39565b905080831115612b6657670de0b6b3a76400009350505050610895565b81831015612b7a5760009350505050610895565b8181038284038115612b9557612b908183611d86565b612b9f565b670de0b6b3a76400005b979650505050505050565b6000811580612bb857508284145b15612bc45750826106e1565b670de0b6b3a76400008210612bda5750816106e1565b82841115612c04576000612bf083858703612752565b9050612bfc8582611056565b9150506106e1565b6000612c1283868603612752565b9050612bfc85826110ca565b6000838311612c2f57506000612c9d565b6000612c3b8585611181565b90506000612c51670de0b6b3a764000088611d86565b9050612c65826709b6e64a8ec60000611734565b91506000612c73838361326a565b90506000612c8a612c8383613296565b8b90612752565b9050612c968187612752565b9450505050505b95945050505050565b6000818060200190518101906105fc91906148ee565b60006060612cc8611677565b600080612cd4856132bc565b91509150612cec612ce3611710565b821060646114ec565b6060612cf6611710565b67ffffffffffffffff81118015612d0c57600080fd5b50604051908082528060200260200182016040528015612d36578160200160208202803683370190505b509050612d7a888381518110612d4857fe5b6020026020010151888481518110612d5c57fe5b602002602001015185612d6d610616565b612d75610808565b6132de565b818381518110612d8657fe5b6020908102919091010152919791965090945050505050565b600060606000612dae8461339e565b90506060612dc48683612dbf610616565b6133b4565b9196919550909350505050565b60006060612ddd611677565b60606000612dea85613466565b91509150612dfb825161082a611710565b612e058287611dce565b6000612e22898985612e15610616565b612e1d610808565b61347e565b9050612e328282111560cf6114ec565b989197509095505050505050565b60006106e183836001612540565b600060606000612e5d84612ca6565b90506001816002811115612e6d57fe5b1415612e7f576126fa878787876136ac565b6002816002811115612e8d57fe5b1415612e9e576126fa878786613709565b61272e6101366124d3565b600061274884846110ca61265f565b6000807f0000000000000000000000004b13006980acb09645131b91d259eaa111eaf5ba6001600160a01b0316836001600160a01b03161415612efd57506000612fce565b7f000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486001600160a01b0316836001600160a01b03161415612f3f57506001612fce565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612f8157506002612fce565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316836001600160a01b03161415612fc357506003612fce565b612fce6101356124d3565b6106e181600b5461255a565b6000612ffc612ff187670429d069189e0000612752565b8311156101306114ec565b600061300887846110ca565b905060006130168883611181565b905060006130248887611d86565b90506000613032838361326a565b9050612c9661304082613296565b8990612752565b600061306961305e85670429d069189e0000612752565b8311156101316114ec565b600061307f6130788685611056565b8690611181565b9050600061308d8588611181565b9050600061309b838361326a565b905060006130b182670de0b6b3a7640000611056565b9050612c968a82611115565b6000816130d35750670de0b6b3a76400006105fc565b826130e0575060006105fc565b61310d7f8000000000000000000000000000000000000000000000000000000000000000841060066114ec565b82613133770bce5086492111aea88f4bb1ca6bcf584181ea8059f76532841060076114ec565b826000670c7d713b49da0000831380156131545750670f43fc2c04ee000083125b1561318b576000613164846137b6565b9050670de0b6b3a764000080820784020583670de0b6b3a764000083050201915050613199565b81613195846138ed565b0290505b670de0b6b3a764000090056131e77ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc000082128015906131e0575068070c1cc73b00c800008213155b60086114ec565b6125a681613c8d565b6060818060200190518101906106e191906149b4565b60006132317f38e9922e00000000000000000000000000000000000000000000000000000000610a17565b8214806105fc57506132627f50dd6ed900000000000000000000000000000000000000000000000000000000610a17565b909114919050565b60008061327784846130bd565b9050600061328a61294683612710611115565b9050612c9d82826110ca565b6000670de0b6b3a764000082106132ae5760006105fc565b50670de0b6b3a76400000390565b600080828060200190518101906132d3919061497e565b909590945092505050565b6000806132ef846110868188611056565b90506133086709b6e64a8ec600008210156101326114ec565b600061332661331f670de0b6b3a764000089611d86565b839061326a565b9050600061333d61333683613296565b8a90612752565b9050600061334a89613296565b905060006133588383611115565b905060006133668483611056565b905061338e613387613380670de0b6b3a76400008b611056565b8490612752565b82906110ca565b9c9b505050505050505050505050565b6000818060200190518101906106e19190614951565b606060006133c28484611d86565b90506060855167ffffffffffffffff811180156133de57600080fd5b50604051908082528060200260200182016040528015613408578160200160208202803683370190505b50905060005b865181101561345c5761343d8388838151811061342757fe5b602002602001015161275290919063ffffffff16565b82828151811061344957fe5b602090810291909101015260010161340e565b5095945050505050565b60606000828060200190518101906132d3919061490a565b60006060845167ffffffffffffffff8111801561349a57600080fd5b506040519080825280602002602001820160405280156134c4578160200160208202803683370190505b5090506000805b8851811015613589576135248982815181106134e357fe5b60200260200101516110868984815181106134fa57fe5b60200260200101518c858151811061350e57fe5b602002602001015161105690919063ffffffff16565b83828151811061353057fe5b60200260200101818152505061357f61357889838151811061354e57fe5b602002602001015185848151811061356257fe5b602002602001015161111590919063ffffffff16565b83906110ca565b91506001016134cb565b50670de0b6b3a764000060005b895181101561368b5760008482815181106135ad57fe5b602002602001015184111561360d5760006135d66135ca86613296565b8d858151811061342757fe5b905060006135ea828c868151811061350e57fe5b905061360461357861214b670de0b6b3a76400008c611056565b92505050613624565b88828151811061361957fe5b602002602001015190505b600061364d8c848151811061363557fe5b6020026020010151610875848f878151811061350e57fe5b905061367f6136788c858151811061366157fe5b60200260200101518361292690919063ffffffff16565b8590612752565b93505050600101613596565b5061369f61369882613296565b8790611115565b9998505050505050505050565b600060608060006136bc85613466565b915091506136d26136cb611710565b8351611033565b6136dc8287611dce565b60006136f98989856136ec610616565b6136f4610808565b61415d565b9050612e328282101560d06114ec565b60006060600080613719856132bc565b91509150613728612ce3611710565b6060613732611710565b67ffffffffffffffff8111801561374857600080fd5b50604051908082528060200260200182016040528015613772578160200160208202803683370190505b509050612d7a88838151811061378457fe5b602002602001015188848151811061379857fe5b6020026020010151856137a9610616565b6137b1610808565b61436f565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401907fffffffffffffffffffffffffffffffffff3f68318436f8ea4cb460f0000000008501028161380257fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a764000082121561392a57613920826ec097ce7bc90715b34b9f10000000008161391a57fe5b056138ed565b6000039050610895565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c0000000000000831261397b57770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e00000083126139b3576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff008400083126139fb576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613a36576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613a6d57693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613aa457690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613ad95768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613b0457680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312613b39576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312613b6e576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312613ba2576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312613bd6576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d631000008086030281613bf957fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6000613cd27ffffffffffffffffffffffffffffffffffffffffffffffffdc702bd3a30fc00008312158015613ccb575068070c1cc73b00c800008313155b60096114ec565b6000821215613d0657613ce782600003613c8d565b6ec097ce7bc90715b34b9f100000000081613cfe57fe5b059050610895565b60006806f05b59d3b20000008312613d5c57507ffffffffffffffffffffffffffffffffffffffffffffffff90fa4a62c4e00000090910190770195e54c5dd42177f53a27172fa9ec630262827000000000613da8565b6803782dace9d90000008312613da457507ffffffffffffffffffffffffffffffffffffffffffffffffc87d2531627000000909101906b1425982cf597cd205cef7380613da8565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412613e0e577fffffffffffffffffffffffffffffffffffffffffffffff5287143a539e0000009093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412613e60577fffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf0000009093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b188000008412613eb0577fffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e78000009093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412613f00577fffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c000009093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412613f4f577ffffffffffffffffffffffffffffffffffffffffffffffff5287143a539e000009093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412613f9e577ffffffffffffffffffffffffffffffffffffffffffffffffa9438a1d29cf000009093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b18800008412613fed577ffffffffffffffffffffffffffffffffffffffffffffffffd4a1c50e94e7800009093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c40000841261403c577ffffffffffffffffffffffffffffffffffffffffffffffffea50e2874a73c00009093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60006060845167ffffffffffffffff8111801561417957600080fd5b506040519080825280602002602001820160405280156141a3578160200160208202803683370190505b5090506000805b885181101561424b576142038982815181106141c257fe5b60200260200101516108758984815181106141d957fe5b60200260200101518c85815181106141ed57fe5b60200260200101516110ca90919063ffffffff16565b83828151811061420f57fe5b60200260200101818152505061424161357889838151811061422d57fe5b602002602001015185848151811061342757fe5b91506001016141aa565b50670de0b6b3a764000060005b895181101561432c5760008385838151811061427057fe5b602002602001015111156142cc5760006142956135ca86670de0b6b3a7640000611056565b905060006142a9828c868151811061350e57fe5b90506142c361357861229b670de0b6b3a76400008c611056565b925050506142e3565b8882815181106142d857fe5b602002602001015190505b600061430c8c84815181106142f457fe5b6020026020010151610875848f87815181106141ed57fe5b90506143206136788c858151811061366157fe5b93505050600101614258565b50670de0b6b3a76400008111156143635761435961435282670de0b6b3a7640000611056565b8790612752565b9350505050612c9d565b60009350505050612c9d565b6000806143808461108681886110ca565b90506143996729a2241af62c00008211156101336114ec565b60006143b061331f670de0b6b3a764000089611181565b905060006143d06143c983670de0b6b3a7640000611056565b8a90611115565b905060006143dd89613296565b905060006143eb8383611115565b905060006143f98483611056565b905061338e613387614413670de0b6b3a76400008b611056565b8490611181565b80356105fc81614eac565b600082601f830112614435578081fd5b813561444861444382614e8c565b614e65565b81815291506020808301908481018184028601820187101561446957600080fd5b60005b848110156144885781358452928201929082019060010161446c565b505050505092915050565b600082601f8301126144a3578081fd5b81516144b161444382614e8c565b8181529150602080830190848101818402860182018710156144d257600080fd5b60005b84811015614488578151845292820192908201906001016144d5565b600082601f830112614501578081fd5b813567ffffffffffffffff811115614517578182fd5b61452a6020601f19601f84011601614e65565b915080825283602082850101111561454157600080fd5b8060208401602084013760009082016020015292915050565b8035600281106105fc57600080fd5b60006020828403121561457a578081fd5b81356106e181614eac565b60008060408385031215614597578081fd5b82356145a281614eac565b915060208301356145b281614eac565b809150509250929050565b6000806000606084860312156145d1578081fd5b83356145dc81614eac565b925060208401356145ec81614eac565b929592945050506040919091013590565b600080600080600080600060e0888a031215614617578283fd5b873561462281614eac565b9650602088013561463281614eac565b95506040880135945060608801359350608088013560ff81168114614655578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614684578182fd5b823561468f81614eac565b946020939093013593505050565b6000806000606084860312156146b1578081fd5b835167ffffffffffffffff808211156146c8578283fd5b818601915086601f8301126146db578283fd5b81516146e961444382614e8c565b80828252602080830192508086018b828387028901011115614709578788fd5b8796505b8487101561473457805161472081614eac565b84526001969096019592810192810161470d565b50890151909750935050508082111561474b578283fd5b5061475886828701614493565b925050604084015190509250925092565b60006020828403121561477a578081fd5b81356106e181614ec1565b600060208284031215614796578081fd5b81516106e181614ec1565b600080600080600080600060e0888a0312156147bb578081fd5b8735965060208801356147cd81614eac565b955060408801356147dd81614eac565b9450606088013567ffffffffffffffff808211156147f9578283fd5b6148058b838c01614425565b955060808a0135945060a08a0135935060c08a0135915080821115614828578283fd5b506148358a828b016144f1565b91505092959891949750929550565b600060208284031215614855578081fd5b81357fffffffff00000000000000000000000000000000000000000000000000000000811681146106e1578182fd5b600060208284031215614895578081fd5b81516106e181614eac565b600080604083850312156148b2578182fd5b82356148bd81614eac565b9150602083013567ffffffffffffffff8111156148d8578182fd5b6148e4858286016144f1565b9150509250929050565b6000602082840312156148ff578081fd5b81516106e181614ecf565b60008060006060848603121561491e578081fd5b835161492981614ecf565b602085015190935067ffffffffffffffff811115614945578182fd5b61475886828701614493565b60008060408385031215614963578182fd5b825161496e81614ecf565b6020939093015192949293505050565b600080600060608486031215614992578081fd5b835161499d81614ecf565b602085015160409095015190969495509392505050565b600080604083850312156149c6578182fd5b82516149d181614ecf565b602084015190925067ffffffffffffffff8111156149ed578182fd5b6148e485828601614493565b600080600060608486031215614a0d578081fd5b833567ffffffffffffffff80821115614a24578283fd5b8186019150610120808389031215614a3a578384fd5b614a4381614e65565b9050614a4f888461455a565b8152614a5e886020850161441a565b6020820152614a70886040850161441a565b6040820152606083013560608201526080830135608082015260a083013560a0820152614aa08860c0850161441a565b60c0820152614ab28860e0850161441a565b60e08201526101008084013583811115614aca578586fd5b614ad68a8287016144f1565b9183019190915250976020870135975060409096013595945050505050565b600060208284031215614b06578081fd5b5035919050565b600080600060608486031215614b21578081fd5b8335925060208401359150604084013567ffffffffffffffff811115614b45578182fd5b614b5186828701614425565b9150509250925092565b60008060008060808587031215614b70578182fd5b8451935060208501519250604085015191506060850151614b9081614eac565b939692955090935050565b6000815180845260208085019450808401835b83811015614bca57815187529582019590820190600101614bae565b509495945050505050565b60008151808452815b81811015614bfa57602081850181015186830182015201614bde565b81811115614c0b5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6000602082526106e16020830184614b9b565b600060408252614cd06040830185614b9b565b8281036020840152612c9d8185614b9b565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526120f46040830184614bd5565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b6000602082526106e16020830184614bd5565b6000838252604060208301526120f46040830184614b9b565b600084825283602083015260606040830152612c9d6060830184614b9b565b600085825284602083015260806040830152614e456080830185614b9b565b8281036060840152612b9f8185614b9b565b60ff91909116815260200190565b60405181810167ffffffffffffffff81118282101715614e8457600080fd5b604052919050565b600067ffffffffffffffff821115614ea2578081fd5b5060209081020190565b6001600160a01b038116811461061357600080fd5b801515811461061357600080fd5b6003811061061357600080fdfea264697066735822122043fe62b932fca361924bc6d1251a9cf53e36adde19308c6e5b13753d3adc23ee64736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c80000000000000000000000000000000000000000000000000000000000000140000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000220000000000000000000000000000000000000000000000000001c6bf5263400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000097f31b64c9b4ce4ab96e6e550026b122485ee18e0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c4d7963656c69756d204c4250000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000034d5943000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000020000000000000000000000004b13006980acb09645131b91d259eaa111eaf5ba000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb4800000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000dbd2fc137a30000000000000000000000000000000000000000000000000000002386f26fc10000
-----Decoded View---------------
Arg [0] : vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
Arg [1] : name (string): Mycelium LBP
Arg [2] : symbol (string): MYC
Arg [3] : tokens (address[]): 0x4b13006980aCB09645131b91D259eaA111eaF5Ba,0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
Arg [4] : normalizedWeights (uint256[]): 990000000000000000,10000000000000000
Arg [5] : swapFeePercentage (uint256): 8000000000000000
Arg [6] : pauseWindowDuration (uint256): 0
Arg [7] : bufferPeriodDuration (uint256): 0
Arg [8] : owner (address): 0x97f31b64C9B4ce4aB96E6E550026b122485eE18E
Arg [9] : swapEnabledOnStart (bool): False
-----Encoded View---------------
20 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000140
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000220
Arg [5] : 000000000000000000000000000000000000000000000000001c6bf526340000
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [8] : 00000000000000000000000097f31b64c9b4ce4ab96e6e550026b122485ee18e
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [10] : 000000000000000000000000000000000000000000000000000000000000000c
Arg [11] : 4d7963656c69756d204c42500000000000000000000000000000000000000000
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [13] : 4d59430000000000000000000000000000000000000000000000000000000000
Arg [14] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [15] : 0000000000000000000000004b13006980acb09645131b91d259eaa111eaf5ba
Arg [16] : 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [18] : 0000000000000000000000000000000000000000000000000dbd2fc137a30000
Arg [19] : 000000000000000000000000000000000000000000000000002386f26fc10000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.