ETH Price: $2,477.28 (-1.74%)

Contract

0x7bd26798937cF17956bBB05291C5D705F385A483
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Release166891932023-02-23 6:03:11556 days ago1677132191IN
0x7bd26798...5F385A483
0 ETH0.001156223.9281663
Transfer Ownersh...152628012022-08-02 11:21:09760 days ago1659439269IN
0x7bd26798...5F385A483
0 ETH0.000199856.98342311
0x60e06040152254102022-07-27 15:43:52766 days ago1658936632IN
 Create: SYLVestingWallet
0 ETH0.0283761242.90947326

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
SYLVestingWallet

Compiler Version
v0.8.15+commit.e14f2714

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 8 : SYLVestingWallet.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "@openzeppelin/contracts/utils/Address.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

/**
 * @author syllabs
 * @title SYLVestingWallet
 * @dev Modified OpenZeppelin 4.4.1 {VestingWallet} to enable transferring beneficiary.
 */
contract SYLVestingWallet is Ownable {
    event SYLReleased(uint256 amount);

    IERC20 private immutable _erc20;
    uint256 private _erc20Released;
    address private _beneficiary;
    uint64 private immutable _start;
    uint64 private immutable _duration;

    /**
     * @dev Set the beneficiary, start timestamp and vesting duration of the vesting wallet.
     */
    constructor(
        address erc20Address,
        address beneficiaryAddress,
        uint64 startTimestamp,
        uint64 durationSeconds
    ) {
        require(beneficiaryAddress != address(0), "Beneficiary cannot be address zero");
        _erc20 = IERC20(erc20Address);
        _beneficiary = beneficiaryAddress;
        _start = startTimestamp;
        _duration = durationSeconds;
    }

    /**
     * @dev Getter for the beneficiary address.
     */
    function beneficiary() public view virtual returns (address) {
        return _beneficiary;
    }

    /**
     * @dev Setter for the beneficiary address.
     */
    function setBeneficiary(address beneficiaryAddress) external onlyOwner {
        require(beneficiaryAddress != address(0), "Beneficiary cannot be address zero");
        _beneficiary = beneficiaryAddress;
    }

    /**
     * @dev Getter for the start timestamp.
     */
    function start() public view virtual returns (uint256) {
        return _start;
    }

    /**
     * @dev Getter for the vesting duration.
     */
    function duration() public view virtual returns (uint256) {
        return _duration;
    }

    /**
     * @dev Amount of token already released
     */
    function released() public view virtual returns (uint256) {
        return _erc20Released;
    }

    /**
     * @dev Release the tokens that have already vested.
     *
     * Emits a {TokensReleased} event.
     */
    function release() public virtual {
        uint256 releasable = vestedAmount(uint64(block.timestamp)) - released();
        _erc20Released += releasable;
        emit SYLReleased(releasable);
        SafeERC20.safeTransfer(_erc20, beneficiary(), releasable);
    }

    /**
     * @dev Calculates the amount of tokens that has already vested. Default implementation is a linear vesting curve.
     */
    function vestedAmount(uint64 timestamp) public view virtual returns (uint256) {
        return _vestingSchedule(_erc20.balanceOf(address(this)) + released(), timestamp);
    }

    /**
     * @dev Virtual implementation of the vesting formula. This returns the amount vested, as a function of time, for
     * an asset given its total historical allocation.
     */
    function _vestingSchedule(uint256 totalAllocation, uint64 timestamp) internal view virtual returns (uint256) {
        if (timestamp < start()) {
            return 0;
        } else if (timestamp > start() + duration()) {
            return totalAllocation;
        } else {
            return (totalAllocation * (timestamp - start())) / duration();
        }
    }
}

File 2 of 8 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 3 of 8 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 4 of 8 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 5 of 8 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`.
        // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`.
        // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`.
        // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a
        // good first aproximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1;
        uint256 x = a;
        if (x >> 128 > 0) {
            x >>= 128;
            result <<= 64;
        }
        if (x >> 64 > 0) {
            x >>= 64;
            result <<= 32;
        }
        if (x >> 32 > 0) {
            x >>= 32;
            result <<= 16;
        }
        if (x >> 16 > 0) {
            x >>= 16;
            result <<= 8;
        }
        if (x >> 8 > 0) {
            x >>= 8;
            result <<= 4;
        }
        if (x >> 4 > 0) {
            x >>= 4;
            result <<= 2;
        }
        if (x >> 2 > 0) {
            result <<= 1;
        }

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        uint256 result = sqrt(a);
        if (rounding == Rounding.Up && result * result < a) {
            result += 1;
        }
        return result;
    }
}

File 6 of 8 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 7 of 8 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 8 of 8 : draft-IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Settings
{
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"erc20Address","type":"address"},{"internalType":"address","name":"beneficiaryAddress","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"uint64","name":"durationSeconds","type":"uint64"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SYLReleased","type":"event"},{"inputs":[],"name":"beneficiary","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"duration","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"release","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"released","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"beneficiaryAddress","type":"address"}],"name":"setBeneficiary","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"start","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"timestamp","type":"uint64"}],"name":"vestedAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]

60e060405234801561001057600080fd5b50604051610c00380380610c0083398101604081905261002f9161015e565b610038336100db565b6001600160a01b03831661009d5760405162461bcd60e51b815260206004820152602260248201527f42656e65666963696172792063616e6e6f742062652061646472657373207a65604482015261726f60f01b606482015260840160405180910390fd5b6001600160a01b03938416608052600280546001600160a01b03191693909416929092179092556001600160401b0391821660a0521660c0526101b2565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80516001600160a01b038116811461014257600080fd5b919050565b80516001600160401b038116811461014257600080fd5b6000806000806080858703121561017457600080fd5b61017d8561012b565b935061018b6020860161012b565b925061019960408601610147565b91506101a760608601610147565b905092959194509250565b60805160a05160c051610a0b6101f56000396000818160cb01528181610439015261048e0152600061037b01526000818161019a01526103360152610a0b6000f3fe608060405234801561001057600080fd5b506004361061009e5760003560e01c806386d1a69f1161006657806386d1a69f1461013b5780638da5cb5b146101435780639613252114610154578063be9a65551461015c578063f2fde38b1461016457600080fd5b80630a17b06b146100a35780630fb5a6b4146100c95780631c31f710146100f957806338af3eed1461010e578063715018a614610133575b600080fd5b6100b66100b1366004610842565b610177565b6040519081526020015b60405180910390f35b7f000000000000000000000000000000000000000000000000000000000000000067ffffffffffffffff166100b6565b61010c61010736600461086c565b610223565b005b6002546001600160a01b03165b6040516001600160a01b0390911681526020016100c0565b61010c6102b3565b61010c6102c7565b6000546001600160a01b031661011b565b6001546100b6565b6100b6610370565b61010c61017236600461086c565b61039e565b600061021d61018560015490565b6040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa1580156101e9573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061020d9190610895565b61021791906108c4565b83610414565b92915050565b61022b6104ee565b6001600160a01b0381166102915760405162461bcd60e51b815260206004820152602260248201527f42656e65666963696172792063616e6e6f742062652061646472657373207a65604482015261726f60f01b60648201526084015b60405180910390fd5b600280546001600160a01b0319166001600160a01b0392909216919091179055565b6102bb6104ee565b6102c56000610548565b565b60006102d260015490565b6102db42610177565b6102e591906108dc565b905080600160008282546102f991906108c4565b90915550506040518181527f3d612a56b67f8142c8014737f29e8b3518ba774d5b3c11242b10e131e707ad869060200160405180910390a161036d7f00000000000000000000000000000000000000000000000000000000000000006103676002546001600160a01b031690565b83610598565b50565b67ffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001690565b6103a66104ee565b6001600160a01b03811661040b5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610288565b61036d81610548565b600061041e610370565b8267ffffffffffffffff1610156104375750600061021d565b7f000000000000000000000000000000000000000000000000000000000000000067ffffffffffffffff1661046a610370565b61047491906108c4565b8267ffffffffffffffff16111561048c57508161021d565b7f000000000000000000000000000000000000000000000000000000000000000067ffffffffffffffff166104bf610370565b6104d39067ffffffffffffffff85166108dc565b6104dd90856108f3565b6104e79190610912565b9392505050565b6000546001600160a01b031633146102c55760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610288565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b1790526105ea9084906105ef565b505050565b6000610644826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166106c19092919063ffffffff16565b8051909150156105ea57808060200190518101906106629190610934565b6105ea5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610288565b60606106d084846000856106d8565b949350505050565b6060824710156107395760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b6064820152608401610288565b6001600160a01b0385163b6107905760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610288565b600080866001600160a01b031685876040516107ac9190610986565b60006040518083038185875af1925050503d80600081146107e9576040519150601f19603f3d011682016040523d82523d6000602084013e6107ee565b606091505b50915091506107fe828286610809565b979650505050505050565b606083156108185750816104e7565b8251156108285782518084602001fd5b8160405162461bcd60e51b815260040161028891906109a2565b60006020828403121561085457600080fd5b813567ffffffffffffffff811681146104e757600080fd5b60006020828403121561087e57600080fd5b81356001600160a01b03811681146104e757600080fd5b6000602082840312156108a757600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b600082198211156108d7576108d76108ae565b500190565b6000828210156108ee576108ee6108ae565b500390565b600081600019048311821515161561090d5761090d6108ae565b500290565b60008261092f57634e487b7160e01b600052601260045260246000fd5b500490565b60006020828403121561094657600080fd5b815180151581146104e757600080fd5b60005b83811015610971578181015183820152602001610959565b83811115610980576000848401525b50505050565b60008251610998818460208701610956565b9190910192915050565b60208152600082518060208401526109c1816040850160208701610956565b601f01601f1916919091016040019291505056fea26469706673582212201d7e57947e88cf80f568055687cbf7a64a1e2fa132d95c7c567b55d1cd70baad64736f6c634300080f003300000000000000000000000092925acf2771bc59143228499f9610fe5176eb9c000000000000000000000000ea4d18ea847bdedfccd52a7ce095c398058910aa000000000000000000000000000000000000000000000000000000006261f000000000000000000000000000000000000000000000000000000000000593d377

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061009e5760003560e01c806386d1a69f1161006657806386d1a69f1461013b5780638da5cb5b146101435780639613252114610154578063be9a65551461015c578063f2fde38b1461016457600080fd5b80630a17b06b146100a35780630fb5a6b4146100c95780631c31f710146100f957806338af3eed1461010e578063715018a614610133575b600080fd5b6100b66100b1366004610842565b610177565b6040519081526020015b60405180910390f35b7f000000000000000000000000000000000000000000000000000000000593d37767ffffffffffffffff166100b6565b61010c61010736600461086c565b610223565b005b6002546001600160a01b03165b6040516001600160a01b0390911681526020016100c0565b61010c6102b3565b61010c6102c7565b6000546001600160a01b031661011b565b6001546100b6565b6100b6610370565b61010c61017236600461086c565b61039e565b600061021d61018560015490565b6040516370a0823160e01b81523060048201527f00000000000000000000000092925acf2771bc59143228499f9610fe5176eb9c6001600160a01b0316906370a0823190602401602060405180830381865afa1580156101e9573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061020d9190610895565b61021791906108c4565b83610414565b92915050565b61022b6104ee565b6001600160a01b0381166102915760405162461bcd60e51b815260206004820152602260248201527f42656e65666963696172792063616e6e6f742062652061646472657373207a65604482015261726f60f01b60648201526084015b60405180910390fd5b600280546001600160a01b0319166001600160a01b0392909216919091179055565b6102bb6104ee565b6102c56000610548565b565b60006102d260015490565b6102db42610177565b6102e591906108dc565b905080600160008282546102f991906108c4565b90915550506040518181527f3d612a56b67f8142c8014737f29e8b3518ba774d5b3c11242b10e131e707ad869060200160405180910390a161036d7f00000000000000000000000092925acf2771bc59143228499f9610fe5176eb9c6103676002546001600160a01b031690565b83610598565b50565b67ffffffffffffffff7f000000000000000000000000000000000000000000000000000000006261f0001690565b6103a66104ee565b6001600160a01b03811661040b5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610288565b61036d81610548565b600061041e610370565b8267ffffffffffffffff1610156104375750600061021d565b7f000000000000000000000000000000000000000000000000000000000593d37767ffffffffffffffff1661046a610370565b61047491906108c4565b8267ffffffffffffffff16111561048c57508161021d565b7f000000000000000000000000000000000000000000000000000000000593d37767ffffffffffffffff166104bf610370565b6104d39067ffffffffffffffff85166108dc565b6104dd90856108f3565b6104e79190610912565b9392505050565b6000546001600160a01b031633146102c55760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610288565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663a9059cbb60e01b1790526105ea9084906105ef565b505050565b6000610644826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b03166106c19092919063ffffffff16565b8051909150156105ea57808060200190518101906106629190610934565b6105ea5760405162461bcd60e51b815260206004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e6044820152691bdd081cdd58d8d9595960b21b6064820152608401610288565b60606106d084846000856106d8565b949350505050565b6060824710156107395760405162461bcd60e51b815260206004820152602660248201527f416464726573733a20696e73756666696369656e742062616c616e636520666f6044820152651c8818d85b1b60d21b6064820152608401610288565b6001600160a01b0385163b6107905760405162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152606401610288565b600080866001600160a01b031685876040516107ac9190610986565b60006040518083038185875af1925050503d80600081146107e9576040519150601f19603f3d011682016040523d82523d6000602084013e6107ee565b606091505b50915091506107fe828286610809565b979650505050505050565b606083156108185750816104e7565b8251156108285782518084602001fd5b8160405162461bcd60e51b815260040161028891906109a2565b60006020828403121561085457600080fd5b813567ffffffffffffffff811681146104e757600080fd5b60006020828403121561087e57600080fd5b81356001600160a01b03811681146104e757600080fd5b6000602082840312156108a757600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b600082198211156108d7576108d76108ae565b500190565b6000828210156108ee576108ee6108ae565b500390565b600081600019048311821515161561090d5761090d6108ae565b500290565b60008261092f57634e487b7160e01b600052601260045260246000fd5b500490565b60006020828403121561094657600080fd5b815180151581146104e757600080fd5b60005b83811015610971578181015183820152602001610959565b83811115610980576000848401525b50505050565b60008251610998818460208701610956565b9190910192915050565b60208152600082518060208401526109c1816040850160208701610956565b601f01601f1916919091016040019291505056fea26469706673582212201d7e57947e88cf80f568055687cbf7a64a1e2fa132d95c7c567b55d1cd70baad64736f6c634300080f0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000092925acf2771bc59143228499f9610fe5176eb9c000000000000000000000000ea4d18ea847bdedfccd52a7ce095c398058910aa000000000000000000000000000000000000000000000000000000006261f000000000000000000000000000000000000000000000000000000000000593d377

-----Decoded View---------------
Arg [0] : erc20Address (address): 0x92925Acf2771Bc59143228499f9610FE5176eb9C
Arg [1] : beneficiaryAddress (address): 0xEa4D18ea847Bdedfccd52A7cE095C398058910AA
Arg [2] : startTimestamp (uint64): 1650585600
Arg [3] : durationSeconds (uint64): 93574007

-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 00000000000000000000000092925acf2771bc59143228499f9610fe5176eb9c
Arg [1] : 000000000000000000000000ea4d18ea847bdedfccd52a7ce095c398058910aa
Arg [2] : 000000000000000000000000000000000000000000000000000000006261f000
Arg [3] : 000000000000000000000000000000000000000000000000000000000593d377


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.