ETH Price: $3,384.08 (-1.55%)
Gas: 1 Gwei

Contract

0x8086174bE8FC721CbF275545193a73f56FBF3384
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Value

There are no matching entries

Please try again later

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To Value
188100112023-12-18 2:49:59194 days ago1702867799  Contract Creation0 ETH
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ActionMiscV3

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
paris EvmVersion
File 1 of 28 : ActionMiscV3.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;

import "./base/ActionBase.sol";
import "../interfaces/IPActionMiscV3.sol";

contract ActionMiscV3 is IPActionMiscV3, ActionBase {
    function mintSyFromToken(
        address receiver,
        address SY,
        uint256 minSyOut,
        TokenInput calldata input
    ) external payable returns (uint256 netSyOut) {
        netSyOut = _mintSyFromToken(receiver, SY, minSyOut, input);
        emit MintSyFromToken(msg.sender, input.tokenIn, SY, receiver, input.netTokenIn, netSyOut);
    }

    function redeemSyToToken(
        address receiver,
        address SY,
        uint256 netSyIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut) {
        netTokenOut = _redeemSyToToken(receiver, SY, netSyIn, output, true);
        emit RedeemSyToToken(msg.sender, output.tokenOut, SY, receiver, netSyIn, netTokenOut);
    }

    function mintPyFromToken(
        address receiver,
        address YT,
        uint256 minPyOut,
        TokenInput calldata input
    ) external payable returns (uint256 netPyOut, uint256 netSyInterm) {
        address SY = IPYieldToken(YT).SY();

        netSyInterm = _mintSyFromToken(YT, SY, 0, input);
        netPyOut = _mintPyFromSy(receiver, SY, YT, netSyInterm, minPyOut, false);

        emit MintPyFromToken(msg.sender, input.tokenIn, YT, receiver, input.netTokenIn, netPyOut, netSyInterm);
    }

    function redeemPyToToken(
        address receiver,
        address YT,
        uint256 netPyIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut, uint256 netSyInterm) {
        address SY = IPYieldToken(YT).SY();

        netSyInterm = _redeemPyToSy(SY, YT, netPyIn, 1);
        netTokenOut = _redeemSyToToken(receiver, SY, netSyInterm, output, false);

        emit RedeemPyToToken(msg.sender, output.tokenOut, YT, receiver, netPyIn, netTokenOut, netSyInterm);
    }

    function mintPyFromSy(
        address receiver,
        address YT,
        uint256 netSyIn,
        uint256 minPyOut
    ) external returns (uint256 netPyOut) {
        netPyOut = _mintPyFromSy(receiver, IPYieldToken(YT).SY(), YT, netSyIn, minPyOut, true);
        emit MintPyFromSy(msg.sender, receiver, YT, netSyIn, netPyOut);
    }

    function redeemPyToSy(
        address receiver,
        address YT,
        uint256 netPyIn,
        uint256 minSyOut
    ) external returns (uint256 netSyOut) {
        netSyOut = _redeemPyToSy(receiver, YT, netPyIn, minSyOut);
        emit RedeemPyToSy(msg.sender, receiver, YT, netPyIn, netSyOut);
    }

    function redeemDueInterestAndRewards(
        address user,
        address[] calldata sys,
        address[] calldata yts,
        address[] calldata markets
    ) external {
        unchecked {
            for (uint256 i = 0; i < sys.length; ++i) {
                IStandardizedYield(sys[i]).claimRewards(user);
            }

            for (uint256 i = 0; i < yts.length; ++i) {
                IPYieldToken(yts[i]).redeemDueInterestAndRewards(user, true, true);
            }

            for (uint256 i = 0; i < markets.length; ++i) {
                IPMarket(markets[i]).redeemRewards(user);
            }
        }
    }

    function swapTokenToToken(
        address receiver,
        uint256 minTokenOut,
        TokenInput calldata inp
    ) external payable returns (uint256 netTokenOut) {
        _swapTokenInput(inp);

        netTokenOut = _selfBalance(inp.tokenMintSy);
        if (netTokenOut < minTokenOut) {
            revert Errors.RouterInsufficientTokenOut(netTokenOut, minTokenOut);
        }

        _transferOut(inp.tokenMintSy, receiver, netTokenOut);
    }

    function swapTokenToTokenViaSy(
        address receiver,
        address SY,
        TokenInput calldata input,
        address tokenRedeemSy,
        uint256 minTokenOut
    ) external payable returns (uint256 netTokenOut, uint256 netSyInterm) {
        netSyInterm = _mintSyFromToken(SY, SY, 0, input);
        netTokenOut = IStandardizedYield(SY).redeem(receiver, netSyInterm, tokenRedeemSy, minTokenOut, true);
    }

    // ----------------- MISC FUNCTIONS -----------------

    function boostMarkets(address[] memory markets) external {
        for (uint256 i = 0; i < markets.length; ) {
            IPMarket(markets[i]).transferFrom(msg.sender, markets[i], 0);
            unchecked {
                i++;
            }
        }
    }

    function multicall(Call3[] calldata calls) external payable returns (Result[] memory res) {
        uint256 length = calls.length;
        res = new Result[](length);
        Call3 calldata call;
        for (uint256 i = 0; i < length; ) {
            call = calls[i];

            // delegatecall to itself, it turns allowing invoking functions from other actions
            (bool success, bytes memory result) = address(this).delegatecall(call.callData);

            if (!success && !call.allowFailure) {
                assembly {
                    // We use Yul's revert() to bubble up errors from the target contract.
                    revert(add(32, result), mload(result))
                }
            }

            res[i].success = success;
            res[i].returnData = result;

            unchecked {
                ++i;
            }
        }
    }

    function simulate(address target, bytes calldata data) external payable {
        (bool success, bytes memory result) = target.delegatecall(data);
        revert Errors.SimulationResults(success, result);
    }
}

File 2 of 28 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 3 of 28 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 4 of 28 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 5 of 28 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 6 of 28 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 7 of 28 : Errors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library Errors {
    // BulkSeller
    error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error BulkNotMaintainer();
    error BulkNotAdmin();
    error BulkSellerAlreadyExisted(address token, address SY, address bulk);
    error BulkSellerInvalidToken(address token, address SY);
    error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps);
    error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps);

    // APPROX
    error ApproxFail();
    error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps);
    error ApproxBinarySearchInputInvalid(
        uint256 approxGuessMin,
        uint256 approxGuessMax,
        uint256 minGuessMin,
        uint256 maxGuessMax
    );

    // MARKET + MARKET MATH CORE
    error MarketExpired();
    error MarketZeroAmountsInput();
    error MarketZeroAmountsOutput();
    error MarketZeroLnImpliedRate();
    error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount);
    error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset);
    error MarketExchangeRateBelowOne(int256 exchangeRate);
    error MarketProportionMustNotEqualOne();
    error MarketRateScalarBelowZero(int256 rateScalar);
    error MarketScalarRootBelowZero(int256 scalarRoot);
    error MarketProportionTooHigh(int256 proportion, int256 maxProportion);

    error OracleUninitialized();
    error OracleTargetTooOld(uint32 target, uint32 oldest);
    error OracleZeroCardinality();

    error MarketFactoryExpiredPt();
    error MarketFactoryInvalidPt();
    error MarketFactoryMarketExists();

    error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot);
    error MarketFactoryOverriddenFeeTooHigh(uint80 overriddenFee, uint256 marketLnFeeRateRoot);
    error MarketFactoryReserveFeePercentTooHigh(uint8 reserveFeePercent, uint8 maxReserveFeePercent);
    error MarketFactoryZeroTreasury();
    error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor);
    error MFNotPendleMarket(address addr);

    // ROUTER
    error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut);
    error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut);
    error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut);
    error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut);
    error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay);
    error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay);
    error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed);

    error RouterTimeRangeZero();
    error RouterCallbackNotPendleMarket(address caller);
    error RouterInvalidAction(bytes4 selector);
    error RouterInvalidFacet(address facet);

    error RouterKyberSwapDataZero();

    error SimulationResults(bool success, bytes res);

    // YIELD CONTRACT
    error YCExpired();
    error YCNotExpired();
    error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy);
    error YCNothingToRedeem();
    error YCPostExpiryDataNotSet();
    error YCNoFloatingSy();

    // YieldFactory
    error YCFactoryInvalidExpiry();
    error YCFactoryYieldContractExisted();
    error YCFactoryZeroExpiryDivisor();
    error YCFactoryZeroTreasury();
    error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate);
    error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate);

    // SY
    error SYInvalidTokenIn(address token);
    error SYInvalidTokenOut(address token);
    error SYZeroDeposit();
    error SYZeroRedeem();
    error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut);
    error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);

    // SY-specific
    error SYQiTokenMintFailed(uint256 errCode);
    error SYQiTokenRedeemFailed(uint256 errCode);
    error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1);
    error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax);

    error SYCurveInvalidPid();
    error SYCurve3crvPoolNotFound();

    error SYApeDepositAmountTooSmall(uint256 amountDeposited);
    error SYBalancerInvalidPid();
    error SYInvalidRewardToken(address token);

    error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable);

    error SYBalancerReentrancy();

    error NotFromTrustedRemote(uint16 srcChainId, bytes path);

    // Liquidity Mining
    error VCInactivePool(address pool);
    error VCPoolAlreadyActive(address pool);
    error VCZeroVePendle(address user);
    error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight);
    error VCEpochNotFinalized(uint256 wTime);
    error VCPoolAlreadyAddAndRemoved(address pool);

    error VEInvalidNewExpiry(uint256 newExpiry);
    error VEExceededMaxLockTime();
    error VEInsufficientLockTime();
    error VENotAllowedReduceExpiry();
    error VEZeroAmountLocked();
    error VEPositionNotExpired();
    error VEZeroPosition();
    error VEZeroSlope(uint128 bias, uint128 slope);
    error VEReceiveOldSupply(uint256 msgTime);

    error GCNotPendleMarket(address caller);
    error GCNotVotingController(address caller);

    error InvalidWTime(uint256 wTime);
    error ExpiryInThePast(uint256 expiry);
    error ChainNotSupported(uint256 chainId);

    error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount);
    error FDEpochLengthMismatch();
    error FDInvalidPool(address pool);
    error FDPoolAlreadyExists(address pool);
    error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch);
    error FDInvalidStartEpoch(uint256 startEpoch);
    error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime);
    error FDFutureFunding(uint256 lastFunded, uint256 currentWTime);

    error BDInvalidEpoch(uint256 epoch, uint256 startTime);

    // Cross-Chain
    error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path);
    error MsgNotFromReceiveEndpoint(address sender);
    error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee);
    error ApproxDstExecutionGasNotSet();
    error InvalidRetryData();

    // GENERIC MSG
    error ArrayLengthMismatch();
    error ArrayEmpty();
    error ArrayOutOfBounds();
    error ZeroAddress();
    error FailedToSendEther();
    error InvalidMerkleProof();

    error OnlyLayerZeroEndpoint();
    error OnlyYT();
    error OnlyYCFactory();
    error OnlyWhitelisted();

    // Swap Aggregator
    error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual);
    error UnsupportedSelector(uint256 aggregatorType, bytes4 selector);
}

File 8 of 28 : LogExpMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.8.0;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2 ** 255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

File 9 of 28 : PMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.8.0;

/* solhint-disable private-vars-leading-underscore, reason-string */

library PMath {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    int256 internal constant IONE = 1e18; // 18 decimal places

    function subMax0(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            return (a >= b ? a - b : 0);
        }
    }

    function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
        require(a >= b, "negative");
        return a - b; // no unchecked since if b is very negative, a - b might overflow
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        unchecked {
            return product / ONE;
        }
    }

    function mulDown(int256 a, int256 b) internal pure returns (int256) {
        int256 product = a * b;
        unchecked {
            return product / IONE;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 aInflated = a * ONE;
        unchecked {
            return aInflated / b;
        }
    }

    function divDown(int256 a, int256 b) internal pure returns (int256) {
        int256 aInflated = a * IONE;
        unchecked {
            return aInflated / b;
        }
    }

    function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a + b - 1) / b;
    }

    // @author Uniswap
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }

    function square(uint256 x) internal pure returns (uint256) {
        return x * x;
    }

    function squareDown(uint256 x) internal pure returns (uint256) {
        return mulDown(x, x);
    }

    function abs(int256 x) internal pure returns (uint256) {
        return uint256(x > 0 ? x : -x);
    }

    function neg(int256 x) internal pure returns (int256) {
        return x * (-1);
    }

    function neg(uint256 x) internal pure returns (int256) {
        return Int(x) * (-1);
    }

    function max(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x > y ? x : y);
    }

    function max(int256 x, int256 y) internal pure returns (int256) {
        return (x > y ? x : y);
    }

    function min(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x < y ? x : y);
    }

    function min(int256 x, int256 y) internal pure returns (int256) {
        return (x < y ? x : y);
    }

    /*///////////////////////////////////////////////////////////////
                               SIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Int(uint256 x) internal pure returns (int256) {
        require(x <= uint256(type(int256).max));
        return int256(x);
    }

    function Int128(int256 x) internal pure returns (int128) {
        require(type(int128).min <= x && x <= type(int128).max);
        return int128(x);
    }

    function Int128(uint256 x) internal pure returns (int128) {
        return Int128(Int(x));
    }

    /*///////////////////////////////////////////////////////////////
                               UNSIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Uint(int256 x) internal pure returns (uint256) {
        require(x >= 0);
        return uint256(x);
    }

    function Uint32(uint256 x) internal pure returns (uint32) {
        require(x <= type(uint32).max);
        return uint32(x);
    }

    function Uint64(uint256 x) internal pure returns (uint64) {
        require(x <= type(uint64).max);
        return uint64(x);
    }

    function Uint112(uint256 x) internal pure returns (uint112) {
        require(x <= type(uint112).max);
        return uint112(x);
    }

    function Uint96(uint256 x) internal pure returns (uint96) {
        require(x <= type(uint96).max);
        return uint96(x);
    }

    function Uint128(uint256 x) internal pure returns (uint128) {
        require(x <= type(uint128).max);
        return uint128(x);
    }

    function Uint192(uint256 x) internal pure returns (uint192) {
        require(x <= type(uint192).max);
        return uint192(x);
    }

    function isAApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps);
    }

    function isAGreaterApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return a >= b && a <= mulDown(b, ONE + eps);
    }

    function isASmallerApproxB(uint256 a, uint256 b, uint256 eps) internal pure returns (bool) {
        return a <= b && a >= mulDown(b, ONE - eps);
    }
}

File 10 of 28 : MiniHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library MiniHelpers {
    function isCurrentlyExpired(uint256 expiry) internal view returns (bool) {
        return (expiry <= block.timestamp);
    }

    function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) {
        return (expiry <= blockTime);
    }

    function isTimeInThePast(uint256 timestamp) internal view returns (bool) {
        return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired
    }
}

File 11 of 28 : TokenHelper.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../../interfaces/IWETH.sol";

abstract contract TokenHelper {
    using SafeERC20 for IERC20;

    address internal constant NATIVE = address(0);
    uint256 internal constant LOWER_BOUND_APPROVAL = type(uint96).max / 2; // some tokens use 96 bits for approval

    function _transferIn(address token, address from, uint256 amount) internal {
        if (token == NATIVE) require(msg.value == amount, "eth mismatch");
        else if (amount != 0) IERC20(token).safeTransferFrom(from, address(this), amount);
    }

    function _transferFrom(IERC20 token, address from, address to, uint256 amount) internal {
        if (amount != 0) token.safeTransferFrom(from, to, amount);
    }

    function _transferOut(address token, address to, uint256 amount) internal {
        if (amount == 0) return;
        if (token == NATIVE) {
            (bool success, ) = to.call{value: amount}("");
            require(success, "eth send failed");
        } else {
            IERC20(token).safeTransfer(to, amount);
        }
    }

    function _transferOut(address[] memory tokens, address to, uint256[] memory amounts) internal {
        uint256 numTokens = tokens.length;
        require(numTokens == amounts.length, "length mismatch");
        for (uint256 i = 0; i < numTokens; ) {
            _transferOut(tokens[i], to, amounts[i]);
            unchecked {
                i++;
            }
        }
    }

    function _selfBalance(address token) internal view returns (uint256) {
        return (token == NATIVE) ? address(this).balance : IERC20(token).balanceOf(address(this));
    }

    function _selfBalance(IERC20 token) internal view returns (uint256) {
        return token.balanceOf(address(this));
    }

    /// @notice Approves the stipulated contract to spend the given allowance in the given token
    /// @dev PLS PAY ATTENTION to tokens that requires the approval to be set to 0 before changing it
    function _safeApprove(address token, address to, uint256 value) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), "Safe Approve");
    }

    function _safeApproveInf(address token, address to) internal {
        if (token == NATIVE) return;
        if (IERC20(token).allowance(address(this), to) < LOWER_BOUND_APPROVAL) {
            _safeApprove(token, to, 0);
            _safeApprove(token, to, type(uint256).max);
        }
    }

    function _wrap_unwrap_ETH(address tokenIn, address tokenOut, uint256 netTokenIn) internal {
        if (tokenIn == NATIVE) IWETH(tokenOut).deposit{value: netTokenIn}();
        else IWETH(tokenIn).withdraw(netTokenIn);
    }
}

File 12 of 28 : MarketMathCore.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../libraries/math/PMath.sol";
import "../libraries/math/LogExpMath.sol";

import "../StandardizedYield/PYIndex.sol";
import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";

struct MarketState {
    int256 totalPt;
    int256 totalSy;
    int256 totalLp;
    address treasury;
    /// immutable variables ///
    int256 scalarRoot;
    uint256 expiry;
    /// fee data ///
    uint256 lnFeeRateRoot;
    uint256 reserveFeePercent; // base 100
    /// last trade data ///
    uint256 lastLnImpliedRate;
}

// params that are expensive to compute, therefore we pre-compute them
struct MarketPreCompute {
    int256 rateScalar;
    int256 totalAsset;
    int256 rateAnchor;
    int256 feeRate;
}

// solhint-disable ordering
library MarketMathCore {
    using PMath for uint256;
    using PMath for int256;
    using LogExpMath for int256;
    using PYIndexLib for PYIndex;

    int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
    int256 internal constant PERCENTAGE_DECIMALS = 100;
    uint256 internal constant DAY = 86400;
    uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY;

    int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100;

    using PMath for uint256;
    using PMath for int256;

    /*///////////////////////////////////////////////////////////////
                UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidity(
        MarketState memory market,
        uint256 syDesired,
        uint256 ptDesired,
        uint256 blockTime
    ) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) {
        (int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed) = addLiquidityCore(
            market,
            syDesired.Int(),
            ptDesired.Int(),
            blockTime
        );

        lpToReserve = _lpToReserve.Uint();
        lpToAccount = _lpToAccount.Uint();
        syUsed = _syUsed.Uint();
        ptUsed = _ptUsed.Uint();
    }

    function removeLiquidity(
        MarketState memory market,
        uint256 lpToRemove
    ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) {
        (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int());

        netSyToAccount = _syToAccount.Uint();
        netPtToAccount = _ptToAccount.Uint();
    }

    function swapExactPtForSy(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToMarket,
        uint256 blockTime
    ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToMarket.neg(),
            blockTime
        );

        netSyToAccount = _netSyToAccount.Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    function swapSyForExactPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToAccount,
        uint256 blockTime
    ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToAccount.Int(),
            blockTime
        );

        netSyToMarket = _netSyToAccount.neg().Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    /*///////////////////////////////////////////////////////////////
                    CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidityCore(
        MarketState memory market,
        int256 syDesired,
        int256 ptDesired,
        uint256 blockTime
    ) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput();
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        if (market.totalLp == 0) {
            lpToAccount = PMath.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY;
            lpToReserve = MINIMUM_LIQUIDITY;
            syUsed = syDesired;
            ptUsed = ptDesired;
        } else {
            int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt;
            int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy;
            if (netLpByPt < netLpBySy) {
                lpToAccount = netLpByPt;
                ptUsed = ptDesired;
                syUsed = (market.totalSy * lpToAccount) / market.totalLp;
            } else {
                lpToAccount = netLpBySy;
                syUsed = syDesired;
                ptUsed = (market.totalPt * lpToAccount) / market.totalLp;
            }
        }

        if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalSy += syUsed;
        market.totalPt += ptUsed;
        market.totalLp += lpToAccount + lpToReserve;
    }

    function removeLiquidityCore(
        MarketState memory market,
        int256 lpToRemove
    ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp;
        netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp;

        if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalLp = market.totalLp.subNoNeg(lpToRemove);
        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount);
    }

    function executeTradeCore(
        MarketState memory market,
        PYIndex index,
        int256 netPtToAccount,
        uint256 blockTime
    ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
        if (market.totalPt <= netPtToAccount)
            revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount);

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime);

        (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(market, comp, index, netPtToAccount);

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        _setNewMarketStateTrade(market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime);
    }

    function getMarketPreCompute(
        MarketState memory market,
        PYIndex index,
        uint256 blockTime
    ) internal pure returns (MarketPreCompute memory res) {
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        uint256 timeToExpiry = market.expiry - blockTime;

        res.rateScalar = _getRateScalar(market, timeToExpiry);
        res.totalAsset = index.syToAsset(market.totalSy);

        if (market.totalPt == 0 || res.totalAsset == 0)
            revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset);

        res.rateAnchor = _getRateAnchor(
            market.totalPt,
            market.lastLnImpliedRate,
            res.totalAsset,
            res.rateScalar,
            timeToExpiry
        );
        res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry);
    }

    function calcTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount
    ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
        int256 preFeeExchangeRate = _getExchangeRate(
            market.totalPt,
            comp.totalAsset,
            comp.rateScalar,
            comp.rateAnchor,
            netPtToAccount
        );

        int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg();
        int256 fee = comp.feeRate;

        if (netPtToAccount > 0) {
            int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee);
            if (postFeeExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate);

            fee = preFeeAssetToAccount.mulDown(PMath.IONE - fee);
        } else {
            fee = ((preFeeAssetToAccount * (PMath.IONE - fee)) / fee).neg();
        }

        int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS;
        int256 netAssetToAccount = preFeeAssetToAccount - fee;

        netSyToAccount = netAssetToAccount < 0
            ? index.assetToSyUp(netAssetToAccount)
            : index.assetToSy(netAssetToAccount);
        netSyFee = index.assetToSy(fee);
        netSyToReserve = index.assetToSy(netAssetToReserve);
    }

    function _setNewMarketStateTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount,
        int256 netSyToAccount,
        int256 netSyToReserve,
        uint256 blockTime
    ) internal pure {
        uint256 timeToExpiry = market.expiry - blockTime;

        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve);

        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            index.syToAsset(market.totalSy),
            comp.rateScalar,
            comp.rateAnchor,
            timeToExpiry
        );

        if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate();
    }

    function _getRateAnchor(
        int256 totalPt,
        uint256 lastLnImpliedRate,
        int256 totalAsset,
        int256 rateScalar,
        uint256 timeToExpiry
    ) internal pure returns (int256 rateAnchor) {
        int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry);

        if (newExchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate);

        {
            int256 proportion = totalPt.divDown(totalPt + totalAsset);

            int256 lnProportion = _logProportion(proportion);

            rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar);
        }
    }

    /// @notice Calculates the current market implied rate.
    /// @return lnImpliedRate the implied rate
    function _getLnImpliedRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        uint256 timeToExpiry
    ) internal pure returns (uint256 lnImpliedRate) {
        // This will check for exchange rates < PMath.IONE
        int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0);

        // exchangeRate >= 1 so its ln >= 0
        uint256 lnRate = exchangeRate.ln().Uint();

        lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry;
    }

    /// @notice Converts an implied rate to an exchange rate given a time to expiry. The
    /// formula is E = e^rt
    function _getExchangeRateFromImpliedRate(
        uint256 lnImpliedRate,
        uint256 timeToExpiry
    ) internal pure returns (int256 exchangeRate) {
        uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME;

        exchangeRate = LogExpMath.exp(rt.Int());
    }

    function _getExchangeRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        int256 netPtToAccount
    ) internal pure returns (int256 exchangeRate) {
        int256 numerator = totalPt.subNoNeg(netPtToAccount);

        int256 proportion = (numerator.divDown(totalPt + totalAsset));

        if (proportion > MAX_MARKET_PROPORTION)
            revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION);

        int256 lnProportion = _logProportion(proportion);

        exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor;

        if (exchangeRate < PMath.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate);
    }

    function _logProportion(int256 proportion) internal pure returns (int256 res) {
        if (proportion == PMath.IONE) revert Errors.MarketProportionMustNotEqualOne();

        int256 logitP = proportion.divDown(PMath.IONE - proportion);

        res = logitP.ln();
    }

    function _getRateScalar(MarketState memory market, uint256 timeToExpiry) internal pure returns (int256 rateScalar) {
        rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int();
        if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar);
    }

    function setInitialLnImpliedRate(
        MarketState memory market,
        PYIndex index,
        int256 initialAnchor,
        uint256 blockTime
    ) internal pure {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        int256 totalAsset = index.syToAsset(market.totalSy);
        uint256 timeToExpiry = market.expiry - blockTime;
        int256 rateScalar = _getRateScalar(market, timeToExpiry);

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            totalAsset,
            rateScalar,
            initialAnchor,
            timeToExpiry
        );
    }
}

File 13 of 28 : PYIndex.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";

import "./SYUtils.sol";
import "../libraries/math/PMath.sol";

type PYIndex is uint256;

library PYIndexLib {
    using PMath for uint256;
    using PMath for int256;

    function newIndex(IPYieldToken YT) internal returns (PYIndex) {
        return PYIndex.wrap(YT.pyIndexCurrent());
    }

    function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
        return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount);
    }

    function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
        return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount);
    }

    function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
        return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount);
    }

    function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
        uint256 _index = PYIndex.unwrap(index);
        return SYUtils.syToAssetUp(_index, syAmount);
    }

    function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) {
        int256 sign = syAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int();
    }

    function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }

    function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }
}

File 14 of 28 : SYUtils.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

library SYUtils {
    uint256 internal constant ONE = 1e18;

    function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate) / ONE;
    }

    function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate + ONE - 1) / ONE;
    }

    function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
        return (assetAmount * ONE) / exchangeRate;
    }

    function assetToSyUp(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
        return (assetAmount * ONE + exchangeRate - 1) / exchangeRate;
    }
}

File 15 of 28 : IPActionMiscV3.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../router/base/MarketApproxLib.sol";
import "./IPAllActionTypeV3.sol";

interface IPActionMiscV3 {
    struct Call3 {
        bool allowFailure;
        bytes callData;
    }

    struct Result {
        bool success;
        bytes returnData;
    }

    event MintSyFromToken(
        address indexed caller,
        address indexed tokenIn,
        address indexed SY,
        address receiver,
        uint256 netTokenIn,
        uint256 netSyOut
    );

    event RedeemSyToToken(
        address indexed caller,
        address indexed tokenOut,
        address indexed SY,
        address receiver,
        uint256 netSyIn,
        uint256 netTokenOut
    );

    event MintPyFromSy(
        address indexed caller,
        address indexed receiver,
        address indexed YT,
        uint256 netSyIn,
        uint256 netPyOut
    );

    event RedeemPyToSy(
        address indexed caller,
        address indexed receiver,
        address indexed YT,
        uint256 netPyIn,
        uint256 netSyOut
    );

    event MintPyFromToken(
        address indexed caller,
        address indexed tokenIn,
        address indexed YT,
        address receiver,
        uint256 netTokenIn,
        uint256 netPyOut,
        uint256 netSyInterm
    );

    event RedeemPyToToken(
        address indexed caller,
        address indexed tokenOut,
        address indexed YT,
        address receiver,
        uint256 netPyIn,
        uint256 netTokenOut,
        uint256 netSyInterm
    );

    function mintSyFromToken(
        address receiver,
        address SY,
        uint256 minSyOut,
        TokenInput calldata input
    ) external payable returns (uint256 netSyOut);

    function redeemSyToToken(
        address receiver,
        address SY,
        uint256 netSyIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut);

    function mintPyFromToken(
        address receiver,
        address YT,
        uint256 minPyOut,
        TokenInput calldata input
    ) external payable returns (uint256 netPyOut, uint256 netSyInterm);

    function redeemPyToToken(
        address receiver,
        address YT,
        uint256 netPyIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut, uint256 netSyInterm);

    function mintPyFromSy(
        address receiver,
        address YT,
        uint256 netSyIn,
        uint256 minPyOut
    ) external returns (uint256 netPyOut);

    function redeemPyToSy(
        address receiver,
        address YT,
        uint256 netPyIn,
        uint256 minSyOut
    ) external returns (uint256 netSyOut);

    function redeemDueInterestAndRewards(
        address user,
        address[] calldata sys,
        address[] calldata yts,
        address[] calldata markets
    ) external;

    function swapTokenToToken(
        address receiver,
        uint256 minTokenOut,
        TokenInput calldata inp
    ) external payable returns (uint256 netTokenOut);

    function swapTokenToTokenViaSy(
        address receiver,
        address SY,
        TokenInput calldata input,
        address tokenRedeemSy,
        uint256 minTokenOut
    ) external payable returns (uint256 netTokenOut, uint256 netSyInterm);

    function boostMarkets(address[] memory markets) external;

    function multicall(Call3[] calldata calls) external payable returns (Result[] memory res);

    function simulate(address target, bytes calldata data) external payable;
}

File 16 of 28 : IPAllActionTypeV3.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity ^0.8.0;

import "../router/swap-aggregator/IPSwapAggregator.sol";
import "./IPLimitRouter.sol";

struct TokenInput {
    // Token/Sy data
    address tokenIn;
    uint256 netTokenIn;
    address tokenMintSy;
    // aggregator data
    address pendleSwap;
    SwapData swapData;
}

struct TokenOutput {
    // Token/Sy data
    address tokenOut;
    uint256 minTokenOut;
    address tokenRedeemSy;
    // aggregator data
    address pendleSwap;
    SwapData swapData;
}

struct LimitOrderData {
    address limitRouter;
    uint256 epsSkipMarket; // only used for swap operations, will be ignored otherwise
    FillOrderParams[] normalFills;
    FillOrderParams[] flashFills;
    bytes optData;
}

File 17 of 28 : IPGauge.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IPGauge {
    function totalActiveSupply() external view returns (uint256);

    function activeBalance(address user) external view returns (uint256);

    // only available for newer factories. please check the verified contracts
    event RedeemRewards(address indexed user, uint256[] rewardsOut);
}

File 18 of 28 : IPInterestManagerYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IPInterestManagerYT {
    event CollectInterestFee(uint256 amountInterestFee);

    function userInterest(address user) external view returns (uint128 lastPYIndex, uint128 accruedInterest);
}

File 19 of 28 : IPLimitRouter.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../core/StandardizedYield/PYIndex.sol";

interface IPLimitOrderType {
    enum OrderType {
        SY_FOR_PT,
        PT_FOR_SY,
        SY_FOR_YT,
        YT_FOR_SY
    }

    // Fixed-size order part with core information
    struct StaticOrder {
        uint256 salt;
        uint256 expiry;
        uint256 nonce;
        OrderType orderType;
        address token;
        address YT;
        address maker;
        address receiver;
        uint256 makingAmount;
        uint256 lnImpliedRate;
        uint256 failSafeRate;
    }

    struct FillResults {
        uint256 totalMaking;
        uint256 totalTaking;
        uint256 totalFee;
        uint256 totalNotionalVolume;
        uint256[] netMakings;
        uint256[] netTakings;
        uint256[] netFees;
        uint256[] notionalVolumes;
    }
}

struct Order {
    uint256 salt;
    uint256 expiry;
    uint256 nonce;
    IPLimitOrderType.OrderType orderType;
    address token;
    address YT;
    address maker;
    address receiver;
    uint256 makingAmount;
    uint256 lnImpliedRate;
    uint256 failSafeRate;
    bytes permit;
}

struct FillOrderParams {
    Order order;
    bytes signature;
    uint256 makingAmount;
}

interface IPLimitRouterCallback is IPLimitOrderType {
    function limitRouterCallback(
        uint256 actualMaking,
        uint256 actualTaking,
        uint256 totalFee,
        bytes memory data
    ) external returns (bytes memory);
}

interface IPLimitRouter is IPLimitOrderType {
    struct OrderStatus {
        uint128 filledAmount;
        uint128 remaining;
    }

    event OrderCanceled(address indexed maker, bytes32 indexed orderHash);

    event OrderFilled(
        bytes32 indexed orderHash,
        OrderType indexed orderType,
        address indexed YT,
        address token,
        uint256 netInputFromMaker,
        uint256 netOutputToMaker,
        uint256 feeAmount,
        uint256 notionalVolume
    );

    // @dev actualMaking, actualTaking are in the SY form
    function fill(
        FillOrderParams[] memory params,
        address receiver,
        uint256 maxTaking,
        bytes calldata optData,
        bytes calldata callback
    ) external returns (uint256 actualMaking, uint256 actualTaking, uint256 totalFee, bytes memory callbackReturn);

    function feeRecipient() external view returns (address);

    function hashOrder(Order memory order) external view returns (bytes32);

    function cancelSingle(Order calldata order) external;

    function cancelBatch(Order[] calldata orders) external;

    function orderStatusesRaw(
        bytes32[] memory orderHashes
    ) external view returns (uint256[] memory remainingsRaw, uint256[] memory filledAmounts);

    function orderStatuses(
        bytes32[] memory orderHashes
    ) external view returns (uint256[] memory remainings, uint256[] memory filledAmounts);

    function DOMAIN_SEPARATOR() external view returns (bytes32);

    function simulate(address target, bytes calldata data) external payable;
}

File 20 of 28 : IPMarket.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IPPrincipalToken.sol";
import "./IPYieldToken.sol";
import "./IStandardizedYield.sol";
import "./IPGauge.sol";
import "../core/Market/MarketMathCore.sol";

interface IPMarket is IERC20Metadata, IPGauge {
    event Mint(address indexed receiver, uint256 netLpMinted, uint256 netSyUsed, uint256 netPtUsed);

    event Burn(
        address indexed receiverSy,
        address indexed receiverPt,
        uint256 netLpBurned,
        uint256 netSyOut,
        uint256 netPtOut
    );

    event Swap(
        address indexed caller,
        address indexed receiver,
        int256 netPtOut,
        int256 netSyOut,
        uint256 netSyFee,
        uint256 netSyToReserve
    );

    event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate);

    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    function mint(
        address receiver,
        uint256 netSyDesired,
        uint256 netPtDesired
    ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed);

    function burn(
        address receiverSy,
        address receiverPt,
        uint256 netLpToBurn
    ) external returns (uint256 netSyOut, uint256 netPtOut);

    function swapExactPtForSy(
        address receiver,
        uint256 exactPtIn,
        bytes calldata data
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function swapSyForExactPt(
        address receiver,
        uint256 exactPtOut,
        bytes calldata data
    ) external returns (uint256 netSyIn, uint256 netSyFee);

    function redeemRewards(address user) external returns (uint256[] memory);

    function readState(address router) external view returns (MarketState memory market);

    function observe(uint32[] memory secondsAgos) external view returns (uint216[] memory lnImpliedRateCumulative);

    function increaseObservationsCardinalityNext(uint16 cardinalityNext) external;

    function readTokens() external view returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT);

    function getRewardTokens() external view returns (address[] memory);

    function isExpired() external view returns (bool);

    function expiry() external view returns (uint256);

    function observations(
        uint256 index
    ) external view returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized);

    function _storage()
        external
        view
        returns (
            int128 totalPt,
            int128 totalSy,
            uint96 lastLnImpliedRate,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext
        );
}

File 21 of 28 : IPPrincipalToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IPPrincipalToken is IERC20Metadata {
    function burnByYT(address user, uint256 amount) external;

    function mintByYT(address user, uint256 amount) external;

    function initialize(address _YT) external;

    function SY() external view returns (address);

    function YT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);
}

File 22 of 28 : IPYieldToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IRewardManager.sol";
import "./IPInterestManagerYT.sol";

interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT {
    event NewInterestIndex(uint256 indexed newIndex);

    event Mint(
        address indexed caller,
        address indexed receiverPT,
        address indexed receiverYT,
        uint256 amountSyToMint,
        uint256 amountPYOut
    );

    event Burn(address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut);

    event RedeemRewards(address indexed user, uint256[] amountRewardsOut);

    event RedeemInterest(address indexed user, uint256 interestOut);

    event CollectRewardFee(address indexed rewardToken, uint256 amountRewardFee);

    function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut);

    function redeemPY(address receiver) external returns (uint256 amountSyOut);

    function redeemPYMulti(
        address[] calldata receivers,
        uint256[] calldata amountPYToRedeems
    ) external returns (uint256[] memory amountSyOuts);

    function redeemDueInterestAndRewards(
        address user,
        bool redeemInterest,
        bool redeemRewards
    ) external returns (uint256 interestOut, uint256[] memory rewardsOut);

    function rewardIndexesCurrent() external returns (uint256[] memory);

    function pyIndexCurrent() external returns (uint256);

    function pyIndexStored() external view returns (uint256);

    function getRewardTokens() external view returns (address[] memory);

    function SY() external view returns (address);

    function PT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);

    function doCacheIndexSameBlock() external view returns (bool);

    function pyIndexLastUpdatedBlock() external view returns (uint128);
}

File 23 of 28 : IRewardManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

interface IRewardManager {
    function userReward(address token, address user) external view returns (uint128 index, uint128 accrued);
}

File 24 of 28 : IStandardizedYield.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */

pragma solidity ^0.8.0;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IStandardizedYield is IERC20Metadata {
    /// @dev Emitted when any base tokens is deposited to mint shares
    event Deposit(
        address indexed caller,
        address indexed receiver,
        address indexed tokenIn,
        uint256 amountDeposited,
        uint256 amountSyOut
    );

    /// @dev Emitted when any shares are redeemed for base tokens
    event Redeem(
        address indexed caller,
        address indexed receiver,
        address indexed tokenOut,
        uint256 amountSyToRedeem,
        uint256 amountTokenOut
    );

    /// @dev check `assetInfo()` for more information
    enum AssetType {
        TOKEN,
        LIQUIDITY
    }

    /// @dev Emitted when (`user`) claims their rewards
    event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts);

    /**
     * @notice mints an amount of shares by depositing a base token.
     * @param receiver shares recipient address
     * @param tokenIn address of the base tokens to mint shares
     * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`)
     * @param minSharesOut reverts if amount of shares minted is lower than this
     * @return amountSharesOut amount of shares minted
     * @dev Emits a {Deposit} event
     *
     * Requirements:
     * - (`tokenIn`) must be a valid base token.
     */
    function deposit(
        address receiver,
        address tokenIn,
        uint256 amountTokenToDeposit,
        uint256 minSharesOut
    ) external payable returns (uint256 amountSharesOut);

    /**
     * @notice redeems an amount of base tokens by burning some shares
     * @param receiver recipient address
     * @param amountSharesToRedeem amount of shares to be burned
     * @param tokenOut address of the base token to be redeemed
     * @param minTokenOut reverts if amount of base token redeemed is lower than this
     * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender`
     * @return amountTokenOut amount of base tokens redeemed
     * @dev Emits a {Redeem} event
     *
     * Requirements:
     * - (`tokenOut`) must be a valid base token.
     */
    function redeem(
        address receiver,
        uint256 amountSharesToRedeem,
        address tokenOut,
        uint256 minTokenOut,
        bool burnFromInternalBalance
    ) external returns (uint256 amountTokenOut);

    /**
     * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account
     * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy
     he can mint must be X * exchangeRate / 1e18
     * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication
     & division
     */
    function exchangeRate() external view returns (uint256 res);

    /**
     * @notice claims reward for (`user`)
     * @param user the user receiving their rewards
     * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
     * @dev
     * Emits a `ClaimRewards` event
     * See {getRewardTokens} for list of reward tokens
     */
    function claimRewards(address user) external returns (uint256[] memory rewardAmounts);

    /**
     * @notice get the amount of unclaimed rewards for (`user`)
     * @param user the user to check for
     * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
     */
    function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts);

    function rewardIndexesCurrent() external returns (uint256[] memory indexes);

    function rewardIndexesStored() external view returns (uint256[] memory indexes);

    /**
     * @notice returns the list of reward token addresses
     */
    function getRewardTokens() external view returns (address[] memory);

    /**
     * @notice returns the address of the underlying yield token
     */
    function yieldToken() external view returns (address);

    /**
     * @notice returns all tokens that can mint this SY
     */
    function getTokensIn() external view returns (address[] memory res);

    /**
     * @notice returns all tokens that can be redeemed by this SY
     */
    function getTokensOut() external view returns (address[] memory res);

    function isValidTokenIn(address token) external view returns (bool);

    function isValidTokenOut(address token) external view returns (bool);

    function previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) external view returns (uint256 amountSharesOut);

    function previewRedeem(
        address tokenOut,
        uint256 amountSharesToRedeem
    ) external view returns (uint256 amountTokenOut);

    /**
     * @notice This function contains information to interpret what the asset is
     * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens,
        2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain)
     * @return assetAddress the address of the asset
     * @return assetDecimals the decimals of the asset
     */
    function assetInfo() external view returns (AssetType assetType, address assetAddress, uint8 assetDecimals);
}

File 25 of 28 : IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */
pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IWETH is IERC20 {
    event Deposit(address indexed dst, uint256 wad);
    event Withdrawal(address indexed src, uint256 wad);

    function deposit() external payable;

    function withdraw(uint256 wad) external;
}

File 26 of 28 : ActionBase.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../../core/libraries/TokenHelper.sol";
import "../../interfaces/IStandardizedYield.sol";
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPAllActionTypeV3.sol";
import "../../interfaces/IPMarket.sol";
import "../../router/base/MarketApproxLib.sol";

import "../../core/libraries/Errors.sol";
import "../swap-aggregator/IPSwapAggregator.sol";

abstract contract ActionBase is TokenHelper, IPLimitOrderType {
    using MarketApproxPtOutLib for MarketState;
    using PMath for uint256;
    using PYIndexLib for IPYieldToken;
    using PYIndexLib for PYIndex;

    bytes internal constant EMPTY_BYTES = abi.encode();

    // ----------------- MINT REDEEM SY PY -----------------

    function _mintSyFromToken(
        address receiver,
        address SY,
        uint256 minSyOut,
        TokenInput calldata inp
    ) internal returns (uint256 netSyOut) {
        SwapType swapType = inp.swapData.swapType;

        uint256 netTokenMintSy;

        if (swapType == SwapType.NONE) {
            _transferIn(inp.tokenIn, msg.sender, inp.netTokenIn);
            netTokenMintSy = inp.netTokenIn;
        } else if (swapType == SwapType.ETH_WETH) {
            _transferIn(inp.tokenIn, msg.sender, inp.netTokenIn);
            _wrap_unwrap_ETH(inp.tokenIn, inp.tokenMintSy, inp.netTokenIn);
            netTokenMintSy = inp.netTokenIn;
        } else {
            _swapTokenInput(inp);
            netTokenMintSy = _selfBalance(inp.tokenMintSy);
        }

        netSyOut = __mintSy(receiver, SY, netTokenMintSy, minSyOut, inp);
    }

    function _swapTokenInput(TokenInput calldata inp) internal {
        if (inp.tokenIn == NATIVE) _transferIn(NATIVE, msg.sender, inp.netTokenIn);
        else _transferFrom(IERC20(inp.tokenIn), msg.sender, inp.pendleSwap, inp.netTokenIn);

        IPSwapAggregator(inp.pendleSwap).swap{value: inp.tokenIn == NATIVE ? inp.netTokenIn : 0}(
            inp.tokenIn,
            inp.netTokenIn,
            inp.swapData
        );
    }

    function __mintSy(
        address receiver,
        address SY,
        uint256 netTokenMintSy,
        uint256 minSyOut,
        TokenInput calldata inp
    ) private returns (uint256 netSyOut) {
        uint256 netNative = inp.tokenMintSy == NATIVE ? netTokenMintSy : 0;
        _safeApproveInf(inp.tokenMintSy, SY);
        netSyOut = IStandardizedYield(SY).deposit{value: netNative}(
            receiver,
            inp.tokenMintSy,
            netTokenMintSy,
            minSyOut
        );
    }

    function _redeemSyToToken(
        address receiver,
        address SY,
        uint256 netSyIn,
        TokenOutput calldata out,
        bool doPull
    ) internal returns (uint256 netTokenOut) {
        SwapType swapType = out.swapData.swapType;

        if (swapType == SwapType.NONE) {
            netTokenOut = __redeemSy(receiver, SY, netSyIn, out, doPull);
        } else if (swapType == SwapType.ETH_WETH) {
            netTokenOut = __redeemSy(address(this), SY, netSyIn, out, doPull); // ETH:WETH is 1:1

            _wrap_unwrap_ETH(out.tokenRedeemSy, out.tokenOut, netTokenOut);

            _transferOut(out.tokenOut, receiver, netTokenOut);
        } else {
            uint256 netTokenRedeemed = __redeemSy(out.pendleSwap, SY, netSyIn, out, doPull);

            IPSwapAggregator(out.pendleSwap).swap(out.tokenRedeemSy, netTokenRedeemed, out.swapData);

            netTokenOut = _selfBalance(out.tokenOut);

            _transferOut(out.tokenOut, receiver, netTokenOut);
        }

        if (netTokenOut < out.minTokenOut) {
            revert Errors.RouterInsufficientTokenOut(netTokenOut, out.minTokenOut);
        }
    }

    function __redeemSy(
        address receiver,
        address SY,
        uint256 netSyIn,
        TokenOutput calldata out,
        bool doPull
    ) private returns (uint256 netTokenRedeemed) {
        if (doPull) {
            _transferFrom(IERC20(SY), msg.sender, SY, netSyIn);
        }

        netTokenRedeemed = IStandardizedYield(SY).redeem(receiver, netSyIn, out.tokenRedeemSy, 0, true);
    }

    function _mintPyFromSy(
        address receiver,
        address SY,
        address YT,
        uint256 netSyIn,
        uint256 minPyOut,
        bool doPull
    ) internal returns (uint256 netPyOut) {
        if (doPull) {
            _transferFrom(IERC20(SY), msg.sender, YT, netSyIn);
        }

        netPyOut = IPYieldToken(YT).mintPY(receiver, receiver);
        if (netPyOut < minPyOut) revert Errors.RouterInsufficientPYOut(netPyOut, minPyOut);
    }

    function _redeemPyToSy(
        address receiver,
        address YT,
        uint256 netPyIn,
        uint256 minSyOut
    ) internal returns (uint256 netSyOut) {
        address PT = IPYieldToken(YT).PT();

        _transferFrom(IERC20(PT), msg.sender, YT, netPyIn);

        bool needToBurnYt = (!IPYieldToken(YT).isExpired());
        if (needToBurnYt) _transferFrom(IERC20(YT), msg.sender, YT, netPyIn);

        netSyOut = IPYieldToken(YT).redeemPY(receiver);
        if (netSyOut < minSyOut) revert Errors.RouterInsufficientSyOut(netSyOut, minSyOut);
    }

    // ----------------- HELPER -----------------

    function _readMarket(address market) internal view returns (MarketState memory) {
        return IPMarket(market).readState(address(this));
    }

    // ----------------- PT SWAP -----------------

    function _entry_swapExactPtForSy(address market, LimitOrderData calldata limit) internal view returns (address) {
        return !_isEmptyLimit(limit) ? address(this) : market;
    }

    function _swapExactPtForSy(
        address receiver,
        address market,
        uint256 exactPtIn,
        uint256 minSyOut,
        LimitOrderData calldata limit
    ) internal returns (uint256 netSyOut, uint256 netSyFee) {
        (, IPPrincipalToken PT, ) = IPMarket(market).readTokens();

        uint256 netPtLeft = exactPtIn;
        bool doMarketOrder = true;

        if (!_isEmptyLimit(limit)) {
            (netPtLeft, netSyOut, netSyFee, doMarketOrder) = _fillLimit(receiver, PT, netPtLeft, limit);
            if (doMarketOrder) {
                _transferOut(address(PT), market, netPtLeft);
            }
        }

        if (doMarketOrder) {
            (uint256 netSyOutMarket, uint256 netSyFeeMarket) = IPMarket(market).swapExactPtForSy(
                receiver,
                netPtLeft,
                EMPTY_BYTES
            );

            netSyOut += netSyOutMarket;
            netSyFee += netSyFeeMarket;
        }

        if (netSyOut < minSyOut) revert Errors.RouterInsufficientSyOut(netSyOut, minSyOut);
    }

    function _entry_swapExactSyForPt(address market, LimitOrderData calldata limit) internal view returns (address) {
        return !_isEmptyLimit(limit) ? address(this) : market;
    }

    function _swapExactSyForPt(
        address receiver,
        address market,
        uint256 exactSyIn,
        uint256 minPtOut,
        ApproxParams calldata guessPtOut,
        LimitOrderData calldata limit
    ) internal returns (uint256 netPtOut, uint256 netSyFee) {
        (IStandardizedYield SY, , IPYieldToken YT) = IPMarket(market).readTokens();
        uint256 netSyLeft = exactSyIn;
        bool doMarketOrder = true;

        if (!_isEmptyLimit(limit)) {
            (netSyLeft, netPtOut, netSyFee, doMarketOrder) = _fillLimit(receiver, SY, netSyLeft, limit);
            if (doMarketOrder) {
                _transferOut(address(SY), market, netSyLeft);
            }
        }

        if (doMarketOrder) {
            (uint256 netPtOutMarket, ) = _readMarket(market).approxSwapExactSyForPt(
                YT.newIndex(),
                netSyLeft,
                block.timestamp,
                guessPtOut
            );

            (, uint256 netSyFeeMarket) = IPMarket(market).swapSyForExactPt(receiver, netPtOutMarket, EMPTY_BYTES);

            netPtOut += netPtOutMarket;
            netSyFee += netSyFeeMarket;
        }

        if (netPtOut < minPtOut) revert Errors.RouterInsufficientPtOut(netPtOut, minPtOut);
    }

    // ----------------- LIMIT ORDERS -----------------
    function _fillLimit(
        address receiver,
        IERC20 tokenIn,
        uint256 netInput,
        LimitOrderData calldata lim
    ) internal returns (uint256 netLeft, uint256 netOut, uint256 netSyFee, bool doMarketOrder) {
        IPLimitRouter router = IPLimitRouter(lim.limitRouter);
        netLeft = netInput;

        if (lim.normalFills.length != 0) {
            _safeApproveInf(address(tokenIn), lim.limitRouter);
            (uint256 actualMaking, uint256 actualTaking, uint256 totalFee, ) = router.fill(
                lim.normalFills,
                receiver,
                netLeft,
                lim.optData,
                EMPTY_BYTES
            );
            netOut += actualMaking;
            netLeft -= actualTaking;
            netSyFee += totalFee;
        }

        if (lim.flashFills.length != 0) {
            address YT = lim.flashFills[0].order.YT;
            OrderType orderType = lim.flashFills[0].order.orderType;

            (, , uint256 totalFee, bytes memory ret) = router.fill(
                lim.flashFills,
                YT,
                type(uint256).max,
                lim.optData,
                abi.encode(orderType, YT, netLeft, receiver)
            );
            (uint256 netUse, uint256 netReceived) = abi.decode(ret, (uint256, uint256));

            netOut += netReceived;
            netLeft -= netUse;
            netSyFee += totalFee;
        }

        doMarketOrder = netLeft > netInput.mulDown(lim.epsSkipMarket);
    }

    function _isEmptyLimit(LimitOrderData calldata a) internal pure returns (bool) {
        return a.normalFills.length == 0 && a.flashFills.length == 0;
    }
}

File 27 of 28 : MarketApproxLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

import "../../core/libraries/math/PMath.sol";
import "../../core/Market/MarketMathCore.sol";

struct ApproxParams {
    uint256 guessMin;
    uint256 guessMax;
    uint256 guessOffchain; // pass 0 in to skip this variable
    uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2
    uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set
    // to 1e15 (1e18/1000 = 0.1%)
}

/// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out,
/// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula
/// To approx, the 5 values above will have to be provided, and the approx process will run as follows:
/// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out
/// netSyNeed = calcSwapSyForExactPt(mid)
/// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn
/// else guessMin = mid (1)
/// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of
/// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result

/// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result
/// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the
/// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases
/// except in cases that there is a trade in the same market right before the tx

library MarketApproxPtInLib {
    using MarketMathCore for MarketState;
    using PYIndexLib for PYIndex;
    using PMath for uint256;
    using PMath for int256;
    using LogExpMath for int256;

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swap in
     *     - Try swapping & get netSyOut
     *     - Stop when netSyOut greater & approx minSyOut
     *     - guess & approx is for netPtIn
     */
    function approxSwapPtForExactSy(
        MarketState memory market,
        PYIndex index,
        uint256 minSyOut,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netPtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);
            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            if (netSyOut >= minSyOut) {
                if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) {
                    return (guess, netSyOut, netSyFee);
                }
                approx.guessMax = guess;
            } else {
                approx.guessMin = guess;
            }
        }
        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swap in
     *     - Flashswap the corresponding amount of SY out
     *     - Pair those amount with exactSyIn SY to tokenize into PT & YT
     *     - PT to repay the flashswap, YT transferred to user
     *     - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn
     *     - guess & approx is for netYtOut (also netPtIn)
     */
    function approxSwapExactSyForYt(
        MarketState memory market,
        PYIndex index,
        uint256 exactSyIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netYtOut*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = PMath.max(approx.guessMin, index.syToAsset(exactSyIn));
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            uint256 netSyToTokenizePt = index.assetToSyUp(guess);

            // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY
            uint256 netSyToPull = netSyToTokenizePt - netSyOut;

            if (netSyToPull <= exactSyIn) {
                if (PMath.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps)) {
                    return (guess, netSyFee);
                }
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args5 {
        MarketState market;
        PYIndex index;
        uint256 totalPtIn;
        uint256 netSyHolding;
        uint256 blockTime;
        ApproxParams approx;
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swap to SY
     *     - Swap PT to SY
     *     - Pair the remaining PT with the SY to add liquidity
     *     - Stop when the ratio of PT / totalPt & SY / totalSy is approx
     *     - guess & approx is for netPtSwap
     */
    function approxSwapPtToAddLiquidity(
        MarketState memory _market,
        PYIndex _index,
        uint256 _totalPtIn,
        uint256 _netSyHolding,
        uint256 _blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netPtSwap*/ uint256, /*netSyFromSwap*/ uint256 /*netSyFee*/) {
        Args5 memory a = Args5(_market, _index, _totalPtIn, _netSyHolding, _blockTime, approx);
        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(a.market, comp));
            approx.guessMax = PMath.min(approx.guessMax, a.totalPtIn);
            validateApprox(approx);
            require(a.market.totalLp != 0, "no existing lp");
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, ) = calcNumerators(
                a.market,
                a.index,
                a.totalPtIn,
                a.netSyHolding,
                comp,
                guess
            );

            if (PMath.isAApproxB(syNumerator, ptNumerator, approx.eps)) {
                return (guess, netSyOut, netSyFee);
            }

            if (syNumerator <= ptNumerator) {
                // needs more SY --> swap more PT
                approx.guessMin = guess + 1;
            } else {
                // needs less SY --> swap less PT
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    function calcNumerators(
        MarketState memory market,
        PYIndex index,
        uint256 totalPtIn,
        uint256 netSyHolding,
        MarketPreCompute memory comp,
        uint256 guess
    )
        internal
        pure
        returns (uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve)
    {
        (netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess);

        uint256 newTotalPt = uint256(market.totalPt) + guess;
        uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve);

        // it is desired that
        // (netSyOut + netSyHolding) / newTotalSy = netPtRemaining / newTotalPt
        // which is equivalent to
        // (netSyOut + netSyHolding) * newTotalPt = netPtRemaining * newTotalSy

        syNumerator = (netSyOut + netSyHolding) * newTotalPt;
        ptNumerator = (totalPtIn - guess) * newTotalSy;
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swap to SY
     *     - Flashswap the corresponding amount of SY out
     *     - Tokenize all the SY into PT + YT
     *     - PT to repay the flashswap, YT transferred to user
     *     - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn
     *     - guess & approx is for totalPtToSwap
     */
    function approxSwapExactPtForYt(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netYtOut*/ uint256, /*totalPtToSwap*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = PMath.max(approx.guessMin, exactPtIn);
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            uint256 netAssetOut = index.syToAsset(netSyOut);

            // guess >= netAssetOut since we are swapping PT to SY
            uint256 netPtToPull = guess - netAssetOut;

            if (netPtToPull <= exactPtIn) {
                if (PMath.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps)) {
                    return (netAssetOut, guess, netSyFee);
                }
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    ////////////////////////////////////////////////////////////////////////////////

    function calcSyOut(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        uint256 netPtIn
    ) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, -int256(netPtIn));
        netSyOut = uint256(_netSyOut);
        netSyFee = uint256(_netSyFee);
        netSyToReserve = uint256(_netSyToReserve);
    }

    function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) {
        if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain;
        if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2;
        revert Errors.ApproxFail();
    }

    /// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY ///

    function validateApprox(ApproxParams memory approx) internal pure {
        if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) {
            revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps);
        }
    }

    function calcMaxPtIn(MarketState memory market, MarketPreCompute memory comp) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 hi = uint256(comp.totalAsset) - 1;

        while (low != hi) {
            uint256 mid = (low + hi + 1) / 2;
            if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1;
            else low = mid;
        }
        return low;
    }

    function calcSlope(MarketPreCompute memory comp, int256 totalPt, int256 ptToMarket) internal pure returns (int256) {
        int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket;
        int256 sumPt = ptToMarket + totalPt;

        require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket");

        int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown(sumPt * diffAssetPtToMarket);

        int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln();
        int256 part3 = PMath.IONE.divDown(comp.rateScalar);

        return comp.rateAnchor - (part1 - part2).mulDown(part3);
    }
}

library MarketApproxPtOutLib {
    using MarketMathCore for MarketState;
    using PYIndexLib for PYIndex;
    using PMath for uint256;
    using PMath for int256;
    using LogExpMath for int256;

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swapExactOut
     *     - Calculate the amount of SY needed
     *     - Stop when the netSyIn is smaller approx exactSyIn
     *     - guess & approx is for netSyIn
     */
    function approxSwapExactSyForPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactSyIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netPtOut*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            if (netSyIn <= exactSyIn) {
                if (PMath.isASmallerApproxB(netSyIn, exactSyIn, approx.eps)) {
                    return (guess, netSyFee);
                }
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }

        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swapExactOut
     *     - Flashswap that amount of PT & pair with YT to redeem SY
     *     - Use the SY to repay the flashswap debt and the remaining is transferred to user
     *     - Stop when the netSyOut is greater approx the minSyOut
     *     - guess & approx is for netSyOut
     */
    function approxSwapYtForExactSy(
        MarketState memory market,
        PYIndex index,
        uint256 minSyOut,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netYtIn*/ uint256, /*netSyOut*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            uint256 netAssetToRepay = index.syToAssetUp(netSyOwed);
            uint256 netSyOut = index.assetToSy(guess - netAssetToRepay);

            if (netSyOut >= minSyOut) {
                if (PMath.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) {
                    return (guess, netSyOut, netSyFee);
                }
                approx.guessMax = guess;
            } else {
                approx.guessMin = guess + 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args6 {
        MarketState market;
        PYIndex index;
        uint256 totalSyIn;
        uint256 netPtHolding;
        uint256 blockTime;
        ApproxParams approx;
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swapExactOut
     *     - Swap that amount of PT out
     *     - Pair the remaining PT with the SY to add liquidity
     *     - Stop when the ratio of PT / totalPt & SY / totalSy is approx
     *     - guess & approx is for netPtFromSwap
     */
    function approxSwapSyToAddLiquidity(
        MarketState memory _market,
        PYIndex _index,
        uint256 _totalSyIn,
        uint256 _netPtHolding,
        uint256 _blockTime,
        ApproxParams memory _approx
    ) internal pure returns (uint256, /*netPtFromSwap*/ uint256, /*netSySwap*/ uint256 /*netSyFee*/) {
        Args6 memory a = Args6(_market, _index, _totalSyIn, _netPtHolding, _blockTime, _approx);

        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        if (a.approx.guessOffchain == 0) {
            // no limit on min
            a.approx.guessMax = PMath.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt));
            validateApprox(a.approx);
            require(a.market.totalLp != 0, "no existing lp");
        }

        for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(a.approx, iter);

            (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn(a.market, comp, a.index, guess);

            if (netSyIn > a.totalSyIn) {
                a.approx.guessMax = guess - 1;
                continue;
            }

            uint256 syNumerator;
            uint256 ptNumerator;

            {
                uint256 newTotalPt = uint256(a.market.totalPt) - guess;
                uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve;

                // it is desired that
                // (netPtFromSwap + netPtHolding) / newTotalPt = netSyRemaining / netTotalSy
                // which is equivalent to
                // (netPtFromSwap + netPtHolding) * netTotalSy = netSyRemaining * newTotalPt

                ptNumerator = (guess + a.netPtHolding) * netTotalSy;
                syNumerator = (a.totalSyIn - netSyIn) * newTotalPt;
            }

            if (PMath.isAApproxB(ptNumerator, syNumerator, a.approx.eps)) {
                return (guess, netSyIn, netSyFee);
            }

            if (ptNumerator <= syNumerator) {
                // needs more PT
                a.approx.guessMin = guess + 1;
            } else {
                // needs less PT
                a.approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
     *     - Bin search the amount of PT to swapExactOut
     *     - Flashswap that amount of PT out
     *     - Pair all the PT with the YT to redeem SY
     *     - Use the SY to repay the flashswap debt
     *     - Stop when the amount of YT required to pair with PT is approx exactYtIn
     *     - guess & approx is for netPtFromSwap
     */
    function approxSwapExactYtForPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactYtIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256, /*netPtOut*/ uint256, /*totalPtSwapped*/ uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = PMath.max(approx.guessMin, exactYtIn);
            approx.guessMax = PMath.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            uint256 netYtToPull = index.syToAssetUp(netSyOwed);

            if (netYtToPull <= exactYtIn) {
                if (PMath.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps)) {
                    return (guess - netYtToPull, guess, netSyFee);
                }
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    ////////////////////////////////////////////////////////////////////////////////

    function calcSyIn(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        uint256 netPtOut
    ) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(comp, index, int256(netPtOut));

        // all safe since totalPt and totalSy is int128
        netSyIn = uint256(-_netSyIn);
        netSyFee = uint256(_netSyFee);
        netSyToReserve = uint256(_netSyToReserve);
    }

    function calcMaxPtOut(MarketPreCompute memory comp, int256 totalPt) internal pure returns (uint256) {
        int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp();
        int256 proportion = logitP.divDown(logitP + PMath.IONE);
        int256 numerator = proportion.mulDown(totalPt + comp.totalAsset);
        int256 maxPtOut = totalPt - numerator;
        // only get 99.9% of the theoretical max to accommodate some precision issues
        return (uint256(maxPtOut) * 999) / 1000;
    }

    function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) {
        if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain;
        if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2;
        revert Errors.ApproxFail();
    }

    function validateApprox(ApproxParams memory approx) internal pure {
        if (approx.guessMin > approx.guessMax || approx.eps > PMath.ONE) {
            revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps);
        }
    }
}

File 28 of 28 : IPSwapAggregator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.0;

struct SwapData {
    SwapType swapType;
    address extRouter;
    bytes extCalldata;
    bool needScale;
}

enum SwapType {
    NONE,
    KYBERSWAP,
    ONE_INCH,
    // ETH_WETH not used in Aggregator
    ETH_WETH
}

interface IPSwapAggregator {
    function swap(address tokenIn, uint256 amountIn, SwapData calldata swapData) external payable;
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "evmVersion": "paris",
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"actualPYOut","type":"uint256"},{"internalType":"uint256","name":"requiredPYOut","type":"uint256"}],"name":"RouterInsufficientPYOut","type":"error"},{"inputs":[{"internalType":"uint256","name":"actualSyOut","type":"uint256"},{"internalType":"uint256","name":"requiredSyOut","type":"uint256"}],"name":"RouterInsufficientSyOut","type":"error"},{"inputs":[{"internalType":"uint256","name":"actualTokenOut","type":"uint256"},{"internalType":"uint256","name":"requiredTokenOut","type":"uint256"}],"name":"RouterInsufficientTokenOut","type":"error"},{"inputs":[{"internalType":"bool","name":"success","type":"bool"},{"internalType":"bytes","name":"res","type":"bytes"}],"name":"SimulationResults","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"YT","type":"address"},{"indexed":false,"internalType":"uint256","name":"netSyIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"netPyOut","type":"uint256"}],"name":"MintPyFromSy","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"tokenIn","type":"address"},{"indexed":true,"internalType":"address","name":"YT","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"netTokenIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"netPyOut","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"netSyInterm","type":"uint256"}],"name":"MintPyFromToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"tokenIn","type":"address"},{"indexed":true,"internalType":"address","name":"SY","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"netTokenIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"netSyOut","type":"uint256"}],"name":"MintSyFromToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"YT","type":"address"},{"indexed":false,"internalType":"uint256","name":"netPyIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"netSyOut","type":"uint256"}],"name":"RedeemPyToSy","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"tokenOut","type":"address"},{"indexed":true,"internalType":"address","name":"YT","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"netPyIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"netTokenOut","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"netSyInterm","type":"uint256"}],"name":"RedeemPyToToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"tokenOut","type":"address"},{"indexed":true,"internalType":"address","name":"SY","type":"address"},{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"netSyIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"netTokenOut","type":"uint256"}],"name":"RedeemSyToToken","type":"event"},{"inputs":[{"internalType":"address[]","name":"markets","type":"address[]"}],"name":"boostMarkets","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"YT","type":"address"},{"internalType":"uint256","name":"netSyIn","type":"uint256"},{"internalType":"uint256","name":"minPyOut","type":"uint256"}],"name":"mintPyFromSy","outputs":[{"internalType":"uint256","name":"netPyOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"YT","type":"address"},{"internalType":"uint256","name":"minPyOut","type":"uint256"},{"components":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"netTokenIn","type":"uint256"},{"internalType":"address","name":"tokenMintSy","type":"address"},{"internalType":"address","name":"pendleSwap","type":"address"},{"components":[{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"extRouter","type":"address"},{"internalType":"bytes","name":"extCalldata","type":"bytes"},{"internalType":"bool","name":"needScale","type":"bool"}],"internalType":"struct SwapData","name":"swapData","type":"tuple"}],"internalType":"struct TokenInput","name":"input","type":"tuple"}],"name":"mintPyFromToken","outputs":[{"internalType":"uint256","name":"netPyOut","type":"uint256"},{"internalType":"uint256","name":"netSyInterm","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"SY","type":"address"},{"internalType":"uint256","name":"minSyOut","type":"uint256"},{"components":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"netTokenIn","type":"uint256"},{"internalType":"address","name":"tokenMintSy","type":"address"},{"internalType":"address","name":"pendleSwap","type":"address"},{"components":[{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"extRouter","type":"address"},{"internalType":"bytes","name":"extCalldata","type":"bytes"},{"internalType":"bool","name":"needScale","type":"bool"}],"internalType":"struct SwapData","name":"swapData","type":"tuple"}],"internalType":"struct TokenInput","name":"input","type":"tuple"}],"name":"mintSyFromToken","outputs":[{"internalType":"uint256","name":"netSyOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"bool","name":"allowFailure","type":"bool"},{"internalType":"bytes","name":"callData","type":"bytes"}],"internalType":"struct IPActionMiscV3.Call3[]","name":"calls","type":"tuple[]"}],"name":"multicall","outputs":[{"components":[{"internalType":"bool","name":"success","type":"bool"},{"internalType":"bytes","name":"returnData","type":"bytes"}],"internalType":"struct IPActionMiscV3.Result[]","name":"res","type":"tuple[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"address[]","name":"sys","type":"address[]"},{"internalType":"address[]","name":"yts","type":"address[]"},{"internalType":"address[]","name":"markets","type":"address[]"}],"name":"redeemDueInterestAndRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"YT","type":"address"},{"internalType":"uint256","name":"netPyIn","type":"uint256"},{"internalType":"uint256","name":"minSyOut","type":"uint256"}],"name":"redeemPyToSy","outputs":[{"internalType":"uint256","name":"netSyOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"YT","type":"address"},{"internalType":"uint256","name":"netPyIn","type":"uint256"},{"components":[{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"minTokenOut","type":"uint256"},{"internalType":"address","name":"tokenRedeemSy","type":"address"},{"internalType":"address","name":"pendleSwap","type":"address"},{"components":[{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"extRouter","type":"address"},{"internalType":"bytes","name":"extCalldata","type":"bytes"},{"internalType":"bool","name":"needScale","type":"bool"}],"internalType":"struct SwapData","name":"swapData","type":"tuple"}],"internalType":"struct TokenOutput","name":"output","type":"tuple"}],"name":"redeemPyToToken","outputs":[{"internalType":"uint256","name":"netTokenOut","type":"uint256"},{"internalType":"uint256","name":"netSyInterm","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"SY","type":"address"},{"internalType":"uint256","name":"netSyIn","type":"uint256"},{"components":[{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"minTokenOut","type":"uint256"},{"internalType":"address","name":"tokenRedeemSy","type":"address"},{"internalType":"address","name":"pendleSwap","type":"address"},{"components":[{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"extRouter","type":"address"},{"internalType":"bytes","name":"extCalldata","type":"bytes"},{"internalType":"bool","name":"needScale","type":"bool"}],"internalType":"struct SwapData","name":"swapData","type":"tuple"}],"internalType":"struct TokenOutput","name":"output","type":"tuple"}],"name":"redeemSyToToken","outputs":[{"internalType":"uint256","name":"netTokenOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"simulate","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"minTokenOut","type":"uint256"},{"components":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"netTokenIn","type":"uint256"},{"internalType":"address","name":"tokenMintSy","type":"address"},{"internalType":"address","name":"pendleSwap","type":"address"},{"components":[{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"extRouter","type":"address"},{"internalType":"bytes","name":"extCalldata","type":"bytes"},{"internalType":"bool","name":"needScale","type":"bool"}],"internalType":"struct SwapData","name":"swapData","type":"tuple"}],"internalType":"struct TokenInput","name":"inp","type":"tuple"}],"name":"swapTokenToToken","outputs":[{"internalType":"uint256","name":"netTokenOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"SY","type":"address"},{"components":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"netTokenIn","type":"uint256"},{"internalType":"address","name":"tokenMintSy","type":"address"},{"internalType":"address","name":"pendleSwap","type":"address"},{"components":[{"internalType":"enum SwapType","name":"swapType","type":"uint8"},{"internalType":"address","name":"extRouter","type":"address"},{"internalType":"bytes","name":"extCalldata","type":"bytes"},{"internalType":"bool","name":"needScale","type":"bool"}],"internalType":"struct SwapData","name":"swapData","type":"tuple"}],"internalType":"struct TokenInput","name":"input","type":"tuple"},{"internalType":"address","name":"tokenRedeemSy","type":"address"},{"internalType":"uint256","name":"minTokenOut","type":"uint256"}],"name":"swapTokenToTokenViaSy","outputs":[{"internalType":"uint256","name":"netTokenOut","type":"uint256"},{"internalType":"uint256","name":"netSyInterm","type":"uint256"}],"stateMutability":"payable","type":"function"}]

6080806040523461001657612b33908161001c8239f35b600080fdfe6080604052600436101561001257600080fd5b60003560e01c80631a8631b2146100d75780632d8f9d8d146100d25780632e071dc6146100cd578063339748cb146100c8578063339a5572146100c357806347f1de22146100be5780635d3e105c146100b957806360fc8466146100b4578063a89eba4a146100af578063bd61951d146100aa578063d0f42385146100a55763f7e375e8146100a057600080fd5b61145e565b611280565b6111ab565b611083565b610f80565b610d86565b610ac9565b610881565b610666565b61052b565b610400565b61014d565b73ffffffffffffffffffffffffffffffffffffffff8116036100fa57565b600080fd5b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60809101126100fa57600435610135816100dc565b90602435610142816100dc565b906044359060643590565b346100fa5761015b366100ff565b909273ffffffffffffffffffffffffffffffffffffffff9384841692604051947fafd27bf50000000000000000000000000000000000000000000000000000000086526020958681600481895afa9182156102fa578491600093610314575b50816102ff575b50506040517fdb74aa1500000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8516600482018190526024820152905085816044816000895af19586156102fa576000966102cb575b505080851061028d57507f52e05e4badd3463bad837f42fe3ba58c739d1b3081cff9bb6eb02a24034d455d61028995604051931692806102768733958360209093929193604081019481520152565b0390a46040519081529081906020820190565b0390f35b6040517fca935dfd000000000000000000000000000000000000000000000000000000008152600481018690526024810191909152604490fd5b0390fd5b6102eb929650803d106102f3575b6102e381836103a7565b810190611a37565b933880610227565b503d6102d9565b611731565b61030c928933911661256d565b3882816101c1565b610335919350883d8a1161033c575b61032d81836103a7565b81019061171c565b91386101ba565b503d610323565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b67ffffffffffffffff811161038657604052565b610343565b6040810190811067ffffffffffffffff82111761038657604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761038657604052565b67ffffffffffffffff81116103865760051b60200190565b346100fa576020807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa5760043567ffffffffffffffff81116100fa57366023820112156100fa5780600401359061045c826103e8565b9161046a60405193846103a7565b8083526024602084019160051b830101913683116100fa57602401905b82821061049957610497846117a4565b005b84809183356104a7816100dc565b815201910190610487565b908160a09103126100fa5790565b9060807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8301126100fa576004356104f7816100dc565b91602435610504816100dc565b91604435916064359067ffffffffffffffff82116100fa57610528916004016104b2565b90565b6020610585610539366104c0565b80949161054c6080839695960183611b0b565b3561055681611b3e565b61055f81611b48565b806105f9575061056e82611894565b61057e88840135809233906121d2565b8585612380565b927f71c7a44161eb32e4640f6c8f0586db5f1d2e03306e2c63bb2e0f7cd0a8fc690c8135936105b3856100dc565b6040805173ffffffffffffffffffffffffffffffffffffffff9586168152938801356020850152830186905283169390921691339180606081015b0390a4604051908152f35b80610605600392611b48565b036106475761061382611894565b61062388840135809233906121d2565b6106428161063085611894565b61063c60408701611894565b90612210565b61057e565b61065082611eb7565b6106426040830135610661816100dc565b611fc4565b346100fa57610674366100ff565b91929073ffffffffffffffffffffffffffffffffffffffff91828516916040938451967fd94073d40000000000000000000000000000000000000000000000000000000088526020978881600481895afa80156102fa578285916106e493600091610864575b508533911661214b565b85517f2f13b60c0000000000000000000000000000000000000000000000000000000081528881600481895afa80156102fa578491600091610837575b5015610825575b505084517fbcb7ea5d00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff841660048201529587876024816000895af19687156102fa57600097610806575b508087106107cd5750845191825260208201869052919091169033907f31af33f80f4b396e3d4e42b38ecd3e022883a9bf689fd63f47afbe1d389cb6e790604090a451908152f35b85517f0a4439e6000000000000000000000000000000000000000000000000000000008152600481018890526024810191909152604490fd5b61081e919750883d8a116102f3576102e381836103a7565b9538610785565b61083091338761214b565b3882610728565b61085791508a3d8c1161085d575b61084f81836103a7565b81019061178f565b38610721565b503d610845565b61087b91508c8d3d1061033c5761032d81836103a7565b386106da565b346100fa5761088f366104c0565b9291906000608085016108aa6108a58288611b0b565b611b81565b6108b381611b48565b80610993575050506108c784828486612434565b925b602085013580851061095957507fcd34b6ac7e4b72ab30845649aef2f4fd41945ae2dc08f625be69738bbd0f9aa96020953593610905856100dc565b73ffffffffffffffffffffffffffffffffffffffff906105ee87836040519485941698169633968460409194939273ffffffffffffffffffffffffffffffffffffffff606083019616825260208201520152565b6040517fc5b5576d000000000000000000000000000000000000000000000000000000008152600481018690526024810191909152604490fd5b8061099f600392611b48565b036109e45750506109b284828430612434565b926109cc846109c360408801611894565b61063c88611894565b6109df84826109da88611894565b612046565b6108c9565b60608601610a24610a0b610a0b610a058a888a610a0088611894565b612434565b93611894565b73ffffffffffffffffffffffffffffffffffffffff1690565b90610a3b610a3460408a01611894565b9389611b0b565b92823b15610ac5576040517f2bdb823c0000000000000000000000000000000000000000000000000000000081529493859392849286928492610a819260048501611c8d565b03925af180156102fa57610aac575b50610a9d61066185611894565b926109df84826109da88611894565b80610ab9610abf92610372565b80611c36565b38610a90565b8480fd5b346100fa57610ad7366104c0565b909273ffffffffffffffffffffffffffffffffffffffff938484169060409283517fafd27bf50000000000000000000000000000000000000000000000000000000081526020968782600481885afa9182156102fa57600092610d67575b5085517fd94073d40000000000000000000000000000000000000000000000000000000081528881600481895afa80156102fa57828691610b8293600091610d4a575b508c33911661214b565b85517f2f13b60c0000000000000000000000000000000000000000000000000000000081528881600481895afa80156102fa578591600091610d2d575b5015610d1b575b505084517fbcb7ea5d00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8216600482015287816024816000895af19788156102fa57600098610cfc575b505060018710610cc4578697610c5f8761028998997f5f2e0499a3b6a21fd5e1fac44ac47c9aa7c3afa39076d67162a4993411d496da9486611d61565b9735610c6a816100dc565b610cab8a8a895194859416973397859094939260609273ffffffffffffffffffffffffffffffffffffffff6080840197168352602083015260408201520152565b0390a45191825260208201929092529081906040820190565b84517f0a4439e60000000000000000000000000000000000000000000000000000000081526004810188905260016024820152604490fd5b610d13929850803d106102f3576102e381836103a7565b953880610c22565b610d2691338761214b565b3883610bc6565b610d4491508a3d8c1161085d5761084f81836103a7565b38610bbf565b610d6191508c8d3d1061033c5761032d81836103a7565b38610b78565b610d7f919250883d8a1161033c5761032d81836103a7565b9038610b35565b60607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa57600435610dbc816100dc565b60243560443567ffffffffffffffff81116100fa57610de160409136906004016104b2565b610dea81611eb7565b0135610df5816100dc565b610dfe81611fc4565b91808310610e20575081602093826109da610e18946100dc565b604051908152f35b6040517fc5b5576d000000000000000000000000000000000000000000000000000000008152600481018490526024810191909152604490fd5b9181601f840112156100fa5782359167ffffffffffffffff83116100fa576020808501948460051b0101116100fa57565b919082519283825260005b848110610ed55750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b602081830181015184830182015201610e96565b6020808201908083528351809252604092604081018260408560051b8401019601946000925b858410610f20575050505050505090565b909192939495968580610f6f837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0866001960301885286838d5180511515845201519181858201520190610e8b565b990194019401929594939190610f0f565b6020807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa5760043567ffffffffffffffff81116100fa57610fcb903690600401610e5a565b90610fd58261189e565b9160009060005b818110610ff157604051806102898782610ee9565b610ffc818386611930565b838061100a89840184611970565b9061101a604051809381936119c1565b0390305af46110276119cf565b918115908161106b575b50611064579061105083926110486001958a61176c565b519015159052565b8761105b838961176c565b51015201610fdc565b8151828901fd5b61107d915061107990611a2d565b1590565b38611031565b60a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa576004356110b9816100dc565b6024356110c5816100dc565b60443567ffffffffffffffff81116100fa576110e760209136906004016104b2565b9160a4611101606435946110fa866100dc565b8380611b8b565b94600073ffffffffffffffffffffffffffffffffffffffff80948160405198899788967f769f8e5d0000000000000000000000000000000000000000000000000000000088521660048701528a6024870152166044850152608435606485015260016084850152165af19081156102fa5760009161118c575b50604080519182526020820192909252f35b6111a5915060203d6020116102f3576102e381836103a7565b3861117a565b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa576004356111e1816100dc565b60243567ffffffffffffffff918282116100fa57366023830112156100fa5781600401359283116100fa5736602484840101116100fa57602460009392838594604051938493018337810184815203915af461123b6119cf565b906102c76040519283927f1934afc800000000000000000000000000000000000000000000000000000000845215156004840152604060248401526044830190610e8b565b611289366104c0565b909173ffffffffffffffffffffffffffffffffffffffff9182821692604051927fafd27bf50000000000000000000000000000000000000000000000000000000084526020938481600481895afa80156102fa576112f192859260009261143f575b50611b8b565b6040517fdb74aa1500000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff881660048201819052602482015290969095848760448160008a5af19687156102fa57600097611420575b508087106113e65750907f3193c546cf854c6a4c63afa03b04d35e4242c2761af34a4093fc5daa88dd5308916113d2888861139187611894565b9360405195869516983398013590859094939260609273ffffffffffffffffffffffffffffffffffffffff6080840197168352602083015260408201520152565b0390a4604080519182526020820192909252f35b6040517fca935dfd000000000000000000000000000000000000000000000000000000008152600481018890526024810191909152604490fd5b611438919750853d87116102f3576102e381836103a7565b9538611357565b611457919250873d891161033c5761032d81836103a7565b90386112eb565b346100fa5760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa57600480359061149b826100dc565b67ffffffffffffffff6024358181116100fa576114bb9036908401610e5a565b9390916044358181116100fa576114d59036908601610e5a565b90916064359081116100fa576114ee9036908701610e5a565b94909660005b81811061167a5750505060005b8181106115c45750505060005b82811061151757005b611530610a0b610a0b61152b84878a611a46565b611894565b90600060405180937f9262187b000000000000000000000000000000000000000000000000000000008252818381611587898c830191909173ffffffffffffffffffffffffffffffffffffffff6020820193169052565b03925af19182156102fa576001926115a1575b500161150e565b6115bd903d806000833e6115b581836103a7565b810190611ab7565b503861159a565b806000856115df610a0b610a0b61152b61163e97898b611a46565b89836040518097819582947f7d24da4d0000000000000000000000000000000000000000000000000000000084528301604060019193929373ffffffffffffffffffffffffffffffffffffffff60608201951681528260208201520152565b03925af19182156102fa57600192611658575b5001611501565b611674903d806000833e61166c81836103a7565b810190611add565b50611651565b80600087611695610a0b610a0b61152b6116e797898b611a46565b8b836040518097819582947fef5cfb8c000000000000000000000000000000000000000000000000000000008452830191909173ffffffffffffffffffffffffffffffffffffffff6020820193169052565b03925af19182156102fa57600192611701575b50016114f4565b611715903d806000833e6115b581836103a7565b50386116fa565b908160209103126100fa5751610528816100dc565b6040513d6000823e3d90fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b80518210156117805760209160051b010190565b61173d565b801515036100fa57565b908160209103126100fa575161052881611785565b906000805b835181101561188e576117df610a0b610a0b6117c5848861176c565b5173ffffffffffffffffffffffffffffffffffffffff1690565b906118556117f06117c5838861176c565b6040517f23b872dd00000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff90911660248201526000604482015292602091829185918290889082906064820190565b03925af19283156102fa57600193611870575b5050016117a9565b8161188692903d1061085d5761084f81836103a7565b503880611868565b50509050565b35610528816100dc565b906118a8826103e8565b6040906118b860405191826103a7565b8381527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe06118e682956103e8565b019060009060005b8381106118fc575050505050565b8451908582019180831067ffffffffffffffff841117610386576020928752848152826060818301528285010152016118ee565b91908110156117805760051b810135907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc1813603018212156100fa570190565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1813603018212156100fa570180359067ffffffffffffffff82116100fa576020019181360383136100fa57565b908092918237016000815290565b3d15611a28573d9067ffffffffffffffff82116103865760405191611a1c60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601846103a7565b82523d6000602084013e565b606090565b3561052881611785565b908160209103126100fa575190565b91908110156117805760051b0190565b9080601f830112156100fa57815190602091611a71816103e8565b93611a7f60405195866103a7565b81855260208086019260051b8201019283116100fa57602001905b828210611aa8575050505090565b81518152908301908301611a9a565b906020828203126100fa57815167ffffffffffffffff81116100fa576105289201611a56565b9190916040818403126100fa57805192602082015167ffffffffffffffff81116100fa576105289201611a56565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81813603018212156100fa570190565b600411156100fa57565b60041115611b5257565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b3561052881611b3e565b6105289291611b9d6080840184611b0b565b35611ba781611b3e565b611bb081611b48565b80611bd65750611bbf83611894565b611bd06020850135809233906121d2565b916122c8565b80611be2600392611b48565b03611c1c578235611bf2816100dc565b611bd060208501358092611c078233836121d2565b611c10816100dc565b61063c60408801611894565b611c2583611eb7565b611bd06040840135610661816100dc565b60009103126100fa57565b601f82602094937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0938186528686013760008582860101520116010190565b3590611c8b82611785565b565b9173ffffffffffffffffffffffffffffffffffffffff80921683526020830152606060408301528235611cbf81611b3e565b6004811015611b525760608301526020830135611cdb816100dc565b16608082015260408201357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1833603018112156100fa5782019060208235920167ffffffffffffffff83116100fa5782360381136100fa57611d5a6060611d5360c09361052896608060a088015260e0870191611c41565b9501611c80565b1515910152565b93929360808501611d756108a58288611b0b565b611d7e81611b48565b80611da1575050602092611d939286926124df565b925b0135808310610e205750565b80611db26003929895969498611b48565b03611df25750611dc982611ded92602095306124df565b8095611de482611ddb60408701611894565b61063c87611894565b6109da84611894565b611d95565b90610a0b610a0b611e1485611e1a946060820198611e0f8a611894565b6124df565b95611894565b611e30611e2960408501611894565b9284611b0b565b90803b156100fa57611e769460008094604051978895869485937f2bdb823c00000000000000000000000000000000000000000000000000000000855260048501611c8d565b03925af19182156102fa57602092611ea4575b50611ded611e9961066183611894565b80956109da84611894565b80610ab9611eb192610372565b38611e89565b73ffffffffffffffffffffffffffffffffffffffff611ed582611894565b16611f9757611ee7602082013561216c565b611ef9610a0b610a0b60608401611894565b611f05610a0b83611894565b611f8f576020820135905b611f1983611894565b90611f276080850185611b0b565b93813b156100fa57600093602091611f71604051978896879586947f2bdb823c00000000000000000000000000000000000000000000000000000000865201359060048501611c8d565b03925af180156102fa57611f825750565b80610ab9611c8b92610372565b600090611f10565b611fbf611fa6610a0b83611894565b611fb260608401611894565b602084013591339061214b565b611ee7565b73ffffffffffffffffffffffffffffffffffffffff1680611fe457504790565b6020602491604051928380927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa9081156102fa5760009161202d575090565b610528915060203d6020116102f3576102e381836103a7565b82156121465773ffffffffffffffffffffffffffffffffffffffff16806120df5750600080809381935af16120796119cf565b501561208157565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f6574682073656e64206661696c656400000000000000000000000000000000006044820152fd5b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000602082015273ffffffffffffffffffffffffffffffffffffffff929092166024830152604480830193909352918152611c8b916121416064836103a7565b6127e7565b505050565b9291908261215a575b50505050565b6121639361256d565b38808080612154565b340361217457565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f657468206d69736d6174636800000000000000000000000000000000000000006044820152fd5b90919073ffffffffffffffffffffffffffffffffffffffff16806121fb57509050340361217457565b8161220557505050565b611c8b92309161256d565b73ffffffffffffffffffffffffffffffffffffffff9190821680612275575016803b156100fa576000906004604051809481937fd0e30db00000000000000000000000000000000000000000000000000000000083525af180156102fa57611f825750565b915050803b156100fa576040517f2e1a7d4d00000000000000000000000000000000000000000000000000000000815260048101929092526000908290602490829084905af180156102fa57611f825750565b60849060406020949501356122dc816100dc565b73ffffffffffffffffffffffffffffffffffffffff80948183169788156000146123755761231e81945b61230f816100dc565b61231984826125e9565b6100dc565b60405198899788967f20e8c5650000000000000000000000000000000000000000000000000000000088521660048701526024860152604485015260006064850152165af19081156102fa5760009161202d575090565b61231e600094612306565b60209360406084939496013590612396826100dc565b73ffffffffffffffffffffffffffffffffffffffff948591828416988915600014612429576123d481955b6123ca816100dc565b61231985826125e9565b604051998a9889977f20e8c565000000000000000000000000000000000000000000000000000000008952166004880152602487015260448601526064850152165af19081156102fa5760009161202d575090565b6123d46000956123c1565b60a49060006040936020959673ffffffffffffffffffffffffffffffffffffffff958691828416938a806124cd575b50500135612470816100dc565b60405198899788967f769f8e5d0000000000000000000000000000000000000000000000000000000088521660048701526024860152166044840152816064840152600160848401525af19081156102fa5760009161202d575090565b6124d891338761256d565b388a612463565b60a49060006020949560409473ffffffffffffffffffffffffffffffffffffffff80968193013561250f816100dc565b604051998a9889977f769f8e5d000000000000000000000000000000000000000000000000000000008952166004880152602487015216604485015282606485015260016084850152165af19081156102fa5760009161202d575090565b9290604051927f23b872dd00000000000000000000000000000000000000000000000000000000602085015273ffffffffffffffffffffffffffffffffffffffff809216602485015216604483015260648201526064815260a081019181831067ffffffffffffffff84111761038657611c8b926040526127e7565b919073ffffffffffffffffffffffffffffffffffffffff831692831561188e576040517fdd62ed3e00000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff831660248201526020948590829060449082905afa80156102fa576b7fffffffffffffffffffffff916000916127ca575b50106126875750509050565b6040517f095ea7b30000000000000000000000000000000000000000000000000000000085820190815273ffffffffffffffffffffffffffffffffffffffff841660248301526000604483018190529182919061270f81606481015b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081018352826103a7565b519082855af161271d6119cf565b8161279a575b501561273c57612734929350612907565b80388061188e565b606484604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152600c60248201527f5361666520417070726f766500000000000000000000000000000000000000006044820152fd5b805180159250869083156127b2575b50505038612723565b6127c2935082018101910161178f565b3885816127a9565b6127e19150863d88116102f3576102e381836103a7565b3861267b565b6040516128529173ffffffffffffffffffffffffffffffffffffffff1661280d8261038b565b6000806020958685527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656487860152868151910182855af161284c6119cf565b91612a31565b8051908282159283156128ef575b5050501561286b5750565b608490604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b6128ff935082018101910161178f565b388281612860565b6040517f095ea7b3000000000000000000000000000000000000000000000000000000006020820190815273ffffffffffffffffffffffffffffffffffffffff90931660248201527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6044820152600092839291839061298a81606481016126e3565b51925af16129966119cf565b81612a02575b50156129a457565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f5361666520417070726f766500000000000000000000000000000000000000006044820152fd5b8051801592508215612a17575b50503861299c565b612a2a925060208091830101910161178f565b3880612a0f565b91929015612aac5750815115612a45575090565b3b15612a4e5790565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b825190915015612abf5750805190602001fd5b6102c7906040519182917f08c379a0000000000000000000000000000000000000000000000000000000008352602060048401526024830190610e8b56fea2646970667358221220e3cbc8a6df982b7fe8f626f600ddac0c9b8782491f7f43fd8177701c1373964064736f6c63430008170033

Deployed Bytecode

0x6080604052600436101561001257600080fd5b60003560e01c80631a8631b2146100d75780632d8f9d8d146100d25780632e071dc6146100cd578063339748cb146100c8578063339a5572146100c357806347f1de22146100be5780635d3e105c146100b957806360fc8466146100b4578063a89eba4a146100af578063bd61951d146100aa578063d0f42385146100a55763f7e375e8146100a057600080fd5b61145e565b611280565b6111ab565b611083565b610f80565b610d86565b610ac9565b610881565b610666565b61052b565b610400565b61014d565b73ffffffffffffffffffffffffffffffffffffffff8116036100fa57565b600080fd5b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60809101126100fa57600435610135816100dc565b90602435610142816100dc565b906044359060643590565b346100fa5761015b366100ff565b909273ffffffffffffffffffffffffffffffffffffffff9384841692604051947fafd27bf50000000000000000000000000000000000000000000000000000000086526020958681600481895afa9182156102fa578491600093610314575b50816102ff575b50506040517fdb74aa1500000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8516600482018190526024820152905085816044816000895af19586156102fa576000966102cb575b505080851061028d57507f52e05e4badd3463bad837f42fe3ba58c739d1b3081cff9bb6eb02a24034d455d61028995604051931692806102768733958360209093929193604081019481520152565b0390a46040519081529081906020820190565b0390f35b6040517fca935dfd000000000000000000000000000000000000000000000000000000008152600481018690526024810191909152604490fd5b0390fd5b6102eb929650803d106102f3575b6102e381836103a7565b810190611a37565b933880610227565b503d6102d9565b611731565b61030c928933911661256d565b3882816101c1565b610335919350883d8a1161033c575b61032d81836103a7565b81019061171c565b91386101ba565b503d610323565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b67ffffffffffffffff811161038657604052565b610343565b6040810190811067ffffffffffffffff82111761038657604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761038657604052565b67ffffffffffffffff81116103865760051b60200190565b346100fa576020807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa5760043567ffffffffffffffff81116100fa57366023820112156100fa5780600401359061045c826103e8565b9161046a60405193846103a7565b8083526024602084019160051b830101913683116100fa57602401905b82821061049957610497846117a4565b005b84809183356104a7816100dc565b815201910190610487565b908160a09103126100fa5790565b9060807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8301126100fa576004356104f7816100dc565b91602435610504816100dc565b91604435916064359067ffffffffffffffff82116100fa57610528916004016104b2565b90565b6020610585610539366104c0565b80949161054c6080839695960183611b0b565b3561055681611b3e565b61055f81611b48565b806105f9575061056e82611894565b61057e88840135809233906121d2565b8585612380565b927f71c7a44161eb32e4640f6c8f0586db5f1d2e03306e2c63bb2e0f7cd0a8fc690c8135936105b3856100dc565b6040805173ffffffffffffffffffffffffffffffffffffffff9586168152938801356020850152830186905283169390921691339180606081015b0390a4604051908152f35b80610605600392611b48565b036106475761061382611894565b61062388840135809233906121d2565b6106428161063085611894565b61063c60408701611894565b90612210565b61057e565b61065082611eb7565b6106426040830135610661816100dc565b611fc4565b346100fa57610674366100ff565b91929073ffffffffffffffffffffffffffffffffffffffff91828516916040938451967fd94073d40000000000000000000000000000000000000000000000000000000088526020978881600481895afa80156102fa578285916106e493600091610864575b508533911661214b565b85517f2f13b60c0000000000000000000000000000000000000000000000000000000081528881600481895afa80156102fa578491600091610837575b5015610825575b505084517fbcb7ea5d00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff841660048201529587876024816000895af19687156102fa57600097610806575b508087106107cd5750845191825260208201869052919091169033907f31af33f80f4b396e3d4e42b38ecd3e022883a9bf689fd63f47afbe1d389cb6e790604090a451908152f35b85517f0a4439e6000000000000000000000000000000000000000000000000000000008152600481018890526024810191909152604490fd5b61081e919750883d8a116102f3576102e381836103a7565b9538610785565b61083091338761214b565b3882610728565b61085791508a3d8c1161085d575b61084f81836103a7565b81019061178f565b38610721565b503d610845565b61087b91508c8d3d1061033c5761032d81836103a7565b386106da565b346100fa5761088f366104c0565b9291906000608085016108aa6108a58288611b0b565b611b81565b6108b381611b48565b80610993575050506108c784828486612434565b925b602085013580851061095957507fcd34b6ac7e4b72ab30845649aef2f4fd41945ae2dc08f625be69738bbd0f9aa96020953593610905856100dc565b73ffffffffffffffffffffffffffffffffffffffff906105ee87836040519485941698169633968460409194939273ffffffffffffffffffffffffffffffffffffffff606083019616825260208201520152565b6040517fc5b5576d000000000000000000000000000000000000000000000000000000008152600481018690526024810191909152604490fd5b8061099f600392611b48565b036109e45750506109b284828430612434565b926109cc846109c360408801611894565b61063c88611894565b6109df84826109da88611894565b612046565b6108c9565b60608601610a24610a0b610a0b610a058a888a610a0088611894565b612434565b93611894565b73ffffffffffffffffffffffffffffffffffffffff1690565b90610a3b610a3460408a01611894565b9389611b0b565b92823b15610ac5576040517f2bdb823c0000000000000000000000000000000000000000000000000000000081529493859392849286928492610a819260048501611c8d565b03925af180156102fa57610aac575b50610a9d61066185611894565b926109df84826109da88611894565b80610ab9610abf92610372565b80611c36565b38610a90565b8480fd5b346100fa57610ad7366104c0565b909273ffffffffffffffffffffffffffffffffffffffff938484169060409283517fafd27bf50000000000000000000000000000000000000000000000000000000081526020968782600481885afa9182156102fa57600092610d67575b5085517fd94073d40000000000000000000000000000000000000000000000000000000081528881600481895afa80156102fa57828691610b8293600091610d4a575b508c33911661214b565b85517f2f13b60c0000000000000000000000000000000000000000000000000000000081528881600481895afa80156102fa578591600091610d2d575b5015610d1b575b505084517fbcb7ea5d00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8216600482015287816024816000895af19788156102fa57600098610cfc575b505060018710610cc4578697610c5f8761028998997f5f2e0499a3b6a21fd5e1fac44ac47c9aa7c3afa39076d67162a4993411d496da9486611d61565b9735610c6a816100dc565b610cab8a8a895194859416973397859094939260609273ffffffffffffffffffffffffffffffffffffffff6080840197168352602083015260408201520152565b0390a45191825260208201929092529081906040820190565b84517f0a4439e60000000000000000000000000000000000000000000000000000000081526004810188905260016024820152604490fd5b610d13929850803d106102f3576102e381836103a7565b953880610c22565b610d2691338761214b565b3883610bc6565b610d4491508a3d8c1161085d5761084f81836103a7565b38610bbf565b610d6191508c8d3d1061033c5761032d81836103a7565b38610b78565b610d7f919250883d8a1161033c5761032d81836103a7565b9038610b35565b60607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa57600435610dbc816100dc565b60243560443567ffffffffffffffff81116100fa57610de160409136906004016104b2565b610dea81611eb7565b0135610df5816100dc565b610dfe81611fc4565b91808310610e20575081602093826109da610e18946100dc565b604051908152f35b6040517fc5b5576d000000000000000000000000000000000000000000000000000000008152600481018490526024810191909152604490fd5b9181601f840112156100fa5782359167ffffffffffffffff83116100fa576020808501948460051b0101116100fa57565b919082519283825260005b848110610ed55750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b602081830181015184830182015201610e96565b6020808201908083528351809252604092604081018260408560051b8401019601946000925b858410610f20575050505050505090565b909192939495968580610f6f837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0866001960301885286838d5180511515845201519181858201520190610e8b565b990194019401929594939190610f0f565b6020807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa5760043567ffffffffffffffff81116100fa57610fcb903690600401610e5a565b90610fd58261189e565b9160009060005b818110610ff157604051806102898782610ee9565b610ffc818386611930565b838061100a89840184611970565b9061101a604051809381936119c1565b0390305af46110276119cf565b918115908161106b575b50611064579061105083926110486001958a61176c565b519015159052565b8761105b838961176c565b51015201610fdc565b8151828901fd5b61107d915061107990611a2d565b1590565b38611031565b60a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa576004356110b9816100dc565b6024356110c5816100dc565b60443567ffffffffffffffff81116100fa576110e760209136906004016104b2565b9160a4611101606435946110fa866100dc565b8380611b8b565b94600073ffffffffffffffffffffffffffffffffffffffff80948160405198899788967f769f8e5d0000000000000000000000000000000000000000000000000000000088521660048701528a6024870152166044850152608435606485015260016084850152165af19081156102fa5760009161118c575b50604080519182526020820192909252f35b6111a5915060203d6020116102f3576102e381836103a7565b3861117a565b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa576004356111e1816100dc565b60243567ffffffffffffffff918282116100fa57366023830112156100fa5781600401359283116100fa5736602484840101116100fa57602460009392838594604051938493018337810184815203915af461123b6119cf565b906102c76040519283927f1934afc800000000000000000000000000000000000000000000000000000000845215156004840152604060248401526044830190610e8b565b611289366104c0565b909173ffffffffffffffffffffffffffffffffffffffff9182821692604051927fafd27bf50000000000000000000000000000000000000000000000000000000084526020938481600481895afa80156102fa576112f192859260009261143f575b50611b8b565b6040517fdb74aa1500000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff881660048201819052602482015290969095848760448160008a5af19687156102fa57600097611420575b508087106113e65750907f3193c546cf854c6a4c63afa03b04d35e4242c2761af34a4093fc5daa88dd5308916113d2888861139187611894565b9360405195869516983398013590859094939260609273ffffffffffffffffffffffffffffffffffffffff6080840197168352602083015260408201520152565b0390a4604080519182526020820192909252f35b6040517fca935dfd000000000000000000000000000000000000000000000000000000008152600481018890526024810191909152604490fd5b611438919750853d87116102f3576102e381836103a7565b9538611357565b611457919250873d891161033c5761032d81836103a7565b90386112eb565b346100fa5760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100fa57600480359061149b826100dc565b67ffffffffffffffff6024358181116100fa576114bb9036908401610e5a565b9390916044358181116100fa576114d59036908601610e5a565b90916064359081116100fa576114ee9036908701610e5a565b94909660005b81811061167a5750505060005b8181106115c45750505060005b82811061151757005b611530610a0b610a0b61152b84878a611a46565b611894565b90600060405180937f9262187b000000000000000000000000000000000000000000000000000000008252818381611587898c830191909173ffffffffffffffffffffffffffffffffffffffff6020820193169052565b03925af19182156102fa576001926115a1575b500161150e565b6115bd903d806000833e6115b581836103a7565b810190611ab7565b503861159a565b806000856115df610a0b610a0b61152b61163e97898b611a46565b89836040518097819582947f7d24da4d0000000000000000000000000000000000000000000000000000000084528301604060019193929373ffffffffffffffffffffffffffffffffffffffff60608201951681528260208201520152565b03925af19182156102fa57600192611658575b5001611501565b611674903d806000833e61166c81836103a7565b810190611add565b50611651565b80600087611695610a0b610a0b61152b6116e797898b611a46565b8b836040518097819582947fef5cfb8c000000000000000000000000000000000000000000000000000000008452830191909173ffffffffffffffffffffffffffffffffffffffff6020820193169052565b03925af19182156102fa57600192611701575b50016114f4565b611715903d806000833e6115b581836103a7565b50386116fa565b908160209103126100fa5751610528816100dc565b6040513d6000823e3d90fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b80518210156117805760209160051b010190565b61173d565b801515036100fa57565b908160209103126100fa575161052881611785565b906000805b835181101561188e576117df610a0b610a0b6117c5848861176c565b5173ffffffffffffffffffffffffffffffffffffffff1690565b906118556117f06117c5838861176c565b6040517f23b872dd00000000000000000000000000000000000000000000000000000000815233600482015273ffffffffffffffffffffffffffffffffffffffff90911660248201526000604482015292602091829185918290889082906064820190565b03925af19283156102fa57600193611870575b5050016117a9565b8161188692903d1061085d5761084f81836103a7565b503880611868565b50509050565b35610528816100dc565b906118a8826103e8565b6040906118b860405191826103a7565b8381527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe06118e682956103e8565b019060009060005b8381106118fc575050505050565b8451908582019180831067ffffffffffffffff841117610386576020928752848152826060818301528285010152016118ee565b91908110156117805760051b810135907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc1813603018212156100fa570190565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1813603018212156100fa570180359067ffffffffffffffff82116100fa576020019181360383136100fa57565b908092918237016000815290565b3d15611a28573d9067ffffffffffffffff82116103865760405191611a1c60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601846103a7565b82523d6000602084013e565b606090565b3561052881611785565b908160209103126100fa575190565b91908110156117805760051b0190565b9080601f830112156100fa57815190602091611a71816103e8565b93611a7f60405195866103a7565b81855260208086019260051b8201019283116100fa57602001905b828210611aa8575050505090565b81518152908301908301611a9a565b906020828203126100fa57815167ffffffffffffffff81116100fa576105289201611a56565b9190916040818403126100fa57805192602082015167ffffffffffffffff81116100fa576105289201611a56565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81813603018212156100fa570190565b600411156100fa57565b60041115611b5257565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b3561052881611b3e565b6105289291611b9d6080840184611b0b565b35611ba781611b3e565b611bb081611b48565b80611bd65750611bbf83611894565b611bd06020850135809233906121d2565b916122c8565b80611be2600392611b48565b03611c1c578235611bf2816100dc565b611bd060208501358092611c078233836121d2565b611c10816100dc565b61063c60408801611894565b611c2583611eb7565b611bd06040840135610661816100dc565b60009103126100fa57565b601f82602094937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0938186528686013760008582860101520116010190565b3590611c8b82611785565b565b9173ffffffffffffffffffffffffffffffffffffffff80921683526020830152606060408301528235611cbf81611b3e565b6004811015611b525760608301526020830135611cdb816100dc565b16608082015260408201357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe1833603018112156100fa5782019060208235920167ffffffffffffffff83116100fa5782360381136100fa57611d5a6060611d5360c09361052896608060a088015260e0870191611c41565b9501611c80565b1515910152565b93929360808501611d756108a58288611b0b565b611d7e81611b48565b80611da1575050602092611d939286926124df565b925b0135808310610e205750565b80611db26003929895969498611b48565b03611df25750611dc982611ded92602095306124df565b8095611de482611ddb60408701611894565b61063c87611894565b6109da84611894565b611d95565b90610a0b610a0b611e1485611e1a946060820198611e0f8a611894565b6124df565b95611894565b611e30611e2960408501611894565b9284611b0b565b90803b156100fa57611e769460008094604051978895869485937f2bdb823c00000000000000000000000000000000000000000000000000000000855260048501611c8d565b03925af19182156102fa57602092611ea4575b50611ded611e9961066183611894565b80956109da84611894565b80610ab9611eb192610372565b38611e89565b73ffffffffffffffffffffffffffffffffffffffff611ed582611894565b16611f9757611ee7602082013561216c565b611ef9610a0b610a0b60608401611894565b611f05610a0b83611894565b611f8f576020820135905b611f1983611894565b90611f276080850185611b0b565b93813b156100fa57600093602091611f71604051978896879586947f2bdb823c00000000000000000000000000000000000000000000000000000000865201359060048501611c8d565b03925af180156102fa57611f825750565b80610ab9611c8b92610372565b600090611f10565b611fbf611fa6610a0b83611894565b611fb260608401611894565b602084013591339061214b565b611ee7565b73ffffffffffffffffffffffffffffffffffffffff1680611fe457504790565b6020602491604051928380927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa9081156102fa5760009161202d575090565b610528915060203d6020116102f3576102e381836103a7565b82156121465773ffffffffffffffffffffffffffffffffffffffff16806120df5750600080809381935af16120796119cf565b501561208157565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f6574682073656e64206661696c656400000000000000000000000000000000006044820152fd5b6040517fa9059cbb00000000000000000000000000000000000000000000000000000000602082015273ffffffffffffffffffffffffffffffffffffffff929092166024830152604480830193909352918152611c8b916121416064836103a7565b6127e7565b505050565b9291908261215a575b50505050565b6121639361256d565b38808080612154565b340361217457565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f657468206d69736d6174636800000000000000000000000000000000000000006044820152fd5b90919073ffffffffffffffffffffffffffffffffffffffff16806121fb57509050340361217457565b8161220557505050565b611c8b92309161256d565b73ffffffffffffffffffffffffffffffffffffffff9190821680612275575016803b156100fa576000906004604051809481937fd0e30db00000000000000000000000000000000000000000000000000000000083525af180156102fa57611f825750565b915050803b156100fa576040517f2e1a7d4d00000000000000000000000000000000000000000000000000000000815260048101929092526000908290602490829084905af180156102fa57611f825750565b60849060406020949501356122dc816100dc565b73ffffffffffffffffffffffffffffffffffffffff80948183169788156000146123755761231e81945b61230f816100dc565b61231984826125e9565b6100dc565b60405198899788967f20e8c5650000000000000000000000000000000000000000000000000000000088521660048701526024860152604485015260006064850152165af19081156102fa5760009161202d575090565b61231e600094612306565b60209360406084939496013590612396826100dc565b73ffffffffffffffffffffffffffffffffffffffff948591828416988915600014612429576123d481955b6123ca816100dc565b61231985826125e9565b604051998a9889977f20e8c565000000000000000000000000000000000000000000000000000000008952166004880152602487015260448601526064850152165af19081156102fa5760009161202d575090565b6123d46000956123c1565b60a49060006040936020959673ffffffffffffffffffffffffffffffffffffffff958691828416938a806124cd575b50500135612470816100dc565b60405198899788967f769f8e5d0000000000000000000000000000000000000000000000000000000088521660048701526024860152166044840152816064840152600160848401525af19081156102fa5760009161202d575090565b6124d891338761256d565b388a612463565b60a49060006020949560409473ffffffffffffffffffffffffffffffffffffffff80968193013561250f816100dc565b604051998a9889977f769f8e5d000000000000000000000000000000000000000000000000000000008952166004880152602487015216604485015282606485015260016084850152165af19081156102fa5760009161202d575090565b9290604051927f23b872dd00000000000000000000000000000000000000000000000000000000602085015273ffffffffffffffffffffffffffffffffffffffff809216602485015216604483015260648201526064815260a081019181831067ffffffffffffffff84111761038657611c8b926040526127e7565b919073ffffffffffffffffffffffffffffffffffffffff831692831561188e576040517fdd62ed3e00000000000000000000000000000000000000000000000000000000815230600482015273ffffffffffffffffffffffffffffffffffffffff831660248201526020948590829060449082905afa80156102fa576b7fffffffffffffffffffffff916000916127ca575b50106126875750509050565b6040517f095ea7b30000000000000000000000000000000000000000000000000000000085820190815273ffffffffffffffffffffffffffffffffffffffff841660248301526000604483018190529182919061270f81606481015b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081018352826103a7565b519082855af161271d6119cf565b8161279a575b501561273c57612734929350612907565b80388061188e565b606484604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152600c60248201527f5361666520417070726f766500000000000000000000000000000000000000006044820152fd5b805180159250869083156127b2575b50505038612723565b6127c2935082018101910161178f565b3885816127a9565b6127e19150863d88116102f3576102e381836103a7565b3861267b565b6040516128529173ffffffffffffffffffffffffffffffffffffffff1661280d8261038b565b6000806020958685527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656487860152868151910182855af161284c6119cf565b91612a31565b8051908282159283156128ef575b5050501561286b5750565b608490604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b6128ff935082018101910161178f565b388281612860565b6040517f095ea7b3000000000000000000000000000000000000000000000000000000006020820190815273ffffffffffffffffffffffffffffffffffffffff90931660248201527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6044820152600092839291839061298a81606481016126e3565b51925af16129966119cf565b81612a02575b50156129a457565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600c60248201527f5361666520417070726f766500000000000000000000000000000000000000006044820152fd5b8051801592508215612a17575b50503861299c565b612a2a925060208091830101910161178f565b3880612a0f565b91929015612aac5750815115612a45575090565b3b15612a4e5790565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b825190915015612abf5750805190602001fd5b6102c7906040519182917f08c379a0000000000000000000000000000000000000000000000000000000008352602060048401526024830190610e8b56fea2646970667358221220e3cbc8a6df982b7fe8f626f600ddac0c9b8782491f7f43fd8177701c1373964064736f6c63430008170033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.