ETH Price: $2,803.05 (+1.33%)

Contract

0x84D626B2BB4D0F064067e4BF80FCe7055d8F3E7B
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
SafeDecimalMath

Compiler Version
v0.4.25+commit.59dbf8f1

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
/**
 *Submitted for verification at Etherscan.io on 2018-12-06
*/

/* ===============================================
* Flattened with Solidifier by Coinage
* 
* https://solidifier.coina.ge
* ===============================================
*/


pragma solidity ^0.4.24;

/**
 * @title SafeMath
 * @dev Math operations with safety checks that revert on error
 */
library SafeMath {

  /**
  * @dev Multiplies two numbers, reverts on overflow.
  */
  function mul(uint256 a, uint256 b) internal pure returns (uint256) {
    // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
    // benefit is lost if 'b' is also tested.
    // See: https://github.com/OpenZeppelin/openzeppelin-solidity/pull/522
    if (a == 0) {
      return 0;
    }

    uint256 c = a * b;
    require(c / a == b);

    return c;
  }

  /**
  * @dev Integer division of two numbers truncating the quotient, reverts on division by zero.
  */
  function div(uint256 a, uint256 b) internal pure returns (uint256) {
    require(b > 0); // Solidity only automatically asserts when dividing by 0
    uint256 c = a / b;
    // assert(a == b * c + a % b); // There is no case in which this doesn't hold

    return c;
  }

  /**
  * @dev Subtracts two numbers, reverts on overflow (i.e. if subtrahend is greater than minuend).
  */
  function sub(uint256 a, uint256 b) internal pure returns (uint256) {
    require(b <= a);
    uint256 c = a - b;

    return c;
  }

  /**
  * @dev Adds two numbers, reverts on overflow.
  */
  function add(uint256 a, uint256 b) internal pure returns (uint256) {
    uint256 c = a + b;
    require(c >= a);

    return c;
  }

  /**
  * @dev Divides two numbers and returns the remainder (unsigned integer modulo),
  * reverts when dividing by zero.
  */
  function mod(uint256 a, uint256 b) internal pure returns (uint256) {
    require(b != 0);
    return a % b;
  }
}


/*

-----------------------------------------------------------------
FILE INFORMATION
-----------------------------------------------------------------

file:       SafeDecimalMath.sol
version:    2.0
author:     Kevin Brown
            Gavin Conway
date:       2018-10-18

-----------------------------------------------------------------
MODULE DESCRIPTION
-----------------------------------------------------------------

A library providing safe mathematical operations for division and
multiplication with the capability to round or truncate the results
to the nearest increment. Operations can return a standard precision
or high precision decimal. High precision decimals are useful for
example when attempting to calculate percentages or fractions
accurately.

-----------------------------------------------------------------
*/


/**
 * @title Safely manipulate unsigned fixed-point decimals at a given precision level.
 * @dev Functions accepting uints in this contract and derived contracts
 * are taken to be such fixed point decimals of a specified precision (either standard
 * or high).
 */
library SafeDecimalMath {

    using SafeMath for uint;

    /* Number of decimal places in the representations. */
    uint8 public constant decimals = 18;
    uint8 public constant highPrecisionDecimals = 27;

    /* The number representing 1.0. */
    uint public constant UNIT = 10 ** uint(decimals);

    /* The number representing 1.0 for higher fidelity numbers. */
    uint public constant PRECISE_UNIT = 10 ** uint(highPrecisionDecimals);
    uint private constant UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR = 10 ** uint(highPrecisionDecimals - decimals);

    /** 
     * @return Provides an interface to UNIT.
     */
    function unit()
        external
        pure
        returns (uint)
    {
        return UNIT;
    }

    /** 
     * @return Provides an interface to PRECISE_UNIT.
     */
    function preciseUnit()
        external
        pure 
        returns (uint)
    {
        return PRECISE_UNIT;
    }

    /**
     * @return The result of multiplying x and y, interpreting the operands as fixed-point
     * decimals.
     * 
     * @dev A unit factor is divided out after the product of x and y is evaluated,
     * so that product must be less than 2**256. As this is an integer division,
     * the internal division always rounds down. This helps save on gas. Rounding
     * is more expensive on gas.
     */
    function multiplyDecimal(uint x, uint y)
        internal
        pure
        returns (uint)
    {
        /* Divide by UNIT to remove the extra factor introduced by the product. */
        return x.mul(y) / UNIT;
    }

    /**
     * @return The result of safely multiplying x and y, interpreting the operands
     * as fixed-point decimals of the specified precision unit.
     *
     * @dev The operands should be in the form of a the specified unit factor which will be
     * divided out after the product of x and y is evaluated, so that product must be
     * less than 2**256.
     *
     * Unlike multiplyDecimal, this function rounds the result to the nearest increment.
     * Rounding is useful when you need to retain fidelity for small decimal numbers
     * (eg. small fractions or percentages).
     */
    function _multiplyDecimalRound(uint x, uint y, uint precisionUnit)
        private
        pure
        returns (uint)
    {
        /* Divide by UNIT to remove the extra factor introduced by the product. */
        uint quotientTimesTen = x.mul(y) / (precisionUnit / 10);

        if (quotientTimesTen % 10 >= 5) {
            quotientTimesTen += 10;
        }

        return quotientTimesTen / 10;
    }

    /**
     * @return The result of safely multiplying x and y, interpreting the operands
     * as fixed-point decimals of a precise unit.
     *
     * @dev The operands should be in the precise unit factor which will be
     * divided out after the product of x and y is evaluated, so that product must be
     * less than 2**256.
     *
     * Unlike multiplyDecimal, this function rounds the result to the nearest increment.
     * Rounding is useful when you need to retain fidelity for small decimal numbers
     * (eg. small fractions or percentages).
     */
    function multiplyDecimalRoundPrecise(uint x, uint y)
        internal
        pure
        returns (uint)
    {
        return _multiplyDecimalRound(x, y, PRECISE_UNIT);
    }

    /**
     * @return The result of safely multiplying x and y, interpreting the operands
     * as fixed-point decimals of a standard unit.
     *
     * @dev The operands should be in the standard unit factor which will be
     * divided out after the product of x and y is evaluated, so that product must be
     * less than 2**256.
     *
     * Unlike multiplyDecimal, this function rounds the result to the nearest increment.
     * Rounding is useful when you need to retain fidelity for small decimal numbers
     * (eg. small fractions or percentages).
     */
    function multiplyDecimalRound(uint x, uint y)
        internal
        pure
        returns (uint)
    {
        return _multiplyDecimalRound(x, y, UNIT);
    }

    /**
     * @return The result of safely dividing x and y. The return value is a high
     * precision decimal.
     * 
     * @dev y is divided after the product of x and the standard precision unit
     * is evaluated, so the product of x and UNIT must be less than 2**256. As
     * this is an integer division, the result is always rounded down.
     * This helps save on gas. Rounding is more expensive on gas.
     */
    function divideDecimal(uint x, uint y)
        internal
        pure
        returns (uint)
    {
        /* Reintroduce the UNIT factor that will be divided out by y. */
        return x.mul(UNIT).div(y);
    }

    /**
     * @return The result of safely dividing x and y. The return value is as a rounded
     * decimal in the precision unit specified in the parameter.
     *
     * @dev y is divided after the product of x and the specified precision unit
     * is evaluated, so the product of x and the specified precision unit must
     * be less than 2**256. The result is rounded to the nearest increment.
     */
    function _divideDecimalRound(uint x, uint y, uint precisionUnit)
        private
        pure
        returns (uint)
    {
        uint resultTimesTen = x.mul(precisionUnit * 10).div(y);

        if (resultTimesTen % 10 >= 5) {
            resultTimesTen += 10;
        }

        return resultTimesTen / 10;
    }

    /**
     * @return The result of safely dividing x and y. The return value is as a rounded
     * standard precision decimal.
     *
     * @dev y is divided after the product of x and the standard precision unit
     * is evaluated, so the product of x and the standard precision unit must
     * be less than 2**256. The result is rounded to the nearest increment.
     */
    function divideDecimalRound(uint x, uint y)
        internal
        pure
        returns (uint)
    {
        return _divideDecimalRound(x, y, UNIT);
    }

    /**
     * @return The result of safely dividing x and y. The return value is as a rounded
     * high precision decimal.
     *
     * @dev y is divided after the product of x and the high precision unit
     * is evaluated, so the product of x and the high precision unit must
     * be less than 2**256. The result is rounded to the nearest increment.
     */
    function divideDecimalRoundPrecise(uint x, uint y)
        internal
        pure
        returns (uint)
    {
        return _divideDecimalRound(x, y, PRECISE_UNIT);
    }

    /**
     * @dev Convert a standard decimal representation to a high precision one.
     */
    function decimalToPreciseDecimal(uint i)
        internal
        pure
        returns (uint)
    {
        return i.mul(UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR);
    }

    /**
     * @dev Convert a high precision decimal to a standard decimal representation.
     */
    function preciseDecimalToDecimal(uint i)
        internal
        pure
        returns (uint)
    {
        uint quotientTimesTen = i / (UNIT_TO_HIGH_PRECISION_CONVERSION_FACTOR / 10);

        if (quotientTimesTen % 10 >= 5) {
            quotientTimesTen += 10;
        }

        return quotientTimesTen / 10;
    }

}

Contract Security Audit

Contract ABI

[{"constant":true,"inputs":[],"name":"decimals","outputs":[{"name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"PRECISE_UNIT","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"unit","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"pure","type":"function"},{"constant":true,"inputs":[],"name":"UNIT","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant":true,"inputs":[],"name":"preciseUnit","outputs":[{"name":"","type":"uint256"}],"payable":false,"stateMutability":"pure","type":"function"},{"constant":true,"inputs":[],"name":"highPrecisionDecimals","outputs":[{"name":"","type":"uint8"}],"payable":false,"stateMutability":"view","type":"function"}]

610159610030600b82828239805160001a6073146000811461002057610022565bfe5b5030600052607381538281f300730000000000000000000000000000000000000000301460806040526004361061008e5763ffffffff7c0100000000000000000000000000000000000000000000000000000000600035041663313ce5678114610093578063864029e7146100b1578063907af6c0146100cb5780639d8e2177146100d3578063d5e5e6e6146100db578063def4419d146100e3575b600080fd5b61009b6100eb565b6040805160ff9092168252519081900360200190f35b6100b96100f0565b60408051918252519081900360200190f35b6100b9610100565b6100b961010c565b6100b9610118565b61009b610128565b601281565b6b033b2e3c9fd0803ce800000081565b670de0b6b3a764000090565b670de0b6b3a764000081565b6b033b2e3c9fd0803ce800000090565b601b815600a165627a7a72305820c23be04dd8c4db79f23aa987a379bddc57e981f9c7f5632c2497e784de06afbb0029

Deployed Bytecode

0x7384d626b2bb4d0f064067e4bf80fce7055d8f3e7b301460806040526004361061008e5763ffffffff7c0100000000000000000000000000000000000000000000000000000000600035041663313ce5678114610093578063864029e7146100b1578063907af6c0146100cb5780639d8e2177146100d3578063d5e5e6e6146100db578063def4419d146100e3575b600080fd5b61009b6100eb565b6040805160ff9092168252519081900360200190f35b6100b96100f0565b60408051918252519081900360200190f35b6100b9610100565b6100b961010c565b6100b9610118565b61009b610128565b601281565b6b033b2e3c9fd0803ce800000081565b670de0b6b3a764000090565b670de0b6b3a764000081565b6b033b2e3c9fd0803ce800000090565b601b815600a165627a7a72305820c23be04dd8c4db79f23aa987a379bddc57e981f9c7f5632c2497e784de06afbb0029

Libraries Used


Swarm Source

bzzr://c23be04dd8c4db79f23aa987a379bddc57e981f9c7f5632c2497e784de06afbb

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

OVERVIEW

A library providing safe mathematical operations for division and multiplication with the capability to round or truncate the results to the nearest increment.

Operations can return a standard precision or high precision decimal. 
High precision decimals are useful for example when attempting to calculate percentages or fractions accurately.

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.