This nametag was submitted by Kleros Scout.
Latest 25 from a total of 106,601 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Release Tokens | 24242698 | 16 hrs ago | IN | 0 ETH | 0.00015014 | ||||
| Release Tokens | 24242107 | 18 hrs ago | IN | 0 ETH | 0.00015464 | ||||
| Release Tokens | 24241121 | 22 hrs ago | IN | 0 ETH | 0.00011987 | ||||
| Release Tokens | 24236389 | 38 hrs ago | IN | 0 ETH | 0.00011356 | ||||
| Release Tokens | 24234116 | 45 hrs ago | IN | 0 ETH | 0.00012964 | ||||
| Release Tokens | 24233434 | 47 hrs ago | IN | 0 ETH | 0.00010144 | ||||
| Release Tokens | 24233431 | 47 hrs ago | IN | 0 ETH | 0.00015747 | ||||
| Release Tokens | 24228236 | 2 days ago | IN | 0 ETH | 0.00012028 | ||||
| Release Tokens | 24226771 | 2 days ago | IN | 0 ETH | 0.00016579 | ||||
| Release Tokens | 24221484 | 3 days ago | IN | 0 ETH | 0.00014848 | ||||
| Release Tokens | 24219283 | 3 days ago | IN | 0 ETH | 0.00001835 | ||||
| Release Tokens | 24218327 | 4 days ago | IN | 0 ETH | 0.00000488 | ||||
| Release Tokens | 24216742 | 4 days ago | IN | 0 ETH | 0.00011306 | ||||
| Release Tokens | 24204452 | 6 days ago | IN | 0 ETH | 0.00014843 | ||||
| Release Tokens | 24198965 | 6 days ago | IN | 0 ETH | 0.00000641 | ||||
| Release Tokens | 24196687 | 7 days ago | IN | 0 ETH | 0.00000368 | ||||
| Release Tokens | 24195275 | 7 days ago | IN | 0 ETH | 0.00000245 | ||||
| Release Tokens | 24192921 | 7 days ago | IN | 0 ETH | 0.00000289 | ||||
| Release Tokens | 24191980 | 7 days ago | IN | 0 ETH | 0.0001526 | ||||
| Release Tokens | 24190201 | 8 days ago | IN | 0 ETH | 0.00000706 | ||||
| Release Tokens | 24183380 | 8 days ago | IN | 0 ETH | 0.0002107 | ||||
| Activate Vesting | 24183366 | 8 days ago | IN | 0 ETH | 0.00003783 | ||||
| Release Tokens | 24178636 | 9 days ago | IN | 0 ETH | 0.00015095 | ||||
| Release Tokens | 24178315 | 9 days ago | IN | 0 ETH | 0.00015433 | ||||
| Release Tokens | 24178042 | 9 days ago | IN | 0 ETH | 0.00000474 |
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| Transfer | 19338677 | 686 days ago | 0.007845 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
TokenVestingLinear
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/security/ReentrancyGuard.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {MerkleProof} from '@openzeppelin/contracts/utils/cryptography/MerkleProof.sol';
/**
* @title Token Vesting Contract (Linear)
* @dev This contract handles the vesting of ERC20 tokens for specific users. The vesting schedule is linear.
* Users are pre-signed into a merkle tree and the merkle root is used to verify the user's vesting schedule.
* Pre-signature allows us to guarantee that the user's vesting schedule is valid and cannot be tampered with.
*/
contract TokenVestingLinear is Ownable, ReentrancyGuard {
using ECDSA for bytes32;
/// @notice Schedule struct to store user's vesting schedule
struct Schedule {
uint256 allocation; // Total allocation for the user
uint256 claimed; // Total amount claimed by the user
uint64 startTimestamp; // Vesting start time
uint64 endTimestamp; // Vesting end time
uint8 initUnlockPercentage; // Initial unlocked percentage of tokens
}
/**
* @notice UserSchedule struct to store user's vesting schedule and their wallet address in bytes.
* @dev User is in bytes to allow Solana address to be used along with Ethereum address.
*/
struct UserSchedule {
bytes32 user;
Schedule schedule;
}
/// @notice Portal token contract
IERC20 public token;
/// @notice Address of the signer. Signer is used in cases where the user wants to delegate the vesting to another wallet (not one that is being vested).
address public signerAddress;
/// @notice Merkle root for the vesting schedule. This is used to preseed and verify the vesting schedule for a user.
bytes32 public immutable root;
/// @notice Mapping from user address to vesting details
mapping(address => Schedule) public schedules;
mapping(bytes32 => address) public primaryWalletBytesToAddress;
/// @notice Event emitted when tokens are released
event TokensReleased(address indexed user, uint256 amount);
/// @notice Event emitted when a new vesting schedule is added (activated)
event ScheduleSet(address indexed recepientAddress, bytes32 user);
/// @notice Event emitted when a user's recepient wallet is updated
event RecepientAddressUpdated(bytes32 indexed userAddressInBytes, address indexed currentRecepientWallet, address indexed newRecepientWallet);
/// @notice Event emitted when the signer address is updated
event SignerAddressSet(address signerAddress_);
/// @notice Event emitted when the token address is updated (can only be set once)
event TokenAddressUpdated(address newToken);
/// @notice Error emitted when invalid recepient address is passed
error InvalidRecepientAddressPassed();
/// @notice Error emitted when invalid signature is passed
error InvalidSignaturePassed();
/// @notice Error emitted when invalid data is passed (merkle proof check failed)
error InvalidDataPassed();
/// @notice Error emitted when allocation is not found for a user (allocation is 0)
error AllocationNotFound(address user);
/// @notice Error emitted when user id is already in use (user id is in bytes from UserSchedule.user)
error UserIdAlreadyInUse(bytes32 primaryWalletBytes);
/// @notice Error emitted when transfer of tokens failed
error TransferFailed();
/// @notice Error emitted when unauthorized user tries to perform an action
error Unauthorized();
/// @notice Error emitted when user already exists
error UserAlreadyExists();
/// @notice Error emitted when token address is already set
error TokenAddressAlreadySet();
/// @notice Error emitted when invalid signer address is passed (address is 0)
error InvalidSignerPassed();
/// @notice Error emitted when invalid token address is passed (address is 0)
error InvalidTokenPassed();
/// @notice Initialize the contract with the and signer address and merkle root
constructor(address signerAddress_, bytes32 root_) {
if (signerAddress_ == address(0)) {
revert InvalidSignerPassed();
}
signerAddress = signerAddress_;
root = root_;
}
/**
* @notice Function to convert bytes32 to address
* @param b bytes32 to convert to address
* @return address
*/
function bytes32ToAddress(bytes32 b) public pure returns (address) {
return address(uint160(uint256(b)));
}
/**
* @param userSchedule UserSchedule struct containing user's vesting schedule and their wallet address in bytes
* @param proof Merkle proof to verify the user's vesting schedule
* @param recepientAddress Address of the recepient wallet (by default wallet that has vesting schedule associated with it)
* @param signature Signature to verify the recepient wallet (if it's different from the wallet that has vesting schedule associated with it)
*/
function activateVesting(UserSchedule calldata userSchedule, bytes32[] calldata proof, address recepientAddress, bytes calldata signature) external nonReentrant {
bool isValidData = _validateMerkleProof(userSchedule, proof);
if (!isValidData) {
revert InvalidDataPassed();
}
address actualRecepientAddress = _findRecepientWallet(userSchedule, recepientAddress, signature);
_seedUser(userSchedule, actualRecepientAddress);
}
/**
* @notice Function to release tokens for a specific user
* @param to Address of the user to release tokens to
*/
function releaseTokens(address to) external nonReentrant {
Schedule storage schedule = schedules[to];
if (schedule.allocation == 0) {
revert AllocationNotFound(to);
}
uint256 amtToClaim = _claimableAmount(schedule);
schedule.claimed += amtToClaim;
bool success = token.transfer(to, amtToClaim);
if (!success) {
revert TransferFailed();
}
emit TokensReleased(to, amtToClaim);
}
/**
* @notice Function for users to update their recepient wallet
* @param userAddressInBytes User id in bytes
* @param newRecepientWallet New recepient wallet address (should be not 0 and not already in use)
*/
function updateRecepientWallet(bytes32 userAddressInBytes, address newRecepientWallet) external {
_updateRecepientWallet(userAddressInBytes, msg.sender, newRecepientWallet);
}
/**
* @notice Function for admin to update the recepient wallet
* @param userAddressInBytes User id in bytes
* @param currentRecepientWallet Current recepient wallet address
* @param newRecepientWallet New recepient wallet address (should be not 0 and not already in use)
*/
function adminUpdateRecepientWallet(bytes32 userAddressInBytes, address currentRecepientWallet, address newRecepientWallet) external onlyOwner {
_updateRecepientWallet(userAddressInBytes, currentRecepientWallet, newRecepientWallet);
}
/**
* @notice Function to update the signer address
* @param signerAddress_ New signer address
*/
function setSignerAddress(address signerAddress_) external onlyOwner {
if (signerAddress_ == address(0)) {
revert InvalidSignerPassed();
}
signerAddress = signerAddress_;
emit SignerAddressSet(signerAddress_);
}
/**
* @notice Function to update the token address
* @param newToken New token address (should be not 0)
*/
function updateTokenAddress(IERC20 newToken) external onlyOwner {
if (address(token) != address(0)) {
revert TokenAddressAlreadySet();
}
if (address(newToken) == address(0)) {
revert InvalidTokenPassed();
}
token = newToken;
emit TokenAddressUpdated(address(newToken));
}
/**
* @notice Function to calculate claimable amount for a specific user
* @param user Address of the user
* @return uint256 accumulated claimable amount
*/
function claimableAmount(address user) external view returns (uint256) {
return _claimableAmount(schedules[user]);
}
/**
* @notice Function to calculate claimable amount for a specific user by their id in bytes
* @param userAddressInBytes User id in bytes
* @return uint256 accumulated claimable amount
*/
function claimableAmountById(bytes32 userAddressInBytes) external view returns (uint256) {
address user = primaryWalletBytesToAddress[userAddressInBytes];
if (user == address(0)) {
return 0;
}
return _claimableAmount(schedules[user]);
}
/**
* @notice Internal function to initialize a user's vesting schedule
* @param userSchedule UserSchedule struct containing user's vesting schedule and their wallet address in bytes
* @param userAddress Address of the user
*/
function _seedUser(UserSchedule calldata userSchedule, address userAddress) internal {
if (schedules[userAddress].allocation != 0) {
revert UserAlreadyExists();
}
if (primaryWalletBytesToAddress[userSchedule.user] != address(0)) {
revert UserIdAlreadyInUse(userSchedule.user);
}
primaryWalletBytesToAddress[userSchedule.user] = userAddress;
schedules[userAddress] = userSchedule.schedule;
emit ScheduleSet(userAddress, userSchedule.user);
}
/**
* @notice Internal function to update the recepient wallet
* @param userAddressInBytes User id in bytes
* @param currentRecepientWallet Current recepient wallet address
* @param newRecepientWallet New recepient wallet address (should be not 0 and not already in use)
*/
function _updateRecepientWallet(bytes32 userAddressInBytes, address currentRecepientWallet, address newRecepientWallet) internal {
if (primaryWalletBytesToAddress[userAddressInBytes] != currentRecepientWallet) {
revert Unauthorized();
}
if (newRecepientWallet == address(0)) {
revert InvalidRecepientAddressPassed();
}
if (schedules[newRecepientWallet].allocation != 0) {
revert UserAlreadyExists();
}
primaryWalletBytesToAddress[userAddressInBytes] = newRecepientWallet;
schedules[newRecepientWallet] = schedules[currentRecepientWallet];
delete schedules[currentRecepientWallet];
emit RecepientAddressUpdated(userAddressInBytes, currentRecepientWallet, newRecepientWallet);
}
/**
* @notice Internal view function to calculate claimable amount for a specific user
* @param schedule Schedule struct containing user's vesting schedule
* @return uint256 accumulated claimable amount
*/
function _claimableAmount(Schedule storage schedule) internal view returns (uint256) {
return _vestedAmount(schedule) - schedule.claimed;
}
/**
* @notice Internal view function to calculate vested amount for a specific user
* @param schedule Schedule struct containing user's vesting schedule
* @return uint256 vested amount
*/
function _vestedAmount(Schedule storage schedule) internal view returns (uint256) {
if (block.timestamp < schedule.startTimestamp) {
return 0;
}
if (block.timestamp > schedule.endTimestamp) {
return schedule.allocation;
}
uint256 initialAmt = schedule.allocation * schedule.initUnlockPercentage / 100;
uint256 vestingAmt = schedule.allocation - initialAmt;
uint256 elapsedTime = block.timestamp - schedule.startTimestamp;
uint256 unlockPeriod = schedule.endTimestamp - schedule.startTimestamp;
return initialAmt + (vestingAmt * elapsedTime) / unlockPeriod;
}
/**
* @notice Internal view function to find the recepient wallet
* @dev If the sender is the user OR recepient wallet is not passed, then the recepient wallet is the sender's wallet.
* If the recepient wallet is passed and != sender (SOL users or ETH users who desire to use another address to receive
* tokens to), then the signature is verified to check if the recepient wallet is valid.
* @dev isValidEthereumAddress guarantees that user is an Ethereum address and not a Solana address.This ensures that if
* senders last 20 bytes overlap with the last 20 bytes of Solana address, the transaction will revert and now allow the sender
* to claim tokens on behalf of the Solana address.
* @param userSchedule UserSchedule struct containing user's vesting schedule and their wallet address in bytes
* @param recepientWallet Address of the recepient wallet
* @param signature Signature to verify the recepient wallet (if it's different from the wallet that has vesting schedule associated with it)
* @return address of the recepient wallet
*/
function _findRecepientWallet(UserSchedule calldata userSchedule, address recepientWallet, bytes calldata signature) internal view returns (address) {
if (msg.sender == bytes32ToAddress(userSchedule.user) && recepientWallet == address(0) && isValidEthereumAddress(userSchedule.user)) {
return msg.sender;
}
if (recepientWallet == bytes32ToAddress(userSchedule.user) && isValidEthereumAddress(userSchedule.user)) {
return recepientWallet;
}
if (recepientWallet == address(0)) {
revert InvalidRecepientAddressPassed();
}
if (_validateSignature(userSchedule.user, recepientWallet, signature)) {
return recepientWallet;
}
revert InvalidSignaturePassed();
}
/**
* @notice Internal view function to validate signature
* @param user User id in bytes
* @param recepientWallet Address of the recepient wallet
* @param signature Signature to verify the recepient wallet
* @return bool is signature valid
*/
function _validateSignature(bytes32 user, address recepientWallet, bytes calldata signature) internal view returns (bool) {
bytes32 dataHash = keccak256(abi.encode(user, recepientWallet));
bytes32 message = ECDSA.toEthSignedMessageHash(dataHash);
address receivedAddress = ECDSA.recover(message, signature);
return (receivedAddress != address(0) && receivedAddress == signerAddress);
}
/**
* @notice Internal view function to validate merkle proof
* @param userSchedule UserSchedule struct containing user's vesting schedule and their wallet address in bytes
* @param proof Merkle proof to verify the user's vesting schedule
* @return bool is merkle proof valid
*/
function _validateMerkleProof(UserSchedule calldata userSchedule, bytes32[] calldata proof) internal view returns (bool) {
bytes32 leaf = keccak256(abi.encode(userSchedule.user, userSchedule.schedule.allocation, userSchedule.schedule.startTimestamp, userSchedule.schedule.endTimestamp, userSchedule.schedule.initUnlockPercentage));
return MerkleProof.verify(proof, root, leaf);
}
/**
* @notice Internal view function to check if the user is an Ethereum address
* @param solanaAddress User id in bytes
* @return bool is Ethereum address
*/
function isValidEthereumAddress(bytes32 solanaAddress) internal pure returns (bool) {
return bytes12(solanaAddress) == bytes12(0);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)
pragma solidity ^0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor() {
_transferOwnership(_msgSender());
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
constructor() {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == _ENTERED;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)
pragma solidity ^0.8.0;
import "../Strings.sol";
/**
* @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
*
* These functions can be used to verify that a message was signed by the holder
* of the private keys of a given address.
*/
library ECDSA {
enum RecoverError {
NoError,
InvalidSignature,
InvalidSignatureLength,
InvalidSignatureS,
InvalidSignatureV // Deprecated in v4.8
}
function _throwError(RecoverError error) private pure {
if (error == RecoverError.NoError) {
return; // no error: do nothing
} else if (error == RecoverError.InvalidSignature) {
revert("ECDSA: invalid signature");
} else if (error == RecoverError.InvalidSignatureLength) {
revert("ECDSA: invalid signature length");
} else if (error == RecoverError.InvalidSignatureS) {
revert("ECDSA: invalid signature 's' value");
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature` or error string. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*
* Documentation for signature generation:
* - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
* - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
if (signature.length == 65) {
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
/// @solidity memory-safe-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return tryRecover(hash, v, r, s);
} else {
return (address(0), RecoverError.InvalidSignatureLength);
}
}
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, signature);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
*
* See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
uint8 v = uint8((uint256(vs) >> 255) + 27);
return tryRecover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
*
* _Available since v4.2._
*/
function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, r, vs);
_throwError(error);
return recovered;
}
/**
* @dev Overload of {ECDSA-tryRecover} that receives the `v`,
* `r` and `s` signature fields separately.
*
* _Available since v4.3._
*/
function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
return (address(0), RecoverError.InvalidSignatureS);
}
// If the signature is valid (and not malleable), return the signer address
address signer = ecrecover(hash, v, r, s);
if (signer == address(0)) {
return (address(0), RecoverError.InvalidSignature);
}
return (signer, RecoverError.NoError);
}
/**
* @dev Overload of {ECDSA-recover} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
(address recovered, RecoverError error) = tryRecover(hash, v, r, s);
_throwError(error);
return recovered;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
// 32 is the length in bytes of hash,
// enforced by the type signature above
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, "\x19Ethereum Signed Message:\n32")
mstore(0x1c, hash)
message := keccak256(0x00, 0x3c)
}
}
/**
* @dev Returns an Ethereum Signed Message, created from `s`. This
* produces hash corresponding to the one signed with the
* https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
* JSON-RPC method as part of EIP-191.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
}
/**
* @dev Returns an Ethereum Signed Typed Data, created from a
* `domainSeparator` and a `structHash`. This produces hash corresponding
* to the one signed with the
* https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
* JSON-RPC method as part of EIP-712.
*
* See {recover}.
*/
function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
/// @solidity memory-safe-assembly
assembly {
let ptr := mload(0x40)
mstore(ptr, "\x19\x01")
mstore(add(ptr, 0x02), domainSeparator)
mstore(add(ptr, 0x22), structHash)
data := keccak256(ptr, 0x42)
}
}
/**
* @dev Returns an Ethereum Signed Data with intended validator, created from a
* `validator` and `data` according to the version 0 of EIP-191.
*
* See {recover}.
*/
function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x00", validator, data));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.2) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofLen = proof.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(leavesLen + proofLen - 1 == totalHashes, "MerkleProof: invalid multiproof");
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
require(proofPos == proofLen, "MerkleProof: invalid multiproof");
unchecked {
return hashes[totalHashes - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
import "./math/SignedMath.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `int256` to its ASCII `string` decimal representation.
*/
function toString(int256 value) internal pure returns (string memory) {
return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
/**
* @dev Returns true if the two strings are equal.
*/
function equal(string memory a, string memory b) internal pure returns (bool) {
return keccak256(bytes(a)) == keccak256(bytes(b));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1, "Math: mulDiv overflow");
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard signed math utilities missing in the Solidity language.
*/
library SignedMath {
/**
* @dev Returns the largest of two signed numbers.
*/
function max(int256 a, int256 b) internal pure returns (int256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two signed numbers.
*/
function min(int256 a, int256 b) internal pure returns (int256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two signed numbers without overflow.
* The result is rounded towards zero.
*/
function average(int256 a, int256 b) internal pure returns (int256) {
// Formula from the book "Hacker's Delight"
int256 x = (a & b) + ((a ^ b) >> 1);
return x + (int256(uint256(x) >> 255) & (a ^ b));
}
/**
* @dev Returns the absolute unsigned value of a signed value.
*/
function abs(int256 n) internal pure returns (uint256) {
unchecked {
// must be unchecked in order to support `n = type(int256).min`
return uint256(n >= 0 ? n : -n);
}
}
}{
"remappings": [
"@layerzero-contracts/=lib/solidity-examples/contracts/",
"@openzeppelin/=lib/openzeppelin-contracts/",
"@Chainlink/=lib/chainlink-brownie-contracts/contracts/",
"@prb/math/=lib/prb-math/",
"@sstore2/=lib/sstore2/",
"@prb/test/=lib/prb-math/node_modules/@prb/test/",
"chainlink-brownie-contracts/=lib/chainlink-brownie-contracts/",
"ds-test/=lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/openzeppelin-foundry-upgrades/src/",
"openzeppelin/=lib/openzeppelin-contracts/contracts/",
"prb-math/=lib/prb-math/src/",
"solidity-examples/=lib/solidity-examples/contracts/",
"solidity-stringutils/=lib/openzeppelin-foundry-upgrades/lib/solidity-stringutils/",
"sstore2/=lib/sstore2/contracts/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "paris",
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"signerAddress_","type":"address"},{"internalType":"bytes32","name":"root_","type":"bytes32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"AllocationNotFound","type":"error"},{"inputs":[],"name":"InvalidDataPassed","type":"error"},{"inputs":[],"name":"InvalidRecepientAddressPassed","type":"error"},{"inputs":[],"name":"InvalidSignaturePassed","type":"error"},{"inputs":[],"name":"InvalidSignerPassed","type":"error"},{"inputs":[],"name":"InvalidTokenPassed","type":"error"},{"inputs":[],"name":"TokenAddressAlreadySet","type":"error"},{"inputs":[],"name":"TransferFailed","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"UserAlreadyExists","type":"error"},{"inputs":[{"internalType":"bytes32","name":"primaryWalletBytes","type":"bytes32"}],"name":"UserIdAlreadyInUse","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"userAddressInBytes","type":"bytes32"},{"indexed":true,"internalType":"address","name":"currentRecepientWallet","type":"address"},{"indexed":true,"internalType":"address","name":"newRecepientWallet","type":"address"}],"name":"RecepientAddressUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recepientAddress","type":"address"},{"indexed":false,"internalType":"bytes32","name":"user","type":"bytes32"}],"name":"ScheduleSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"signerAddress_","type":"address"}],"name":"SignerAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newToken","type":"address"}],"name":"TokenAddressUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensReleased","type":"event"},{"inputs":[{"components":[{"internalType":"bytes32","name":"user","type":"bytes32"},{"components":[{"internalType":"uint256","name":"allocation","type":"uint256"},{"internalType":"uint256","name":"claimed","type":"uint256"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"uint64","name":"endTimestamp","type":"uint64"},{"internalType":"uint8","name":"initUnlockPercentage","type":"uint8"}],"internalType":"struct TokenVestingLinear.Schedule","name":"schedule","type":"tuple"}],"internalType":"struct TokenVestingLinear.UserSchedule","name":"userSchedule","type":"tuple"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"},{"internalType":"address","name":"recepientAddress","type":"address"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"activateVesting","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"userAddressInBytes","type":"bytes32"},{"internalType":"address","name":"currentRecepientWallet","type":"address"},{"internalType":"address","name":"newRecepientWallet","type":"address"}],"name":"adminUpdateRecepientWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"b","type":"bytes32"}],"name":"bytes32ToAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimableAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"userAddressInBytes","type":"bytes32"}],"name":"claimableAmountById","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"primaryWalletBytesToAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"releaseTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"root","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"schedules","outputs":[{"internalType":"uint256","name":"allocation","type":"uint256"},{"internalType":"uint256","name":"claimed","type":"uint256"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"uint64","name":"endTimestamp","type":"uint64"},{"internalType":"uint8","name":"initUnlockPercentage","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"signerAddress_","type":"address"}],"name":"setSignerAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signerAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"userAddressInBytes","type":"bytes32"},{"internalType":"address","name":"newRecepientWallet","type":"address"}],"name":"updateRecepientWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"newToken","type":"address"}],"name":"updateTokenAddress","outputs":[],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
60a060405234801561001057600080fd5b506040516116be3803806116be83398101604081905261002f916100dc565b6100383361008c565b600180556001600160a01b038216610063576040516308b825f360e41b815260040160405180910390fd5b600380546001600160a01b0319166001600160a01b039390931692909217909155608052610116565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080604083850312156100ef57600080fd5b82516001600160a01b038116811461010657600080fd5b6020939093015192949293505050565b6080516115866101386000396000818161029e015261088f01526115866000f3fe608060405234801561001057600080fd5b506004361061010b5760003560e01c806387b0be48116100a2578063b8129df311610071578063b8129df314610286578063ebf0c71714610299578063f2fde38b146102c0578063fc0c546a146102d3578063fea6bfc6146102e657600080fd5b806387b0be481461022e57806389885049146102415780638da5cb5b14610262578063acedaa1e1461027357600080fd5b80635ced058e116100de5780635ced058e1461017b5780636691461a1461018c578063715018a61461019f57806380c3780f146101a757600080fd5b8063046dc166146101105780630ae6c63a146101255780634c33531d146101385780635b7633d01461014b575b600080fd5b61012361011e3660046111b6565b61030f565b005b610123610133366004611214565b610393565b6101236101463660046112dd565b6103f5565b60035461015e906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b61015e61018936600461131f565b90565b61012361019a3660046111b6565b61040d565b6101236104b3565b6101f76101b53660046111b6565b6004602052600090815260409020805460018201546002909201549091906001600160401b0380821691600160401b810490911690600160801b900460ff1685565b6040805195865260208601949094526001600160401b039283169385019390935216606083015260ff16608082015260a001610172565b61012361023c3660046111b6565b6104c7565b61025461024f3660046111b6565b610628565b604051908152602001610172565b6000546001600160a01b031661015e565b610123610281366004611338565b61064f565b61025461029436600461131f565b61065e565b6102547f000000000000000000000000000000000000000000000000000000000000000081565b6101236102ce3660046111b6565b6106ac565b60025461015e906001600160a01b031681565b61015e6102f436600461131f565b6005602052600090815260409020546001600160a01b031681565b610317610722565b6001600160a01b03811661033e576040516308b825f360e41b815260040160405180910390fd5b600380546001600160a01b0319166001600160a01b0383169081179091556040519081527fa422625cee042645335400b23ac6e8bd86bd1a1e6cbf2ed8ab93c238f78606b5906020015b60405180910390a150565b61039b61077c565b60006103a88787876107d5565b9050806103c85760405163014793c560e21b815260040160405180910390fd5b60006103d6888686866108c3565b90506103e2888261099e565b50506103ed60018055565b505050505050565b6103fd610722565b610408838383610a9b565b505050565b610415610722565b6002546001600160a01b03161561043e5760405162c933ef60e81b815260040160405180910390fd5b6001600160a01b0381166104655760405163284e7cab60e21b815260040160405180910390fd5b600280546001600160a01b0319166001600160a01b0383169081179091556040519081527f2f0c7f17be551d1f4566672cd67adbe50173e96632f56ff80d80acc4ac00f32890602001610388565b6104bb610722565b6104c56000610c3f565b565b6104cf61077c565b6001600160a01b038116600090815260046020526040812080549091036105185760405162746ce760e21b81526001600160a01b03831660048201526024015b60405180910390fd5b600061052382610c8f565b905080826001016000828254610539919061137e565b909155505060025460405163a9059cbb60e01b81526001600160a01b03858116600483015260248201849052600092169063a9059cbb906044016020604051808303816000875af1158015610592573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105b69190611391565b9050806105d6576040516312171d8360e31b815260040160405180910390fd5b836001600160a01b03167fc7798891864187665ac6dd119286e44ec13f014527aeeb2b8eb3fd413df931798360405161061191815260200190565b60405180910390a250505061062560018055565b50565b6001600160a01b038116600090815260046020526040812061064990610c8f565b92915050565b61065a823383610a9b565b5050565b6000818152600560205260408120546001600160a01b0316806106845750600092915050565b6001600160a01b03811660009081526004602052604090206106a590610c8f565b9392505050565b6106b4610722565b6001600160a01b0381166107195760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161050f565b61062581610c3f565b6000546001600160a01b031633146104c55760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640161050f565b6002600154036107ce5760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161050f565b6002600155565b600080843560208601356107ef60808801606089016113c8565b6107ff60a0890160808a016113c8565b61080f60c08a0160a08b016113f4565b6040805160208101969096528501939093526001600160401b03918216606085015216608083015260ff1660a082015260c0016040516020818303038152906040528051906020012090506108ba8484808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152507f00000000000000000000000000000000000000000000000000000000000000009250859150610ca99050565b95945050505050565b6000336001600160a01b038635161480156108e557506001600160a01b038416155b80156108fa57506001600160a01b0319853516155b15610906575033610996565b84356001600160a01b0316846001600160a01b031614801561093157506001600160a01b0319853516155b1561093d575082610996565b6001600160a01b038416610964576040516307c0a94360e01b815260040160405180910390fd5b6109718535858585610cbf565b1561097d575082610996565b60405163d9cd95f560e01b815260040160405180910390fd5b949350505050565b6001600160a01b038116600090815260046020526040902054156109d5576040516361a21cbf60e11b815260040160405180910390fd5b81356000908152600560205260409020546001600160a01b031615610a10576040516383b8935d60e01b81528235600482015260240161050f565b8135600090815260056020908152604080832080546001600160a01b0319166001600160a01b03861690811790915583526004825290912090830190610a568282611411565b5050604051823581526001600160a01b038216907ffecb53e9977628b47f887adfbb8007a29451656425cd37dc4b689906150639af9060200160405180910390a25050565b6000838152600560205260409020546001600160a01b03838116911614610ad4576040516282b42960e81b815260040160405180910390fd5b6001600160a01b038116610afb576040516307c0a94360e01b815260040160405180910390fd5b6001600160a01b03811660009081526004602052604090205415610b32576040516361a21cbf60e11b815260040160405180910390fd5b600083815260056020908152604080832080546001600160a01b0319166001600160a01b038681169182179092559086168085526004909352818420818552828520815481556001828101805491830191909155600280840180549190930180546001600160401b0392831667ffffffffffffffff1982168117835585546fffffffffffffffffffffffffffffffff1990921617600160401b918290049093160291909117808255835460ff60801b19909116600160801b9182900460ff16909102179055858752918690559085905580546001600160881b03191690559051909286917f4d26cb0c6365e480fc9b1f55f396d04c555ec78a77fcd2adaa9bd029ab64f4529190a4505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008160010154610c9f83610daf565b6106499190611498565b600082610cb68584610ea9565b14949350505050565b6000808585604051602001610ce79291909182526001600160a01b0316602082015260400190565b6040516020818303038152906040528051906020012090506000610d38827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b90506000610d7c8287878080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610ef692505050565b90506001600160a01b03811615801590610da357506003546001600160a01b038281169116145b98975050505050505050565b60028101546000906001600160401b0316421015610dcf57506000919050565b6002820154600160401b90046001600160401b0316421115610df057505490565b60028201548254600091606491610e1191600160801b900460ff16906114ab565b610e1b91906114c2565b90506000818460000154610e2f9190611498565b6002850154909150600090610e4d906001600160401b031642611498565b6002860154909150600090610e75906001600160401b0380821691600160401b9004166114e4565b6001600160401b0316905080610e8b83856114ab565b610e9591906114c2565b610e9f908561137e565b9695505050505050565b600081815b8451811015610eee57610eda82868381518110610ecd57610ecd61150b565b6020026020010151610f12565b915080610ee681611521565b915050610eae565b509392505050565b6000806000610f058585610f3e565b91509150610eee81610f83565b6000818310610f2e5760008281526020849052604090206106a5565b5060009182526020526040902090565b6000808251604103610f745760208301516040840151606085015160001a610f68878285856110cd565b94509450505050610f7c565b506000905060025b9250929050565b6000816004811115610f9757610f9761153a565b03610f9f5750565b6001816004811115610fb357610fb361153a565b036110005760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e61747572650000000000000000604482015260640161050f565b60028160048111156110145761101461153a565b036110615760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161050f565b60038160048111156110755761107561153a565b036106255760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161050f565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156111045750600090506003611188565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015611158573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b03811661118157600060019250925050611188565b9150600090505b94509492505050565b6001600160a01b038116811461062557600080fd5b80356111b181611191565b919050565b6000602082840312156111c857600080fd5b81356106a581611191565b60008083601f8401126111e557600080fd5b5081356001600160401b038111156111fc57600080fd5b602083019150836020828501011115610f7c57600080fd5b60008060008060008086880361012081121561122f57600080fd5b60c081121561123d57600080fd5b5086955060c08701356001600160401b038082111561125b57600080fd5b818901915089601f83011261126f57600080fd5b81358181111561127e57600080fd5b8a60208260051b850101111561129357600080fd5b60208301975095506112a760e08a016111a6565b94506101008901359150808211156112be57600080fd5b506112cb89828a016111d3565b979a9699509497509295939492505050565b6000806000606084860312156112f257600080fd5b83359250602084013561130481611191565b9150604084013561131481611191565b809150509250925092565b60006020828403121561133157600080fd5b5035919050565b6000806040838503121561134b57600080fd5b82359150602083013561135d81611191565b809150509250929050565b634e487b7160e01b600052601160045260246000fd5b8082018082111561064957610649611368565b6000602082840312156113a357600080fd5b815180151581146106a557600080fd5b6001600160401b038116811461062557600080fd5b6000602082840312156113da57600080fd5b81356106a5816113b3565b60ff8116811461062557600080fd5b60006020828403121561140657600080fd5b81356106a5816113e5565b8135815560208201356001820155600281016040830135611431816113b3565b81546060850135611441816113b3565b608086013561144f816113e5565b60409190911b6fffffffffffffffff0000000000000000166001600160881b0319929092166001600160401b0393909316929092171760809190911b60ff60801b161790555050565b8181038181111561064957610649611368565b808202811582820484141761064957610649611368565b6000826114df57634e487b7160e01b600052601260045260246000fd5b500490565b6001600160401b0382811682821603908082111561150457611504611368565b5092915050565b634e487b7160e01b600052603260045260246000fd5b60006001820161153357611533611368565b5060010190565b634e487b7160e01b600052602160045260246000fdfea26469706673582212204e28ae93392197b7472cee07176e8bc79069734bdc4cd1ff3adf076da9b37fed64736f6c63430008140033000000000000000000000000e80dab5272ee4575c2fcaf383cdd13ec910a01922f2f5cd0a5aa6f0683e58b0a54a62ef40bb8830bea3223b74e9d857a97f40025
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061010b5760003560e01c806387b0be48116100a2578063b8129df311610071578063b8129df314610286578063ebf0c71714610299578063f2fde38b146102c0578063fc0c546a146102d3578063fea6bfc6146102e657600080fd5b806387b0be481461022e57806389885049146102415780638da5cb5b14610262578063acedaa1e1461027357600080fd5b80635ced058e116100de5780635ced058e1461017b5780636691461a1461018c578063715018a61461019f57806380c3780f146101a757600080fd5b8063046dc166146101105780630ae6c63a146101255780634c33531d146101385780635b7633d01461014b575b600080fd5b61012361011e3660046111b6565b61030f565b005b610123610133366004611214565b610393565b6101236101463660046112dd565b6103f5565b60035461015e906001600160a01b031681565b6040516001600160a01b0390911681526020015b60405180910390f35b61015e61018936600461131f565b90565b61012361019a3660046111b6565b61040d565b6101236104b3565b6101f76101b53660046111b6565b6004602052600090815260409020805460018201546002909201549091906001600160401b0380821691600160401b810490911690600160801b900460ff1685565b6040805195865260208601949094526001600160401b039283169385019390935216606083015260ff16608082015260a001610172565b61012361023c3660046111b6565b6104c7565b61025461024f3660046111b6565b610628565b604051908152602001610172565b6000546001600160a01b031661015e565b610123610281366004611338565b61064f565b61025461029436600461131f565b61065e565b6102547f2f2f5cd0a5aa6f0683e58b0a54a62ef40bb8830bea3223b74e9d857a97f4002581565b6101236102ce3660046111b6565b6106ac565b60025461015e906001600160a01b031681565b61015e6102f436600461131f565b6005602052600090815260409020546001600160a01b031681565b610317610722565b6001600160a01b03811661033e576040516308b825f360e41b815260040160405180910390fd5b600380546001600160a01b0319166001600160a01b0383169081179091556040519081527fa422625cee042645335400b23ac6e8bd86bd1a1e6cbf2ed8ab93c238f78606b5906020015b60405180910390a150565b61039b61077c565b60006103a88787876107d5565b9050806103c85760405163014793c560e21b815260040160405180910390fd5b60006103d6888686866108c3565b90506103e2888261099e565b50506103ed60018055565b505050505050565b6103fd610722565b610408838383610a9b565b505050565b610415610722565b6002546001600160a01b03161561043e5760405162c933ef60e81b815260040160405180910390fd5b6001600160a01b0381166104655760405163284e7cab60e21b815260040160405180910390fd5b600280546001600160a01b0319166001600160a01b0383169081179091556040519081527f2f0c7f17be551d1f4566672cd67adbe50173e96632f56ff80d80acc4ac00f32890602001610388565b6104bb610722565b6104c56000610c3f565b565b6104cf61077c565b6001600160a01b038116600090815260046020526040812080549091036105185760405162746ce760e21b81526001600160a01b03831660048201526024015b60405180910390fd5b600061052382610c8f565b905080826001016000828254610539919061137e565b909155505060025460405163a9059cbb60e01b81526001600160a01b03858116600483015260248201849052600092169063a9059cbb906044016020604051808303816000875af1158015610592573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906105b69190611391565b9050806105d6576040516312171d8360e31b815260040160405180910390fd5b836001600160a01b03167fc7798891864187665ac6dd119286e44ec13f014527aeeb2b8eb3fd413df931798360405161061191815260200190565b60405180910390a250505061062560018055565b50565b6001600160a01b038116600090815260046020526040812061064990610c8f565b92915050565b61065a823383610a9b565b5050565b6000818152600560205260408120546001600160a01b0316806106845750600092915050565b6001600160a01b03811660009081526004602052604090206106a590610c8f565b9392505050565b6106b4610722565b6001600160a01b0381166107195760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161050f565b61062581610c3f565b6000546001600160a01b031633146104c55760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640161050f565b6002600154036107ce5760405162461bcd60e51b815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c00604482015260640161050f565b6002600155565b600080843560208601356107ef60808801606089016113c8565b6107ff60a0890160808a016113c8565b61080f60c08a0160a08b016113f4565b6040805160208101969096528501939093526001600160401b03918216606085015216608083015260ff1660a082015260c0016040516020818303038152906040528051906020012090506108ba8484808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152507f2f2f5cd0a5aa6f0683e58b0a54a62ef40bb8830bea3223b74e9d857a97f400259250859150610ca99050565b95945050505050565b6000336001600160a01b038635161480156108e557506001600160a01b038416155b80156108fa57506001600160a01b0319853516155b15610906575033610996565b84356001600160a01b0316846001600160a01b031614801561093157506001600160a01b0319853516155b1561093d575082610996565b6001600160a01b038416610964576040516307c0a94360e01b815260040160405180910390fd5b6109718535858585610cbf565b1561097d575082610996565b60405163d9cd95f560e01b815260040160405180910390fd5b949350505050565b6001600160a01b038116600090815260046020526040902054156109d5576040516361a21cbf60e11b815260040160405180910390fd5b81356000908152600560205260409020546001600160a01b031615610a10576040516383b8935d60e01b81528235600482015260240161050f565b8135600090815260056020908152604080832080546001600160a01b0319166001600160a01b03861690811790915583526004825290912090830190610a568282611411565b5050604051823581526001600160a01b038216907ffecb53e9977628b47f887adfbb8007a29451656425cd37dc4b689906150639af9060200160405180910390a25050565b6000838152600560205260409020546001600160a01b03838116911614610ad4576040516282b42960e81b815260040160405180910390fd5b6001600160a01b038116610afb576040516307c0a94360e01b815260040160405180910390fd5b6001600160a01b03811660009081526004602052604090205415610b32576040516361a21cbf60e11b815260040160405180910390fd5b600083815260056020908152604080832080546001600160a01b0319166001600160a01b038681169182179092559086168085526004909352818420818552828520815481556001828101805491830191909155600280840180549190930180546001600160401b0392831667ffffffffffffffff1982168117835585546fffffffffffffffffffffffffffffffff1990921617600160401b918290049093160291909117808255835460ff60801b19909116600160801b9182900460ff16909102179055858752918690559085905580546001600160881b03191690559051909286917f4d26cb0c6365e480fc9b1f55f396d04c555ec78a77fcd2adaa9bd029ab64f4529190a4505050565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60008160010154610c9f83610daf565b6106499190611498565b600082610cb68584610ea9565b14949350505050565b6000808585604051602001610ce79291909182526001600160a01b0316602082015260400190565b6040516020818303038152906040528051906020012090506000610d38827f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b90506000610d7c8287878080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610ef692505050565b90506001600160a01b03811615801590610da357506003546001600160a01b038281169116145b98975050505050505050565b60028101546000906001600160401b0316421015610dcf57506000919050565b6002820154600160401b90046001600160401b0316421115610df057505490565b60028201548254600091606491610e1191600160801b900460ff16906114ab565b610e1b91906114c2565b90506000818460000154610e2f9190611498565b6002850154909150600090610e4d906001600160401b031642611498565b6002860154909150600090610e75906001600160401b0380821691600160401b9004166114e4565b6001600160401b0316905080610e8b83856114ab565b610e9591906114c2565b610e9f908561137e565b9695505050505050565b600081815b8451811015610eee57610eda82868381518110610ecd57610ecd61150b565b6020026020010151610f12565b915080610ee681611521565b915050610eae565b509392505050565b6000806000610f058585610f3e565b91509150610eee81610f83565b6000818310610f2e5760008281526020849052604090206106a5565b5060009182526020526040902090565b6000808251604103610f745760208301516040840151606085015160001a610f68878285856110cd565b94509450505050610f7c565b506000905060025b9250929050565b6000816004811115610f9757610f9761153a565b03610f9f5750565b6001816004811115610fb357610fb361153a565b036110005760405162461bcd60e51b815260206004820152601860248201527f45434453413a20696e76616c6964207369676e61747572650000000000000000604482015260640161050f565b60028160048111156110145761101461153a565b036110615760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161050f565b60038160048111156110755761107561153a565b036106255760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161050f565b6000807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08311156111045750600090506003611188565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015611158573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b03811661118157600060019250925050611188565b9150600090505b94509492505050565b6001600160a01b038116811461062557600080fd5b80356111b181611191565b919050565b6000602082840312156111c857600080fd5b81356106a581611191565b60008083601f8401126111e557600080fd5b5081356001600160401b038111156111fc57600080fd5b602083019150836020828501011115610f7c57600080fd5b60008060008060008086880361012081121561122f57600080fd5b60c081121561123d57600080fd5b5086955060c08701356001600160401b038082111561125b57600080fd5b818901915089601f83011261126f57600080fd5b81358181111561127e57600080fd5b8a60208260051b850101111561129357600080fd5b60208301975095506112a760e08a016111a6565b94506101008901359150808211156112be57600080fd5b506112cb89828a016111d3565b979a9699509497509295939492505050565b6000806000606084860312156112f257600080fd5b83359250602084013561130481611191565b9150604084013561131481611191565b809150509250925092565b60006020828403121561133157600080fd5b5035919050565b6000806040838503121561134b57600080fd5b82359150602083013561135d81611191565b809150509250929050565b634e487b7160e01b600052601160045260246000fd5b8082018082111561064957610649611368565b6000602082840312156113a357600080fd5b815180151581146106a557600080fd5b6001600160401b038116811461062557600080fd5b6000602082840312156113da57600080fd5b81356106a5816113b3565b60ff8116811461062557600080fd5b60006020828403121561140657600080fd5b81356106a5816113e5565b8135815560208201356001820155600281016040830135611431816113b3565b81546060850135611441816113b3565b608086013561144f816113e5565b60409190911b6fffffffffffffffff0000000000000000166001600160881b0319929092166001600160401b0393909316929092171760809190911b60ff60801b161790555050565b8181038181111561064957610649611368565b808202811582820484141761064957610649611368565b6000826114df57634e487b7160e01b600052601260045260246000fd5b500490565b6001600160401b0382811682821603908082111561150457611504611368565b5092915050565b634e487b7160e01b600052603260045260246000fd5b60006001820161153357611533611368565b5060010190565b634e487b7160e01b600052602160045260246000fdfea26469706673582212204e28ae93392197b7472cee07176e8bc79069734bdc4cd1ff3adf076da9b37fed64736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000e80dab5272ee4575c2fcaf383cdd13ec910a01922f2f5cd0a5aa6f0683e58b0a54a62ef40bb8830bea3223b74e9d857a97f40025
-----Decoded View---------------
Arg [0] : signerAddress_ (address): 0xE80DAb5272EE4575c2FCaf383cdd13eC910a0192
Arg [1] : root_ (bytes32): 0x2f2f5cd0a5aa6f0683e58b0a54a62ef40bb8830bea3223b74e9d857a97f40025
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 000000000000000000000000e80dab5272ee4575c2fcaf383cdd13ec910a0192
Arg [1] : 2f2f5cd0a5aa6f0683e58b0a54a62ef40bb8830bea3223b74e9d857a97f40025
Loading...
Loading
Loading...
Loading
Net Worth in USD
$749,797.07
Net Worth in ETH
226.596161
Token Allocations
PORTAL
100.00%
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|---|---|---|---|---|
| ETH | 100.00% | $0.02183 | 34,347,585.9676 | $749,797.07 |
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.