Source Code
Overview
ETH Balance
0 ETH
Eth Value
$0.00Latest 25 from a total of 124 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Create | 23650460 | 75 days ago | IN | 0 ETH | 0.00042941 | ||||
| Create | 23374727 | 114 days ago | IN | 0 ETH | 0.00372618 | ||||
| Create | 21379253 | 393 days ago | IN | 0 ETH | 0.09548505 | ||||
| Create | 21360997 | 395 days ago | IN | 0 ETH | 0.07920017 | ||||
| Create | 21270799 | 408 days ago | IN | 0 ETH | 0.06597115 | ||||
| Create | 21218467 | 415 days ago | IN | 0 ETH | 0.05857454 | ||||
| Create | 21118424 | 429 days ago | IN | 0 ETH | 0.02751604 | ||||
| Create | 20989890 | 447 days ago | IN | 0 ETH | 0.08510851 | ||||
| Create | 20969192 | 450 days ago | IN | 0 ETH | 0.05703922 | ||||
| Create | 20906332 | 459 days ago | IN | 0 ETH | 0.05502905 | ||||
| Create | 20839385 | 468 days ago | IN | 0 ETH | 0.07313698 | ||||
| Create | 20839331 | 468 days ago | IN | 0 ETH | 0.0853219 | ||||
| Create | 20781990 | 476 days ago | IN | 0 ETH | 0.06311445 | ||||
| Create | 20773619 | 477 days ago | IN | 0 ETH | 0.02609943 | ||||
| Create | 20773602 | 477 days ago | IN | 0 ETH | 0.0289194 | ||||
| Create | 20741018 | 482 days ago | IN | 0 ETH | 0.01175973 | ||||
| Create | 20672614 | 492 days ago | IN | 0 ETH | 0.01711242 | ||||
| Create | 20660388 | 493 days ago | IN | 0 ETH | 0.00564205 | ||||
| Create | 20576658 | 505 days ago | IN | 0 ETH | 0.00465756 | ||||
| Create | 20576221 | 505 days ago | IN | 0 ETH | 0.00489656 | ||||
| Create | 20563417 | 507 days ago | IN | 0 ETH | 0.01634082 | ||||
| Create | 20540527 | 510 days ago | IN | 0 ETH | 0.01072037 | ||||
| Create | 20522401 | 513 days ago | IN | 0 ETH | 0.01511141 | ||||
| Create | 20520848 | 513 days ago | IN | 0 ETH | 0.03604564 | ||||
| Create | 20515577 | 513 days ago | IN | 0 ETH | 0.01185928 |
Latest 25 internal transactions (View All)
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x61066060 | 23650460 | 75 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 23374727 | 114 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 21379253 | 393 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 21360997 | 395 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 21270799 | 408 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 21218467 | 415 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 21118424 | 429 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20989890 | 447 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20969192 | 450 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20906332 | 459 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20839385 | 468 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20839331 | 468 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20781990 | 476 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20773619 | 477 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20773602 | 477 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20741018 | 482 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20672614 | 492 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20660388 | 493 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20576658 | 505 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20576221 | 505 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20563417 | 507 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20540527 | 510 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20522401 | 513 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20520848 | 513 days ago | Contract Creation | 0 ETH | |||
| 0x61066060 | 20515577 | 513 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
WeightedPoolFactory
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 800 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/BasePoolFactory.sol";
import "@balancer-labs/v2-pool-utils/contracts/factories/FactoryWidePauseWindow.sol";
import "./WeightedPool.sol";
contract WeightedPoolFactory is BasePoolFactory, FactoryWidePauseWindow {
string private _factoryVersion;
string private _poolVersion;
constructor(
IVault vault,
IProtocolFeePercentagesProvider protocolFeeProvider,
string memory factoryVersion,
string memory poolVersion
) BasePoolFactory(vault, protocolFeeProvider, type(WeightedPool).creationCode) {
_factoryVersion = factoryVersion;
_poolVersion = poolVersion;
}
/**
* @notice Returns a JSON representation of the contract version containing name, version number and task ID.
*/
function version() external view returns (string memory) {
return _factoryVersion;
}
/**
* @notice Returns a JSON representation of the deployed pool version containing name, version number and task ID.
*
* @dev This is typically only useful in complex Pool deployment schemes, where multiple subsystems need to know
* about each other. Note that this value will only be updated at factory creation time.
*/
function getPoolVersion() public view returns (string memory) {
return _poolVersion;
}
/**
* @dev Deploys a new `WeightedPool`.
*/
function create(
string memory name,
string memory symbol,
IERC20[] memory tokens,
uint256[] memory normalizedWeights,
IRateProvider[] memory rateProviders,
uint256 swapFeePercentage,
address owner,
bytes32 salt
) external returns (address) {
(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) = getPauseConfiguration();
return
_create(
abi.encode(
WeightedPool.NewPoolParams({
name: name,
symbol: symbol,
tokens: tokens,
normalizedWeights: normalizedWeights,
rateProviders: rateProviders,
assetManagers: new address[](tokens.length), // Don't allow asset managers,
swapFeePercentage: swapFeePercentage
}),
getVault(),
getProtocolFeePercentagesProvider(),
pauseWindowDuration,
bufferPeriodDuration,
owner,
getPoolVersion()
),
salt
);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
import "../solidity-utils/helpers/IAuthentication.sol";
import "../solidity-utils/helpers/ISignaturesValidator.sol";
import "../solidity-utils/helpers/ITemporarilyPausable.sol";
import "../solidity-utils/misc/IWETH.sol";
import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";
pragma solidity ^0.7.0;
/**
* @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
* don't override one of these declarations.
*/
interface IVault is ISignaturesValidator, ITemporarilyPausable, IAuthentication {
// Generalities about the Vault:
//
// - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
// transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
// `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
// calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
// a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
//
// - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
// while execution control is transferred to a token contract during a swap) will result in a revert. View
// functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
// Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
//
// - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.
// Authorizer
//
// Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
// outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
// can perform a given action.
/**
* @dev Returns the Vault's Authorizer.
*/
function getAuthorizer() external view returns (IAuthorizer);
/**
* @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
*
* Emits an `AuthorizerChanged` event.
*/
function setAuthorizer(IAuthorizer newAuthorizer) external;
/**
* @dev Emitted when a new authorizer is set by `setAuthorizer`.
*/
event AuthorizerChanged(IAuthorizer indexed newAuthorizer);
// Relayers
//
// Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
// Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
// and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
// this power, two things must occur:
// - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
// means that Balancer governance must approve each individual contract to act as a relayer for the intended
// functions.
// - Each user must approve the relayer to act on their behalf.
// This double protection means users cannot be tricked into approving malicious relayers (because they will not
// have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
// Authorizer or governance drain user funds, since they would also need to be approved by each individual user.
/**
* @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
*/
function hasApprovedRelayer(address user, address relayer) external view returns (bool);
/**
* @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
*
* Emits a `RelayerApprovalChanged` event.
*/
function setRelayerApproval(
address sender,
address relayer,
bool approved
) external;
/**
* @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
*/
event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);
// Internal Balance
//
// Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
// transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
// when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
// gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
//
// Internal Balance management features batching, which means a single contract call can be used to perform multiple
// operations of different kinds, with different senders and recipients, at once.
/**
* @dev Returns `user`'s Internal Balance for a set of tokens.
*/
function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);
/**
* @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
* and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
* it lets integrators reuse a user's Vault allowance.
*
* For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
*/
function manageUserBalance(UserBalanceOp[] memory ops) external payable;
/**
* @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
without manual WETH wrapping or unwrapping.
*/
struct UserBalanceOp {
UserBalanceOpKind kind;
IAsset asset;
uint256 amount;
address sender;
address payable recipient;
}
// There are four possible operations in `manageUserBalance`:
//
// - DEPOSIT_INTERNAL
// Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
// `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
//
// ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
// and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
// relevant for relayers).
//
// Emits an `InternalBalanceChanged` event.
//
//
// - WITHDRAW_INTERNAL
// Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
//
// ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
// it to the recipient as ETH.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_INTERNAL
// Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `InternalBalanceChanged` event.
//
//
// - TRANSFER_EXTERNAL
// Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
// relayers, as it lets them reuse a user's Vault allowance.
//
// Reverts if the ETH sentinel value is passed.
//
// Emits an `ExternalBalanceTransfer` event.
enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }
/**
* @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
* interacting with Pools using Internal Balance.
*
* Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
* address.
*/
event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);
/**
* @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
*/
event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);
// Pools
//
// There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
// functionality:
//
// - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
// balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
// which increase with the number of registered tokens.
//
// - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
// balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
// constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
// independent of the number of registered tokens.
//
// - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
// minimal swap info Pools, these are called via IMinimalSwapInfoPool.
enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }
/**
* @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
* is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
* changed.
*
* The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
* depending on the chosen specialization setting. This contract is known as the Pool's contract.
*
* Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
* multiple Pools may share the same contract.
*
* Emits a `PoolRegistered` event.
*/
function registerPool(PoolSpecialization specialization) external returns (bytes32);
/**
* @dev Emitted when a Pool is registered by calling `registerPool`.
*/
event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);
/**
* @dev Returns a Pool's contract address and specialization setting.
*/
function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);
/**
* @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
*
* Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
* exit by receiving registered tokens, and can only swap registered tokens.
*
* Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
* of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
* ascending order.
*
* The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
* Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
* depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
* expected to be highly secured smart contracts with sound design principles, and the decision to register an
* Asset Manager should not be made lightly.
*
* Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
* Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
* different Asset Manager.
*
* Emits a `TokensRegistered` event.
*/
function registerTokens(
bytes32 poolId,
IERC20[] memory tokens,
address[] memory assetManagers
) external;
/**
* @dev Emitted when a Pool registers tokens by calling `registerTokens`.
*/
event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);
/**
* @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
*
* Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
* balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
* must be deregistered in the same `deregisterTokens` call.
*
* A deregistered token can be re-registered later on, possibly with a different Asset Manager.
*
* Emits a `TokensDeregistered` event.
*/
function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;
/**
* @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
*/
event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);
/**
* @dev Returns detailed information for a Pool's registered token.
*
* `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
* withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
* equals the sum of `cash` and `managed`.
*
* Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
* `managed` or `total` balance to be greater than 2^112 - 1.
*
* `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
* join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
* example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
* change for this purpose, and will update `lastChangeBlock`.
*
* `assetManager` is the Pool's token Asset Manager.
*/
function getPoolTokenInfo(bytes32 poolId, IERC20 token)
external
view
returns (
uint256 cash,
uint256 managed,
uint256 lastChangeBlock,
address assetManager
);
/**
* @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
* the tokens' `balances` changed.
*
* The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
* Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
*
* If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
* order as passed to `registerTokens`.
*
* Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
* the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
* instead.
*/
function getPoolTokens(bytes32 poolId)
external
view
returns (
IERC20[] memory tokens,
uint256[] memory balances,
uint256 lastChangeBlock
);
/**
* @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
* trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
* Pool shares.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
* to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
* these maximums.
*
* If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
* this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
* WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
* back to the caller (not the sender, which is important for relayers).
*
* `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
* interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
* sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
* `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
*
* If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
* be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
* withdrawn from Internal Balance: attempting to do so will trigger a revert.
*
* This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
* their own custom logic. This typically requires additional information from the user (such as the expected number
* of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
* directly to the Pool's contract, as is `recipient`.
*
* Emits a `PoolBalanceChanged` event.
*/
function joinPool(
bytes32 poolId,
address sender,
address recipient,
JoinPoolRequest memory request
) external payable;
struct JoinPoolRequest {
IAsset[] assets;
uint256[] maxAmountsIn;
bytes userData;
bool fromInternalBalance;
}
/**
* @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
* trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
* Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
* `getPoolTokenInfo`).
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
* token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
* it just enforces these minimums.
*
* If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
* enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
* of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
*
* `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
* interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
* be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
* final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
*
* If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
* an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
* do so will trigger a revert.
*
* `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
* `tokens` array. This array must match the Pool's registered tokens.
*
* This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
* their own custom logic. This typically requires additional information from the user (such as the expected number
* of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
* passed directly to the Pool's contract.
*
* Emits a `PoolBalanceChanged` event.
*/
function exitPool(
bytes32 poolId,
address sender,
address payable recipient,
ExitPoolRequest memory request
) external;
struct ExitPoolRequest {
IAsset[] assets;
uint256[] minAmountsOut;
bytes userData;
bool toInternalBalance;
}
/**
* @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
*/
event PoolBalanceChanged(
bytes32 indexed poolId,
address indexed liquidityProvider,
IERC20[] tokens,
int256[] deltas,
uint256[] protocolFeeAmounts
);
enum PoolBalanceChangeKind { JOIN, EXIT }
// Swaps
//
// Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
// they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
// aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
//
// The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
// In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
// and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
// More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
// individual swaps.
//
// There are two swap kinds:
// - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
// `onSwap` hook) the amount of tokens out (to send to the recipient).
// - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
// (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
//
// Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
// the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
// tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
// swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
// the final intended token.
//
// In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
// Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
// certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
// much less gas than they would otherwise.
//
// It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
// Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
// updating the Pool's internal accounting).
//
// To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
// involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
// minimum amount of tokens to receive (by passing a negative value) is specified.
//
// Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
// this point in time (e.g. if the transaction failed to be included in a block promptly).
//
// If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
// the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
// passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
// same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
//
// Finally, Internal Balance can be used when either sending or receiving tokens.
enum SwapKind { GIVEN_IN, GIVEN_OUT }
/**
* @dev Performs a swap with a single Pool.
*
* If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
* taken from the Pool, which must be greater than or equal to `limit`.
*
* If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
* sent to the Pool, which must be less than or equal to `limit`.
*
* Internal Balance usage and the recipient are determined by the `funds` struct.
*
* Emits a `Swap` event.
*/
function swap(
SingleSwap memory singleSwap,
FundManagement memory funds,
uint256 limit,
uint256 deadline
) external payable returns (uint256);
/**
* @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
* the `kind` value.
*
* `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
* Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct SingleSwap {
bytes32 poolId;
SwapKind kind;
IAsset assetIn;
IAsset assetOut;
uint256 amount;
bytes userData;
}
/**
* @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
* the amount of tokens sent to or received from the Pool, depending on the `kind` value.
*
* Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
* Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
* the same index in the `assets` array.
*
* Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
* Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
* `amountOut` depending on the swap kind.
*
* Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
* of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
* the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
*
* The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
* or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
* out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
* or unwrapped from WETH by the Vault.
*
* Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
* the minimum or maximum amount of each token the vault is allowed to transfer.
*
* `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
* equivalent `swap` call.
*
* Emits `Swap` events.
*/
function batchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IAsset[] memory assets,
FundManagement memory funds,
int256[] memory limits,
uint256 deadline
) external payable returns (int256[] memory);
/**
* @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
* `assets` array passed to that function, and ETH assets are converted to WETH.
*
* If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
* from the previous swap, depending on the swap kind.
*
* The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
* used to extend swap behavior.
*/
struct BatchSwapStep {
bytes32 poolId;
uint256 assetInIndex;
uint256 assetOutIndex;
uint256 amount;
bytes userData;
}
/**
* @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
*/
event Swap(
bytes32 indexed poolId,
IERC20 indexed tokenIn,
IERC20 indexed tokenOut,
uint256 amountIn,
uint256 amountOut
);
/**
* @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
* `recipient` account.
*
* If the caller is not `sender`, it must be an authorized relayer for them.
*
* If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
* transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
* must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
* `joinPool`.
*
* If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
* transferred. This matches the behavior of `exitPool`.
*
* Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
* revert.
*/
struct FundManagement {
address sender;
bool fromInternalBalance;
address payable recipient;
bool toInternalBalance;
}
/**
* @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
* simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
*
* Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
* the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
* receives are the same that an equivalent `batchSwap` call would receive.
*
* Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
* This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
* approve them for the Vault, or even know a user's address.
*
* Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
* eth_call instead of eth_sendTransaction.
*/
function queryBatchSwap(
SwapKind kind,
BatchSwapStep[] memory swaps,
IAsset[] memory assets,
FundManagement memory funds
) external returns (int256[] memory assetDeltas);
// Flash Loans
/**
* @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
* and then reverting unless the tokens plus a proportional protocol fee have been returned.
*
* The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
* for each token contract. `tokens` must be sorted in ascending order.
*
* The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
* `receiveFlashLoan` call.
*
* Emits `FlashLoan` events.
*/
function flashLoan(
IFlashLoanRecipient recipient,
IERC20[] memory tokens,
uint256[] memory amounts,
bytes memory userData
) external;
/**
* @dev Emitted for each individual flash loan performed by `flashLoan`.
*/
event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);
// Asset Management
//
// Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
// tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
// `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
// controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
// prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
// not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
//
// However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
// for example by lending unused tokens out for interest, or using them to participate in voting protocols.
//
// This concept is unrelated to the IAsset interface.
/**
* @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
*
* Pool Balance management features batching, which means a single contract call can be used to perform multiple
* operations of different kinds, with different Pools and tokens, at once.
*
* For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
*/
function managePoolBalance(PoolBalanceOp[] memory ops) external;
struct PoolBalanceOp {
PoolBalanceOpKind kind;
bytes32 poolId;
IERC20 token;
uint256 amount;
}
/**
* Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
*
* Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
*
* Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
* The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
*/
enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }
/**
* @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
*/
event PoolBalanceManaged(
bytes32 indexed poolId,
address indexed assetManager,
IERC20 indexed token,
int256 cashDelta,
int256 managedDelta
);
// Protocol Fees
//
// Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
// permissioned accounts.
//
// There are two kinds of protocol fees:
//
// - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
//
// - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
// swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
// Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
// Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
// exiting a Pool in debt without first paying their share.
/**
* @dev Returns the current protocol fee module.
*/
function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);
/**
* @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
* error in some part of the system.
*
* The Vault can only be paused during an initial time period, after which pausing is forever disabled.
*
* While the contract is paused, the following features are disabled:
* - depositing and transferring internal balance
* - transferring external balance (using the Vault's allowance)
* - swaps
* - joining Pools
* - Asset Manager interactions
*
* Internal Balance can still be withdrawn, and Pools exited.
*/
function setPaused(bool paused) external;
/**
* @dev Returns the Vault's WETH instance.
*/
function WETH() external view returns (IWETH);
// solhint-disable-previous-line func-name-mixedcase
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-interfaces/contracts/standalone-utils/IProtocolFeePercentagesProvider.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IBasePoolFactory.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/BaseSplitCodeFactory.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/SingletonAuthentication.sol";
/**
* @notice Base contract for Pool factories.
*
* Pools are deployed from factories to allow third parties to reason about them. Unknown Pools may have arbitrary
* logic: being able to assert that a Pool's behavior follows certain rules (those imposed by the contracts created by
* the factory) is very powerful.
*
* @dev By using the split code mechanism, we can deploy Pools with creation code so large that a regular factory
* contract would not be able to store it.
*
* Since we expect to release new versions of pool types regularly - and the blockchain is forever - versioning will
* become increasingly important. Governance can deprecate a factory by calling `disable`, which will permanently
* prevent the creation of any future pools from the factory.
*/
abstract contract BasePoolFactory is IBasePoolFactory, BaseSplitCodeFactory, SingletonAuthentication {
IProtocolFeePercentagesProvider private immutable _protocolFeeProvider;
mapping(address => bool) private _isPoolFromFactory;
bool private _disabled;
event PoolCreated(address indexed pool);
event FactoryDisabled();
constructor(
IVault vault,
IProtocolFeePercentagesProvider protocolFeeProvider,
bytes memory creationCode
) BaseSplitCodeFactory(creationCode) SingletonAuthentication(vault) {
_protocolFeeProvider = protocolFeeProvider;
}
function isPoolFromFactory(address pool) external view override returns (bool) {
return _isPoolFromFactory[pool];
}
function isDisabled() public view override returns (bool) {
return _disabled;
}
function disable() external override authenticate {
_ensureEnabled();
_disabled = true;
emit FactoryDisabled();
}
function _ensureEnabled() internal view {
_require(!isDisabled(), Errors.DISABLED);
}
function getProtocolFeePercentagesProvider() public view returns (IProtocolFeePercentagesProvider) {
return _protocolFeeProvider;
}
function _create(bytes memory constructorArgs, bytes32 salt) internal virtual override returns (address) {
_ensureEnabled();
address pool = super._create(constructorArgs, salt);
_isPoolFromFactory[pool] = true;
emit PoolCreated(pool);
return pool;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
/**
* @dev Utility to create Pool factories for Pools that use the `TemporarilyPausable` contract.
*
* By calling `TemporarilyPausable`'s constructor with the result of `getPauseConfiguration`, all Pools created by this
* factory will share the same Pause Window end time, after which both old and new Pools will not be pausable.
*/
contract FactoryWidePauseWindow {
// This contract relies on timestamps in a similar way as `TemporarilyPausable` does - the same caveats apply.
// solhint-disable not-rely-on-time
uint256 private constant _INITIAL_PAUSE_WINDOW_DURATION = 90 days;
uint256 private constant _BUFFER_PERIOD_DURATION = 30 days;
// Time when the pause window for all created Pools expires, and the pause window duration of new Pools becomes
// zero.
uint256 private immutable _poolsPauseWindowEndTime;
constructor() {
_poolsPauseWindowEndTime = block.timestamp + _INITIAL_PAUSE_WINDOW_DURATION;
}
/**
* @dev Returns the current `TemporarilyPausable` configuration that will be applied to Pools created by this
* factory.
*
* `pauseWindowDuration` will decrease over time until it reaches zero, at which point both it and
* `bufferPeriodDuration` will be zero forever, meaning deployed Pools will not be pausable.
*/
function getPauseConfiguration() public view returns (uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
uint256 currentTime = block.timestamp;
if (currentTime < _poolsPauseWindowEndTime) {
// The buffer period is always the same since its duration is related to how much time is needed to respond
// to a potential emergency. The Pause Window duration however decreases as the end time approaches.
pauseWindowDuration = _poolsPauseWindowEndTime - currentTime; // No need for checked arithmetic.
bufferPeriodDuration = _BUFFER_PERIOD_DURATION;
} else {
// After the end time, newly created Pools have no Pause Window, nor Buffer Period (since they are not
// pausable in the first place).
pauseWindowDuration = 0;
bufferPeriodDuration = 0;
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./BaseWeightedPool.sol";
import "./WeightedPoolProtocolFees.sol";
/**
* @dev Basic Weighted Pool with immutable weights.
*/
contract WeightedPool is BaseWeightedPool, WeightedPoolProtocolFees {
using FixedPoint for uint256;
uint256 private constant _MAX_TOKENS = 8;
uint256 private immutable _totalTokens;
string private _version;
IERC20 internal immutable _token0;
IERC20 internal immutable _token1;
IERC20 internal immutable _token2;
IERC20 internal immutable _token3;
IERC20 internal immutable _token4;
IERC20 internal immutable _token5;
IERC20 internal immutable _token6;
IERC20 internal immutable _token7;
// All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
// not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
// These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.
uint256 internal immutable _scalingFactor0;
uint256 internal immutable _scalingFactor1;
uint256 internal immutable _scalingFactor2;
uint256 internal immutable _scalingFactor3;
uint256 internal immutable _scalingFactor4;
uint256 internal immutable _scalingFactor5;
uint256 internal immutable _scalingFactor6;
uint256 internal immutable _scalingFactor7;
uint256 internal immutable _normalizedWeight0;
uint256 internal immutable _normalizedWeight1;
uint256 internal immutable _normalizedWeight2;
uint256 internal immutable _normalizedWeight3;
uint256 internal immutable _normalizedWeight4;
uint256 internal immutable _normalizedWeight5;
uint256 internal immutable _normalizedWeight6;
uint256 internal immutable _normalizedWeight7;
struct NewPoolParams {
string name;
string symbol;
IERC20[] tokens;
uint256[] normalizedWeights;
IRateProvider[] rateProviders;
address[] assetManagers;
uint256 swapFeePercentage;
}
constructor(
NewPoolParams memory params,
IVault vault,
IProtocolFeePercentagesProvider protocolFeeProvider,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner,
string memory version
)
BaseWeightedPool(
vault,
params.name,
params.symbol,
params.tokens,
params.assetManagers,
params.swapFeePercentage,
pauseWindowDuration,
bufferPeriodDuration,
owner,
false
)
ProtocolFeeCache(protocolFeeProvider, ProtocolFeeCache.DELEGATE_PROTOCOL_SWAP_FEES_SENTINEL)
WeightedPoolProtocolFees(params.tokens.length, params.rateProviders)
{
uint256 numTokens = params.tokens.length;
InputHelpers.ensureInputLengthMatch(numTokens, params.normalizedWeights.length);
_totalTokens = numTokens;
_version = version;
// Ensure each normalized weight is above the minimum
uint256 normalizedSum = 0;
for (uint8 i = 0; i < numTokens; i++) {
uint256 normalizedWeight = params.normalizedWeights[i];
_require(normalizedWeight >= WeightedMath._MIN_WEIGHT, Errors.MIN_WEIGHT);
normalizedSum = normalizedSum.add(normalizedWeight);
}
// Ensure that the normalized weights sum to ONE
_require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);
// Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
_token0 = params.tokens[0];
_token1 = params.tokens[1];
_token2 = numTokens > 2 ? params.tokens[2] : IERC20(0);
_token3 = numTokens > 3 ? params.tokens[3] : IERC20(0);
_token4 = numTokens > 4 ? params.tokens[4] : IERC20(0);
_token5 = numTokens > 5 ? params.tokens[5] : IERC20(0);
_token6 = numTokens > 6 ? params.tokens[6] : IERC20(0);
_token7 = numTokens > 7 ? params.tokens[7] : IERC20(0);
_scalingFactor0 = _computeScalingFactor(params.tokens[0]);
_scalingFactor1 = _computeScalingFactor(params.tokens[1]);
_scalingFactor2 = numTokens > 2 ? _computeScalingFactor(params.tokens[2]) : 0;
_scalingFactor3 = numTokens > 3 ? _computeScalingFactor(params.tokens[3]) : 0;
_scalingFactor4 = numTokens > 4 ? _computeScalingFactor(params.tokens[4]) : 0;
_scalingFactor5 = numTokens > 5 ? _computeScalingFactor(params.tokens[5]) : 0;
_scalingFactor6 = numTokens > 6 ? _computeScalingFactor(params.tokens[6]) : 0;
_scalingFactor7 = numTokens > 7 ? _computeScalingFactor(params.tokens[7]) : 0;
_normalizedWeight0 = params.normalizedWeights[0];
_normalizedWeight1 = params.normalizedWeights[1];
_normalizedWeight2 = numTokens > 2 ? params.normalizedWeights[2] : 0;
_normalizedWeight3 = numTokens > 3 ? params.normalizedWeights[3] : 0;
_normalizedWeight4 = numTokens > 4 ? params.normalizedWeights[4] : 0;
_normalizedWeight5 = numTokens > 5 ? params.normalizedWeights[5] : 0;
_normalizedWeight6 = numTokens > 6 ? params.normalizedWeights[6] : 0;
_normalizedWeight7 = numTokens > 7 ? params.normalizedWeights[7] : 0;
}
/**
* @dev Ensure we are not in a Vault context when this function is called, by attempting a no-op internal
* balance operation. If we are already in a Vault transaction (e.g., a swap, join, or exit), the Vault's
* reentrancy protection will cause this function to revert.
*
* The exact function call doesn't really matter: we're just trying to trigger the Vault reentrancy check
* (and not hurt anything in case it works). An empty operation array with no specific operation at all works
* for that purpose, and is also the least expensive in terms of gas and bytecode size.
*
* Use this modifier with any function that can cause a state change in a pool and is either public itself,
* or called by a public function *outside* a Vault operation (e.g., join, exit, or swap).
* See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
*/
modifier whenNotInVaultContext() {
_ensureNotInVaultContext();
_;
}
/**
* @dev Reverts if called in the middle of a Vault operation; has no effect otherwise.
*/
function _ensureNotInVaultContext() private {
IVault.UserBalanceOp[] memory noop = new IVault.UserBalanceOp[](0);
getVault().manageUserBalance(noop);
}
function _getNormalizedWeight(IERC20 token) internal view virtual override returns (uint256) {
// prettier-ignore
if (token == _token0) { return _normalizedWeight0; }
else if (token == _token1) { return _normalizedWeight1; }
else if (token == _token2) { return _normalizedWeight2; }
else if (token == _token3) { return _normalizedWeight3; }
else if (token == _token4) { return _normalizedWeight4; }
else if (token == _token5) { return _normalizedWeight5; }
else if (token == _token6) { return _normalizedWeight6; }
else if (token == _token7) { return _normalizedWeight7; }
else {
_revert(Errors.INVALID_TOKEN);
}
}
function _getNormalizedWeights() internal view virtual override returns (uint256[] memory) {
uint256 totalTokens = _getTotalTokens();
uint256[] memory normalizedWeights = new uint256[](totalTokens);
// prettier-ignore
{
normalizedWeights[0] = _normalizedWeight0;
normalizedWeights[1] = _normalizedWeight1;
if (totalTokens > 2) { normalizedWeights[2] = _normalizedWeight2; } else { return normalizedWeights; }
if (totalTokens > 3) { normalizedWeights[3] = _normalizedWeight3; } else { return normalizedWeights; }
if (totalTokens > 4) { normalizedWeights[4] = _normalizedWeight4; } else { return normalizedWeights; }
if (totalTokens > 5) { normalizedWeights[5] = _normalizedWeight5; } else { return normalizedWeights; }
if (totalTokens > 6) { normalizedWeights[6] = _normalizedWeight6; } else { return normalizedWeights; }
if (totalTokens > 7) { normalizedWeights[7] = _normalizedWeight7; } else { return normalizedWeights; }
}
return normalizedWeights;
}
function _getMaxTokens() internal pure virtual override returns (uint256) {
return _MAX_TOKENS;
}
function _getTotalTokens() internal view virtual override returns (uint256) {
return _totalTokens;
}
/**
* @notice Returns a JSON representation of the contract version containing name, version number and task ID.
*/
function version() external view returns (string memory) {
return _version;
}
/**
* @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
* Pool.
*/
function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
// prettier-ignore
if (token == _token0) { return _getScalingFactor0(); }
else if (token == _token1) { return _getScalingFactor1(); }
else if (token == _token2) { return _getScalingFactor2(); }
else if (token == _token3) { return _getScalingFactor3(); }
else if (token == _token4) { return _getScalingFactor4(); }
else if (token == _token5) { return _getScalingFactor5(); }
else if (token == _token6) { return _getScalingFactor6(); }
else if (token == _token7) { return _getScalingFactor7(); }
else {
_revert(Errors.INVALID_TOKEN);
}
}
function _scalingFactors() internal view virtual override returns (uint256[] memory) {
uint256 totalTokens = _getTotalTokens();
uint256[] memory scalingFactors = new uint256[](totalTokens);
// prettier-ignore
{
scalingFactors[0] = _getScalingFactor0();
scalingFactors[1] = _getScalingFactor1();
if (totalTokens > 2) { scalingFactors[2] = _getScalingFactor2(); } else { return scalingFactors; }
if (totalTokens > 3) { scalingFactors[3] = _getScalingFactor3(); } else { return scalingFactors; }
if (totalTokens > 4) { scalingFactors[4] = _getScalingFactor4(); } else { return scalingFactors; }
if (totalTokens > 5) { scalingFactors[5] = _getScalingFactor5(); } else { return scalingFactors; }
if (totalTokens > 6) { scalingFactors[6] = _getScalingFactor6(); } else { return scalingFactors; }
if (totalTokens > 7) { scalingFactors[7] = _getScalingFactor7(); } else { return scalingFactors; }
}
return scalingFactors;
}
// Initialize
function _onInitializePool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual override returns (uint256, uint256[] memory) {
// Initialize `_athRateProduct` if the Pool will pay protocol fees on yield.
// Not initializing this here properly will cause all joins/exits to revert.
if (!_isExemptFromYieldProtocolFees()) _updateATHRateProduct(_getRateProduct(_getNormalizedWeights()));
return super._onInitializePool(poolId, sender, recipient, scalingFactors, userData);
}
// WeightedPoolProtocolFees functions
function _beforeJoinExit(uint256[] memory preBalances, uint256[] memory normalizedWeights)
internal
virtual
override
returns (uint256, uint256)
{
uint256 supplyBeforeFeeCollection = totalSupply();
uint256 invariant = WeightedMath._calculateInvariant(normalizedWeights, preBalances);
(uint256 protocolFeesToBeMinted, uint256 athRateProduct) = _getPreJoinExitProtocolFees(
invariant,
normalizedWeights,
supplyBeforeFeeCollection
);
// We then update the recorded value of `athRateProduct` to ensure we only collect fees on yield once.
// A zero value for `athRateProduct` represents that it is unchanged so we can skip updating it.
if (athRateProduct > 0) {
_updateATHRateProduct(athRateProduct);
}
if (protocolFeesToBeMinted > 0) {
_payProtocolFees(protocolFeesToBeMinted);
}
return (supplyBeforeFeeCollection.add(protocolFeesToBeMinted), invariant);
}
function _afterJoinExit(
uint256 preJoinExitInvariant,
uint256[] memory preBalances,
uint256[] memory balanceDeltas,
uint256[] memory normalizedWeights,
uint256 preJoinExitSupply,
uint256 postJoinExitSupply
) internal virtual override {
uint256 protocolFeesToBeMinted = _getPostJoinExitProtocolFees(
preJoinExitInvariant,
preBalances,
balanceDeltas,
normalizedWeights,
preJoinExitSupply,
postJoinExitSupply
);
if (protocolFeesToBeMinted > 0) {
_payProtocolFees(protocolFeesToBeMinted);
}
}
function _updatePostJoinExit(uint256 postJoinExitInvariant)
internal
virtual
override(BaseWeightedPool, WeightedPoolProtocolFees)
{
WeightedPoolProtocolFees._updatePostJoinExit(postJoinExitInvariant);
}
/**
* @dev This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
*
* This function depends on the invariant value, which may be calculated incorrectly in the middle of a join or
* an exit, because the state of the pool could be out of sync with the state of the Vault. The modifier
* `whenNotInVaultContext` prevents calling this function (and in turn, the external
* `updateProtocolFeePercentageCache`) in such a context.
*
* See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
*/
function _beforeProtocolFeeCacheUpdate() internal override whenNotInVaultContext {
// The `getRate()` function depends on the actual supply, which in turn depends on the cached protocol fee
// percentages. Changing these would therefore result in the rate changing, which is not acceptable as this is a
// sensitive value.
// Because of this, we pay any due protocol fees *before* updating the cache, making it so that the new
// percentages only affect future operation of the Pool, and not past fees. As a result, `getRate()` is
// unaffected by the cached protocol fee percentages changing.
// Given that this operation is state-changing and relatively complex, we only allow it as long as the Pool is
// not paused.
_ensureNotPaused();
uint256 invariant = getInvariant();
(uint256 protocolFeesToBeMinted, uint256 athRateProduct) = _getPreJoinExitProtocolFees(
invariant,
_getNormalizedWeights(),
totalSupply()
);
if (protocolFeesToBeMinted > 0) {
_payProtocolFees(protocolFeesToBeMinted);
}
// With the fees paid, we now store the current invariant and update the ATH rate product (if necessary),
// marking the Pool as free of protocol debt.
_updatePostJoinExit(invariant);
if (athRateProduct > 0) {
_updateATHRateProduct(athRateProduct);
}
}
/**
* @notice Returns the effective BPT supply.
*
* @dev This would be the same as `totalSupply` however the Pool owes debt to the Protocol in the form of unminted
* BPT, which will be minted immediately before the next join or exit. We need to take these into account since,
* even if they don't yet exist, they will effectively be included in any Pool operation that involves BPT.
*
* In the vast majority of cases, this function should be used instead of `totalSupply()`.
*
* **IMPORTANT NOTE**: calling this function within a Vault context (i.e. in the middle of a join or an exit) is
* potentially unsafe, since the returned value is manipulable. It is up to the caller to ensure safety.
*
* This is because this function calculates the invariant, which requires the state of the pool to be in sync
* with the state of the Vault. That condition may not be true in the middle of a join or an exit.
*
* To call this function safely, attempt to trigger the reentrancy guard in the Vault by calling a non-reentrant
* function before calling `getActualSupply`. That will make the transaction revert in an unsafe context.
* (See `whenNotInVaultContext` in `WeightedPool`).
*
* See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
*/
function getActualSupply() external view returns (uint256) {
uint256 supply = totalSupply();
(uint256 protocolFeesToBeMinted, ) = _getPreJoinExitProtocolFees(
getInvariant(),
_getNormalizedWeights(),
supply
);
return supply.add(protocolFeesToBeMinted);
}
/**
* @dev This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
*
* This function depends on the invariant value, which may be calculated incorrectly in the middle of a join or
* an exit, because the state of the pool could be out of sync with the state of the Vault.
*
* The modifier `whenNotInVaultContext` prevents calling this function (and in turn, the external
* `disableRecoveryMode`) in such a context.
*
* See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
*/
function _onDisableRecoveryMode() internal override whenNotInVaultContext {
// Update the postJoinExitInvariant to the value of the currentInvariant, zeroing out any protocol swap fees.
_updatePostJoinExit(getInvariant());
// If the Pool has any protocol yield fees accrued then we update the athRateProduct to zero these out.
// If the current rate product is less than the athRateProduct then we do not perform this update.
// This prevents the Pool from paying protocol fees on the same yield twice if the rate product were to drop.
if (!_isExemptFromYieldProtocolFees()) {
uint256 athRateProduct = getATHRateProduct();
uint256 rateProduct = _getRateProduct(_getNormalizedWeights());
if (rateProduct > athRateProduct) {
_updateATHRateProduct(rateProduct);
}
}
}
function _getScalingFactor0() internal view returns (uint256) {
return _scalingFactor0;
}
function _getScalingFactor1() internal view returns (uint256) {
return _scalingFactor1;
}
function _getScalingFactor2() internal view returns (uint256) {
return _scalingFactor2;
}
function _getScalingFactor3() internal view returns (uint256) {
return _scalingFactor3;
}
function _getScalingFactor4() internal view returns (uint256) {
return _scalingFactor4;
}
function _getScalingFactor5() internal view returns (uint256) {
return _scalingFactor5;
}
function _getScalingFactor6() internal view returns (uint256) {
return _scalingFactor6;
}
function _getScalingFactor7() internal view returns (uint256) {
return _scalingFactor7;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
interface IAuthentication {
/**
* @dev Returns the action identifier associated with the external function described by `selector`.
*/
function getActionId(bytes4 selector) external view returns (bytes32);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
/**
* @dev Interface for the SignatureValidator helper, used to support meta-transactions.
*/
interface ISignaturesValidator {
/**
* @dev Returns the EIP712 domain separator.
*/
function getDomainSeparator() external view returns (bytes32);
/**
* @dev Returns the next nonce used by an address to sign messages.
*/
function getNextNonce(address user) external view returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
/**
* @dev Interface for the TemporarilyPausable helper.
*/
interface ITemporarilyPausable {
/**
* @dev Emitted every time the pause state changes by `_setPaused`.
*/
event PausedStateChanged(bool paused);
/**
* @dev Returns the current paused state.
*/
function getPausedState()
external
view
returns (
bool paused,
uint256 pauseWindowEndTime,
uint256 bufferPeriodEndTime
);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "../openzeppelin/IERC20.sol";
/**
* @dev Interface for WETH9.
* See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
*/
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint256 amount) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
/**
* @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
* address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
* types.
*
* This concept is unrelated to a Pool's Asset Managers.
*/
interface IAsset {
// solhint-disable-previous-line no-empty-blocks
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
interface IAuthorizer {
/**
* @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
*/
function canPerform(
bytes32 actionId,
address account,
address where
) external view returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
// Inspired by Aave Protocol's IFlashLoanReceiver.
import "../solidity-utils/openzeppelin/IERC20.sol";
interface IFlashLoanRecipient {
/**
* @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
*
* At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
* call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
* Vault, or else the entire flash loan will revert.
*
* `userData` is the same value passed in the `IVault.flashLoan` call.
*/
function receiveFlashLoan(
IERC20[] memory tokens,
uint256[] memory amounts,
uint256[] memory feeAmounts,
bytes memory userData
) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
import "./IVault.sol";
import "./IAuthorizer.sol";
interface IProtocolFeesCollector {
event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);
function withdrawCollectedFees(
IERC20[] calldata tokens,
uint256[] calldata amounts,
address recipient
) external;
function setSwapFeePercentage(uint256 newSwapFeePercentage) external;
function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;
function getSwapFeePercentage() external view returns (uint256);
function getFlashLoanFeePercentage() external view returns (uint256);
function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);
function getAuthorizer() external view returns (IAuthorizer);
function vault() external view returns (IVault);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
/**
* @dev Source of truth for all Protocol Fee percentages, that is, how much the protocol charges certain actions. Some
* of these values may also be retrievable from other places (such as the swap fee percentage), but this is the
* preferred source nonetheless.
*/
interface IProtocolFeePercentagesProvider {
// All fee percentages are 18-decimal fixed point numbers, so e.g. 1e18 = 100% and 1e16 = 1%.
// Emitted when a new fee type is registered.
event ProtocolFeeTypeRegistered(uint256 indexed feeType, string name, uint256 maximumPercentage);
// Emitted when the value of a fee type changes.
// IMPORTANT: it is possible for a third party to modify the SWAP and FLASH_LOAN fee type values directly in the
// ProtocolFeesCollector, which will result in this event not being emitted despite their value changing. Such usage
// of the ProtocolFeesCollector is however discouraged: all state-changing interactions with it should originate in
// this contract.
event ProtocolFeePercentageChanged(uint256 indexed feeType, uint256 percentage);
/**
* @dev Registers a new fee type in the system, making it queryable via `getFeeTypePercentage` and `getFeeTypeName`,
* as well as configurable via `setFeeTypePercentage`.
*
* `feeType` can be any arbitrary value (that is not in use).
*
* It is not possible to de-register fee types, nor change their name or maximum value.
*/
function registerFeeType(
uint256 feeType,
string memory name,
uint256 maximumValue,
uint256 initialValue
) external;
/**
* @dev Returns true if `feeType` has been registered and can be queried.
*/
function isValidFeeType(uint256 feeType) external view returns (bool);
/**
* @dev Returns true if `value` is a valid percentage value for `feeType`.
*/
function isValidFeeTypePercentage(uint256 feeType, uint256 value) external view returns (bool);
/**
* @dev Sets the percentage value for `feeType` to `newValue`.
*
* IMPORTANT: it is possible for a third party to modify the SWAP and FLASH_LOAN fee type values directly in the
* ProtocolFeesCollector, without invoking this function. This will result in the `ProtocolFeePercentageChanged`
* event not being emitted despite their value changing. Such usage of the ProtocolFeesCollector is however
* discouraged: only this contract should be granted permission to call `setSwapFeePercentage` and
* `setFlashLoanFeePercentage`.
*/
function setFeeTypePercentage(uint256 feeType, uint256 newValue) external;
/**
* @dev Returns the current percentage value for `feeType`. This is the preferred mechanism for querying these -
* whenever possible, use this fucntion instead of e.g. querying the ProtocolFeesCollector.
*/
function getFeeTypePercentage(uint256 feeType) external view returns (uint256);
/**
* @dev Returns `feeType`'s maximum value.
*/
function getFeeTypeMaximumPercentage(uint256 feeType) external view returns (uint256);
/**
* @dev Returns `feeType`'s name.
*/
function getFeeTypeName(uint256 feeType) external view returns (string memory);
}
library ProtocolFeeType {
// This list is not exhaustive - more fee types can be added to the system. It is expected for this list to be
// extended with new fee types as they are registered, to keep them all in one place and reduce
// likelihood of user error.
// solhint-disable private-vars-leading-underscore
uint256 internal constant SWAP = 0;
uint256 internal constant FLASH_LOAN = 1;
uint256 internal constant YIELD = 2;
uint256 internal constant AUM = 3;
// solhint-enable private-vars-leading-underscore
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "../solidity-utils/helpers/IAuthentication.sol";
interface IBasePoolFactory is IAuthentication {
/**
* @dev Returns true if `pool` was created by this factory.
*/
function isPoolFromFactory(address pool) external view returns (bool);
/**
* @dev Check whether the derived factory has been disabled.
*/
function isDisabled() external view returns (bool);
/**
* @dev Disable the factory, preventing the creation of more pools. Already existing pools are unaffected.
* Once a factory is disabled, it cannot be re-enabled.
*/
function disable() external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./CodeDeployer.sol";
/**
* @dev Base factory for contracts whose creation code is so large that the factory cannot hold it. This happens when
* the contract's creation code grows close to 24kB.
*
* Note that this factory cannot help with contracts that have a *runtime* (deployed) bytecode larger than 24kB.
*/
abstract contract BaseSplitCodeFactory {
// The contract's creation code is stored as code in two separate addresses, and retrieved via `extcodecopy`. This
// means this factory supports contracts with creation code of up to 48kB.
// We rely on inline-assembly to achieve this, both to make the entire operation highly gas efficient, and because
// `extcodecopy` is not available in Solidity.
// solhint-disable no-inline-assembly
address private immutable _creationCodeContractA;
uint256 private immutable _creationCodeSizeA;
address private immutable _creationCodeContractB;
uint256 private immutable _creationCodeSizeB;
/**
* @dev The creation code of a contract Foo can be obtained inside Solidity with `type(Foo).creationCode`.
*/
constructor(bytes memory creationCode) {
uint256 creationCodeSize = creationCode.length;
// We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents
// (A), and another with the remaining half (B).
// We store the lengths in both immutable and stack variables, since immutable variables cannot be read during
// construction.
uint256 creationCodeSizeA = creationCodeSize / 2;
_creationCodeSizeA = creationCodeSizeA;
uint256 creationCodeSizeB = creationCodeSize - creationCodeSizeA;
_creationCodeSizeB = creationCodeSizeB;
// To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with
// the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving
// `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place.
// Memory: [ code length ] [ A.data ] [ B.data ]
// Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore
// the original length.
bytes memory creationCodeA;
assembly {
creationCodeA := creationCode
mstore(creationCodeA, creationCodeSizeA)
}
// Memory: [ A.length ] [ A.data ] [ B.data ]
// ^ creationCodeA
_creationCodeContractA = CodeDeployer.deploy(creationCodeA);
// Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new'
// memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last
// byte to later restore it.
bytes memory creationCodeB;
bytes32 lastByteA;
assembly {
// `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's
// last 32 bytes.
creationCodeB := add(creationCode, creationCodeSizeA)
lastByteA := mload(creationCodeB)
mstore(creationCodeB, creationCodeSizeB)
}
// Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ]
// ^ creationCodeA ^ creationCodeB
_creationCodeContractB = CodeDeployer.deploy(creationCodeB);
// We now restore the original contents of `creationCode` by writing back the original length and A's last byte.
assembly {
mstore(creationCodeA, creationCodeSize)
mstore(creationCodeB, lastByteA)
}
}
/**
* @dev Returns the two addresses where the creation code of the contract crated by this factory is stored.
*/
function getCreationCodeContracts() public view returns (address contractA, address contractB) {
return (_creationCodeContractA, _creationCodeContractB);
}
/**
* @dev Returns the creation code of the contract this factory creates.
*/
function getCreationCode() public view returns (bytes memory) {
return _getCreationCodeWithArgs("");
}
/**
* @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`.
*/
function _getCreationCodeWithArgs(bytes memory constructorArgs) private view returns (bytes memory code) {
// This function exists because `abi.encode()` cannot be instructed to place its result at a specific address.
// We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but
// cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code,
// which would be prohibitively expensive.
// Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the
// creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be
// overly long) right after the end of the creation code.
// Immutable variables cannot be used in assembly, so we store them in the stack first.
address creationCodeContractA = _creationCodeContractA;
uint256 creationCodeSizeA = _creationCodeSizeA;
address creationCodeContractB = _creationCodeContractB;
uint256 creationCodeSizeB = _creationCodeSizeB;
uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB;
uint256 constructorArgsSize = constructorArgs.length;
uint256 codeSize = creationCodeSize + constructorArgsSize;
assembly {
// First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of
// `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length.
code := mload(0x40)
mstore(0x40, add(code, add(codeSize, 32)))
// We now store the length of the code plus constructor arguments.
mstore(code, codeSize)
// Next, we concatenate the creation code stored in A and B.
let dataStart := add(code, 32)
extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA)
extcodecopy(creationCodeContractB, add(dataStart, creationCodeSizeA), 0, creationCodeSizeB)
}
// Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this
// copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`.
uint256 constructorArgsDataPtr;
uint256 constructorArgsCodeDataPtr;
assembly {
constructorArgsDataPtr := add(constructorArgs, 32)
constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize)
}
_memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize);
}
/**
* @dev Deploys a contract with constructor arguments and a user-provided salt, using the create2 opcode.
* To create `constructorArgs`, call `abi.encode()` with the contract's constructor arguments, in order.
*/
function _create(bytes memory constructorArgs, bytes32 salt) internal virtual returns (address) {
bytes memory creationCode = _getCreationCodeWithArgs(constructorArgs);
address destination;
assembly {
destination := create2(0, add(creationCode, 32), mload(creationCode), salt)
}
if (destination == address(0)) {
// Bubble up inner revert reason
// solhint-disable-next-line no-inline-assembly
assembly {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
return destination;
}
// From
// https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol
function _memcpy(
uint256 dest,
uint256 src,
uint256 len
) private pure {
// Copy word-length chunks while possible
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
// Copy remaining bytes
uint256 mask = 256**(32 - len) - 1;
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/liquidity-mining/IAuthorizerAdaptor.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "./Authentication.sol";
abstract contract SingletonAuthentication is Authentication {
IVault private immutable _vault;
// Use the contract's own address to disambiguate action identifiers
constructor(IVault vault) Authentication(bytes32(uint256(address(this)))) {
_vault = vault;
}
/**
* @notice Returns the Balancer Vault
*/
function getVault() public view returns (IVault) {
return _vault;
}
/**
* @notice Returns the Authorizer
*/
function getAuthorizer() public view returns (IAuthorizer) {
return getVault().getAuthorizer();
}
function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
return getAuthorizer().canPerform(actionId, account, address(this));
}
function _canPerform(
bytes32 actionId,
address account,
address where
) internal view returns (bool) {
return getAuthorizer().canPerform(actionId, account, where);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/**
* @dev Library used to deploy contracts with specific code. This can be used for long-term storage of immutable data as
* contract code, which can be retrieved via the `extcodecopy` opcode.
*/
library CodeDeployer {
// During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and
// `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be
// stored as its code.
//
// We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode
// sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the
// full code 32 bytes long:
//
// contract CodeDeployer {
// constructor() payable {
// uint256 size;
// assembly {
// size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long
// codecopy(0, 32, size) // copy all appended data to memory at position 0
// return(0, size) // return appended data for it to be stored as code
// }
// }
// }
//
// More specifically, it is composed of the following opcodes (plus padding):
//
// [1] PUSH1 0x20
// [2] CODESIZE
// [3] SUB
// [4] DUP1
// [6] PUSH1 0x20
// [8] PUSH1 0x00
// [9] CODECOPY
// [11] PUSH1 0x00
// [12] RETURN
//
// The padding is just the 0xfe sequence (invalid opcode). It is important as it lets us work in-place, avoiding
// memory allocation and copying.
bytes32
private constant _DEPLOYER_CREATION_CODE = 0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe;
/**
* @dev Deploys a contract with `code` as its code, returning the destination address.
*
* Reverts if deployment fails.
*/
function deploy(bytes memory code) internal returns (address destination) {
bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE;
// We need to concatenate the deployer creation code and `code` in memory, but want to avoid copying all of
// `code` (which could be quite long) into a new memory location. Therefore, we operate in-place using
// assembly.
// solhint-disable-next-line no-inline-assembly
assembly {
let codeLength := mload(code)
// `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply
// replace it with the deployer creation code (which is exactly 32 bytes long).
mstore(code, deployerCreationCode)
// At this point, `code` now points to the deployer creation code immediately followed by `code`'s data
// contents. This is exactly what the deployer expects to receive when created.
destination := create(0, code, add(codeLength, 32))
// Finally, we restore the original length in order to not mutate `code`.
mstore(code, codeLength)
}
// The create opcode returns the zero address when contract creation fails, so we revert if this happens.
_require(destination != address(0), Errors.CODE_DEPLOYMENT_FAILED);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
// solhint-disable
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
* Uses the default 'BAL' prefix for the error code
*/
function _require(bool condition, uint256 errorCode) pure {
if (!condition) _revert(errorCode);
}
/**
* @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
* supported.
*/
function _require(bool condition, uint256 errorCode, bytes3 prefix) pure {
if (!condition) _revert(errorCode, prefix);
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
* Uses the default 'BAL' prefix for the error code
*/
function _revert(uint256 errorCode) pure {
_revert(errorCode, 0x42414c); // This is the raw byte representation of "BAL"
}
/**
* @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
*/
function _revert(uint256 errorCode, bytes3 prefix) pure {
uint256 prefixUint = uint256(uint24(prefix));
// We're going to dynamically create a revert string based on the error code, with the following format:
// 'BAL#{errorCode}'
// where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
//
// We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
// number (8 to 16 bits) than the individual string characters.
//
// The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
// much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
// safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
assembly {
// First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
// range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
// the '0' character.
let units := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let tenths := add(mod(errorCode, 10), 0x30)
errorCode := div(errorCode, 10)
let hundreds := add(mod(errorCode, 10), 0x30)
// With the individual characters, we can now construct the full string.
// We first append the '#' character (0x23) to the prefix. In the case of 'BAL', it results in 0x42414c23 ('BAL#')
// Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the
// characters to it, each shifted by a multiple of 8.
// The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
// per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
// array).
let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint)))
let revertReason := shl(200, add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds))))
// We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
// message will have the following layout:
// [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]
// The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
// also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
// Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
// The string length is fixed: 7 characters.
mstore(0x24, 7)
// Finally, the string itself is stored.
mstore(0x44, revertReason)
// Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
// the encoded message is therefore 4 + 32 + 32 + 32 = 100.
revert(0, 100)
}
}
library Errors {
// Math
uint256 internal constant ADD_OVERFLOW = 0;
uint256 internal constant SUB_OVERFLOW = 1;
uint256 internal constant SUB_UNDERFLOW = 2;
uint256 internal constant MUL_OVERFLOW = 3;
uint256 internal constant ZERO_DIVISION = 4;
uint256 internal constant DIV_INTERNAL = 5;
uint256 internal constant X_OUT_OF_BOUNDS = 6;
uint256 internal constant Y_OUT_OF_BOUNDS = 7;
uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
uint256 internal constant INVALID_EXPONENT = 9;
// Input
uint256 internal constant OUT_OF_BOUNDS = 100;
uint256 internal constant UNSORTED_ARRAY = 101;
uint256 internal constant UNSORTED_TOKENS = 102;
uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
uint256 internal constant ZERO_TOKEN = 104;
// Shared pools
uint256 internal constant MIN_TOKENS = 200;
uint256 internal constant MAX_TOKENS = 201;
uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
uint256 internal constant MINIMUM_BPT = 204;
uint256 internal constant CALLER_NOT_VAULT = 205;
uint256 internal constant UNINITIALIZED = 206;
uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
uint256 internal constant EXPIRED_PERMIT = 209;
uint256 internal constant NOT_TWO_TOKENS = 210;
uint256 internal constant DISABLED = 211;
// Pools
uint256 internal constant MIN_AMP = 300;
uint256 internal constant MAX_AMP = 301;
uint256 internal constant MIN_WEIGHT = 302;
uint256 internal constant MAX_STABLE_TOKENS = 303;
uint256 internal constant MAX_IN_RATIO = 304;
uint256 internal constant MAX_OUT_RATIO = 305;
uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
uint256 internal constant INVALID_TOKEN = 309;
uint256 internal constant UNHANDLED_JOIN_KIND = 310;
uint256 internal constant ZERO_INVARIANT = 311;
uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
uint256 internal constant ORACLE_INVALID_INDEX = 315;
uint256 internal constant ORACLE_BAD_SECS = 316;
uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
uint256 internal constant AMP_ONGOING_UPDATE = 318;
uint256 internal constant AMP_RATE_TOO_HIGH = 319;
uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
uint256 internal constant RELAYER_NOT_CONTRACT = 323;
uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
uint256 internal constant SWAPS_DISABLED = 327;
uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
uint256 internal constant PRICE_RATE_OVERFLOW = 329;
uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330;
uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331;
uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332;
uint256 internal constant UPPER_TARGET_TOO_HIGH = 333;
uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334;
uint256 internal constant OUT_OF_TARGET_RANGE = 335;
uint256 internal constant UNHANDLED_EXIT_KIND = 336;
uint256 internal constant UNAUTHORIZED_EXIT = 337;
uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338;
uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339;
uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340;
uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341;
uint256 internal constant INVALID_INITIALIZATION = 342;
uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343;
uint256 internal constant FEATURE_DISABLED = 344;
uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345;
uint256 internal constant SET_SWAP_FEE_DURING_FEE_CHANGE = 346;
uint256 internal constant SET_SWAP_FEE_PENDING_FEE_CHANGE = 347;
uint256 internal constant CHANGE_TOKENS_DURING_WEIGHT_CHANGE = 348;
uint256 internal constant CHANGE_TOKENS_PENDING_WEIGHT_CHANGE = 349;
uint256 internal constant MAX_WEIGHT = 350;
uint256 internal constant UNAUTHORIZED_JOIN = 351;
uint256 internal constant MAX_MANAGEMENT_AUM_FEE_PERCENTAGE = 352;
uint256 internal constant FRACTIONAL_TARGET = 353;
// Lib
uint256 internal constant REENTRANCY = 400;
uint256 internal constant SENDER_NOT_ALLOWED = 401;
uint256 internal constant PAUSED = 402;
uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
uint256 internal constant INSUFFICIENT_BALANCE = 406;
uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
uint256 internal constant CALLER_IS_NOT_OWNER = 426;
uint256 internal constant NEW_OWNER_IS_ZERO = 427;
uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
uint256 internal constant CALL_TO_NON_CONTRACT = 429;
uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;
uint256 internal constant NOT_PAUSED = 431;
uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432;
uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433;
uint256 internal constant ERC20_BURN_EXCEEDS_BALANCE = 434;
uint256 internal constant INVALID_OPERATION = 435;
uint256 internal constant CODEC_OVERFLOW = 436;
uint256 internal constant IN_RECOVERY_MODE = 437;
uint256 internal constant NOT_IN_RECOVERY_MODE = 438;
uint256 internal constant INDUCED_FAILURE = 439;
uint256 internal constant EXPIRED_SIGNATURE = 440;
uint256 internal constant MALFORMED_SIGNATURE = 441;
uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_UINT64 = 442;
uint256 internal constant UNHANDLED_FEE_TYPE = 443;
// Vault
uint256 internal constant INVALID_POOL_ID = 500;
uint256 internal constant CALLER_NOT_POOL = 501;
uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
uint256 internal constant INVALID_SIGNATURE = 504;
uint256 internal constant EXIT_BELOW_MIN = 505;
uint256 internal constant JOIN_ABOVE_MAX = 506;
uint256 internal constant SWAP_LIMIT = 507;
uint256 internal constant SWAP_DEADLINE = 508;
uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
uint256 internal constant INSUFFICIENT_ETH = 516;
uint256 internal constant UNALLOCATED_ETH = 517;
uint256 internal constant ETH_TRANSFER = 518;
uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
uint256 internal constant TOKENS_MISMATCH = 520;
uint256 internal constant TOKEN_NOT_REGISTERED = 521;
uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
uint256 internal constant TOKENS_ALREADY_SET = 523;
uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
uint256 internal constant POOL_NO_TOKENS = 527;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;
// Fees
uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
uint256 internal constant AUM_FEE_PERCENTAGE_TOO_HIGH = 603;
// Misc
uint256 internal constant UNIMPLEMENTED = 998;
uint256 internal constant SHOULD_NOT_HAPPEN = 999;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "../solidity-utils/helpers/IAuthentication.sol";
import "../vault/IVault.sol";
interface IAuthorizerAdaptor is IAuthentication {
/**
* @notice Returns the Balancer Vault
*/
function getVault() external view returns (IVault);
/**
* @notice Returns the Authorizer
*/
function getAuthorizer() external view returns (IAuthorizer);
/**
* @notice Performs an arbitrary function call on a target contract, provided the caller is authorized to do so.
* @param target - Address of the contract to be called
* @param data - Calldata to be sent to the target contract
* @return The bytes encoded return value from the performed function call
*/
function performAction(address target, bytes calldata data) external payable returns (bytes memory);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/IAuthentication.sol";
/**
* @dev Building block for performing access control on external functions.
*
* This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
* to external functions to only make them callable by authorized accounts.
*
* Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
*/
abstract contract Authentication is IAuthentication {
bytes32 private immutable _actionIdDisambiguator;
/**
* @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
* multi contract systems.
*
* There are two main uses for it:
* - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
* unique. The contract's own address is a good option.
* - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
* shared by the entire family (and no other contract) should be used instead.
*/
constructor(bytes32 actionIdDisambiguator) {
_actionIdDisambiguator = actionIdDisambiguator;
}
/**
* @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
*/
modifier authenticate() {
_authenticateCaller();
_;
}
/**
* @dev Reverts unless the caller is allowed to call the entry point function.
*/
function _authenticateCaller() internal view {
bytes32 actionId = getActionId(msg.sig);
_require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
}
function getActionId(bytes4 selector) public view override returns (bytes32) {
// Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
// function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
// multiple contracts.
return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
}
function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-interfaces/contracts/pool-weighted/WeightedPoolUserData.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol";
import "./WeightedMath.sol";
/**
* @dev Base class for WeightedPools containing swap, join and exit logic, but leaving storage and management of
* the weights to subclasses. Derived contracts can choose to make weights immutable, mutable, or even dynamic
* based on local or external logic.
*/
abstract contract BaseWeightedPool is BaseMinimalSwapInfoPool {
using FixedPoint for uint256;
using WeightedPoolUserData for bytes;
constructor(
IVault vault,
string memory name,
string memory symbol,
IERC20[] memory tokens,
address[] memory assetManagers,
uint256 swapFeePercentage,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner,
bool mutableTokens
)
BasePool(
vault,
// Given BaseMinimalSwapInfoPool supports both of these specializations, and this Pool never registers
// or deregisters any tokens after construction, picking Two Token when the Pool only has two tokens is free
// gas savings.
// If the pool is expected to be able register new tokens in future, we must choose MINIMAL_SWAP_INFO
// as clearly the TWO_TOKEN specification doesn't support adding extra tokens in future.
tokens.length == 2 && !mutableTokens
? IVault.PoolSpecialization.TWO_TOKEN
: IVault.PoolSpecialization.MINIMAL_SWAP_INFO,
name,
symbol,
tokens,
assetManagers,
swapFeePercentage,
pauseWindowDuration,
bufferPeriodDuration,
owner
)
{
// solhint-disable-previous-line no-empty-blocks
}
// Virtual functions
/**
* @dev Returns the normalized weight of `token`. Weights are fixed point numbers that sum to FixedPoint.ONE.
*/
function _getNormalizedWeight(IERC20 token) internal view virtual returns (uint256);
/**
* @dev Returns all normalized weights, in the same order as the Pool's tokens.
*/
function _getNormalizedWeights() internal view virtual returns (uint256[] memory);
/**
* @dev Returns the current value of the invariant.
*
* **IMPORTANT NOTE**: calling this function within a Vault context (i.e. in the middle of a join or an exit) is
* potentially unsafe, since the returned value is manipulable. It is up to the caller to ensure safety.
*
* Calculating the invariant requires the state of the pool to be in sync with the state of the Vault.
* That condition may not be true in the middle of a join or an exit.
*
* To call this function safely, attempt to trigger the reentrancy guard in the Vault by calling a non-reentrant
* function before calling `getInvariant`. That will make the transaction revert in an unsafe context.
* (See `whenNotInVaultContext` in `WeightedPool`).
*
* See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
*/
function getInvariant() public view returns (uint256) {
(, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());
// Since the Pool hooks always work with upscaled balances, we manually
// upscale here for consistency
_upscaleArray(balances, _scalingFactors());
uint256[] memory normalizedWeights = _getNormalizedWeights();
return WeightedMath._calculateInvariant(normalizedWeights, balances);
}
function getNormalizedWeights() external view returns (uint256[] memory) {
return _getNormalizedWeights();
}
// Base Pool handlers
// Swap
function _onSwapGivenIn(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) internal virtual override returns (uint256) {
return
WeightedMath._calcOutGivenIn(
currentBalanceTokenIn,
_getNormalizedWeight(swapRequest.tokenIn),
currentBalanceTokenOut,
_getNormalizedWeight(swapRequest.tokenOut),
swapRequest.amount
);
}
function _onSwapGivenOut(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) internal virtual override returns (uint256) {
return
WeightedMath._calcInGivenOut(
currentBalanceTokenIn,
_getNormalizedWeight(swapRequest.tokenIn),
currentBalanceTokenOut,
_getNormalizedWeight(swapRequest.tokenOut),
swapRequest.amount
);
}
/**
* @dev Called before any join or exit operation. Returns the Pool's total supply by default, but derived contracts
* may choose to add custom behavior at these steps. This often has to do with protocol fee processing.
*/
function _beforeJoinExit(uint256[] memory preBalances, uint256[] memory normalizedWeights)
internal
virtual
returns (uint256, uint256)
{
return (totalSupply(), WeightedMath._calculateInvariant(normalizedWeights, preBalances));
}
/**
* @dev Called after any regular join or exit operation. Empty by default, but derived contracts
* may choose to add custom behavior at these steps. This often has to do with protocol fee processing.
*
* If performing a join operation, balanceDeltas are the amounts in: otherwise they are the amounts out.
*
* This function is free to mutate the `preBalances` array.
*/
function _afterJoinExit(
uint256 preJoinExitInvariant,
uint256[] memory preBalances,
uint256[] memory balanceDeltas,
uint256[] memory normalizedWeights,
uint256 preJoinExitSupply,
uint256 postJoinExitSupply
) internal virtual {
// solhint-disable-previous-line no-empty-blocks
}
// Derived contracts may call this to update state after a join or exit.
function _updatePostJoinExit(uint256 postJoinExitInvariant) internal virtual {
// solhint-disable-previous-line no-empty-blocks
}
// Initialize
function _onInitializePool(
bytes32,
address,
address,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual override returns (uint256, uint256[] memory) {
WeightedPoolUserData.JoinKind kind = userData.joinKind();
_require(kind == WeightedPoolUserData.JoinKind.INIT, Errors.UNINITIALIZED);
uint256[] memory amountsIn = userData.initialAmountsIn();
InputHelpers.ensureInputLengthMatch(amountsIn.length, scalingFactors.length);
_upscaleArray(amountsIn, scalingFactors);
uint256[] memory normalizedWeights = _getNormalizedWeights();
uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);
// Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
// consistent in Pools with similar compositions but different number of tokens.
uint256 bptAmountOut = Math.mul(invariantAfterJoin, amountsIn.length);
// Initialization is still a join, so we need to do post-join work. Since we are not paying protocol fees,
// and all we need to do is update the invariant, call `_updatePostJoinExit` here instead of `_afterJoinExit`.
_updatePostJoinExit(invariantAfterJoin);
return (bptAmountOut, amountsIn);
}
// Join
function _onJoinPool(
bytes32,
address sender,
address,
uint256[] memory balances,
uint256,
uint256,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual override returns (uint256, uint256[] memory) {
uint256[] memory normalizedWeights = _getNormalizedWeights();
(uint256 preJoinExitSupply, uint256 preJoinExitInvariant) = _beforeJoinExit(balances, normalizedWeights);
(uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(
sender,
balances,
normalizedWeights,
scalingFactors,
preJoinExitSupply,
userData
);
_afterJoinExit(
preJoinExitInvariant,
balances,
amountsIn,
normalizedWeights,
preJoinExitSupply,
preJoinExitSupply.add(bptAmountOut)
);
return (bptAmountOut, amountsIn);
}
/**
* @dev Dispatch code which decodes the provided userdata to perform the specified join type.
* Inheriting contracts may override this function to add additional join types or extra conditions to allow
* or disallow joins under certain circumstances.
*/
function _doJoin(
address,
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory scalingFactors,
uint256 totalSupply,
bytes memory userData
) internal view virtual returns (uint256, uint256[] memory) {
WeightedPoolUserData.JoinKind kind = userData.joinKind();
if (kind == WeightedPoolUserData.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
return _joinExactTokensInForBPTOut(balances, normalizedWeights, scalingFactors, totalSupply, userData);
} else if (kind == WeightedPoolUserData.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
return _joinTokenInForExactBPTOut(balances, normalizedWeights, totalSupply, userData);
} else if (kind == WeightedPoolUserData.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) {
return _joinAllTokensInForExactBPTOut(balances, totalSupply, userData);
} else {
_revert(Errors.UNHANDLED_JOIN_KIND);
}
}
function _joinExactTokensInForBPTOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory scalingFactors,
uint256 totalSupply,
bytes memory userData
) private view returns (uint256, uint256[] memory) {
(uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
InputHelpers.ensureInputLengthMatch(balances.length, amountsIn.length);
_upscaleArray(amountsIn, scalingFactors);
uint256 bptAmountOut = WeightedMath._calcBptOutGivenExactTokensIn(
balances,
normalizedWeights,
amountsIn,
totalSupply,
getSwapFeePercentage()
);
_require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);
return (bptAmountOut, amountsIn);
}
function _joinTokenInForExactBPTOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256 totalSupply,
bytes memory userData
) private view returns (uint256, uint256[] memory) {
(uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
// Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.
_require(tokenIndex < balances.length, Errors.OUT_OF_BOUNDS);
uint256 amountIn = WeightedMath._calcTokenInGivenExactBptOut(
balances[tokenIndex],
normalizedWeights[tokenIndex],
bptAmountOut,
totalSupply,
getSwapFeePercentage()
);
// We join in a single token, so we initialize amountsIn with zeros
uint256[] memory amountsIn = new uint256[](balances.length);
// And then assign the result to the selected token
amountsIn[tokenIndex] = amountIn;
return (bptAmountOut, amountsIn);
}
function _joinAllTokensInForExactBPTOut(
uint256[] memory balances,
uint256 totalSupply,
bytes memory userData
) private pure returns (uint256, uint256[] memory) {
uint256 bptAmountOut = userData.allTokensInForExactBptOut();
// Note that there is no maximum amountsIn parameter: this is handled by `IVault.joinPool`.
uint256[] memory amountsIn = WeightedMath._calcAllTokensInGivenExactBptOut(balances, bptAmountOut, totalSupply);
return (bptAmountOut, amountsIn);
}
// Exit
function _onExitPool(
bytes32,
address sender,
address,
uint256[] memory balances,
uint256,
uint256,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual override returns (uint256, uint256[] memory) {
uint256[] memory normalizedWeights = _getNormalizedWeights();
(uint256 preJoinExitSupply, uint256 preJoinExitInvariant) = _beforeJoinExit(balances, normalizedWeights);
(uint256 bptAmountIn, uint256[] memory amountsOut) = _doExit(
sender,
balances,
normalizedWeights,
scalingFactors,
preJoinExitSupply,
userData
);
_afterJoinExit(
preJoinExitInvariant,
balances,
amountsOut,
normalizedWeights,
preJoinExitSupply,
preJoinExitSupply.sub(bptAmountIn)
);
return (bptAmountIn, amountsOut);
}
/**
* @dev Dispatch code which decodes the provided userdata to perform the specified exit type.
* Inheriting contracts may override this function to add additional exit types or extra conditions to allow
* or disallow exit under certain circumstances.
*/
function _doExit(
address,
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory scalingFactors,
uint256 totalSupply,
bytes memory userData
) internal view virtual returns (uint256, uint256[] memory) {
WeightedPoolUserData.ExitKind kind = userData.exitKind();
if (kind == WeightedPoolUserData.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
return _exitExactBPTInForTokenOut(balances, normalizedWeights, totalSupply, userData);
} else if (kind == WeightedPoolUserData.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
return _exitExactBPTInForTokensOut(balances, totalSupply, userData);
} else if (kind == WeightedPoolUserData.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) {
return _exitBPTInForExactTokensOut(balances, normalizedWeights, scalingFactors, totalSupply, userData);
} else {
_revert(Errors.UNHANDLED_EXIT_KIND);
}
}
function _exitExactBPTInForTokenOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256 totalSupply,
bytes memory userData
) private view returns (uint256, uint256[] memory) {
(uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
// Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.
_require(tokenIndex < balances.length, Errors.OUT_OF_BOUNDS);
uint256 amountOut = WeightedMath._calcTokenOutGivenExactBptIn(
balances[tokenIndex],
normalizedWeights[tokenIndex],
bptAmountIn,
totalSupply,
getSwapFeePercentage()
);
// This is an exceptional situation in which the fee is charged on a token out instead of a token in.
// We exit in a single token, so we initialize amountsOut with zeros
uint256[] memory amountsOut = new uint256[](balances.length);
// And then assign the result to the selected token
amountsOut[tokenIndex] = amountOut;
return (bptAmountIn, amountsOut);
}
function _exitExactBPTInForTokensOut(
uint256[] memory balances,
uint256 totalSupply,
bytes memory userData
) private pure returns (uint256, uint256[] memory) {
uint256 bptAmountIn = userData.exactBptInForTokensOut();
// Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.
uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply);
return (bptAmountIn, amountsOut);
}
function _exitBPTInForExactTokensOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory scalingFactors,
uint256 totalSupply,
bytes memory userData
) private view returns (uint256, uint256[] memory) {
(uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
InputHelpers.ensureInputLengthMatch(amountsOut.length, balances.length);
_upscaleArray(amountsOut, scalingFactors);
// This is an exceptional situation in which the fee is charged on a token out instead of a token in.
uint256 bptAmountIn = WeightedMath._calcBptInGivenExactTokensOut(
balances,
normalizedWeights,
amountsOut,
totalSupply,
getSwapFeePercentage()
);
_require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);
return (bptAmountIn, amountsOut);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IRateProvider.sol";
import "@balancer-labs/v2-pool-utils/contracts/protocol-fees/ProtocolFeeCache.sol";
import "@balancer-labs/v2-pool-utils/contracts/protocol-fees/InvariantGrowthProtocolSwapFees.sol";
import "./BaseWeightedPool.sol";
abstract contract WeightedPoolProtocolFees is BaseWeightedPool, ProtocolFeeCache {
using FixedPoint for uint256;
using WordCodec for bytes32;
// Rate providers are used only for computing yield fees; they do not inform swap/join/exit.
IRateProvider internal immutable _rateProvider0;
IRateProvider internal immutable _rateProvider1;
IRateProvider internal immutable _rateProvider2;
IRateProvider internal immutable _rateProvider3;
IRateProvider internal immutable _rateProvider4;
IRateProvider internal immutable _rateProvider5;
IRateProvider internal immutable _rateProvider6;
IRateProvider internal immutable _rateProvider7;
bool internal immutable _exemptFromYieldFees;
// All-time high value of the weighted product of the pool's token rates. Comparing such weighted products across
// time provides a measure of the pool's growth resulting from rate changes. The pool also grows due to swap fees,
// but that growth is captured in the invariant; rate growth is not.
uint256 private _athRateProduct;
// This Pool pays protocol fees by measuring the growth of the invariant between joins and exits. Since weights are
// immutable, the invariant only changes due to accumulated swap fees, which saves gas by freeing the Pool
// from performing any computation or accounting associated with protocol fees during swaps.
// This mechanism requires keeping track of the invariant after the last join or exit.
//
// The maximum value of the invariant is the maximum allowable balance in the Vault (2**112) multiplied by the
// largest possible scaling factor (10**18 for a zero decimals token). The largest invariant is then
// 2**112 * 10**18 ~= 2**172, which means that to save gas we can place this in BasePool's `_miscData`.
uint256 private constant _LAST_POST_JOINEXIT_INVARIANT_OFFSET = 0;
uint256 private constant _LAST_POST_JOINEXIT_INVARIANT_BIT_LENGTH = 192;
constructor(uint256 numTokens, IRateProvider[] memory rateProviders) {
_require(numTokens <= 8, Errors.MAX_TOKENS);
InputHelpers.ensureInputLengthMatch(numTokens, rateProviders.length);
_exemptFromYieldFees = _getYieldFeeExemption(rateProviders);
_rateProvider0 = rateProviders[0];
_rateProvider1 = rateProviders[1];
_rateProvider2 = numTokens > 2 ? rateProviders[2] : IRateProvider(0);
_rateProvider3 = numTokens > 3 ? rateProviders[3] : IRateProvider(0);
_rateProvider4 = numTokens > 4 ? rateProviders[4] : IRateProvider(0);
_rateProvider5 = numTokens > 5 ? rateProviders[5] : IRateProvider(0);
_rateProvider6 = numTokens > 6 ? rateProviders[6] : IRateProvider(0);
_rateProvider7 = numTokens > 7 ? rateProviders[7] : IRateProvider(0);
}
function _getYieldFeeExemption(IRateProvider[] memory rateProviders) internal pure returns (bool) {
// If we know that no rate providers are set then we can skip yield fees logic.
// If any tokens have rate providers, then set `_exemptFromYieldFees` to false, otherwise leave it true.
for (uint256 i = 0; i < rateProviders.length; i++) {
if (rateProviders[i] != IRateProvider(0)) {
return false;
}
}
return true;
}
/**
* @dev Returns whether the pool is exempt from protocol fees on yield.
*/
function _isExemptFromYieldProtocolFees() internal view returns (bool) {
return _exemptFromYieldFees;
}
/**
* @notice Returns the value of the invariant after the last join or exit operation.
*/
function getLastPostJoinExitInvariant() public view returns (uint256) {
return
_getMiscData().decodeUint(_LAST_POST_JOINEXIT_INVARIANT_OFFSET, _LAST_POST_JOINEXIT_INVARIANT_BIT_LENGTH);
}
/**
* @notice Returns the all time high value for the weighted product of the Pool's tokens' rates.
* @dev Yield protocol fees are only charged when this value is exceeded.
*/
function getATHRateProduct() public view returns (uint256) {
return _athRateProduct;
}
/**
* @dev Returns the rate providers configured for each token (in the same order as registered).
*/
function getRateProviders() external view returns (IRateProvider[] memory) {
uint256 totalTokens = _getTotalTokens();
IRateProvider[] memory providers = new IRateProvider[](totalTokens);
// prettier-ignore
{
providers[0] = _rateProvider0;
providers[1] = _rateProvider1;
if (totalTokens > 2) { providers[2] = _rateProvider2; } else { return providers; }
if (totalTokens > 3) { providers[3] = _rateProvider3; } else { return providers; }
if (totalTokens > 4) { providers[4] = _rateProvider4; } else { return providers; }
if (totalTokens > 5) { providers[5] = _rateProvider5; } else { return providers; }
if (totalTokens > 6) { providers[6] = _rateProvider6; } else { return providers; }
if (totalTokens > 7) { providers[7] = _rateProvider7; } else { return providers; }
}
return providers;
}
// Protocol Fees
/**
* @dev Returns the percentage of the Pool's supply which corresponds to protocol fees on swaps accrued by the Pool.
* @param preJoinExitInvariant - The Pool's invariant prior to the join/exit *before* minting protocol fees.
* @param protocolSwapFeePercentage - The percentage of swap fees which are paid to the protocol.
* @return swapProtocolFeesPercentage - The percentage of the Pool which corresponds to protocol fees on swaps.
*/
function _getSwapProtocolFeesPoolPercentage(uint256 preJoinExitInvariant, uint256 protocolSwapFeePercentage)
internal
view
returns (uint256)
{
// Before joins and exits, we measure the growth of the invariant compared to the invariant after the last join
// or exit, which will have been caused by swap fees, and use it to mint BPT as protocol fees. This dilutes all
// LPs, which means that new LPs will join the pool debt-free, and exiting LPs will pay any amounts due
// before leaving.
return
InvariantGrowthProtocolSwapFees.getProtocolOwnershipPercentage(
preJoinExitInvariant.divDown(getLastPostJoinExitInvariant()),
FixedPoint.ONE, // Supply has not changed so supplyGrowthRatio = 1
protocolSwapFeePercentage
);
}
/**
* @dev Returns the percentage of the Pool's supply which corresponds to protocol fees on yield accrued by the Pool.
* @param normalizedWeights - The Pool's normalized token weights.
* @return yieldProtocolFeesPercentage - The percentage of the Pool which corresponds to protocol fees on yield.
* @return athRateProduct - The new all-time-high rate product if it has increased, otherwise zero.
*/
function _getYieldProtocolFeesPoolPercentage(uint256[] memory normalizedWeights)
internal
view
returns (uint256, uint256)
{
if (_isExemptFromYieldProtocolFees()) return (0, 0);
// Yield manifests in the Pool by individual tokens becoming more valuable, we convert this into comparable
// units by applying a rate to get the equivalent balance of non-yield-bearing tokens
//
// non-yield-bearing balance = rate * yield-bearing balance
// x'i = ri * xi
//
// To measure the amount of fees to pay due to yield, we take advantage of the fact that scaling the
// Pool's balances results in a scaling factor being applied to the original invariant.
//
// I(r1 * x1, r2 * x2) = (r1 * x1)^w1 * (r2 * x2)^w2
// = (r1)^w1 * (r2)^w2 * (x1)^w1 * (x2)^w2
// = I(r1, r2) * I(x1, x2)
//
// We then only need to measure the growth of this scaling factor to measure how the value of the BPT token
// increases due to yield; we can ignore the invariant calculated from the Pool's balances as these cancel.
// We then have the result:
//
// invariantGrowthRatio = I(r1_new, r2_new) / I(r1_old, r2_old) = rateProduct / athRateProduct
uint256 athRateProduct = _athRateProduct;
uint256 rateProduct = _getRateProduct(normalizedWeights);
// Only charge yield fees if we've exceeded the all time high of Pool value generated through yield.
// i.e. if the Pool makes a loss through the yield strategies then it shouldn't charge fees until it's
// been recovered.
if (rateProduct <= athRateProduct) return (0, 0);
return (
InvariantGrowthProtocolSwapFees.getProtocolOwnershipPercentage(
rateProduct.divDown(athRateProduct),
FixedPoint.ONE, // Supply has not changed so supplyGrowthRatio = 1
getProtocolFeePercentageCache(ProtocolFeeType.YIELD)
),
rateProduct
);
}
function _updateATHRateProduct(uint256 rateProduct) internal {
_athRateProduct = rateProduct;
}
/**
* @dev Returns the amount of BPT to be minted as protocol fees prior to processing a join/exit.
* Note that this isn't a view function. This function automatically updates `_athRateProduct` to ensure that
* proper accounting is performed to prevent charging duplicate protocol fees.
* @param preJoinExitInvariant - The Pool's invariant prior to the join/exit.
* @param normalizedWeights - The Pool's normalized token weights.
* @param preJoinExitSupply - The Pool's total supply prior to the join/exit *before* minting protocol fees.
* @return protocolFeesToBeMinted - The amount of BPT to be minted as protocol fees.
* @return athRateProduct - The new all-time-high rate product if it has increased, otherwise zero.
*/
function _getPreJoinExitProtocolFees(
uint256 preJoinExitInvariant,
uint256[] memory normalizedWeights,
uint256 preJoinExitSupply
) internal view returns (uint256, uint256) {
uint256 protocolSwapFeesPoolPercentage = _getSwapProtocolFeesPoolPercentage(
preJoinExitInvariant,
getProtocolFeePercentageCache(ProtocolFeeType.SWAP)
);
(uint256 protocolYieldFeesPoolPercentage, uint256 athRateProduct) = _getYieldProtocolFeesPoolPercentage(
normalizedWeights
);
return (
ProtocolFees.bptForPoolOwnershipPercentage(
preJoinExitSupply,
protocolSwapFeesPoolPercentage + protocolYieldFeesPoolPercentage
),
athRateProduct
);
}
/**
* @dev Returns the amount of BPT to be minted to pay protocol fees on swap fees accrued during a join/exit.
* Note that this isn't a view function. This function automatically updates `_lastPostJoinExitInvariant` to
* ensure that proper accounting is performed to prevent charging duplicate protocol fees.
* @param preJoinExitInvariant - The Pool's invariant prior to the join/exit.
* @param preBalances - The Pool's balances prior to the join/exit.
* @param balanceDeltas - The changes to the Pool's balances due to the join/exit.
* @param normalizedWeights - The Pool's normalized token weights.
* @param preJoinExitSupply - The Pool's total supply prior to the join/exit *after* minting protocol fees.
* @param postJoinExitSupply - The Pool's total supply after the join/exit.
*/
function _getPostJoinExitProtocolFees(
uint256 preJoinExitInvariant,
uint256[] memory preBalances,
uint256[] memory balanceDeltas,
uint256[] memory normalizedWeights,
uint256 preJoinExitSupply,
uint256 postJoinExitSupply
) internal returns (uint256) {
bool isJoin = postJoinExitSupply >= preJoinExitSupply;
// Compute the post balances by adding or removing the deltas.
for (uint256 i = 0; i < preBalances.length; ++i) {
preBalances[i] = isJoin
? SafeMath.add(preBalances[i], balanceDeltas[i])
: SafeMath.sub(preBalances[i], balanceDeltas[i]);
}
// preBalances have now been mutated to reflect the postJoinExit balances.
uint256 postJoinExitInvariant = WeightedMath._calculateInvariant(normalizedWeights, preBalances);
uint256 protocolSwapFeePercentage = getProtocolFeePercentageCache(ProtocolFeeType.SWAP);
_updatePostJoinExit(postJoinExitInvariant);
// We return immediately if the fee percentage is zero to avoid unnecessary computation.
if (protocolSwapFeePercentage == 0) return 0;
uint256 protocolFeeAmount = InvariantGrowthProtocolSwapFees.calcDueProtocolFees(
postJoinExitInvariant.divDown(preJoinExitInvariant),
preJoinExitSupply,
postJoinExitSupply,
protocolSwapFeePercentage
);
return protocolFeeAmount;
}
function _updatePostJoinExit(uint256 postJoinExitInvariant) internal virtual override {
// After all joins and exits we store the post join/exit invariant in order to compute growth due to swap fees
// in the next one.
_setMiscData(
_getMiscData().insertUint(
postJoinExitInvariant,
_LAST_POST_JOINEXIT_INVARIANT_OFFSET,
_LAST_POST_JOINEXIT_INVARIANT_BIT_LENGTH
)
);
}
// Helper functions
/**
* @notice Returns the contribution to the total rate product from a token with the given weight and rate provider.
*/
function _getRateFactor(uint256 normalizedWeight, IRateProvider provider) internal view returns (uint256) {
return provider == IRateProvider(0) ? FixedPoint.ONE : provider.getRate().powDown(normalizedWeight);
}
/**
* @dev Returns the weighted product of all the token rates.
*/
function _getRateProduct(uint256[] memory normalizedWeights) internal view returns (uint256) {
uint256 totalTokens = normalizedWeights.length;
uint256 rateProduct = FixedPoint.mulDown(
_getRateFactor(normalizedWeights[0], _rateProvider0),
_getRateFactor(normalizedWeights[1], _rateProvider1)
);
if (totalTokens > 2) {
rateProduct = rateProduct.mulDown(_getRateFactor(normalizedWeights[2], _rateProvider2));
} else {
return rateProduct;
}
if (totalTokens > 3) {
rateProduct = rateProduct.mulDown(_getRateFactor(normalizedWeights[3], _rateProvider3));
} else {
return rateProduct;
}
if (totalTokens > 4) {
rateProduct = rateProduct.mulDown(_getRateFactor(normalizedWeights[4], _rateProvider4));
} else {
return rateProduct;
}
if (totalTokens > 5) {
rateProduct = rateProduct.mulDown(_getRateFactor(normalizedWeights[5], _rateProvider5));
} else {
return rateProduct;
}
if (totalTokens > 6) {
rateProduct = rateProduct.mulDown(_getRateFactor(normalizedWeights[6], _rateProvider6));
} else {
return rateProduct;
}
if (totalTokens > 7) {
rateProduct = rateProduct.mulDown(_getRateFactor(normalizedWeights[7], _rateProvider7));
}
return rateProduct;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "../solidity-utils/openzeppelin/IERC20.sol";
library WeightedPoolUserData {
// In order to preserve backwards compatibility, make sure new join and exit kinds are added at the end of the enum.
enum JoinKind {
INIT,
EXACT_TOKENS_IN_FOR_BPT_OUT,
TOKEN_IN_FOR_EXACT_BPT_OUT,
ALL_TOKENS_IN_FOR_EXACT_BPT_OUT,
ADD_TOKEN // for Managed Pool
}
enum ExitKind {
EXACT_BPT_IN_FOR_ONE_TOKEN_OUT,
EXACT_BPT_IN_FOR_TOKENS_OUT,
BPT_IN_FOR_EXACT_TOKENS_OUT,
REMOVE_TOKEN // for ManagedPool
}
function joinKind(bytes memory self) internal pure returns (JoinKind) {
return abi.decode(self, (JoinKind));
}
function exitKind(bytes memory self) internal pure returns (ExitKind) {
return abi.decode(self, (ExitKind));
}
// Joins
function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) {
(, amountsIn) = abi.decode(self, (JoinKind, uint256[]));
}
function exactTokensInForBptOut(bytes memory self)
internal
pure
returns (uint256[] memory amountsIn, uint256 minBPTAmountOut)
{
(, amountsIn, minBPTAmountOut) = abi.decode(self, (JoinKind, uint256[], uint256));
}
function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) {
(, bptAmountOut, tokenIndex) = abi.decode(self, (JoinKind, uint256, uint256));
}
function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) {
(, bptAmountOut) = abi.decode(self, (JoinKind, uint256));
}
function addToken(bytes memory self) internal pure returns (uint256 amountIn) {
(, amountIn) = abi.decode(self, (JoinKind, uint256));
}
// Exits
function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
(, bptAmountIn, tokenIndex) = abi.decode(self, (ExitKind, uint256, uint256));
}
function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
(, bptAmountIn) = abi.decode(self, (ExitKind, uint256));
}
function bptInForExactTokensOut(bytes memory self)
internal
pure
returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn)
{
(, amountsOut, maxBPTAmountIn) = abi.decode(self, (ExitKind, uint256[], uint256));
}
// Managed Pool
function removeToken(bytes memory self) internal pure returns (uint256 tokenIndex) {
(, tokenIndex) = abi.decode(self, (ExitKind, uint256));
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "./LogExpMath.sol";
/* solhint-disable private-vars-leading-underscore */
library FixedPoint {
uint256 internal constant ONE = 1e18; // 18 decimal places
uint256 internal constant TWO = 2 * ONE;
uint256 internal constant FOUR = 4 * ONE;
uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)
// Minimum base for the power function when the exponent is 'free' (larger than ONE).
uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;
function add(uint256 a, uint256 b) internal pure returns (uint256) {
// Fixed Point addition is the same as regular checked addition
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
// Fixed Point addition is the same as regular checked addition
_require(b <= a, Errors.SUB_OVERFLOW);
uint256 c = a - b;
return c;
}
function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
_require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);
return product / ONE;
}
function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 product = a * b;
_require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);
if (product == 0) {
return 0;
} else {
// The traditional divUp formula is:
// divUp(x, y) := (x + y - 1) / y
// To avoid intermediate overflow in the addition, we distribute the division and get:
// divUp(x, y) := (x - 1) / y + 1
// Note that this requires x != 0, which we already tested for.
return ((product - 1) / ONE) + 1;
}
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
if (a == 0) {
return 0;
} else {
uint256 aInflated = a * ONE;
_require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow
return aInflated / b;
}
}
function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
if (a == 0) {
return 0;
} else {
uint256 aInflated = a * ONE;
_require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow
// The traditional divUp formula is:
// divUp(x, y) := (x + y - 1) / y
// To avoid intermediate overflow in the addition, we distribute the division and get:
// divUp(x, y) := (x - 1) / y + 1
// Note that this requires x != 0, which we already tested for.
return ((aInflated - 1) / b) + 1;
}
}
/**
* @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
* the true value (that is, the error function expected - actual is always positive).
*/
function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
// Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
// and 80/20 Weighted Pools
if (y == ONE) {
return x;
} else if (y == TWO) {
return mulDown(x, x);
} else if (y == FOUR) {
uint256 square = mulDown(x, x);
return mulDown(square, square);
} else {
uint256 raw = LogExpMath.pow(x, y);
uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);
if (raw < maxError) {
return 0;
} else {
return sub(raw, maxError);
}
}
}
/**
* @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
* the true value (that is, the error function expected - actual is always negative).
*/
function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
// Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
// and 80/20 Weighted Pools
if (y == ONE) {
return x;
} else if (y == TWO) {
return mulUp(x, x);
} else if (y == FOUR) {
uint256 square = mulUp(x, x);
return mulUp(square, square);
} else {
uint256 raw = LogExpMath.pow(x, y);
uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);
return add(raw, maxError);
}
}
/**
* @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
*
* Useful when computing the complement for values with some level of relative error, as it strips this error and
* prevents intermediate negative values.
*/
function complement(uint256 x) internal pure returns (uint256) {
return (x < ONE) ? (ONE - x) : 0;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
library InputHelpers {
function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
_require(a == b, Errors.INPUT_LENGTH_MISMATCH);
}
function ensureInputLengthMatch(
uint256 a,
uint256 b,
uint256 c
) internal pure {
_require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
}
function ensureArrayIsSorted(IERC20[] memory array) internal pure {
address[] memory addressArray;
// solhint-disable-next-line no-inline-assembly
assembly {
addressArray := array
}
ensureArrayIsSorted(addressArray);
}
function ensureArrayIsSorted(address[] memory array) internal pure {
if (array.length < 2) {
return;
}
address previous = array[0];
for (uint256 i = 1; i < array.length; ++i) {
address current = array[i];
_require(previous < current, Errors.UNSORTED_ARRAY);
previous = current;
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-interfaces/contracts/vault/IMinimalSwapInfoPool.sol";
import "./BasePool.sol";
/**
* @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`.
*
* Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with
* `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal
* Swap Info specialization settings.
*/
abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool {
// Swap Hooks
function onSwap(
SwapRequest memory request,
uint256 balanceTokenIn,
uint256 balanceTokenOut
) public override onlyVault(request.poolId) returns (uint256) {
_beforeSwapJoinExit();
uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn);
uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut);
balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
if (request.kind == IVault.SwapKind.GIVEN_IN) {
// Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
request.amount = _subtractSwapFeeAmount(request.amount);
// All token amounts are upscaled.
request.amount = _upscale(request.amount, scalingFactorTokenIn);
uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut);
// amountOut tokens are exiting the Pool, so we round down.
return _downscaleDown(amountOut, scalingFactorTokenOut);
} else {
// All token amounts are upscaled.
request.amount = _upscale(request.amount, scalingFactorTokenOut);
uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut);
// amountIn tokens are entering the Pool, so we round up.
amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);
// Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
return _addSwapFeeAmount(amountIn);
}
}
/*
* @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
*
* Returns the amount of tokens that will be taken from the Pool in return.
*
* All amounts inside `swapRequest`, `balanceTokenIn`, and `balanceTokenOut` are upscaled. The swap fee has already
* been deducted from `swapRequest.amount`.
*
* The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
* Vault.
*/
function _onSwapGivenIn(
SwapRequest memory swapRequest,
uint256 balanceTokenIn,
uint256 balanceTokenOut
) internal virtual returns (uint256);
/*
* @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
*
* Returns the amount of tokens that will be granted to the Pool in return.
*
* All amounts inside `swapRequest`, `balanceTokenIn`, and `balanceTokenOut` are upscaled.
*
* The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
* and returning it to the Vault.
*/
function _onSwapGivenOut(
SwapRequest memory swapRequest,
uint256 balanceTokenIn,
uint256 balanceTokenOut
) internal virtual returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
// These functions start with an underscore, as if they were part of a contract and not a library. At some point this
// should be fixed.
// solhint-disable private-vars-leading-underscore
library WeightedMath {
using FixedPoint for uint256;
// A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the
// implementation of the power function, as these ratios are often exponents.
uint256 internal constant _MIN_WEIGHT = 0.01e18;
// Having a minimum normalized weight imposes a limit on the maximum number of tokens;
// i.e., the largest possible pool is one where all tokens have exactly the minimum weight.
uint256 internal constant _MAX_WEIGHTED_TOKENS = 100;
// Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight
// ratio).
// Swap limits: amounts swapped may not be larger than this percentage of total balance.
uint256 internal constant _MAX_IN_RATIO = 0.3e18;
uint256 internal constant _MAX_OUT_RATIO = 0.3e18;
// Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio.
uint256 internal constant _MAX_INVARIANT_RATIO = 3e18;
// Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio.
uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18;
// About swap fees on joins and exits:
// Any join or exit that is not perfectly balanced (e.g. all single token joins or exits) is mathematically
// equivalent to a perfectly balanced join or exit followed by a series of swaps. Since these swaps would charge
// swap fees, it follows that (some) joins and exits should as well.
// On these operations, we split the token amounts in 'taxable' and 'non-taxable' portions, where the 'taxable' part
// is the one to which swap fees are applied.
// Invariant is used to collect protocol swap fees by comparing its value between two times.
// So we can round always to the same direction. It is also used to initiate the BPT amount
// and, because there is a minimum BPT, we round down the invariant.
function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances)
internal
pure
returns (uint256 invariant)
{
/**********************************************************************************************
// invariant _____ //
// wi = weight index i | | wi //
// bi = balance index i | | bi ^ = i //
// i = invariant //
**********************************************************************************************/
invariant = FixedPoint.ONE;
for (uint256 i = 0; i < normalizedWeights.length; i++) {
invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i]));
}
_require(invariant > 0, Errors.ZERO_INVARIANT);
}
// Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the
// current balances and weights.
function _calcOutGivenIn(
uint256 balanceIn,
uint256 weightIn,
uint256 balanceOut,
uint256 weightOut,
uint256 amountIn
) internal pure returns (uint256) {
/**********************************************************************************************
// outGivenIn //
// aO = amountOut //
// bO = balanceOut //
// bI = balanceIn / / bI \ (wI / wO) \ //
// aI = amountIn aO = bO * | 1 - | -------------------------- | ^ | //
// wI = weightIn \ \ ( bI + aI ) / / //
// wO = weightOut //
**********************************************************************************************/
// Amount out, so we round down overall.
// The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too).
// Because bI / (bI + aI) <= 1, the exponent rounds down.
// Cannot exceed maximum in ratio
_require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO);
uint256 denominator = balanceIn.add(amountIn);
uint256 base = balanceIn.divUp(denominator);
uint256 exponent = weightIn.divDown(weightOut);
uint256 power = base.powUp(exponent);
return balanceOut.mulDown(power.complement());
}
// Computes how many tokens must be sent to a pool in order to take `amountOut`, given the
// current balances and weights.
function _calcInGivenOut(
uint256 balanceIn,
uint256 weightIn,
uint256 balanceOut,
uint256 weightOut,
uint256 amountOut
) internal pure returns (uint256) {
/**********************************************************************************************
// inGivenOut //
// aO = amountOut //
// bO = balanceOut //
// bI = balanceIn / / bO \ (wO / wI) \ //
// aI = amountIn aI = bI * | | -------------------------- | ^ - 1 | //
// wI = weightIn \ \ ( bO - aO ) / / //
// wO = weightOut //
**********************************************************************************************/
// Amount in, so we round up overall.
// The multiplication rounds up, and the power rounds up (so the base rounds up too).
// Because b0 / (b0 - a0) >= 1, the exponent rounds up.
// Cannot exceed maximum out ratio
_require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO);
uint256 base = balanceOut.divUp(balanceOut.sub(amountOut));
uint256 exponent = weightOut.divUp(weightIn);
uint256 power = base.powUp(exponent);
// Because the base is larger than one (and the power rounds up), the power should always be larger than one, so
// the following subtraction should never revert.
uint256 ratio = power.sub(FixedPoint.ONE);
return balanceIn.mulUp(ratio);
}
function _calcBptOutGivenExactTokensIn(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory amountsIn,
uint256 bptTotalSupply,
uint256 swapFeePercentage
) internal pure returns (uint256) {
// BPT out, so we round down overall.
uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);
uint256 invariantRatioWithFees = 0;
for (uint256 i = 0; i < balances.length; i++) {
balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i]));
}
uint256 invariantRatio = _computeJoinExactTokensInInvariantRatio(
balances,
normalizedWeights,
amountsIn,
balanceRatiosWithFee,
invariantRatioWithFees,
swapFeePercentage
);
uint256 bptOut = (invariantRatio > FixedPoint.ONE)
? bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE))
: 0;
return bptOut;
}
/**
* @dev Intermediate function to avoid stack-too-deep errors.
*/
function _computeJoinExactTokensInInvariantRatio(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory amountsIn,
uint256[] memory balanceRatiosWithFee,
uint256 invariantRatioWithFees,
uint256 swapFeePercentage
) private pure returns (uint256 invariantRatio) {
// Swap fees are charged on all tokens that are being added in a larger proportion than the overall invariant
// increase.
invariantRatio = FixedPoint.ONE;
for (uint256 i = 0; i < balances.length; i++) {
uint256 amountInWithoutFee;
if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE));
uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
uint256 swapFee = taxableAmount.mulUp(swapFeePercentage);
amountInWithoutFee = nonTaxableAmount.add(taxableAmount.sub(swapFee));
} else {
amountInWithoutFee = amountsIn[i];
}
uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]);
invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
}
}
function _calcTokenInGivenExactBptOut(
uint256 balance,
uint256 normalizedWeight,
uint256 bptAmountOut,
uint256 bptTotalSupply,
uint256 swapFeePercentage
) internal pure returns (uint256) {
/******************************************************************************************
// tokenInForExactBPTOut //
// a = amountIn //
// b = balance / / totalBPT + bptOut \ (1 / w) \ //
// bptOut = bptAmountOut a = b * | | -------------------------- | ^ - 1 | //
// bpt = totalBPT \ \ totalBPT / / //
// w = weight //
******************************************************************************************/
// Token in, so we round up overall.
// Calculate the factor by which the invariant will increase after minting BPTAmountOut
uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply);
_require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN);
// Calculate by how much the token balance has to increase to match the invariantRatio
uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight));
uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE));
// We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees
// accordingly.
uint256 taxableAmount = amountInWithoutFee.mulUp(normalizedWeight.complement());
uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount);
uint256 taxableAmountPlusFees = taxableAmount.divUp(swapFeePercentage.complement());
return nonTaxableAmount.add(taxableAmountPlusFees);
}
function _calcAllTokensInGivenExactBptOut(
uint256[] memory balances,
uint256 bptAmountOut,
uint256 totalBPT
) internal pure returns (uint256[] memory) {
/************************************************************************************
// tokensInForExactBptOut //
// (per token) //
// aI = amountIn / bptOut \ //
// b = balance aI = b * | ------------ | //
// bptOut = bptAmountOut \ totalBPT / //
// bpt = totalBPT //
************************************************************************************/
// Tokens in, so we round up overall.
uint256 bptRatio = bptAmountOut.divUp(totalBPT);
uint256[] memory amountsIn = new uint256[](balances.length);
for (uint256 i = 0; i < balances.length; i++) {
amountsIn[i] = balances[i].mulUp(bptRatio);
}
return amountsIn;
}
function _calcBptInGivenExactTokensOut(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory amountsOut,
uint256 bptTotalSupply,
uint256 swapFeePercentage
) internal pure returns (uint256) {
// BPT in, so we round up overall.
uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length);
uint256 invariantRatioWithoutFees = 0;
for (uint256 i = 0; i < balances.length; i++) {
balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]);
invariantRatioWithoutFees = invariantRatioWithoutFees.add(
balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i])
);
}
uint256 invariantRatio = _computeExitExactTokensOutInvariantRatio(
balances,
normalizedWeights,
amountsOut,
balanceRatiosWithoutFee,
invariantRatioWithoutFees,
swapFeePercentage
);
return bptTotalSupply.mulUp(invariantRatio.complement());
}
/**
* @dev Intermediate function to avoid stack-too-deep errors.
*/
function _computeExitExactTokensOutInvariantRatio(
uint256[] memory balances,
uint256[] memory normalizedWeights,
uint256[] memory amountsOut,
uint256[] memory balanceRatiosWithoutFee,
uint256 invariantRatioWithoutFees,
uint256 swapFeePercentage
) private pure returns (uint256 invariantRatio) {
invariantRatio = FixedPoint.ONE;
for (uint256 i = 0; i < balances.length; i++) {
// Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to
// 'token out'. This results in slightly larger price impact.
uint256 amountOutWithFee;
if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) {
uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement());
uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount);
uint256 taxableAmountPlusFees = taxableAmount.divUp(swapFeePercentage.complement());
amountOutWithFee = nonTaxableAmount.add(taxableAmountPlusFees);
} else {
amountOutWithFee = amountsOut[i];
}
uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]);
invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
}
}
function _calcTokenOutGivenExactBptIn(
uint256 balance,
uint256 normalizedWeight,
uint256 bptAmountIn,
uint256 bptTotalSupply,
uint256 swapFeePercentage
) internal pure returns (uint256) {
/*****************************************************************************************
// exactBPTInForTokenOut //
// a = amountOut //
// b = balance / / totalBPT - bptIn \ (1 / w) \ //
// bptIn = bptAmountIn a = b * | 1 - | -------------------------- | ^ | //
// bpt = totalBPT \ \ totalBPT / / //
// w = weight //
*****************************************************************************************/
// Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base
// rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down.
// Calculate the factor by which the invariant will decrease after burning BPTAmountIn
uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply);
_require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT);
// Calculate by how much the token balance has to decrease to match invariantRatio
uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight));
// Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts.
uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement());
// We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
// in swap fees.
// Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
// to 'token out'. This results in slightly larger price impact. Fees are rounded up.
uint256 taxableAmount = amountOutWithoutFee.mulUp(normalizedWeight.complement());
uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);
uint256 taxableAmountMinusFees = taxableAmount.mulUp(swapFeePercentage.complement());
return nonTaxableAmount.add(taxableAmountMinusFees);
}
function _calcTokensOutGivenExactBptIn(
uint256[] memory balances,
uint256 bptAmountIn,
uint256 totalBPT
) internal pure returns (uint256[] memory) {
/**********************************************************************************************
// exactBPTInForTokensOut //
// (per token) //
// aO = amountOut / bptIn \ //
// b = balance a0 = b * | --------------------- | //
// bptIn = bptAmountIn \ totalBPT / //
// bpt = totalBPT //
**********************************************************************************************/
// Since we're computing an amount out, we round down overall. This means rounding down on both the
// multiplication and division.
uint256 bptRatio = bptAmountIn.divDown(totalBPT);
uint256[] memory amountsOut = new uint256[](balances.length);
for (uint256 i = 0; i < balances.length; i++) {
amountsOut[i] = balances[i].mulDown(bptRatio);
}
return amountsOut;
}
/**
* @dev Calculate the amount of BPT which should be minted when adding a new token to the Pool.
*
* Note that normalizedWeight is set that it corresponds to the desired weight of this token *after* adding it.
* i.e. For a two token 50:50 pool which we want to turn into a 33:33:33 pool, we use a normalized weight of 33%
* @param totalSupply - the total supply of the Pool's BPT.
* @param normalizedWeight - the normalized weight of the token to be added (normalized relative to final weights)
*/
function _calcBptOutAddToken(uint256 totalSupply, uint256 normalizedWeight) internal pure returns (uint256) {
// The amount of BPT which is equivalent to the token being added may be calculated by the growth in the
// sum of the token weights, i.e. if we add a token which will make up 50% of the pool then we should receive
// 50% of the new supply of BPT.
//
// The growth in the total weight of the pool can be easily calculated by:
//
// weightSumRatio = totalWeight / (totalWeight - newTokenWeight)
//
// As we're working with normalized weights `totalWeight` is equal to 1.
uint256 weightSumRatio = FixedPoint.ONE.divDown(FixedPoint.ONE.sub(normalizedWeight));
// The amount of BPT to mint is then simply:
//
// toMint = totalSupply * (weightSumRatio - 1)
return totalSupply.mulDown(weightSumRatio.sub(FixedPoint.ONE));
}
}// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.
// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/* solhint-disable */
/**
* @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
*
* Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
* exponentiation and logarithm (where the base is Euler's number).
*
* @author Fernando Martinelli - @fernandomartinelli
* @author Sergio Yuhjtman - @sergioyuhjtman
* @author Daniel Fernandez - @dmf7z
*/
library LogExpMath {
// All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
// two numbers, and multiply by ONE when dividing them.
// All arguments and return values are 18 decimal fixed point numbers.
int256 constant ONE_18 = 1e18;
// Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
// case of ln36, 36 decimals.
int256 constant ONE_20 = 1e20;
int256 constant ONE_36 = 1e36;
// The domain of natural exponentiation is bound by the word size and number of decimals used.
//
// Because internally the result will be stored using 20 decimals, the largest possible result is
// (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
// The smallest possible result is 10^(-18), which makes largest negative argument
// ln(10^(-18)) = -41.446531673892822312.
// We use 130.0 and -41.0 to have some safety margin.
int256 constant MAX_NATURAL_EXPONENT = 130e18;
int256 constant MIN_NATURAL_EXPONENT = -41e18;
// Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
// 256 bit integer.
int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;
uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);
// 18 decimal constants
int256 constant x0 = 128000000000000000000; // 2ˆ7
int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
int256 constant x1 = 64000000000000000000; // 2ˆ6
int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)
// 20 decimal constants
int256 constant x2 = 3200000000000000000000; // 2ˆ5
int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
int256 constant x3 = 1600000000000000000000; // 2ˆ4
int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
int256 constant x4 = 800000000000000000000; // 2ˆ3
int256 constant a4 = 298095798704172827474000; // eˆ(x4)
int256 constant x5 = 400000000000000000000; // 2ˆ2
int256 constant a5 = 5459815003314423907810; // eˆ(x5)
int256 constant x6 = 200000000000000000000; // 2ˆ1
int256 constant a6 = 738905609893065022723; // eˆ(x6)
int256 constant x7 = 100000000000000000000; // 2ˆ0
int256 constant a7 = 271828182845904523536; // eˆ(x7)
int256 constant x8 = 50000000000000000000; // 2ˆ-1
int256 constant a8 = 164872127070012814685; // eˆ(x8)
int256 constant x9 = 25000000000000000000; // 2ˆ-2
int256 constant a9 = 128402541668774148407; // eˆ(x9)
int256 constant x10 = 12500000000000000000; // 2ˆ-3
int256 constant a10 = 113314845306682631683; // eˆ(x10)
int256 constant x11 = 6250000000000000000; // 2ˆ-4
int256 constant a11 = 106449445891785942956; // eˆ(x11)
/**
* @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
*
* Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
*/
function pow(uint256 x, uint256 y) internal pure returns (uint256) {
if (y == 0) {
// We solve the 0^0 indetermination by making it equal one.
return uint256(ONE_18);
}
if (x == 0) {
return 0;
}
// Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
// arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
// x^y = exp(y * ln(x)).
// The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
_require(x >> 255 == 0, Errors.X_OUT_OF_BOUNDS);
int256 x_int256 = int256(x);
// We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
// both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.
// This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
_require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
int256 y_int256 = int256(y);
int256 logx_times_y;
if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
int256 ln_36_x = _ln_36(x_int256);
// ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
// bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
// multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
// (downscaled) last 18 decimals.
logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
} else {
logx_times_y = _ln(x_int256) * y_int256;
}
logx_times_y /= ONE_18;
// Finally, we compute exp(y * ln(x)) to arrive at x^y
_require(
MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
Errors.PRODUCT_OUT_OF_BOUNDS
);
return uint256(exp(logx_times_y));
}
/**
* @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
*
* Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
*/
function exp(int256 x) internal pure returns (int256) {
_require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);
if (x < 0) {
// We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
// fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
// Fixed point division requires multiplying by ONE_18.
return ((ONE_18 * ONE_18) / exp(-x));
}
// First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
// where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
// because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
// decomposition.
// At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
// decomposition, which will be lower than the smallest x_n.
// exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
// We mutate x by subtracting x_n, making it the remainder of the decomposition.
// The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
// intermediate overflows. Instead we store them as plain integers, with 0 decimals.
// Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
// decomposition.
// For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
// it and compute the accumulated product.
int256 firstAN;
if (x >= x0) {
x -= x0;
firstAN = a0;
} else if (x >= x1) {
x -= x1;
firstAN = a1;
} else {
firstAN = 1; // One with no decimal places
}
// We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
// smaller terms.
x *= 100;
// `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
// one. Recall that fixed point multiplication requires dividing by ONE_20.
int256 product = ONE_20;
if (x >= x2) {
x -= x2;
product = (product * a2) / ONE_20;
}
if (x >= x3) {
x -= x3;
product = (product * a3) / ONE_20;
}
if (x >= x4) {
x -= x4;
product = (product * a4) / ONE_20;
}
if (x >= x5) {
x -= x5;
product = (product * a5) / ONE_20;
}
if (x >= x6) {
x -= x6;
product = (product * a6) / ONE_20;
}
if (x >= x7) {
x -= x7;
product = (product * a7) / ONE_20;
}
if (x >= x8) {
x -= x8;
product = (product * a8) / ONE_20;
}
if (x >= x9) {
x -= x9;
product = (product * a9) / ONE_20;
}
// x10 and x11 are unnecessary here since we have high enough precision already.
// Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
// expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).
int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
int256 term; // Each term in the sum, where the nth term is (x^n / n!).
// The first term is simply x.
term = x;
seriesSum += term;
// Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
// multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.
term = ((term * x) / ONE_20) / 2;
seriesSum += term;
term = ((term * x) / ONE_20) / 3;
seriesSum += term;
term = ((term * x) / ONE_20) / 4;
seriesSum += term;
term = ((term * x) / ONE_20) / 5;
seriesSum += term;
term = ((term * x) / ONE_20) / 6;
seriesSum += term;
term = ((term * x) / ONE_20) / 7;
seriesSum += term;
term = ((term * x) / ONE_20) / 8;
seriesSum += term;
term = ((term * x) / ONE_20) / 9;
seriesSum += term;
term = ((term * x) / ONE_20) / 10;
seriesSum += term;
term = ((term * x) / ONE_20) / 11;
seriesSum += term;
term = ((term * x) / ONE_20) / 12;
seriesSum += term;
// 12 Taylor terms are sufficient for 18 decimal precision.
// We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
// approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
// all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
// and then drop two digits to return an 18 decimal value.
return (((product * seriesSum) / ONE_20) * firstAN) / 100;
}
/**
* @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
*/
function log(int256 arg, int256 base) internal pure returns (int256) {
// This performs a simple base change: log(arg, base) = ln(arg) / ln(base).
// Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
// upscaling.
int256 logBase;
if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
logBase = _ln_36(base);
} else {
logBase = _ln(base) * ONE_18;
}
int256 logArg;
if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
logArg = _ln_36(arg);
} else {
logArg = _ln(arg) * ONE_18;
}
// When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
return (logArg * ONE_18) / logBase;
}
/**
* @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function ln(int256 a) internal pure returns (int256) {
// The real natural logarithm is not defined for negative numbers or zero.
_require(a > 0, Errors.OUT_OF_BOUNDS);
if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
return _ln_36(a) / ONE_18;
} else {
return _ln(a);
}
}
/**
* @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
*/
function _ln(int256 a) private pure returns (int256) {
if (a < ONE_18) {
// Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
// than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
// Fixed point division requires multiplying by ONE_18.
return (-_ln((ONE_18 * ONE_18) / a));
}
// First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
// we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
// ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
// be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
// At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
// decomposition, which will be lower than the smallest a_n.
// ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
// We mutate a by subtracting a_n, making it the remainder of the decomposition.
// For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
// numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
// ONE_18 to convert them to fixed point.
// For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
// by it and compute the accumulated sum.
int256 sum = 0;
if (a >= a0 * ONE_18) {
a /= a0; // Integer, not fixed point division
sum += x0;
}
if (a >= a1 * ONE_18) {
a /= a1; // Integer, not fixed point division
sum += x1;
}
// All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
sum *= 100;
a *= 100;
// Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.
if (a >= a2) {
a = (a * ONE_20) / a2;
sum += x2;
}
if (a >= a3) {
a = (a * ONE_20) / a3;
sum += x3;
}
if (a >= a4) {
a = (a * ONE_20) / a4;
sum += x4;
}
if (a >= a5) {
a = (a * ONE_20) / a5;
sum += x5;
}
if (a >= a6) {
a = (a * ONE_20) / a6;
sum += x6;
}
if (a >= a7) {
a = (a * ONE_20) / a7;
sum += x7;
}
if (a >= a8) {
a = (a * ONE_20) / a8;
sum += x8;
}
if (a >= a9) {
a = (a * ONE_20) / a9;
sum += x9;
}
if (a >= a10) {
a = (a * ONE_20) / a10;
sum += x10;
}
if (a >= a11) {
a = (a * ONE_20) / a11;
sum += x11;
}
// a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
// that converges rapidly for values of `a` close to one - the same one used in ln_36.
// Let z = (a - 1) / (a + 1).
// ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
// division by ONE_20.
int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
int256 z_squared = (z * z) / ONE_20;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_20;
seriesSum += num / 3;
num = (num * z_squared) / ONE_20;
seriesSum += num / 5;
num = (num * z_squared) / ONE_20;
seriesSum += num / 7;
num = (num * z_squared) / ONE_20;
seriesSum += num / 9;
num = (num * z_squared) / ONE_20;
seriesSum += num / 11;
// 6 Taylor terms are sufficient for 36 decimal precision.
// Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
seriesSum *= 2;
// We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
// with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
// value.
return (sum + seriesSum) / 100;
}
/**
* @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
* for x close to one.
*
* Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
*/
function _ln_36(int256 x) private pure returns (int256) {
// Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
// worthwhile.
// First, we transform x to a 36 digit fixed point value.
x *= ONE_18;
// We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
// ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))
// Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
// division by ONE_36.
int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
int256 z_squared = (z * z) / ONE_36;
// num is the numerator of the series: the z^(2 * n + 1) term
int256 num = z;
// seriesSum holds the accumulated sum of each term in the series, starting with the initial z
int256 seriesSum = num;
// In each step, the numerator is multiplied by z^2
num = (num * z_squared) / ONE_36;
seriesSum += num / 3;
num = (num * z_squared) / ONE_36;
seriesSum += num / 5;
num = (num * z_squared) / ONE_36;
seriesSum += num / 7;
num = (num * z_squared) / ONE_36;
seriesSum += num / 9;
num = (num * z_squared) / ONE_36;
seriesSum += num / 11;
num = (num * z_squared) / ONE_36;
seriesSum += num / 13;
num = (num * z_squared) / ONE_36;
seriesSum += num / 15;
// 8 Taylor terms are sufficient for 36 decimal precision.
// All that remains is multiplying by 2 (non fixed point).
return seriesSum * 2;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./IBasePool.sol";
/**
* @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface.
*
* This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
* Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant
* to the pool in a 'given out' swap.
*
* This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
* changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
* indeed the Vault.
*/
interface IMinimalSwapInfoPool is IBasePool {
function onSwap(
SwapRequest memory swapRequest,
uint256 currentBalanceTokenIn,
uint256 currentBalanceTokenOut
) external returns (uint256 amount);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IAssetManager.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IControlledPool.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IBasePool.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";
import "./RecoveryMode.sol";
// solhint-disable max-states-count
/**
* @notice Reference implementation for the base layer of a Pool contract.
* @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional
* Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
*
* This Pool pays protocol fees by minting BPT directly to the ProtocolFeeCollector instead of using the
* `dueProtocolFees` return value. This results in the underlying tokens continuing to provide liquidity
* for traders, while still keeping gas usage to a minimum since only a single token (the BPT) is transferred.
*
* Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
* derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
* `whenNotPaused` modifier.
*
* No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
*
* Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
* BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
* and implement the swap callbacks themselves.
*/
abstract contract BasePool is
IBasePool,
IControlledPool,
BasePoolAuthorization,
BalancerPoolToken,
TemporarilyPausable,
RecoveryMode
{
using WordCodec for bytes32;
using FixedPoint for uint256;
using BasePoolUserData for bytes;
uint256 private constant _MIN_TOKENS = 2;
uint256 private constant _DEFAULT_MINIMUM_BPT = 1e6;
// 1e18 corresponds to 1.0, or a 100% fee
uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits
// `_miscData` is a storage slot that can be used to store unrelated pieces of information. All pools store the
// recovery mode flag and swap fee percentage, but `miscData` can be extended to store more pieces of information.
// The most signficant bit is reserved for the recovery mode flag, and the swap fee percentage is stored in
// the next most significant 63 bits, leaving the remaining 192 bits free to store any other information derived
// pools might need.
//
// This slot is preferred for gas-sensitive operations as it is read in all joins, swaps and exits,
// and therefore warm.
// [ recovery | swap fee | available ]
// [ 1 bit | 63 bits | 192 bits ]
// [ MSB LSB ]
bytes32 private _miscData;
uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;
uint256 private constant _RECOVERY_MODE_BIT_OFFSET = 255;
// A fee can never be larger than FixedPoint.ONE, which fits in 60 bits, so 63 is more than enough.
uint256 private constant _SWAP_FEE_PERCENTAGE_BIT_LENGTH = 63;
bytes32 private immutable _poolId;
// Note that this value is immutable in the Vault, so we can make it immutable here and save gas
IProtocolFeesCollector private immutable _protocolFeesCollector;
event SwapFeePercentageChanged(uint256 swapFeePercentage);
constructor(
IVault vault,
IVault.PoolSpecialization specialization,
string memory name,
string memory symbol,
IERC20[] memory tokens,
address[] memory assetManagers,
uint256 swapFeePercentage,
uint256 pauseWindowDuration,
uint256 bufferPeriodDuration,
address owner
)
// Base Pools are expected to be deployed using factories. By using the factory address as the action
// disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
// simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
// any Pool created by the same factory), while still making action identifiers unique among different factories
// if the selectors match, preventing accidental errors.
Authentication(bytes32(uint256(msg.sender)))
BalancerPoolToken(name, symbol, vault)
BasePoolAuthorization(owner)
TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
{
_require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
_require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS);
// The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
// to make the developer experience consistent, we are requiring this condition for all the native pools.
// Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same
// order. We rely on this property to make Pools simpler to write, as it lets us assume that the
// order of token-specific parameters (such as token weights) will not change.
InputHelpers.ensureArrayIsSorted(tokens);
_setSwapFeePercentage(swapFeePercentage);
bytes32 poolId = vault.registerPool(specialization);
vault.registerTokens(poolId, tokens, assetManagers);
// Set immutable state variables - these cannot be read from during construction
_poolId = poolId;
_protocolFeesCollector = vault.getProtocolFeesCollector();
}
// Getters / Setters
/**
* @notice Return the pool id.
*/
function getPoolId() public view override returns (bytes32) {
return _poolId;
}
function _getTotalTokens() internal view virtual returns (uint256);
function _getMaxTokens() internal pure virtual returns (uint256);
/**
* @dev Returns the minimum BPT supply. This amount is minted to the zero address during initialization, effectively
* locking it.
*
* This is useful to make sure Pool initialization happens only once, but derived Pools can change this value (even
* to zero) by overriding this function.
*/
function _getMinimumBpt() internal pure virtual returns (uint256) {
return _DEFAULT_MINIMUM_BPT;
}
/**
* @notice Return the current value of the swap fee percentage.
* @dev This is stored in `_miscData`.
*/
function getSwapFeePercentage() public view virtual override returns (uint256) {
return _miscData.decodeUint(_SWAP_FEE_PERCENTAGE_OFFSET, _SWAP_FEE_PERCENTAGE_BIT_LENGTH);
}
/**
* @notice Return the ProtocolFeesCollector contract.
* @dev This is immutable, and retrieved from the Vault on construction. (It is also immutable in the Vault.)
*/
function getProtocolFeesCollector() public view returns (IProtocolFeesCollector) {
return _protocolFeesCollector;
}
/**
* @notice Set the swap fee percentage.
* @dev This is a permissioned function, and disabled if the pool is paused. The swap fee must be within the
* bounds set by MIN_SWAP_FEE_PERCENTAGE/MAX_SWAP_FEE_PERCENTAGE. Emits the SwapFeePercentageChanged event.
*/
function setSwapFeePercentage(uint256 swapFeePercentage) public virtual override authenticate whenNotPaused {
_setSwapFeePercentage(swapFeePercentage);
}
function _setSwapFeePercentage(uint256 swapFeePercentage) internal virtual {
_require(swapFeePercentage >= _getMinSwapFeePercentage(), Errors.MIN_SWAP_FEE_PERCENTAGE);
_require(swapFeePercentage <= _getMaxSwapFeePercentage(), Errors.MAX_SWAP_FEE_PERCENTAGE);
_miscData = _miscData.insertUint(
swapFeePercentage,
_SWAP_FEE_PERCENTAGE_OFFSET,
_SWAP_FEE_PERCENTAGE_BIT_LENGTH
);
emit SwapFeePercentageChanged(swapFeePercentage);
}
function _getMinSwapFeePercentage() internal pure virtual returns (uint256) {
return _MIN_SWAP_FEE_PERCENTAGE;
}
function _getMaxSwapFeePercentage() internal pure virtual returns (uint256) {
return _MAX_SWAP_FEE_PERCENTAGE;
}
/**
* @notice Returns whether the pool is in Recovery Mode.
*/
function inRecoveryMode() public view override returns (bool) {
return _miscData.decodeBool(_RECOVERY_MODE_BIT_OFFSET);
}
/**
* @dev Sets the recoveryMode state, and emits the corresponding event.
*/
function _setRecoveryMode(bool enabled) internal virtual override {
_miscData = _miscData.insertBool(enabled, _RECOVERY_MODE_BIT_OFFSET);
emit RecoveryModeStateChanged(enabled);
// Some pools need to update their state when leaving recovery mode to ensure proper functioning of the Pool.
// We do not allow an `_onEnableRecoveryMode()` hook as this may jeopardize the ability to enable Recovery mode.
if (!enabled) _onDisableRecoveryMode();
}
/**
* @dev Performs any necessary actions on the disabling of Recovery Mode.
* This is usually to reset any fee collection mechanisms to ensure that they operate correctly going forward.
*/
function _onDisableRecoveryMode() internal virtual {
// solhint-disable-previous-line no-empty-blocks
}
/**
* @notice Set the asset manager parameters for the given token.
* @dev This is a permissioned function, unavailable when the pool is paused.
* The details of the configuration data are set by each Asset Manager. (For an example, see
* `RewardsAssetManager`.)
*/
function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig)
public
virtual
override
authenticate
whenNotPaused
{
_setAssetManagerPoolConfig(token, poolConfig);
}
function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private {
bytes32 poolId = getPoolId();
(, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token);
IAssetManager(assetManager).setConfig(poolId, poolConfig);
}
/**
* @notice Pause the pool: an emergency action which disables all pool functions.
* @dev This is a permissioned function that will only work during the Pause Window set during pool factory
* deployment (see `TemporarilyPausable`).
*/
function pause() external authenticate {
_setPaused(true);
}
/**
* @notice Reverse a `pause` operation, and restore a pool to normal functionality.
* @dev This is a permissioned function that will only work on a paused pool within the Buffer Period set during
* pool factory deployment (see `TemporarilyPausable`). Note that any paused pools will automatically unpause
* after the Buffer Period expires.
*/
function unpause() external authenticate {
_setPaused(false);
}
function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
return
(actionId == getActionId(this.setSwapFeePercentage.selector)) ||
(actionId == getActionId(this.setAssetManagerPoolConfig.selector));
}
function _getMiscData() internal view returns (bytes32) {
return _miscData;
}
/**
* @dev Inserts data into the least-significant 192 bits of the misc data storage slot.
* Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded.
*/
function _setMiscData(bytes32 newData) internal {
_miscData = _miscData.insertBits192(newData, 0);
}
// Join / Exit Hooks
modifier onlyVault(bytes32 poolId) {
_require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
_require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
_;
}
/**
* @notice Vault hook for adding liquidity to a pool (including the first time, "initializing" the pool).
* @dev This function can only be called from the Vault, from `joinPool`.
*/
function onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
_beforeSwapJoinExit();
uint256[] memory scalingFactors = _scalingFactors();
if (totalSupply() == 0) {
(uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(
poolId,
sender,
recipient,
scalingFactors,
userData
);
// On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a
// minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the
// Pool from ever being fully drained.
_require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT);
_mintPoolTokens(address(0), _getMinimumBpt());
_mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt());
// amountsIn are amounts entering the Pool, so we round up.
_downscaleUpArray(amountsIn, scalingFactors);
return (amountsIn, new uint256[](balances.length));
} else {
_upscaleArray(balances, scalingFactors);
(uint256 bptAmountOut, uint256[] memory amountsIn) = _onJoinPool(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
inRecoveryMode() ? 0 : protocolSwapFeePercentage, // Protocol fees are disabled while in recovery mode
scalingFactors,
userData
);
// Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.
_mintPoolTokens(recipient, bptAmountOut);
// amountsIn are amounts entering the Pool, so we round up.
_downscaleUpArray(amountsIn, scalingFactors);
// This Pool ignores the `dueProtocolFees` return value, so we simply return a zeroed-out array.
return (amountsIn, new uint256[](balances.length));
}
}
/**
* @notice Vault hook for removing liquidity from a pool.
* @dev This function can only be called from the Vault, from `exitPool`.
*/
function onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
uint256[] memory amountsOut;
uint256 bptAmountIn;
// When a user calls `exitPool`, this is the first point of entry from the Vault.
// We first check whether this is a Recovery Mode exit - if so, we proceed using this special lightweight exit
// mechanism which avoids computing any complex values, interacting with external contracts, etc., and generally
// should always work, even if the Pool's mathematics or a dependency break down.
if (userData.isRecoveryModeExitKind()) {
// This exit kind is only available in Recovery Mode.
_ensureInRecoveryMode();
// Note that we don't upscale balances nor downscale amountsOut - we don't care about scaling factors during
// a recovery mode exit.
(bptAmountIn, amountsOut) = _doRecoveryModeExit(balances, totalSupply(), userData);
} else {
// Note that we only call this if we're not in a recovery mode exit.
_beforeSwapJoinExit();
uint256[] memory scalingFactors = _scalingFactors();
_upscaleArray(balances, scalingFactors);
(bptAmountIn, amountsOut) = _onExitPool(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
inRecoveryMode() ? 0 : protocolSwapFeePercentage, // Protocol fees are disabled while in recovery mode
scalingFactors,
userData
);
// amountsOut are amounts exiting the Pool, so we round down.
_downscaleDownArray(amountsOut, scalingFactors);
}
// Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.
_burnPoolTokens(sender, bptAmountIn);
// This Pool ignores the `dueProtocolFees` return value, so we simply return a zeroed-out array.
return (amountsOut, new uint256[](balances.length));
}
// Query functions
/**
* @notice "Dry run" `onJoinPool`.
* @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
* Vault with the same arguments, along with the number of tokens `sender` would have to supply.
*
* This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
* data, such as the protocol swap fee percentage and Pool balances.
*
* Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
* explicitly use eth_call instead of eth_sendTransaction.
*/
function queryJoin(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external override returns (uint256 bptOut, uint256[] memory amountsIn) {
InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());
_queryAction(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
userData,
_onJoinPool,
_downscaleUpArray
);
// The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
// and we don't need to return anything here - it just silences compiler warnings.
return (bptOut, amountsIn);
}
/**
* @notice "Dry run" `onExitPool`.
* @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
* Vault with the same arguments, along with the number of tokens `recipient` would receive.
*
* This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
* data, such as the protocol swap fee percentage and Pool balances.
*
* Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
* explicitly use eth_call instead of eth_sendTransaction.
*/
function queryExit(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external override returns (uint256 bptIn, uint256[] memory amountsOut) {
InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());
_queryAction(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
userData,
_onExitPool,
_downscaleDownArray
);
// The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
// and we don't need to return anything here - it just silences compiler warnings.
return (bptIn, amountsOut);
}
// Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
// upscaled.
/**
* @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
*
* Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
*
* Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and
* sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP
* from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire
* Pool's lifetime.
*
* The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
* be downscaled (rounding up) before being returned to the Vault.
*/
function _onInitializePool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);
/**
* @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
*
* Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
* tokens to pay in protocol swap fees.
*
* Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
* performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
*
* Minted BPT will be sent to `recipient`.
*
* The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
* be downscaled (rounding up) before being returned to the Vault.
*
* Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
* amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
*/
function _onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);
/**
* @dev Called whenever the Pool is exited.
*
* Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
* the number of tokens to pay in protocol swap fees.
*
* Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
* performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
*
* BPT will be burnt from `sender`.
*
* The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
* (rounding down) before being returned to the Vault.
*
* Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
* amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
*/
function _onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
uint256[] memory scalingFactors,
bytes memory userData
) internal virtual returns (uint256 bptAmountIn, uint256[] memory amountsOut);
/**
* @dev Called at the very beginning of swaps, joins and exits, even before the scaling factors are read. Derived
* contracts can extend this implementation to perform any state-changing operations they might need (including e.g.
* updating the scaling factors),
*
* The only scenario in which this function is not called is during a recovery mode exit. This makes it safe to
* perform non-trivial computations or interact with external dependencies here, as recovery mode will not be
* affected.
*
* Since this contract does not implement swaps, derived contracts must also make sure this function is called on
* swap handlers.
*/
function _beforeSwapJoinExit() internal virtual {
// All joins, exits and swaps are disabled (except recovery mode exits).
_ensureNotPaused();
}
// Internal functions
/**
* @dev Pays protocol fees by minting `bptAmount` to the Protocol Fee Collector.
*/
function _payProtocolFees(uint256 bptAmount) internal {
_mintPoolTokens(address(getProtocolFeesCollector()), bptAmount);
}
/**
* @dev Adds swap fee amount to `amount`, returning a higher value.
*/
function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
// This returns amount + fee amount, so we round up (favoring a higher fee amount).
return amount.divUp(getSwapFeePercentage().complement());
}
/**
* @dev Subtracts swap fee amount from `amount`, returning a lower value.
*/
function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
// This returns amount - fee amount, so we round up (favoring a higher fee amount).
uint256 feeAmount = amount.mulUp(getSwapFeePercentage());
return amount.sub(feeAmount);
}
// Scaling
/**
* @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
* it had 18 decimals.
*/
function _computeScalingFactor(IERC20 token) internal view returns (uint256) {
if (address(token) == address(this)) {
return FixedPoint.ONE;
}
// Tokens that don't implement the `decimals` method are not supported.
uint256 tokenDecimals = ERC20(address(token)).decimals();
// Tokens with more than 18 decimals are not supported.
uint256 decimalsDifference = Math.sub(18, tokenDecimals);
return FixedPoint.ONE * 10**decimalsDifference;
}
/**
* @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
* Pool.
*
* All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by
* derived contracts that need to apply further scaling, making these factors potentially non-integer.
*
* The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is
* 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making
* even relatively 'large' factors safe to use.
*
* The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112).
*/
function _scalingFactor(IERC20 token) internal view virtual returns (uint256);
/**
* @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault
* will always pass balances in this order when calling any of the Pool hooks.
*/
function _scalingFactors() internal view virtual returns (uint256[] memory);
function getScalingFactors() external view override returns (uint256[] memory) {
return _scalingFactors();
}
/**
* @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
* scaling or not.
*/
function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
// Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of
// token in should be rounded up, and that of token out rounded down. This is the only place where we round in
// the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no
// rounding error unless `_scalingFactor()` is overriden).
return FixedPoint.mulDown(amount, scalingFactor);
}
/**
* @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
* the `amounts` array.
*/
function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal pure {
uint256 length = amounts.length;
InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);
for (uint256 i = 0; i < length; ++i) {
amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
}
}
/**
* @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
* whether it needed scaling or not. The result is rounded down.
*/
function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
return FixedPoint.divDown(amount, scalingFactor);
}
/**
* @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
* *mutates* the `amounts` array.
*/
function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal pure {
uint256 length = amounts.length;
InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);
for (uint256 i = 0; i < length; ++i) {
amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
}
}
/**
* @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
* whether it needed scaling or not. The result is rounded up.
*/
function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
return FixedPoint.divUp(amount, scalingFactor);
}
/**
* @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
* *mutates* the `amounts` array.
*/
function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal pure {
uint256 length = amounts.length;
InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);
for (uint256 i = 0; i < length; ++i) {
amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]);
}
}
function _getAuthorizer() internal view override returns (IAuthorizer) {
// Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
// accounts can call permissioned functions: for example, to perform emergency pauses.
// If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
// Governance control.
return getVault().getAuthorizer();
}
function _queryAction(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData,
function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory)
internal
returns (uint256, uint256[] memory) _action,
function(uint256[] memory, uint256[] memory) internal view _downscaleArray
) private {
// This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
// explanation.
if (msg.sender != address(this)) {
// We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
// the preceding if statement will be executed instead.
// solhint-disable-next-line avoid-low-level-calls
(bool success, ) = address(this).call(msg.data);
// solhint-disable-next-line no-inline-assembly
assembly {
// This call should always revert to decode the bpt and token amounts from the revert reason
switch success
case 0 {
// Note we are manually writing the memory slot 0. We can safely overwrite whatever is
// stored there as we take full control of the execution and then immediately return.
// We copy the first 4 bytes to check if it matches with the expected signature, otherwise
// there was another revert reason and we should forward it.
returndatacopy(0, 0, 0x04)
let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)
// If the first 4 bytes don't match with the expected signature, we forward the revert reason.
if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
// The returndata contains the signature, followed by the raw memory representation of the
// `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
// representation of these.
// An ABI-encoded response will include one additional field to indicate the starting offset of
// the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
// returndata.
//
// In returndata:
// [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
// [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ]
//
// We now need to return (ABI-encoded values):
// [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
// [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ]
// We copy 32 bytes for the `bptAmount` from returndata into memory.
// Note that we skip the first 4 bytes for the error signature
returndatacopy(0, 0x04, 32)
// The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
// the initial 64 bytes.
mstore(0x20, 64)
// We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
// Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
// skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
returndatacopy(0x40, 0x24, sub(returndatasize(), 36))
// We finally return the ABI-encoded uint256 and the array, which has a total length equal to
// the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
// error signature.
return(0, add(returndatasize(), 28))
}
default {
// This call should always revert, but we fail nonetheless if that didn't happen
invalid()
}
}
} else {
// This imitates the relevant parts of the bodies of onJoin and onExit. Since they're not virtual, we know
// that their implementations will match this regardless of what derived contracts might do.
_beforeSwapJoinExit();
uint256[] memory scalingFactors = _scalingFactors();
_upscaleArray(balances, scalingFactors);
(uint256 bptAmount, uint256[] memory tokenAmounts) = _action(
poolId,
sender,
recipient,
balances,
lastChangeBlock,
protocolSwapFeePercentage,
scalingFactors,
userData
);
_downscaleArray(tokenAmounts, scalingFactors);
// solhint-disable-next-line no-inline-assembly
assembly {
// We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
// a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
// Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
let size := mul(mload(tokenAmounts), 32)
// We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
// will be at least one available slot due to how the memory scratch space works.
// We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
let start := sub(tokenAmounts, 0x20)
mstore(start, bptAmount)
// We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
// We use the previous slot to `bptAmount`.
mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
start := sub(start, 0x04)
// When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
// the `bptAmount`, the array 's length, and the error signature.
revert(start, add(size, 68))
}
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "./IVault.sol";
import "./IPoolSwapStructs.sol";
/**
* @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
* the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
* either IGeneralPool or IMinimalSwapInfoPool
*/
interface IBasePool is IPoolSwapStructs {
/**
* @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
* each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
* The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
* the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
*
* Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
*
* `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
* designated to receive any benefits (typically pool shares). `balances` contains the total balances
* for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
*
* `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
* balance.
*
* `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
* join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
*
* Contracts implementing this function should check that the caller is indeed the Vault before performing any
* state-changing operations, such as minting pool shares.
*/
function onJoinPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);
/**
* @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
* tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
* to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
* as well as collect the reported amount in protocol fees, which the Pool should calculate based on
* `protocolSwapFeePercentage`.
*
* Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
*
* `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
* to which the Vault will send the proceeds. `balances` contains the total token balances for each token
* the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
*
* `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
* balance.
*
* `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
* exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
*
* Contracts implementing this function should check that the caller is indeed the Vault before performing any
* state-changing operations, such as burning pool shares.
*/
function onExitPool(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);
/**
* @dev Returns this Pool's ID, used when interacting with the Vault (to e.g. join the Pool or swap with it).
*/
function getPoolId() external view returns (bytes32);
/**
* @dev Returns the current swap fee percentage as a 18 decimal fixed point number, so e.g. 1e17 corresponds to a
* 10% swap fee.
*/
function getSwapFeePercentage() external view returns (uint256);
/**
* @dev Returns the scaling factors of each of the Pool's tokens. This is an implementation detail that is typically
* not relevant for outside parties, but which might be useful for some types of Pools.
*/
function getScalingFactors() external view returns (uint256[] memory);
function queryJoin(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256 bptOut, uint256[] memory amountsIn);
function queryExit(
bytes32 poolId,
address sender,
address recipient,
uint256[] memory balances,
uint256 lastChangeBlock,
uint256 protocolSwapFeePercentage,
bytes memory userData
) external returns (uint256 bptIn, uint256[] memory amountsOut);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
import "./IVault.sol";
interface IPoolSwapStructs {
// This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
// IMinimalSwapInfoPool.
//
// This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
// 'given out') which indicates whether or not the amount sent by the pool is known.
//
// The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
// in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
//
// All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
// some Pools.
//
// `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
// one Pool.
//
// The meaning of `lastChangeBlock` depends on the Pool specialization:
// - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
// balance.
// - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
//
// `from` is the origin address for the funds the Pool receives, and `to` is the destination address
// where the Pool sends the outgoing tokens.
//
// `userData` is extra data provided by the caller - typically a signature from a trusted party.
struct SwapRequest {
IVault.SwapKind kind;
IERC20 tokenIn;
IERC20 tokenOut;
uint256 amount;
// Misc data
bytes32 poolId;
uint256 lastChangeBlock;
address from;
address to;
bytes userData;
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;
import "../solidity-utils/openzeppelin/IERC20.sol";
interface IAssetManager {
/**
* @notice Emitted when asset manager is rebalanced
*/
event Rebalance(bytes32 poolId);
/**
* @notice Sets the config
*/
function setConfig(bytes32 poolId, bytes calldata config) external;
/**
* Note: No function to read the asset manager config is included in IAssetManager
* as the signature is expected to vary between asset manager implementations
*/
/**
* @notice Returns the asset manager's token
*/
function getToken() external view returns (IERC20);
/**
* @return the current assets under management of this asset manager
*/
function getAUM(bytes32 poolId) external view returns (uint256);
/**
* @return poolCash - The up-to-date cash balance of the pool
* @return poolManaged - The up-to-date managed balance of the pool
*/
function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged);
/**
* @return The difference in tokens between the target investment
* and the currently invested amount (i.e. the amount that can be invested)
*/
function maxInvestableBalance(bytes32 poolId) external view returns (int256);
/**
* @notice Updates the Vault on the value of the pool's investment returns
*/
function updateBalanceOfPool(bytes32 poolId) external;
/**
* @notice Determines whether the pool should rebalance given the provided balances
*/
function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool);
/**
* @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage.
* @param poolId - the poolId of the pool to be rebalanced
* @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance
*/
function rebalance(bytes32 poolId, bool force) external;
/**
* @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals
* @param poolId - the poolId of the pool to withdraw funds back to
* @param amount - the amount of tokens to withdraw back to the pool
*/
function capitalOut(bytes32 poolId, uint256 amount) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "../solidity-utils/openzeppelin/IERC20.sol";
interface IControlledPool {
function setSwapFeePercentage(uint256 swapFeePercentage) external;
function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) external;
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "../math/Math.sol";
/**
* @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
* a single storage slot, saving gas by performing less storage accesses.
*
* Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
* 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
*
* We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and
* error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or
* memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location),
* using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even
* prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive,
* and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and
* unpacking is therefore the preferred approach.
*/
library WordCodec {
// Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
// or to insert a new one replacing the old.
uint256 private constant _MASK_1 = 2**(1) - 1;
uint256 private constant _MASK_192 = 2**(192) - 1;
// In-place insertion
/**
* @dev Inserts an unsigned integer of bitLength, shifted by an offset, into a 256 bit word,
* replacing the old value. Returns the new word.
*/
function insertUint(
bytes32 word,
uint256 value,
uint256 offset,
uint256 bitLength
) internal pure returns (bytes32) {
_validateEncodingParams(value, offset, bitLength);
uint256 mask = (1 << bitLength) - 1;
bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
return clearedWord | bytes32(value << offset);
}
/**
* @dev Inserts a signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
* the new word.
*
* Assumes `value` can be represented using `bitLength` bits.
*/
function insertInt(
bytes32 word,
int256 value,
uint256 offset,
uint256 bitLength
) internal pure returns (bytes32) {
_validateEncodingParams(value, offset, bitLength);
uint256 mask = (1 << bitLength) - 1;
bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
// Integer values need masking to remove the upper bits of negative values.
return clearedWord | bytes32((uint256(value) & mask) << offset);
}
// Encoding
/**
* @dev Encodes an unsigned integer shifted by an offset. Ensures value fits within
* `bitLength` bits.
*
* The return value can be ORed bitwise with other encoded values to form a 256 bit word.
*/
function encodeUint(
uint256 value,
uint256 offset,
uint256 bitLength
) internal pure returns (bytes32) {
_validateEncodingParams(value, offset, bitLength);
return bytes32(value << offset);
}
/**
* @dev Encodes a signed integer shifted by an offset.
*
* The return value can be ORed bitwise with other encoded values to form a 256 bit word.
*/
function encodeInt(
int256 value,
uint256 offset,
uint256 bitLength
) internal pure returns (bytes32) {
_validateEncodingParams(value, offset, bitLength);
uint256 mask = (1 << bitLength) - 1;
// Integer values need masking to remove the upper bits of negative values.
return bytes32((uint256(value) & mask) << offset);
}
// Decoding
/**
* @dev Decodes and returns an unsigned integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
*/
function decodeUint(
bytes32 word,
uint256 offset,
uint256 bitLength
) internal pure returns (uint256) {
return uint256(word >> offset) & ((1 << bitLength) - 1);
}
/**
* @dev Decodes and returns a signed integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
*/
function decodeInt(
bytes32 word,
uint256 offset,
uint256 bitLength
) internal pure returns (int256) {
int256 maxInt = int256((1 << (bitLength - 1)) - 1);
uint256 mask = (1 << bitLength) - 1;
int256 value = int256(uint256(word >> offset) & mask);
// In case the decoded value is greater than the max positive integer that can be represented with bitLength
// bits, we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
// representation.
return value > maxInt ? (value | int256(~mask)) : value;
}
// Special cases
/**
* @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
*/
function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
return (uint256(word >> offset) & _MASK_1) == 1;
}
/**
* @dev Inserts a 192 bit value shifted by an offset into a 256 bit word, replacing the old value.
* Returns the new word.
*
* Assumes `value` can be represented using 192 bits.
*/
function insertBits192(
bytes32 word,
bytes32 value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);
}
/**
* @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
* word.
*/
function insertBool(
bytes32 word,
bool value,
uint256 offset
) internal pure returns (bytes32) {
bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset));
return clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
}
// Helpers
function _validateEncodingParams(
uint256 value,
uint256 offset,
uint256 bitLength
) private pure {
_require(offset < 256, Errors.OUT_OF_BOUNDS);
// We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller
// the maximum bit length.
_require(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset), Errors.OUT_OF_BOUNDS);
// Testing unsigned values for size is straightforward: their upper bits must be cleared.
_require(value >> bitLength == 0, Errors.CODEC_OVERFLOW);
}
function _validateEncodingParams(
int256 value,
uint256 offset,
uint256 bitLength
) private pure {
_require(offset < 256, Errors.OUT_OF_BOUNDS);
// We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller
// the maximum bit length.
_require(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset), Errors.OUT_OF_BOUNDS);
// Testing signed values for size is a bit more involved.
if (value >= 0) {
// For positive values, we can simply check that the upper bits are clear. Notice we remove one bit from the
// length for the sign bit.
_require(value >> (bitLength - 1) == 0, Errors.CODEC_OVERFLOW);
} else {
// Negative values can receive the same treatment by making them positive, with the caveat that the range
// for negative values in two's complement supports one more value than for the positive case.
_require(Math.abs(value + 1) >> (bitLength - 1) == 0, Errors.CODEC_OVERFLOW);
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/ITemporarilyPausable.sol";
/**
* @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
* used as an emergency switch in case a security vulnerability or threat is identified.
*
* The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
* unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
* system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
* analysis later determines there was a false alarm.
*
* If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
* Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
* to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
*
* Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
* irreversible.
*/
abstract contract TemporarilyPausable is ITemporarilyPausable {
// The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
// solhint-disable not-rely-on-time
uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days;
uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days;
uint256 private immutable _pauseWindowEndTime;
uint256 private immutable _bufferPeriodEndTime;
bool private _paused;
constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
_require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
_require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION);
uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;
_pauseWindowEndTime = pauseWindowEndTime;
_bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
}
/**
* @dev Reverts if the contract is paused.
*/
modifier whenNotPaused() {
_ensureNotPaused();
_;
}
/**
* @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
* Period.
*/
function getPausedState()
external
view
override
returns (
bool paused,
uint256 pauseWindowEndTime,
uint256 bufferPeriodEndTime
)
{
paused = !_isNotPaused();
pauseWindowEndTime = _getPauseWindowEndTime();
bufferPeriodEndTime = _getBufferPeriodEndTime();
}
/**
* @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
* unpaused until the end of the Buffer Period.
*
* Once the Buffer Period expires, this function reverts unconditionally.
*/
function _setPaused(bool paused) internal {
if (paused) {
_require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
} else {
_require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
}
_paused = paused;
emit PausedStateChanged(paused);
}
/**
* @dev Reverts if the contract is paused.
*/
function _ensureNotPaused() internal view {
_require(_isNotPaused(), Errors.PAUSED);
}
/**
* @dev Reverts if the contract is not paused.
*/
function _ensurePaused() internal view {
_require(!_isNotPaused(), Errors.NOT_PAUSED);
}
/**
* @dev Returns true if the contract is unpaused.
*
* Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
* longer accessed.
*/
function _isNotPaused() internal view returns (bool) {
// After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
return block.timestamp > _getBufferPeriodEndTime() || !_paused;
}
// These getters lead to reduced bytecode size by inlining the immutable variables in a single place.
function _getPauseWindowEndTime() private view returns (uint256) {
return _pauseWindowEndTime;
}
function _getBufferPeriodEndTime() private view returns (uint256) {
return _bufferPeriodEndTime;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "./SafeMath.sol";
/**
* @dev Implementation of the {IERC20} interface.
*
* This implementation is agnostic to the way tokens are created. This means
* that a supply mechanism has to be added in a derived contract using {_mint}.
* For a generic mechanism see {ERC20PresetMinterPauser}.
*
* TIP: For a detailed writeup see our guide
* https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
* to implement supply mechanisms].
*
* We have followed general OpenZeppelin guidelines: functions revert instead
* of returning `false` on failure. This behavior is nonetheless conventional
* and does not conflict with the expectations of ERC20 applications.
*
* Additionally, an {Approval} event is emitted on calls to {transferFrom}.
* This allows applications to reconstruct the allowance for all accounts just
* by listening to said events. Other implementations of the EIP may not emit
* these events, as it isn't required by the specification.
*
* Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
* functions have been added to mitigate the well-known issues around setting
* allowances. See {IERC20-approve}.
*/
contract ERC20 is IERC20 {
using SafeMath for uint256;
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
uint8 private _decimals;
/**
* @dev Sets the values for {name} and {symbol}, initializes {decimals} with
* a default value of 18.
*
* To select a different value for {decimals}, use {_setupDecimals}.
*
* All three of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
_decimals = 18;
}
/**
* @dev Returns the name of the token.
*/
function name() public view returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
* called.
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view returns (uint8) {
return _decimals;
}
/**
* @dev See {IERC20-totalSupply}. The total supply should only be read using this function
*
* Can be overridden by derived contracts to store the total supply in a different way (e.g. packed with other
* storage values).
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev Sets a new value for the total supply. It should only be set using this function.
*
* * Can be overridden by derived contracts to store the total supply in a different way (e.g. packed with other
* storage values).
*/
function _setTotalSupply(uint256 value) internal virtual {
_totalSupply = value;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
_transfer(msg.sender, recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender) public view virtual override returns (uint256) {
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount) public virtual override returns (bool) {
_approve(msg.sender, spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(
sender,
msg.sender,
_allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
_approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
_approve(
msg.sender,
spender,
_allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
);
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
_require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
_require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);
_beforeTokenTransfer(sender, recipient, amount);
_balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `to` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
_beforeTokenTransfer(address(0), account, amount);
_setTotalSupply(totalSupply().add(amount));
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
_require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_BALANCE);
_setTotalSupply(totalSupply().sub(amount));
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Sets {decimals} to a value other than the default one of 18.
*
* WARNING: This function should only be called from the constructor. Most
* applications that interact with token contracts will not expect
* {decimals} to ever change, and may work incorrectly if it does.
*/
function _setupDecimals(uint8 decimals_) internal {
_decimals = decimals_;
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {
// solhint-disable-previous-line no-empty-blocks
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
* Adapted from OpenZeppelin's SafeMath library.
*/
library Math {
/**
* @dev Returns the absolute value of a signed integer.
*/
function abs(int256 a) internal pure returns (uint256) {
return a > 0 ? uint256(a) : uint256(-a);
}
/**
* @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the addition of two signed integers, reverting on overflow.
*/
function add(int256 a, int256 b) internal pure returns (int256) {
int256 c = a + b;
_require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b <= a, Errors.SUB_OVERFLOW);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the subtraction of two signed integers, reverting on overflow.
*/
function sub(int256 a, int256 b) internal pure returns (int256) {
int256 c = a - b;
_require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
return c;
}
/**
* @dev Returns the largest of two numbers of 256 bits.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a >= b ? a : b;
}
/**
* @dev Returns the smallest of two numbers of 256 bits.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a * b;
_require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
return c;
}
function div(
uint256 a,
uint256 b,
bool roundUp
) internal pure returns (uint256) {
return roundUp ? divUp(a, b) : divDown(a, b);
}
function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
return a / b;
}
function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
_require(b != 0, Errors.ZERO_DIVISION);
if (a == 0) {
return 0;
} else {
return 1 + (a - 1) / b;
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol";
/**
* @title Highly opinionated token implementation
* @author Balancer Labs
* @dev
* - Includes functions to increase and decrease allowance as a workaround
* for the well-known issue with `approve`:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
* - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
* decreased by calls to transferFrom
* - Lets a token holder use `transferFrom` to send their own tokens,
* without first setting allowance
* - Emits 'Approval' events whenever allowance is changed by `transferFrom`
* - Assigns infinite allowance for all token holders to the Vault
*/
contract BalancerPoolToken is ERC20Permit {
IVault private immutable _vault;
constructor(
string memory tokenName,
string memory tokenSymbol,
IVault vault
) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) {
_vault = vault;
}
function getVault() public view returns (IVault) {
return _vault;
}
// Overrides
/**
* @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval.
*
* This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this
* contract inherits.
*/
function allowance(address owner, address spender) public view override returns (uint256) {
if (spender == address(getVault())) {
return uint256(-1);
} else {
return super.allowance(owner, spender);
}
}
/**
* @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public override returns (bool) {
uint256 currentAllowance = allowance(sender, msg.sender);
_require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE);
_transfer(sender, recipient, amount);
if (msg.sender != sender && currentAllowance != uint256(-1)) {
// Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
_approve(sender, msg.sender, currentAllowance - amount);
}
return true;
}
/**
* @dev Override to allow decreasing allowance by more than the current amount (setting it to zero)
*/
function decreaseAllowance(address spender, uint256 amount) public override returns (bool) {
uint256 currentAllowance = allowance(msg.sender, spender);
if (amount >= currentAllowance) {
_approve(msg.sender, spender, 0);
} else {
// No risk of underflow due to if condition
_approve(msg.sender, spender, currentAllowance - amount);
}
return true;
}
// Internal functions
function _mintPoolTokens(address recipient, uint256 amount) internal {
_mint(recipient, amount);
}
function _burnPoolTokens(address sender, uint256 amount) internal {
_burn(sender, amount);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/vault/IAuthorizer.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
/**
* @dev Base authorization layer implementation for Pools.
*
* The owner account can call some of the permissioned functions - access control of the rest is delegated to the
* Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
* granular roles, etc., could be built on top of this by making the owner a smart contract.
*
* Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
* control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
*/
abstract contract BasePoolAuthorization is Authentication {
address private immutable _owner;
address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;
constructor(address owner) {
_owner = owner;
}
function getOwner() public view returns (address) {
return _owner;
}
function getAuthorizer() external view returns (IAuthorizer) {
return _getAuthorizer();
}
function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
// Only the owner can perform "owner only" actions, unless the owner is delegated.
return msg.sender == getOwner();
} else {
// Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
return _getAuthorizer().canPerform(actionId, account, address(this));
}
}
function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool);
function _getAuthorizer() internal view virtual returns (IAuthorizer);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/BasePoolUserData.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IRecoveryMode.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "./BasePoolAuthorization.sol";
/**
* @notice Handle storage and state changes for pools that support "Recovery Mode".
*
* @dev This is intended to provide a safe way to exit any pool during some kind of emergency, to avoid locking funds
* in the event the pool enters a non-functional state (i.e., some code that normally runs during exits is causing
* them to revert).
*
* Recovery Mode is *not* the same as pausing the pool. The pause function is only available during a short window
* after factory deployment. Pausing can only be intentionally reversed during a buffer period, and the contract
* will permanently unpause itself thereafter. Paused pools are completely disabled, in a kind of suspended animation,
* until they are voluntarily or involuntarily unpaused.
*
* By contrast, a privileged account - typically a governance multisig - can place a pool in Recovery Mode at any
* time, and it is always reversible. The pool is *not* disabled while in this mode: though of course whatever
* condition prompted the transition to Recovery Mode has likely effectively disabled some functions. Rather,
* a special "clean" exit is enabled, which runs the absolute minimum code necessary to exit proportionally.
* In particular, stable pools do not attempt to compute the invariant (which is a complex, iterative calculation
* that can fail in extreme circumstances), and no protocol fees are collected.
*
* It is critical to ensure that turning on Recovery Mode would do no harm, if activated maliciously or in error.
*/
abstract contract RecoveryMode is IRecoveryMode, BasePoolAuthorization {
using FixedPoint for uint256;
using BasePoolUserData for bytes;
/**
* @dev Reverts if the contract is in Recovery Mode.
*/
modifier whenNotInRecoveryMode() {
_ensureNotInRecoveryMode();
_;
}
/**
* @notice Enable recovery mode, which enables a special safe exit path for LPs.
* @dev Does not otherwise affect pool operations (beyond deferring payment of protocol fees), though some pools may
* perform certain operations in a "safer" manner that is less likely to fail, in an attempt to keep the pool
* running, even in a pathological state. Unlike the Pause operation, which is only available during a short window
* after factory deployment, Recovery Mode can always be enabled.
*/
function enableRecoveryMode() external override authenticate {
_setRecoveryMode(true);
}
/**
* @notice Disable recovery mode, which disables the special safe exit path for LPs.
* @dev Protocol fees are not paid while in Recovery Mode, so it should only remain active for as long as strictly
* necessary.
*
* This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
*
* This function depends on the invariant value, which may be calculated incorrectly in the middle of a join or
* an exit, because the state of the pool could be out of sync with the state of the Vault.
* `_onDisableRecoveryMode` will revert when called from such a context for weighted pools, effectively
* protecting this function.
*
* See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
*/
function disableRecoveryMode() external override authenticate {
_setRecoveryMode(false);
}
// Defer implementation for functions that require storage
/**
* @notice Override to check storage and return whether the pool is in Recovery Mode
*/
function inRecoveryMode() public view virtual override returns (bool);
/**
* @dev Override to update storage and emit the event
*
* No complex code or external calls that could fail should be placed in the implementations,
* which could jeopardize the ability to enable and disable Recovery Mode.
*/
function _setRecoveryMode(bool enabled) internal virtual;
/**
* @dev Reverts if the contract is not in Recovery Mode.
*/
function _ensureInRecoveryMode() internal view {
_require(inRecoveryMode(), Errors.NOT_IN_RECOVERY_MODE);
}
/**
* @dev Reverts if the contract is in Recovery Mode.
*/
function _ensureNotInRecoveryMode() internal view {
_require(!inRecoveryMode(), Errors.IN_RECOVERY_MODE);
}
/**
* @dev A minimal proportional exit, suitable as is for most pools: though not for pools with preminted BPT
* or other special considerations. Designed to be overridden if a pool needs to do extra processing,
* such as scaling a stored invariant, or caching the new total supply.
*
* No complex code or external calls should be made in derived contracts that override this!
*/
function _doRecoveryModeExit(
uint256[] memory balances,
uint256 totalSupply,
bytes memory userData
) internal virtual returns (uint256, uint256[] memory) {
uint256 bptAmountIn = userData.recoveryModeExit();
uint256[] memory amountsOut = _computeProportionalAmountsOut(balances, totalSupply, bptAmountIn);
return (bptAmountIn, amountsOut);
}
function _computeProportionalAmountsOut(
uint256[] memory balances,
uint256 totalSupply,
uint256 bptAmountIn
) internal pure returns (uint256[] memory amountsOut) {
/**********************************************************************************************
// exactBPTInForTokensOut //
// (per token) //
// aO = tokenAmountOut / bptIn \ //
// b = tokenBalance a0 = b * | --------------------- | //
// bptIn = bptAmountIn \ bptTotalSupply / //
// bpt = bptTotalSupply //
**********************************************************************************************/
// Since we're computing an amount out, we round down overall. This means rounding down on both the
// multiplication and division.
uint256 bptRatio = bptAmountIn.divDown(totalSupply);
amountsOut = new uint256[](balances.length);
for (uint256 i = 0; i < balances.length; i++) {
amountsOut[i] = balances[i].mulDown(bptRatio);
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
_require(c >= a, Errors.ADD_OVERFLOW);
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, Errors.SUB_OVERFLOW);
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
uint256 errorCode
) internal pure returns (uint256) {
_require(b <= a, errorCode);
uint256 c = a - b;
return c;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20Permit.sol";
import "./ERC20.sol";
import "../helpers/EOASignaturesValidator.sol";
/**
* @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*
* _Available since v3.4._
*/
abstract contract ERC20Permit is ERC20, IERC20Permit, EOASignaturesValidator {
// solhint-disable-next-line var-name-mixedcase
bytes32 private constant _PERMIT_TYPEHASH = keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
);
/**
* @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
*
* It's a good idea to use the same `name` that is defined as the ERC20 token name.
*/
constructor(string memory name) EIP712(name, "1") {
// solhint-disable-previous-line no-empty-blocks
}
/**
* @dev See {IERC20Permit-permit}.
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual override {
bytes32 structHash = keccak256(
abi.encode(_PERMIT_TYPEHASH, owner, spender, value, getNextNonce(owner), deadline)
);
_ensureValidSignature(owner, structHash, _toArraySignature(v, r, s), deadline, Errors.INVALID_SIGNATURE);
_approve(owner, spender, value);
}
/**
* @dev See {IERC20Permit-nonces}.
*/
function nonces(address owner) public view override returns (uint256) {
return getNextNonce(owner);
}
/**
* @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view override returns (bytes32) {
return getDomainSeparator();
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20Permit {
/**
* @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
* given `owner`'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/ISignaturesValidator.sol";
import "../openzeppelin/EIP712.sol";
/**
* @dev Utility for signing Solidity function calls.
*/
abstract contract EOASignaturesValidator is ISignaturesValidator, EIP712 {
// Replay attack prevention for each account.
mapping(address => uint256) internal _nextNonce;
function getDomainSeparator() public view override returns (bytes32) {
return _domainSeparatorV4();
}
function getNextNonce(address account) public view override returns (uint256) {
return _nextNonce[account];
}
function _ensureValidSignature(
address account,
bytes32 structHash,
bytes memory signature,
uint256 errorCode
) internal {
return _ensureValidSignature(account, structHash, signature, type(uint256).max, errorCode);
}
function _ensureValidSignature(
address account,
bytes32 structHash,
bytes memory signature,
uint256 deadline,
uint256 errorCode
) internal {
bytes32 digest = _hashTypedDataV4(structHash);
_require(_isValidSignature(account, digest, signature), errorCode);
// We could check for the deadline before validating the signature, but this leads to saner error processing (as
// we only care about expired deadlines if the signature is correct) and only affects the gas cost of the revert
// scenario, which will only occur infrequently, if ever.
// The deadline is timestamp-based: it should not be relied upon for sub-minute accuracy.
// solhint-disable-next-line not-rely-on-time
_require(deadline >= block.timestamp, Errors.EXPIRED_SIGNATURE);
// We only advance the nonce after validating the signature. This is irrelevant for this module, but it can be
// important in derived contracts that override _isValidSignature (e.g. SignaturesValidator), as we want for
// the observable state to still have the current nonce as the next valid one.
_nextNonce[account] += 1;
}
function _isValidSignature(
address account,
bytes32 digest,
bytes memory signature
) internal view virtual returns (bool) {
_require(signature.length == 65, Errors.MALFORMED_SIGNATURE);
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the r, s and v signature parameters, and the only way to get them is to use assembly.
// solhint-disable-next-line no-inline-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
address recoveredAddress = ecrecover(digest, v, r, s);
// ecrecover returns the zero address on recover failure, so we need to handle that explicitly.
return (recoveredAddress != address(0) && recoveredAddress == account);
}
function _toArraySignature(
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (bytes memory) {
bytes memory signature = new bytes(65);
// solhint-disable-next-line no-inline-assembly
assembly {
mstore(add(signature, 32), r)
mstore(add(signature, 64), s)
mstore8(add(signature, 96), v)
}
return signature;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* _Available since v3.4._
*/
abstract contract EIP712 {
/* solhint-disable var-name-mixedcase */
bytes32 private immutable _HASHED_NAME;
bytes32 private immutable _HASHED_VERSION;
bytes32 private immutable _TYPE_HASH;
/* solhint-enable var-name-mixedcase */
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
constructor(string memory name, string memory version) {
_HASHED_NAME = keccak256(bytes(name));
_HASHED_VERSION = keccak256(bytes(version));
_TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view virtual returns (bytes32) {
return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
}
function _getChainId() private view returns (uint256 chainId) {
// Silence state mutability warning without generating bytecode.
// See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and
// https://github.com/ethereum/solidity/issues/2691
this;
// solhint-disable-next-line no-inline-assembly
assembly {
chainId := chainid()
}
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
library BasePoolUserData {
// Special ExitKind for all pools, used in Recovery Mode. Use the max 8-bit value to prevent conflicts
// with future additions to the ExitKind enums (or any front-end code that maps to existing values)
uint8 public constant RECOVERY_MODE_EXIT_KIND = 255;
// Return true if this is the special exit kind.
function isRecoveryModeExitKind(bytes memory self) internal pure returns (bool) {
// Check for the "no data" case, or abi.decode would revert
return self.length > 0 && abi.decode(self, (uint8)) == RECOVERY_MODE_EXIT_KIND;
}
// Parse the bptAmountIn out of the userData
function recoveryModeExit(bytes memory self) internal pure returns (uint256 bptAmountIn) {
(, bptAmountIn) = abi.decode(self, (uint8, uint256));
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
/**
* @dev Interface for the RecoveryMode module.
*/
interface IRecoveryMode {
/**
* @dev Emitted when the Recovery Mode status changes.
*/
event RecoveryModeStateChanged(bool enabled);
/**
* @notice Enables Recovery Mode in the Pool, disabling protocol fee collection and allowing for safe proportional
* exits with low computational complexity and no dependencies.
*/
function enableRecoveryMode() external;
/**
* @notice Disables Recovery Mode in the Pool, restoring protocol fee collection and disallowing proportional exits.
*/
function disableRecoveryMode() external;
/**
* @notice Returns true if the Pool is in Recovery Mode.
*/
function inRecoveryMode() external view returns (bool);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
interface IRateProvider {
/**
* @dev Returns an 18 decimal fixed point number that is the exchange rate of the token to some other underlying
* token. The meaning of this rate depends on the context.
*/
function getRate() external view returns (uint256);
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/standalone-utils/IProtocolFeePercentagesProvider.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/SafeCast.sol";
import "../RecoveryMode.sol";
/**
* @dev The Vault does not provide the protocol swap fee percentage in swap hooks (as swaps don't typically need this
* value), so for swaps that need this value, we would have to to fetch it ourselves from the
* ProtocolFeePercentagesProvider. Additionally, other protocol fee types (such as Yield or AUM) can only be obtained
* by making said call.
*
* However, these values change so rarely that it doesn't make sense to perform the required calls to get the current
* values in every single user interaction. Instead, we keep a local copy that can be permissionlessly updated by anyone
* with the real value. We also pack these values together, performing a single storage read to get them all.
*
* When initialized with a special sentinel value, the swap fee is delegated, meaning the mutable protocol swap fee
* cache is set to the current value stored in the ProtocolFeePercentagesProvider, and can be updated by anyone with a
* call to `updateProtocolFeePercentageCache`. Any other value means the protocol swap fee is fixed, so it is instead
* stored in the immutable `_fixedProtocolSwapFeePercentage`.
*/
abstract contract ProtocolFeeCache is RecoveryMode {
using SafeCast for uint256;
IProtocolFeePercentagesProvider private immutable _protocolFeeProvider;
// Protocol Fee Percentages can never be larger than 100% (1e18), which fits in ~59 bits, so using 64 for each type
// is sufficient.
struct FeeTypeCache {
uint64 swapFee;
uint64 yieldFee;
uint64 aumFee;
}
FeeTypeCache private _cache;
event ProtocolFeePercentageCacheUpdated(uint256 indexed feeType, uint256 protocolFeePercentage);
// Swap fees can be set to a fixed value at construction, or delegated to the ProtocolFeePercentagesProvider if
// passing the special sentinel value.
uint256 public constant DELEGATE_PROTOCOL_SWAP_FEES_SENTINEL = type(uint256).max;
bool private immutable _delegatedProtocolSwapFees;
// Only valid when `_delegatedProtocolSwapFees` is false
uint256 private immutable _fixedProtocolSwapFeePercentage;
constructor(IProtocolFeePercentagesProvider protocolFeeProvider, uint256 protocolSwapFeePercentage) {
// Protocol swap fees are delegated to the value reported by the ProtocolFeePercentagesProvider if the sentinel
// value is passed.
bool delegatedProtocolSwapFees = protocolSwapFeePercentage == DELEGATE_PROTOCOL_SWAP_FEES_SENTINEL;
_delegatedProtocolSwapFees = delegatedProtocolSwapFees;
_protocolFeeProvider = protocolFeeProvider;
_updateProtocolFeeCache(protocolFeeProvider, ProtocolFeeType.YIELD);
_updateProtocolFeeCache(protocolFeeProvider, ProtocolFeeType.AUM);
if (delegatedProtocolSwapFees) {
_updateProtocolFeeCache(protocolFeeProvider, ProtocolFeeType.SWAP);
} else {
_require(
protocolSwapFeePercentage <= protocolFeeProvider.getFeeTypeMaximumPercentage(ProtocolFeeType.SWAP),
Errors.SWAP_FEE_PERCENTAGE_TOO_HIGH
);
// We cannot set `_fixedProtocolSwapFeePercentage` here due to it being immutable so instead we must set it
// in the main function scope with a value based on whether protocol fees are delegated.
// Emit an event as we do in `_updateProtocolFeeCache` to appear the same to offchain indexers.
emit ProtocolFeePercentageCacheUpdated(ProtocolFeeType.SWAP, protocolSwapFeePercentage);
}
// As `_fixedProtocolSwapFeePercentage` is immutable we must set a value, but just set to zero if it's not used.
_fixedProtocolSwapFeePercentage = delegatedProtocolSwapFees ? 0 : protocolSwapFeePercentage;
}
/**
* @dev Returns the cached protocol fee percentage. If `getProtocolSwapFeeDelegation()` is false, this value is
* immutable for swap fee queries. Alternatively, it will track the global fee percentage set in the
* ProtocolFeePercentagesProvider.
*/
function getProtocolFeePercentageCache(uint256 feeType) public view returns (uint256) {
if (inRecoveryMode()) {
return 0;
}
if (feeType == ProtocolFeeType.SWAP) {
return getProtocolSwapFeeDelegation() ? _cache.swapFee : _fixedProtocolSwapFeePercentage;
} else if (feeType == ProtocolFeeType.YIELD) {
return _cache.yieldFee;
} else if (feeType == ProtocolFeeType.AUM) {
return _cache.aumFee;
} else {
_revert(Errors.UNHANDLED_FEE_TYPE);
}
}
/**
* @dev Can be called by anyone to update the cached fee percentages (swap fee is only updated when delegated).
* Updates the cache to the latest value set by governance.
*
* This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
*
* This function depends on the invariant value, which may be calculated incorrectly in the middle of a join or
* an exit, because the state of the pool could be out of sync with the state of the Vault.
* `_beforeProtocolFeeCacheUpdate` will revert when called from such a context for weighted pools, effectively
* protecting this function.
*
* See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
*/
function updateProtocolFeePercentageCache() external {
_beforeProtocolFeeCacheUpdate();
if (getProtocolSwapFeeDelegation()) {
_updateProtocolFeeCache(_protocolFeeProvider, ProtocolFeeType.SWAP);
}
_updateProtocolFeeCache(_protocolFeeProvider, ProtocolFeeType.YIELD);
_updateProtocolFeeCache(_protocolFeeProvider, ProtocolFeeType.AUM);
}
/**
* @dev Override in derived contracts to perform some action before the cache is updated. This is typically relevant
* to Pools that incur protocol debt between operations. To avoid altering the amount due retroactively, this debt
* needs to be paid before the fee percentages change.
*/
function _beforeProtocolFeeCacheUpdate() internal virtual {}
/**
* @dev Returns whether this Pool tracks protocol swap fee changes in the IProtocolFeePercentagesProvider.
*/
function getProtocolSwapFeeDelegation() public view returns (bool) {
return _delegatedProtocolSwapFees;
}
function _updateProtocolFeeCache(IProtocolFeePercentagesProvider protocolFeeProvider, uint256 feeType) private {
uint256 currentValue = protocolFeeProvider.getFeeTypePercentage(feeType);
if (feeType == ProtocolFeeType.SWAP) {
_cache.swapFee = currentValue.toUint64();
} else if (feeType == ProtocolFeeType.YIELD) {
_cache.yieldFee = currentValue.toUint64();
} else if (feeType == ProtocolFeeType.AUM) {
_cache.aumFee = currentValue.toUint64();
} else {
_revert(Errors.UNHANDLED_FEE_TYPE);
}
emit ProtocolFeePercentageCacheUpdated(feeType, currentValue);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "./ProtocolFees.sol";
library InvariantGrowthProtocolSwapFees {
using FixedPoint for uint256;
function getProtocolOwnershipPercentage(
uint256 invariantGrowthRatio,
uint256 supplyGrowthRatio,
uint256 protocolSwapFeePercentage
) internal pure returns (uint256) {
// Joins and exits are symmetrical; for simplicity, we consider a join, where the invariant and supply
// both increase.
// |-------------------------|-- original invariant * invariantGrowthRatio
// | increase from fees |
// |-------------------------|-- original invariant * supply growth ratio (fee-less invariant)
// | |
// | increase from balances |
// |-------------------------|-- original invariant
// | |
// | | |------------------|-- currentSupply
// | | | BPT minted |
// | | |------------------|-- previousSupply
// | original invariant | | original supply |
// |_________________________| |__________________|
//
// If the join is proportional, the invariant and supply will likewise increase proportionally,
// so the growth ratios (invariantGrowthRatio / supplyGrowthRatio) will be equal. In this case, we do not charge
// any protocol fees.
// We also charge no protocol fees in the case where `invariantGrowthRatio < supplyGrowthRatio` to avoid
// potential underflows, however this should only occur in extremely low volume actions due solely to rounding
// error.
if ((supplyGrowthRatio >= invariantGrowthRatio) || (protocolSwapFeePercentage == 0)) return 0;
// If the join is non-proportional, the supply increase will be proportionally less than the invariant increase,
// since the BPT minted will be based on fewer tokens (because swap fees are not included). So the supply growth
// is due entirely to the balance changes, while the invariant growth also includes swap fees.
//
// To isolate the amount of increase by fees then, we multiply the original invariant by the supply growth
// ratio to get the "feeless invariant". The difference between the final invariant and this value is then
// the amount of the invariant due to fees, which we convert to a percentage by normalizing against the
// final invariant. This is expressed as the expression below:
//
// invariantGrowthFromFees = currentInvariant - supplyGrowthRatio * previousInvariant
//
// We then divide through by current invariant so the LHS can be identified as the fraction of the pool which
// is made up of accumulated swap fees.
//
// swapFeesPercentage = 1 - supplyGrowthRatio * previousInvariant / currentInvariant
//
// We then define `invariantGrowthRatio` in a similar fashion to `supplyGrowthRatio` to give the result:
//
// swapFeesPercentage = 1 - supplyGrowthRatio / invariantGrowthRatio
//
// Using this form allows us to consider only the ratios of the two invariants, rather than their absolute
// values: a useful property, as this is sometimes easier than calculating the full invariant twice.
// We've already checked that `supplyGrowthRatio` is smaller than `invariantGrowthRatio`, and hence their ratio
// smaller than FixedPoint.ONE, allowing for unchecked arithmetic.
uint256 swapFeesPercentage = FixedPoint.ONE - supplyGrowthRatio.divDown(invariantGrowthRatio);
// We then multiply by the protocol swap fee percentage to get the fraction of the pool which the protocol
// should own once fees have been collected.
return swapFeesPercentage.mulDown(protocolSwapFeePercentage);
}
function calcDueProtocolFees(
uint256 invariantGrowthRatio,
uint256 previousSupply,
uint256 currentSupply,
uint256 protocolSwapFeePercentage
) internal pure returns (uint256) {
uint256 protocolOwnershipPercentage = getProtocolOwnershipPercentage(
invariantGrowthRatio,
currentSupply.divDown(previousSupply),
protocolSwapFeePercentage
);
return ProtocolFees.bptForPoolOwnershipPercentage(currentSupply, protocolOwnershipPercentage);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
/**
* @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*
* Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
* all math on `uint256` and `int256` and then downcasting.
*/
library SafeCast {
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
_require(value >> 255 == 0, Errors.SAFE_CAST_VALUE_CANT_FIT_INT256);
return int256(value);
}
/**
* @dev Converts an unsigned uint256 into an unsigned uint64.
*
* Requirements:
*
* - input must be less than or equal to maxUint64.
*/
function toUint64(uint256 value) internal pure returns (uint64) {
_require(value <= type(uint64).max, Errors.SAFE_CAST_VALUE_CANT_FIT_UINT64);
return uint64(value);
}
}// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
pragma solidity ^0.7.0;
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
library ProtocolFees {
using FixedPoint for uint256;
/**
* @dev Calculates the amount of BPT necessary to give ownership of a given percentage of the Pool.
* Note that this function reverts if `poolPercentage` >= 100%, it's expected that the caller will enforce this.
* @param totalSupply - The total supply of the pool prior to minting BPT.
* @param poolOwnershipPercentage - The desired ownership percentage of the pool to have as a result of minting BPT.
* @return bptAmount - The amount of BPT to mint such that it is `poolPercentage` of the resultant total supply.
*/
function bptForPoolOwnershipPercentage(uint256 totalSupply, uint256 poolOwnershipPercentage)
internal
pure
returns (uint256)
{
// If we mint some amount `bptAmount` of BPT then the percentage ownership of the pool this grants is given by:
// `poolOwnershipPercentage = bptAmount / (totalSupply + bptAmount)`.
// Solving for `bptAmount`, we arrive at:
// `bptAmount = totalSupply * poolOwnershipPercentage / (1 - poolOwnershipPercentage)`.
return Math.divDown(Math.mul(totalSupply, poolOwnershipPercentage), poolOwnershipPercentage.complement());
}
}{
"optimizer": {
"enabled": true,
"runs": 800
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"contract IProtocolFeePercentagesProvider","name":"protocolFeeProvider","type":"address"},{"internalType":"string","name":"factoryVersion","type":"string"},{"internalType":"string","name":"poolVersion","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[],"name":"FactoryDisabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"PoolCreated","type":"event"},{"inputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"uint256[]","name":"normalizedWeights","type":"uint256[]"},{"internalType":"contract IRateProvider[]","name":"rateProviders","type":"address[]"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"}],"name":"create","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"disable","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCreationCode","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCreationCodeContracts","outputs":[{"internalType":"address","name":"contractA","type":"address"},{"internalType":"address","name":"contractB","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPauseConfiguration","outputs":[{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getProtocolFeePercentagesProvider","outputs":[{"internalType":"contract IProtocolFeePercentagesProvider","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isDisabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pool","type":"address"}],"name":"isPoolFromFactory","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]Contract Creation Code
6101806040523480156200001257600080fd5b5060405162008d7f38038062008d7f83398101604081905262000035916200036d565b83836040518060200162000049906200021c565b601f1982820381018352601f90910116604052805183903090839060006002820460a081905280830360e08190528185529091508362000095816200013d602090811b620005e917901c565b60601b6001600160601b0319166080528285018051838252620000c4826200013d602090811b620005e917901c565b6001600160601b0319606091821b811660c05296909352905261010095909552505092821b831661012052509290921b909116610140525050426276a700016101605281516200011c9060029060208501906200022a565b508051620001329060039060208401906200022a565b505050505062000415565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f090845291506200018b6001600160a01b03831615156101ac62000191565b50919050565b81620001a257620001a281620001a6565b5050565b620001b8816210905360ea1b620001bb565b50565b62461bcd60e51b600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b61798680620013f983390190565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106200026d57805160ff19168380011785556200029d565b828001600101855582156200029d579182015b828111156200029d57825182559160200191906001019062000280565b50620002ab929150620002af565b5090565b5b80821115620002ab5760008155600101620002b0565b600082601f830112620002d7578081fd5b81516001600160401b0380821115620002ee578283fd5b6040516020601f8401601f191682018101838111838210171562000310578586fd5b806040525081945083825286818588010111156200032d57600080fd5b600092505b8383101562000351578583018101518284018201529182019162000332565b83831115620003635760008185840101525b5050505092915050565b6000806000806080858703121562000383578384fd5b84516200039081620003ff565b6020860151909450620003a381620003ff565b60408601519093506001600160401b0380821115620003c0578384fd5b620003ce88838901620002c6565b93506060870151915080821115620003e4578283fd5b50620003f387828801620002c6565b91505092959194509250565b6001600160a01b0381168114620001b857600080fd5b60805160601c60a05160c05160601c60e051610100516101205160601c6101405160601c61016051610f6b6200048e6000398061030f52806103385250806104d752508061054d5250806104fd52508061064352508061020952806106bf5250806106645250806101e8528061069b5250610f6b6000f3fe608060405234801561001057600080fd5b50600436106100de5760003560e01c806354fd4d501161008c578063739238d611610066578063739238d61461018f578063851c1bb3146101975780638d928af8146101b7578063aaabadc5146101bf576100de565b806354fd4d501461015f5780636634b753146101675780636c57f5a914610187576100de565b80632da47c40116100bd5780632da47c40146101375780632f2770db1461014d5780633f819b6f14610157576100de565b8062c194db146100e3578063174481fa146101015780632182c8fe14610117575b600080fd5b6100eb6101c7565b6040516100f89190610da3565b60405180910390f35b6101096101e6565b6040516100f8929190610d56565b61012a610125366004610b6f565b61022c565b6040516100f89190610d42565b61013f610309565b6040516100f8929190610ecb565b610155610373565b005b6100eb6103ba565b6100eb610450565b61017a610175366004610aef565b6104ae565b6040516100f89190610d70565b61017a6104cc565b61012a6104d5565b6101aa6101a5366004610b2b565b6104f9565b6040516100f89190610d7b565b61012a61054b565b61012a61056f565b60606101e16040518060200160405280600081525061063b565b905090565b7f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000009091565b6000806000610239610309565b915091506102fa6040518060e001604052808d81526020018c81526020018b81526020018a81526020018981526020018b5167ffffffffffffffff8111801561028157600080fd5b506040519080825280602002602001820160405280156102ab578160200160208202803683370190505b5081526020018890526102bc61054b565b6102c46104d5565b85858a6102cf6103ba565b6040516020016102e59796959493929190610db6565b60405160208183030381529060405285610714565b9b9a5050505050505050505050565b600080427f000000000000000000000000000000000000000000000000000000000000000081101561036557807f000000000000000000000000000000000000000000000000000000000000000003925062278d00915061036e565b60009250600091505b509091565b61037b610781565b6103836107b2565b6001805460ff1916811790556040517f432acbfd662dbb5d8b378384a67159b47ca9d0f1b79f97cf64cf8585fa362d5090600090a1565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156104465780601f1061041b57610100808354040283529160200191610446565b820191906000526020600020905b81548152906001019060200180831161042957829003601f168201915b5050505050905090565b60028054604080516020601f60001961010060018716150201909416859004938401819004810282018101909252828152606093909290918301828280156104465780601f1061041b57610100808354040283529160200191610446565b6001600160a01b031660009081526020819052604090205460ff1690565b60015460ff1690565b7f000000000000000000000000000000000000000000000000000000000000000090565b60007f00000000000000000000000000000000000000000000000000000000000000008260405160200161052e929190610d2a565b604051602081830303815290604052805190602001209050919050565b7f000000000000000000000000000000000000000000000000000000000000000090565b600061057961054b565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156105b157600080fd5b505afa1580156105c5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101e19190610b53565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f090845291506106356001600160a01b03831615156101ac6107c7565b50919050565b8051604080517f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000818101858101848101602090810190965280855293957f00000000000000000000000000000000000000000000000000000000000000009592947f000000000000000000000000000000000000000000000000000000000000000094938801866000828a3c846000888301883c50602089810190898501016107068183866107d9565b505050505050505050919050565b600061071e6107b2565b600061072a8484610817565b6001600160a01b038116600081815260208190526040808220805460ff191660011790555192935090917f83a48fbcfc991335314e74d0496aab6a1987e992ddc85dddbcc4d6dd6ef2e9fc9190a290505b92915050565b60006107986000356001600160e01b0319166104f9565b90506107af6107a78233610854565b6101916107c7565b50565b6107c56107bd6104cc565b1560d36107c7565b565b816107d5576107d5816108e4565b5050565b5b602081106107f9578151835260209283019290910190601f19016107da565b905182516020929092036101000a6000190180199091169116179052565b600060606108248461063b565b90506000838251602084016000f590506001600160a01b03811661084c573d6000803e3d6000fd5b949350505050565b600061085e61056f565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161088d93929190610d84565b60206040518083038186803b1580156108a557600080fd5b505afa1580156108b9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108dd9190610b0b565b9392505050565b62461bcd60e51b600090815260206004526007602452600a808304818106603090810160081b83860601918390049283060160101b016642414c230000300160c81b6044526107af916210905360ea1b906242414c90606490fd5b803561077b81610f20565b600082601f83011261095a578081fd5b813561096d61096882610f00565b610ed9565b81815291506020808301908481018184028601820187101561098e57600080fd5b60005b848110156109b65781356109a481610f20565b84529282019290820190600101610991565b505050505092915050565b600082601f8301126109d1578081fd5b81356109df61096882610f00565b818152915060208083019084810181840286018201871015610a0057600080fd5b60005b848110156109b6578135610a1681610f20565b84529282019290820190600101610a03565b600082601f830112610a38578081fd5b8135610a4661096882610f00565b818152915060208083019084810181840286018201871015610a6757600080fd5b60005b848110156109b657813584529282019290820190600101610a6a565b600082601f830112610a96578081fd5b813567ffffffffffffffff811115610aac578182fd5b610abf601f8201601f1916602001610ed9565b9150808252836020828501011115610ad657600080fd5b8060208401602084013760009082016020015292915050565b600060208284031215610b00578081fd5b81356108dd81610f20565b600060208284031215610b1c578081fd5b815180151581146108dd578182fd5b600060208284031215610b3c578081fd5b81356001600160e01b0319811681146108dd578182fd5b600060208284031215610b64578081fd5b81516108dd81610f20565b600080600080600080600080610100898b031215610b8b578384fd5b883567ffffffffffffffff80821115610ba2578586fd5b610bae8c838d01610a86565b995060208b0135915080821115610bc3578586fd5b610bcf8c838d01610a86565b985060408b0135915080821115610be4578586fd5b610bf08c838d0161094a565b975060608b0135915080821115610c05578586fd5b610c118c838d01610a28565b965060808b0135915080821115610c26578586fd5b50610c338b828c016109c1565b94505060a08901359250610c4a8a60c08b0161093f565b915060e089013590509295985092959890939650565b6001600160a01b03169052565b6000815180845260208085019450808401835b83811015610ca55781516001600160a01b031687529582019590820190600101610c80565b509495945050505050565b6000815180845260208085019450808401835b83811015610ca557815187529582019590820190600101610cc3565b60008151808452815b81811015610d0457602081850181015186830182015201610ce8565b81811115610d155782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b901515815260200190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b6000602082526108dd6020830184610cdf565b600060e08252885160e080840152610dd26101c0840182610cdf565b905060208a015160df198085840301610100860152610df18383610cdf565b925060408c015191508085840301610120860152610e0f8383610c6d565b925060608c015191508085840301610140860152610e2d8383610cb0565b925060808c015191508085840301610160860152610e4b8383610c6d565b925060a08c01519150808584030161018086015250610e6a8282610c6d565b91505060c08a01516101a0840152610e85602084018a610c60565b610e926040840189610c60565b866060840152856080840152610eab60a0840186610c60565b82810360c0840152610ebd8185610cdf565b9a9950505050505050505050565b918252602082015260400190565b60405181810167ffffffffffffffff81118282101715610ef857600080fd5b604052919050565b600067ffffffffffffffff821115610f16578081fd5b5060209081020190565b6001600160a01b03811681146107af57600080fdfea264697066735822122066e8ff4d1e877bd80e06651fc94dac70f1f249424c841aced4ddd4bbaf9af10b64736f6c634300070100336106606040523480156200001257600080fd5b50604051620079863803806200798683398101604081905262000035916200150d565b866040015151876080015186600019898b600001518c602001518d604001518e60a001518f60c001518d8d8d6000898751600214801562000074575081155b6200008157600162000084565b60025b8a8a8a8a8a8a8a8a828289898d85336001600160a01b031660001b8480604051806040016040528060018152602001603160f81b81525087878160039080519060200190620000d5929190620011e1565b508051620000eb906004906020840190620011e1565b50506005805460ff19166012179055508151602092830120608052805191012060a052507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60c05260e0526001600160601b0319606091821b81166101005291901b1661012052506200016990506276a70083111561019462000c40565b6200017d62278d0082111561019562000c40565b42909101610140819052016101605285516200019f906002111560c862000c40565b620001b9620001ad62000c55565b8751111560c962000c40565b620001cf8662000c5a60201b620014ba1760201c565b620001da8462000c66565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200020b908d906004016200177b565b602060405180830381600087803b1580156200022657600080fd5b505af11580156200023b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002619190620014d5565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002969084908b908b90600401620016df565b600060405180830381600087803b158015620002b157600080fd5b505af1158015620002c6573d6000803e3d6000fd5b505050508061018081815250508a6001600160a01b031663d2946c2b6040518163ffffffff1660e01b815260040160206040518083038186803b1580156200030d57600080fd5b505afa15801562000322573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620003489190620014ee565b6001600160a01b03166101a0816001600160a01b031660601b815250505050505050505050505050505050505050505050506000600019821490508015156101e081151560f81b81525050826001600160a01b03166101c0816001600160a01b031660601b81525050620003c483600262000cfa60201b60201c565b620003d183600362000cfa565b8015620003eb57620003e583600062000cfa565b620004aa565b60405163178b2b9360e21b81526200047f906001600160a01b03851690635e2cae4c906200041f9060009060040162001790565b60206040518083038186803b1580156200043857600080fd5b505afa1580156200044d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620004739190620014d5565b83111561025862000c40565b60006000805160206200796683398151915283604051620004a1919062001790565b60405180910390a25b80620004b75781620004ba565b60005b6102005250620004d3915050600883111560c962000c40565b620004eb82825162000ea560201b620014c41760201c565b620004f68162000eb4565b151560f81b61032052805181906000906200050d57fe5b60200260200101516001600160a01b0316610220816001600160a01b031660601b81525050806001815181106200054057fe5b60200260200101516001600160a01b0316610240816001600160a01b031660601b8152505060028211620005765760006200058d565b806002815181106200058457fe5b60200260200101515b60601b6001600160601b0319166102605260038211620005af576000620005c6565b80600381518110620005bd57fe5b60200260200101515b60601b6001600160601b0319166102805260048211620005e8576000620005ff565b80600481518110620005f657fe5b60200260200101515b60601b6001600160601b0319166102a052600582116200062157600062000638565b806005815181106200062f57fe5b60200260200101515b60601b6001600160601b0319166102c052600682116200065a57600062000671565b806006815181106200066857fe5b60200260200101515b60601b6001600160601b0319166102e0526007821162000693576000620006aa565b80600781518110620006a157fe5b60200260200101515b6001600160a01b0316610300816001600160a01b031660601b81525050505060008760400151519050620006ef8189606001515162000ea560201b620014c41760201c565b61034081905281516200070a90600b906020850190620011e1565b506000805b828160ff1610156200077f5760008a606001518260ff16815181106200073157fe5b6020026020010151905062000759662386f26fc1000082101561012e62000c4060201b60201c565b62000773818462000f1060201b620014d11790919060201c565b9250506001016200070f565b5062000798670de0b6b3a7640000821461013462000c40565b8860400151600081518110620007aa57fe5b60200260200101516001600160a01b0316610360816001600160a01b031660601b815250508860400151600181518110620007e157fe5b60200260200101516001600160a01b0316610380816001600160a01b031660601b81525050600282116200081757600062000832565b88604001516002815181106200082957fe5b60200260200101515b60601b6001600160601b0319166103a05260038211620008545760006200086f565b88604001516003815181106200086657fe5b60200260200101515b60601b6001600160601b0319166103c0526004821162000891576000620008ac565b8860400151600481518110620008a357fe5b60200260200101515b60601b6001600160601b0319166103e05260058211620008ce576000620008e9565b8860400151600581518110620008e057fe5b60200260200101515b60601b6001600160601b03191661040052600682116200090b57600062000926565b88604001516006815181106200091d57fe5b60200260200101515b60601b6001600160601b03191661042052600782116200094857600062000963565b88604001516007815181106200095a57fe5b60200260200101515b6001600160a01b0316610440816001600160a01b031660601b81525050620009aa89604001516000815181106200099657fe5b602002602001015162000f2d60201b60201c565b6104605260408901518051620009c7919060019081106200099657fe5b6104805260028211620009dc576000620009f2565b620009f289604001516002815181106200099657fe5b6104a0526003821162000a0757600062000a1d565b62000a1d89604001516003815181106200099657fe5b6104c0526004821162000a3257600062000a48565b62000a4889604001516004815181106200099657fe5b6104e0526005821162000a5d57600062000a73565b62000a7389604001516005815181106200099657fe5b610500526006821162000a8857600062000a9e565b62000a9e89604001516006815181106200099657fe5b610520526007821162000ab357600062000ac9565b62000ac989604001516007815181106200099657fe5b610540526060890151805160009062000ade57fe5b60200260200101516105608181525050886060015160018151811062000b0057fe5b602002602001015161058081815250506002821162000b2157600062000b3c565b886060015160028151811062000b3357fe5b60200260200101515b6105a0526003821162000b5157600062000b6c565b886060015160038151811062000b6357fe5b60200260200101515b6105c0526004821162000b8157600062000b9c565b886060015160048151811062000b9357fe5b60200260200101515b6105e0526005821162000bb157600062000bcc565b886060015160058151811062000bc357fe5b60200260200101515b610600526006821162000be157600062000bfc565b886060015160068151811062000bf357fe5b60200260200101515b610620526007821162000c1157600062000c2c565b886060015160078151811062000c2357fe5b60200260200101515b610640525062001802975050505050505050565b8162000c515762000c518162000ffc565b5050565b600890565b8062000c518162001011565b62000c7f62000c746200109d565b82101560cb62000c40565b62000c9862000c8d620010a6565b82111560ca62000c40565b62000cba8160c0603f600854620010b260201b620014e317909392919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9062000cef90839062001790565b60405180910390a150565b604051631a7c326360e01b81526000906001600160a01b03841690631a7c32639062000d2b90859060040162001790565b60206040518083038186803b15801562000d4457600080fd5b505afa15801562000d59573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000d7f9190620014d5565b90508162000dc35762000d9d81620010d760201b620015061760201c565b600980546001600160401b0319166001600160401b039290921691909117905562000e77565b600282141562000e195762000de381620010d760201b620015061760201c565b600980546001600160401b03929092166801000000000000000002600160401b600160801b031990921691909117905562000e77565b600382141562000e6a5762000e3981620010d760201b620015061760201c565b600980546001600160401b0392909216600160801b02600160801b600160c01b031990921691909117905562000e77565b62000e776101bb62000ffc565b81600080516020620079668339815191528260405162000e98919062001790565b60405180910390a2505050565b62000c51828214606762000c40565b6000805b825181101562000f055760006001600160a01b031683828151811062000eda57fe5b60200260200101516001600160a01b03161462000efc57600091505062000f0b565b60010162000eb8565b50600190505b919050565b600082820162000f24848210158362000c40565b90505b92915050565b60006001600160a01b03821630141562000f515750670de0b6b3a764000062000f0b565b6000826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b15801562000f8d57600080fd5b505afa15801562000fa2573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000fc89190620016bc565b60ff169050600062000fe7601283620010f560201b620015231760201c565b600a0a670de0b6b3a764000002949350505050565b6200100e816210905360ea1b6200110d565b50565b60028151101562001022576200100e565b6000816000815181106200103257fe5b602002602001015190506000600190505b8251811015620010985760008382815181106200105c57fe5b602002602001015190506200108d816001600160a01b0316846001600160a01b031610606562000c4060201b60201c565b915060010162001043565b505050565b64e8d4a5100090565b67016345785d8a000090565b6000620010c18484846200116e565b506001901b60001901811b1992909216911b1790565b6000620010f16001600160401b038311156101ba62000c40565b5090565b60006200110783831115600162000c40565b50900390565b62461bcd60e51b600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b6200117f6101008310606462000c40565b620011b860018210158015620011b05750620011ac60ff8461010003620011c960201b620015391760201c565b8211155b606462000c40565b6200109883821c156101b462000c40565b6000818310620011da578162000f24565b5090919050565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106200122457805160ff191683800117855562001254565b8280016001018555821562001254579182015b828111156200125457825182559160200191906001019062001237565b50620010f19291505b80821115620010f157600081556001016200125d565b805162000f2781620017ec565b600082601f83011262001291578081fd5b8151620012a8620012a282620017c0565b62001799565b818152915060208083019084810181840286018201871015620012ca57600080fd5b60005b84811015620012f6578151620012e381620017ec565b84529282019290820190600101620012cd565b505050505092915050565b600082601f83011262001312578081fd5b815162001323620012a282620017c0565b8181529150602080830190848101818402860182018710156200134557600080fd5b60005b84811015620012f65781516200135e81620017ec565b8452928201929082019060010162001348565b600082601f83011262001382578081fd5b815162001393620012a282620017c0565b818152915060208083019084810181840286018201871015620013b557600080fd5b60005b84811015620012f6578151620013ce81620017ec565b84529282019290820190600101620013b8565b600082601f830112620013f2578081fd5b815162001403620012a282620017c0565b8181529150602080830190848101818402860182018710156200142557600080fd5b60005b84811015620012f65781518452928201929082019060010162001428565b600082601f83011262001457578081fd5b81516001600160401b038111156200146d578182fd5b602062001483601f8301601f1916820162001799565b925081835284818386010111156200149a57600080fd5b60005b82811015620014ba5784810182015184820183015281016200149d565b82811115620014cc5760008284860101525b50505092915050565b600060208284031215620014e7578081fd5b5051919050565b60006020828403121562001500578081fd5b815162000f2481620017ec565b600080600080600080600060e0888a03121562001528578283fd5b87516001600160401b03808211156200153f578485fd5b9089019060e0828c03121562001553578485fd5b6200155f60e062001799565b8251828111156200156e578687fd5b6200157c8d82860162001446565b82525060208301518281111562001591578687fd5b6200159f8d82860162001446565b602083015250604083015182811115620015b7578687fd5b620015c58d82860162001301565b604083015250606083015182811115620015dd578687fd5b620015eb8d828601620013e1565b60608301525060808301518281111562001603578687fd5b620016118d82860162001371565b60808301525060a08301518281111562001629578687fd5b620016378d82860162001280565b60a08301525060c083810151908201529850620016588b60208c0162001273565b9750620016698b60408c0162001273565b965060608a0151955060808a01519450620016888b60a08c0162001273565b935060c08a01519150808211156200169e578283fd5b50620016ad8a828b0162001446565b91505092959891949750929550565b600060208284031215620016ce578081fd5b815160ff8116811462000f24578182fd5b60006060820185835260206060818501528186518084526080860191508288019350845b818110156200172b57620017188551620017e0565b8352938301939183019160010162001703565b505084810360408601528551808252908201925081860190845b818110156200176d576200175a8351620017e0565b8552938301939183019160010162001745565b509298975050505050505050565b60208101600383106200178a57fe5b91905290565b90815260200190565b6040518181016001600160401b0381118282101715620017b857600080fd5b604052919050565b60006001600160401b03821115620017d6578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b03811681146200100e57600080fd5b60805160a05160c05160e0516101005160601c6101205160601c6101405161016051610180516101a05160601c6101c05160601c6101e05160f81c610200516102205160601c6102405160601c6102605160601c6102805160601c6102a05160601c6102c05160601c6102e05160601c6103005160601c6103205160f81c610340516103605160601c6103805160601c6103a05160601c6103c05160601c6103e05160601c6104005160601c6104205160601c6104405160601c61046051610480516104a0516104c0516104e05161050051610520516105405161056051610580516105a0516105c0516105e051610600516106205161064051615ebc62001aaa60003980612270528061357e52508061222d528061351d5250806121ea52806134bc5250806121a7528061345b52508061216452806133fa52508061212152806133995250806120de52806133385250806120a452806132d7525080612b96525080612b72525080612b4e525080612b2a525080612b06525080612ae2525080612abe525080612a9a525080612563528061354352508061252152806134e25250806124df528061348152508061249d528061342052508061245b52806133bf525080612419528061335e5250806123d752806132fd525080612395528061329c5250806119c2525080613837525080610a6b5280613a98525080610a145280613a4c5250806109bd5280613a0052508061096652806139b452508061090f52806139685250806108aa528061390752508061085352806138b65250806108055280613878525080610cdf52508061074f5250806106cf52806106fa5280610725525080611293525080610b6b5250806118075250806117e3525080610fad525080610f89525080610ed75250806128825250806128c45250806128a35250615ebc6000f3fe608060405234801561001057600080fd5b50600436106103205760003560e01c80637ecebe00116101a7578063aaabadc5116100ee578063d505accf11610097578063ddf4627b11610071578063ddf4627b146105ef578063ed24911d146105f7578063f89f27ed146105ff57610320565b8063d505accf146105b6578063d5c096c4146105c9578063dd62ed3e146105dc57610320565b8063b7b814fc116100c8578063b7b814fc1461059e578063c0ff1a15146105a6578063d2946c2b146105ae57610320565b8063aaabadc514610586578063b10962781461058e578063b35056b81461059657610320565b80638d928af8116101505780639d2c110c1161012a5780639d2c110c1461054d578063a457c2d714610560578063a9059cbb1461057357610320565b80638d928af81461052a57806390193b7c1461053257806395d89b411461054557610320565b8063876f303b11610181578063876f303b146104fa57806387ec681714610502578063893d20e81461051557610320565b80637ecebe00146104cc5780638456cb59146104df578063851c1bb3146104e757610320565b806338e9922e1161026b57806354fd4d501161021457806370464016116101ee578063704640161461048557806370a082311461049857806374f3b009146104ab57610320565b806354fd4d501461045457806355c676281461045c5780636028bfd41461046457610320565b80633f4ba83a116102455780633f4ba83a1461043157806350dd6ed91461043957806354a844ba1461044c57610320565b806338e9922e1461040357806338fff2d014610416578063395093511461041e57610320565b80631dd746ea116102cd57806323ef89ed116102a757806323ef89ed146103de578063313ce567146103e65780633644e515146103fb57610320565b80631dd746ea146103a1578063238a2d59146103b657806323b872dd146103cb57610320565b806315b0015b116102fe57806315b0015b1461036d57806318160ddd146103755780631c0de0511461038a57610320565b806306fdde0314610325578063095ea7b3146103435780630da0669c14610363575b600080fd5b61032d610607565b60405161033a9190615de1565b60405180910390f35b610356610351366004615511565b61069e565b60405161033a9190615ce8565b61036b6106b5565b005b61035661074d565b61037d610771565b60405161033a9190615d0b565b610392610777565b60405161033a93929190615cf3565b6103a96107a0565b60405161033a9190615cb0565b6103be6107af565b60405161033a9190615bcc565b6103566103d9366004615461565b610abe565b61037d610b34565b6103ee610b3a565b60405161033a9190615e0d565b61037d610b43565b61036b610411366004615a2a565b610b4d565b61037d610b69565b61035661042c366004615511565b610b8d565b61036b610bc8565b61036b610447366004615769565b610bda565b61036b610bf8565b61032d610c0a565b61037d610c6b565b610477610472366004615628565b610c7e565b60405161033a929190615df4565b61037d610493366004615a2a565b610cb5565b61037d6104a636600461540d565b610d73565b6104be6104b9366004615628565b610d8e565b60405161033a929190615cc3565b61037d6104da36600461540d565b610eb6565b61036b610ec1565b61037d6104f5366004615725565b610ed3565b61037d610f25565b610477610510366004615628565b610f61565b61051d610f87565b60405161033a9190615bb8565b61051d610fab565b61037d61054036600461540d565b610fcf565b61032d610fea565b61037d61055b36600461592e565b61104b565b61035661056e366004615511565b611144565b610356610581366004615511565b611182565b61051d61118f565b61037d611199565b6103566111b1565b61036b6111c2565b61037d6111d4565b61051d611291565b61036b6105c43660046154a1565b6112b5565b6104be6105d7366004615628565b611340565b61037d6105ea366004615429565b611463565b61037d6114a0565b61037d6114a6565b6103a96114b0565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106935780601f1061066857610100808354040283529160200191610693565b820191906000526020600020905b81548152906001019060200180831161067657829003601f168201915b505050505090505b90565b60006106ab33848461154f565b5060015b92915050565b6106bd6115b7565b6106c561074d565b156106f5576106f57f00000000000000000000000000000000000000000000000000000000000000006000611620565b6107207f00000000000000000000000000000000000000000000000000000000000000006002611620565b61074b7f00000000000000000000000000000000000000000000000000000000000000006003611620565b565b7f000000000000000000000000000000000000000000000000000000000000000090565b60025490565b60008060006107846117c4565b15925061078f6117e1565b9150610799611805565b9050909192565b60606107aa611829565b905090565b606060006107bb6119c0565b905060608167ffffffffffffffff811180156107d657600080fd5b50604051908082528060200260200182016040528015610800578160200160208202803683370190505b5090507f00000000000000000000000000000000000000000000000000000000000000008160008151811061083157fe5b60200260200101906001600160a01b031690816001600160a01b0316815250507f00000000000000000000000000000000000000000000000000000000000000008160018151811061087f57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060028211156108fb577f0000000000000000000000000000000000000000000000000000000000000000816002815181106108d657fe5b60200260200101906001600160a01b031690816001600160a01b031681525050610904565b915061069b9050565b60038211156108fb577f00000000000000000000000000000000000000000000000000000000000000008160038151811061093b57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060048211156108fb577f00000000000000000000000000000000000000000000000000000000000000008160048151811061099257fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060058211156108fb577f0000000000000000000000000000000000000000000000000000000000000000816005815181106109e957fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060068211156108fb577f000000000000000000000000000000000000000000000000000000000000000081600681518110610a4057fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060078211156108fb577f000000000000000000000000000000000000000000000000000000000000000081600781518110610a9757fe5b60200260200101906001600160a01b031690816001600160a01b0316815250505b91505090565b600080610acb8533611463565b9050610aef336001600160a01b0387161480610ae75750838210155b61019e6119e4565b610afa8585856119f2565b336001600160a01b03861614801590610b1557506000198114155b15610b2757610b27853385840361154f565b60019150505b9392505050565b600a5490565b60055460ff1690565b60006107aa6114a6565b610b55611ad2565b610b5d611b00565b610b6681611b13565b50565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916106ab918590610bc390866114d1565b61154f565b610bd0611ad2565b61074b6000611b8c565b610be2611ad2565b610bea611b00565b610bf48282611bff565b5050565b610c00611ad2565b61074b6001611cf4565b600b8054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106935780601f1061066857610100808354040283529160200191610693565b6008546000906107aa9060c0603f611d4b565b60006060610c948651610c8f6119c0565b6114c4565b610ca989898989898989611d5a611dbc611e2b565b97509795505050505050565b6000610cbf6111b1565b15610ccc57506000610d6e565b81610d1857610cd961074d565b610d03577f0000000000000000000000000000000000000000000000000000000000000000610d11565b60095467ffffffffffffffff165b9050610d6e565b6002821415610d40575060095468010000000000000000900467ffffffffffffffff16610d6e565b6003821415610d635750600954600160801b900467ffffffffffffffff16610d6e565b610d6e6101bb611f55565b919050565b6001600160a01b031660009081526020819052604090205490565b60608088610db8610d9d610fab565b6001600160a01b0316336001600160a01b03161460cd6119e4565b610dcd610dc3610b69565b82146101f46119e4565b60606000610dda86611f65565b15610e0257610de7611f94565b610df989610df3610771565b88611fa7565b92509050610e54565b610e0a611fd3565b6060610e14611829565b9050610e208a82611fdb565b610e448d8d8d8d8d610e306111b1565b610e3a578d610e3d565b60005b878e611d5a565b93509150610e528382611dbc565b505b610e5e8b82612044565b81895167ffffffffffffffff81118015610e7757600080fd5b50604051908082528060200260200182016040528015610ea1578160200160208202803683370190505b509450945050505b5097509795505050505050565b60006106af82610fcf565b610ec9611ad2565b61074b6001611b8c565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610f08929190615b75565b604051602081830303815290604052805190602001209050919050565b600080610f30610771565b90506000610f4d610f3f6111d4565b610f4761204e565b8461229c565b509050610f5a82826114d1565b9250505090565b60006060610f728651610c8f6119c0565b610ca9898989898989896122df612328611e2b565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b6001600160a01b031660009081526006602052604090205490565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156106935780601f1061066857610100808354040283529160200191610693565b6000836080015161105d610d9d610fab565b611068610dc3610b69565b611070611fd3565b600061107f8660200151612391565b905060006110908760400151612391565b905061109c86836125ae565b95506110a885826125ae565b94506000875160018111156110b957fe5b1415611105576110cc87606001516125ba565b606088018190526110dd90836125ae565b606088015260006110ef8888886125db565b90506110fb818361260e565b945050505061113c565b6111138760600151826125ae565b6060880152600061112588888861261a565b90506111318184612645565b90506110fb81612651565b509392505050565b6000806111513385611463565b905080831061116b576111663385600061154f565b611178565b611178338585840361154f565b5060019392505050565b60006106ab3384846119f2565b60006107aa61266d565b60006107aa600060c06111aa6126e7565b9190611d4b565b6008546000906107aa9060ff6126ed565b6111ca611ad2565b61074b6000611cf4565b600060606111e0610fab565b6001600160a01b031663f94d46686111f6610b69565b6040518263ffffffff1660e01b81526004016112129190615d0b565b60006040518083038186803b15801561122a57600080fd5b505afa15801561123e573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611266919081019061553c565b5091505061127b81611276611829565b611fdb565b606061128561204e565b9050610f5a81836126f7565b7f000000000000000000000000000000000000000000000000000000000000000090565b60007f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886112e48c610fcf565b896040516020016112fa96959493929190615d33565b60405160208183030381529060405280519060200120905061132b8882611322878787612769565b886101f86127a8565b61133688888861154f565b5050505050505050565b6060808861134f610d9d610fab565b61135a610dc3610b69565b611362611fd3565b606061136c611829565b9050611376610771565b611423576000606061138b8d8d8d868b6127ff565b915091506113a461139a612842565b83101560cc6119e4565b6113b660006113b1612842565b612849565b6113c98b6113c2612842565b8403612849565b6113d38184612328565b808a5167ffffffffffffffff811180156113ec57600080fd5b50604051908082528060200260200182016040528015611416578160200160208202803683370190505b5095509550505050610ea9565b61142d8882611fdb565b600060606114558d8d8d8d8d6114416111b1565b61144b578d61144e565b60005b898e6122df565b915091506113c98b83612849565b600061146d610fab565b6001600160a01b0316826001600160a01b0316141561148f57506000196106af565b6114998383612853565b90506106af565b60001981565b60006107aa61287e565b60606107aa61204e565b80610bf48161291b565b610bf481831460676119e4565b6000828201610b2d84821015836119e4565b60006114f0848484612994565b506001901b60001901811b1992909216911b1790565b600061151f67ffffffffffffffff8311156101ba6119e4565b5090565b60006115338383111560016119e4565b50900390565b60008183106115485781610b2d565b5090919050565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906115aa908590615d0b565b60405180910390a3505050565b6115bf6129db565b6115c7611b00565b60006115d16111d4565b90506000806115ef836115e261204e565b6115ea610771565b61229c565b909250905081156116035761160382612a79565b61160c83612a8a565b801561161b5761161b81612a93565b505050565b604051631a7c326360e01b81526000906001600160a01b03841690631a7c32639061164f908590600401615d0b565b60206040518083038186803b15801561166757600080fd5b505afa15801561167b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061169f9190615a42565b9050816116d6576116af81611506565b6009805467ffffffffffffffff191667ffffffffffffffff92909216919091179055611787565b6002821415611724576116e881611506565b6009805467ffffffffffffffff9290921668010000000000000000026fffffffffffffffff000000000000000019909216919091179055611787565b600382141561177c5761173681611506565b6009805467ffffffffffffffff92909216600160801b027fffffffffffffffff0000000000000000ffffffffffffffffffffffffffffffff909216919091179055611787565b6117876101bb611f55565b817f6bfb689528fa96ec1ad670ad6d6064be1ae96bfd5d2ee35c837fd0fe0c11959a826040516117b79190615d0b565b60405180910390a2505050565b60006117ce611805565b4211806107aa57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b606060006118356119c0565b905060608167ffffffffffffffff8111801561185057600080fd5b5060405190808252806020026020018201604052801561187a578160200160208202803683370190505b509050611885612a98565b8160008151811061189257fe5b6020026020010181815250506118a6612abc565b816001815181106118b357fe5b60200260200101818152505060028211156108fb576118d0612ae0565b816002815181106118dd57fe5b60200260200101818152505060038211156108fb576118fa612b04565b8160038151811061190757fe5b60200260200101818152505060048211156108fb57611924612b28565b8160048151811061193157fe5b60200260200101818152505060058211156108fb5761194e612b4c565b8160058151811061195b57fe5b60200260200101818152505060068211156108fb57611978612b70565b8160068151811061198557fe5b60200260200101818152505060078211156108fb576119a2612b94565b816007815181106119af57fe5b602002602001018181525050610ab8565b7f000000000000000000000000000000000000000000000000000000000000000090565b81610bf457610bf481611f55565b611a096001600160a01b03841615156101986119e4565b611a206001600160a01b03831615156101996119e4565b611a2b83838361161b565b6001600160a01b038316600090815260208190526040902054611a5190826101a0612bb8565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611a8090826114d1565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906115aa908590615d0b565b6000611ae96000356001600160e01b031916610ed3565b9050610b66611af88233612bce565b6101916119e4565b61074b611b0b6117c4565b6101926119e4565b611b28611b1e612cb7565b82101560cb6119e4565b611b3d611b33612cc0565b82111560ca6119e4565b600854611b4e908260c0603f6114e3565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90611b81908390615d0b565b60405180910390a150565b8015611bac57611ba7611b9d6117e1565b42106101936119e4565b611bc1565b611bc1611bb7611805565b42106101a96119e4565b6007805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490611b81908390615ce8565b6000611c09610b69565b90506000611c15610fab565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611c42929190615dac565b60806040518083038186803b158015611c5a57600080fd5b505afa158015611c6e573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c929190615a5a565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d49250611cc6915085908790600401615d93565b600060405180830381600087803b158015611ce057600080fd5b505af1158015611336573d6000803e3d6000fd5b600854611d03908260ff612ccc565b6008556040517feff3d4d215b42bf0960be9c6d5e05c22cba4df6627a3a523e2acee733b5854c890611d36908390615ce8565b60405180910390a180610b6657610b66612cf3565b6001901b6000190191901c1690565b6000606080611d6761204e565b9050600080611d768a84612d43565b9150915060006060611d8c8e8d878c888d612da9565b9092509050611da8838d838888611da38189611523565b612e3c565b909e909d509b505050505050505050505050565b81518151611dcb9082906114c4565b60005b81811015611e2557611e06848281518110611de557fe5b6020026020010151848381518110611df957fe5b6020026020010151612e66565b848281518110611e1257fe5b6020908102919091010152600101611dce565b50505050565b333014611ee9576000306001600160a01b0316600036604051611e4f929190615b8d565b6000604051808303816000865af19150503d8060008114611e8c576040519150601f19603f3d011682016040523d82523d6000602084013e611e91565b606091505b505090508060008114611ea057fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114611ecb573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b611ef1611fd3565b6060611efb611829565b9050611f078782611fdb565b60006060611f1f8c8c8c8c8c8c898d8d63ffffffff16565b91509150611f3181848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b610b66816210905360ea1b612eb7565b60008082511180156106af575060ff801682806020019051810190611f8a9190615a9a565b60ff161492915050565b61074b611f9f6111b1565b6101b66119e4565b600060606000611fb684612f18565b90506060611fc5878784612f2e565b919791965090945050505050565b61074b611b00565b81518151611fea9082906114c4565b60005b81811015611e255761202584828151811061200457fe5b602002602001015184838151811061201857fe5b6020026020010151612fdd565b84828151811061203157fe5b6020908102919091010152600101611fed565b610bf48282613013565b6060600061205a6119c0565b905060608167ffffffffffffffff8111801561207557600080fd5b5060405190808252806020026020018201604052801561209f578160200160208202803683370190505b5090507f0000000000000000000000000000000000000000000000000000000000000000816000815181106120d057fe5b6020026020010181815250507f00000000000000000000000000000000000000000000000000000000000000008160018151811061210a57fe5b60200260200101818152505060028211156108fb577f00000000000000000000000000000000000000000000000000000000000000008160028151811061214d57fe5b60200260200101818152505060038211156108fb577f00000000000000000000000000000000000000000000000000000000000000008160038151811061219057fe5b60200260200101818152505060048211156108fb577f0000000000000000000000000000000000000000000000000000000000000000816004815181106121d357fe5b60200260200101818152505060058211156108fb577f00000000000000000000000000000000000000000000000000000000000000008160058151811061221657fe5b60200260200101818152505060068211156108fb577f00000000000000000000000000000000000000000000000000000000000000008160068151811061225957fe5b60200260200101818152505060078211156108fb577f0000000000000000000000000000000000000000000000000000000000000000816007815181106119af57fe5b60008060006122b4866122af6000610cb5565b6130df565b90506000806122c287613105565b915091506122d286838501613175565b9890975095505050505050565b60006060806122ec61204e565b90506000806122fb8a84612d43565b91509150600060606123118e8d878c888d613192565b9092509050611da8838d838888611da381896114d1565b815181516123379082906114c4565b60005b81811015611e255761237284828151811061235157fe5b602002602001015184838151811061236557fe5b602002602001015161320e565b84828151811061237e57fe5b602090810291909101015260010161233a565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156123d557610d11612a98565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561241757610d11612abc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561245957610d11612ae0565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561249b57610d11612b04565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156124dd57610d11612b28565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561251f57610d11612b4c565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561256157610d11612b70565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156125a357610d11612b94565b610d6e610135611f55565b6000610b2d8383612fdd565b6000806125cf6125c8610c6b565b849061325c565b9050610b2d8382611523565b6000612606836125ee8660200151613298565b846125fc8860400151613298565b88606001516135a2565b949350505050565b6000610b2d8383612e66565b60006126068361262d8660200151613298565b8461263b8860400151613298565b886060015161361d565b6000610b2d838361320e565b60006106af612666612661610c6b565b613693565b839061320e565b6000612677610fab565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156126af57600080fd5b505afa1580156126c3573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107aa919061574d565b60085490565b1c60019081161490565b670de0b6b3a764000060005b83518110156127595761274f61274885838151811061271e57fe5b602002602001015185848151811061273257fe5b60200260200101516136b990919063ffffffff16565b8390612fdd565b9150600101612703565b506106af600082116101376119e4565b60408051604180825260808201909252606091829190602082018180368337019050509050836020820152826040820152846060820153949350505050565b60006127b38561376a565b90506127c96127c3878387613786565b836119e4565b6127d8428410156101b86119e4565b5050506001600160a01b039092166000908152600660205260409020805460010190555050565b6000606061280b613835565b6128275761282761282261281d61204e565b613859565b612a93565b6128348787878787613abc565b915091509550959350505050565b620f424090565b610bf48282613b4c565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006128eb613bdf565b30604051602001612900959493929190615d67565b60405160208183030381529060405280519060200120905090565b60028151101561292a57610b66565b60008160008151811061293957fe5b602002602001015190506000600190505b825181101561161b57600083828151811061296157fe5b6020026020010151905061298a816001600160a01b0316846001600160a01b03161060656119e4565b915060010161294a565b6129a3610100831060646119e4565b6129cc600182101580156129c557506129c160ff8461010003611539565b8211155b60646119e4565b61161b83821c156101b46119e4565b60408051600080825260208201909252606091612a0e565b6129fb6152ce565b8152602001906001900390816129f35790505b509050612a19610fab565b6001600160a01b0316630e8e3e84826040518263ffffffff1660e01b8152600401612a449190615c19565b600060405180830381600087803b158015612a5e57600080fd5b505af1158015612a72573d6000803e3d6000fd5b5050505050565b610b66612a84611291565b82612849565b610b6681613be3565b600a55565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b6000612bc784841115836119e4565b5050900390565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b612bed610f87565b6001600160a01b031614158015612c085750612c0883613c03565b15612c3057612c15610f87565b6001600160a01b0316336001600160a01b03161490506106af565b612c3861266d565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612c6793929190615d14565b60206040518083038186803b158015612c7f57600080fd5b505afa158015612c93573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906114999190615608565b64e8d4a5100090565b67016345785d8a000090565b60006001821b1984168284612ce2576000612ce5565b60015b60ff16901b17949350505050565b612cfb6129db565b612d0b612d066111d4565b612a8a565b612d13613835565b61074b576000612d21610b34565b90506000612d3061281d61204e565b905081811115610bf457610bf481612a93565b6000806000612d50610771565b90506000612d5e85876126f7565b9050600080612d6e83888661229c565b90925090508015612d8257612d8281612a93565b8115612d9157612d9182612a79565b612d9b84836114d1565b989297509195505050505050565b600060606000612db884613c35565b90506000816003811115612dc857fe5b1415612de457612dda88888787613c4b565b9250925050612e31565b6001816003811115612df257fe5b1415612e0357612dda888686613d1a565b6002816003811115612e1157fe5b1415612e2457612dda8888888888613d38565b612e2f610150611f55565b505b965096945050505050565b6000612e4c878787878787613d97565b90508015612e5d57612e5d81612a79565b50505050505050565b6000612e7582151560046119e4565b82612e82575060006106af565b670de0b6b3a764000083810290612ea590858381612e9c57fe5b041460056119e4565b828181612eae57fe5b049150506106af565b62461bcd60e51b600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b600081806020019051810190610b2d9190615ab6565b60606000612f3c8385612e66565b9050845167ffffffffffffffff81118015612f5657600080fd5b50604051908082528060200260200182016040528015612f80578160200160208202803683370190505b50915060005b8551811015612fd457612fb582878381518110612f9f57fe5b6020026020010151612fdd90919063ffffffff16565b838281518110612fc157fe5b6020908102919091010152600101612f86565b50509392505050565b6000828202613001841580612ffa575083858381612ff757fe5b04145b60036119e4565b670de0b6b3a764000090049392505050565b61302a6001600160a01b038316151561019b6119e4565b6130368260008361161b565b6001600160a01b03821660009081526020819052604090205461305c90826101b2612bb8565b6001600160a01b03831660009081526020819052604090205561308f61308a82613084610771565b90613e90565b613e9e565b60006001600160a01b0316826001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516130d39190615d0b565b60405180910390a35050565b6000610b2d6130f66130ef611199565b8590612e66565b670de0b6b3a764000084613ea3565b600080613110613835565b1561312057506000905080613170565b600a54600061312e85613859565b905081811161314557600080935093505050613170565b61316a6131528284612e66565b670de0b6b3a76400006131656002610cb5565b613ea3565b93509150505b915091565b6000610b2d6131848484613eea565b61318d84613693565b613f04565b6000606060006131a184613f24565b905060018160048111156131b157fe5b14156131c457612dda8888888888613f3a565b60028160048111156131d257fe5b14156131e457612dda88888787613f8a565b60038160048111156131f257fe5b141561320357612dda888686613fe8565b612e2f610136611f55565b600061321d82151560046119e4565b8261322a575060006106af565b670de0b6b3a76400008381029061324490858381612e9c57fe5b82600182038161325057fe5b046001019150506106af565b6000828202613276841580612ffa575083858381612ff757fe5b806132855760009150506106af565b670de0b6b3a76400006000198201613250565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156132fb57507f0000000000000000000000000000000000000000000000000000000000000000610d6e565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561335c57507f0000000000000000000000000000000000000000000000000000000000000000610d6e565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156133bd57507f0000000000000000000000000000000000000000000000000000000000000000610d6e565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561341e57507f0000000000000000000000000000000000000000000000000000000000000000610d6e565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561347f57507f0000000000000000000000000000000000000000000000000000000000000000610d6e565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156134e057507f0000000000000000000000000000000000000000000000000000000000000000610d6e565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561354157507f0000000000000000000000000000000000000000000000000000000000000000610d6e565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156125a357507f0000000000000000000000000000000000000000000000000000000000000000610d6e565b60006135c46135b987670429d069189e0000612fdd565b8311156101306119e4565b60006135d087846114d1565b905060006135de888361320e565b905060006135ec8887612e66565b905060006135fa8383614006565b905061360f61360882613693565b8990612fdd565b9a9950505050505050505050565b600061363f61363485670429d069189e0000612fdd565b8311156101316119e4565b600061365561364e8685611523565b869061320e565b90506000613663858861320e565b905060006136718383614006565b9050600061368782670de0b6b3a7640000611523565b905061360f8a8261325c565b6000670de0b6b3a764000082106136ab5760006106af565b50670de0b6b3a76400000390565b6000670de0b6b3a76400008214156136d25750816106af565b671bc16d674ec800008214156136ec576114998384612fdd565b673782dace9d90000082141561371c5760006137088485612fdd565b90506137148182612fdd565b9150506106af565b6000613728848461408c565b9050600061374261373b8361271061325c565b60016114d1565b905080821015613757576000925050506106af565b6137618282611523565b925050506106af565b600061377461287e565b82604051602001610f08929190615b9d565b600061379882516041146101b96119e4565b60208281015160408085015160608601518251600080825295019283905292939092811a916001906137d1908990859088908890615dc3565b6020604051602081039080840390855afa1580156137f3573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116158015906138295750876001600160a01b0316816001600160a01b0316145b98975050505050505050565b7f000000000000000000000000000000000000000000000000000000000000000090565b8051600090816138df61389c85838561386e57fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000061418c565b6138da866001815181106138ac57fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000061418c565b612fdd565b905060028211156139395761393261392b856002815181106138fd57fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000061418c565b8290612fdd565b9050613942565b9150610d6e9050565b60038211156139395761398c61392b8560038151811061395e57fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000061418c565b90506004821115613939576139d861392b856004815181106139aa57fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000061418c565b9050600582111561393957613a2461392b856005815181106139f657fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000061418c565b9050600682111561393957613a7061392b85600681518110613a4257fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000061418c565b90506007821115610b2d5761260661392b85600781518110613a8e57fe5b60200260200101517f000000000000000000000000000000000000000000000000000000000000000061418c565b600060606000613acb84613f24565b9050613ae66000826004811115613ade57fe5b1460ce6119e4565b6060613af18561422d565b9050613aff815187516114c4565b613b098187611fdb565b6060613b1361204e565b90506000613b2182846126f7565b90506000613b30828551613eea565b9050613b3b82612a8a565b9b929a509198505050505050505050565b613b586000838361161b565b613b6d61308a82613b67610771565b906114d1565b6001600160a01b038216600090815260208190526040902054613b9090826114d1565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906130d3908590615d0b565b4690565b610b66613bfe82600060c0613bf66126e7565b9291906114e3565b614243565b6000613c15631c74c91760e11b610ed3565b8214806106af5750613c2d6350dd6ed960e01b610ed3565b909114919050565b6000818060200190518101906106af91906157b7565b60006060600080613c5b85614258565b91509150613c6d8851821060646119e4565b6000613ca9898381518110613c7e57fe5b6020026020010151898481518110613c9257fe5b6020026020010151858a613ca4610c6b565b61427a565b90506060895167ffffffffffffffff81118015613cc557600080fd5b50604051908082528060200260200182016040528015613cef578160200160208202803683370190505b50905081818481518110613cff57fe5b60209081029190910101529299929850919650505050505050565b600060606000613d2984614330565b90506060611fc5878388614346565b60006060806000613d48856143e2565b91509150613d5882518a516114c4565b613d628288611fdb565b6000613d788a8a858a613d73610c6b565b6143fa565b9050613d888282111560cf6119e4565b99919850909650505050505050565b600082821015815b8751811015613e315781613de257613ddd888281518110613dbc57fe5b6020026020010151888381518110613dd057fe5b6020026020010151613e90565b613e12565b613e12888281518110613df157fe5b6020026020010151888381518110613e0557fe5b60200260200101516114d1565b888281518110613e1e57fe5b6020908102919091010152600101613d9f565b506000613e3e86896126f7565b90506000613e4c6000610cb5565b9050613e5782612a8a565b80613e685760009350505050613e86565b6000613e7f613e77848d612e66565b888885614538565b9450505050505b9695505050505050565b6000610b2d83836001612bb8565b600255565b60008383101580613eb2575081155b15613ebf57506000610b2d565b6000613ecb8486612e66565b670de0b6b3a7640000039050613ee18184612fdd565b95945050505050565b6000828202610b2d841580612ffa575083858381612ff757fe5b6000613f1382151560046119e4565b818381613f1c57fe5b049392505050565b6000818060200190518101906106af9190615878565b60006060806000613f4a8561455b565b91509150613f5a895183516114c4565b613f648288611fdb565b6000613f7a8a8a858a613f75610c6b565b614573565b9050613d888282101560d06119e4565b60006060600080613f9a856146ae565b91509150613fac8851821060646119e4565b6000613ca9898381518110613fbd57fe5b6020026020010151898481518110613fd157fe5b6020026020010151858a613fe3610c6b565b6146c5565b600060606000613ff78461475b565b90506060611fc5878388614771565b6000670de0b6b3a764000082141561401f5750816106af565b671bc16d674ec8000082141561403957611499838461325c565b673782dace9d900000821415614061576000614055848561325c565b9050613714818261325c565b600061406d848461408c565b9050600061408061373b8361271061325c565b905061376182826114d1565b6000816140a25750670de0b6b3a76400006106af565b826140af575060006106af565b6140bf60ff84901c1560066119e4565b826140e5770bce5086492111aea88f4bb1ca6bcf584181ea8059f76532841060076119e4565b826000670c7d713b49da0000831380156141065750670f43fc2c04ee000083125b1561413d57600061411684614803565b9050670de0b6b3a764000080820784020583670de0b6b3a76400008305020191505061414b565b816141478461492a565b0290505b670de0b6b3a76400009005614183680238fd42c5cf03ffff19821280159061417c575068070c1cc73b00c800008213155b60086119e4565b613e8681614cca565b60006001600160a01b0382161561421d5761421883836001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b1580156141da57600080fd5b505afa1580156141ee573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906142129190615a42565b906136b9565b610b2d565b50670de0b6b3a764000092915050565b606081806020019051810190610b2d9190615893565b600854614252908260006150a8565b60085550565b6000808280602001905181019061426f9190615843565b909590945092505050565b6000806142918461428b8188611523565b9061320e565b90506142aa6709b6e64a8ec600008210156101326119e4565b60006142c86142c1670de0b6b3a764000089612e66565b8390614006565b905060006142df6142d883613693565b8a90612fdd565b905060006142f66142ef8a613693565b839061325c565b905060006143048383611523565b905060006143146125c889613693565b905061432082826114d1565b9c9b505050505050505050505050565b600081806020019051810190610b2d9190615817565b606060006143548484612e66565b90506060855167ffffffffffffffff8111801561437057600080fd5b5060405190808252806020026020018201604052801561439a578160200160208202803683370190505b50905060005b86518110156143d8576143b983888381518110612f9f57fe5b8282815181106143c557fe5b60209081029190910101526001016143a0565b5095945050505050565b606060008280602001905181019061426f91906157d2565b60006060845167ffffffffffffffff8111801561441657600080fd5b50604051908082528060200260200182016040528015614440578160200160208202803683370190505b5090506000805b8851811015614505576144a089828151811061445f57fe5b602002602001015161428b89848151811061447657fe5b60200260200101518c858151811061448a57fe5b602002602001015161152390919063ffffffff16565b8382815181106144ac57fe5b6020026020010181815250506144fb6144f48983815181106144ca57fe5b60200260200101518584815181106144de57fe5b602002602001015161325c90919063ffffffff16565b83906114d1565b9150600101614447565b50600061451689898986868a6150d4565b905061452b61452482613693565b879061325c565b9998505050505050505050565b60008061454f866145498688612e66565b85613ea3565b9050613e868482613175565b606060008280602001905181019061426f91906158d6565b60006060845167ffffffffffffffff8111801561458f57600080fd5b506040519080825280602002602001820160405280156145b9578160200160208202803683370190505b5090506000805b88518110156146675761461f8982815181106145d857fe5b60200260200101516146198984815181106145ef57fe5b60200260200101518c858151811061460357fe5b60200260200101516114d190919063ffffffff16565b90612e66565b83828151811061462b57fe5b60200260200101818152505061465d6144f489838151811061464957fe5b6020026020010151858481518110612f9f57fe5b91506001016145c0565b50600061467889898986868a6151e3565b90506000670de0b6b3a7640000821161469257600061360f565b61360f6146a783670de0b6b3a7640000611523565b8890612fdd565b6000808280602001905181019061426f9190615910565b6000806146d68461428b81886114d1565b90506146ef6729a2241af62c00008211156101336119e4565b60006147066142c1670de0b6b3a76400008961320e565b9050600061472661471f83670de0b6b3a7640000611523565b8a9061325c565b905060006147366142ef8a613693565b905060006147448383611523565b9050600061431461475489613693565b849061320e565b600081806020019051810190610b2d91906158f4565b6060600061477f848461320e565b90506060855167ffffffffffffffff8111801561479b57600080fd5b506040519080825280602002602001820160405280156147c5578160200160208202803683370190505b50905060005b86518110156143d8576147e4838883815181106144de57fe5b8282815181106147f057fe5b60209081029190910101526001016147cb565b670de0b6b3a7640000026000806ec097ce7bc90715b34b9f1000000000808401906ec097ce7bc90715b34b9f0fffffffff198501028161483f57fe5b05905060006ec097ce7bc90715b34b9f100000000082800205905081806ec097ce7bc90715b34b9f100000000081840205915060038205016ec097ce7bc90715b34b9f100000000082840205915060058205016ec097ce7bc90715b34b9f100000000082840205915060078205016ec097ce7bc90715b34b9f100000000082840205915060098205016ec097ce7bc90715b34b9f1000000000828402059150600b8205016ec097ce7bc90715b34b9f1000000000828402059150600d8205016ec097ce7bc90715b34b9f1000000000828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a76400008212156149675761495d826ec097ce7bc90715b34b9f10000000008161495757fe5b0561492a565b6000039050610d6e565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c000000000000083126149b857770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e00000083126149f0576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312614a38576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312614a73576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312614aaa57693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312614ae157690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312614b165768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312614b4157680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312614b76576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614bab576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614bdf576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312614c13576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d631000008086030281614c3657fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6000614cf9680238fd42c5cf03ffff198312158015614cf2575068070c1cc73b00c800008313155b60096119e4565b6000821215614d2d57614d0e82600003614cca565b6ec097ce7bc90715b34b9f100000000081614d2557fe5b059050610d6e565b60006806f05b59d3b20000008312614d6d57506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec630262827000000000614da3565b6803782dace9d90000008312614d9f57506803782dace9d8ffffff19909101906b1425982cf597cd205cef7380614da3565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac620000008412614df35768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412614e2f576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b188000008412614e6957682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c4000008412614ea3576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac62000008412614edc57680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d631000008412614f155768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b18800008412614f4e576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c400008412614f875768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b77ffffffffffffffffffffffffffffffffffffffffffffffff828116821b90821b198416179392505050565b670de0b6b3a764000060005b87518110156151d85760008582815181106150f757fe5b602002602001015185111561515a57600061512061511487613693565b8b8581518110612f9f57fe5b90506000615134828a868151811061448a57fe5b9050600061514461266688613693565b905061515083826114d1565b9350505050615171565b86828151811061516657fe5b602002602001015190505b600061519a8a848151811061518257fe5b6020026020010151614619848d878151811061448a57fe5b90506151cc6151c58a85815181106151ae57fe5b6020026020010151836136b990919063ffffffff16565b8590612fdd565b935050506001016150e0565b509695505050505050565b670de0b6b3a764000060005b87518110156151d85760008486838151811061520757fe5b6020026020010151111561526e57600061522c61511487670de0b6b3a7640000611523565b90506000615240828a868151811061448a57fe5b9050600061524e828861325c565b905061526461525d8383611523565b84906114d1565b9350505050615285565b86828151811061527a57fe5b602002602001015190505b60006152ae8a848151811061529657fe5b6020026020010151614619848d878151811061460357fe5b90506152c26151c58a85815181106151ae57fe5b935050506001016151ef565b6040805160a081019091528060008152600060208201819052604082018190526060820181905260809091015290565b80356106af81615e62565b600082601f830112615319578081fd5b815161532c61532782615e42565b615e1b565b81815291506020808301908481018184028601820187101561534d57600080fd5b60005b8481101561536c57815184529282019290820190600101615350565b505050505092915050565b600082601f830112615387578081fd5b813567ffffffffffffffff81111561539d578182fd5b6153b0601f8201601f1916602001615e1b565b91508082528360208285010111156153c757600080fd5b8060208401602084013760009082016020015292915050565b8051600481106106af57600080fd5b8051600581106106af57600080fd5b8035600281106106af57600080fd5b60006020828403121561541e578081fd5b8135610b2d81615e62565b6000806040838503121561543b578081fd5b823561544681615e62565b9150602083013561545681615e62565b809150509250929050565b600080600060608486031215615475578081fd5b833561548081615e62565b9250602084013561549081615e62565b929592945050506040919091013590565b600080600080600080600060e0888a0312156154bb578283fd5b87356154c681615e62565b965060208801356154d681615e62565b9550604088013594506060880135935060808801356154f481615e77565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215615523578182fd5b823561552e81615e62565b946020939093013593505050565b600080600060608486031215615550578081fd5b835167ffffffffffffffff80821115615567578283fd5b818601915086601f83011261557a578283fd5b815161558861532782615e42565b80828252602080830192508086018b8283870289010111156155a8578788fd5b8796505b848710156155d35780516155bf81615e62565b8452600196909601959281019281016155ac565b5089015190975093505050808211156155ea578283fd5b506155f786828701615309565b925050604084015190509250925092565b600060208284031215615619578081fd5b81518015158114610b2d578182fd5b600080600080600080600060e0888a031215615642578081fd5b8735965060208089013561565581615e62565b9650604089013561566581615e62565b9550606089013567ffffffffffffffff80821115615681578384fd5b818b0191508b601f830112615694578384fd5b81356156a261532782615e42565b8082825285820191508585018f8788860288010111156156c0578788fd5b8795505b838610156156e25780358352600195909501949186019186016156c4565b509850505060808b0135955060a08b0135945060c08b0135925080831115615708578384fd5b50506157168a828b01615377565b91505092959891949750929550565b600060208284031215615736578081fd5b81356001600160e01b031981168114610b2d578182fd5b60006020828403121561575e578081fd5b8151610b2d81615e62565b6000806040838503121561577b578182fd5b823561578681615e62565b9150602083013567ffffffffffffffff8111156157a1578182fd5b6157ad85828601615377565b9150509250929050565b6000602082840312156157c8578081fd5b610b2d83836153e0565b6000806000606084860312156157e6578081fd5b6157f085856153e0565b9250602084015167ffffffffffffffff81111561580b578182fd5b6155f786828701615309565b60008060408385031215615829578182fd5b61583384846153e0565b9150602083015190509250929050565b600080600060608486031215615857578081fd5b61586185856153e0565b925060208401519150604084015190509250925092565b600060208284031215615889578081fd5b610b2d83836153ef565b600080604083850312156158a5578182fd5b6158af84846153ef565b9150602083015167ffffffffffffffff8111156158ca578182fd5b6157ad85828601615309565b6000806000606084860312156158ea578081fd5b6157f085856153ef565b60008060408385031215615906578182fd5b61583384846153ef565b600080600060608486031215615924578081fd5b61586185856153ef565b600080600060608486031215615942578081fd5b833567ffffffffffffffff80821115615959578283fd5b818601915061012080838903121561596f578384fd5b61597881615e1b565b905061598488846153fe565b815261599388602085016152fe565b60208201526159a588604085016152fe565b6040820152606083013560608201526080830135608082015260a083013560a08201526159d58860c085016152fe565b60c08201526159e78860e085016152fe565b60e082015261010080840135838111156159ff578586fd5b615a0b8a828701615377565b9183019190915250976020870135975060409096013595945050505050565b600060208284031215615a3b578081fd5b5035919050565b600060208284031215615a53578081fd5b5051919050565b60008060008060808587031215615a6f578182fd5b8451935060208501519250604085015191506060850151615a8f81615e62565b939692955090935050565b600060208284031215615aab578081fd5b8151610b2d81615e77565b60008060408385031215615ac8578182fd5b8251615ad381615e77565b6020939093015192949293505050565b6001600160a01b03169052565b6000815180845260208085019450808401835b83811015615b1f57815187529582019590820190600101615b03565b509495945050505050565b60008151808452815b81811015615b4f57602081850181015186830182015201615b33565b81811115615b605782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015615c0d5783516001600160a01b031683529284019291840191600101615be8565b50909695505050505050565b602080825282518282018190526000919060409081850190868401855b82811015615ca3578151805160048110615c4c57fe5b855280870151615c5e88870182615ae3565b508581015186860152606080820151615c7982880182615ae3565b505060809081015190615c8e86820183615ae3565b505060a0939093019290850190600101615c36565b5091979650505050505050565b600060208252610b2d6020830184615af0565b600060408252615cd66040830185615af0565b8281036020840152613ee18185615af0565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526126066040830184615b2a565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b600060208252610b2d6020830184615b2a565b6000838252604060208301526126066040830184615af0565b60ff91909116815260200190565b60405181810167ffffffffffffffff81118282101715615e3a57600080fd5b604052919050565b600067ffffffffffffffff821115615e58578081fd5b5060209081020190565b6001600160a01b0381168114610b6657600080fd5b60ff81168114610b6657600080fdfea26469706673582212208e9a1a26b64de4f87bb963cb83363cb8bc872f588f58e43e43715bf71d5b477264736f6c634300070100336bfb689528fa96ec1ad670ad6d6064be1ae96bfd5d2ee35c837fd0fe0c11959a000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c800000000000000000000000097207b095e4d5c9a6e4cfbfcd2c3358e03b90c4a0000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000537b226e616d65223a225765696768746564506f6f6c466163746f7279222c2276657273696f6e223a342c226465706c6f796d656e74223a2232303233303332302d77656967687465642d706f6f6c2d7634227d00000000000000000000000000000000000000000000000000000000000000000000000000000000000000004c7b226e616d65223a225765696768746564506f6f6c222c2276657273696f6e223a342c226465706c6f796d656e74223a2232303233303332302d77656967687465642d706f6f6c2d7634227d0000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100de5760003560e01c806354fd4d501161008c578063739238d611610066578063739238d61461018f578063851c1bb3146101975780638d928af8146101b7578063aaabadc5146101bf576100de565b806354fd4d501461015f5780636634b753146101675780636c57f5a914610187576100de565b80632da47c40116100bd5780632da47c40146101375780632f2770db1461014d5780633f819b6f14610157576100de565b8062c194db146100e3578063174481fa146101015780632182c8fe14610117575b600080fd5b6100eb6101c7565b6040516100f89190610da3565b60405180910390f35b6101096101e6565b6040516100f8929190610d56565b61012a610125366004610b6f565b61022c565b6040516100f89190610d42565b61013f610309565b6040516100f8929190610ecb565b610155610373565b005b6100eb6103ba565b6100eb610450565b61017a610175366004610aef565b6104ae565b6040516100f89190610d70565b61017a6104cc565b61012a6104d5565b6101aa6101a5366004610b2b565b6104f9565b6040516100f89190610d7b565b61012a61054b565b61012a61056f565b60606101e16040518060200160405280600081525061063b565b905090565b7f0000000000000000000000004a8b88f839c6de2012e69573b61e77f3d762626a7f00000000000000000000000087472f9cdc49707ca967745fe77b3b8ba2b13b419091565b6000806000610239610309565b915091506102fa6040518060e001604052808d81526020018c81526020018b81526020018a81526020018981526020018b5167ffffffffffffffff8111801561028157600080fd5b506040519080825280602002602001820160405280156102ab578160200160208202803683370190505b5081526020018890526102bc61054b565b6102c46104d5565b85858a6102cf6103ba565b6040516020016102e59796959493929190610db6565b60405160208183030381529060405285610714565b9b9a5050505050505050505050565b600080427f000000000000000000000000000000000000000000000000000000006490b7af81101561036557807f000000000000000000000000000000000000000000000000000000006490b7af03925062278d00915061036e565b60009250600091505b509091565b61037b610781565b6103836107b2565b6001805460ff1916811790556040517f432acbfd662dbb5d8b378384a67159b47ca9d0f1b79f97cf64cf8585fa362d5090600090a1565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156104465780601f1061041b57610100808354040283529160200191610446565b820191906000526020600020905b81548152906001019060200180831161042957829003601f168201915b5050505050905090565b60028054604080516020601f60001961010060018716150201909416859004938401819004810282018101909252828152606093909290918301828280156104465780601f1061041b57610100808354040283529160200191610446565b6001600160a01b031660009081526020819052604090205460ff1690565b60015460ff1690565b7f00000000000000000000000097207b095e4d5c9a6e4cfbfcd2c3358e03b90c4a90565b60007f000000000000000000000000897888115ada5773e02aa29f775430bfb5f34c518260405160200161052e929190610d2a565b604051602081830303815290604052805190602001209050919050565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b600061057961054b565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156105b157600080fd5b505afa1580156105c5573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101e19190610b53565b80517f602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe808352600091602081018484f090845291506106356001600160a01b03831615156101ac6107c7565b50919050565b8051604080517f0000000000000000000000000000000000000000000000000000000000003cc37f0000000000000000000000000000000000000000000000000000000000003cc3818101858101848101602090810190965280855293957f0000000000000000000000004a8b88f839c6de2012e69573b61e77f3d762626a9592947f00000000000000000000000087472f9cdc49707ca967745fe77b3b8ba2b13b4194938801866000828a3c846000888301883c50602089810190898501016107068183866107d9565b505050505050505050919050565b600061071e6107b2565b600061072a8484610817565b6001600160a01b038116600081815260208190526040808220805460ff191660011790555192935090917f83a48fbcfc991335314e74d0496aab6a1987e992ddc85dddbcc4d6dd6ef2e9fc9190a290505b92915050565b60006107986000356001600160e01b0319166104f9565b90506107af6107a78233610854565b6101916107c7565b50565b6107c56107bd6104cc565b1560d36107c7565b565b816107d5576107d5816108e4565b5050565b5b602081106107f9578151835260209283019290910190601f19016107da565b905182516020929092036101000a6000190180199091169116179052565b600060606108248461063b565b90506000838251602084016000f590506001600160a01b03811661084c573d6000803e3d6000fd5b949350505050565b600061085e61056f565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161088d93929190610d84565b60206040518083038186803b1580156108a557600080fd5b505afa1580156108b9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108dd9190610b0b565b9392505050565b62461bcd60e51b600090815260206004526007602452600a808304818106603090810160081b83860601918390049283060160101b016642414c230000300160c81b6044526107af916210905360ea1b906242414c90606490fd5b803561077b81610f20565b600082601f83011261095a578081fd5b813561096d61096882610f00565b610ed9565b81815291506020808301908481018184028601820187101561098e57600080fd5b60005b848110156109b65781356109a481610f20565b84529282019290820190600101610991565b505050505092915050565b600082601f8301126109d1578081fd5b81356109df61096882610f00565b818152915060208083019084810181840286018201871015610a0057600080fd5b60005b848110156109b6578135610a1681610f20565b84529282019290820190600101610a03565b600082601f830112610a38578081fd5b8135610a4661096882610f00565b818152915060208083019084810181840286018201871015610a6757600080fd5b60005b848110156109b657813584529282019290820190600101610a6a565b600082601f830112610a96578081fd5b813567ffffffffffffffff811115610aac578182fd5b610abf601f8201601f1916602001610ed9565b9150808252836020828501011115610ad657600080fd5b8060208401602084013760009082016020015292915050565b600060208284031215610b00578081fd5b81356108dd81610f20565b600060208284031215610b1c578081fd5b815180151581146108dd578182fd5b600060208284031215610b3c578081fd5b81356001600160e01b0319811681146108dd578182fd5b600060208284031215610b64578081fd5b81516108dd81610f20565b600080600080600080600080610100898b031215610b8b578384fd5b883567ffffffffffffffff80821115610ba2578586fd5b610bae8c838d01610a86565b995060208b0135915080821115610bc3578586fd5b610bcf8c838d01610a86565b985060408b0135915080821115610be4578586fd5b610bf08c838d0161094a565b975060608b0135915080821115610c05578586fd5b610c118c838d01610a28565b965060808b0135915080821115610c26578586fd5b50610c338b828c016109c1565b94505060a08901359250610c4a8a60c08b0161093f565b915060e089013590509295985092959890939650565b6001600160a01b03169052565b6000815180845260208085019450808401835b83811015610ca55781516001600160a01b031687529582019590820190600101610c80565b509495945050505050565b6000815180845260208085019450808401835b83811015610ca557815187529582019590820190600101610cc3565b60008151808452815b81811015610d0457602081850181015186830182015201610ce8565b81811115610d155782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6001600160a01b0391909116815260200190565b6001600160a01b0392831681529116602082015260400190565b901515815260200190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b6000602082526108dd6020830184610cdf565b600060e08252885160e080840152610dd26101c0840182610cdf565b905060208a015160df198085840301610100860152610df18383610cdf565b925060408c015191508085840301610120860152610e0f8383610c6d565b925060608c015191508085840301610140860152610e2d8383610cb0565b925060808c015191508085840301610160860152610e4b8383610c6d565b925060a08c01519150808584030161018086015250610e6a8282610c6d565b91505060c08a01516101a0840152610e85602084018a610c60565b610e926040840189610c60565b866060840152856080840152610eab60a0840186610c60565b82810360c0840152610ebd8185610cdf565b9a9950505050505050505050565b918252602082015260400190565b60405181810167ffffffffffffffff81118282101715610ef857600080fd5b604052919050565b600067ffffffffffffffff821115610f16578081fd5b5060209081020190565b6001600160a01b03811681146107af57600080fdfea264697066735822122066e8ff4d1e877bd80e06651fc94dac70f1f249424c841aced4ddd4bbaf9af10b64736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c800000000000000000000000097207b095e4d5c9a6e4cfbfcd2c3358e03b90c4a0000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000537b226e616d65223a225765696768746564506f6f6c466163746f7279222c2276657273696f6e223a342c226465706c6f796d656e74223a2232303233303332302d77656967687465642d706f6f6c2d7634227d00000000000000000000000000000000000000000000000000000000000000000000000000000000000000004c7b226e616d65223a225765696768746564506f6f6c222c2276657273696f6e223a342c226465706c6f796d656e74223a2232303233303332302d77656967687465642d706f6f6c2d7634227d0000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : vault (address): 0xBA12222222228d8Ba445958a75a0704d566BF2C8
Arg [1] : protocolFeeProvider (address): 0x97207B095e4D5C9a6e4cfbfcd2C3358E03B90c4A
Arg [2] : factoryVersion (string): {"name":"WeightedPoolFactory","version":4,"deployment":"20230320-weighted-pool-v4"}
Arg [3] : poolVersion (string): {"name":"WeightedPool","version":4,"deployment":"20230320-weighted-pool-v4"}
-----Encoded View---------------
12 Constructor Arguments found :
Arg [0] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [1] : 00000000000000000000000097207b095e4d5c9a6e4cfbfcd2c3358e03b90c4a
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000100
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000053
Arg [5] : 7b226e616d65223a225765696768746564506f6f6c466163746f7279222c2276
Arg [6] : 657273696f6e223a342c226465706c6f796d656e74223a223230323330333230
Arg [7] : 2d77656967687465642d706f6f6c2d7634227d00000000000000000000000000
Arg [8] : 000000000000000000000000000000000000000000000000000000000000004c
Arg [9] : 7b226e616d65223a225765696768746564506f6f6c222c2276657273696f6e22
Arg [10] : 3a342c226465706c6f796d656e74223a2232303233303332302d776569676874
Arg [11] : 65642d706f6f6c2d7634227d0000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.