More Info
Private Name Tags
ContractCreator
Latest 6 from a total of 6 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Execute Op | 20806649 | 140 days ago | IN | 0 ETH | 0.00079621 | ||||
Create And Sign | 20806632 | 140 days ago | IN | 0 ETH | 0.00179096 | ||||
Execute Op | 20735887 | 150 days ago | IN | 0 ETH | 0.00056249 | ||||
Create And Sign | 20641861 | 163 days ago | IN | 0 ETH | 0.00102255 | ||||
Sign And Execute | 20641761 | 163 days ago | IN | 0 ETH | 0.00014742 | ||||
Create And Sign | 20641729 | 163 days ago | IN | 0 ETH | 0.00040854 |
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
20641675 | 163 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xb69b7c90a11bc5d8979c770b7a8efd9464a841db
Contract Name:
DeTrustMultisigOnchainModel_Free
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-Licence-Identifier: MIT // UBD Network DeTrustMultisigOnchainModel_Free pragma solidity 0.8.26; import "./MultisigOnchainBase_01.sol"; /** * @dev This is a trust model onchain multisig implementation. * Upon creation the addresses of the heirs(co-signers) could be set * * !!! This is implementation contract for proxy conatract creation */ contract DeTrustMultisigOnchainModel_Free is MultisigOnchainBase_01 { ///////////////////////////////////////////////////// /// OpenZepelin Pattern for Proxy initialize /// ///////////////////////////////////////////////////// function initialize( uint8 _threshold, address[] calldata _cosignersAddresses, uint64[] calldata _validFrom, address _feeToken, uint256 _feeAmount, address _feeBeneficiary, uint64 _feePrepaidPeriod ) public initializer { // supress solc warnings _validFrom; _feeToken; _feeAmount; _feeBeneficiary; _feePrepaidPeriod; // in this model all _validFrom must be zero so just replace // original with zero array uint64[] memory dummyArray = new uint64[](_cosignersAddresses.length); __MultisigOnchainBase_01_init( _threshold, _cosignersAddresses, dummyArray ); } /** * @dev Add signer * @param _newSigner new signer address * @param _newPeriod new signer time param(dends on implementation) */ function addSigner(address _newSigner, uint64 _newPeriod) public override returns(uint8 signersCount) { _newPeriod; return super.addSigner(_newSigner, uint64(0)); } function editSignerDate(address _coSigner, uint64 _newPeriod) public pure override { _coSigner; _newPeriod; revert("Disable in this model"); } }
// SPDX-License-Identifier: MIT // Onchain Multisig pragma solidity 0.8.26; import {Address} from "@openzeppelin/contracts/utils/Address.sol"; import {ContextUpgradeable, Initializable} from "@Uopenzeppelin/contracts/utils/ContextUpgradeable.sol"; import "@Uopenzeppelin/contracts/utils/cryptography/EIP712Upgradeable.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; /** * @dev This is abstract contract with ONCHAIN multisig wallet functions * Upon creation the address of the heir(s) and the time for each co-signer * after which he(she) will be able to sign tx. * * !!! This is implementation contract for proxy conatract creation */ abstract contract MultisigOnchainBase_01 is Initializable, ContextUpgradeable { enum TxStatus {WaitingForSigners, Executed, Rejected} struct Signer { address signer; uint64 validFrom; } struct Operation { address target; uint256 value; bytes metaTx; address[] signedBy; TxStatus status; } /// @custom:storage-location erc7201:ubdn.storage.MultisigOnchainBase_01_Storage struct MultisigOnchainBase_01_Storage { uint8 threshold; Signer[] cosigners; Operation[] ops; } uint8 public constant MAX_COSIGNERS_NUMBER = 100; // Including creator // keccak256(abi.encode(uint256(keccak256("ubdn.storage.MultisigOnchainBase_01_Storage")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant MultisigOnchainBase_01_StorageLocation = 0xf486b49c0fd95e99c95d211c0814e0c85bb59e07a1a40077b7a34b255b307200; /** * @dev The caller account is not authorized to perform an operation. */ //error OwnableUnauthorizedAccount(address account); error ActionDeniedForThisStatus(TxStatus status); error CoSignerAlreadyExist(address signer); error CoSignerNotValid(address signer); error CoSignerNotExist(address signer); error ExecutionDenied(TxStatus status, uint8 signaturesNumber); event SignatureAdded(uint256 indexed nonce, address signer, uint256 totalSignaturesCollected); event SignatureRevoked(uint256 indexed nonce, address signer, uint256 totalSignaturesCollected); event TxExecuted(uint256 indexed nonce, address sender); event TxRejected(uint256 indexed nonce, address sender); event SignerAdded(Signer signer, uint8 newCosignersNumber); event SignerRemoved(Signer signer, uint8 newCosignersNumber); event SignerChanged(address signer, uint64 oldDate, uint64 newDate); event ThresholdChanged(uint8 thresholdOld, uint8 thresholdNew); event EtherTransfer(address sender, uint256 value); /** * @dev Throws if called by any account other than this contract or proxy */ modifier onlySelfSender(){ require(_msgSender() == address(this), "Only Self Signed"); _; } constructor() { _disableInitializers(); } /** * @dev The contract should be able to receive Eth. */ receive() external payable virtual { emit EtherTransfer(msg.sender, msg.value); } ///////////////////////////////////////////////////// /// OpenZepelin Pattern for Proxy initialize /// ///////////////////////////////////////////////////// /* // This is initializer code example. Must be implemented once in inheritor function initialize( uint8 _threshold, address[] calldata _cosignersAddresses, uint64[] calldata _validFrom ) public initializer { __MultisigOnchainBase_01_init( _threshold, _cosignersAddresses, _validFrom ); __EIP712_init("Iber Onchain Multisig", "0.0.1"); } */ function __MultisigOnchainBase_01_init( uint8 _threshold, address[] memory _cosignersAddresses, uint64[] memory _validFrom ) internal onlyInitializing { __MultisigOnchainBase_01_init_unchained( _threshold, _cosignersAddresses, _validFrom ); } /** * @dev Main init functionality */ function __MultisigOnchainBase_01_init_unchained( uint8 _threshold, address[] memory _cosignersAddresses, uint64[] memory _validFrom ) internal onlyInitializing { require(_cosignersAddresses.length <= MAX_COSIGNERS_NUMBER, "Too much inheritors"); require(_cosignersAddresses.length == _validFrom.length, "Arrays must be equal"); require(_threshold <= _cosignersAddresses.length, "Not greater then signers count"); require(_cosignersAddresses.length >= 2, "At least two signers"); //require(_cosignersAddresses.length > 1, "At least one signer"); require(_threshold > 0 , "No zero threshold"); // Check for no doubles for (uint256 i = 0; i < _cosignersAddresses.length; ++ i) { for (uint256 j = i + 1; j < _cosignersAddresses.length; ++ j){ require(_cosignersAddresses[i] != _cosignersAddresses[j], "No double cosigners" ); } } MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); $.threshold = _threshold; for (uint8 i; i < _cosignersAddresses.length; ++ i) { require(_cosignersAddresses[i] != address(0), "No Zero address"); $.cosigners.push(Signer(_cosignersAddresses[i], _validFrom[i])); } } /** * @dev Storage Getter for access contract state */ function _getMultisigOnchainBase_01_Storage() private pure returns (MultisigOnchainBase_01_Storage storage $) { assembly { $.slot := MultisigOnchainBase_01_StorageLocation } } ///////////////////////////////////////////////////////////////////////////////////// /** * @dev Use this method to change multisig threshold. * @param _newThreshold !!! must be less or equal current cosigners number */ function changeThreshold(uint8 _newThreshold) external onlySelfSender { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); require(_newThreshold <= $.cosigners.length, "New Threshold more than co-signers count"); require(_newThreshold > 0 , "No zero threshold"); emit ThresholdChanged($.threshold, _newThreshold); $.threshold = _newThreshold; } /** * @dev Add signer * @param _newSigner new signer address * @param _newPeriod new signer time param(dends on implementation) */ function addSigner(address _newSigner, uint64 _newPeriod) public virtual onlySelfSender returns(uint8 signersCount) { require(_newSigner != address(0), "No Zero address"); MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); // increase count for succesfull tx (GAS SAFE) signersCount = uint8($.cosigners.length + 1); require(signersCount <= MAX_COSIGNERS_NUMBER, "Too much inheritors"); // check no double for (uint256 i = 0; i < signersCount - 1; ++ i) { if ($.cosigners[i].signer == _newSigner) { revert CoSignerAlreadyExist(_newSigner); } } $.cosigners.push(Signer(_newSigner, _newPeriod)); emit SignerAdded(Signer(_newSigner, _newPeriod), signersCount); } function editSignerDate(address _coSigner, uint64 _newPeriod) public virtual onlySelfSender { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); // check no double for (uint256 i = 0; i < $.cosigners.length - 1; ++ i) { if ($.cosigners[i].signer == _coSigner) { require(i != 0, "Cant edit owner's period"); emit SignerChanged(_coSigner, $.cosigners[i].validFrom, _newPeriod); $.cosigners[i].validFrom = _newPeriod; } } } /** * @dev Remove signer with appropriate check * @param _signerIndex index of signer address in array */ function removeSignerByIndex(uint256 _signerIndex) external onlySelfSender returns(uint8 signersCount) { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); // decrease count for succesfull tx (GAS SAFE) signersCount = uint8($.cosigners.length - 1); require(signersCount >= $.threshold, "New Signers count less then threshold"); require(_signerIndex != 0, "Cant remove multisig owner(creator)"); emit SignerRemoved($.cosigners[_signerIndex], signersCount); // if deleting index is not last array element then need to replace it with last if (_signerIndex != signersCount + 1) { // Because signersCount already decreased it already equal to last array element $.cosigners[_signerIndex] = $.cosigners[signersCount]; } $.cosigners.pop(); } /** * @dev Use this method for save metaTx and make first signature onchain * @param _target address of dApp smart contract * @param _value amount of native token in tx(msg.value) * @param _data ABI encoded transaction payload */ function createAndSign( address _target, uint256 _value, bytes memory _data ) public virtual returns(uint256 nonce_) { nonce_ = _createOp(_target, _value, _data); _hookCheckSender(_msgSender()); } /** * @dev Use this method for sign metaTx onchain and execute as well * @param _nonce index of saved Meta Tx * @param _execWhenReady if true then tx will be executed if all signatures are collected */ function signAndExecute(uint256 _nonce, bool _execWhenReady) public virtual returns(uint256 signedByCount) { signedByCount = _signMetaTx(_nonce,_execWhenReady); _hookCheckSender(_msgSender()); } /** * @dev Use this method for execute tx * @param _nonce index of saved Meta Tx */ function executeOp(uint256 _nonce) public virtual returns(bytes memory r){ r = _execTx(_nonce); _hookCheckSender(_msgSender()); } /** * @dev Use this method for execute batch of well signed tx * @param _nonces index of saved Meta Tx */ function executeOp(uint256[] memory _nonces) public virtual returns(bytes memory r){ for (uint256 i = 0; i < _nonces.length; ++ i){ r = _execTx(_nonces[i]); } _hookCheckSender(_msgSender()); } /** * @dev Use this method for revoke signature onchain and reject as well * @param _nonce index of saved Meta Tx * @param _rejectWhenReady if true then tx will be rejected if all signatures revoked */ function revokeSignature(uint256 _nonce, bool _rejectWhenReady) public returns(uint256 signedByCount) { signedByCount = _revokeSignature(_nonce, _msgSender(), _rejectWhenReady); _hookCheckSender(_msgSender()); } /** * @dev Use this method for reject tx * @param _nonce index of saved Meta Tx */ function rejectTx(uint256 _nonce) public { _rejectTx(_nonce); _hookCheckSender(_msgSender()); } /////////////////////////////////////////////////////////////////////////// /** * @dev Use this method for static call any dApps onchain * @param _target address of dApp smart contract * @param _data ABI encoded transaction payload */ function staticCallOp( address _target, bytes memory _data ) external view virtual returns (bytes memory r) { r = Address.functionStaticCall(_target, _data); } /** * @dev Returns full Multisig info */ function getMultisigOnchainBase_01() public pure returns(MultisigOnchainBase_01_Storage memory msig) { msig = _getMultisigOnchainBase_01_Storage(); } function getMultisigSettings() public view returns(uint8 thr, Signer[] memory sgs) { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); thr = $.threshold; sgs = $.cosigners; } function getMultisigOpByNonce(uint256 _nonce) public view returns(Operation memory op) { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); op = $.ops[_nonce]; } function getMultisigLastNonce() public view returns(uint256 nonce) { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); nonce = $.ops.length; // Actually it is not nonce yet but array length require(nonce > 0, "No Operations yet"); nonce -= 1; } //////////////////////////////////////////// /////// Multisig internal functions /// //////////////////////////////////////////// function _createOp( address _target, uint256 _value, bytes memory _data ) internal returns(uint256 nonce_) { require(_target != address(0), "No Zero Address"); MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); Operation storage op = $.ops.push(); op.target = _target; op.value = _value; op.metaTx = _data; // Next asignment is not necessery because default var value // op.status = TxStatus.WaitingForSigners nonce_ = $.ops.length -1; //Signer[] storage _sgnrs = $.cosigners; _checkSigner(_msgSender(), $.cosigners); _signMetaTxOp(op, _msgSender()); emit SignatureAdded(nonce_, _msgSender(), 1); } function _signMetaTxOp( Operation storage _op, address _signer ) internal returns (uint256 signedByCount) { if (_op.status != TxStatus.WaitingForSigners) { revert ActionDeniedForThisStatus(_op.status); } // Check that not signed before for (uint256 i; i < _op.signedBy.length; ++ i) { if (_op.signedBy[i] == _signer) { revert CoSignerAlreadyExist(_signer); } } _op.signedBy.push(_signer); signedByCount = _op.signedBy.length; } function _signMetaTx(uint256 _nonce, bool _execWhenReady) internal returns (uint256 signedByCount) { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); _checkSigner(_msgSender(), $.cosigners); signedByCount = _signMetaTxOp($.ops[_nonce], _msgSender()); emit SignatureAdded(_nonce, _msgSender(), signedByCount); if (_execWhenReady && signedByCount == $.threshold){ _execOp($.ops[_nonce], $.threshold); emit TxExecuted(_nonce, _msgSender()); } } function _execTx(uint256 _nonce) internal returns(bytes memory r) { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); r = _execOp($.ops[_nonce], $.threshold); emit TxExecuted(_nonce, _msgSender()); } function _execOp(Operation storage _op, uint8 _threshold) internal returns(bytes memory r) { if ( _op.status == TxStatus.WaitingForSigners && _op.signedBy.length >= _threshold ) { if (keccak256(bytes("")) == keccak256(_op.metaTx)) { // JUST sending ether, no call methods Address.sendValue(payable(_op.target), _op.value); } else { r = Address.functionCallWithValue( _op.target, _op.metaTx, _op.value ); } _op.status = TxStatus.Executed; } else { revert ExecutionDenied(_op.status, uint8(_op.signedBy.length)); } } function _rejectTx(uint256 _nonce) internal { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); _rejectOp($.ops[_nonce]); emit TxRejected(_nonce, _msgSender()); } function _rejectOp(Operation storage _op) internal { if (_op.status == TxStatus.WaitingForSigners && _op.signedBy.length == 0){ _op.status = TxStatus.Rejected; } else { revert ActionDeniedForThisStatus(_op.status); } } function _revokeSignature(uint256 _nonce, address _signer, bool _rejectWhenReady) internal returns(uint256 signedByCount) { MultisigOnchainBase_01_Storage storage $ = _getMultisigOnchainBase_01_Storage(); // TODO GAS saving if ($.ops[_nonce].status == TxStatus.WaitingForSigners){ for(uint256 i = 0; i < $.ops[_nonce].signedBy.length; ++ i){ if ($.ops[_nonce].signedBy[i] == _signer) { if (i != $.ops[_nonce].signedBy.length -1){ $.ops[_nonce].signedBy[i] = $.ops[_nonce].signedBy[$.ops[_nonce].signedBy.length -1]; } $.ops[_nonce].signedBy.pop(); } } } else { revert ActionDeniedForThisStatus($.ops[_nonce].status); } signedByCount = $.ops[_nonce].signedBy.length; emit SignatureRevoked(_nonce, _signer, signedByCount); if (_rejectWhenReady && signedByCount == 0) { _rejectOp($.ops[_nonce]); emit TxRejected(_nonce, _msgSender()); } } function _checkSigner( address _signer, Signer[] storage _cosigners ) internal view { for (uint256 i = 0; i < _cosigners.length; ++ i) { if (_cosigners[i].signer == _signer) { // Use this hook for ability to change logic in inheritors if (_isValidSignerRecord(_cosigners[i])){ return; } else { revert CoSignerNotValid(_signer); } } } revert CoSignerNotExist(_signer); } function _isValidSignerRecord( //MultisigOnchainBase_01_Storage storage st, Signer storage _cosigner ) internal virtual view returns(bool valid) { // !!!! Main signer validity rule is here valid = _cosigner.validFrom <= block.timestamp; } function _hookCheckSender(address _sender) internal virtual { _sender; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. */ abstract contract EIP712Upgradeable is Initializable, IERC5267 { bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); /// @custom:storage-location erc7201:openzeppelin.storage.EIP712 struct EIP712Storage { /// @custom:oz-renamed-from _HASHED_NAME bytes32 _hashedName; /// @custom:oz-renamed-from _HASHED_VERSION bytes32 _hashedVersion; string _name; string _version; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100; function _getEIP712Storage() private pure returns (EIP712Storage storage $) { assembly { $.slot := EIP712StorageLocation } } /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ function __EIP712_init(string memory name, string memory version) internal onlyInitializing { __EIP712_init_unchained(name, version); } function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing { EIP712Storage storage $ = _getEIP712Storage(); $._name = name; $._version = version; // Reset prior values in storage if upgrading $._hashedName = 0; $._hashedVersion = 0; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { return _buildDomainSeparator(); } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { EIP712Storage storage $ = _getEIP712Storage(); // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized // and the EIP712 domain is not reliable, as it will be missing name and version. require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized"); return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Name() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._name; } /** * @dev The version parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Version() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._version; } /** * @dev The hash of the name parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead. */ function _EIP712NameHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory name = _EIP712Name(); if (bytes(name).length > 0) { return keccak256(bytes(name)); } else { // If the name is empty, the contract may have been upgraded without initializing the new storage. // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design. bytes32 hashedName = $._hashedName; if (hashedName != 0) { return hashedName; } else { return keccak256(""); } } } /** * @dev The hash of the version parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead. */ function _EIP712VersionHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory version = _EIP712Version(); if (bytes(version).length > 0) { return keccak256(bytes(version)); } else { // If the version is empty, the contract may have been upgraded without initializing the new storage. // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design. bytes32 hashedVersion = $._hashedVersion; if (hashedVersion != 0) { return hashedVersion; } else { return keccak256(""); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "remappings": [ "@Uopenzeppelin/=lib/openzeppelin-contracts-upgradeable.git/", "@openzeppelin/=lib/openzeppelin-contracts/", "@uniswap/=lib/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable.git/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "ds-test/=lib/openzeppelin-contracts-upgradeable.git/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable.git/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts-upgradeable.git/=lib/openzeppelin-contracts-upgradeable.git/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": false, "libraries": {} }
[{"inputs":[{"internalType":"enum MultisigOnchainBase_01.TxStatus","name":"status","type":"uint8"}],"name":"ActionDeniedForThisStatus","type":"error"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"CoSignerAlreadyExist","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"CoSignerNotExist","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"CoSignerNotValid","type":"error"},{"inputs":[{"internalType":"enum MultisigOnchainBase_01.TxStatus","name":"status","type":"uint8"},{"internalType":"uint8","name":"signaturesNumber","type":"uint8"}],"name":"ExecutionDenied","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"EtherTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":false,"internalType":"address","name":"signer","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalSignaturesCollected","type":"uint256"}],"name":"SignatureAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":false,"internalType":"address","name":"signer","type":"address"},{"indexed":false,"internalType":"uint256","name":"totalSignaturesCollected","type":"uint256"}],"name":"SignatureRevoked","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"uint64","name":"validFrom","type":"uint64"}],"indexed":false,"internalType":"struct MultisigOnchainBase_01.Signer","name":"signer","type":"tuple"},{"indexed":false,"internalType":"uint8","name":"newCosignersNumber","type":"uint8"}],"name":"SignerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"signer","type":"address"},{"indexed":false,"internalType":"uint64","name":"oldDate","type":"uint64"},{"indexed":false,"internalType":"uint64","name":"newDate","type":"uint64"}],"name":"SignerChanged","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"uint64","name":"validFrom","type":"uint64"}],"indexed":false,"internalType":"struct MultisigOnchainBase_01.Signer","name":"signer","type":"tuple"},{"indexed":false,"internalType":"uint8","name":"newCosignersNumber","type":"uint8"}],"name":"SignerRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"thresholdOld","type":"uint8"},{"indexed":false,"internalType":"uint8","name":"thresholdNew","type":"uint8"}],"name":"ThresholdChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":false,"internalType":"address","name":"sender","type":"address"}],"name":"TxExecuted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"nonce","type":"uint256"},{"indexed":false,"internalType":"address","name":"sender","type":"address"}],"name":"TxRejected","type":"event"},{"inputs":[],"name":"MAX_COSIGNERS_NUMBER","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newSigner","type":"address"},{"internalType":"uint64","name":"_newPeriod","type":"uint64"}],"name":"addSigner","outputs":[{"internalType":"uint8","name":"signersCount","type":"uint8"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"_newThreshold","type":"uint8"}],"name":"changeThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"createAndSign","outputs":[{"internalType":"uint256","name":"nonce_","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_coSigner","type":"address"},{"internalType":"uint64","name":"_newPeriod","type":"uint64"}],"name":"editSignerDate","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"executeOp","outputs":[{"internalType":"bytes","name":"r","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"_nonces","type":"uint256[]"}],"name":"executeOp","outputs":[{"internalType":"bytes","name":"r","type":"bytes"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getMultisigLastNonce","outputs":[{"internalType":"uint256","name":"nonce","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMultisigOnchainBase_01","outputs":[{"components":[{"internalType":"uint8","name":"threshold","type":"uint8"},{"components":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"uint64","name":"validFrom","type":"uint64"}],"internalType":"struct MultisigOnchainBase_01.Signer[]","name":"cosigners","type":"tuple[]"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"metaTx","type":"bytes"},{"internalType":"address[]","name":"signedBy","type":"address[]"},{"internalType":"enum MultisigOnchainBase_01.TxStatus","name":"status","type":"uint8"}],"internalType":"struct MultisigOnchainBase_01.Operation[]","name":"ops","type":"tuple[]"}],"internalType":"struct MultisigOnchainBase_01.MultisigOnchainBase_01_Storage","name":"msig","type":"tuple"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"getMultisigOpByNonce","outputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"metaTx","type":"bytes"},{"internalType":"address[]","name":"signedBy","type":"address[]"},{"internalType":"enum MultisigOnchainBase_01.TxStatus","name":"status","type":"uint8"}],"internalType":"struct MultisigOnchainBase_01.Operation","name":"op","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMultisigSettings","outputs":[{"internalType":"uint8","name":"thr","type":"uint8"},{"components":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"uint64","name":"validFrom","type":"uint64"}],"internalType":"struct MultisigOnchainBase_01.Signer[]","name":"sgs","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"_threshold","type":"uint8"},{"internalType":"address[]","name":"_cosignersAddresses","type":"address[]"},{"internalType":"uint64[]","name":"_validFrom","type":"uint64[]"},{"internalType":"address","name":"_feeToken","type":"address"},{"internalType":"uint256","name":"_feeAmount","type":"uint256"},{"internalType":"address","name":"_feeBeneficiary","type":"address"},{"internalType":"uint64","name":"_feePrepaidPeriod","type":"uint64"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nonce","type":"uint256"}],"name":"rejectTx","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_signerIndex","type":"uint256"}],"name":"removeSignerByIndex","outputs":[{"internalType":"uint8","name":"signersCount","type":"uint8"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nonce","type":"uint256"},{"internalType":"bool","name":"_rejectWhenReady","type":"bool"}],"name":"revokeSignature","outputs":[{"internalType":"uint256","name":"signedByCount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nonce","type":"uint256"},{"internalType":"bool","name":"_execWhenReady","type":"bool"}],"name":"signAndExecute","outputs":[{"internalType":"uint256","name":"signedByCount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"staticCallOp","outputs":[{"internalType":"bytes","name":"r","type":"bytes"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.