ETH Price: $3,202.28 (+0.62%)
Gas: 3.74 Gwei
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Claim DBR205548752024-08-18 10:20:35162 days ago1723976435IN
0x8b0c9389...83E85BbbC
0 ETH0.000242952.90567151
Claim DBR189146122024-01-01 19:18:23392 days ago1704136703IN
0x8b0c9389...83E85BbbC
0 ETH0.0013337913.24351898
Claim DBR182055332023-09-24 12:03:35491 days ago1695557015IN
0x8b0c9389...83E85BbbC
0 ETH0.000634177.40747296
Claim DBR180056552023-08-27 11:18:47519 days ago1693135127IN
0x8b0c9389...83E85BbbC
0 ETH0.0012449312.36120861
Claim DBR175576692023-06-25 16:25:59582 days ago1687710359IN
0x8b0c9389...83E85BbbC
0 ETH0.0011648113.60562224

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block
From
To
174457342023-06-09 22:49:59598 days ago1686350999  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x502a7759809bd673cd39a0055beed44b40eaac98

Contract Name:
INVEscrow

Compiler Version
v0.8.13+commit.abaa5c0e

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 3 : INVEscrow.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import "../interfaces/IERC20.sol";
import {FixedPointMathLib} from "solmate/utils/FixedPointMathLib.sol";

// @dev Caution: We assume all failed transfers cause reverts and ignore the returned bool.
interface IXINV {
    function rewardTreasury() external view returns(address);
    function balanceOf(address) external view returns (uint);
    function exchangeRateStored() external view returns (uint);
    function exchangeRateCurrent() external returns (uint);
    function mint(uint mintAmount) external returns (uint);
    function redeemUnderlying(uint redeemAmount) external returns (uint);
    function syncDelegate(address user) external;
    function accrualBlockNumber() external view returns (uint);
    function getCash() external view returns (uint);
    function totalSupply() external view returns (uint);
    function rewardPerBlock() external view returns (uint);
}

interface IDbrDistributor {
    function stake(uint amount) external;
    function unstake(uint amount) external;
    function claim(address to) external;
    function claimable(address user) external view returns(uint);
}

/**
 * @title INV Escrow
 * @notice Collateral is stored in unique escrow contracts for every user and every market.
 * This escrow allows user to deposit INV collateral directly into the xINV contract, earning APY and allowing them to delegate votes on behalf of the xINV collateral
 * @dev Caution: This is a proxy implementation. Follow proxy pattern best practices
 */
contract INVEscrow {
    using FixedPointMathLib for uint;

    address public market;
    IDelegateableERC20 public token;
    address public beneficiary;
    uint public stakedXINV;
    IXINV public immutable xINV;
    IDbrDistributor public immutable distributor;
    mapping(address => bool) public claimers;

    constructor(IXINV _xINV, IDbrDistributor _distributor) {
        xINV = _xINV;
        distributor = _distributor;
    }

    /**
     * @notice Initialize escrow with a token
     * @dev Must be called right after proxy is created.
     * @param _token The IERC20 token representing the INV governance token
     * @param _beneficiary The beneficiary who may delegate token voting power
     */
    function initialize(IDelegateableERC20 _token, address _beneficiary) public {
        require(market == address(0), "ALREADY INITIALIZED");
        market = msg.sender;
        token = _token;
        beneficiary = _beneficiary;
        _token.delegate(_token.delegates(_beneficiary));
        _token.approve(address(xINV), type(uint).max);
        xINV.syncDelegate(address(this));
    }
    
    /**
     * @notice Transfers the associated ERC20 token to a recipient.
     * @param recipient The address to receive payment from the escrow
     * @param amount The amount of ERC20 token to be transferred.
     */
    function pay(address recipient, uint amount) public {
        require(msg.sender == market, "ONLY MARKET");
        uint invBalance = token.balanceOf(address(this));
        if(invBalance < amount) {
            uint invNeeded = amount - invBalance;
            uint xInvToUnstake = invNeeded * 1 ether / viewExchangeRate();
            stakedXINV -= xInvToUnstake;
            distributor.unstake(xInvToUnstake);
            xINV.redeemUnderlying(invNeeded); // we do not check return value because transfer call will fail if this fails anyway
        }
        token.transfer(recipient, amount);
    }
    
    /**
     * @notice Allows the beneficiary to claim DBR tokens
     * @dev Requires the caller to be the beneficiary
     */
    function claimDBR() public {
        require(msg.sender == beneficiary, "ONLY BENEFICIARY");
        distributor.claim(msg.sender);
    }

    /**
     * @notice Allows the beneficiary or allowed claimers to claim DBR tokens on behalf of another address
     * @param to The address to which the claimed tokens will be sent
     * @dev Requires the caller to be the beneficiary or an allowed claimer
     */
    function claimDBRTo(address to) public {
        require(msg.sender == beneficiary || claimers[msg.sender], "ONLY BENEFICIARY OR ALLOWED CLAIMERS");
        distributor.claim(to);
    }

    /**
     * @notice Returns the amount of claimable DBR tokens for the contract
     * @return The amount of claimable tokens
     */
    function claimable() public view returns (uint) {
        return distributor.claimable(address(this));
    }

    /**
     * @notice Sets or unsets an address as an allowed claimer
     * @param claimer The address of the claimer to set or unset
     * @param allowed A boolean value to determine if the claimer is allowed or not
     * @dev Requires the caller to be the beneficiary
     */
    function setClaimer(address claimer, bool allowed) public {
        require(msg.sender == beneficiary, "ONLY BENEFICIARY");
        claimers[claimer] = allowed;
    }

    /**
    * @notice Get the token balance of the escrow
    * @return Uint representing the INV token balance of the escrow including the additional INV accrued from xINV
    */
    function balance() public view returns (uint) {
        uint invBalance = token.balanceOf(address(this));
        uint invBalanceInXInv = stakedXINV * viewExchangeRate() / 1 ether;
        return invBalance + invBalanceInXInv;
    }
    
    /**
     * @notice Function called by market on deposit. Will deposit INV into xINV 
     * @dev This function should remain callable by anyone to handle direct inbound transfers.
     */
    function onDeposit() public {
        uint invBalance = token.balanceOf(address(this));
        if(invBalance > 0) {
            uint xinvBal = xINV.balanceOf(address(this));
            xINV.mint(invBalance); // we do not check return value because we don't want errors to block this call
            stakedXINV += xINV.balanceOf(address(this)) - xinvBal;
            distributor.stake(stakedXINV - xinvBal);
        }
    }

    /**
     * @notice Delegates voting power of the underlying xINV.
     * @param delegatee The address to be delegated voting power
     */
    function delegate(address delegatee) public {
        require(msg.sender == beneficiary, "ONLY BENEFICIARY");
        token.delegate(delegatee);
        xINV.syncDelegate(address(this));
    }

    /**
     * @notice View function to calculate exact exchangerate for current block
     */
    function viewExchangeRate() internal view returns (uint) {
        uint accrualBlockNumberPrior = xINV.accrualBlockNumber();
        if (accrualBlockNumberPrior == block.number) return xINV.exchangeRateStored();
        uint blockDelta = block.number - accrualBlockNumberPrior;
        uint rewardsAccrued = xINV.rewardPerBlock() * blockDelta;
        uint treasuryInvBalance = token.balanceOf(xINV.rewardTreasury());
        uint treasuryxInvAllowance = token.allowance(xINV.rewardTreasury(), address(xINV));
        if( treasuryInvBalance <= rewardsAccrued || treasuryxInvAllowance <= rewardsAccrued) return xINV.exchangeRateStored();
        return (xINV.getCash() + rewardsAccrued).divWadDown(xINV.totalSupply());
    }

}

File 2 of 3 : FixedPointMathLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant MAX_UINT256 = 2**256 - 1;

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // Divide x * y by the denominator.
            z := div(mul(x, y), denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // If x * y modulo the denominator is strictly greater than 0,
            // 1 is added to round up the division of x * y by the denominator.
            z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Mod x by y. Note this will return
            // 0 instead of reverting if y is zero.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Divide x by y. Note this will return
            // 0 instead of reverting if y is zero.
            r := div(x, y)
        }
    }

    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Add 1 to x * y if x % y > 0. Note this will
            // return 0 instead of reverting if y is zero.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}

File 3 of 3 : IERC20.sol
pragma solidity ^0.8.13;

interface IERC20 {
    function approve(address,uint) external;
    function transfer(address,uint) external returns (bool);
    function transferFrom(address,address,uint) external returns (bool);
    function balanceOf(address) external view returns (uint);
    function allowance(address from, address to) external view returns (uint);
}

interface IDelegateableERC20 is IERC20 {
    function delegate(address delegatee) external;
    function delegates(address delegator) external view returns (address delegatee);
}

Settings
{
  "remappings": [
    "ds-test/=lib/solmate/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract ABI

[{"inputs":[{"internalType":"contract IXINV","name":"_xINV","type":"address"},{"internalType":"contract IDbrDistributor","name":"_distributor","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"balance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"beneficiary","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimDBR","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"}],"name":"claimDBRTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"claimers","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"delegatee","type":"address"}],"name":"delegate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"distributor","outputs":[{"internalType":"contract IDbrDistributor","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IDelegateableERC20","name":"_token","type":"address"},{"internalType":"address","name":"_beneficiary","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"market","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"onDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"pay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"claimer","type":"address"},{"internalType":"bool","name":"allowed","type":"bool"}],"name":"setClaimer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stakedXINV","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IDelegateableERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"xINV","outputs":[{"internalType":"contract IXINV","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.