ETH Price: $3,326.68 (-2.26%)

Contract

0x8F73e4C2A6D852bb4ab2A45E6a9CF5715b3228B7
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
EIP712StETH

Compiler Version
v0.8.9+commit.e5eed63a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 4 : EIP712StETH.sol
// SPDX-FileCopyrightText: 2023 OpenZeppelin, Lido <[email protected]>
// SPDX-License-Identifier: MIT

/* See contracts/COMPILERS.md */
pragma solidity 0.8.9;

import {ECDSA} from "@openzeppelin/contracts-v4.4/utils/cryptography/ECDSA.sol";

import {IEIP712StETH} from "../common/interfaces/IEIP712StETH.sol";

/**
 * NOTE: The code below is taken from "@openzeppelin/contracts-v4.4/utils/cryptography/draft-EIP712.sol"
 * With a main difference to store the stETH contract address internally and use it for signing.
 */

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 */
contract EIP712StETH is IEIP712StETH {
    /* solhint-disable var-name-mixedcase */
    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
    uint256 private immutable _CACHED_CHAIN_ID;
    address private immutable _CACHED_STETH;

    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    error ZeroStETHAddress();

    /**
     * @dev Constructs specialized EIP712 instance for StETH token, version "2".
     */
    constructor(address _stETH) {
        if (_stETH == address(0)) { revert ZeroStETHAddress(); }

        bytes32 hashedName = keccak256("Liquid staked Ether 2.0");
        bytes32 hashedVersion = keccak256("2");
        bytes32 typeHash = keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
        );

        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
        _CACHED_CHAIN_ID = block.chainid;
        _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion, _stETH);
        _CACHED_STETH = _stETH;
        _TYPE_HASH = typeHash;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function domainSeparatorV4(address _stETH) public view override returns (bytes32) {
        if (_stETH == _CACHED_STETH && block.chainid == _CACHED_CHAIN_ID) {
            return _CACHED_DOMAIN_SEPARATOR;
        } else {
            return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _stETH);
        }
    }

    function _buildDomainSeparator(
        bytes32 _typeHash,
        bytes32 _nameHash,
        bytes32 _versionHash,
        address _stETH
    ) private view returns (bytes32) {
        return keccak256(abi.encode(_typeHash, _nameHash, _versionHash, block.chainid, _stETH));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function hashTypedDataV4(address _stETH, bytes32 _structHash) external view override returns (bytes32) {
        return ECDSA.toTypedDataHash(domainSeparatorV4(_stETH), _structHash);
    }

    /**
     * @dev returns the fields and values that describe the domain separator
     * used by stETH for EIP-712 signature.
     */
    function eip712Domain(address _stETH) external view returns (
        string memory name,
        string memory version,
        uint256 chainId,
        address verifyingContract
    ) {
        return (
            "Liquid staked Ether 2.0",
            "2",
            block.chainid,
            _stETH
        );
    }
}

File 2 of 4 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        } else if (error == RecoverError.InvalidSignatureV) {
            revert("ECDSA: invalid signature 'v' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        // Check the signature length
        // - case 65: r,s,v signature (standard)
        // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else if (signature.length == 64) {
            bytes32 r;
            bytes32 vs;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly {
                r := mload(add(signature, 0x20))
                vs := mload(add(signature, 0x40))
            }
            return tryRecover(hash, r, vs);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s;
        uint8 v;
        assembly {
            s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
            v := add(shr(255, vs), 27)
        }
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }
        if (v != 27 && v != 28) {
            return (address(0), RecoverError.InvalidSignatureV);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

File 3 of 4 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Strings.sol)

pragma solidity ^0.8.0;

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        // Inspired by OraclizeAPI's implementation - MIT licence
        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol

        if (value == 0) {
            return "0";
        }
        uint256 temp = value;
        uint256 digits;
        while (temp != 0) {
            digits++;
            temp /= 10;
        }
        bytes memory buffer = new bytes(digits);
        while (value != 0) {
            digits -= 1;
            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
            value /= 10;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        if (value == 0) {
            return "0x00";
        }
        uint256 temp = value;
        uint256 length = 0;
        while (temp != 0) {
            length++;
            temp >>= 8;
        }
        return toHexString(value, length);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _HEX_SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }
}

File 4 of 4 : IEIP712StETH.sol
// SPDX-FileCopyrightText: 2023 OpenZeppelin, Lido <[email protected]>
// SPDX-License-Identifier: GPL-3.0

// See contracts/COMPILERS.md
// solhint-disable-next-line
pragma solidity >=0.4.24 <0.9.0;

/**
 * @dev Helper interface of EIP712 StETH-dedicated helper.
 *
 * Has an access to the CHAIN_ID opcode and relies on immutables internally
 * Both are unavailable for Solidity 0.4.24.
 */
interface IEIP712StETH {
    /**
     * @dev Returns the domain separator for the current chain.
     */
    function domainSeparatorV4(address _stETH) external view returns (bytes32);

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function hashTypedDataV4(address _stETH, bytes32 _structHash) external view returns (bytes32);

    /**
     * @dev returns the fields and values that describe the domain separator
     * used by stETH for EIP-712 signature.
     */
    function eip712Domain(address _stETH) external view returns (
        string memory name,
        string memory version,
        uint256 chainId,
        address verifyingContract
    );
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "istanbul",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_stETH","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ZeroStETHAddress","type":"error"},{"inputs":[{"internalType":"address","name":"_stETH","type":"address"}],"name":"domainSeparatorV4","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stETH","type":"address"}],"name":"eip712Domain","outputs":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_stETH","type":"address"},{"internalType":"bytes32","name":"_structHash","type":"bytes32"}],"name":"hashTypedDataV4","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"}]

61014060405234801561001157600080fd5b5060405161055c38038061055c8339810160408190526100309161012f565b6001600160a01b038116610057576040516391f0538960e01b815260040160405180910390fd5b7fd0475442dbe1381d44afad818dc97da0a5b374312c7fe323cc2a3df88293e4ba60e08190527fad7c5bef027816a800da1736444fb58a807ef4c9603b7848673f7e3a68eb14a56101008190524660a0818152604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208083018290528284018890526060830187905260808301959095526001600160a01b038816828501528251808303909401845260c0909101909152815191909201206080526001600160a01b0390931660c05250506101205261015f565b60006020828403121561014157600080fd5b81516001600160a01b038116811461015857600080fd5b9392505050565b60805160a05160c05160e05161010051610120516103ae6101ae60003960006101da01526000610229015260006102040152600061014a01526000610186015260006101b001526103ae6000f3fe608060405234801561001057600080fd5b50600436106100415760003560e01c8063804e5eb314610046578063b8f120b31461006c578063f44093191461007f575b600080fd5b61005961005436600461029f565b6100f0565b6040519081526020015b60405180910390f35b61005961007a3660046102c9565b610146565b6100e061008d3660046102c9565b604080518082018252601781527f4c6971756964207374616b656420457468657220322e30000000000000000000602080830191909152825180840190935260018352601960f91b908301529290914691565b6040516100639493929190610331565b600061013f6100fe84610146565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b9392505050565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161480156101a857507f000000000000000000000000000000000000000000000000000000000000000046145b156101d457507f0000000000000000000000000000000000000000000000000000000000000000919050565b604080517f00000000000000000000000000000000000000000000000000000000000000006020808301919091527f0000000000000000000000000000000000000000000000000000000000000000828401527f000000000000000000000000000000000000000000000000000000000000000060608301524660808301526001600160a01b03851660a0808401919091528351808403909101815260c0909201909252805191012092915050565b919050565b80356001600160a01b038116811461028357600080fd5b600080604083850312156102b257600080fd5b6102bb83610288565b946020939093013593505050565b6000602082840312156102db57600080fd5b61013f82610288565b6000815180845260005b8181101561030a576020818501810151868301820152016102ee565b8181111561031c576000602083870101525b50601f01601f19169290920160200192915050565b60808152600061034460808301876102e4565b828103602084015261035681876102e4565b604084019590955250506001600160a01b03919091166060909101529291505056fea2646970667358221220a132c3f5bcb51011e86c8da9d31f5f4ef4ffaf726d3695ae5724815386503a7864736f6c63430008090033000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe84

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100415760003560e01c8063804e5eb314610046578063b8f120b31461006c578063f44093191461007f575b600080fd5b61005961005436600461029f565b6100f0565b6040519081526020015b60405180910390f35b61005961007a3660046102c9565b610146565b6100e061008d3660046102c9565b604080518082018252601781527f4c6971756964207374616b656420457468657220322e30000000000000000000602080830191909152825180840190935260018352601960f91b908301529290914691565b6040516100639493929190610331565b600061013f6100fe84610146565b8360405161190160f01b6020820152602281018390526042810182905260009060620160405160208183030381529060405280519060200120905092915050565b9392505050565b60007f000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe846001600160a01b0316826001600160a01b03161480156101a857507f000000000000000000000000000000000000000000000000000000000000000146145b156101d457507f260e7e1a220ea89b9454cbcdc1fcc44087325df199a3986e560d75db18b2e253919050565b604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6020808301919091527fd0475442dbe1381d44afad818dc97da0a5b374312c7fe323cc2a3df88293e4ba828401527fad7c5bef027816a800da1736444fb58a807ef4c9603b7848673f7e3a68eb14a560608301524660808301526001600160a01b03851660a0808401919091528351808403909101815260c0909201909252805191012092915050565b919050565b80356001600160a01b038116811461028357600080fd5b600080604083850312156102b257600080fd5b6102bb83610288565b946020939093013593505050565b6000602082840312156102db57600080fd5b61013f82610288565b6000815180845260005b8181101561030a576020818501810151868301820152016102ee565b8181111561031c576000602083870101525b50601f01601f19169290920160200192915050565b60808152600061034460808301876102e4565b828103602084015261035681876102e4565b604084019590955250506001600160a01b03919091166060909101529291505056fea2646970667358221220a132c3f5bcb51011e86c8da9d31f5f4ef4ffaf726d3695ae5724815386503a7864736f6c63430008090033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe84

-----Decoded View---------------
Arg [0] : _stETH (address): 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ae7ab96520de3a18e5e111b5eaab095312d7fe84


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.