ETH Price: $3,307.59 (+0.01%)
 

Overview

ETH Balance

0.003823372357582152 ETH

Eth Value

$12.65 (@ $3,307.59/ETH)

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Transfer213300042024-12-04 15:23:3552 days ago1733325815IN
0x9257D258...83bBeed58
0.00392314 ETH0.0009487345.17769863

Latest 4 internal transactions

Advanced mode:
Parent Transaction Hash Block
From
To
213333072024-12-05 2:27:1152 days ago1733365631
0x9257D258...83bBeed58
1.2706713 ETH
213333072024-12-05 2:27:1152 days ago1733365631
0x9257D258...83bBeed58
0.02011153 ETH
213333072024-12-05 2:27:1152 days ago1733365631  Contract Creation0 ETH
213300172024-12-04 15:26:1152 days ago1733325971
0x9257D258...83bBeed58
1.29068308 ETH
Loading...
Loading

Minimal Proxy Contract for 0x000100abaad02f1cfc8bbe32bd5a564817339e72

Contract Name:
CoinbaseSmartWallet

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 9999999 runs

Other Settings:
paris EvmVersion, MIT license

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 14 : CoinbaseSmartWallet.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.23;

import {IAccount} from "account-abstraction/interfaces/IAccount.sol";

import {UserOperation, UserOperationLib} from "account-abstraction/interfaces/UserOperation.sol";
import {Receiver} from "solady/accounts/Receiver.sol";
import {SignatureCheckerLib} from "solady/utils/SignatureCheckerLib.sol";
import {UUPSUpgradeable} from "solady/utils/UUPSUpgradeable.sol";
import {WebAuthn} from "webauthn-sol/WebAuthn.sol";

import {ERC1271} from "./ERC1271.sol";
import {MultiOwnable} from "./MultiOwnable.sol";

/// @title Coinbase Smart Wallet
///
/// @notice ERC-4337-compatible smart account, based on Solady's ERC4337 account implementation
///         with inspiration from Alchemy's LightAccount and Daimo's DaimoAccount. Verified by z0r0z.eth from (⌘) NANI.eth
///
/// @author Coinbase (https://github.com/coinbase/smart-wallet)
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC4337.sol)
contract CoinbaseSmartWallet is ERC1271, IAccount, MultiOwnable, UUPSUpgradeable, Receiver {
    /// @notice A wrapper struct used for signature validation so that callers
    ///         can identify the owner that signed.
    struct SignatureWrapper {
        /// @dev The index of the owner that signed, see `MultiOwnable.ownerAtIndex`
        uint256 ownerIndex;
        /// @dev If `MultiOwnable.ownerAtIndex` is an Ethereum address, this should be `abi.encodePacked(r, s, v)`
        ///      If `MultiOwnable.ownerAtIndex` is a public key, this should be `abi.encode(WebAuthnAuth)`.
        bytes signatureData;
    }

    /// @notice Represents a call to make.
    struct Call {
        /// @dev The address to call.
        address target;
        /// @dev The value to send when making the call.
        uint256 value;
        /// @dev The data of the call.
        bytes data;
    }

    /// @notice Reserved nonce key (upper 192 bits of `UserOperation.nonce`) for cross-chain replayable
    ///         transactions.
    ///
    /// @dev MUST BE the `UserOperation.nonce` key when `UserOperation.calldata` is calling
    ///      `executeWithoutChainIdValidation`and MUST NOT BE `UserOperation.nonce` key when `UserOperation.calldata` is
    ///      NOT calling `executeWithoutChainIdValidation`.
    ///
    /// @dev Helps enforce sequential sequencing of replayable transactions.
    uint256 public constant REPLAYABLE_NONCE_KEY = 8453;

    /// @notice Thrown when `initialize` is called but the account already has had at least one owner.
    error Initialized();

    /// @notice Thrown when a call is passed to `executeWithoutChainIdValidation` that is not allowed by
    ///         `canSkipChainIdValidation`
    ///
    /// @param selector The selector of the call.
    error SelectorNotAllowed(bytes4 selector);

    /// @notice Thrown in validateUserOp if the key of `UserOperation.nonce` does not match the calldata.
    ///
    /// @dev Calls to `this.executeWithoutChainIdValidation` MUST use `REPLAYABLE_NONCE_KEY` and
    ///      calls NOT to `this.executeWithoutChainIdValidation` MUST NOT use `REPLAYABLE_NONCE_KEY`.
    ///
    /// @param key The invalid `UserOperation.nonce` key.
    error InvalidNonceKey(uint256 key);

    /// @notice Reverts if the caller is not the EntryPoint.
    modifier onlyEntryPoint() virtual {
        if (msg.sender != entryPoint()) {
            revert Unauthorized();
        }

        _;
    }

    /// @notice Reverts if the caller is neither the EntryPoint, the owner, nor the account itself.
    modifier onlyEntryPointOrOwner() virtual {
        if (msg.sender != entryPoint()) {
            _checkOwner();
        }

        _;
    }

    /// @notice Sends to the EntryPoint (i.e. `msg.sender`) the missing funds for this transaction.
    ///
    /// @dev Subclass MAY override this modifier for better funds management (e.g. send to the
    ///      EntryPoint more than the minimum required, so that in future transactions it will not
    ///      be required to send again).
    ///
    /// @param missingAccountFunds The minimum value this modifier should send the EntryPoint which
    ///                            MAY be zero, in case there is enough deposit, or the userOp has a
    ///                            paymaster.
    modifier payPrefund(uint256 missingAccountFunds) virtual {
        _;

        assembly ("memory-safe") {
            if missingAccountFunds {
                // Ignore failure (it's EntryPoint's job to verify, not the account's).
                pop(call(gas(), caller(), missingAccountFunds, codesize(), 0x00, codesize(), 0x00))
            }
        }
    }

    constructor() {
        // Implementation should not be initializable (does not affect proxies which use their own storage).
        bytes[] memory owners = new bytes[](1);
        owners[0] = abi.encode(address(0));
        _initializeOwners(owners);
    }

    /// @notice Initializes the account with the `owners`.
    ///
    /// @dev Reverts if the account has had at least one owner, i.e. has been initialized.
    ///
    /// @param owners Array of initial owners for this account. Each item should be
    ///               an ABI encoded Ethereum address, i.e. 32 bytes with 12 leading 0 bytes,
    ///               or a 64 byte public key.
    function initialize(bytes[] calldata owners) external payable virtual {
        if (nextOwnerIndex() != 0) {
            revert Initialized();
        }

        _initializeOwners(owners);
    }

    /// @inheritdoc IAccount
    ///
    /// @notice ERC-4337 `validateUserOp` method. The EntryPoint will
    ///         call `UserOperation.sender.call(UserOperation.callData)` only if this validation call returns
    ///         successfully.
    ///
    /// @dev Signature failure should be reported by returning 1 (see: `this._isValidSignature`). This
    ///      allows making a "simulation call" without a valid signature. Other failures (e.g. invalid signature format)
    ///      should still revert to signal failure.
    /// @dev Reverts if the `UserOperation.nonce` key is invalid for `UserOperation.calldata`.
    /// @dev Reverts if the signature format is incorrect or invalid for owner type.
    ///
    /// @param userOp              The `UserOperation` to validate.
    /// @param userOpHash          The `UserOperation` hash, as computed by `EntryPoint.getUserOpHash(UserOperation)`.
    /// @param missingAccountFunds The missing account funds that must be deposited on the Entrypoint.
    ///
    /// @return validationData The encoded `ValidationData` structure:
    ///                        `(uint256(validAfter) << (160 + 48)) | (uint256(validUntil) << 160) | (success ? 0 : 1)`
    ///                        where `validUntil` is 0 (indefinite) and `validAfter` is 0.
    function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
        external
        virtual
        onlyEntryPoint
        payPrefund(missingAccountFunds)
        returns (uint256 validationData)
    {
        uint256 key = userOp.nonce >> 64;

        if (bytes4(userOp.callData) == this.executeWithoutChainIdValidation.selector) {
            userOpHash = getUserOpHashWithoutChainId(userOp);
            if (key != REPLAYABLE_NONCE_KEY) {
                revert InvalidNonceKey(key);
            }
        } else {
            if (key == REPLAYABLE_NONCE_KEY) {
                revert InvalidNonceKey(key);
            }
        }

        // Return 0 if the recovered address matches the owner.
        if (_isValidSignature(userOpHash, userOp.signature)) {
            return 0;
        }

        // Else return 1
        return 1;
    }

    /// @notice Executes `calls` on this account (i.e. self call).
    ///
    /// @dev Can only be called by the Entrypoint.
    /// @dev Reverts if the given call is not authorized to skip the chain ID validtion.
    /// @dev `validateUserOp()` will recompute the `userOpHash` without the chain ID before validating
    ///      it if the `UserOperation.calldata` is calling this function. This allows certain UserOperations
    ///      to be replayed for all accounts sharing the same address across chains. E.g. This may be
    ///      useful for syncing owner changes.
    ///
    /// @param calls An array of calldata to use for separate self calls.
    function executeWithoutChainIdValidation(bytes[] calldata calls) external payable virtual onlyEntryPoint {
        for (uint256 i; i < calls.length; i++) {
            bytes calldata call = calls[i];
            bytes4 selector = bytes4(call);
            if (!canSkipChainIdValidation(selector)) {
                revert SelectorNotAllowed(selector);
            }

            _call(address(this), 0, call);
        }
    }

    /// @notice Executes the given call from this account.
    ///
    /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
    ///
    /// @param target The address to call.
    /// @param value  The value to send with the call.
    /// @param data   The data of the call.
    function execute(address target, uint256 value, bytes calldata data)
        external
        payable
        virtual
        onlyEntryPointOrOwner
    {
        _call(target, value, data);
    }

    /// @notice Executes batch of `Call`s.
    ///
    /// @dev Can only be called by the Entrypoint or an owner of this account (including itself).
    ///
    /// @param calls The list of `Call`s to execute.
    function executeBatch(Call[] calldata calls) external payable virtual onlyEntryPointOrOwner {
        for (uint256 i; i < calls.length; i++) {
            _call(calls[i].target, calls[i].value, calls[i].data);
        }
    }

    /// @notice Returns the address of the EntryPoint v0.6.
    ///
    /// @return The address of the EntryPoint v0.6
    function entryPoint() public view virtual returns (address) {
        return 0x5FF137D4b0FDCD49DcA30c7CF57E578a026d2789;
    }

    /// @notice Computes the hash of the `UserOperation` in the same way as EntryPoint v0.6, but
    ///         leaves out the chain ID.
    ///
    /// @dev This allows accounts to sign a hash that can be used on many chains.
    ///
    /// @param userOp The `UserOperation` to compute the hash for.
    ///
    /// @return The `UserOperation` hash, which does not depend on chain ID.
    function getUserOpHashWithoutChainId(UserOperation calldata userOp) public view virtual returns (bytes32) {
        return keccak256(abi.encode(UserOperationLib.hash(userOp), entryPoint()));
    }

    /// @notice Returns the implementation of the ERC1967 proxy.
    ///
    /// @return $ The address of implementation contract.
    function implementation() public view returns (address $) {
        assembly {
            $ := sload(_ERC1967_IMPLEMENTATION_SLOT)
        }
    }

    /// @notice Returns whether `functionSelector` can be called in `executeWithoutChainIdValidation`.
    ///
    /// @param functionSelector The function selector to check.
    ////
    /// @return `true` is the function selector is allowed to skip the chain ID validation, else `false`.
    function canSkipChainIdValidation(bytes4 functionSelector) public pure returns (bool) {
        if (
            functionSelector == MultiOwnable.addOwnerPublicKey.selector
                || functionSelector == MultiOwnable.addOwnerAddress.selector
                || functionSelector == MultiOwnable.removeOwnerAtIndex.selector
                || functionSelector == MultiOwnable.removeLastOwner.selector
                || functionSelector == UUPSUpgradeable.upgradeToAndCall.selector
        ) {
            return true;
        }
        return false;
    }

    /// @notice Executes the given call from this account.
    ///
    /// @dev Reverts if the call reverted.
    /// @dev Implementation taken from
    /// https://github.com/alchemyplatform/light-account/blob/43f625afdda544d5e5af9c370c9f4be0943e4e90/src/common/BaseLightAccount.sol#L125
    ///
    /// @param target The target call address.
    /// @param value  The call value to user.
    /// @param data   The raw call data.
    function _call(address target, uint256 value, bytes memory data) internal {
        (bool success, bytes memory result) = target.call{value: value}(data);
        if (!success) {
            assembly ("memory-safe") {
                revert(add(result, 32), mload(result))
            }
        }
    }

    /// @inheritdoc ERC1271
    ///
    /// @dev Used by both `ERC1271.isValidSignature` AND `IAccount.validateUserOp` signature validation.
    /// @dev Reverts if owner at `ownerIndex` is not compatible with `signature` format.
    ///
    /// @param signature ABI encoded `SignatureWrapper`.
    function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual override returns (bool) {
        SignatureWrapper memory sigWrapper = abi.decode(signature, (SignatureWrapper));
        bytes memory ownerBytes = ownerAtIndex(sigWrapper.ownerIndex);

        if (ownerBytes.length == 32) {
            if (uint256(bytes32(ownerBytes)) > type(uint160).max) {
                // technically should be impossible given owners can only be added with
                // addOwnerAddress and addOwnerPublicKey, but we leave incase of future changes.
                revert InvalidEthereumAddressOwner(ownerBytes);
            }

            address owner;
            assembly ("memory-safe") {
                owner := mload(add(ownerBytes, 32))
            }

            return SignatureCheckerLib.isValidSignatureNow(owner, hash, sigWrapper.signatureData);
        }

        if (ownerBytes.length == 64) {
            (uint256 x, uint256 y) = abi.decode(ownerBytes, (uint256, uint256));

            WebAuthn.WebAuthnAuth memory auth = abi.decode(sigWrapper.signatureData, (WebAuthn.WebAuthnAuth));

            return WebAuthn.verify({challenge: abi.encode(hash), requireUV: false, webAuthnAuth: auth, x: x, y: y});
        }

        revert InvalidOwnerBytesLength(ownerBytes);
    }

    /// @inheritdoc UUPSUpgradeable
    ///
    /// @dev Authorization logic is only based on the `msg.sender` being an owner of this account,
    ///      or `address(this)`.
    function _authorizeUpgrade(address) internal view virtual override(UUPSUpgradeable) onlyOwner {}

    /// @inheritdoc ERC1271
    function _domainNameAndVersion() internal pure override(ERC1271) returns (string memory, string memory) {
        return ("Coinbase Smart Wallet", "1");
    }
}

File 2 of 14 : IAccount.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

import "./UserOperation.sol";

interface IAccount {

    /**
     * Validate user's signature and nonce
     * the entryPoint will make the call to the recipient only if this validation call returns successfully.
     * signature failure should be reported by returning SIG_VALIDATION_FAILED (1).
     * This allows making a "simulation call" without a valid signature
     * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure.
     *
     * @dev Must validate caller is the entryPoint.
     *      Must validate the signature and nonce
     * @param userOp the operation that is about to be executed.
     * @param userOpHash hash of the user's request data. can be used as the basis for signature.
     * @param missingAccountFunds missing funds on the account's deposit in the entrypoint.
     *      This is the minimum amount to transfer to the sender(entryPoint) to be able to make the call.
     *      The excess is left as a deposit in the entrypoint, for future calls.
     *      can be withdrawn anytime using "entryPoint.withdrawTo()"
     *      In case there is a paymaster in the request (or the current deposit is high enough), this value will be zero.
     * @return validationData packaged ValidationData structure. use `_packValidationData` and `_unpackValidationData` to encode and decode
     *      <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure,
     *         otherwise, an address of an "authorizer" contract.
     *      <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite"
     *      <6-byte> validAfter - first timestamp this operation is valid
     *      If an account doesn't use time-range, it is enough to return SIG_VALIDATION_FAILED value (1) for signature failure.
     *      Note that the validation code cannot use block.timestamp (or block.number) directly.
     */
    function validateUserOp(UserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds)
    external returns (uint256 validationData);
}

File 3 of 14 : UserOperation.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable no-inline-assembly */

import {calldataKeccak} from "../core/Helpers.sol";

/**
 * User Operation struct
 * @param sender the sender account of this request.
     * @param nonce unique value the sender uses to verify it is not a replay.
     * @param initCode if set, the account contract will be created by this constructor/
     * @param callData the method call to execute on this account.
     * @param callGasLimit the gas limit passed to the callData method call.
     * @param verificationGasLimit gas used for validateUserOp and validatePaymasterUserOp.
     * @param preVerificationGas gas not calculated by the handleOps method, but added to the gas paid. Covers batch overhead.
     * @param maxFeePerGas same as EIP-1559 gas parameter.
     * @param maxPriorityFeePerGas same as EIP-1559 gas parameter.
     * @param paymasterAndData if set, this field holds the paymaster address and paymaster-specific data. the paymaster will pay for the transaction instead of the sender.
     * @param signature sender-verified signature over the entire request, the EntryPoint address and the chain ID.
     */
    struct UserOperation {

        address sender;
        uint256 nonce;
        bytes initCode;
        bytes callData;
        uint256 callGasLimit;
        uint256 verificationGasLimit;
        uint256 preVerificationGas;
        uint256 maxFeePerGas;
        uint256 maxPriorityFeePerGas;
        bytes paymasterAndData;
        bytes signature;
    }

/**
 * Utility functions helpful when working with UserOperation structs.
 */
library UserOperationLib {

    function getSender(UserOperation calldata userOp) internal pure returns (address) {
        address data;
        //read sender from userOp, which is first userOp member (saves 800 gas...)
        assembly {data := calldataload(userOp)}
        return address(uint160(data));
    }

    //relayer/block builder might submit the TX with higher priorityFee, but the user should not
    // pay above what he signed for.
    function gasPrice(UserOperation calldata userOp) internal view returns (uint256) {
    unchecked {
        uint256 maxFeePerGas = userOp.maxFeePerGas;
        uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
        if (maxFeePerGas == maxPriorityFeePerGas) {
            //legacy mode (for networks that don't support basefee opcode)
            return maxFeePerGas;
        }
        return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee);
    }
    }

    function pack(UserOperation calldata userOp) internal pure returns (bytes memory ret) {
        address sender = getSender(userOp);
        uint256 nonce = userOp.nonce;
        bytes32 hashInitCode = calldataKeccak(userOp.initCode);
        bytes32 hashCallData = calldataKeccak(userOp.callData);
        uint256 callGasLimit = userOp.callGasLimit;
        uint256 verificationGasLimit = userOp.verificationGasLimit;
        uint256 preVerificationGas = userOp.preVerificationGas;
        uint256 maxFeePerGas = userOp.maxFeePerGas;
        uint256 maxPriorityFeePerGas = userOp.maxPriorityFeePerGas;
        bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData);

        return abi.encode(
            sender, nonce,
            hashInitCode, hashCallData,
            callGasLimit, verificationGasLimit, preVerificationGas,
            maxFeePerGas, maxPriorityFeePerGas,
            hashPaymasterAndData
        );
    }

    function hash(UserOperation calldata userOp) internal pure returns (bytes32) {
        return keccak256(pack(userOp));
    }

    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }
}

File 4 of 14 : Receiver.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Receiver mixin for ETH and safe-transferred ERC721 and ERC1155 tokens.
/// @author Solady (https://github.com/Vectorized/solady/blob/main/src/accounts/Receiver.sol)
///
/// @dev Note:
/// - Handles all ERC721 and ERC1155 token safety callbacks.
/// - Collapses function table gas overhead and code size.
/// - Utilizes fallback so unknown calldata will pass on.
abstract contract Receiver {
    /// @dev For receiving ETH.
    receive() external payable virtual {}

    /// @dev Fallback function with the `receiverFallback` modifier.
    fallback() external payable virtual receiverFallback {}

    /// @dev Modifier for the fallback function to handle token callbacks.
    modifier receiverFallback() virtual {
        /// @solidity memory-safe-assembly
        assembly {
            let s := shr(224, calldataload(0))
            // 0x150b7a02: `onERC721Received(address,address,uint256,bytes)`.
            // 0xf23a6e61: `onERC1155Received(address,address,uint256,uint256,bytes)`.
            // 0xbc197c81: `onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)`.
            if or(eq(s, 0x150b7a02), or(eq(s, 0xf23a6e61), eq(s, 0xbc197c81))) {
                mstore(0x20, s) // Store `msg.sig`.
                return(0x3c, 0x20) // Return `msg.sig`.
            }
        }
        _;
    }
}

File 5 of 14 : SignatureCheckerLib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Signature verification helper that supports both ECDSA signatures from EOAs
/// and ERC1271 signatures from smart contract wallets like Argent and Gnosis safe.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SignatureCheckerLib.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/SignatureChecker.sol)
///
/// @dev Note:
/// - The signature checking functions use the ecrecover precompile (0x1).
/// - The `bytes memory signature` variants use the identity precompile (0x4)
///   to copy memory internally.
/// - Unlike ECDSA signatures, contract signatures are revocable.
/// - As of Solady version 0.0.134, all `bytes signature` variants accept both
///   regular 65-byte `(r, s, v)` and EIP-2098 `(r, vs)` short form signatures.
///   See: https://eips.ethereum.org/EIPS/eip-2098
///   This is for calldata efficiency on smart accounts prevalent on L2s.
///
/// WARNING! Do NOT use signatures as unique identifiers:
/// - Use a nonce in the digest to prevent replay attacks on the same contract.
/// - Use EIP-712 for the digest to prevent replay attacks across different chains and contracts.
///   EIP-712 also enables readable signing of typed data for better user safety.
/// This implementation does NOT check if a signature is non-malleable.
library SignatureCheckerLib {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*               SIGNATURE CHECKING OPERATIONS                */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether `signature` is valid for `signer` and `hash`.
    /// If `signer` is a smart contract, the signature is validated with ERC1271.
    /// Otherwise, the signature is validated with `ECDSA.recover`.
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits of `signer` in case they are dirty.
            for { signer := shr(96, shl(96, signer)) } signer {} {
                let m := mload(0x40)
                mstore(0x00, hash)
                mstore(0x40, mload(add(signature, 0x20))) // `r`.
                if eq(mload(signature), 64) {
                    let vs := mload(add(signature, 0x40))
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                    let t :=
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x01, // Start of output.
                            0x20 // Size of output.
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                        isValid := 1
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
                if eq(mload(signature), 65) {
                    mstore(0x20, byte(0, mload(add(signature, 0x60)))) // `v`.
                    mstore(0x60, mload(add(signature, 0x40))) // `s`.
                    let t :=
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x01, // Start of output.
                            0x20 // Size of output.
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                        isValid := 1
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.

                let f := shl(224, 0x1626ba7e)
                mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                mstore(add(m, 0x04), hash)
                let d := add(m, 0x24)
                mstore(d, 0x40) // The offset of the `signature` in the calldata.
                // Copy the `signature` over.
                let n := add(0x20, mload(signature))
                pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
                // forgefmt: disable-next-item
                isValid := and(
                    // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                    eq(mload(d), f),
                    // Whether the staticcall does not revert.
                    // This must be placed at the end of the `and` clause,
                    // as the arguments are evaluated from right to left.
                    staticcall(
                        gas(), // Remaining gas.
                        signer, // The `signer` address.
                        m, // Offset of calldata in memory.
                        add(returndatasize(), 0x44), // Length of calldata in memory.
                        d, // Offset of returndata.
                        0x20 // Length of returndata to write.
                    )
                )
                break
            }
        }
    }

    /// @dev Returns whether `signature` is valid for `signer` and `hash`.
    /// If `signer` is a smart contract, the signature is validated with ERC1271.
    /// Otherwise, the signature is validated with `ECDSA.recover`.
    function isValidSignatureNowCalldata(address signer, bytes32 hash, bytes calldata signature)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits of `signer` in case they are dirty.
            for { signer := shr(96, shl(96, signer)) } signer {} {
                let m := mload(0x40)
                mstore(0x00, hash)
                if eq(signature.length, 64) {
                    let vs := calldataload(add(signature.offset, 0x20))
                    mstore(0x20, add(shr(255, vs), 27)) // `v`.
                    mstore(0x40, calldataload(signature.offset)) // `r`.
                    mstore(0x60, shr(1, shl(1, vs))) // `s`.
                    let t :=
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x01, // Start of output.
                            0x20 // Size of output.
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                        isValid := 1
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
                if eq(signature.length, 65) {
                    mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40)))) // `v`.
                    calldatacopy(0x40, signature.offset, 0x40) // `r`, `s`.
                    let t :=
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            1, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x01, // Start of output.
                            0x20 // Size of output.
                        )
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                        isValid := 1
                        mstore(0x60, 0) // Restore the zero slot.
                        mstore(0x40, m) // Restore the free memory pointer.
                        break
                    }
                }
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.

                let f := shl(224, 0x1626ba7e)
                mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                mstore(add(m, 0x04), hash)
                let d := add(m, 0x24)
                mstore(d, 0x40) // The offset of the `signature` in the calldata.
                mstore(add(m, 0x44), signature.length)
                // Copy the `signature` over.
                calldatacopy(add(m, 0x64), signature.offset, signature.length)
                // forgefmt: disable-next-item
                isValid := and(
                    // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                    eq(mload(d), f),
                    // Whether the staticcall does not revert.
                    // This must be placed at the end of the `and` clause,
                    // as the arguments are evaluated from right to left.
                    staticcall(
                        gas(), // Remaining gas.
                        signer, // The `signer` address.
                        m, // Offset of calldata in memory.
                        add(signature.length, 0x64), // Length of calldata in memory.
                        d, // Offset of returndata.
                        0x20 // Length of returndata to write.
                    )
                )
                break
            }
        }
    }

    /// @dev Returns whether the signature (`r`, `vs`) is valid for `signer` and `hash`.
    /// If `signer` is a smart contract, the signature is validated with ERC1271.
    /// Otherwise, the signature is validated with `ECDSA.recover`.
    function isValidSignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits of `signer` in case they are dirty.
            for { signer := shr(96, shl(96, signer)) } signer {} {
                let m := mload(0x40)
                mstore(0x00, hash)
                mstore(0x20, add(shr(255, vs), 27)) // `v`.
                mstore(0x40, r) // `r`.
                mstore(0x60, shr(1, shl(1, vs))) // `s`.
                let t :=
                    staticcall(
                        gas(), // Amount of gas left for the transaction.
                        1, // Address of `ecrecover`.
                        0x00, // Start of input.
                        0x80, // Size of input.
                        0x01, // Start of output.
                        0x20 // Size of output.
                    )
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                    isValid := 1
                    mstore(0x60, 0) // Restore the zero slot.
                    mstore(0x40, m) // Restore the free memory pointer.
                    break
                }

                let f := shl(224, 0x1626ba7e)
                mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                mstore(add(m, 0x04), hash)
                let d := add(m, 0x24)
                mstore(d, 0x40) // The offset of the `signature` in the calldata.
                mstore(add(m, 0x44), 65) // Length of the signature.
                mstore(add(m, 0x64), r) // `r`.
                mstore(add(m, 0x84), mload(0x60)) // `s`.
                mstore8(add(m, 0xa4), mload(0x20)) // `v`.
                // forgefmt: disable-next-item
                isValid := and(
                    // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                    eq(mload(d), f),
                    // Whether the staticcall does not revert.
                    // This must be placed at the end of the `and` clause,
                    // as the arguments are evaluated from right to left.
                    staticcall(
                        gas(), // Remaining gas.
                        signer, // The `signer` address.
                        m, // Offset of calldata in memory.
                        0xa5, // Length of calldata in memory.
                        d, // Offset of returndata.
                        0x20 // Length of returndata to write.
                    )
                )
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.
                break
            }
        }
    }

    /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `signer` and `hash`.
    /// If `signer` is a smart contract, the signature is validated with ERC1271.
    /// Otherwise, the signature is validated with `ECDSA.recover`.
    function isValidSignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Clean the upper 96 bits of `signer` in case they are dirty.
            for { signer := shr(96, shl(96, signer)) } signer {} {
                let m := mload(0x40)
                mstore(0x00, hash)
                mstore(0x20, and(v, 0xff)) // `v`.
                mstore(0x40, r) // `r`.
                mstore(0x60, s) // `s`.
                let t :=
                    staticcall(
                        gas(), // Amount of gas left for the transaction.
                        1, // Address of `ecrecover`.
                        0x00, // Start of input.
                        0x80, // Size of input.
                        0x01, // Start of output.
                        0x20 // Size of output.
                    )
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                if iszero(or(iszero(returndatasize()), xor(signer, mload(t)))) {
                    isValid := 1
                    mstore(0x60, 0) // Restore the zero slot.
                    mstore(0x40, m) // Restore the free memory pointer.
                    break
                }

                let f := shl(224, 0x1626ba7e)
                mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
                mstore(add(m, 0x04), hash)
                let d := add(m, 0x24)
                mstore(d, 0x40) // The offset of the `signature` in the calldata.
                mstore(add(m, 0x44), 65) // Length of the signature.
                mstore(add(m, 0x64), r) // `r`.
                mstore(add(m, 0x84), s) // `s`.
                mstore8(add(m, 0xa4), v) // `v`.
                // forgefmt: disable-next-item
                isValid := and(
                    // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                    eq(mload(d), f),
                    // Whether the staticcall does not revert.
                    // This must be placed at the end of the `and` clause,
                    // as the arguments are evaluated from right to left.
                    staticcall(
                        gas(), // Remaining gas.
                        signer, // The `signer` address.
                        m, // Offset of calldata in memory.
                        0xa5, // Length of calldata in memory.
                        d, // Offset of returndata.
                        0x20 // Length of returndata to write.
                    )
                )
                mstore(0x60, 0) // Restore the zero slot.
                mstore(0x40, m) // Restore the free memory pointer.
                break
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     ERC1271 OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
    function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes memory signature)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let f := shl(224, 0x1626ba7e)
            mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
            mstore(add(m, 0x04), hash)
            let d := add(m, 0x24)
            mstore(d, 0x40) // The offset of the `signature` in the calldata.
            // Copy the `signature` over.
            let n := add(0x20, mload(signature))
            pop(staticcall(gas(), 4, signature, n, add(m, 0x44), n))
            // forgefmt: disable-next-item
            isValid := and(
                // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                eq(mload(d), f),
                // Whether the staticcall does not revert.
                // This must be placed at the end of the `and` clause,
                // as the arguments are evaluated from right to left.
                staticcall(
                    gas(), // Remaining gas.
                    signer, // The `signer` address.
                    m, // Offset of calldata in memory.
                    add(returndatasize(), 0x44), // Length of calldata in memory.
                    d, // Offset of returndata.
                    0x20 // Length of returndata to write.
                )
            )
        }
    }

    /// @dev Returns whether `signature` is valid for `hash` for an ERC1271 `signer` contract.
    function isValidERC1271SignatureNowCalldata(
        address signer,
        bytes32 hash,
        bytes calldata signature
    ) internal view returns (bool isValid) {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let f := shl(224, 0x1626ba7e)
            mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
            mstore(add(m, 0x04), hash)
            let d := add(m, 0x24)
            mstore(d, 0x40) // The offset of the `signature` in the calldata.
            mstore(add(m, 0x44), signature.length)
            // Copy the `signature` over.
            calldatacopy(add(m, 0x64), signature.offset, signature.length)
            // forgefmt: disable-next-item
            isValid := and(
                // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                eq(mload(d), f),
                // Whether the staticcall does not revert.
                // This must be placed at the end of the `and` clause,
                // as the arguments are evaluated from right to left.
                staticcall(
                    gas(), // Remaining gas.
                    signer, // The `signer` address.
                    m, // Offset of calldata in memory.
                    add(signature.length, 0x64), // Length of calldata in memory.
                    d, // Offset of returndata.
                    0x20 // Length of returndata to write.
                )
            )
        }
    }

    /// @dev Returns whether the signature (`r`, `vs`) is valid for `hash`
    /// for an ERC1271 `signer` contract.
    function isValidERC1271SignatureNow(address signer, bytes32 hash, bytes32 r, bytes32 vs)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let f := shl(224, 0x1626ba7e)
            mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
            mstore(add(m, 0x04), hash)
            let d := add(m, 0x24)
            mstore(d, 0x40) // The offset of the `signature` in the calldata.
            mstore(add(m, 0x44), 65) // Length of the signature.
            mstore(add(m, 0x64), r) // `r`.
            mstore(add(m, 0x84), shr(1, shl(1, vs))) // `s`.
            mstore8(add(m, 0xa4), add(shr(255, vs), 27)) // `v`.
            // forgefmt: disable-next-item
            isValid := and(
                // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                eq(mload(d), f),
                // Whether the staticcall does not revert.
                // This must be placed at the end of the `and` clause,
                // as the arguments are evaluated from right to left.
                staticcall(
                    gas(), // Remaining gas.
                    signer, // The `signer` address.
                    m, // Offset of calldata in memory.
                    0xa5, // Length of calldata in memory.
                    d, // Offset of returndata.
                    0x20 // Length of returndata to write.
                )
            )
        }
    }

    /// @dev Returns whether the signature (`v`, `r`, `s`) is valid for `hash`
    /// for an ERC1271 `signer` contract.
    function isValidERC1271SignatureNow(address signer, bytes32 hash, uint8 v, bytes32 r, bytes32 s)
        internal
        view
        returns (bool isValid)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let m := mload(0x40)
            let f := shl(224, 0x1626ba7e)
            mstore(m, f) // `bytes4(keccak256("isValidSignature(bytes32,bytes)"))`.
            mstore(add(m, 0x04), hash)
            let d := add(m, 0x24)
            mstore(d, 0x40) // The offset of the `signature` in the calldata.
            mstore(add(m, 0x44), 65) // Length of the signature.
            mstore(add(m, 0x64), r) // `r`.
            mstore(add(m, 0x84), s) // `s`.
            mstore8(add(m, 0xa4), v) // `v`.
            // forgefmt: disable-next-item
            isValid := and(
                // Whether the returndata is the magic value `0x1626ba7e` (left-aligned).
                eq(mload(d), f),
                // Whether the staticcall does not revert.
                // This must be placed at the end of the `and` clause,
                // as the arguments are evaluated from right to left.
                staticcall(
                    gas(), // Remaining gas.
                    signer, // The `signer` address.
                    m, // Offset of calldata in memory.
                    0xa5, // Length of calldata in memory.
                    d, // Offset of returndata.
                    0x20 // Length of returndata to write.
                )
            )
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HASHING OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an Ethereum Signed Message, created from a `hash`.
    /// This produces a hash corresponding to the one signed with the
    /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
    /// JSON-RPC method as part of EIP-191.
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x20, hash) // Store into scratch space for keccak256.
            mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32") // 28 bytes.
            result := keccak256(0x04, 0x3c) // `32 * 2 - (32 - 28) = 60 = 0x3c`.
        }
    }

    /// @dev Returns an Ethereum Signed Message, created from `s`.
    /// This produces a hash corresponding to the one signed with the
    /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
    /// JSON-RPC method as part of EIP-191.
    /// Note: Supports lengths of `s` up to 999999 bytes.
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let sLength := mload(s)
            let o := 0x20
            mstore(o, "\x19Ethereum Signed Message:\n") // 26 bytes, zero-right-padded.
            mstore(0x00, 0x00)
            // Convert the `s.length` to ASCII decimal representation: `base10(s.length)`.
            for { let temp := sLength } 1 {} {
                o := sub(o, 1)
                mstore8(o, add(48, mod(temp, 10)))
                temp := div(temp, 10)
                if iszero(temp) { break }
            }
            let n := sub(0x3a, o) // Header length: `26 + 32 - o`.
            // Throw an out-of-offset error (consumes all gas) if the header exceeds 32 bytes.
            returndatacopy(returndatasize(), returndatasize(), gt(n, 0x20))
            mstore(s, or(mload(0x00), mload(n))) // Temporarily store the header.
            result := keccak256(add(s, sub(0x20, n)), add(n, sLength))
            mstore(s, sLength) // Restore the length.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   EMPTY CALLDATA HELPERS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an empty calldata bytes.
    function emptySignature() internal pure returns (bytes calldata signature) {
        /// @solidity memory-safe-assembly
        assembly {
            signature.length := 0
        }
    }
}

File 6 of 14 : UUPSUpgradeable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice UUPS proxy mixin.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/UUPSUpgradeable.sol)
/// @author Modified from OpenZeppelin
/// (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol)
///
/// Note:
/// - This implementation is intended to be used with ERC1967 proxies.
/// See: `LibClone.deployERC1967` and related functions.
/// - This implementation is NOT compatible with legacy OpenZeppelin proxies
/// which do not store the implementation at `_ERC1967_IMPLEMENTATION_SLOT`.
abstract contract UUPSUpgradeable {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       CUSTOM ERRORS                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The upgrade failed.
    error UpgradeFailed();

    /// @dev The call is from an unauthorized call context.
    error UnauthorizedCallContext();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         IMMUTABLES                         */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev For checking if the context is a delegate call.
    uint256 private immutable __self = uint256(uint160(address(this)));

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                           EVENTS                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Emitted when the proxy's implementation is upgraded.
    event Upgraded(address indexed implementation);

    /// @dev `keccak256(bytes("Upgraded(address)"))`.
    uint256 private constant _UPGRADED_EVENT_SIGNATURE =
        0xbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                          STORAGE                           */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The ERC-1967 storage slot for the implementation in the proxy.
    /// `uint256(keccak256("eip1967.proxy.implementation")) - 1`.
    bytes32 internal constant _ERC1967_IMPLEMENTATION_SLOT =
        0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      UUPS OPERATIONS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Please override this function to check if `msg.sender` is authorized
    /// to upgrade the proxy to `newImplementation`, reverting if not.
    /// ```
    ///     function _authorizeUpgrade(address) internal override onlyOwner {}
    /// ```
    function _authorizeUpgrade(address newImplementation) internal virtual;

    /// @dev Returns the storage slot used by the implementation,
    /// as specified in [ERC1822](https://eips.ethereum.org/EIPS/eip-1822).
    ///
    /// Note: The `notDelegated` modifier prevents accidental upgrades to
    /// an implementation that is a proxy contract.
    function proxiableUUID() public view virtual notDelegated returns (bytes32) {
        // This function must always return `_ERC1967_IMPLEMENTATION_SLOT` to comply with ERC1967.
        return _ERC1967_IMPLEMENTATION_SLOT;
    }

    /// @dev Upgrades the proxy's implementation to `newImplementation`.
    /// Emits a {Upgraded} event.
    ///
    /// Note: Passing in empty `data` skips the delegatecall to `newImplementation`.
    function upgradeToAndCall(address newImplementation, bytes calldata data)
        public
        payable
        virtual
        onlyProxy
    {
        _authorizeUpgrade(newImplementation);
        /// @solidity memory-safe-assembly
        assembly {
            newImplementation := shr(96, shl(96, newImplementation)) // Clears upper 96 bits.
            mstore(0x01, 0x52d1902d) // `proxiableUUID()`.
            let s := _ERC1967_IMPLEMENTATION_SLOT
            // Check if `newImplementation` implements `proxiableUUID` correctly.
            if iszero(eq(mload(staticcall(gas(), newImplementation, 0x1d, 0x04, 0x01, 0x20)), s)) {
                mstore(0x01, 0x55299b49) // `UpgradeFailed()`.
                revert(0x1d, 0x04)
            }
            // Emit the {Upgraded} event.
            log2(codesize(), 0x00, _UPGRADED_EVENT_SIGNATURE, newImplementation)
            sstore(s, newImplementation) // Updates the implementation.

            // Perform a delegatecall to `newImplementation` if `data` is non-empty.
            if data.length {
                // Forwards the `data` to `newImplementation` via delegatecall.
                let m := mload(0x40)
                calldatacopy(m, data.offset, data.length)
                if iszero(delegatecall(gas(), newImplementation, m, data.length, codesize(), 0x00))
                {
                    // Bubble up the revert if the call reverts.
                    returndatacopy(m, 0x00, returndatasize())
                    revert(m, returndatasize())
                }
            }
        }
    }

    /// @dev Requires that the execution is performed through a proxy.
    modifier onlyProxy() {
        uint256 s = __self;
        /// @solidity memory-safe-assembly
        assembly {
            // To enable use cases with an immutable default implementation in the bytecode,
            // (see: ERC6551Proxy), we don't require that the proxy address must match the
            // value stored in the implementation slot, which may not be initialized.
            if eq(s, address()) {
                mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                revert(0x1c, 0x04)
            }
        }
        _;
    }

    /// @dev Requires that the execution is NOT performed via delegatecall.
    /// This is the opposite of `onlyProxy`.
    modifier notDelegated() {
        uint256 s = __self;
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(eq(s, address())) {
                mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`.
                revert(0x1c, 0x04)
            }
        }
        _;
    }
}

File 7 of 14 : WebAuthn.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {FCL_ecdsa} from "FreshCryptoLib/FCL_ecdsa.sol";
import {FCL_Elliptic_ZZ} from "FreshCryptoLib/FCL_elliptic.sol";
import {Base64} from "openzeppelin-contracts/contracts/utils/Base64.sol";
import {LibString} from "solady/utils/LibString.sol";

/// @title WebAuthn
///
/// @notice A library for verifying WebAuthn Authentication Assertions, built off the work
///         of Daimo.
///
/// @dev Attempts to use the RIP-7212 precompile for signature verification.
///      If precompile verification fails, it falls back to FreshCryptoLib.
///
/// @author Coinbase (https://github.com/base-org/webauthn-sol)
/// @author Daimo (https://github.com/daimo-eth/p256-verifier/blob/master/src/WebAuthn.sol)
library WebAuthn {
    using LibString for string;

    struct WebAuthnAuth {
        /// @dev The WebAuthn authenticator data.
        ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorassertionresponse-authenticatordata.
        bytes authenticatorData;
        /// @dev The WebAuthn client data JSON.
        ///      See https://www.w3.org/TR/webauthn-2/#dom-authenticatorresponse-clientdatajson.
        string clientDataJSON;
        /// @dev The index at which "challenge":"..." occurs in `clientDataJSON`.
        uint256 challengeIndex;
        /// @dev The index at which "type":"..." occurs in `clientDataJSON`.
        uint256 typeIndex;
        /// @dev The r value of secp256r1 signature
        uint256 r;
        /// @dev The s value of secp256r1 signature
        uint256 s;
    }

    /// @dev Bit 0 of the authenticator data struct, corresponding to the "User Present" bit.
    ///      See https://www.w3.org/TR/webauthn-2/#flags.
    bytes1 private constant _AUTH_DATA_FLAGS_UP = 0x01;

    /// @dev Bit 2 of the authenticator data struct, corresponding to the "User Verified" bit.
    ///      See https://www.w3.org/TR/webauthn-2/#flags.
    bytes1 private constant _AUTH_DATA_FLAGS_UV = 0x04;

    /// @dev Secp256r1 curve order / 2 used as guard to prevent signature malleability issue.
    uint256 private constant _P256_N_DIV_2 = FCL_Elliptic_ZZ.n / 2;

    /// @dev The precompiled contract address to use for signature verification in the “secp256r1” elliptic curve.
    ///      See https://github.com/ethereum/RIPs/blob/master/RIPS/rip-7212.md.
    address private constant _VERIFIER = address(0x100);

    /// @dev The expected type (hash) in the client data JSON when verifying assertion signatures.
    ///      See https://www.w3.org/TR/webauthn-2/#dom-collectedclientdata-type
    bytes32 private constant _EXPECTED_TYPE_HASH = keccak256('"type":"webauthn.get"');

    ///
    /// @notice Verifies a Webauthn Authentication Assertion as described
    /// in https://www.w3.org/TR/webauthn-2/#sctn-verifying-assertion.
    ///
    /// @dev We do not verify all the steps as described in the specification, only ones relevant to our context.
    ///      Please carefully read through this list before usage.
    ///
    ///      Specifically, we do verify the following:
    ///         - Verify that authenticatorData (which comes from the authenticator, such as iCloud Keychain) indicates
    ///           a well-formed assertion with the user present bit set. If `requireUV` is set, checks that the authenticator
    ///           enforced user verification. User verification should be required if, and only if, options.userVerification
    ///           is set to required in the request.
    ///         - Verifies that the client JSON is of type "webauthn.get", i.e. the client was responding to a request to
    ///           assert authentication.
    ///         - Verifies that the client JSON contains the requested challenge.
    ///         - Verifies that (r, s) constitute a valid signature over both the authenicatorData and client JSON, for public
    ///            key (x, y).
    ///
    ///      We make some assumptions about the particular use case of this verifier, so we do NOT verify the following:
    ///         - Does NOT verify that the origin in the `clientDataJSON` matches the Relying Party's origin: tt is considered
    ///           the authenticator's responsibility to ensure that the user is interacting with the correct RP. This is
    ///           enforced by most high quality authenticators properly, particularly the iCloud Keychain and Google Password
    ///           Manager were tested.
    ///         - Does NOT verify That `topOrigin` in `clientDataJSON` is well-formed: We assume it would never be present, i.e.
    ///           the credentials are never used in a cross-origin/iframe context. The website/app set up should disallow
    ///           cross-origin usage of the credentials. This is the default behaviour for created credentials in common settings.
    ///         - Does NOT verify that the `rpIdHash` in `authenticatorData` is the SHA-256 hash of the RP ID expected by the Relying
    ///           Party: this means that we rely on the authenticator to properly enforce credentials to be used only by the correct RP.
    ///           This is generally enforced with features like Apple App Site Association and Google Asset Links. To protect from
    ///           edge cases in which a previously-linked RP ID is removed from the authorised RP IDs, we recommend that messages
    ///           signed by the authenticator include some expiry mechanism.
    ///         - Does NOT verify the credential backup state: this assumes the credential backup state is NOT used as part of Relying
    ///           Party business logic or policy.
    ///         - Does NOT verify the values of the client extension outputs: this assumes that the Relying Party does not use client
    ///           extension outputs.
    ///         - Does NOT verify the signature counter: signature counters are intended to enable risk scoring for the Relying Party.
    ///           This assumes risk scoring is not used as part of Relying Party business logic or policy.
    ///         - Does NOT verify the attestation object: this assumes that response.attestationObject is NOT present in the response,
    ///           i.e. the RP does not intend to verify an attestation.
    ///
    /// @param challenge    The challenge that was provided by the relying party.
    /// @param requireUV    A boolean indicating whether user verification is required.
    /// @param webAuthnAuth The `WebAuthnAuth` struct.
    /// @param x            The x coordinate of the public key.
    /// @param y            The y coordinate of the public key.
    ///
    /// @return `true` if the authentication assertion passed validation, else `false`.
    function verify(bytes memory challenge, bool requireUV, WebAuthnAuth memory webAuthnAuth, uint256 x, uint256 y)
        internal
        view
        returns (bool)
    {
        if (webAuthnAuth.s > _P256_N_DIV_2) {
            // guard against signature malleability
            return false;
        }

        // 11. Verify that the value of C.type is the string webauthn.get.
        //     bytes("type":"webauthn.get").length = 21
        string memory _type = webAuthnAuth.clientDataJSON.slice(webAuthnAuth.typeIndex, webAuthnAuth.typeIndex + 21);
        if (keccak256(bytes(_type)) != _EXPECTED_TYPE_HASH) {
            return false;
        }

        // 12. Verify that the value of C.challenge equals the base64url encoding of options.challenge.
        bytes memory expectedChallenge = bytes(string.concat('"challenge":"', Base64.encodeURL(challenge), '"'));
        string memory actualChallenge =
            webAuthnAuth.clientDataJSON.slice(webAuthnAuth.challengeIndex, webAuthnAuth.challengeIndex + expectedChallenge.length);
        if (keccak256(bytes(actualChallenge)) != keccak256(expectedChallenge)) {
            return false;
        }

        // Skip 13., 14., 15.

        // 16. Verify that the UP bit of the flags in authData is set.
        if (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UP != _AUTH_DATA_FLAGS_UP) {
            return false;
        }

        // 17. If user verification is required for this assertion, verify that the User Verified bit of the flags in
        //     authData is set.
        if (requireUV && (webAuthnAuth.authenticatorData[32] & _AUTH_DATA_FLAGS_UV) != _AUTH_DATA_FLAGS_UV) {
            return false;
        }

        // skip 18.

        // 19. Let hash be the result of computing a hash over the cData using SHA-256.
        bytes32 clientDataJSONHash = sha256(bytes(webAuthnAuth.clientDataJSON));

        // 20. Using credentialPublicKey, verify that sig is a valid signature over the binary concatenation of authData
        //     and hash.
        bytes32 messageHash = sha256(abi.encodePacked(webAuthnAuth.authenticatorData, clientDataJSONHash));
        bytes memory args = abi.encode(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
        // try the RIP-7212 precompile address
        (bool success, bytes memory ret) = _VERIFIER.staticcall(args);
        // staticcall will not revert if address has no code
        // check return length
        // note that even if precompile exists, ret.length is 0 when verification returns false
        // so an invalid signature will be checked twice: once by the precompile and once by FCL.
        // Ideally this signature failure is simulated offchain and no one actually pay this gas.
        bool valid = ret.length > 0;
        if (success && valid) return abi.decode(ret, (uint256)) == 1;

        return FCL_ecdsa.ecdsa_verify(messageHash, webAuthnAuth.r, webAuthnAuth.s, x, y);
    }
}

File 8 of 14 : ERC1271.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @title ERC-1271
///
/// @notice Abstract ERC-1271 implementation (based on Solady's) with guards to handle the same
///         signer being used on multiple accounts.
///
/// @dev To prevent the same signature from being validated on different accounts owned by the samer signer,
///      we introduce an anti cross-account-replay layer: the original hash is input into a new EIP-712 compliant
///      hash. The domain separator of this outer hash contains the chain id and address of this contract, so that
///      it cannot be used on two accounts (see `replaySafeHash()` for the implementation details).
///
/// @author Coinbase (https://github.com/coinbase/smart-wallet)
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/accounts/ERC1271.sol)
abstract contract ERC1271 {
    /// @dev Precomputed `typeHash` used to produce EIP-712 compliant hash when applying the anti
    ///      cross-account-replay layer.
    ///
    ///      The original hash must either be:
    ///         - An EIP-191 hash: keccak256("\x19Ethereum Signed Message:\n" || len(someMessage) || someMessage)
    ///         - An EIP-712 hash: keccak256("\x19\x01" || someDomainSeparator || hashStruct(someStruct))
    bytes32 private constant _MESSAGE_TYPEHASH = keccak256("CoinbaseSmartWalletMessage(bytes32 hash)");

    /// @notice Returns information about the `EIP712Domain` used to create EIP-712 compliant hashes.
    ///
    /// @dev Follows ERC-5267 (see https://eips.ethereum.org/EIPS/eip-5267).
    ///
    /// @return fields The bitmap of used fields.
    /// @return name The value of the `EIP712Domain.name` field.
    /// @return version The value of the `EIP712Domain.version` field.
    /// @return chainId The value of the `EIP712Domain.chainId` field.
    /// @return verifyingContract The value of the `EIP712Domain.verifyingContract` field.
    /// @return salt The value of the `EIP712Domain.salt` field.
    /// @return extensions The list of EIP numbers, that extends EIP-712 with new domain fields.
    function eip712Domain()
        external
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        fields = hex"0f"; // `0b1111`.
        (name, version) = _domainNameAndVersion();
        chainId = block.chainid;
        verifyingContract = address(this);
        salt = salt; // `bytes32(0)`.
        extensions = extensions; // `new uint256[](0)`.
    }

    /// @notice Validates the `signature` against the given `hash`.
    ///
    /// @dev This implementation follows ERC-1271. See https://eips.ethereum.org/EIPS/eip-1271.
    /// @dev IMPORTANT: Signature verification is performed on the hash produced AFTER applying the anti
    ///      cross-account-replay layer on the given `hash` (i.e., verification is run on the replay-safe
    ///      hash version).
    ///
    /// @param hash      The original hash.
    /// @param signature The signature of the replay-safe hash to validate.
    ///
    /// @return result `0x1626ba7e` if validation succeeded, else `0xffffffff`.
    function isValidSignature(bytes32 hash, bytes calldata signature) public view virtual returns (bytes4 result) {
        if (_isValidSignature({hash: replaySafeHash(hash), signature: signature})) {
            // bytes4(keccak256("isValidSignature(bytes32,bytes)"))
            return 0x1626ba7e;
        }

        return 0xffffffff;
    }

    /// @notice Wrapper around `_eip712Hash()` to produce a replay-safe hash fron the given `hash`.
    ///
    /// @dev The returned EIP-712 compliant replay-safe hash is the result of:
    ///      keccak256(
    ///         \x19\x01 ||
    ///         this.domainSeparator ||
    ///         hashStruct(CoinbaseSmartWalletMessage({ hash: `hash`}))
    ///      )
    ///
    /// @param hash The original hash.
    ///
    /// @return The corresponding replay-safe hash.
    function replaySafeHash(bytes32 hash) public view virtual returns (bytes32) {
        return _eip712Hash(hash);
    }

    /// @notice Returns the `domainSeparator` used to create EIP-712 compliant hashes.
    ///
    /// @dev Implements domainSeparator = hashStruct(eip712Domain).
    ///      See https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator.
    ///
    /// @return The 32 bytes domain separator result.
    function domainSeparator() public view returns (bytes32) {
        (string memory name, string memory version) = _domainNameAndVersion();
        return keccak256(
            abi.encode(
                keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                keccak256(bytes(name)),
                keccak256(bytes(version)),
                block.chainid,
                address(this)
            )
        );
    }

    /// @notice Returns the EIP-712 typed hash of the `CoinbaseSmartWalletMessage(bytes32 hash)` data structure.
    ///
    /// @dev Implements encode(domainSeparator : 𝔹²⁵⁶, message : 𝕊) = "\x19\x01" || domainSeparator ||
    ///      hashStruct(message).
    /// @dev See https://eips.ethereum.org/EIPS/eip-712#specification.
    ///
    /// @param hash The `CoinbaseSmartWalletMessage.hash` field to hash.
    ////
    /// @return The resulting EIP-712 hash.
    function _eip712Hash(bytes32 hash) internal view virtual returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator(), _hashStruct(hash)));
    }

    /// @notice Returns the EIP-712 `hashStruct` result of the `CoinbaseSmartWalletMessage(bytes32 hash)` data
    ///         structure.
    ///
    /// @dev Implements hashStruct(s : 𝕊) = keccak256(typeHash || encodeData(s)).
    /// @dev See https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct.
    ///
    /// @param hash The `CoinbaseSmartWalletMessage.hash` field.
    ///
    /// @return The EIP-712 `hashStruct` result.
    function _hashStruct(bytes32 hash) internal view virtual returns (bytes32) {
        return keccak256(abi.encode(_MESSAGE_TYPEHASH, hash));
    }

    /// @notice Returns the domain name and version to use when creating EIP-712 signatures.
    ///
    /// @dev MUST be defined by the implementation.
    ///
    /// @return name    The user readable name of signing domain.
    /// @return version The current major version of the signing domain.
    function _domainNameAndVersion() internal view virtual returns (string memory name, string memory version);

    /// @notice Validates the `signature` against the given `hash`.
    ///
    /// @dev MUST be defined by the implementation.
    ///
    /// @param hash      The hash whose signature has been performed on.
    /// @param signature The signature associated with `hash`.
    ///
    /// @return `true` is the signature is valid, else `false`.
    function _isValidSignature(bytes32 hash, bytes calldata signature) internal view virtual returns (bool);
}

File 9 of 14 : MultiOwnable.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.18;

/// @notice Storage layout used by this contract.
///
/// @custom:storage-location erc7201:coinbase.storage.MultiOwnable
struct MultiOwnableStorage {
    /// @dev Tracks the index of the next owner to add.
    uint256 nextOwnerIndex;
    /// @dev Tracks number of owners that have been removed.
    uint256 removedOwnersCount;
    /// @dev Maps index to owner bytes, used to idenfitied owners via a uint256 index.
    ///
    ///      Some uses—-such as signature validation for secp256r1 public key owners—-
    ///      requires the caller to assert the public key of the caller. To economize calldata,
    ///      we allow an index to identify an owner, so that the full owner bytes do
    ///      not need to be passed.
    ///
    ///      The `owner` bytes should either be
    ///         - An ABI encoded Ethereum address
    ///         - An ABI encoded public key
    mapping(uint256 index => bytes owner) ownerAtIndex;
    /// @dev Mapping of bytes to booleans indicating whether or not
    ///      bytes_ is an owner of this contract.
    mapping(bytes bytes_ => bool isOwner_) isOwner;
}

/// @title Multi Ownable
///
/// @notice Auth contract allowing multiple owners, each identified as bytes.
///
/// @author Coinbase (https://github.com/coinbase/smart-wallet)
contract MultiOwnable {
    /// @dev Slot for the `MultiOwnableStorage` struct in storage.
    ///      Computed from
    ///      keccak256(abi.encode(uint256(keccak256("coinbase.storage.MultiOwnable")) - 1)) & ~bytes32(uint256(0xff))
    ///      Follows ERC-7201 (see https://eips.ethereum.org/EIPS/eip-7201).
    bytes32 private constant MUTLI_OWNABLE_STORAGE_LOCATION =
        0x97e2c6aad4ce5d562ebfaa00db6b9e0fb66ea5d8162ed5b243f51a2e03086f00;

    /// @notice Thrown when the `msg.sender` is not an owner and is trying to call a privileged function.
    error Unauthorized();

    /// @notice Thrown when trying to add an already registered owner.
    ///
    /// @param owner The owner bytes.
    error AlreadyOwner(bytes owner);

    /// @notice Thrown when trying to remove an owner from an index that is empty.
    ///
    /// @param index The targeted index for removal.
    error NoOwnerAtIndex(uint256 index);

    /// @notice Thrown when `owner` argument does not match owner found at index.
    ///
    /// @param index         The index of the owner to be removed.
    /// @param expectedOwner The owner passed in the remove call.
    /// @param actualOwner   The actual owner at `index`.
    error WrongOwnerAtIndex(uint256 index, bytes expectedOwner, bytes actualOwner);

    /// @notice Thrown when a provided owner is neither 64 bytes long (for public key)
    ///         nor a ABI encoded address.
    ///
    /// @param owner The invalid owner.
    error InvalidOwnerBytesLength(bytes owner);

    /// @notice Thrown if a provided owner is 32 bytes long but does not fit in an `address` type.
    ///
    /// @param owner The invalid owner.
    error InvalidEthereumAddressOwner(bytes owner);

    /// @notice Thrown when removeOwnerAtIndex is called and there is only one current owner.
    error LastOwner();

    /// @notice Thrown when removeLastOwner is called and there is more than one current owner.
    ///
    /// @param ownersRemaining The number of current owners.
    error NotLastOwner(uint256 ownersRemaining);

    /// @notice Emitted when a new owner is registered.
    ///
    /// @param index The owner index of the owner added.
    /// @param owner The owner added.
    event AddOwner(uint256 indexed index, bytes owner);

    /// @notice Emitted when an owner is removed.
    ///
    /// @param index The owner index of the owner removed.
    /// @param owner The owner removed.
    event RemoveOwner(uint256 indexed index, bytes owner);

    /// @notice Access control modifier ensuring the caller is an authorized owner
    modifier onlyOwner() virtual {
        _checkOwner();
        _;
    }

    /// @notice Adds a new Ethereum-address owner.
    ///
    /// @param owner The owner address.
    function addOwnerAddress(address owner) external virtual onlyOwner {
        _addOwnerAtIndex(abi.encode(owner), _getMultiOwnableStorage().nextOwnerIndex++);
    }

    /// @notice Adds a new public-key owner.
    ///
    /// @param x The owner public key x coordinate.
    /// @param y The owner public key y coordinate.
    function addOwnerPublicKey(bytes32 x, bytes32 y) external virtual onlyOwner {
        _addOwnerAtIndex(abi.encode(x, y), _getMultiOwnableStorage().nextOwnerIndex++);
    }

    /// @notice Removes owner at the given `index`.
    ///
    /// @dev Reverts if the owner is not registered at `index`.
    /// @dev Reverts if there is currently only one owner.
    /// @dev Reverts if `owner` does not match bytes found at `index`.
    ///
    /// @param index The index of the owner to be removed.
    /// @param owner The ABI encoded bytes of the owner to be removed.
    function removeOwnerAtIndex(uint256 index, bytes calldata owner) external virtual onlyOwner {
        if (ownerCount() == 1) {
            revert LastOwner();
        }

        _removeOwnerAtIndex(index, owner);
    }

    /// @notice Removes owner at the given `index`, which should be the only current owner.
    ///
    /// @dev Reverts if the owner is not registered at `index`.
    /// @dev Reverts if there is currently more than one owner.
    /// @dev Reverts if `owner` does not match bytes found at `index`.
    ///
    /// @param index The index of the owner to be removed.
    /// @param owner The ABI encoded bytes of the owner to be removed.
    function removeLastOwner(uint256 index, bytes calldata owner) external virtual onlyOwner {
        uint256 ownersRemaining = ownerCount();
        if (ownersRemaining > 1) {
            revert NotLastOwner(ownersRemaining);
        }

        _removeOwnerAtIndex(index, owner);
    }

    /// @notice Checks if the given `account` address is registered as owner.
    ///
    /// @param account The account address to check.
    ///
    /// @return `true` if the account is an owner else `false`.
    function isOwnerAddress(address account) public view virtual returns (bool) {
        return _getMultiOwnableStorage().isOwner[abi.encode(account)];
    }

    /// @notice Checks if the given `x`, `y` public key is registered as owner.
    ///
    /// @param x The public key x coordinate.
    /// @param y The public key y coordinate.
    ///
    /// @return `true` if the account is an owner else `false`.
    function isOwnerPublicKey(bytes32 x, bytes32 y) public view virtual returns (bool) {
        return _getMultiOwnableStorage().isOwner[abi.encode(x, y)];
    }

    /// @notice Checks if the given `account` bytes is registered as owner.
    ///
    /// @param account The account, should be ABI encoded address or public key.
    ///
    /// @return `true` if the account is an owner else `false`.
    function isOwnerBytes(bytes memory account) public view virtual returns (bool) {
        return _getMultiOwnableStorage().isOwner[account];
    }

    /// @notice Returns the owner bytes at the given `index`.
    ///
    /// @param index The index to lookup.
    ///
    /// @return The owner bytes (empty if no owner is registered at this `index`).
    function ownerAtIndex(uint256 index) public view virtual returns (bytes memory) {
        return _getMultiOwnableStorage().ownerAtIndex[index];
    }

    /// @notice Returns the next index that will be used to add a new owner.
    ///
    /// @return The next index that will be used to add a new owner.
    function nextOwnerIndex() public view virtual returns (uint256) {
        return _getMultiOwnableStorage().nextOwnerIndex;
    }

    /// @notice Returns the current number of owners
    ///
    /// @return The current owner count
    function ownerCount() public view virtual returns (uint256) {
        MultiOwnableStorage storage $ = _getMultiOwnableStorage();
        return $.nextOwnerIndex - $.removedOwnersCount;
    }

    /// @notice Tracks the number of owners removed
    ///
    /// @dev Used with `this.nextOwnerIndex` to avoid removing all owners
    ///
    /// @return The number of owners that have been removed.
    function removedOwnersCount() public view virtual returns (uint256) {
        return _getMultiOwnableStorage().removedOwnersCount;
    }

    /// @notice Initialize the owners of this contract.
    ///
    /// @dev Intended to be called contract is first deployed and never again.
    /// @dev Reverts if a provided owner is neither 64 bytes long (for public key) nor a valid address.
    ///
    /// @param owners The initial set of owners.
    function _initializeOwners(bytes[] memory owners) internal virtual {
        MultiOwnableStorage storage $ = _getMultiOwnableStorage();
        uint256 nextOwnerIndex_ = $.nextOwnerIndex;
        for (uint256 i; i < owners.length; i++) {
            if (owners[i].length != 32 && owners[i].length != 64) {
                revert InvalidOwnerBytesLength(owners[i]);
            }

            if (owners[i].length == 32 && uint256(bytes32(owners[i])) > type(uint160).max) {
                revert InvalidEthereumAddressOwner(owners[i]);
            }

            _addOwnerAtIndex(owners[i], nextOwnerIndex_++);
        }
        $.nextOwnerIndex = nextOwnerIndex_;
    }

    /// @notice Adds an owner at the given `index`.
    ///
    /// @dev Reverts if `owner` is already registered as an owner.
    ///
    /// @param owner The owner raw bytes to register.
    /// @param index The index to write to.
    function _addOwnerAtIndex(bytes memory owner, uint256 index) internal virtual {
        if (isOwnerBytes(owner)) revert AlreadyOwner(owner);

        MultiOwnableStorage storage $ = _getMultiOwnableStorage();
        $.isOwner[owner] = true;
        $.ownerAtIndex[index] = owner;

        emit AddOwner(index, owner);
    }

    /// @notice Removes owner at the given `index`.
    ///
    /// @dev Reverts if the owner is not registered at `index`.
    /// @dev Reverts if `owner` does not match bytes found at `index`.
    ///
    /// @param index The index of the owner to be removed.
    /// @param owner The ABI encoded bytes of the owner to be removed.
    function _removeOwnerAtIndex(uint256 index, bytes calldata owner) internal virtual {
        bytes memory owner_ = ownerAtIndex(index);
        if (owner_.length == 0) revert NoOwnerAtIndex(index);
        if (keccak256(owner_) != keccak256(owner)) {
            revert WrongOwnerAtIndex({index: index, expectedOwner: owner, actualOwner: owner_});
        }

        MultiOwnableStorage storage $ = _getMultiOwnableStorage();
        delete $.isOwner[owner];
        delete $.ownerAtIndex[index];
        $.removedOwnersCount++;

        emit RemoveOwner(index, owner);
    }

    /// @notice Checks if the sender is an owner of this contract or the contract itself.
    ///
    /// @dev Revert if the sender is not an owner fo the contract itself.
    function _checkOwner() internal view virtual {
        if (isOwnerAddress(msg.sender) || (msg.sender == address(this))) {
            return;
        }

        revert Unauthorized();
    }

    /// @notice Helper function to get a storage reference to the `MultiOwnableStorage` struct.
    ///
    /// @return $ A storage reference to the `MultiOwnableStorage` struct.
    function _getMultiOwnableStorage() internal pure returns (MultiOwnableStorage storage $) {
        assembly ("memory-safe") {
            $.slot := MUTLI_OWNABLE_STORAGE_LOCATION
        }
    }
}

File 10 of 14 : Helpers.sol
// SPDX-License-Identifier: GPL-3.0
pragma solidity ^0.8.12;

/* solhint-disable no-inline-assembly */

/**
 * returned data from validateUserOp.
 * validateUserOp returns a uint256, with is created by `_packedValidationData` and parsed by `_parseValidationData`
 * @param aggregator - address(0) - the account validated the signature by itself.
 *              address(1) - the account failed to validate the signature.
 *              otherwise - this is an address of a signature aggregator that must be used to validate the signature.
 * @param validAfter - this UserOp is valid only after this timestamp.
 * @param validaUntil - this UserOp is valid only up to this timestamp.
 */
    struct ValidationData {
        address aggregator;
        uint48 validAfter;
        uint48 validUntil;
    }

//extract sigFailed, validAfter, validUntil.
// also convert zero validUntil to type(uint48).max
    function _parseValidationData(uint validationData) pure returns (ValidationData memory data) {
        address aggregator = address(uint160(validationData));
        uint48 validUntil = uint48(validationData >> 160);
        if (validUntil == 0) {
            validUntil = type(uint48).max;
        }
        uint48 validAfter = uint48(validationData >> (48 + 160));
        return ValidationData(aggregator, validAfter, validUntil);
    }

// intersect account and paymaster ranges.
    function _intersectTimeRange(uint256 validationData, uint256 paymasterValidationData) pure returns (ValidationData memory) {
        ValidationData memory accountValidationData = _parseValidationData(validationData);
        ValidationData memory pmValidationData = _parseValidationData(paymasterValidationData);
        address aggregator = accountValidationData.aggregator;
        if (aggregator == address(0)) {
            aggregator = pmValidationData.aggregator;
        }
        uint48 validAfter = accountValidationData.validAfter;
        uint48 validUntil = accountValidationData.validUntil;
        uint48 pmValidAfter = pmValidationData.validAfter;
        uint48 pmValidUntil = pmValidationData.validUntil;

        if (validAfter < pmValidAfter) validAfter = pmValidAfter;
        if (validUntil > pmValidUntil) validUntil = pmValidUntil;
        return ValidationData(aggregator, validAfter, validUntil);
    }

/**
 * helper to pack the return value for validateUserOp
 * @param data - the ValidationData to pack
 */
    function _packValidationData(ValidationData memory data) pure returns (uint256) {
        return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48));
    }

/**
 * helper to pack the return value for validateUserOp, when not using an aggregator
 * @param sigFailed - true for signature failure, false for success
 * @param validUntil last timestamp this UserOperation is valid (or zero for infinite)
 * @param validAfter first timestamp this UserOperation is valid
 */
    function _packValidationData(bool sigFailed, uint48 validUntil, uint48 validAfter) pure returns (uint256) {
        return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48));
    }

/**
 * keccak function over calldata.
 * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it.
 */
    function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) {
        assembly {
            let mem := mload(0x40)
            let len := data.length
            calldatacopy(mem, data.offset, len)
            ret := keccak256(mem, len)
        }
    }

File 11 of 14 : FCL_ecdsa.sol
//********************************************************************************************/
//  ___           _       ___               _         _    _ _
// | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
// | _| '_/ -_|_-< ' \  | (__| '_| || | '_ \  _/ _ \ | |__| | '_ \
// |_||_| \___/__/_||_|  \___|_|  \_, | .__/\__\___/ |____|_|_.__/
//                                |__/|_|
///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
///* License: This software is licensed under MIT License
///* This Code may be reused including license and copyright notice.
///* See LICENSE file at the root folder of the project.
///* FILE: FCL_ecdsa.sol
///*
///*
///* DESCRIPTION: ecdsa verification implementation
///*
//**************************************************************************************/
//* WARNING: this code SHALL not be used for non prime order curves for security reasons.
// Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
// if ever used for other curve than sec256R1
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19 <0.9.0;


import {FCL_Elliptic_ZZ} from "./FCL_elliptic.sol";



library FCL_ecdsa {
    // Set parameters for curve sec256r1.public
      //curve order (number of points)
    uint256 constant n = FCL_Elliptic_ZZ.n;
  
    /**
     * @dev ECDSA verification, given , signature, and public key.
     */

    /**
     * @dev ECDSA verification, given , signature, and public key, no calldata version
     */
    function ecdsa_verify(bytes32 message, uint256 r, uint256 s, uint256 Qx, uint256 Qy)  internal view returns (bool){

        if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
            return false;
        }
        
        if (!FCL_Elliptic_ZZ.ecAff_isOnCurve(Qx, Qy)) {
            return false;
        }

        uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);

        uint256 scalar_u = mulmod(uint256(message), sInv, FCL_Elliptic_ZZ.n);
        uint256 scalar_v = mulmod(r, sInv, FCL_Elliptic_ZZ.n);
        uint256 x1;

        x1 = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S_asm(Qx, Qy, scalar_u, scalar_v);

        x1= addmod(x1, n-r,n );
    
        return x1 == 0;
    }

    function ec_recover_r1(uint256 h, uint256 v, uint256 r, uint256 s) internal view returns (address)
    {
         if (r == 0 || r >= FCL_Elliptic_ZZ.n || s == 0 || s >= FCL_Elliptic_ZZ.n) {
            return address(0);
        }
        uint256 y=FCL_Elliptic_ZZ.ec_Decompress(r, v-27);
        uint256 rinv=FCL_Elliptic_ZZ.FCL_nModInv(r);
        uint256 u1=mulmod(FCL_Elliptic_ZZ.n-addmod(0,h,FCL_Elliptic_ZZ.n), rinv,FCL_Elliptic_ZZ.n);//-hr^-1
        uint256 u2=mulmod(s, rinv,FCL_Elliptic_ZZ.n);//sr^-1

        uint256 Qx;
        uint256 Qy;
        (Qx,Qy)=FCL_Elliptic_ZZ.ecZZ_mulmuladd(r,y, u1, u2);

        return address(uint160(uint256(keccak256(abi.encodePacked(Qx, Qy)))));
    }

    function ecdsa_precomputed_verify(bytes32 message, uint256 r, uint256 s, address Shamir8)
        internal view
        returns (bool)
    {
       
        if (r == 0 || r >= n || s == 0 || s >= n) {
            return false;
        }
        /* Q is pushed via the contract at address Shamir8 assumed to be correct
        if (!isOnCurve(Q[0], Q[1])) {
            return false;
        }*/

        uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);

        uint256 X;

        //Shamir 8 dimensions
        X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);

        X= addmod(X, n-r,n );

        return X == 0;
    } //end  ecdsa_precomputed_verify()

     function ecdsa_precomputed_verify(bytes32 message, uint256[2] calldata rs, address Shamir8)
        internal view
        returns (bool)
    {
        uint256 r = rs[0];
        uint256 s = rs[1];
        if (r == 0 || r >= n || s == 0 || s >= n) {
            return false;
        }
        /* Q is pushed via the contract at address Shamir8 assumed to be correct
        if (!isOnCurve(Q[0], Q[1])) {
            return false;
        }*/

        uint256 sInv = FCL_Elliptic_ZZ.FCL_nModInv(s);

        uint256 X;

        //Shamir 8 dimensions
        X = FCL_Elliptic_ZZ.ecZZ_mulmuladd_S8_extcode(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), Shamir8);

        X= addmod(X, n-r,n );

        return X == 0;
    } //end  ecdsa_precomputed_verify()

}

File 12 of 14 : FCL_elliptic.sol
//********************************************************************************************/
//  ___           _       ___               _         _    _ _
// | __| _ ___ __| |_    / __|_ _ _  _ _ __| |_ ___  | |  (_) |__
// | _| '_/ -_|_-< ' \  | (__| '_| || | '_ \  _/ _ \ | |__| | '_ \
// |_||_| \___/__/_||_|  \___|_|  \_, | .__/\__\___/ |____|_|_.__/
//                                |__/|_|
///* Copyright (C) 2022 - Renaud Dubois - This file is part of FCL (Fresh CryptoLib) project
///* License: This software is licensed under MIT License
///* This Code may be reused including license and copyright notice.
///* See LICENSE file at the root folder of the project.
///* FILE: FCL_elliptic.sol
///*
///*
///* DESCRIPTION: modified XYZZ system coordinates for EVM elliptic point multiplication
///*  optimization
///*
//**************************************************************************************/
//* WARNING: this code SHALL not be used for non prime order curves for security reasons.
// Code is optimized for a=-3 only curves with prime order, constant like -1, -2 shall be replaced
// if ever used for other curve than sec256R1
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19 <0.9.0;

library FCL_Elliptic_ZZ {
    // Set parameters for curve sec256r1.

    // address of the ModExp precompiled contract (Arbitrary-precision exponentiation under modulo)
    address constant MODEXP_PRECOMPILE = 0x0000000000000000000000000000000000000005;
    //curve prime field modulus
    uint256 constant p = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
    //short weierstrass first coefficient
    uint256 constant a = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC;
    //short weierstrass second coefficient
    uint256 constant b = 0x5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B;
    //generating point affine coordinates
    uint256 constant gx = 0x6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296;
    uint256 constant gy = 0x4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5;
    //curve order (number of points)
    uint256 constant n = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551;
    /* -2 mod p constant, used to speed up inversion and doubling (avoid negation)*/
    uint256 constant minus_2 = 0xFFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFD;
    /* -2 mod n constant, used to speed up inversion*/
    uint256 constant minus_2modn = 0xFFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC63254F;

    uint256 constant minus_1 = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
    //P+1 div 4
    uint256 constant pp1div4=0x3fffffffc0000000400000000000000000000000400000000000000000000000;
    //arbitrary constant to express no quadratic residuosity
    uint256 constant _NOTSQUARE=0xFFFFFFFF00000002000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;
    uint256 constant _NOTONCURVE=0xFFFFFFFF00000003000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF;

    /**
     * /* inversion mod n via a^(n-2), use of precompiled using little Fermat theorem
     */
    function FCL_nModInv(uint256 u) internal view returns (uint256 result) {
        assembly {
            let pointer := mload(0x40)
            // Define length of base, exponent and modulus. 0x20 == 32 bytes
            mstore(pointer, 0x20)
            mstore(add(pointer, 0x20), 0x20)
            mstore(add(pointer, 0x40), 0x20)
            // Define variables base, exponent and modulus
            mstore(add(pointer, 0x60), u)
            mstore(add(pointer, 0x80), minus_2modn)
            mstore(add(pointer, 0xa0), n)

            // Call the precompiled contract 0x05 = ModExp
            if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
            result := mload(pointer)
        }
    }
    /**
     * /* @dev inversion mod nusing little Fermat theorem via a^(n-2), use of precompiled
     */

    function FCL_pModInv(uint256 u) internal view returns (uint256 result) {
        assembly {
            let pointer := mload(0x40)
            // Define length of base, exponent and modulus. 0x20 == 32 bytes
            mstore(pointer, 0x20)
            mstore(add(pointer, 0x20), 0x20)
            mstore(add(pointer, 0x40), 0x20)
            // Define variables base, exponent and modulus
            mstore(add(pointer, 0x60), u)
            mstore(add(pointer, 0x80), minus_2)
            mstore(add(pointer, 0xa0), p)

            // Call the precompiled contract 0x05 = ModExp
            if iszero(staticcall(not(0), 0x05, pointer, 0xc0, pointer, 0x20)) { revert(0, 0) }
            result := mload(pointer)
        }
    }

    //Coron projective shuffling, take as input alpha as blinding factor
   function ecZZ_Coronize(uint256 alpha, uint256 x, uint256 y,  uint256 zz, uint256 zzz) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
   {
       
        uint256 alpha2=mulmod(alpha,alpha,p);
       
        x3=mulmod(alpha2, x,p); //alpha^-2.x
        y3=mulmod(mulmod(alpha, alpha2,p), y,p);

        zz3=mulmod(zz,alpha2,p);//alpha^2 zz
        zzz3=mulmod(zzz,mulmod(alpha, alpha2,p),p);//alpha^3 zzz
        
        return (x3, y3, zz3, zzz3);
   }


 function ecZZ_Add(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2, uint256 zz2, uint256 zzz2) internal pure  returns (uint256 x3, uint256 y3, uint256 zz3, uint256 zzz3)
  {
    uint256 u1=mulmod(x1,zz2,p); // U1 = X1*ZZ2
    uint256 u2=mulmod(x2, zz1,p);               //  U2 = X2*ZZ1
    u2=addmod(u2, p-u1, p);//  P = U2-U1
    x1=mulmod(u2, u2, p);//PP
    x2=mulmod(x1, u2, p);//PPP
    
    zz3=mulmod(x1, mulmod(zz1, zz2, p),p);//ZZ3 = ZZ1*ZZ2*PP  
    zzz3=mulmod(zzz1, mulmod(zzz2, x2, p),p);//ZZZ3 = ZZZ1*ZZZ2*PPP

    zz1=mulmod(y1, zzz2,p);  // S1 = Y1*ZZZ2
    zz2=mulmod(y2, zzz1, p);    // S2 = Y2*ZZZ1 
    zz2=addmod(zz2, p-zz1, p);//R = S2-S1
    zzz1=mulmod(u1, x1,p); //Q = U1*PP
    x3= addmod(addmod(mulmod(zz2, zz2, p), p-x2,p), mulmod(minus_2, zzz1,p),p); //X3 = R2-PPP-2*Q
    y3=addmod( mulmod(zz2, addmod(zzz1, p-x3, p),p), p-mulmod(zz1, x2, p),p);//R*(Q-X3)-S1*PPP

    return (x3, y3, zz3, zzz3);
  }

/// @notice Calculate one modular square root of a given integer. Assume that p=3 mod 4.
/// @dev Uses the ModExp precompiled contract at address 0x05 for fast computation using little Fermat theorem
/// @param self The integer of which to find the modular inverse
/// @return result The modular inverse of the input integer. If the modular inverse doesn't exist, it revert the tx

function SqrtMod(uint256 self) internal view returns (uint256 result){
 assembly ("memory-safe") {
        // load the free memory pointer value
        let pointer := mload(0x40)

        // Define length of base (Bsize)
        mstore(pointer, 0x20)
        // Define the exponent size (Esize)
        mstore(add(pointer, 0x20), 0x20)
        // Define the modulus size (Msize)
        mstore(add(pointer, 0x40), 0x20)
        // Define variables base (B)
        mstore(add(pointer, 0x60), self)
        // Define the exponent (E)
        mstore(add(pointer, 0x80), pp1div4)
        // We save the point of the last argument, it will be override by the result
        // of the precompile call in order to avoid paying for the memory expansion properly
        let _result := add(pointer, 0xa0)
        // Define the modulus (M)
        mstore(_result, p)

        // Call the precompiled ModExp (0x05) https://www.evm.codes/precompiled#0x05
        if iszero(
            staticcall(
                not(0), // amount of gas to send
                MODEXP_PRECOMPILE, // target
                pointer, // argsOffset
                0xc0, // argsSize (6 * 32 bytes)
                _result, // retOffset (we override M to avoid paying for the memory expansion)
                0x20 // retSize (32 bytes)
            )
        ) { revert(0, 0) }

  result := mload(_result)
//  result :=addmod(result,0,p)
 }
   if(mulmod(result,result,p)!=self){
     result=_NOTSQUARE;
   }
  
   return result;
}
    /**
     * /* @dev Convert from affine rep to XYZZ rep
     */
    function ecAff_SetZZ(uint256 x0, uint256 y0) internal pure returns (uint256[4] memory P) {
        unchecked {
            P[2] = 1; //ZZ
            P[3] = 1; //ZZZ
            P[0] = x0;
            P[1] = y0;
        }
    }

    function ec_Decompress(uint256 x, uint256 parity) internal view returns(uint256 y){ 

        uint256 y2=mulmod(x,mulmod(x,x,p),p);//x3
        y2=addmod(b,addmod(y2,mulmod(x,a,p),p),p);//x3+ax+b

        y=SqrtMod(y2);
        if(y==_NOTSQUARE){
           return _NOTONCURVE;
        }
        if((y&1)!=(parity&1)){
            y=p-y;
        }
    }

    /**
     * /* @dev Convert from XYZZ rep to affine rep
     */
    /*    https://hyperelliptic.org/EFD/g1p/auto-shortw-xyzz-3.html#addition-add-2008-s*/
    function ecZZ_SetAff(uint256 x, uint256 y, uint256 zz, uint256 zzz) internal view returns (uint256 x1, uint256 y1) {
        uint256 zzzInv = FCL_pModInv(zzz); //1/zzz
        y1 = mulmod(y, zzzInv, p); //Y/zzz
        uint256 _b = mulmod(zz, zzzInv, p); //1/z
        zzzInv = mulmod(_b, _b, p); //1/zz
        x1 = mulmod(x, zzzInv, p); //X/zz
    }

    /**
     * /* @dev Sutherland2008 doubling
     */
    /* The "dbl-2008-s-1" doubling formulas */

    function ecZZ_Dbl(uint256 x, uint256 y, uint256 zz, uint256 zzz)
        internal
        pure
        returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
    {
        unchecked {
            assembly {
                P0 := mulmod(2, y, p) //U = 2*Y1
                P2 := mulmod(P0, P0, p) // V=U^2
                P3 := mulmod(x, P2, p) // S = X1*V
                P1 := mulmod(P0, P2, p) // W=UV
                P2 := mulmod(P2, zz, p) //zz3=V*ZZ1
                zz := mulmod(3, mulmod(addmod(x, sub(p, zz), p), addmod(x, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                P0 := addmod(mulmod(zz, zz, p), mulmod(minus_2, P3, p), p) //X3=M^2-2S
                x := mulmod(zz, addmod(P3, sub(p, P0), p), p) //M(S-X3)
                P3 := mulmod(P1, zzz, p) //zzz3=W*zzz1
                P1 := addmod(x, sub(p, mulmod(P1, y, p)), p) //Y3= M(S-X3)-W*Y1
            }
        }
        return (P0, P1, P2, P3);
    }

    /**
     * @dev Sutherland2008 add a ZZ point with a normalized point and greedy formulae
     * warning: assume that P1(x1,y1)!=P2(x2,y2), true in multiplication loop with prime order (cofactor 1)
     */

    function ecZZ_AddN(uint256 x1, uint256 y1, uint256 zz1, uint256 zzz1, uint256 x2, uint256 y2)
        internal
        pure
        returns (uint256 P0, uint256 P1, uint256 P2, uint256 P3)
    {
        unchecked {
            if (y1 == 0) {
                return (x2, y2, 1, 1);
            }

            assembly {
                y1 := sub(p, y1)
                y2 := addmod(mulmod(y2, zzz1, p), y1, p)
                x2 := addmod(mulmod(x2, zz1, p), sub(p, x1), p)
                P0 := mulmod(x2, x2, p) //PP = P^2
                P1 := mulmod(P0, x2, p) //PPP = P*PP
                P2 := mulmod(zz1, P0, p) ////ZZ3 = ZZ1*PP
                P3 := mulmod(zzz1, P1, p) ////ZZZ3 = ZZZ1*PPP
                zz1 := mulmod(x1, P0, p) //Q = X1*PP
                P0 := addmod(addmod(mulmod(y2, y2, p), sub(p, P1), p), mulmod(minus_2, zz1, p), p) //R^2-PPP-2*Q
                P1 := addmod(mulmod(addmod(zz1, sub(p, P0), p), y2, p), mulmod(y1, P1, p), p) //R*(Q-X3)
            }
            //end assembly
        } //end unchecked
        return (P0, P1, P2, P3);
    }

    /**
     * @dev Return the zero curve in XYZZ coordinates.
     */
    function ecZZ_SetZero() internal pure returns (uint256 x, uint256 y, uint256 zz, uint256 zzz) {
        return (0, 0, 0, 0);
    }
    /**
     * @dev Check if point is the neutral of the curve
     */

    // uint256 x0, uint256 y0, uint256 zz0, uint256 zzz0
    function ecZZ_IsZero(uint256, uint256 y0, uint256, uint256) internal pure returns (bool) {
        return y0 == 0;
    }
    /**
     * @dev Return the zero curve in affine coordinates. Compatible with the double formulae (no special case)
     */

    function ecAff_SetZero() internal pure returns (uint256 x, uint256 y) {
        return (0, 0);
    }

    /**
     * @dev Check if the curve is the zero curve in affine rep.
     */
    // uint256 x, uint256 y)
    function ecAff_IsZero(uint256, uint256 y) internal pure returns (bool flag) {
        return (y == 0);
    }

    /**
     * @dev Check if a point in affine coordinates is on the curve (reject Neutral that is indeed on the curve).
     */
    function ecAff_isOnCurve(uint256 x, uint256 y) internal pure returns (bool) {
        if (x >= p || y >= p || ((x == 0) && (y == 0))) {
            return false;
        }
        unchecked {
            uint256 LHS = mulmod(y, y, p); // y^2
            uint256 RHS = addmod(mulmod(mulmod(x, x, p), x, p), mulmod(x, a, p), p); // x^3+ax
            RHS = addmod(RHS, b, p); // x^3 + a*x + b

            return LHS == RHS;
        }
    }

    /**
     * @dev Add two elliptic curve points in affine coordinates. Deal with P=Q
     */

    function ecAff_add(uint256 x0, uint256 y0, uint256 x1, uint256 y1) internal view returns (uint256, uint256) {
        uint256 zz0;
        uint256 zzz0;

        if (ecAff_IsZero(x0, y0)) return (x1, y1);
        if (ecAff_IsZero(x1, y1)) return (x0, y0);
        if((x0==x1)&&(y0==y1)) {
            (x0, y0, zz0, zzz0) = ecZZ_Dbl(x0, y0,1,1);
        }
        else{
            (x0, y0, zz0, zzz0) = ecZZ_AddN(x0, y0, 1, 1, x1, y1);
        }

        return ecZZ_SetAff(x0, y0, zz0, zzz0);
    }

    /**
     * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
     *       Returns only x for ECDSA use            
     *      */
    function ecZZ_mulmuladd_S_asm(
        uint256 Q0,
        uint256 Q1, //affine rep for input point Q
        uint256 scalar_u,
        uint256 scalar_v
    ) internal view returns (uint256 X) {
        uint256 zz;
        uint256 zzz;
        uint256 Y;
        uint256 index = 255;
        uint256 H0;
        uint256 H1;

        unchecked {
            if (scalar_u == 0 && scalar_v == 0) return 0;

            (H0, H1) = ecAff_add(gx, gy, Q0, Q1); 
            if((H0==0)&&(H1==0))//handling Q=-G
            {
                scalar_u=addmod(scalar_u, n-scalar_v, n);
                scalar_v=0;
                if (scalar_u == 0 && scalar_v == 0) return 0;
            }
            assembly {
                for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                    index := sub(index, 1)
                    T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                } {}
                zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))

                if eq(zz, 1) {
                    X := gx
                    Y := gy
                }
                if eq(zz, 2) {
                    X := Q0
                    Y := Q1
                }
                if eq(zz, 3) {
                    X := H0
                    Y := H1
                }

                index := sub(index, 1)
                zz := 1
                zzz := 1

                for {} gt(minus_1, index) { index := sub(index, 1) } {
                    // inlined EcZZ_Dbl
                    let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                    let T2 := mulmod(T1, T1, p) // V=U^2
                    let T3 := mulmod(X, T2, p) // S = X1*V
                    T1 := mulmod(T1, T2, p) // W=UV
                    let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                    zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                    zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free

                    X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                    T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                    Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd

                    {
                        //value of dibit
                        T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))

                        if iszero(T4) {
                            Y := sub(p, Y) //restore the -Y inversion
                            continue
                        } // if T4!=0

                        if eq(T4, 1) {
                            T1 := gx
                            T2 := gy
                        }
                        if eq(T4, 2) {
                            T1 := Q0
                            T2 := Q1
                        }
                        if eq(T4, 3) {
                            T1 := H0
                            T2 := H1
                        }
                        if iszero(zz) {
                            X := T1
                            Y := T2
                            zz := 1
                            zzz := 1
                            continue
                        }
                        // inlined EcZZ_AddN

                        //T3:=sub(p, Y)
                        //T3:=Y
                        let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                        T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P

                        //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                        //todo : construct edge vector case
                        if iszero(y2) {
                            if iszero(T2) {
                                T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                T2 := mulmod(T1, T1, p) // V=U^2
                                T3 := mulmod(X, T2, p) // S = X1*V

                                T1 := mulmod(T1, T2, p) // W=UV
                                y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)

                                zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free

                                X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)

                                Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1

                                continue
                            }
                        }

                        T4 := mulmod(T2, T2, p) //PP
                        let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                        zz := mulmod(zz, T4, p)
                        zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                        let TT2 := mulmod(X, T4, p)
                        T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                        Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)

                        X := T4
                    }
                } //end loop
                let T := mload(0x40)
                mstore(add(T, 0x60), zz)
                //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                // Define length of base, exponent and modulus. 0x20 == 32 bytes
                mstore(T, 0x20)
                mstore(add(T, 0x20), 0x20)
                mstore(add(T, 0x40), 0x20)
                // Define variables base, exponent and modulus
                //mstore(add(pointer, 0x60), u)
                mstore(add(T, 0x80), minus_2)
                mstore(add(T, 0xa0), p)

                // Call the precompiled contract 0x05 = ModExp
                if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }

                //Y:=mulmod(Y,zzz,p)//Y/zzz
                //zz :=mulmod(zz, mload(T),p) //1/z
                //zz:= mulmod(zz,zz,p) //1/zz
                X := mulmod(X, mload(T), p) //X/zz
            } //end assembly
        } //end unchecked

        return X;
    }


    /**
     * @dev Computation of uG+vQ using Strauss-Shamir's trick, G basepoint, Q public key
     *       Returns affine representation of point (normalized)       
     *      */
    function ecZZ_mulmuladd(
        uint256 Q0,
        uint256 Q1, //affine rep for input point Q
        uint256 scalar_u,
        uint256 scalar_v
    ) internal view returns (uint256 X, uint256 Y) {
        uint256 zz;
        uint256 zzz;
        uint256 index = 255;
        uint256[6] memory T;
        uint256[2] memory H;
 
        unchecked {
            if (scalar_u == 0 && scalar_v == 0) return (0,0);

            (H[0], H[1]) = ecAff_add(gx, gy, Q0, Q1); //will not work if Q=P, obvious forbidden private key

            assembly {
                for { let T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1)) } eq(T4, 0) {
                    index := sub(index, 1)
                    T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))
                } {}
                zz := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))

                if eq(zz, 1) {
                    X := gx
                    Y := gy
                }
                if eq(zz, 2) {
                    X := Q0
                    Y := Q1
                }
                if eq(zz, 3) {
                    Y := mload(add(H,32))
                    X := mload(H)
                }

                index := sub(index, 1)
                zz := 1
                zzz := 1

                for {} gt(minus_1, index) { index := sub(index, 1) } {
                    // inlined EcZZ_Dbl
                    let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                    let T2 := mulmod(T1, T1, p) // V=U^2
                    let T3 := mulmod(X, T2, p) // S = X1*V
                    T1 := mulmod(T1, T2, p) // W=UV
                    let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                    zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                    zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free

                    X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                    T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)
                    Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd

                    {
                        //value of dibit
                        T4 := add(shl(1, and(shr(index, scalar_v), 1)), and(shr(index, scalar_u), 1))

                        if iszero(T4) {
                            Y := sub(p, Y) //restore the -Y inversion
                            continue
                        } // if T4!=0

                        if eq(T4, 1) {
                            T1 := gx
                            T2 := gy
                        }
                        if eq(T4, 2) {
                            T1 := Q0
                            T2 := Q1
                        }
                        if eq(T4, 3) {
                            T1 := mload(H)
                            T2 := mload(add(H,32))
                        }
                        if iszero(zz) {
                            X := T1
                            Y := T2
                            zz := 1
                            zzz := 1
                            continue
                        }
                        // inlined EcZZ_AddN

                        //T3:=sub(p, Y)
                        //T3:=Y
                        let y2 := addmod(mulmod(T2, zzz, p), Y, p) //R
                        T2 := addmod(mulmod(T1, zz, p), sub(p, X), p) //P

                        //special extremely rare case accumulator where EcAdd is replaced by EcDbl, no need to optimize this
                        //todo : construct edge vector case
                        if iszero(y2) {
                            if iszero(T2) {
                                T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                T2 := mulmod(T1, T1, p) // V=U^2
                                T3 := mulmod(X, T2, p) // S = X1*V

                                T1 := mulmod(T1, T2, p) // W=UV
                                y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)

                                zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free

                                X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)

                                Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1

                                continue
                            }
                        }

                        T4 := mulmod(T2, T2, p) //PP
                        let TT1 := mulmod(T4, T2, p) //PPP, this one could be spared, but adding this register spare gas
                        zz := mulmod(zz, T4, p)
                        zzz := mulmod(zzz, TT1, p) //zz3=V*ZZ1
                        let TT2 := mulmod(X, T4, p)
                        T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, TT1), p), mulmod(minus_2, TT2, p), p)
                        Y := addmod(mulmod(addmod(TT2, sub(p, T4), p), y2, p), mulmod(Y, TT1, p), p)

                        X := T4
                    }
                } //end loop
                mstore(add(T, 0x60), zzz)
                //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                // Define length of base, exponent and modulus. 0x20 == 32 bytes
                mstore(T, 0x20)
                mstore(add(T, 0x20), 0x20)
                mstore(add(T, 0x40), 0x20)
                // Define variables base, exponent and modulus
                //mstore(add(pointer, 0x60), u)
                mstore(add(T, 0x80), minus_2)
                mstore(add(T, 0xa0), p)

                // Call the precompiled contract 0x05 = ModExp
                if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }

                Y:=mulmod(Y,mload(T),p)//Y/zzz
                zz :=mulmod(zz, mload(T),p) //1/z
                zz:= mulmod(zz,zz,p) //1/zz
                X := mulmod(X, zz, p) //X/zz
            } //end assembly
        } //end unchecked

        return (X,Y);
    }

    //8 dimensions Shamir's trick, using precomputations stored in Shamir8,  stored as Bytecode of an external
    //contract at given address dataPointer
    //(thx to Lakhdar https://github.com/Kelvyne for EVM storage explanations and tricks)
    // the external tool to generate tables from public key is in the /sage directory
    function ecZZ_mulmuladd_S8_extcode(uint256 scalar_u, uint256 scalar_v, address dataPointer)
        internal view
        returns (uint256 X /*, uint Y*/ )
    {
        unchecked {
            uint256 zz; // third and  coordinates of the point

            uint256[6] memory T;
            zz = 256; //start index

            while (T[0] == 0) {
                zz = zz - 1;
                //tbd case of msb octobit is null
                T[0] = 64
                    * (
                        128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                            + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                            + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                            + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                    );
            }
            assembly {
                extcodecopy(dataPointer, T, mload(T), 64)
                let index := sub(zz, 1)
                X := mload(T)
                let Y := mload(add(T, 32))
                let zzz := 1
                zz := 1

                //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                for {} gt(index, 191) { index := add(index, 191) } {
                    //inline Double
                    {
                        let TT1 := mulmod(2, Y, p) //U = 2*Y1, y free
                        let T2 := mulmod(TT1, TT1, p) // V=U^2
                        let T3 := mulmod(X, T2, p) // S = X1*V
                        let T1 := mulmod(TT1, T2, p) // W=UV
                        let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                        zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                        zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free

                        X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                        //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                        let T5 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)

                        //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                        Y := addmod(mulmod(T1, Y, p), T5, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd

                        /* compute element to access in precomputed table */
                    }
                    {
                        let T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                        let index2 := sub(index, 64)
                        let T3 :=
                            add(T4, add(shl(12, and(shr(index2, scalar_v), 1)), shl(8, and(shr(index2, scalar_u), 1))))
                        let index3 := sub(index2, 64)
                        let T2 :=
                            add(T3, add(shl(11, and(shr(index3, scalar_v), 1)), shl(7, and(shr(index3, scalar_u), 1))))
                        index := sub(index3, 64)
                        let T1 :=
                            add(T2, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))

                        //tbd: check validity of formulae with (0,1) to remove conditional jump
                        if iszero(T1) {
                            Y := sub(p, Y)

                            continue
                        }
                        extcodecopy(dataPointer, T, T1, 64)
                    }

                    {
                        /* Access to precomputed table using extcodecopy hack */

                        // inlined EcZZ_AddN
                        if iszero(zz) {
                            X := mload(T)
                            Y := mload(add(T, 32))
                            zz := 1
                            zzz := 1

                            continue
                        }

                        let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                        let T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)

                        //special case ecAdd(P,P)=EcDbl
                        if iszero(y2) {
                            if iszero(T2) {
                                let T1 := mulmod(minus_2, Y, p) //U = 2*Y1, y free
                                T2 := mulmod(T1, T1, p) // V=U^2
                                let T3 := mulmod(X, T2, p) // S = X1*V

                                T1 := mulmod(T1, T2, p) // W=UV
                                y2 := mulmod(addmod(X, zz, p), addmod(X, sub(p, zz), p), p) //(X-ZZ)(X+ZZ)
                                let T4 := mulmod(3, y2, p) //M=3*(X-ZZ)(X+ZZ)

                                zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                                zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free

                                X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                                T2 := mulmod(T4, addmod(T3, sub(p, X), p), p) //M(S-X3)

                                Y := addmod(T2, mulmod(T1, Y, p), p) //Y3= M(S-X3)-W*Y1

                                continue
                            }
                        }

                        let T4 := mulmod(T2, T2, p)
                        let T1 := mulmod(T4, T2, p) //
                        zz := mulmod(zz, T4, p)
                        //zzz3=V*ZZ1
                        zzz := mulmod(zzz, T1, p) // W=UV/
                        let zz1 := mulmod(X, T4, p)
                        X := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                        Y := addmod(mulmod(addmod(zz1, sub(p, X), p), y2, p), mulmod(Y, T1, p), p)
                    }
                } //end loop
                mstore(add(T, 0x60), zz)

                //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                // Define length of base, exponent and modulus. 0x20 == 32 bytes
                mstore(T, 0x20)
                mstore(add(T, 0x20), 0x20)
                mstore(add(T, 0x40), 0x20)
                // Define variables base, exponent and modulus
                //mstore(add(pointer, 0x60), u)
                mstore(add(T, 0x80), minus_2)
                mstore(add(T, 0xa0), p)

                // Call the precompiled contract 0x05 = ModExp
                if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }

                zz := mload(T)
                X := mulmod(X, zz, p) //X/zz
            }
        } //end unchecked
    }

   

    // improving the extcodecopy trick : append array at end of contract
    function ecZZ_mulmuladd_S8_hackmem(uint256 scalar_u, uint256 scalar_v, uint256 dataPointer)
        internal view
        returns (uint256 X /*, uint Y*/ )
    {
        uint256 zz; // third and  coordinates of the point

        uint256[6] memory T;
        zz = 256; //start index

        unchecked {
            while (T[0] == 0) {
                zz = zz - 1;
                //tbd case of msb octobit is null
                T[0] = 64
                    * (
                        128 * ((scalar_v >> zz) & 1) + 64 * ((scalar_v >> (zz - 64)) & 1)
                            + 32 * ((scalar_v >> (zz - 128)) & 1) + 16 * ((scalar_v >> (zz - 192)) & 1)
                            + 8 * ((scalar_u >> zz) & 1) + 4 * ((scalar_u >> (zz - 64)) & 1)
                            + 2 * ((scalar_u >> (zz - 128)) & 1) + ((scalar_u >> (zz - 192)) & 1)
                    );
            }
            assembly {
                codecopy(T, add(mload(T), dataPointer), 64)
                X := mload(T)
                let Y := mload(add(T, 32))
                let zzz := 1
                zz := 1

                //loop over 1/4 of scalars thx to Shamir's trick over 8 points
                for { let index := 254 } gt(index, 191) { index := add(index, 191) } {
                    let T1 := mulmod(2, Y, p) //U = 2*Y1, y free
                    let T2 := mulmod(T1, T1, p) // V=U^2
                    let T3 := mulmod(X, T2, p) // S = X1*V
                    T1 := mulmod(T1, T2, p) // W=UV
                    let T4 := mulmod(3, mulmod(addmod(X, sub(p, zz), p), addmod(X, zz, p), p), p) //M=3*(X1-ZZ1)*(X1+ZZ1)
                    zzz := mulmod(T1, zzz, p) //zzz3=W*zzz1
                    zz := mulmod(T2, zz, p) //zz3=V*ZZ1, V free

                    X := addmod(mulmod(T4, T4, p), mulmod(minus_2, T3, p), p) //X3=M^2-2S
                    //T2:=mulmod(T4,addmod(T3, sub(p, X),p),p)//M(S-X3)
                    T2 := mulmod(T4, addmod(X, sub(p, T3), p), p) //-M(S-X3)=M(X3-S)

                    //Y:= addmod(T2, sub(p, mulmod(T1, Y ,p)),p  )//Y3= M(S-X3)-W*Y1
                    Y := addmod(mulmod(T1, Y, p), T2, p) //-Y3= W*Y1-M(S-X3), we replace Y by -Y to avoid a sub in ecAdd

                    /* compute element to access in precomputed table */
                    T4 := add(shl(13, and(shr(index, scalar_v), 1)), shl(9, and(shr(index, scalar_u), 1)))
                    index := sub(index, 64)
                    T4 := add(T4, add(shl(12, and(shr(index, scalar_v), 1)), shl(8, and(shr(index, scalar_u), 1))))
                    index := sub(index, 64)
                    T4 := add(T4, add(shl(11, and(shr(index, scalar_v), 1)), shl(7, and(shr(index, scalar_u), 1))))
                    index := sub(index, 64)
                    T4 := add(T4, add(shl(10, and(shr(index, scalar_v), 1)), shl(6, and(shr(index, scalar_u), 1))))
                    //index:=add(index,192), restore index, interleaved with loop

                    //tbd: check validity of formulae with (0,1) to remove conditional jump
                    if iszero(T4) {
                        Y := sub(p, Y)

                        continue
                    }
                    {
                        /* Access to precomputed table using extcodecopy hack */
                        codecopy(T, add(T4, dataPointer), 64)

                        // inlined EcZZ_AddN

                        let y2 := addmod(mulmod(mload(add(T, 32)), zzz, p), Y, p)
                        T2 := addmod(mulmod(mload(T), zz, p), sub(p, X), p)
                        T4 := mulmod(T2, T2, p)
                        T1 := mulmod(T4, T2, p)
                        T2 := mulmod(zz, T4, p) // W=UV
                        zzz := mulmod(zzz, T1, p) //zz3=V*ZZ1
                        let zz1 := mulmod(X, T4, p)
                        T4 := addmod(addmod(mulmod(y2, y2, p), sub(p, T1), p), mulmod(minus_2, zz1, p), p)
                        Y := addmod(mulmod(addmod(zz1, sub(p, T4), p), y2, p), mulmod(Y, T1, p), p)
                        zz := T2
                        X := T4
                    }
                } //end loop
                mstore(add(T, 0x60), zz)

                //(X,Y)=ecZZ_SetAff(X,Y,zz, zzz);
                //T[0] = inverseModp_Hard(T[0], p); //1/zzz, inline modular inversion using precompile:
                // Define length of base, exponent and modulus. 0x20 == 32 bytes
                mstore(T, 0x20)
                mstore(add(T, 0x20), 0x20)
                mstore(add(T, 0x40), 0x20)
                // Define variables base, exponent and modulus
                //mstore(add(pointer, 0x60), u)
                mstore(add(T, 0x80), minus_2)
                mstore(add(T, 0xa0), p)

                // Call the precompiled contract 0x05 = ModExp
                if iszero(staticcall(not(0), 0x05, T, 0xc0, T, 0x20)) { revert(0, 0) }

                zz := mload(T)
                X := mulmod(X, zz, p) //X/zz
            }
        } //end unchecked
    }


    /**
     * @dev ECDSA verification using a precomputed table of multiples of P and Q stored in contract at address Shamir8
     *     generation of contract bytecode for precomputations is done using sagemath code
     *     (see sage directory, WebAuthn_precompute.sage)
     */

    /**
     * @dev ECDSA verification using a precomputed table of multiples of P and Q appended at end of contract at address endcontract
     *     generation of contract bytecode for precomputations is done using sagemath code
     *     (see sage directory, WebAuthn_precompute.sage)
     */

    function ecdsa_precomputed_hackmem(bytes32 message, uint256[2] calldata rs, uint256 endcontract)
        internal view
        returns (bool)
    {
        uint256 r = rs[0];
        uint256 s = rs[1];
        if (r == 0 || r >= n || s == 0 || s >= n) {
            return false;
        }
        /* Q is pushed via bytecode assumed to be correct
        if (!isOnCurve(Q[0], Q[1])) {
            return false;
        }*/

        uint256 sInv = FCL_nModInv(s);
        uint256 X;

        //Shamir 8 dimensions
        X = ecZZ_mulmuladd_S8_hackmem(mulmod(uint256(message), sInv, n), mulmod(r, sInv, n), endcontract);

        assembly {
            X := addmod(X, sub(n, r), n)
        }
        return X == 0;
    } //end  ecdsa_precomputed_verify()



} //EOF

File 13 of 14 : Base64.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.2) (utils/Base64.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to operate with Base64 strings.
 */
library Base64 {
    /**
     * @dev Base64 Encoding/Decoding Table
     * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
     */
    string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";

    /**
     * @dev Converts a `bytes` to its Bytes64 `string` representation.
     */
    function encode(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE, true);
    }

    /**
     * @dev Converts a `bytes` to its Bytes64Url `string` representation.
     */
    function encodeURL(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE_URL, false);
    }

    /**
     * @dev Internal table-agnostic conversion
     */
    function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
        /**
         * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
         * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
         */
        if (data.length == 0) return "";

        // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
        // multiplied by 4 so that it leaves room for padding the last chunk
        // - `data.length + 2`  -> Round up
        // - `/ 3`              -> Number of 3-bytes chunks
        // - `4 *`              -> 4 characters for each chunk
        // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
        // opposed to when padding is required to fill the last chunk.
        // - `4 *`              -> 4 characters for each chunk
        // - `data.length + 2`  -> Round up
        // - `/ 3`              -> Number of 3-bytes chunks
        uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;

        string memory result = new string(resultLength);

        /// @solidity memory-safe-assembly
        assembly {
            // Prepare the lookup table (skip the first "length" byte)
            let tablePtr := add(table, 1)

            // Prepare result pointer, jump over length
            let resultPtr := add(result, 0x20)
            let dataPtr := data
            let endPtr := add(data, mload(data))

            // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
            // set it to zero to make sure no dirty bytes are read in that section.
            let afterPtr := add(endPtr, 0x20)
            let afterCache := mload(afterPtr)
            mstore(afterPtr, 0x00)

            // Run over the input, 3 bytes at a time
            for {

            } lt(dataPtr, endPtr) {

            } {
                // Advance 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

                // To write each character, shift the 3 byte (24 bits) chunk
                // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                // Use this as an index into the lookup table, mload an entire word
                // so the desired character is in the least significant byte, and
                // mstore8 this least significant byte into the result and continue.

                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
            }

            // Reset the value that was cached
            mstore(afterPtr, afterCache)

            if withPadding {
                // When data `bytes` is not exactly 3 bytes long
                // it is padded with `=` characters at the end
                switch mod(mload(data), 3)
                case 1 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                    mstore8(sub(resultPtr, 2), 0x3d)
                }
                case 2 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                }
            }
        }

        return result;
    }
}

File 14 of 14 : LibString.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The length of the output is too small to contain all the hex digits.
    error HexLengthInsufficient();

    /// @dev The length of the string is more than 32 bytes.
    error TooBigForSmallString();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when the `search` is not found in the string.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     DECIMAL OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits.
            str := add(mload(0x40), 0x80)
            // Update the free memory pointer to allocate.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            let w := not(0) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := add(str, w) // `sub(str, 1)`.
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(int256 value) internal pure returns (string memory str) {
        if (value >= 0) {
            return toString(uint256(value));
        }
        unchecked {
            str = toString(~uint256(value) + 1);
        }
        /// @solidity memory-safe-assembly
        assembly {
            // We still have some spare memory space on the left,
            // as we have allocated 3 words (96 bytes) for up to 78 digits.
            let length := mload(str) // Load the string length.
            mstore(str, 0x2d) // Store the '-' character.
            str := sub(str, 1) // Move back the string pointer by a byte.
            mstore(str, add(length, 1)) // Update the string length.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   HEXADECIMAL OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2 + 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value, length);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexStringNoPrefix(uint256 value, uint256 length)
        internal
        pure
        returns (string memory str)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
            // We add 0x20 to the total and round down to a multiple of 0x20.
            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
            str := add(mload(0x40), and(add(shl(1, length), 0x42), not(0x1f)))
            // Allocate the memory.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let start := sub(str, add(length, length))
            let w := not(1) // Tsk.
            let temp := value
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for {} 1 {} {
                str := add(str, w) // `sub(str, 2)`.
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(xor(str, start)) { break }
            }

            if temp {
                mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
                revert(0x1c, 0x04)
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2 + 2` bytes.
    function toHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x".
    /// The output excludes leading "0" from the `toHexString` output.
    /// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
    function toMinimalHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(add(str, o), 0x3078) // Write the "0x" prefix, accounting for leading zero.
            str := sub(add(str, o), 2) // Move the pointer, accounting for leading zero.
            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output excludes leading "0" from the `toHexStringNoPrefix` output.
    /// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
    function toMinimalHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let o := eq(byte(0, mload(add(str, 0x20))), 0x30) // Whether leading zero is present.
            let strLength := mload(str) // Get the length.
            str := add(str, o) // Move the pointer, accounting for leading zero.
            mstore(str, sub(strLength, o)) // Write the length, accounting for leading zero.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2` bytes.
    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
            str := add(mload(0x40), 0x80)
            // Allocate the memory.
            mstore(0x40, add(str, 0x20))
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let w := not(1) // Tsk.
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := add(str, w) // `sub(str, 2)`.
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(temp) { break }
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
    /// and the alphabets are capitalized conditionally according to
    /// https://eips.ethereum.org/EIPS/eip-55
    function toHexStringChecksummed(address value) internal pure returns (string memory str) {
        str = toHexString(value);
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
            let o := add(str, 0x22)
            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
            let t := shl(240, 136) // `0b10001000 << 240`
            for { let i := 0 } 1 {} {
                mstore(add(i, i), mul(t, byte(i, hashed)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
            o := add(o, 0x20)
            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    function toHexString(address value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            str := mload(0x40)

            // Allocate the memory.
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
            mstore(0x40, add(str, 0x80))

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            str := add(str, 2)
            mstore(str, 40)

            let o := add(str, 0x20)
            mstore(add(o, 40), 0)

            value := shl(96, value)

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let i := 0 } 1 {} {
                let p := add(o, add(i, i))
                let temp := byte(i, value)
                mstore8(add(p, 1), mload(and(temp, 15)))
                mstore8(p, mload(shr(4, temp)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexString(bytes memory raw) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(raw);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hex encoded string from the raw bytes.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(raw)
            str := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
            mstore(str, add(length, length)) // Store the length of the output.

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let o := add(str, 0x20)
            let end := add(raw, length)

            for {} iszero(eq(raw, end)) {} {
                raw := add(raw, 1)
                mstore8(add(o, 1), mload(and(mload(raw), 15)))
                mstore8(o, mload(and(shr(4, mload(raw)), 15)))
                o := add(o, 2)
            }
            mstore(o, 0) // Zeroize the slot after the string.
            mstore(0x40, add(o, 0x20)) // Allocate the memory.
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RUNE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the number of UTF characters in the string.
    function runeCount(string memory s) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                mstore(0x00, div(not(0), 255))
                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for { result := 1 } 1 { result := add(result, 1) } {
                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                    if iszero(lt(o, end)) { break }
                }
            }
        }
    }

    /// @dev Returns if this string is a 7-bit ASCII string.
    /// (i.e. all characters codes are in [0..127])
    function is7BitASCII(string memory s) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(7, div(not(0), 255))
            result := 1
            let n := mload(s)
            if n {
                let o := add(s, 0x20)
                let end := add(o, n)
                let last := mload(end)
                mstore(end, 0)
                for {} 1 {} {
                    if and(mask, mload(o)) {
                        result := 0
                        break
                    }
                    o := add(o, 0x20)
                    if iszero(lt(o, end)) { break }
                }
                mstore(end, last)
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   BYTE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // For performance and bytecode compactness, byte string operations are restricted
    // to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
    // Usage of byte string operations on charsets with runes spanning two or more bytes
    // can lead to undefined behavior.

    /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
    function replace(string memory subject, string memory search, string memory replacement)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)
            let replacementLength := mload(replacement)

            subject := add(subject, 0x20)
            search := add(search, 0x20)
            replacement := add(replacement, 0x20)
            result := add(mload(0x40), 0x20)

            let subjectEnd := add(subject, subjectLength)
            if iszero(gt(searchLength, subjectLength)) {
                let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                mstore(result, t)
                                result := add(result, 1)
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Copy the `replacement` one word at a time.
                        for { let o := 0 } 1 {} {
                            mstore(add(result, o), mload(add(replacement, o)))
                            o := add(o, 0x20)
                            if iszero(lt(o, replacementLength)) { break }
                        }
                        result := add(result, replacementLength)
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    mstore(result, t)
                    result := add(result, 1)
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
            }

            let resultRemainder := result
            result := add(mload(0x40), 0x20)
            let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
            // Copy the rest of the string one word at a time.
            for {} lt(subject, subjectEnd) {} {
                mstore(resultRemainder, mload(subject))
                resultRemainder := add(resultRemainder, 0x20)
                subject := add(subject, 0x20)
            }
            result := sub(result, 0x20)
            let last := add(add(result, 0x20), k) // Zeroize the slot after the string.
            mstore(last, 0)
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
            mstore(result, k) // Store the length.
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let subjectLength := mload(subject) } 1 {} {
                if iszero(mload(search)) {
                    if iszero(gt(from, subjectLength)) {
                        result := from
                        break
                    }
                    result := subjectLength
                    break
                }
                let searchLength := mload(search)
                let subjectStart := add(subject, 0x20)

                result := not(0) // Initialize to `NOT_FOUND`.

                subject := add(subjectStart, from)
                let end := add(sub(add(subjectStart, subjectLength), searchLength), 1)

                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(add(search, 0x20))

                if iszero(and(lt(subject, end), lt(from, subjectLength))) { break }

                if iszero(lt(searchLength, 0x20)) {
                    for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                        if iszero(shr(m, xor(mload(subject), s))) {
                            if eq(keccak256(subject, searchLength), h) {
                                result := sub(subject, subjectStart)
                                break
                            }
                        }
                        subject := add(subject, 1)
                        if iszero(lt(subject, end)) { break }
                    }
                    break
                }
                for {} 1 {} {
                    if iszero(shr(m, xor(mload(subject), s))) {
                        result := sub(subject, subjectStart)
                        break
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = indexOf(subject, search, 0);
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                result := not(0) // Initialize to `NOT_FOUND`.
                let searchLength := mload(search)
                if gt(searchLength, mload(subject)) { break }
                let w := result

                let fromMax := sub(mload(subject), searchLength)
                if iszero(gt(fromMax, from)) { from := fromMax }

                let end := add(add(subject, 0x20), w)
                subject := add(add(subject, 0x20), from)
                if iszero(gt(subject, end)) { break }
                // As this function is not too often used,
                // we shall simply use keccak256 for smaller bytecode size.
                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                    if eq(keccak256(subject, searchLength), h) {
                        result := sub(subject, add(end, 1))
                        break
                    }
                    subject := add(subject, w) // `sub(subject, 1)`.
                    if iszero(gt(subject, end)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = lastIndexOf(subject, search, uint256(int256(-1)));
    }

    /// @dev Returns true if `search` is found in `subject`, false otherwise.
    function contains(string memory subject, string memory search) internal pure returns (bool) {
        return indexOf(subject, search) != NOT_FOUND;
    }

    /// @dev Returns whether `subject` starts with `search`.
    function startsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                iszero(gt(searchLength, mload(subject))),
                eq(
                    keccak256(add(subject, 0x20), searchLength),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns whether `subject` ends with `search`.
    function endsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            let subjectLength := mload(subject)
            // Whether `search` is not longer than `subject`.
            let withinRange := iszero(gt(searchLength, subjectLength))
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                withinRange,
                eq(
                    keccak256(
                        // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                        add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                        searchLength
                    ),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns `subject` repeated `times`.
    function repeat(string memory subject, uint256 times)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(or(iszero(times), iszero(subjectLength))) {
                subject := add(subject, 0x20)
                result := mload(0x40)
                let output := add(result, 0x20)
                for {} 1 {} {
                    // Copy the `subject` one word at a time.
                    for { let o := 0 } 1 {} {
                        mstore(add(output, o), mload(add(subject, o)))
                        o := add(o, 0x20)
                        if iszero(lt(o, subjectLength)) { break }
                    }
                    output := add(output, subjectLength)
                    times := sub(times, 1)
                    if iszero(times) { break }
                }
                mstore(output, 0) // Zeroize the slot after the string.
                let resultLength := sub(output, add(result, 0x20))
                mstore(result, resultLength) // Store the length.
                // Allocate the memory.
                mstore(0x40, add(result, add(resultLength, 0x20)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function slice(string memory subject, uint256 start, uint256 end)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(gt(subjectLength, end)) { end := subjectLength }
            if iszero(gt(subjectLength, start)) { start := subjectLength }
            if lt(start, end) {
                result := mload(0x40)
                let resultLength := sub(end, start)
                mstore(result, resultLength)
                subject := add(subject, start)
                let w := not(0x1f)
                // Copy the `subject` one word at a time, backwards.
                for { let o := and(add(resultLength, 0x1f), w) } 1 {} {
                    mstore(add(result, o), mload(add(subject, o)))
                    o := add(o, w) // `sub(o, 0x20)`.
                    if iszero(o) { break }
                }
                // Zeroize the slot after the string.
                mstore(add(add(result, 0x20), resultLength), 0)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, add(result, and(add(resultLength, 0x3f), w)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
    /// `start` is a byte offset.
    function slice(string memory subject, uint256 start)
        internal
        pure
        returns (string memory result)
    {
        result = slice(subject, start, uint256(int256(-1)));
    }

    /// @dev Returns all the indices of `search` in `subject`.
    /// The indices are byte offsets.
    function indicesOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256[] memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)

            if iszero(gt(searchLength, subjectLength)) {
                subject := add(subject, 0x20)
                search := add(search, 0x20)
                result := add(mload(0x40), 0x20)

                let subjectStart := subject
                let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 0x20)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(0x20, and(searchLength, 0x1f)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Append to `result`.
                        mstore(result, sub(subject, subjectStart))
                        result := add(result, 0x20)
                        // Advance `subject` by `searchLength`.
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
                let resultEnd := result
                // Assign `result` to the free memory pointer.
                result := mload(0x40)
                // Store the length of `result`.
                mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                // Allocate memory for result.
                // We allocate one more word, so this array can be recycled for {split}.
                mstore(0x40, add(resultEnd, 0x20))
            }
        }
    }

    /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
    function split(string memory subject, string memory delimiter)
        internal
        pure
        returns (string[] memory result)
    {
        uint256[] memory indices = indicesOf(subject, delimiter);
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            let indexPtr := add(indices, 0x20)
            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
            mstore(add(indicesEnd, w), mload(subject))
            mstore(indices, add(mload(indices), 1))
            let prevIndex := 0
            for {} 1 {} {
                let index := mload(indexPtr)
                mstore(indexPtr, 0x60)
                if iszero(eq(index, prevIndex)) {
                    let element := mload(0x40)
                    let elementLength := sub(index, prevIndex)
                    mstore(element, elementLength)
                    // Copy the `subject` one word at a time, backwards.
                    for { let o := and(add(elementLength, 0x1f), w) } 1 {} {
                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    // Zeroize the slot after the string.
                    mstore(add(add(element, 0x20), elementLength), 0)
                    // Allocate memory for the length and the bytes,
                    // rounded up to a multiple of 32.
                    mstore(0x40, add(element, and(add(elementLength, 0x3f), w)))
                    // Store the `element` into the array.
                    mstore(indexPtr, element)
                }
                prevIndex := add(index, mload(delimiter))
                indexPtr := add(indexPtr, 0x20)
                if iszero(lt(indexPtr, indicesEnd)) { break }
            }
            result := indices
            if iszero(mload(delimiter)) {
                result := add(indices, 0x20)
                mstore(result, sub(mload(indices), 2))
            }
        }
    }

    /// @dev Returns a concatenated string of `a` and `b`.
    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
    function concat(string memory a, string memory b)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(0x1f)
            result := mload(0x40)
            let aLength := mload(a)
            // Copy `a` one word at a time, backwards.
            for { let o := and(add(aLength, 0x20), w) } 1 {} {
                mstore(add(result, o), mload(add(a, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let bLength := mload(b)
            let output := add(result, aLength)
            // Copy `b` one word at a time, backwards.
            for { let o := and(add(bLength, 0x20), w) } 1 {} {
                mstore(add(output, o), mload(add(b, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let totalLength := add(aLength, bLength)
            let last := add(add(result, 0x20), totalLength)
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Stores the length.
            mstore(result, totalLength)
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 0x1f), w))
        }
    }

    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function toCase(string memory subject, bool toUpper)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(subject)
            if length {
                result := add(mload(0x40), 0x20)
                subject := add(subject, 1)
                let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
                let w := not(0)
                for { let o := length } 1 {} {
                    o := add(o, w)
                    let b := and(0xff, mload(add(subject, o)))
                    mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                    if iszero(o) { break }
                }
                result := mload(0x40)
                mstore(result, length) // Store the length.
                let last := add(add(result, 0x20), length)
                mstore(last, 0) // Zeroize the slot after the string.
                mstore(0x40, add(last, 0x20)) // Allocate the memory.
            }
        }
    }

    /// @dev Returns a string from a small bytes32 string.
    /// `s` must be null-terminated, or behavior will be undefined.
    function fromSmallString(bytes32 s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(0x40)
            let n := 0
            for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
            mstore(result, n)
            let o := add(result, 0x20)
            mstore(o, s)
            mstore(add(o, n), 0)
            mstore(0x40, add(result, 0x40))
        }
    }

    /// @dev Returns the small string, with all bytes after the first null byte zeroized.
    function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
            mstore(0x00, s)
            mstore(result, 0x00)
            result := mload(0x00)
        }
    }

    /// @dev Returns the string as a normalized null-terminated small string.
    function toSmallString(string memory s) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := mload(s)
            if iszero(lt(result, 33)) {
                mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
                revert(0x1c, 0x04)
            }
            result := shl(shl(3, sub(32, result)), mload(add(s, result)))
        }
    }

    /// @dev Returns a lowercased copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function lower(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, false);
    }

    /// @dev Returns an UPPERCASED copy of the string.
    /// WARNING! This function is only compatible with 7-bit ASCII strings.
    function upper(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, true);
    }

    /// @dev Escapes the string to be used within HTML tags.
    function escapeHTML(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(s, mload(s))
            result := add(mload(0x40), 0x20)
            // Store the bytes of the packed offsets and strides into the scratch space.
            // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
            mstore(0x1f, 0x900094)
            mstore(0x08, 0xc0000000a6ab)
            // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
            mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                // Not in `["\"","'","&","<",">"]`.
                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                    mstore8(result, c)
                    result := add(result, 1)
                    continue
                }
                let t := shr(248, mload(c))
                mstore(result, mload(and(t, 0x1f)))
                result := add(result, shr(5, t))
            }
            let last := result
            mstore(last, 0) // Zeroize the slot after the string.
            result := mload(0x40)
            mstore(result, sub(last, add(result, 0x20))) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    /// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
    function escapeJSON(string memory s, bool addDoubleQuotes)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let end := add(s, mload(s))
            result := add(mload(0x40), 0x20)
            if addDoubleQuotes {
                mstore8(result, 34)
                result := add(1, result)
            }
            // Store "\\u0000" in scratch space.
            // Store "0123456789abcdef" in scratch space.
            // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
            // into the scratch space.
            mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
            // Bitmask for detecting `["\"","\\"]`.
            let e := or(shl(0x22, 1), shl(0x5c, 1))
            for {} iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                if iszero(lt(c, 0x20)) {
                    if iszero(and(shl(c, 1), e)) {
                        // Not in `["\"","\\"]`.
                        mstore8(result, c)
                        result := add(result, 1)
                        continue
                    }
                    mstore8(result, 0x5c) // "\\".
                    mstore8(add(result, 1), c)
                    result := add(result, 2)
                    continue
                }
                if iszero(and(shl(c, 1), 0x3700)) {
                    // Not in `["\b","\t","\n","\f","\d"]`.
                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                    mstore(result, mload(0x19)) // "\\u00XX".
                    result := add(result, 6)
                    continue
                }
                mstore8(result, 0x5c) // "\\".
                mstore8(add(result, 1), mload(add(c, 8)))
                result := add(result, 2)
            }
            if addDoubleQuotes {
                mstore8(result, 34)
                result := add(1, result)
            }
            let last := result
            mstore(last, 0) // Zeroize the slot after the string.
            result := mload(0x40)
            mstore(result, sub(last, add(result, 0x20))) // Store the length.
            mstore(0x40, add(last, 0x20)) // Allocate the memory.
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    function escapeJSON(string memory s) internal pure returns (string memory result) {
        result = escapeJSON(s, false);
    }

    /// @dev Returns whether `a` equals `b`.
    function eq(string memory a, string memory b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
        }
    }

    /// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
    function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
        /// @solidity memory-safe-assembly
        assembly {
            // These should be evaluated on compile time, as far as possible.
            let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
            let x := not(or(m, or(b, add(m, and(b, m)))))
            let r := shl(7, iszero(iszero(shr(128, x))))
            r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
            r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
            r := or(r, shl(4, lt(0xffff, shr(r, x))))
            r := or(r, shl(3, lt(0xff, shr(r, x))))
            // forgefmt: disable-next-item
            result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
                xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
        }
    }

    /// @dev Packs a single string with its length into a single word.
    /// Returns `bytes32(0)` if the length is zero or greater than 31.
    function packOne(string memory a) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // We don't need to zero right pad the string,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes.
                    mload(add(a, 0x1f)),
                    // `length != 0 && length < 32`. Abuses underflow.
                    // Assumes that the length is valid and within the block gas limit.
                    lt(sub(mload(a), 1), 0x1f)
                )
        }
    }

    /// @dev Unpacks a string packed using {packOne}.
    /// Returns the empty string if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packOne}, the output behavior is undefined.
    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            result := mload(0x40)
            // Allocate 2 words (1 for the length, 1 for the bytes).
            mstore(0x40, add(result, 0x40))
            // Zeroize the length slot.
            mstore(result, 0)
            // Store the length and bytes.
            mstore(add(result, 0x1f), packed)
            // Right pad with zeroes.
            mstore(add(add(result, 0x20), mload(result)), 0)
        }
    }

    /// @dev Packs two strings with their lengths into a single word.
    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let aLength := mload(a)
            // We don't need to zero right pad the strings,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes of `a` and `b`.
                    or(
                        shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                        mload(sub(add(b, 0x1e), aLength))
                    ),
                    // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                    // Assumes that the lengths are valid and within the block gas limit.
                    lt(sub(add(aLength, mload(b)), 1), 0x1e)
                )
        }
    }

    /// @dev Unpacks strings packed using {packTwo}.
    /// Returns the empty strings if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packTwo}, the output behavior is undefined.
    function unpackTwo(bytes32 packed)
        internal
        pure
        returns (string memory resultA, string memory resultB)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            resultA := mload(0x40)
            resultB := add(resultA, 0x40)
            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
            mstore(0x40, add(resultB, 0x40))
            // Zeroize the length slots.
            mstore(resultA, 0)
            mstore(resultB, 0)
            // Store the lengths and bytes.
            mstore(add(resultA, 0x1f), packed)
            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
            // Right pad with zeroes.
            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
        }
    }

    /// @dev Directly returns `a` without copying.
    function directReturn(string memory a) internal pure {
        assembly {
            // Assumes that the string does not start from the scratch space.
            let retStart := sub(a, 0x20)
            let retSize := add(mload(a), 0x40)
            // Right pad with zeroes. Just in case the string is produced
            // by a method that doesn't zero right pad.
            mstore(add(retStart, retSize), 0)
            // Store the return offset.
            mstore(retStart, 0x20)
            // End the transaction, returning the string.
            return(retStart, retSize)
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "FreshCryptoLib/=lib/webauthn-sol/lib/FreshCryptoLib/solidity/src/",
    "account-abstraction/=lib/account-abstraction/contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "p256-verifier/=lib/p256-verifier/",
    "safe-singleton-deployer-sol/=lib/safe-singleton-deployer-sol/",
    "solady/=lib/solady/src/",
    "webauthn-sol/=lib/webauthn-sol/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 9999999
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": false,
  "libraries": {}
}

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"bytes","name":"owner","type":"bytes"}],"name":"AlreadyOwner","type":"error"},{"inputs":[],"name":"Initialized","type":"error"},{"inputs":[{"internalType":"bytes","name":"owner","type":"bytes"}],"name":"InvalidEthereumAddressOwner","type":"error"},{"inputs":[{"internalType":"uint256","name":"key","type":"uint256"}],"name":"InvalidNonceKey","type":"error"},{"inputs":[{"internalType":"bytes","name":"owner","type":"bytes"}],"name":"InvalidOwnerBytesLength","type":"error"},{"inputs":[],"name":"LastOwner","type":"error"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"NoOwnerAtIndex","type":"error"},{"inputs":[{"internalType":"uint256","name":"ownersRemaining","type":"uint256"}],"name":"NotLastOwner","type":"error"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"SelectorNotAllowed","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"UnauthorizedCallContext","type":"error"},{"inputs":[],"name":"UpgradeFailed","type":"error"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes","name":"expectedOwner","type":"bytes"},{"internalType":"bytes","name":"actualOwner","type":"bytes"}],"name":"WrongOwnerAtIndex","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"index","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"owner","type":"bytes"}],"name":"AddOwner","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"index","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"owner","type":"bytes"}],"name":"RemoveOwner","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"REPLAYABLE_NONCE_KEY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"addOwnerAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"x","type":"bytes32"},{"internalType":"bytes32","name":"y","type":"bytes32"}],"name":"addOwnerPublicKey","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"functionSelector","type":"bytes4"}],"name":"canSkipChainIdValidation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"domainSeparator","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"entryPoint","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"execute","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct CoinbaseSmartWallet.Call[]","name":"calls","type":"tuple[]"}],"name":"executeBatch","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"calls","type":"bytes[]"}],"name":"executeWithoutChainIdValidation","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"}],"name":"getUserOpHashWithoutChainId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"implementation","outputs":[{"internalType":"address","name":"$","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"owners","type":"bytes[]"}],"name":"initialize","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isOwnerAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"account","type":"bytes"}],"name":"isOwnerBytes","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"x","type":"bytes32"},{"internalType":"bytes32","name":"y","type":"bytes32"}],"name":"isOwnerPublicKey","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bytes4","name":"result","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextOwnerIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"ownerAtIndex","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ownerCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes","name":"owner","type":"bytes"}],"name":"removeLastOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes","name":"owner","type":"bytes"}],"name":"removeOwnerAtIndex","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"removedOwnersCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hash","type":"bytes32"}],"name":"replaySafeHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes","name":"initCode","type":"bytes"},{"internalType":"bytes","name":"callData","type":"bytes"},{"internalType":"uint256","name":"callGasLimit","type":"uint256"},{"internalType":"uint256","name":"verificationGasLimit","type":"uint256"},{"internalType":"uint256","name":"preVerificationGas","type":"uint256"},{"internalType":"uint256","name":"maxFeePerGas","type":"uint256"},{"internalType":"uint256","name":"maxPriorityFeePerGas","type":"uint256"},{"internalType":"bytes","name":"paymasterAndData","type":"bytes"},{"internalType":"bytes","name":"signature","type":"bytes"}],"internalType":"struct UserOperation","name":"userOp","type":"tuple"},{"internalType":"bytes32","name":"userOpHash","type":"bytes32"},{"internalType":"uint256","name":"missingAccountFunds","type":"uint256"}],"name":"validateUserOp","outputs":[{"internalType":"uint256","name":"validationData","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.