Feature Tip: Add private address tag to any address under My Name Tag !
Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 15 from a total of 15 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Transfer | 21542808 | 4 days ago | IN | 0.03356548 ETH | 0.00032565 | ||||
Transfer | 21489880 | 11 days ago | IN | 0.02459171 ETH | 0.0002581 | ||||
Transfer | 21315872 | 35 days ago | IN | 0.07594644 ETH | 0.0015435 | ||||
Transfer | 21275924 | 41 days ago | IN | 0.07338275 ETH | 0.00058084 | ||||
Transfer | 20831620 | 103 days ago | IN | 0.02720413 ETH | 0.00059044 | ||||
Transfer | 20804430 | 107 days ago | IN | 0.05460994 ETH | 0.00040765 | ||||
Transfer | 20769944 | 112 days ago | IN | 0.04608433 ETH | 0.00013132 | ||||
Transfer | 20625689 | 132 days ago | IN | 0.01453498 ETH | 0.00005492 | ||||
Transfer | 20535434 | 144 days ago | IN | 0.07006439 ETH | 0.00023846 | ||||
Transfer | 20461745 | 155 days ago | IN | 0.09081782 ETH | 0.00086728 | ||||
Transfer | 20395806 | 164 days ago | IN | 0.03197584 ETH | 0.00005916 | ||||
Transfer | 20165882 | 196 days ago | IN | 0.01960548 ETH | 0.00018298 | ||||
Transfer | 20163842 | 196 days ago | IN | 0.0441994 ETH | 0.00040964 | ||||
Transfer | 20100104 | 205 days ago | IN | 0.02729177 ETH | 0.00015434 | ||||
Transfer | 20085657 | 207 days ago | IN | 0.02586041 ETH | 0.00043147 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
21542808 | 4 days ago | 0.01006964 ETH | ||||
21542808 | 4 days ago | 0.02349583 ETH | ||||
21489880 | 11 days ago | 0.00737751 ETH | ||||
21489880 | 11 days ago | 0.0172142 ETH | ||||
21315872 | 35 days ago | 0.02278393 ETH | ||||
21315872 | 35 days ago | 0.0531625 ETH | ||||
21275924 | 41 days ago | 0.02201482 ETH | ||||
21275924 | 41 days ago | 0.05136792 ETH | ||||
20831620 | 103 days ago | 0.00816123 ETH | ||||
20831620 | 103 days ago | 0.01904289 ETH | ||||
20804430 | 107 days ago | 0.01638298 ETH | ||||
20804430 | 107 days ago | 0.03822696 ETH | ||||
20769944 | 112 days ago | 0.01382529 ETH | ||||
20769944 | 112 days ago | 0.03225903 ETH | ||||
20625689 | 132 days ago | 0.00436049 ETH | ||||
20625689 | 132 days ago | 0.01017449 ETH | ||||
20535434 | 144 days ago | 0.02101931 ETH | ||||
20535434 | 144 days ago | 0.04904507 ETH | ||||
20461745 | 155 days ago | 0.02724534 ETH | ||||
20461745 | 155 days ago | 0.06357247 ETH | ||||
20395806 | 164 days ago | 0.00959275 ETH | ||||
20395806 | 164 days ago | 0.02238309 ETH | ||||
20165882 | 196 days ago | 0.00588164 ETH | ||||
20165882 | 196 days ago | 0.01372384 ETH | ||||
20163842 | 196 days ago | 0.01325982 ETH |
Loading...
Loading
Minimal Proxy Contract for 0x2f0bb99ffc519a37c3ba3d128e51b29a70c64e84
Contract Name:
Splitter
Compiler Version
v0.8.22+commit.4fc1097e
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 // SPDX-FileCopyrightText: 2024 Kiln <[email protected]> // // ██╗ ██╗██╗██╗ ███╗ ██╗ // ██║ ██╔╝██║██║ ████╗ ██║ // █████╔╝ ██║██║ ██╔██╗ ██║ // ██╔═██╗ ██║██║ ██║╚██╗██║ // ██║ ██╗██║███████╗██║ ╚████║ // ╚═╝ ╚═╝╚═╝╚══════╝╚═╝ ╚═══╝ // pragma solidity 0.8.22; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {Operator} from "./Operator.sol"; /// @title Splitter /// @notice The Splitter contract is used to directly split any funds it receives between its owner and linked Operator contract Splitter { /// @notice The Operator contract that will receive a portion of the funds Operator public operator; /// @notice The owner of the contract address public owner; /// @notice The maximum value for a percentage in bps uint256 internal constant MAX_BPS = 10000; /// @notice Emitted when the contract is configured /// @param operator The Operator contract that will receive a portion of the funds /// @param owner The owner of the contract event Configured(address indexed operator, address indexed owner); /// @notice Emitted when the received funds are split /// @param operator The operator of the contract /// @param recipient The recipient of the funds /// @param operatorAmount The amount of funds that were sent to the operator /// @param recipientAmount The amount of funds that were sent to the recipient event Split(address indexed operator, address indexed recipient, uint256 operatorAmount, uint256 recipientAmount); /// @notice Emitted when the transfer to the owner fails and we explicitly do not revert /// @param errorData The error data returned by the transfer event OwnerTransferFailureCaught(bytes errorData); /// @notice Thrown when the contract is already initialized error AlreadyInitialized(); /// @notice Thrown when the sender is not the owner /// @param sender The sender of the transaction error Unauthorized(address sender); /// @notice Thrown when the transfer to the owner fails /// @param recipient The recipient of the transfer /// @param errorData The error data returned by the transfer error OwnerTransferFailed(address recipient, bytes errorData); /// @notice Thrown when the transfer to the operator fails /// @param errorData The error data returned by the transfer error OperatorTransferFailed(bytes errorData); /// @notice Thrown when the provided address is zero error InvalidZeroAddress(); /// @notice Thrown when the provided operator address is not a contract error InvalidOperatorAddress(); /// @notice Thrown when the initialization is performed more than once modifier uninitialized() { if (address(operator) != address(0) || address(owner) != address(0)) { revert AlreadyInitialized(); } _; } constructor() { operator = Operator(payable(address(uint160(uint256(bytes32("implem initialized")))))); } /// @notice The receive function is used to receive ETH receive() external payable { _split(owner, false); } /// @notice The fallback function is used to receive ETH when there is additional calldata fallback() external payable { _split(owner, false); } /// @notice Initializes the contract /// @param _operator The Operator contract that will receive a portion of the funds /// @param _owner The owner of the contract function init(Operator _operator, address _owner) external uninitialized { if (address(_operator) == address(0) || address(_owner) == address(0)) { revert InvalidZeroAddress(); } if (address(_operator).code.length == 0) { revert InvalidOperatorAddress(); } operator = _operator; owner = _owner; emit Configured(address(_operator), _owner); } /// @notice Claims the funds from the contract function claim() external { _split(owner, true); } /// @notice Claims the funds from the contract and sends them to the provided recipient /// @param recipient The recipient of the funds function claim(address recipient) external { if (msg.sender != owner) { revert Unauthorized(msg.sender); } _split(recipient, true); } /// @notice Claims the funds from the contract and sends them to the provided recipients /// @param recipient The recipient that receives the funds for the owner function _split(address recipient, bool revertOnTransferFail) internal { uint256 balance = address(this).balance; if (balance == 0) { return; } uint256 operatorFee = operator.operatorFee(); uint256 operatorAmount = operatorFee > 0 ? Math.mulDiv(balance, operatorFee, MAX_BPS) : 0; uint256 ownerAmount = balance - operatorAmount; (bool success, bytes memory rdata) = recipient.call{value: ownerAmount}(""); if (!success) { if (revertOnTransferFail) { revert OwnerTransferFailed(recipient, rdata); } else { emit OwnerTransferFailureCaught(rdata); return; } } (success, rdata) = address(operator).call{value: operatorAmount}(""); if (!success) { revert OperatorTransferFailed(rdata); } emit Split(address(operator), recipient, operatorAmount, ownerAmount); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: BUSL-1.1 // SPDX-FileCopyrightText: 2024 Kiln <[email protected]> // // ██╗ ██╗██╗██╗ ███╗ ██╗ // ██║ ██╔╝██║██║ ████╗ ██║ // █████╔╝ ██║██║ ██╔██╗ ██║ // ██╔═██╗ ██║██║ ██║╚██╗██║ // ██║ ██╗██║███████╗██║ ╚████║ // ╚═╝ ╚═╝╚═╝╚══════╝╚═╝ ╚═══╝ // pragma solidity 0.8.22; import {Ownable, Ownable2Step} from "@openzeppelin/contracts/access/Ownable2Step.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; /// @title Operator /// @notice The Operator contract is used to store a commission distribution scheme for one or several Splitter instances /// @notice It stores a list of recipients alongside their respective percentages, and a fee that is taken on each Splitter /// @notice It then handles the dispatching of the commission between the configured recipient contract Operator is Ownable2Step { /// @notice The fee that is taken on each Splitter uint256 public operatorFee; /// @notice The maximum fee that can be configured on the Operator // solhint-disable-next-line immutable-vars-naming uint256 public immutable maximumOperatorFee; /// @notice The list of recipients address[] public recipients; /// @notice The list of percentages for each recipient uint256[] public percents; /// @notice The name of the operator string public name; /// @notice The maximum value for a percentage in bps uint256 internal constant MAX_BPS = 10000; /// @notice Emitted when the recipients are updated /// @param recipients The new list of recipients /// @param percentsBps The new list of percentages event UpdatedRecipients(address[] recipients, uint256[] percentsBps); /// @notice Emitted when the operator fee is updated /// @param operatorFee The new operator fee event UpdatedOperatorFee(uint256 operatorFee); /// @notice Emitted when the operator name is updated /// @param name The new operator name event UpdatedOperatorName(string name); /// @notice Emitted when the maximum operator fee is updated /// @param maximumOperatorFee The new maximum operator fee event UpdatedMaximumOperatorFee(uint256 maximumOperatorFee); /// @notice Emitted when the commission is claimed /// @param amount The amount that was claimed event Claimed(uint256 amount); /// @notice Thrown when the provided recipient list is empty error NoRecipients(); /// @notice Thrown when the provided recipient is null error ZeroAddress(); /// @notice Thrown when the provided percent value is zero error ZeroPercentBps(); /// @notice Thrown when the transfer to a recipient fails /// @param recipient The recipient that failed to receive the funds /// @param errorData The error data returned by the transfer error RecipientTransferFailed(address recipient, bytes errorData); /// @notice Thrown when the provided recipient list is empty error EmptyRecipientArguments(); /// @notice Thrown when the provided recipient list and percentage list have different lengths error InvalidArgumentLengths(); /// @notice Thrown when the provided percentages do not sum up to 10000 error InvalidPercentSum(); /// @notice Thrown when the provided fee is invalid /// @param feeBps The provided fee error InvalidFeeBps(uint256 feeBps); /// @notice Thrown when the provided name is empty error InvalidEmptyString(); /// @notice Thrown when the provided recipients are not sorted error InvalidUnsortedRecipients(); /// @param _owner The owner of the contract /// @param _operatorFee The fee that is taken on each Splitter /// @param _recipients The list of recipients, sorted in ascending order without duplicates /// @param _percents The list of percentages for each recipient constructor( address _owner, string memory _name, uint256 _operatorFee, uint256 _maximumOperatorFee, address[] memory _recipients, uint256[] memory _percents ) Ownable(_owner) { if (_maximumOperatorFee > MAX_BPS) { revert InvalidFeeBps(_maximumOperatorFee); } maximumOperatorFee = _maximumOperatorFee; emit UpdatedMaximumOperatorFee(_maximumOperatorFee); _setOperatorFee(_operatorFee); _setRecipients(_recipients, _percents); _setName(_name); } /// @notice The receive function is used to receive ETH receive() external payable { // do nothing } /// @notice The fallback function is used to receive ETH when there is additional calldata fallback() external payable { // do nothing } /// @notice Changes the operator fee /// @param _operatorFee The new operator fee function setOperatorFee(uint256 _operatorFee) external onlyOwner { _setOperatorFee(_operatorFee); } /// @notice Changes the recipients and their respective percentages /// @param _recipients The new list of recipients, sorted in ascending order without duplicates /// @param _percents The new list of percentages function setRecipients(address[] calldata _recipients, uint256[] calldata _percents) external onlyOwner { _setRecipients(_recipients, _percents); } /// @notice Changes the operator name /// @param _name The new operator name function setName(string calldata _name) external onlyOwner { _setName(_name); } /// @notice Claims the commission for all the recipients function claim() external { uint256 balance = address(this).balance; uint256 totalSent = 0; for (uint256 i = 0; i < recipients.length - 1;) { uint256 value = Math.mulDiv(balance, percents[i], MAX_BPS); (bool success, bytes memory rdata) = recipients[i].call{value: value}(""); if (!success) { revert RecipientTransferFailed(recipients[i], rdata); } totalSent += value; unchecked { ++i; } } { (bool success, bytes memory rdata) = recipients[recipients.length - 1].call{value: balance - totalSent}(""); if (!success) { revert RecipientTransferFailed(recipients[recipients.length - 1], rdata); } } emit Claimed(balance); } /// @notice Internal utility function to set the operator fee /// @param _operatorFee The new operator fee function _setOperatorFee(uint256 _operatorFee) internal { if (_operatorFee > maximumOperatorFee) { revert InvalidFeeBps(_operatorFee); } operatorFee = _operatorFee; emit UpdatedOperatorFee(_operatorFee); } /// @notice Internal utility function to set the recipients and their respective percentages /// @param _recipients The new list of recipients, sorted in ascending order without duplicates /// @param _percentsBps The new list of percentages function _setRecipients(address[] memory _recipients, uint256[] memory _percentsBps) internal { uint256 recipientsLength = _recipients.length; if (recipientsLength == 0) { revert EmptyRecipientArguments(); } if (recipientsLength != _percentsBps.length) { revert InvalidArgumentLengths(); } uint256 totalPercentsBps = 0; for (uint256 i = 0; i < recipientsLength; ++i) { totalPercentsBps += _percentsBps[i]; if (i > 0 && uint160(_recipients[i]) <= uint160(_recipients[i - 1])) { revert InvalidUnsortedRecipients(); } if (_recipients[i] == address(0)) { revert ZeroAddress(); } if (_percentsBps[i] == 0) { revert ZeroPercentBps(); } } if (totalPercentsBps != MAX_BPS) { revert InvalidPercentSum(); } recipients = _recipients; percents = _percentsBps; emit UpdatedRecipients(_recipients, _percentsBps); } /// @notice Internal utility function to set the operator name /// @param _name The new operator name function _setName(string memory _name) internal { if (bytes(_name).length == 0) { revert InvalidEmptyString(); } name = _name; emit UpdatedOperatorName(_name); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "vulcan/=lib/vulcan/src/", "deploy.sol/=lib/deploy.sol/src/", "solmate/=lib/deploy.sol/lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": false, "libraries": {} }
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"InvalidOperatorAddress","type":"error"},{"inputs":[],"name":"InvalidZeroAddress","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[{"internalType":"bytes","name":"errorData","type":"bytes"}],"name":"OperatorTransferFailed","type":"error"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"bytes","name":"errorData","type":"bytes"}],"name":"OwnerTransferFailed","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"owner","type":"address"}],"name":"Configured","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes","name":"errorData","type":"bytes"}],"name":"OwnerTransferFailureCaught","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"operatorAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"recipientAmount","type":"uint256"}],"name":"Split","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract Operator","name":"_operator","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"name":"init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"operator","outputs":[{"internalType":"contract Operator","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.