Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
0x453d7ef44633a63256961c2d8b7c76342d5e35f39d7a3281a9ee59ec4c9684c6 | Claim | (pending) | 43 days ago | IN | 0 ETH | (Pending) | |||
Claim | 20653391 | 225 days ago | IN | 0 ETH | 0.00004403 | ||||
Claim | 20653391 | 225 days ago | IN | 0 ETH | 0.00003138 | ||||
Claim | 20653391 | 225 days ago | IN | 0 ETH | 0.00003138 | ||||
Claim | 20653391 | 225 days ago | IN | 0 ETH | 0.00003138 | ||||
Claim | 20653391 | 225 days ago | IN | 0 ETH | 0.00003138 | ||||
Claim | 20653391 | 225 days ago | IN | 0 ETH | 0.0000161 | ||||
Claim | 20653391 | 225 days ago | IN | 0 ETH | 0.00001604 | ||||
Claim | 20453483 | 253 days ago | IN | 0 ETH | 0.00006342 | ||||
Claim | 20453430 | 253 days ago | IN | 0 ETH | 0.00006342 | ||||
Claim | 20453213 | 253 days ago | IN | 0 ETH | 0.00006342 | ||||
Claim | 20296818 | 274 days ago | IN | 0 ETH | 0.00005836 | ||||
Claim | 20295423 | 275 days ago | IN | 0 ETH | 0.00006596 | ||||
Claim | 20168385 | 292 days ago | IN | 0 ETH | 0.00040408 | ||||
Claim | 20167342 | 293 days ago | IN | 0 ETH | 0.00054424 | ||||
Claim | 20167341 | 293 days ago | IN | 0 ETH | 0.00053639 | ||||
Claim | 20167044 | 293 days ago | IN | 0 ETH | 0.00040982 | ||||
Claim | 20166954 | 293 days ago | IN | 0 ETH | 0.00040397 | ||||
Claim | 20166687 | 293 days ago | IN | 0 ETH | 0.00030147 | ||||
Claim | 20166511 | 293 days ago | IN | 0 ETH | 0.00034109 | ||||
Claim | 20165944 | 293 days ago | IN | 0 ETH | 0.00044211 | ||||
Claim | 20165733 | 293 days ago | IN | 0 ETH | 0.00036423 | ||||
Claim | 20165721 | 293 days ago | IN | 0 ETH | 0.00036222 | ||||
Claim | 20165577 | 293 days ago | IN | 0 ETH | 0.00024935 | ||||
Claim | 20165574 | 293 days ago | IN | 0 ETH | 0.00028005 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
Claim
Compiler Version
v0.8.24+commit.e11b9ed9
Optimization Enabled:
Yes with 10000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.13; import {ECDSA} from "lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol"; import {MessageHashUtils} from "lib/openzeppelin-contracts/contracts/utils/cryptography/MessageHashUtils.sol"; import {IERC20} from "lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol"; import {ReentrancyGuard} from "lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol"; import {Ownable2Step, Ownable} from "lib/openzeppelin-contracts/contracts/access/Ownable2Step.sol"; /// @title Refunds /// @notice A contract for Block Games claims /// @author karooolis contract Claim is Ownable2Step, ReentrancyGuard { /*============================================================== CONSTANTS & IMMUTABLES ==============================================================*/ /// @notice The Block Token token address IERC20 public immutable token; /// @notice Event emitted when the merkle root for the allowed wallets is set bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(uint256 chainId,address verifyingContract)"); /*============================================================== STORAGE VARIABLES ==============================================================*/ /// @notice Has claim been claimed mapping(bytes => bool) claimed; /// @notice The address of the signer address public signer; /*============================================================== FUNCTIONS ==============================================================*/ /// @notice Claim contract constructor /// @param _initialOwner The initial owner of the contract /// @param _signer The address of the signer /// @param _token The ERC20 token address constructor(address _initialOwner, address _signer, address _token) Ownable(_initialOwner) { token = IERC20(_token); signer = _signer; } /// @notice Claim tokens from claim /// @param _amount Amount of tokens to claim /// @param _salt Salt unique to the claim /// @param _signature Signature of the claimer function claim(uint256 _amount, uint256 _salt, bytes calldata _signature) external { claim(_amount, msg.sender, _salt, _signature); } /// @notice Claim tokens from claim /// @param _amount Amount of tokens to claim /// @param _receiver The address of the receiver /// @param _salt Salt unique to the claim /// @param _signature Signature of the claimer function claim(uint256 _amount, address _receiver, uint256 _salt, bytes calldata _signature) public nonReentrant { if (claimed[_signature]) { revert AlreadyClaimed(); } _verifySignature(_amount, _receiver, _salt, _signature); claimed[_signature] = true; token.transfer(_receiver, _amount); emit Claimed(_receiver, _signature, _amount); } /// @notice Set the signer /// @param _signer The address of the signer function setSigner(address _signer) external onlyOwner { signer = _signer; emit SignerSet(_signer); } /// @notice Withdraw remaining tokens back to owner function withdraw() external onlyOwner { // Withdraw remaining tokens back to owner uint256 balance = token.balanceOf(address(this)); token.transfer(owner(), balance); emit TokensWithdrawn(balance); } /*============================================================== INTERNAL FUNCTIONS ==============================================================*/ /// @notice Construct the domain separator function _getDomainSeparator() internal view returns (bytes32) { return keccak256(abi.encode(DOMAIN_TYPEHASH, block.chainid, address(this))); } /// @notice Verify the signature /// @param _amount The amount of tokens to claim /// @param _receiver The address of the receiver /// @param _salt The salt unique to the claim /// @param _signature The signature of the claimer function _verifySignature(uint256 _amount, address _receiver, uint256 _salt, bytes calldata _signature) internal view { bytes32 signedMessageHash = MessageHashUtils.toEthSignedMessageHash( keccak256(abi.encode(_getDomainSeparator(), _amount, _salt, _receiver)) ); address recoveredSigner = ECDSA.recover(signedMessageHash, _signature); if (recoveredSigner != signer) { revert InvalidSignature(); } } /*============================================================== EVENTS ==============================================================*/ /// @notice Emitted when tokens are claimed /// @param claimer The address of the claimer /// @param signature The signature of the claimer /// @param amount The amount of tokens claimed event Claimed(address indexed claimer, bytes signature, uint256 indexed amount); /// @notice Emitted when tokens are withdrawn /// @param amount The amount of tokens withdrawn event TokensWithdrawn(uint256 indexed amount); /// @notice Emitted when signer is set /// @param signer The address of the signer event SignerSet(address indexed signer); /*============================================================== ERRORS ==============================================================*/ /// @notice Error when claim already claimed error AlreadyClaimed(); /// @notice Error when invalid signature error InvalidSignature(); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/openzeppelin-contracts/lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 10000000 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "paris", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_initialOwner","type":"address"},{"internalType":"address","name":"_signer","type":"address"},{"internalType":"address","name":"_token","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyClaimed","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[],"name":"InvalidSignature","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"claimer","type":"address"},{"indexed":false,"internalType":"bytes","name":"signature","type":"bytes"},{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Claimed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"signer","type":"address"}],"name":"SignerSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"TokensWithdrawn","type":"event"},{"inputs":[],"name":"DOMAIN_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_salt","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_salt","type":"uint256"},{"internalType":"bytes","name":"_signature","type":"bytes"}],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_signer","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60a06040523480156200001157600080fd5b50604051620010cf380380620010cf83398101604081905262000034916200012d565b826001600160a01b0381166200006457604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b6200006f81620000a2565b5060016002556001600160a01b03908116608052600480546001600160a01b031916929091169190911790555062000177565b600180546001600160a01b0319169055620000bd81620000c0565b50565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b80516001600160a01b03811681146200012857600080fd5b919050565b6000806000606084860312156200014357600080fd5b6200014e8462000110565b92506200015e6020850162000110565b91506200016e6040850162000110565b90509250925092565b608051610f27620001a8600039600081816101ff0152818161025a015281816102de01526106230152610f276000f3fe608060405234801561001057600080fd5b50600436106100d45760003560e01c806379ba509711610081578063e30c39781161005b578063e30c3978146101c9578063f2fde38b146101e7578063fc0c546a146101fa57600080fd5b806379ba5097146101905780638da5cb5b1461019857806399016142146101b657600080fd5b80635eddd157116100b25780635eddd157146101625780636c19e78314610175578063715018a61461018857600080fd5b806320606b70146100d9578063238ac933146101135780633ccfd60b14610158575b600080fd5b6101007f47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a7946921881565b6040519081526020015b60405180910390f35b6004546101339073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200161010a565b610160610221565b005b610160610170366004610d24565b6103fc565b610160610183366004610da0565b61040f565b610160610486565b61016061049a565b60005473ffffffffffffffffffffffffffffffffffffffff16610133565b6101606101c4366004610dc2565b610516565b60015473ffffffffffffffffffffffffffffffffffffffff16610133565b6101606101f5366004610da0565b6106f3565b6101337f000000000000000000000000000000000000000000000000000000000000000081565b6102296107a3565b6040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526000907f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa1580156102b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102da9190610e2a565b90507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663a9059cbb61033760005473ffffffffffffffffffffffffffffffffffffffff1690565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff9091166004820152602481018490526044016020604051808303816000875af11580156103a9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103cd9190610e43565b5060405181907f9c6393f251205f9e03559951cab4c9ae71767b6174f77944a5b0c2fa51fbda9f90600090a250565b6104098433858585610516565b50505050565b6104176107a3565b600480547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040517f9eaa897564d022fb8c5efaf0acdb5d9d27b440b2aad44400b6e1c702e65b9ed390600090a250565b61048e6107a3565b61049860006107f6565b565b600154339073ffffffffffffffffffffffffffffffffffffffff16811461050a576040517f118cdaa700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff821660048201526024015b60405180910390fd5b610513816107f6565b50565b61051e610827565b60038282604051610530929190610e65565b9081526040519081900360200190205460ff161561057a576040517f646cf55800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6105878585858585610868565b60016003838360405161059b929190610e65565b90815260405190819003602001812080549215157fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00909316929092179091557fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8581166004830152602482018790527f0000000000000000000000000000000000000000000000000000000000000000169063a9059cbb906044016020604051808303816000875af115801561066c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106909190610e43565b50848473ffffffffffffffffffffffffffffffffffffffff167f4196decb55b5644a278b6ded1c42a27acb5182aa099b1fd48974bcc0cf263fd584846040516106da929190610e75565b60405180910390a36106ec6001600255565b5050505050565b6106fb6107a3565b6001805473ffffffffffffffffffffffffffffffffffffffff83167fffffffffffffffffffffffff0000000000000000000000000000000000000000909116811790915561075e60005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b60005473ffffffffffffffffffffffffffffffffffffffff163314610498576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401610501565b600180547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055610513816109ed565b6002805403610862576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60028055565b60006109496108c9604080517f47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a794692186020820152469181019190915230606082015260009060800160405160208183030381529060405280519060200120905090565b60408051602081019290925281018890526060810186905273ffffffffffffffffffffffffffffffffffffffff8716608082015260a001604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061098d8285858080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610a6292505050565b60045490915073ffffffffffffffffffffffffffffffffffffffff8083169116146109e4576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50505050505050565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080600080610a728686610a8c565b925092509250610a828282610ad9565b5090949350505050565b60008060008351604103610ac65760208401516040850151606086015160001a610ab888828585610be1565b955095509550505050610ad2565b50508151600091506002905b9250925092565b6000826003811115610aed57610aed610ec2565b03610af6575050565b6001826003811115610b0a57610b0a610ec2565b03610b41576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002826003811115610b5557610b55610ec2565b03610b8f576040517ffce698f700000000000000000000000000000000000000000000000000000000815260048101829052602401610501565b6003826003811115610ba357610ba3610ec2565b03610bdd576040517fd78bce0c00000000000000000000000000000000000000000000000000000000815260048101829052602401610501565b5050565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610c1c5750600091506003905082610cd1565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610c70573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610cc757506000925060019150829050610cd1565b9250600091508190505b9450945094915050565b60008083601f840112610ced57600080fd5b50813567ffffffffffffffff811115610d0557600080fd5b602083019150836020828501011115610d1d57600080fd5b9250929050565b60008060008060608587031215610d3a57600080fd5b8435935060208501359250604085013567ffffffffffffffff811115610d5f57600080fd5b610d6b87828801610cdb565b95989497509550505050565b803573ffffffffffffffffffffffffffffffffffffffff81168114610d9b57600080fd5b919050565b600060208284031215610db257600080fd5b610dbb82610d77565b9392505050565b600080600080600060808688031215610dda57600080fd5b85359450610dea60208701610d77565b935060408601359250606086013567ffffffffffffffff811115610e0d57600080fd5b610e1988828901610cdb565b969995985093965092949392505050565b600060208284031215610e3c57600080fd5b5051919050565b600060208284031215610e5557600080fd5b81518015158114610dbb57600080fd5b8183823760009101908152919050565b60208152816020820152818360408301376000818301604090810191909152601f9092017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0160101919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fdfea2646970667358221220b7a59c0d6aa57a5377153bde838a72f5cf660eb6d5a169585b0e17d1287a48cc64736f6c6343000818003300000000000000000000000051fc2c72731155f225a6ca8002887e56afdb7b04000000000000000000000000cc4a0add6711c02a0fbe19cc80014e6d4fd6fd790000000000000000000000008fc17671d853341d9e8b001f5fc3c892d09cb53a
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100d45760003560e01c806379ba509711610081578063e30c39781161005b578063e30c3978146101c9578063f2fde38b146101e7578063fc0c546a146101fa57600080fd5b806379ba5097146101905780638da5cb5b1461019857806399016142146101b657600080fd5b80635eddd157116100b25780635eddd157146101625780636c19e78314610175578063715018a61461018857600080fd5b806320606b70146100d9578063238ac933146101135780633ccfd60b14610158575b600080fd5b6101007f47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a7946921881565b6040519081526020015b60405180910390f35b6004546101339073ffffffffffffffffffffffffffffffffffffffff1681565b60405173ffffffffffffffffffffffffffffffffffffffff909116815260200161010a565b610160610221565b005b610160610170366004610d24565b6103fc565b610160610183366004610da0565b61040f565b610160610486565b61016061049a565b60005473ffffffffffffffffffffffffffffffffffffffff16610133565b6101606101c4366004610dc2565b610516565b60015473ffffffffffffffffffffffffffffffffffffffff16610133565b6101606101f5366004610da0565b6106f3565b6101337f0000000000000000000000008fc17671d853341d9e8b001f5fc3c892d09cb53a81565b6102296107a3565b6040517f70a082310000000000000000000000000000000000000000000000000000000081523060048201526000907f0000000000000000000000008fc17671d853341d9e8b001f5fc3c892d09cb53a73ffffffffffffffffffffffffffffffffffffffff16906370a0823190602401602060405180830381865afa1580156102b6573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102da9190610e2a565b90507f0000000000000000000000008fc17671d853341d9e8b001f5fc3c892d09cb53a73ffffffffffffffffffffffffffffffffffffffff1663a9059cbb61033760005473ffffffffffffffffffffffffffffffffffffffff1690565b6040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff9091166004820152602481018490526044016020604051808303816000875af11580156103a9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103cd9190610e43565b5060405181907f9c6393f251205f9e03559951cab4c9ae71767b6174f77944a5b0c2fa51fbda9f90600090a250565b6104098433858585610516565b50505050565b6104176107a3565b600480547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff83169081179091556040517f9eaa897564d022fb8c5efaf0acdb5d9d27b440b2aad44400b6e1c702e65b9ed390600090a250565b61048e6107a3565b61049860006107f6565b565b600154339073ffffffffffffffffffffffffffffffffffffffff16811461050a576040517f118cdaa700000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff821660048201526024015b60405180910390fd5b610513816107f6565b50565b61051e610827565b60038282604051610530929190610e65565b9081526040519081900360200190205460ff161561057a576040517f646cf55800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6105878585858585610868565b60016003838360405161059b929190610e65565b90815260405190819003602001812080549215157fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00909316929092179091557fa9059cbb00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8581166004830152602482018790527f0000000000000000000000008fc17671d853341d9e8b001f5fc3c892d09cb53a169063a9059cbb906044016020604051808303816000875af115801561066c573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906106909190610e43565b50848473ffffffffffffffffffffffffffffffffffffffff167f4196decb55b5644a278b6ded1c42a27acb5182aa099b1fd48974bcc0cf263fd584846040516106da929190610e75565b60405180910390a36106ec6001600255565b5050505050565b6106fb6107a3565b6001805473ffffffffffffffffffffffffffffffffffffffff83167fffffffffffffffffffffffff0000000000000000000000000000000000000000909116811790915561075e60005473ffffffffffffffffffffffffffffffffffffffff1690565b73ffffffffffffffffffffffffffffffffffffffff167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b60005473ffffffffffffffffffffffffffffffffffffffff163314610498576040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152602401610501565b600180547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055610513816109ed565b6002805403610862576040517f3ee5aeb500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60028055565b60006109496108c9604080517f47e79534a245952e8b16893a336b85a3d9ea9fa8c573f3d803afb92a794692186020820152469181019190915230606082015260009060800160405160208183030381529060405280519060200120905090565b60408051602081019290925281018890526060810186905273ffffffffffffffffffffffffffffffffffffffff8716608082015260a001604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b9050600061098d8285858080601f016020809104026020016040519081016040528093929190818152602001838380828437600092019190915250610a6292505050565b60045490915073ffffffffffffffffffffffffffffffffffffffff8083169116146109e4576040517f8baa579f00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50505050505050565b6000805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080600080610a728686610a8c565b925092509250610a828282610ad9565b5090949350505050565b60008060008351604103610ac65760208401516040850151606086015160001a610ab888828585610be1565b955095509550505050610ad2565b50508151600091506002905b9250925092565b6000826003811115610aed57610aed610ec2565b03610af6575050565b6001826003811115610b0a57610b0a610ec2565b03610b41576040517ff645eedf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6002826003811115610b5557610b55610ec2565b03610b8f576040517ffce698f700000000000000000000000000000000000000000000000000000000815260048101829052602401610501565b6003826003811115610ba357610ba3610ec2565b03610bdd576040517fd78bce0c00000000000000000000000000000000000000000000000000000000815260048101829052602401610501565b5050565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610c1c5750600091506003905082610cd1565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610c70573d6000803e3d6000fd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610cc757506000925060019150829050610cd1565b9250600091508190505b9450945094915050565b60008083601f840112610ced57600080fd5b50813567ffffffffffffffff811115610d0557600080fd5b602083019150836020828501011115610d1d57600080fd5b9250929050565b60008060008060608587031215610d3a57600080fd5b8435935060208501359250604085013567ffffffffffffffff811115610d5f57600080fd5b610d6b87828801610cdb565b95989497509550505050565b803573ffffffffffffffffffffffffffffffffffffffff81168114610d9b57600080fd5b919050565b600060208284031215610db257600080fd5b610dbb82610d77565b9392505050565b600080600080600060808688031215610dda57600080fd5b85359450610dea60208701610d77565b935060408601359250606086013567ffffffffffffffff811115610e0d57600080fd5b610e1988828901610cdb565b969995985093965092949392505050565b600060208284031215610e3c57600080fd5b5051919050565b600060208284031215610e5557600080fd5b81518015158114610dbb57600080fd5b8183823760009101908152919050565b60208152816020820152818360408301376000818301604090810191909152601f9092017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0160101919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fdfea2646970667358221220b7a59c0d6aa57a5377153bde838a72f5cf660eb6d5a169585b0e17d1287a48cc64736f6c63430008180033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000051fc2c72731155f225a6ca8002887e56afdb7b04000000000000000000000000cc4a0add6711c02a0fbe19cc80014e6d4fd6fd790000000000000000000000008fc17671d853341d9e8b001f5fc3c892d09cb53a
-----Decoded View---------------
Arg [0] : _initialOwner (address): 0x51Fc2c72731155F225A6Ca8002887e56AFdB7b04
Arg [1] : _signer (address): 0xCc4a0adD6711c02A0fBe19CC80014E6d4fd6fD79
Arg [2] : _token (address): 0x8fc17671D853341D9e8B001F5Fc3C892d09CB53A
-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 00000000000000000000000051fc2c72731155f225a6ca8002887e56afdb7b04
Arg [1] : 000000000000000000000000cc4a0add6711c02a0fbe19cc80014e6d4fd6fd79
Arg [2] : 0000000000000000000000008fc17671d853341d9e8b001f5fc3c892d09cb53a
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.