ETH Price: $2,334.34 (-0.53%)

Contract

0x989468982b08AEfA46E37CD0086142A86fa466D7
 

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Redeem Solve207326602024-09-12 6:11:4710 hrs ago1726121507IN
0x98946898...86fa466D7
0 ETH0.000925852.24633791
Redeem Solve207326502024-09-12 6:09:4710 hrs ago1726121387IN
0x98946898...86fa466D7
0 ETH0.001631862.94143476
Redeem Solve207326472024-09-12 6:09:1110 hrs ago1726121351IN
0x98946898...86fa466D7
0 ETH0.000890812.81069001
Redeem Solve207326402024-09-12 6:07:4710 hrs ago1726121267IN
0x98946898...86fa466D7
0 ETH0.00095662.89186894
Redeem Solve207326282024-09-12 6:05:2310 hrs ago1726121123IN
0x98946898...86fa466D7
0 ETH0.001715862.92929442
Redeem Solve207326232024-09-12 6:04:2310 hrs ago1726121063IN
0x98946898...86fa466D7
0 ETH0.001249933.1358543
Redeem Solve207326082024-09-12 6:01:2310 hrs ago1726120883IN
0x98946898...86fa466D7
0 ETH0.000810812.85067984
Redeem Solve207326062024-09-12 6:00:5910 hrs ago1726120859IN
0x98946898...86fa466D7
0 ETH0.00114663.11686957
Redeem Solve207326052024-09-12 6:00:4710 hrs ago1726120847IN
0x98946898...86fa466D7
0 ETH0.001152823.22295474
Redeem Solve207323712024-09-12 5:13:3511 hrs ago1726118015IN
0x98946898...86fa466D7
0 ETH0.000865971.84479784
Redeem Solve207323602024-09-12 5:11:2311 hrs ago1726117883IN
0x98946898...86fa466D7
0 ETH0.002540471.72058879
Redeem Solve207323592024-09-12 5:11:1111 hrs ago1726117871IN
0x98946898...86fa466D7
0 ETH0.000467171.64907988
Redeem Solve207323562024-09-12 5:10:3511 hrs ago1726117835IN
0x98946898...86fa466D7
0 ETH0.000446141.71269674
Redeem Solve207322372024-09-12 4:46:3511 hrs ago1726116395IN
0x98946898...86fa466D7
0 ETH0.000464411.59473563
Redeem Solve207322362024-09-12 4:46:2311 hrs ago1726116383IN
0x98946898...86fa466D7
0 ETH0.000484651.62575484
Redeem Solve207322352024-09-12 4:46:1111 hrs ago1726116371IN
0x98946898...86fa466D7
0 ETH0.00050941.63198245
Redeem Solve207322332024-09-12 4:45:4711 hrs ago1726116347IN
0x98946898...86fa466D7
0 ETH0.000522751.74630245
Redeem Solve207319982024-09-12 3:58:4712 hrs ago1726113527IN
0x98946898...86fa466D7
0 ETH0.000778722.38309532
Redeem Solve207319972024-09-12 3:58:3512 hrs ago1726113515IN
0x98946898...86fa466D7
0 ETH0.000632512.41913247
Redeem Solve207319962024-09-12 3:58:2312 hrs ago1726113503IN
0x98946898...86fa466D7
0 ETH0.002030252.34618394
Redeem Solve207314302024-09-12 2:04:1114 hrs ago1726106651IN
0x98946898...86fa466D7
0 ETH0.000638722.79728703
Redeem Solve207255912024-09-11 6:29:5933 hrs ago1726036199IN
0x98946898...86fa466D7
0 ETH0.000402961.65910628
Redeem Solve207255812024-09-11 6:27:5933 hrs ago1726036079IN
0x98946898...86fa466D7
0 ETH0.000527231.67522239
Set Authority207255702024-09-11 6:25:4733 hrs ago1726035947IN
0x98946898...86fa466D7
0 ETH0.000100432.11029002
Transfer Ownersh...207249942024-09-11 4:30:2335 hrs ago1726029023IN
0x98946898...86fa466D7
0 ETH0.000092443.00466423
View all transactions

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
197285822024-04-24 23:43:35140 days ago1714002215  Contract Creation0 ETH
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
AtomicSolverV3

Compiler Version
v0.8.21+commit.d9974bed

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion
File 1 of 23 : AtomicSolverV3.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.21;

import {AtomicQueue, ERC20, SafeTransferLib} from "./AtomicQueue.sol";
import {IAtomicSolver} from "./IAtomicSolver.sol";
import {Auth, Authority} from "@solmate/auth/Auth.sol";
import {ERC4626} from "@solmate/tokens/ERC4626.sol";
import {IWEETH} from "src/interfaces/IStaking.sol";
import {FixedPointMathLib} from "@solmate/utils/FixedPointMathLib.sol";
import {TellerWithMultiAssetSupport} from "src/base/Roles/TellerWithMultiAssetSupport.sol";

/**
 * @title AtomicSolverV3
 * @author crispymangoes
 */
contract AtomicSolverV3 is IAtomicSolver, Auth {
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;
    // ========================================= CONSTANTS =========================================

    ERC20 internal constant eETH = ERC20(0x35fA164735182de50811E8e2E824cFb9B6118ac2);
    ERC20 internal constant weETH = ERC20(0xCd5fE23C85820F7B72D0926FC9b05b43E359b7ee);

    // ========================================= ENUMS =========================================

    /**
     * @notice The Solve Type, used in `finishSolve` to determine the logic used.
     * @notice P2P Solver wants to swap share.asset() for user(s) shares
     * @notice REDEEM Solver needs to redeem shares, then can cover user(s) required assets.
     */
    enum SolveType {
        P2P,
        REDEEM
    }

    //============================== ERRORS ===============================

    error AtomicSolverV3___WrongInitiator();
    error AtomicSolverV3___AlreadyInSolveContext();
    error AtomicSolverV3___FailedToSolve();
    error AtomicSolverV3___SolveMaxAssetsExceeded(uint256 actualAssets, uint256 maxAssets);
    error AtomicSolverV3___P2PSolveMinSharesNotMet(uint256 actualShares, uint256 minShares);
    error AtomicSolverV3___BoringVaultTellerMismatch(address vault, address teller);

    //============================== IMMUTABLES ===============================

    constructor(address _owner, Authority _authority) Auth(_owner, _authority) {}

    //============================== SOLVE FUNCTIONS ===============================
    /**
     * @notice Solver wants to exchange p2p share.asset() for withdraw queue shares.
     * @dev Solver should approve this contract to spend share.asset().
     */
    function p2pSolve(
        AtomicQueue queue,
        ERC20 offer,
        ERC20 want,
        address[] calldata users,
        uint256 minOfferReceived,
        uint256 maxAssets
    ) external requiresAuth {
        bytes memory runData = abi.encode(SolveType.P2P, msg.sender, minOfferReceived, maxAssets);

        // Solve for `users`.
        queue.solve(offer, want, users, runData, address(this));
    }

    /**
     * @notice Solver wants to redeem withdraw offer shares, to help cover withdraw.
     * @dev `offer` MUST be an ERC4626 vault.
     */
    function redeemSolve(
        AtomicQueue queue,
        ERC20 offer,
        ERC20 want,
        address[] calldata users,
        uint256 minimumAssetsOut,
        uint256 maxAssets,
        TellerWithMultiAssetSupport teller
    ) external requiresAuth {
        bytes memory runData = abi.encode(SolveType.REDEEM, msg.sender, minimumAssetsOut, maxAssets, teller);

        // Solve for `users`.
        queue.solve(offer, want, users, runData, address(this));
    }

    //============================== ISOLVER FUNCTIONS ===============================

    /**
     * @notice Implement the finishSolve function WithdrawQueue expects to call.
     * @dev nonReentrant is not needed on this function because it is impossible to reenter,
     *      because the above solve functions have the nonReentrant modifier.
     *      The only way to have the first 2 checks pass is if the msg.sender is the queue,
     *      and this contract is msg.sender of `Queue.solve()`, which is only called in the above
     *      functions.
     */
    function finishSolve(
        bytes calldata runData,
        address initiator,
        ERC20 offer,
        ERC20 want,
        uint256 offerReceived,
        uint256 wantApprovalAmount
    ) external requiresAuth {
        if (initiator != address(this)) revert AtomicSolverV3___WrongInitiator();

        address queue = msg.sender;

        SolveType _type = abi.decode(runData, (SolveType));

        if (_type == SolveType.P2P) {
            _p2pSolve(queue, runData, offer, want, offerReceived, wantApprovalAmount);
        } else if (_type == SolveType.REDEEM) {
            _redeemSolve(queue, runData, offer, want, offerReceived, wantApprovalAmount);
        }
    }

    //============================== HELPER FUNCTIONS ===============================

    /**
     * @notice Helper function containing the logic to handle p2p solves.
     */
    function _p2pSolve(
        address queue,
        bytes memory runData,
        ERC20 offer,
        ERC20 want,
        uint256 offerReceived,
        uint256 wantApprovalAmount
    ) internal {
        (, address solver, uint256 minOfferReceived, uint256 maxAssets) =
            abi.decode(runData, (SolveType, address, uint256, uint256));

        // Make sure solver is receiving the minimum amount of offer.
        if (offerReceived < minOfferReceived) {
            revert AtomicSolverV3___P2PSolveMinSharesNotMet(offerReceived, minOfferReceived);
        }

        // Make sure solvers `maxAssets` was not exceeded.
        if (wantApprovalAmount > maxAssets) {
            revert AtomicSolverV3___SolveMaxAssetsExceeded(wantApprovalAmount, maxAssets);
        }

        // Transfer required want from solver.
        want.safeTransferFrom(solver, address(this), wantApprovalAmount);

        // Transfer offer to solver.
        offer.safeTransfer(solver, offerReceived);

        // Approve queue to spend wantApprovalAmount.
        want.safeApprove(queue, wantApprovalAmount);
    }

    /**
     * @notice Helper function containing the logic to handle redeem solves.
     */
    function _redeemSolve(
        address queue,
        bytes memory runData,
        ERC20 offer,
        ERC20 want,
        uint256 offerReceived,
        uint256 wantApprovalAmount
    ) internal {
        (, address solver, uint256 minimumAssetsOut, uint256 maxAssets, TellerWithMultiAssetSupport teller) =
            abi.decode(runData, (SolveType, address, uint256, uint256, TellerWithMultiAssetSupport));

        if (address(offer) != address(teller.vault())) {
            revert AtomicSolverV3___BoringVaultTellerMismatch(address(offer), address(teller));
        }
        // Make sure solvers `maxAssets` was not exceeded.
        if (wantApprovalAmount > maxAssets) {
            revert AtomicSolverV3___SolveMaxAssetsExceeded(wantApprovalAmount, maxAssets);
        }

        // Redeem the shares, sending assets to solver.
        teller.bulkWithdraw(want, offerReceived, minimumAssetsOut, solver);

        // Transfer required assets from solver.
        want.safeTransferFrom(solver, address(this), wantApprovalAmount);

        // Approve queue to spend wantApprovalAmount.
        want.safeApprove(queue, wantApprovalAmount);
    }
}

File 2 of 23 : AtomicQueue.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.21;

import {FixedPointMathLib} from "@solmate/utils/FixedPointMathLib.sol";
import {SafeTransferLib} from "@solmate/utils/SafeTransferLib.sol";
import {ERC20} from "@solmate/tokens/ERC20.sol";
import {ReentrancyGuard} from "@solmate/utils/ReentrancyGuard.sol";
import {IAtomicSolver} from "./IAtomicSolver.sol";

/**
 * @title AtomicQueue
 * @notice Allows users to create `AtomicRequests` that specify an ERC20 asset to `offer`
 *         and an ERC20 asset to `want` in return.
 * @notice Making atomic requests where the exchange rate between offer and want is not
 *         relatively stable is effectively the same as placing a limit order between
 *         those assets, so requests can be filled at a rate worse than the current market rate.
 * @notice It is possible for a user to make multiple requests that use the same offer asset.
 *         If this is done it is important that the user has approved the queue to spend the
 *         total amount of assets aggregated from all their requests, and to also have enough
 *         `offer` asset to cover the aggregate total request of `offerAmount`.
 * @author crispymangoes
 */
contract AtomicQueue is ReentrancyGuard {
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;

    // ========================================= STRUCTS =========================================

    /**
     * @notice Stores request information needed to fulfill a users atomic request.
     * @param deadline unix timestamp for when request is no longer valid
     * @param atomicPrice the price in terms of `want` asset the user wants their `offer` assets "sold" at
     * @dev atomicPrice MUST be in terms of `want` asset decimals.
     * @param offerAmount the amount of `offer` asset the user wants converted to `want` asset
     * @param inSolve bool used during solves to prevent duplicate users, and to prevent redoing multiple checks
     */
    struct AtomicRequest {
        uint64 deadline; // deadline to fulfill request
        uint88 atomicPrice; // In terms of want asset decimals
        uint96 offerAmount; // The amount of offer asset the user wants to sell.
        bool inSolve; // Indicates whether this user is currently having their request fulfilled.
    }

    /**
     * @notice Used in `viewSolveMetaData` helper function to return data in a clean struct.
     * @param user the address of the user
     * @param flags 8 bits indicating the state of the user only the first 4 bits are used XXXX0000
     *              Either all flags are false(user is solvable) or only 1 is true(an error occurred).
     *              From right to left
     *              - 0: indicates user deadline has passed.
     *              - 1: indicates user request has zero offer amount.
     *              - 2: indicates user does not have enough offer asset in wallet.
     *              - 3: indicates user has not given AtomicQueue approval.
     * @param assetsToOffer the amount of offer asset to solve
     * @param assetsForWant the amount of assets users want for their offer assets
     */
    struct SolveMetaData {
        address user;
        uint8 flags;
        uint256 assetsToOffer;
        uint256 assetsForWant;
    }

    // ========================================= GLOBAL STATE =========================================

    /**
     * @notice Maps user address to offer asset to want asset to a AtomicRequest struct.
     */
    mapping(address => mapping(ERC20 => mapping(ERC20 => AtomicRequest))) public userAtomicRequest;

    //============================== ERRORS ===============================

    error AtomicQueue__UserRepeated(address user);
    error AtomicQueue__RequestDeadlineExceeded(address user);
    error AtomicQueue__UserNotInSolve(address user);
    error AtomicQueue__ZeroOfferAmount(address user);

    //============================== EVENTS ===============================

    /**
     * @notice Emitted when `updateAtomicRequest` is called.
     */
    event AtomicRequestUpdated(
        address user,
        address offerToken,
        address wantToken,
        uint256 amount,
        uint256 deadline,
        uint256 minPrice,
        uint256 timestamp
    );

    /**
     * @notice Emitted when `solve` exchanges a users offer asset for their want asset.
     */
    event AtomicRequestFulfilled(
        address user,
        address offerToken,
        address wantToken,
        uint256 offerAmountSpent,
        uint256 wantAmountReceived,
        uint256 timestamp
    );

    //============================== USER FUNCTIONS ===============================

    /**
     * @notice Get a users Atomic Request.
     * @param user the address of the user to get the request for
     * @param offer the ERC0 token they want to exchange for the want
     * @param want the ERC20 token they want in exchange for the offer
     */
    function getUserAtomicRequest(address user, ERC20 offer, ERC20 want) external view returns (AtomicRequest memory) {
        return userAtomicRequest[user][offer][want];
    }

    /**
     * @notice Helper function that returns either
     *         true: Withdraw request is valid.
     *         false: Withdraw request is not valid.
     * @dev It is possible for a withdraw request to return false from this function, but using the
     *      request in `updateAtomicRequest` will succeed, but solvers will not be able to include
     *      the user in `solve` unless some other state is changed.
     * @param offer the ERC0 token they want to exchange for the want
     * @param user the address of the user making the request
     * @param userRequest the request struct to validate
     */
    function isAtomicRequestValid(ERC20 offer, address user, AtomicRequest calldata userRequest)
        external
        view
        returns (bool)
    {
        // Validate amount.
        if (userRequest.offerAmount > offer.balanceOf(user)) return false;
        // Validate deadline.
        if (block.timestamp > userRequest.deadline) return false;
        // Validate approval.
        if (offer.allowance(user, address(this)) < userRequest.offerAmount) return false;
        // Validate offerAmount is nonzero.
        if (userRequest.offerAmount == 0) return false;
        // Validate atomicPrice is nonzero.
        if (userRequest.atomicPrice == 0) return false;

        return true;
    }

    /**
     * @notice Allows user to add/update their withdraw request.
     * @notice It is possible for a withdraw request with a zero atomicPrice to be made, and solved.
     *         If this happens, users will be selling their shares for no assets in return.
     *         To determine a safe atomicPrice, share.previewRedeem should be used to get
     *         a good share price, then the user can lower it from there to make their request fill faster.
     * @param offer the ERC20 token the user is offering in exchange for the want
     * @param want the ERC20 token the user wants in exchange for offer
     * @param userRequest the users request
     */
    function updateAtomicRequest(ERC20 offer, ERC20 want, AtomicRequest calldata userRequest) external nonReentrant {
        AtomicRequest storage request = userAtomicRequest[msg.sender][offer][want];

        request.deadline = userRequest.deadline;
        request.atomicPrice = userRequest.atomicPrice;
        request.offerAmount = userRequest.offerAmount;

        // Emit full amount user has.
        emit AtomicRequestUpdated(
            msg.sender,
            address(offer),
            address(want),
            userRequest.offerAmount,
            userRequest.deadline,
            userRequest.atomicPrice,
            block.timestamp
        );
    }

    //============================== SOLVER FUNCTIONS ===============================

    /**
     * @notice Called by solvers in order to exchange offer asset for want asset.
     * @notice Solvers are optimistically transferred the offer asset, then are required to
     *         approve this contract to spend enough of want assets to cover all requests.
     * @dev It is very likely `solve` TXs will be front run if broadcasted to public mem pools,
     *      so solvers should use private mem pools.
     * @param offer the ERC20 offer token to solve for
     * @param want the ERC20 want token to solve for
     * @param users an array of user addresses to solve for
     * @param runData extra data that is passed back to solver when `finishSolve` is called
     * @param solver the address to make `finishSolve` callback to
     */
    function solve(ERC20 offer, ERC20 want, address[] calldata users, bytes calldata runData, address solver)
        external
        nonReentrant
    {
        // Save offer asset decimals.
        uint8 offerDecimals = offer.decimals();

        uint256 assetsToOffer;
        uint256 assetsForWant;
        for (uint256 i; i < users.length; ++i) {
            AtomicRequest storage request = userAtomicRequest[users[i]][offer][want];

            if (request.inSolve) revert AtomicQueue__UserRepeated(users[i]);
            if (block.timestamp > request.deadline) revert AtomicQueue__RequestDeadlineExceeded(users[i]);
            if (request.offerAmount == 0) revert AtomicQueue__ZeroOfferAmount(users[i]);

            // User gets whatever their atomic price * offerAmount is.
            assetsForWant += _calculateAssetAmount(request.offerAmount, request.atomicPrice, offerDecimals);

            // If all checks above passed, the users request is valid and should be fulfilled.
            assetsToOffer += request.offerAmount;
            request.inSolve = true;
            // Transfer shares from user to solver.
            offer.safeTransferFrom(users[i], solver, request.offerAmount);
        }

        IAtomicSolver(solver).finishSolve(runData, msg.sender, offer, want, assetsToOffer, assetsForWant);

        for (uint256 i; i < users.length; ++i) {
            AtomicRequest storage request = userAtomicRequest[users[i]][offer][want];

            if (request.inSolve) {
                // We know that the minimum price and deadline arguments are satisfied since this can only be true if they were.

                // Send user their share of assets.
                uint256 assetsToUser = _calculateAssetAmount(request.offerAmount, request.atomicPrice, offerDecimals);

                want.safeTransferFrom(solver, users[i], assetsToUser);

                emit AtomicRequestFulfilled(
                    users[i], address(offer), address(want), request.offerAmount, assetsToUser, block.timestamp
                );

                // Set shares to withdraw to 0.
                request.offerAmount = 0;
                request.inSolve = false;
            } else {
                revert AtomicQueue__UserNotInSolve(users[i]);
            }
        }
    }

    /**
     * @notice Helper function solvers can use to determine if users are solvable, and the required amounts to do so.
     * @notice Repeated users are not accounted for in this setup, so if solvers have repeat users in their `users`
     *         array the results can be wrong.
     * @dev Since a user can have multiple requests with the same offer asset but different want asset, it is
     *      possible for `viewSolveMetaData` to report no errors, but for a solve to fail, if any solves were done
     *      between the time `viewSolveMetaData` and before `solve` is called.
     * @param offer the ERC20 offer token to check for solvability
     * @param want the ERC20 want token to check for solvability
     * @param users an array of user addresses to check for solvability
     */
    function viewSolveMetaData(ERC20 offer, ERC20 want, address[] calldata users)
        external
        view
        returns (SolveMetaData[] memory metaData, uint256 totalAssetsForWant, uint256 totalAssetsToOffer)
    {
        // Save offer asset decimals.
        uint8 offerDecimals = offer.decimals();

        // Setup meta data.
        metaData = new SolveMetaData[](users.length);

        for (uint256 i; i < users.length; ++i) {
            AtomicRequest memory request = userAtomicRequest[users[i]][offer][want];

            metaData[i].user = users[i];

            if (block.timestamp > request.deadline) {
                metaData[i].flags |= uint8(1);
            }
            if (request.offerAmount == 0) {
                metaData[i].flags |= uint8(1) << 1;
            }
            if (offer.balanceOf(users[i]) < request.offerAmount) {
                metaData[i].flags |= uint8(1) << 2;
            }
            if (offer.allowance(users[i], address(this)) < request.offerAmount) {
                metaData[i].flags |= uint8(1) << 3;
            }

            metaData[i].assetsToOffer = request.offerAmount;

            // User gets whatever their execution share price is.
            uint256 userAssets = _calculateAssetAmount(request.offerAmount, request.atomicPrice, offerDecimals);
            metaData[i].assetsForWant = userAssets;

            // If flags is zero, no errors occurred.
            if (metaData[i].flags == 0) {
                totalAssetsForWant += userAssets;
                totalAssetsToOffer += request.offerAmount;
            }
        }
    }

    //============================== INTERNAL FUNCTIONS ===============================

    /**
     * @notice Helper function to calculate the amount of want assets a users wants in exchange for
     *         `offerAmount` of offer asset.
     */
    function _calculateAssetAmount(uint256 offerAmount, uint256 atomicPrice, uint8 offerDecimals)
        internal
        pure
        returns (uint256)
    {
        return atomicPrice.mulDivDown(offerAmount, 10 ** offerDecimals);
    }
}

File 3 of 23 : IAtomicSolver.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.8.0;

import { ERC20 } from "@solmate/tokens/ERC20.sol";

interface IAtomicSolver {
    /**
     * @notice This function must be implemented in order for an address to be a `solver`
     *         for the AtomicQueue
     * @param runData arbitrary bytes data that is dependent on how each solver is setup
     *        it could contain swap data, or flash loan data, etc..
     * @param initiator the address that initiated a solve
     * @param offer the ERC20 asset sent to the solver
     * @param want the ERC20 asset the solver must approve the queue for
     * @param assetsToOffer the amount of `offer` sent to the solver
     * @param assetsForWant the amount of `want` the solver must approve the queue for
     */
    function finishSolve(
        bytes calldata runData,
        address initiator,
        ERC20 offer,
        ERC20 want,
        uint256 assetsToOffer,
        uint256 assetsForWant
    ) external;
}

File 4 of 23 : Auth.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Provides a flexible and updatable auth pattern which is completely separate from application logic.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Auth.sol)
/// @author Modified from Dappsys (https://github.com/dapphub/ds-auth/blob/master/src/auth.sol)
abstract contract Auth {
    event OwnershipTransferred(address indexed user, address indexed newOwner);

    event AuthorityUpdated(address indexed user, Authority indexed newAuthority);

    address public owner;

    Authority public authority;

    constructor(address _owner, Authority _authority) {
        owner = _owner;
        authority = _authority;

        emit OwnershipTransferred(msg.sender, _owner);
        emit AuthorityUpdated(msg.sender, _authority);
    }

    modifier requiresAuth() virtual {
        require(isAuthorized(msg.sender, msg.sig), "UNAUTHORIZED");

        _;
    }

    function isAuthorized(address user, bytes4 functionSig) internal view virtual returns (bool) {
        Authority auth = authority; // Memoizing authority saves us a warm SLOAD, around 100 gas.

        // Checking if the caller is the owner only after calling the authority saves gas in most cases, but be
        // aware that this makes protected functions uncallable even to the owner if the authority is out of order.
        return (address(auth) != address(0) && auth.canCall(user, address(this), functionSig)) || user == owner;
    }

    function setAuthority(Authority newAuthority) public virtual {
        // We check if the caller is the owner first because we want to ensure they can
        // always swap out the authority even if it's reverting or using up a lot of gas.
        require(msg.sender == owner || authority.canCall(msg.sender, address(this), msg.sig));

        authority = newAuthority;

        emit AuthorityUpdated(msg.sender, newAuthority);
    }

    function transferOwnership(address newOwner) public virtual requiresAuth {
        owner = newOwner;

        emit OwnershipTransferred(msg.sender, newOwner);
    }
}

/// @notice A generic interface for a contract which provides authorization data to an Auth instance.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Auth.sol)
/// @author Modified from Dappsys (https://github.com/dapphub/ds-auth/blob/master/src/auth.sol)
interface Authority {
    function canCall(
        address user,
        address target,
        bytes4 functionSig
    ) external view returns (bool);
}

File 5 of 23 : ERC4626.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";
import {SafeTransferLib} from "../utils/SafeTransferLib.sol";
import {FixedPointMathLib} from "../utils/FixedPointMathLib.sol";

/// @notice Minimal ERC4626 tokenized Vault implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC4626.sol)
abstract contract ERC4626 is ERC20 {
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;

    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Deposit(address indexed caller, address indexed owner, uint256 assets, uint256 shares);

    event Withdraw(
        address indexed caller,
        address indexed receiver,
        address indexed owner,
        uint256 assets,
        uint256 shares
    );

    /*//////////////////////////////////////////////////////////////
                               IMMUTABLES
    //////////////////////////////////////////////////////////////*/

    ERC20 public immutable asset;

    constructor(
        ERC20 _asset,
        string memory _name,
        string memory _symbol
    ) ERC20(_name, _symbol, _asset.decimals()) {
        asset = _asset;
    }

    /*//////////////////////////////////////////////////////////////
                        DEPOSIT/WITHDRAWAL LOGIC
    //////////////////////////////////////////////////////////////*/

    function deposit(uint256 assets, address receiver) public virtual returns (uint256 shares) {
        // Check for rounding error since we round down in previewDeposit.
        require((shares = previewDeposit(assets)) != 0, "ZERO_SHARES");

        // Need to transfer before minting or ERC777s could reenter.
        asset.safeTransferFrom(msg.sender, address(this), assets);

        _mint(receiver, shares);

        emit Deposit(msg.sender, receiver, assets, shares);

        afterDeposit(assets, shares);
    }

    function mint(uint256 shares, address receiver) public virtual returns (uint256 assets) {
        assets = previewMint(shares); // No need to check for rounding error, previewMint rounds up.

        // Need to transfer before minting or ERC777s could reenter.
        asset.safeTransferFrom(msg.sender, address(this), assets);

        _mint(receiver, shares);

        emit Deposit(msg.sender, receiver, assets, shares);

        afterDeposit(assets, shares);
    }

    function withdraw(
        uint256 assets,
        address receiver,
        address owner
    ) public virtual returns (uint256 shares) {
        shares = previewWithdraw(assets); // No need to check for rounding error, previewWithdraw rounds up.

        if (msg.sender != owner) {
            uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.

            if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
        }

        beforeWithdraw(assets, shares);

        _burn(owner, shares);

        emit Withdraw(msg.sender, receiver, owner, assets, shares);

        asset.safeTransfer(receiver, assets);
    }

    function redeem(
        uint256 shares,
        address receiver,
        address owner
    ) public virtual returns (uint256 assets) {
        if (msg.sender != owner) {
            uint256 allowed = allowance[owner][msg.sender]; // Saves gas for limited approvals.

            if (allowed != type(uint256).max) allowance[owner][msg.sender] = allowed - shares;
        }

        // Check for rounding error since we round down in previewRedeem.
        require((assets = previewRedeem(shares)) != 0, "ZERO_ASSETS");

        beforeWithdraw(assets, shares);

        _burn(owner, shares);

        emit Withdraw(msg.sender, receiver, owner, assets, shares);

        asset.safeTransfer(receiver, assets);
    }

    /*//////////////////////////////////////////////////////////////
                            ACCOUNTING LOGIC
    //////////////////////////////////////////////////////////////*/

    function totalAssets() public view virtual returns (uint256);

    function convertToShares(uint256 assets) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? assets : assets.mulDivDown(supply, totalAssets());
    }

    function convertToAssets(uint256 shares) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? shares : shares.mulDivDown(totalAssets(), supply);
    }

    function previewDeposit(uint256 assets) public view virtual returns (uint256) {
        return convertToShares(assets);
    }

    function previewMint(uint256 shares) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? shares : shares.mulDivUp(totalAssets(), supply);
    }

    function previewWithdraw(uint256 assets) public view virtual returns (uint256) {
        uint256 supply = totalSupply; // Saves an extra SLOAD if totalSupply is non-zero.

        return supply == 0 ? assets : assets.mulDivUp(supply, totalAssets());
    }

    function previewRedeem(uint256 shares) public view virtual returns (uint256) {
        return convertToAssets(shares);
    }

    /*//////////////////////////////////////////////////////////////
                     DEPOSIT/WITHDRAWAL LIMIT LOGIC
    //////////////////////////////////////////////////////////////*/

    function maxDeposit(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    function maxMint(address) public view virtual returns (uint256) {
        return type(uint256).max;
    }

    function maxWithdraw(address owner) public view virtual returns (uint256) {
        return convertToAssets(balanceOf[owner]);
    }

    function maxRedeem(address owner) public view virtual returns (uint256) {
        return balanceOf[owner];
    }

    /*//////////////////////////////////////////////////////////////
                          INTERNAL HOOKS LOGIC
    //////////////////////////////////////////////////////////////*/

    function beforeWithdraw(uint256 assets, uint256 shares) internal virtual {}

    function afterDeposit(uint256 assets, uint256 shares) internal virtual {}
}

File 6 of 23 : IStaking.sol
// SPDX-License-Identifier: Apache-2.0
pragma solidity 0.8.21;

// Swell
interface ISWETH {
    function deposit() external payable;
}

// EtherFi
interface ILiquidityPool {
    function deposit() external payable returns (uint256);

    function requestWithdraw(address recipient, uint256 amount) external returns (uint256);

    function amountForShare(uint256 shares) external view returns (uint256);

    function etherFiAdminContract() external view returns (address);

    function addEthAmountLockedForWithdrawal(uint128 _amount) external;
}

interface IWithdrawRequestNft {
    struct WithdrawRequest {
        uint96 amountOfEEth;
        uint96 shareOfEEth;
        bool isValid;
        uint32 feeGwei;
    }

    function claimWithdraw(uint256 tokenId) external;

    function getRequest(uint256 requestId) external view returns (WithdrawRequest memory);

    function finalizeRequests(uint256 requestId) external;

    function owner() external view returns (address);

    function updateAdmin(address admin, bool isAdmin) external;
}

interface IWEETH {
    function wrap(uint256 amount) external returns (uint256);

    function unwrap(uint256 amount) external returns (uint256);

    function getRate() external view returns (uint256);
}

// Kelp DAO
interface ILRTDepositPool {
    function depositAsset(
        address asset,
        uint256 depositAmount,
        uint256 minRSETHAmountToReceive,
        string calldata referralId
    ) external;
}

// Lido
interface ISTETH {
    function submit(address referral) external payable returns (uint256);
}

interface IWSTETH {
    function wrap(uint256 amount) external returns (uint256);

    function unwrap(uint256 amount) external returns (uint256);
}

interface IUNSTETH {
    struct WithdrawalRequestStatus {
        /// @notice stETH token amount that was locked on withdrawal queue for this request
        uint256 amountOfStETH;
        /// @notice amount of stETH shares locked on withdrawal queue for this request
        uint256 amountOfShares;
        /// @notice address that can claim or transfer this request
        address owner;
        /// @notice timestamp of when the request was created, in seconds
        uint256 timestamp;
        /// @notice true, if request is finalized
        bool isFinalized;
        /// @notice true, if request is claimed. Request is claimable if (isFinalized && !isClaimed)
        bool isClaimed;
    }

    function getWithdrawalStatus(uint256[] calldata _requestIds)
        external
        view
        returns (WithdrawalRequestStatus[] memory statuses);

    function requestWithdrawals(uint256[] calldata _amounts, address _owner)
        external
        returns (uint256[] memory requestIds);

    function claimWithdrawal(uint256 _requestId) external;

    function claimWithdrawals(uint256[] calldata _requestIds, uint256[] calldata _hints) external;

    function finalize(uint256 _lastRequestIdToBeFinalized, uint256 _maxShareRate) external payable;

    function getRoleMember(bytes32 role, uint256 index) external view returns (address);

    function FINALIZE_ROLE() external view returns (bytes32);

    function getLastFinalizedRequestId() external view returns (uint256);

    function getLastCheckpointIndex() external view returns (uint256);

    function findCheckpointHints(uint256[] memory requestIds, uint256 firstIndex, uint256 lastIndex)
        external
        view
        returns (uint256[] memory);

    function getClaimableEther(uint256[] memory requestIds, uint256[] memory hints)
        external
        view
        returns (uint256[] memory);
}

// Renzo
interface IRestakeManager {
    function depositETH() external payable;
}

// Stader
interface IStakePoolManager {
    function deposit(address _receiver) external payable returns (uint256);

    function getExchangeRate() external view returns (uint256);
}

interface IStaderConfig {
    function getDecimals() external view returns (uint256);
}

interface IUserWithdrawManager {
    struct WithdrawRequest {
        address owner;
        uint256 ethXAmount;
        uint256 ethExpected;
        uint256 ethFinalized;
        uint256 requestTime;
    }

    function requestWithdraw(uint256 _ethXAmount, address _owner) external returns (uint256);

    function claim(uint256 _requestId) external;

    function userWithdrawRequests(uint256) external view returns (WithdrawRequest memory);

    function finalizeUserWithdrawalRequest() external;
}

File 7 of 23 : FixedPointMathLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Inspired by USM (https://github.com/usmfum/USM/blob/master/contracts/WadMath.sol)
library FixedPointMathLib {
    /*//////////////////////////////////////////////////////////////
                    SIMPLIFIED FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant MAX_UINT256 = 2**256 - 1;

    uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s.

    function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down.
    }

    function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up.
    }

    function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down.
    }

    function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up.
    }

    /*//////////////////////////////////////////////////////////////
                    LOW LEVEL FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function mulDivDown(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // Divide x * y by the denominator.
            z := div(mul(x, y), denominator)
        }
    }

    function mulDivUp(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y))
            if iszero(mul(denominator, iszero(mul(y, gt(x, div(MAX_UINT256, y)))))) {
                revert(0, 0)
            }

            // If x * y modulo the denominator is strictly greater than 0,
            // 1 is added to round up the division of x * y by the denominator.
            z := add(gt(mod(mul(x, y), denominator), 0), div(mul(x, y), denominator))
        }
    }

    function rpow(
        uint256 x,
        uint256 n,
        uint256 scalar
    ) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := scalar
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store scalar in z for now.
                    z := scalar
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, scalar)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, scalar)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, scalar)
                    }
                }
            }
        }
    }

    /*//////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            let y := x // We start y at x, which will help us make our initial estimate.

            z := 181 // The "correct" value is 1, but this saves a multiplication later.

            // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
            // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

            // We check y >= 2^(k + 8) but shift right by k bits
            // each branch to ensure that if x >= 256, then y >= 256.
            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            // Goal was to get z*z*y within a small factor of x. More iterations could
            // get y in a tighter range. Currently, we will have y in [256, 256*2^16).
            // We ensured y >= 256 so that the relative difference between y and y+1 is small.
            // That's not possible if x < 256 but we can just verify those cases exhaustively.

            // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256.
            // Correctness can be checked exhaustively for x < 256, so we assume y >= 256.
            // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps.

            // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range
            // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256.

            // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate
            // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18.

            // There is no overflow risk here since y < 2^136 after the first branch above.
            z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181.

            // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // If x+1 is a perfect square, the Babylonian method cycles between
            // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor.
            // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
            // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case.
            // If you don't care whether the floor or ceil square root is returned, you can remove this statement.
            z := sub(z, lt(div(x, z), z))
        }
    }

    function unsafeMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Mod x by y. Note this will return
            // 0 instead of reverting if y is zero.
            z := mod(x, y)
        }
    }

    function unsafeDiv(uint256 x, uint256 y) internal pure returns (uint256 r) {
        /// @solidity memory-safe-assembly
        assembly {
            // Divide x by y. Note this will return
            // 0 instead of reverting if y is zero.
            r := div(x, y)
        }
    }

    function unsafeDivUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
        /// @solidity memory-safe-assembly
        assembly {
            // Add 1 to x * y if x % y > 0. Note this will
            // return 0 instead of reverting if y is zero.
            z := add(gt(mod(x, y), 0), div(x, y))
        }
    }
}

File 8 of 23 : TellerWithMultiAssetSupport.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import {ERC20} from "@solmate/tokens/ERC20.sol";
import {WETH} from "@solmate/tokens/WETH.sol";
import {BoringVault} from "src/base/BoringVault.sol";
import {AccountantWithRateProviders} from "src/base/Roles/AccountantWithRateProviders.sol";
import {FixedPointMathLib} from "@solmate/utils/FixedPointMathLib.sol";
import {SafeTransferLib} from "@solmate/utils/SafeTransferLib.sol";
import {BeforeTransferHook} from "src/interfaces/BeforeTransferHook.sol";
import {Auth, Authority} from "@solmate/auth/Auth.sol";
import {ReentrancyGuard} from "@solmate/utils/ReentrancyGuard.sol";

contract TellerWithMultiAssetSupport is Auth, BeforeTransferHook, ReentrancyGuard {
    using FixedPointMathLib for uint256;
    using SafeTransferLib for ERC20;
    using SafeTransferLib for WETH;

    // ========================================= CONSTANTS =========================================

    /**
     * @notice Native address used to tell the contract to handle native asset deposits.
     */
    address internal constant NATIVE = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;

    /**
     * @notice The maximum possible share lock period.
     */
    uint256 internal constant MAX_SHARE_LOCK_PERIOD = 3 days;

    // ========================================= STATE =========================================

    /**
     * @notice Mapping ERC20s to an isSupported bool.
     */
    mapping(ERC20 => bool) public isSupported;

    /**
     * @notice The deposit nonce used to map to a deposit hash.
     */
    uint96 public depositNonce = 1;

    /**
     * @notice After deposits, shares are locked to the msg.sender's address
     *         for `shareLockPeriod`.
     * @dev During this time all trasnfers from msg.sender will revert, and
     *      deposits are refundable.
     */
    uint64 public shareLockPeriod;

    /**
     * @notice Used to pause calls to `deposit` and `depositWithPermit`.
     */
    bool public isPaused;

    /**
     * @dev Maps deposit nonce to keccak256(address receiver, address depositAsset, uint256 depositAmount, uint256 shareAmount, uint256 timestamp, uint256 shareLockPeriod).
     */
    mapping(uint256 => bytes32) public publicDepositHistory;

    mapping(address => uint256) public shareUnlockTime;

    //============================== ERRORS ===============================

    error TellerWithMultiAssetSupport__ShareLockPeriodTooLong();
    error TellerWithMultiAssetSupport__SharesAreLocked();
    error TellerWithMultiAssetSupport__SharesAreUnLocked();
    error TellerWithMultiAssetSupport__BadDepositHash();
    error TellerWithMultiAssetSupport__AssetNotSupported();
    error TellerWithMultiAssetSupport__ZeroAssets();
    error TellerWithMultiAssetSupport__MinimumMintNotMet();
    error TellerWithMultiAssetSupport__MinimumAssetsNotMet();
    error TellerWithMultiAssetSupport__PermitFailedAndAllowanceTooLow();
    error TellerWithMultiAssetSupport__ZeroShares();
    error TellerWithMultiAssetSupport__DualDeposit();
    error TellerWithMultiAssetSupport__Paused();

    //============================== EVENTS ===============================

    event Paused();
    event Unpaused();
    event AssetAdded(address indexed asset);
    event AssetRemoved(address indexed asset);
    event Deposit(
        uint256 indexed nonce,
        address indexed receiver,
        address indexed depositAsset,
        uint256 depositAmount,
        uint256 shareAmount,
        uint256 depositTimestamp,
        uint256 shareLockPeriodAtTimeOfDeposit
    );
    event BulkDeposit(address indexed asset, uint256 depositAmount);
    event BulkWithdraw(address indexed asset, uint256 shareAmount);
    event DepositRefunded(uint256 indexed nonce, bytes32 depositHash, address indexed user);

    //============================== IMMUTABLES ===============================

    /**
     * @notice The BoringVault this contract is working with.
     */
    BoringVault public immutable vault;

    /**
     * @notice The AccountantWithRateProviders this contract is working with.
     */
    AccountantWithRateProviders public immutable accountant;

    /**
     * @notice One share of the BoringVault.
     */
    uint256 internal immutable ONE_SHARE;

    /**
     * @notice The native wrapper contract.
     */
    WETH public immutable nativeWrapper;

    constructor(address _owner, address _vault, address _accountant, address _weth)
        Auth(_owner, Authority(address(0)))
    {
        vault = BoringVault(payable(_vault));
        ONE_SHARE = 10 ** vault.decimals();
        accountant = AccountantWithRateProviders(_accountant);
        nativeWrapper = WETH(payable(_weth));
    }

    // ========================================= ADMIN FUNCTIONS =========================================

    /**
     * @notice Pause this contract, which prevents future calls to `deposit` and `depositWithPermit`.
     * @dev Callable by MULTISIG_ROLE.
     */
    function pause() external requiresAuth {
        isPaused = true;
        emit Paused();
    }

    /**
     * @notice Unpause this contract, which allows future calls to `deposit` and `depositWithPermit`.
     * @dev Callable by MULTISIG_ROLE.
     */
    function unpause() external requiresAuth {
        isPaused = false;
        emit Unpaused();
    }

    /**
     * @notice Adds this asset as a deposit asset.
     * @dev The accountant must also support pricing this asset, else the `deposit` call will revert.
     * @dev Callable by OWNER_ROLE.
     */
    function addAsset(ERC20 asset) external requiresAuth {
        isSupported[asset] = true;
        emit AssetAdded(address(asset));
    }

    /**
     * @notice Removes this asset as a deposit asset.
     * @dev Callable by OWNER_ROLE.
     */
    function removeAsset(ERC20 asset) external requiresAuth {
        isSupported[asset] = false;
        emit AssetRemoved(address(asset));
    }

    /**
     * @notice Sets the share lock period.
     * @dev This not only locks shares to the user address, but also serves as the pending deposit period, where deposits can be reverted.
     * @dev If a new shorter share lock period is set, users with pending share locks could make a new deposit to receive 1 wei shares,
     *      and have their shares unlock sooner than their original deposit allows. This state would allow for the user deposit to be refunded,
     *      but only if they have not transferred their shares out of there wallet. This is an accepted limitation, and should be known when decreasing
     *      the share lock period.
     * @dev Callable by OWNER_ROLE.
     */
    function setShareLockPeriod(uint64 _shareLockPeriod) external requiresAuth {
        if (_shareLockPeriod > MAX_SHARE_LOCK_PERIOD) revert TellerWithMultiAssetSupport__ShareLockPeriodTooLong();
        shareLockPeriod = _shareLockPeriod;
    }

    // ========================================= BeforeTransferHook FUNCTIONS =========================================

    /**
     * @notice Implement beforeTransfer hook to check if shares are locked.
     */
    function beforeTransfer(address from) external view {
        if (shareUnlockTime[from] >= block.timestamp) revert TellerWithMultiAssetSupport__SharesAreLocked();
    }

    // ========================================= REVERT DEPOSIT FUNCTIONS =========================================

    /**
     * @notice Allows DEPOSIT_REFUNDER_ROLE to revert a pending deposit.
     * @dev Once a deposit share lock period has passed, it can no longer be reverted.
     * @dev It is possible the admin does not setup the BoringVault to call the transfer hook,
     *      but this contract can still be saving share lock state. In the event this happens
     *      deposits are still refundable if the user has not transferred their shares.
     *      But there is no guarantee that the user has not transferred their shares.
     * @dev Callable by STRATEGIST_MULTISIG_ROLE.
     */
    function refundDeposit(
        uint256 nonce,
        address receiver,
        address depositAsset,
        uint256 depositAmount,
        uint256 shareAmount,
        uint256 depositTimestamp,
        uint256 shareLockUpPeriodAtTimeOfDeposit
    ) external requiresAuth {
        if ((block.timestamp - depositTimestamp) > shareLockUpPeriodAtTimeOfDeposit) {
            // Shares are already unlocked, so we can not revert deposit.
            revert TellerWithMultiAssetSupport__SharesAreUnLocked();
        }
        bytes32 depositHash = keccak256(
            abi.encode(
                receiver, depositAsset, depositAmount, shareAmount, depositTimestamp, shareLockUpPeriodAtTimeOfDeposit
            )
        );
        if (publicDepositHistory[nonce] != depositHash) revert TellerWithMultiAssetSupport__BadDepositHash();

        // Delete hash to prevent refund gas.
        delete publicDepositHistory[nonce];

        // If deposit used native asset, send user back wrapped native asset.
        depositAsset = depositAsset == NATIVE ? address(nativeWrapper) : depositAsset;
        // Burn shares and refund assets to receiver.
        vault.exit(receiver, ERC20(depositAsset), depositAmount, receiver, shareAmount);

        emit DepositRefunded(nonce, depositHash, receiver);
    }

    // ========================================= USER FUNCTIONS =========================================

    /**
     * @notice Allows users to deposit into the BoringVault, if this contract is not paused.
     * @dev Publicly callable.
     */
    function deposit(ERC20 depositAsset, uint256 depositAmount, uint256 minimumMint)
        external
        payable
        requiresAuth
        nonReentrant
        returns (uint256 shares)
    {
        if (isPaused) revert TellerWithMultiAssetSupport__Paused();
        if (!isSupported[depositAsset]) revert TellerWithMultiAssetSupport__AssetNotSupported();

        if (address(depositAsset) == NATIVE) {
            if (msg.value == 0) revert TellerWithMultiAssetSupport__ZeroAssets();
            nativeWrapper.deposit{value: msg.value}();
            depositAmount = msg.value;
            shares = depositAmount.mulDivDown(ONE_SHARE, accountant.getRateInQuoteSafe(nativeWrapper));
            if (shares < minimumMint) revert TellerWithMultiAssetSupport__MinimumMintNotMet();
            // `from` is address(this) since user already sent value.
            nativeWrapper.safeApprove(address(vault), depositAmount);
            vault.enter(address(this), nativeWrapper, depositAmount, msg.sender, shares);
        } else {
            if (msg.value > 0) revert TellerWithMultiAssetSupport__DualDeposit();
            shares = _erc20Deposit(depositAsset, depositAmount, minimumMint, msg.sender);
        }

        _afterPublicDeposit(msg.sender, depositAsset, depositAmount, shares, shareLockPeriod);
    }

    /**
     * @notice Allows users to deposit into BoringVault using permit.
     * @dev Publicly callable.
     */
    function depositWithPermit(
        ERC20 depositAsset,
        uint256 depositAmount,
        uint256 minimumMint,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external requiresAuth nonReentrant returns (uint256 shares) {
        if (isPaused) revert TellerWithMultiAssetSupport__Paused();
        if (!isSupported[depositAsset]) revert TellerWithMultiAssetSupport__AssetNotSupported();

        try depositAsset.permit(msg.sender, address(vault), depositAmount, deadline, v, r, s) {}
        catch {
            if (depositAsset.allowance(msg.sender, address(vault)) < depositAmount) {
                revert TellerWithMultiAssetSupport__PermitFailedAndAllowanceTooLow();
            }
        }
        shares = _erc20Deposit(depositAsset, depositAmount, minimumMint, msg.sender);

        _afterPublicDeposit(msg.sender, depositAsset, depositAmount, shares, shareLockPeriod);
    }

    /**
     * @notice Allows on ramp role to deposit into this contract.
     * @dev Does NOT support native deposits.
     * @dev Callable by SOLVER_ROLE.
     */
    function bulkDeposit(ERC20 depositAsset, uint256 depositAmount, uint256 minimumMint, address to)
        external
        requiresAuth
        nonReentrant
        returns (uint256 shares)
    {
        if (!isSupported[depositAsset]) revert TellerWithMultiAssetSupport__AssetNotSupported();

        shares = _erc20Deposit(depositAsset, depositAmount, minimumMint, to);
        emit BulkDeposit(address(depositAsset), depositAmount);
    }

    /**
     * @notice Allows off ramp role to withdraw from this contract.
     * @dev Callable by SOLVER_ROLE.
     */
    function bulkWithdraw(ERC20 withdrawAsset, uint256 shareAmount, uint256 minimumAssets, address to)
        external
        requiresAuth
        returns (uint256 assetsOut)
    {
        if (!isSupported[withdrawAsset]) revert TellerWithMultiAssetSupport__AssetNotSupported();

        if (shareAmount == 0) revert TellerWithMultiAssetSupport__ZeroShares();
        assetsOut = shareAmount.mulDivDown(accountant.getRateInQuoteSafe(withdrawAsset), ONE_SHARE);
        if (assetsOut < minimumAssets) revert TellerWithMultiAssetSupport__MinimumAssetsNotMet();
        vault.exit(to, withdrawAsset, assetsOut, msg.sender, shareAmount);
        emit BulkWithdraw(address(withdrawAsset), shareAmount);
    }

    // ========================================= INTERNAL HELPER FUNCTIONS =========================================

    /**
     * @notice Implements a common ERC20 deposit into BoringVault.
     */
    function _erc20Deposit(ERC20 depositAsset, uint256 depositAmount, uint256 minimumMint, address to)
        internal
        returns (uint256 shares)
    {
        if (depositAmount == 0) revert TellerWithMultiAssetSupport__ZeroAssets();
        shares = depositAmount.mulDivDown(ONE_SHARE, accountant.getRateInQuoteSafe(depositAsset));
        if (shares < minimumMint) revert TellerWithMultiAssetSupport__MinimumMintNotMet();
        vault.enter(msg.sender, depositAsset, depositAmount, to, shares);
    }

    /**
     * @notice Handle share lock logic, and event.
     */
    function _afterPublicDeposit(
        address user,
        ERC20 depositAsset,
        uint256 depositAmount,
        uint256 shares,
        uint256 currentShareLockPeriod
    ) internal {
        shareUnlockTime[user] = block.timestamp + currentShareLockPeriod;

        uint256 nonce = depositNonce;
        publicDepositHistory[nonce] =
            keccak256(abi.encode(user, depositAsset, depositAmount, shares, block.timestamp, currentShareLockPeriod));
        depositNonce++;
        emit Deposit(nonce, user, address(depositAsset), depositAmount, shares, block.timestamp, currentShareLockPeriod);
    }
}

File 9 of 23 : SafeTransferLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
    /*//////////////////////////////////////////////////////////////
                             ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(success, "ETH_TRANSFER_FAILED");
    }

    /*//////////////////////////////////////////////////////////////
                            ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "from" argument.
            mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
            )
        }

        require(success, "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool success;

        /// @solidity memory-safe-assembly
        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata into memory, beginning with the function selector.
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Append and mask the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument. Masking not required as it's a full 32 byte type.

            success := and(
                // Set success to whether the call reverted, if not we check it either
                // returned exactly 1 (can't just be non-zero data), or had no return data.
                or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
                // We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
                // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                // Counterintuitively, this call must be positioned second to the or() call in the
                // surrounding and() call or else returndatasize() will be zero during the computation.
                call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
            )
        }

        require(success, "APPROVE_FAILED");
    }
}

File 10 of 23 : ERC20.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

File 11 of 23 : ReentrancyGuard.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Gas optimized reentrancy protection for smart contracts.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ReentrancyGuard.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/security/ReentrancyGuard.sol)
abstract contract ReentrancyGuard {
    uint256 private locked = 1;

    modifier nonReentrant() virtual {
        require(locked == 1, "REENTRANCY");

        locked = 2;

        _;

        locked = 1;
    }
}

File 12 of 23 : WETH.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "./ERC20.sol";

import {SafeTransferLib} from "../utils/SafeTransferLib.sol";

/// @notice Minimalist and modern Wrapped Ether implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/WETH.sol)
/// @author Inspired by WETH9 (https://github.com/dapphub/ds-weth/blob/master/src/weth9.sol)
contract WETH is ERC20("Wrapped Ether", "WETH", 18) {
    using SafeTransferLib for address;

    event Deposit(address indexed from, uint256 amount);

    event Withdrawal(address indexed to, uint256 amount);

    function deposit() public payable virtual {
        _mint(msg.sender, msg.value);

        emit Deposit(msg.sender, msg.value);
    }

    function withdraw(uint256 amount) public virtual {
        _burn(msg.sender, amount);

        emit Withdrawal(msg.sender, amount);

        msg.sender.safeTransferETH(amount);
    }

    receive() external payable virtual {
        deposit();
    }
}

File 13 of 23 : BoringVault.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import {Address} from "@openzeppelin/contracts/utils/Address.sol";
import {ERC721Holder} from "@openzeppelin/contracts/token/ERC721/utils/ERC721Holder.sol";
import {ERC1155Holder} from "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Holder.sol";
import {FixedPointMathLib} from "@solmate/utils/FixedPointMathLib.sol";
import {SafeTransferLib} from "@solmate/utils/SafeTransferLib.sol";
import {ERC20} from "@solmate/tokens/ERC20.sol";
import {BeforeTransferHook} from "src/interfaces/BeforeTransferHook.sol";
import {Auth, Authority} from "@solmate/auth/Auth.sol";

contract BoringVault is ERC20, Auth, ERC721Holder, ERC1155Holder {
    using Address for address;
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;

    // ========================================= STATE =========================================

    /**
     * @notice Contract responsbile for implementing `beforeTransfer`.
     */
    BeforeTransferHook public hook;

    //============================== EVENTS ===============================

    event Enter(address indexed from, address indexed asset, uint256 amount, address indexed to, uint256 shares);
    event Exit(address indexed to, address indexed asset, uint256 amount, address indexed from, uint256 shares);

    //============================== CONSTRUCTOR ===============================

    constructor(address _owner, string memory _name, string memory _symbol, uint8 _decimals)
        ERC20(_name, _symbol, _decimals)
        Auth(_owner, Authority(address(0)))
    {}

    //============================== MANAGE ===============================

    /**
     * @notice Allows manager to make an arbitrary function call from this contract.
     * @dev Callable by MANAGER_ROLE.
     */
    function manage(address target, bytes calldata data, uint256 value)
        external
        requiresAuth
        returns (bytes memory result)
    {
        result = target.functionCallWithValue(data, value);
    }

    /**
     * @notice Allows manager to make arbitrary function calls from this contract.
     * @dev Callable by MANAGER_ROLE.
     */
    function manage(address[] calldata targets, bytes[] calldata data, uint256[] calldata values)
        external
        requiresAuth
        returns (bytes[] memory results)
    {
        uint256 targetsLength = targets.length;
        results = new bytes[](targetsLength);
        for (uint256 i; i < targetsLength; ++i) {
            results[i] = targets[i].functionCallWithValue(data[i], values[i]);
        }
    }

    //============================== ENTER ===============================

    /**
     * @notice Allows minter to mint shares, in exchange for assets.
     * @dev If assetAmount is zero, no assets are transferred in.
     * @dev Callable by MINTER_ROLE.
     */
    function enter(address from, ERC20 asset, uint256 assetAmount, address to, uint256 shareAmount)
        external
        requiresAuth
    {
        // Transfer assets in
        if (assetAmount > 0) asset.safeTransferFrom(from, address(this), assetAmount);

        // Mint shares.
        _mint(to, shareAmount);

        emit Enter(from, address(asset), assetAmount, to, shareAmount);
    }

    //============================== EXIT ===============================

    /**
     * @notice Allows burner to burn shares, in exchange for assets.
     * @dev If assetAmount is zero, no assets are transferred out.
     * @dev Callable by BURNER_ROLE.
     */
    function exit(address to, ERC20 asset, uint256 assetAmount, address from, uint256 shareAmount)
        external
        requiresAuth
    {
        // Burn shares.
        _burn(from, shareAmount);

        // Transfer assets out.
        if (assetAmount > 0) asset.safeTransfer(to, assetAmount);

        emit Exit(to, address(asset), assetAmount, from, shareAmount);
    }

    //============================== BEFORE TRANSFER HOOK ===============================
    /**
     * @notice Sets the share locker.
     * @notice If set to zero address, the share locker logic is disabled.
     * @dev Callable by OWNER_ROLE.
     */
    function setBeforeTransferHook(address _hook) external requiresAuth {
        hook = BeforeTransferHook(_hook);
    }

    /**
     * @notice Check if from addresses shares are locked, reverting if so.
     */
    function _callBeforeTransfer(address from) internal view {
        if (address(hook) != address(0)) hook.beforeTransfer(from);
    }

    function transfer(address to, uint256 amount) public override returns (bool) {
        _callBeforeTransfer(msg.sender);
        return super.transfer(to, amount);
    }

    function transferFrom(address from, address to, uint256 amount) public override returns (bool) {
        _callBeforeTransfer(from);
        return super.transferFrom(from, to, amount);
    }

    //============================== RECEIVE ===============================

    receive() external payable {}
}

File 14 of 23 : AccountantWithRateProviders.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

import {FixedPointMathLib} from "@solmate/utils/FixedPointMathLib.sol";
import {IRateProvider} from "src/interfaces/IRateProvider.sol";
import {ERC20} from "@solmate/tokens/ERC20.sol";
import {SafeTransferLib} from "@solmate/utils/SafeTransferLib.sol";
import {BoringVault} from "src/base/BoringVault.sol";
import {Auth, Authority} from "@solmate/auth/Auth.sol";

contract AccountantWithRateProviders is Auth, IRateProvider {
    using FixedPointMathLib for uint256;
    using SafeTransferLib for ERC20;

    // ========================================= STRUCTS =========================================

    /**
     * @param payoutAddress the address `claimFees` sends fees to
     * @param feesOwedInBase total pending fees owed in terms of base
     * @param totalSharesLastUpdate total amount of shares the last exchange rate update
     * @param exchangeRate the current exchange rate in terms of base
     * @param allowedExchangeRateChangeUpper the max allowed change to exchange rate from an update
     * @param allowedExchangeRateChangeLower the min allowed change to exchange rate from an update
     * @param lastUpdateTimestamp the block timestamp of the last exchange rate update
     * @param isPaused whether or not this contract is paused
     * @param minimumUpdateDelayInSeconds the minimum amount of time that must pass between
     *        exchange rate updates, such that the update won't trigger the contract to be paused
     * @param managementFee the management fee
     */
    struct AccountantState {
        address payoutAddress;
        uint128 feesOwedInBase;
        uint128 totalSharesLastUpdate;
        uint96 exchangeRate;
        uint16 allowedExchangeRateChangeUpper;
        uint16 allowedExchangeRateChangeLower;
        uint64 lastUpdateTimestamp;
        bool isPaused;
        uint32 minimumUpdateDelayInSeconds;
        uint16 managementFee;
    }

    /**
     * @param isPeggedToBase whether or not the asset is 1:1 with the base asset
     * @param rateProvider the rate provider for this asset if `isPeggedToBase` is false
     */
    struct RateProviderData {
        bool isPeggedToBase;
        IRateProvider rateProvider;
    }

    // ========================================= STATE =========================================

    /**
     * @notice Store the accountant state in 3 packed slots.
     */
    AccountantState public accountantState;

    /**
     * @notice Maps ERC20s to their RateProviderData.
     */
    mapping(ERC20 => RateProviderData) public rateProviderData;

    //============================== ERRORS ===============================

    error AccountantWithRateProviders__UpperBoundTooSmall();
    error AccountantWithRateProviders__LowerBoundTooLarge();
    error AccountantWithRateProviders__ManagementFeeTooLarge();
    error AccountantWithRateProviders__Paused();
    error AccountantWithRateProviders__ZeroFeesOwed();
    error AccountantWithRateProviders__OnlyCallableByBoringVault();
    error AccountantWithRateProviders__UpdateDelayTooLarge();

    //============================== EVENTS ===============================

    event Paused();
    event Unpaused();
    event DelayInSecondsUpdated(uint32 oldDelay, uint32 newDelay);
    event UpperBoundUpdated(uint16 oldBound, uint16 newBound);
    event LowerBoundUpdated(uint16 oldBound, uint16 newBound);
    event ManagementFeeUpdated(uint16 oldFee, uint16 newFee);
    event PayoutAddressUpdated(address oldPayout, address newPayout);
    event RateProviderUpdated(address asset, bool isPegged, address rateProvider);
    event ExchangeRateUpdated(uint96 oldRate, uint96 newRate, uint64 currentTime);
    event FeesClaimed(address indexed feeAsset, uint256 amount);

    //============================== IMMUTABLES ===============================

    /**
     * @notice The base asset rates are provided in.
     */
    ERC20 public immutable base;

    /**
     * @notice The decimals rates are provided in.
     */
    uint8 public immutable decimals;

    /**
     * @notice The BoringVault this accountant is working with.
     *         Used to determine share supply for fee calculation.
     */
    BoringVault public immutable vault;

    /**
     * @notice One share of the BoringVault.
     */
    uint256 internal immutable ONE_SHARE;

    constructor(
        address _owner,
        address _vault,
        address payoutAddress,
        uint96 startingExchangeRate,
        address _base,
        uint16 allowedExchangeRateChangeUpper,
        uint16 allowedExchangeRateChangeLower,
        uint32 minimumUpdateDelayInSeconds,
        uint16 managementFee
    ) Auth(_owner, Authority(address(0))) {
        base = ERC20(_base);
        decimals = ERC20(_base).decimals();
        vault = BoringVault(payable(_vault));
        ONE_SHARE = 10 ** vault.decimals();
        accountantState = AccountantState({
            payoutAddress: payoutAddress,
            feesOwedInBase: 0,
            totalSharesLastUpdate: uint128(vault.totalSupply()),
            exchangeRate: startingExchangeRate,
            allowedExchangeRateChangeUpper: allowedExchangeRateChangeUpper,
            allowedExchangeRateChangeLower: allowedExchangeRateChangeLower,
            lastUpdateTimestamp: uint64(block.timestamp),
            isPaused: false,
            minimumUpdateDelayInSeconds: minimumUpdateDelayInSeconds,
            managementFee: managementFee
        });
    }

    // ========================================= ADMIN FUNCTIONS =========================================
    /**
     * @notice Pause this contract, which prevents future calls to `updateExchangeRate`, and any safe rate
     *         calls will revert.
     * @dev Callable by MULTISIG_ROLE.
     */
    function pause() external requiresAuth {
        accountantState.isPaused = true;
        emit Paused();
    }

    /**
     * @notice Unpause this contract, which allows future calls to `updateExchangeRate`, and any safe rate
     *         calls will stop reverting.
     * @dev Callable by MULTISIG_ROLE.
     */
    function unpause() external requiresAuth {
        accountantState.isPaused = false;
        emit Unpaused();
    }

    /**
     * @notice Update the minimum time delay between `updateExchangeRate` calls.
     * @dev There are no input requirements, as it is possible the admin would want
     *      the exchange rate updated as frequently as needed.
     * @dev Callable by OWNER_ROLE.
     */
    function updateDelay(uint32 minimumUpdateDelayInSeconds) external requiresAuth {
        if (minimumUpdateDelayInSeconds > 14 days) revert AccountantWithRateProviders__UpdateDelayTooLarge();
        uint32 oldDelay = accountantState.minimumUpdateDelayInSeconds;
        accountantState.minimumUpdateDelayInSeconds = minimumUpdateDelayInSeconds;
        emit DelayInSecondsUpdated(oldDelay, minimumUpdateDelayInSeconds);
    }

    /**
     * @notice Update the allowed upper bound change of exchange rate between `updateExchangeRateCalls`.
     * @dev Callable by OWNER_ROLE.
     */
    function updateUpper(uint16 allowedExchangeRateChangeUpper) external requiresAuth {
        if (allowedExchangeRateChangeUpper < 1e4) revert AccountantWithRateProviders__UpperBoundTooSmall();
        uint16 oldBound = accountantState.allowedExchangeRateChangeUpper;
        accountantState.allowedExchangeRateChangeUpper = allowedExchangeRateChangeUpper;
        emit UpperBoundUpdated(oldBound, allowedExchangeRateChangeUpper);
    }

    /**
     * @notice Update the allowed lower bound change of exchange rate between `updateExchangeRateCalls`.
     * @dev Callable by OWNER_ROLE.
     */
    function updateLower(uint16 allowedExchangeRateChangeLower) external requiresAuth {
        if (allowedExchangeRateChangeLower > 1e4) revert AccountantWithRateProviders__LowerBoundTooLarge();
        uint16 oldBound = accountantState.allowedExchangeRateChangeLower;
        accountantState.allowedExchangeRateChangeLower = allowedExchangeRateChangeLower;
        emit LowerBoundUpdated(oldBound, allowedExchangeRateChangeLower);
    }

    /**
     * @notice Update the management fee to a new value.
     * @dev Callable by OWNER_ROLE.
     */
    function updateManagementFee(uint16 managementFee) external requiresAuth {
        if (managementFee > 0.2e4) revert AccountantWithRateProviders__ManagementFeeTooLarge();
        uint16 oldFee = accountantState.managementFee;
        accountantState.managementFee = managementFee;
        emit ManagementFeeUpdated(oldFee, managementFee);
    }

    /**
     * @notice Update the payout address fees are sent to.
     * @dev Callable by OWNER_ROLE.
     */
    function updatePayoutAddress(address payoutAddress) external requiresAuth {
        address oldPayout = accountantState.payoutAddress;
        accountantState.payoutAddress = payoutAddress;
        emit PayoutAddressUpdated(oldPayout, payoutAddress);
    }

    /**
     * @notice Update the rate provider data for a specific `asset`.
     * @dev Rate providers must return rates in terms of `base` or
     * an asset pegged to base and they must use the same decimals
     * as `asset`.
     * @dev Callable by OWNER_ROLE.
     */
    function setRateProviderData(ERC20 asset, bool isPeggedToBase, address rateProvider) external requiresAuth {
        rateProviderData[asset] =
            RateProviderData({isPeggedToBase: isPeggedToBase, rateProvider: IRateProvider(rateProvider)});
        emit RateProviderUpdated(address(asset), isPeggedToBase, rateProvider);
    }

    // ========================================= UPDATE EXCHANGE RATE/FEES FUNCTIONS =========================================

    /**
     * @notice Updates this contract exchangeRate.
     * @dev If new exchange rate is outside of accepted bounds, or if not enough time has passed, this
     *      will pause the contract, and this function will NOT calculate fees owed.
     * @dev Callable by UPDATE_EXCHANGE_RATE_ROLE.
     */
    function updateExchangeRate(uint96 newExchangeRate) external requiresAuth {
        AccountantState storage state = accountantState;
        if (state.isPaused) revert AccountantWithRateProviders__Paused();
        uint64 currentTime = uint64(block.timestamp);
        uint256 currentExchangeRate = state.exchangeRate;
        uint256 currentTotalShares = vault.totalSupply();
        if (
            currentTime < state.lastUpdateTimestamp + state.minimumUpdateDelayInSeconds
                || newExchangeRate > currentExchangeRate.mulDivDown(state.allowedExchangeRateChangeUpper, 1e4)
                || newExchangeRate < currentExchangeRate.mulDivDown(state.allowedExchangeRateChangeLower, 1e4)
        ) {
            // Instead of reverting, pause the contract. This way the exchange rate updater is able to update the exchange rate
            // to a better value, and pause it.
            state.isPaused = true;
        } else {
            // Only update fees if we are not paused.
            // Update fee accounting.
            uint256 shareSupplyToUse = currentTotalShares;
            // Use the minimum between current total supply and total supply for last update.
            if (state.totalSharesLastUpdate < shareSupplyToUse) {
                shareSupplyToUse = state.totalSharesLastUpdate;
            }

            // Determine management fees owned.
            uint256 timeDelta = currentTime - state.lastUpdateTimestamp;
            uint256 minimumAssets = newExchangeRate > currentExchangeRate
                ? shareSupplyToUse.mulDivDown(currentExchangeRate, ONE_SHARE)
                : shareSupplyToUse.mulDivDown(newExchangeRate, ONE_SHARE);
            uint256 managementFeesAnnual = minimumAssets.mulDivDown(state.managementFee, 1e4);
            uint256 newFeesOwedInBase = managementFeesAnnual.mulDivDown(timeDelta, 365 days);

            state.feesOwedInBase += uint128(newFeesOwedInBase);
        }

        state.exchangeRate = newExchangeRate;
        state.totalSharesLastUpdate = uint128(currentTotalShares);
        state.lastUpdateTimestamp = currentTime;

        emit ExchangeRateUpdated(uint96(currentExchangeRate), newExchangeRate, currentTime);
    }

    /**
     * @notice Claim pending fees.
     * @dev This function must be called by the BoringVault.
     * @dev This function will lose precision if the exchange rate
     *      decimals is greater than the feeAsset's decimals.
     */
    function claimFees(ERC20 feeAsset) external {
        if (msg.sender != address(vault)) revert AccountantWithRateProviders__OnlyCallableByBoringVault();

        AccountantState storage state = accountantState;
        if (state.isPaused) revert AccountantWithRateProviders__Paused();
        if (state.feesOwedInBase == 0) revert AccountantWithRateProviders__ZeroFeesOwed();

        // Determine amount of fees owed in feeAsset.
        uint256 feesOwedInFeeAsset;
        RateProviderData memory data = rateProviderData[feeAsset];
        if (address(feeAsset) == address(base)) {
            feesOwedInFeeAsset = state.feesOwedInBase;
        } else {
            uint8 feeAssetDecimals = ERC20(feeAsset).decimals();
            uint256 feesOwedInBaseUsingFeeAssetDecimals =
                changeDecimals(state.feesOwedInBase, decimals, feeAssetDecimals);
            if (data.isPeggedToBase) {
                feesOwedInFeeAsset = feesOwedInBaseUsingFeeAssetDecimals;
            } else {
                uint256 rate = data.rateProvider.getRate();
                feesOwedInFeeAsset = feesOwedInBaseUsingFeeAssetDecimals.mulDivDown(10 ** feeAssetDecimals, rate);
            }
        }
        // Zero out fees owed.
        state.feesOwedInBase = 0;
        // Transfer fee asset to payout address.
        feeAsset.safeTransferFrom(msg.sender, state.payoutAddress, feesOwedInFeeAsset);

        emit FeesClaimed(address(feeAsset), feesOwedInFeeAsset);
    }

    // ========================================= RATE FUNCTIONS =========================================

    /**
     * @notice Get this BoringVault's current rate in the base.
     */
    function getRate() public view returns (uint256 rate) {
        rate = accountantState.exchangeRate;
    }

    /**
     * @notice Get this BoringVault's current rate in the base.
     * @dev Revert if paused.
     */
    function getRateSafe() external view returns (uint256 rate) {
        if (accountantState.isPaused) revert AccountantWithRateProviders__Paused();
        rate = getRate();
    }

    /**
     * @notice Get this BoringVault's current rate in the provided quote.
     * @dev `quote` must have its RateProviderData set, else this will revert.
     * @dev This function will lose precision if the exchange rate
     *      decimals is greater than the quote's decimals.
     */
    function getRateInQuote(ERC20 quote) public view returns (uint256 rateInQuote) {
        if (address(quote) == address(base)) {
            rateInQuote = accountantState.exchangeRate;
        } else {
            RateProviderData memory data = rateProviderData[quote];
            uint8 quoteDecimals = ERC20(quote).decimals();
            uint256 exchangeRateInQuoteDecimals = changeDecimals(accountantState.exchangeRate, decimals, quoteDecimals);
            if (data.isPeggedToBase) {
                rateInQuote = exchangeRateInQuoteDecimals;
            } else {
                uint256 quoteRate = data.rateProvider.getRate();
                uint256 oneQuote = 10 ** quoteDecimals;
                rateInQuote = oneQuote.mulDivDown(exchangeRateInQuoteDecimals, quoteRate);
            }
        }
    }

    /**
     * @notice Get this BoringVault's current rate in the provided quote.
     * @dev `quote` must have its RateProviderData set, else this will revert.
     * @dev Revert if paused.
     */
    function getRateInQuoteSafe(ERC20 quote) external view returns (uint256 rateInQuote) {
        if (accountantState.isPaused) revert AccountantWithRateProviders__Paused();
        rateInQuote = getRateInQuote(quote);
    }

    // ========================================= INTERNAL HELPER FUNCTIONS =========================================
    /**
     * @notice Used to change the decimals of precision used for an amount.
     */
    function changeDecimals(uint256 amount, uint8 fromDecimals, uint8 toDecimals) internal pure returns (uint256) {
        if (fromDecimals == toDecimals) {
            return amount;
        } else if (fromDecimals < toDecimals) {
            return amount * 10 ** (toDecimals - fromDecimals);
        } else {
            return amount / 10 ** (fromDecimals - toDecimals);
        }
    }
}

File 15 of 23 : BeforeTransferHook.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.21;

interface BeforeTransferHook {
    function beforeTransfer(address from) external view;
}

File 16 of 23 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 17 of 23 : ERC721Holder.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/utils/ERC721Holder.sol)

pragma solidity ^0.8.20;

import {IERC721Receiver} from "../IERC721Receiver.sol";

/**
 * @dev Implementation of the {IERC721Receiver} interface.
 *
 * Accepts all token transfers.
 * Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or
 * {IERC721-setApprovalForAll}.
 */
abstract contract ERC721Holder is IERC721Receiver {
    /**
     * @dev See {IERC721Receiver-onERC721Received}.
     *
     * Always returns `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(address, address, uint256, bytes memory) public virtual returns (bytes4) {
        return this.onERC721Received.selector;
    }
}

File 18 of 23 : ERC1155Holder.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/utils/ERC1155Holder.sol)

pragma solidity ^0.8.20;

import {IERC165, ERC165} from "../../../utils/introspection/ERC165.sol";
import {IERC1155Receiver} from "../IERC1155Receiver.sol";

/**
 * @dev Simple implementation of `IERC1155Receiver` that will allow a contract to hold ERC1155 tokens.
 *
 * IMPORTANT: When inheriting this contract, you must include a way to use the received tokens, otherwise they will be
 * stuck.
 */
abstract contract ERC1155Holder is ERC165, IERC1155Receiver {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return interfaceId == type(IERC1155Receiver).interfaceId || super.supportsInterface(interfaceId);
    }

    function onERC1155Received(
        address,
        address,
        uint256,
        uint256,
        bytes memory
    ) public virtual override returns (bytes4) {
        return this.onERC1155Received.selector;
    }

    function onERC1155BatchReceived(
        address,
        address,
        uint256[] memory,
        uint256[] memory,
        bytes memory
    ) public virtual override returns (bytes4) {
        return this.onERC1155BatchReceived.selector;
    }
}

File 19 of 23 : IRateProvider.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.8.0;

interface IRateProvider {
    function getRate() external view returns (uint256);
}

File 20 of 23 : IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

File 21 of 23 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 22 of 23 : IERC1155Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

File 23 of 23 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@solmate/=lib/solmate/src/",
    "@forge-std/=lib/forge-std/src/",
    "@ds-test/=lib/forge-std/lib/ds-test/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"contract Authority","name":"_authority","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AtomicSolverV3___AlreadyInSolveContext","type":"error"},{"inputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"teller","type":"address"}],"name":"AtomicSolverV3___BoringVaultTellerMismatch","type":"error"},{"inputs":[],"name":"AtomicSolverV3___FailedToSolve","type":"error"},{"inputs":[{"internalType":"uint256","name":"actualShares","type":"uint256"},{"internalType":"uint256","name":"minShares","type":"uint256"}],"name":"AtomicSolverV3___P2PSolveMinSharesNotMet","type":"error"},{"inputs":[{"internalType":"uint256","name":"actualAssets","type":"uint256"},{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"name":"AtomicSolverV3___SolveMaxAssetsExceeded","type":"error"},{"inputs":[],"name":"AtomicSolverV3___WrongInitiator","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"contract Authority","name":"newAuthority","type":"address"}],"name":"AuthorityUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"authority","outputs":[{"internalType":"contract Authority","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"runData","type":"bytes"},{"internalType":"address","name":"initiator","type":"address"},{"internalType":"contract ERC20","name":"offer","type":"address"},{"internalType":"contract ERC20","name":"want","type":"address"},{"internalType":"uint256","name":"offerReceived","type":"uint256"},{"internalType":"uint256","name":"wantApprovalAmount","type":"uint256"}],"name":"finishSolve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract AtomicQueue","name":"queue","type":"address"},{"internalType":"contract ERC20","name":"offer","type":"address"},{"internalType":"contract ERC20","name":"want","type":"address"},{"internalType":"address[]","name":"users","type":"address[]"},{"internalType":"uint256","name":"minOfferReceived","type":"uint256"},{"internalType":"uint256","name":"maxAssets","type":"uint256"}],"name":"p2pSolve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract AtomicQueue","name":"queue","type":"address"},{"internalType":"contract ERC20","name":"offer","type":"address"},{"internalType":"contract ERC20","name":"want","type":"address"},{"internalType":"address[]","name":"users","type":"address[]"},{"internalType":"uint256","name":"minimumAssetsOut","type":"uint256"},{"internalType":"uint256","name":"maxAssets","type":"uint256"},{"internalType":"contract TellerWithMultiAssetSupport","name":"teller","type":"address"}],"name":"redeemSolve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract Authority","name":"newAuthority","type":"address"}],"name":"setAuthority","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561000f575f80fd5b5060405161106b38038061106b83398101604081905261002e916100dd565b5f80546001600160a01b03199081166001600160a01b0385811691821784556001805490931690851617909155604051849284929133917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e091a36040516001600160a01b0382169033907fa3396fd7f6e0a21b50e5089d2da70d5ac0a3bbbd1f617a93f134b76389980198905f90a350505050610115565b6001600160a01b03811681146100da575f80fd5b50565b5f80604083850312156100ee575f80fd5b82516100f9816100c6565b602084015190925061010a816100c6565b809150509250929050565b610f49806101225f395ff3fe608060405234801561000f575f80fd5b506004361061007a575f3560e01c80638da5cb5b116100585780638da5cb5b146100b9578063bf7e214f146100e7578063e8a78115146100fa578063f2fde38b1461010d575f80fd5b80632ddd62ce1461007e5780637a9e5e4b14610093578063839799fd146100a6575b5f80fd5b61009161008c366004610a06565b610120565b005b6100916100a1366004610ab3565b61025e565b6100916100b4366004610b1d565b610342565b5f546100cb906001600160a01b031681565b6040516001600160a01b03909116815260200160405180910390f35b6001546100cb906001600160a01b031681565b610091610108366004610bb9565b61040c565b61009161011b366004610ab3565b6104d2565b610135335f356001600160e01b03191661054d565b61015a5760405162461bcd60e51b815260040161015190610c3e565b60405180910390fd5b6001600160a01b03851630146101835760405163091ffe5b60e21b815260040160405180910390fd5b335f610191888a018a610c70565b90505f8160018111156101a6576101a6610c8b565b036101f5576101f0828a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508b92508a9150899050886105f3565b610253565b600181600181111561020957610209610c8b565b0361025357610253828a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508b92508a9150899050886106a3565b505050505050505050565b5f546001600160a01b03163314806102ef575060015460405163b700961360e01b81526001600160a01b039091169063b7009613906102b090339030906001600160e01b03195f351690600401610c9f565b602060405180830381865afa1580156102cb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102ef9190610ccc565b6102f7575f80fd5b600180546001600160a01b0319166001600160a01b03831690811790915560405133907fa3396fd7f6e0a21b50e5089d2da70d5ac0a3bbbd1f617a93f134b76389980198905f90a350565b610357335f356001600160e01b03191661054d565b6103735760405162461bcd60e51b815260040161015190610c3e565b5f60013385858560405160200161038e959493929190610d0b565b60408051601f198184030181529082905263d93fc20360e01b825291506001600160a01b038a169063d93fc203906103d4908b908b908b908b9088903090600401610d4a565b5f604051808303815f87803b1580156103eb575f80fd5b505af11580156103fd573d5f803e3d5ffd5b50505050505050505050505050565b610421335f356001600160e01b03191661054d565b61043d5760405162461bcd60e51b815260040161015190610c3e565b5f803384846040516020016104559493929190610e0c565b60408051601f198184030181529082905263d93fc20360e01b825291506001600160a01b0389169063d93fc2039061049b908a908a908a908a9088903090600401610d4a565b5f604051808303815f87803b1580156104b2575f80fd5b505af11580156104c4573d5f803e3d5ffd5b505050505050505050505050565b6104e7335f356001600160e01b03191661054d565b6105035760405162461bcd60e51b815260040161015190610c3e565b5f80546001600160a01b0319166001600160a01b0383169081178255604051909133917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a350565b6001545f906001600160a01b031680158015906105d4575060405163b700961360e01b81526001600160a01b0382169063b70096139061059590879030908890600401610c9f565b602060405180830381865afa1580156105b0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105d49190610ccc565b806105eb57505f546001600160a01b038581169116145b949350505050565b5f805f8780602001905181019061060a9190610e3e565b935093509350508185101561063b5760405162d306a160e11b81526004810186905260248101839052604401610151565b80841115610666576040516318dac02160e01b81526004810185905260248101829052604401610151565b61067b6001600160a01b038716843087610848565b61068f6001600160a01b03881684876108e0565b6102536001600160a01b0387168a86610963565b5f805f80888060200190518101906106bb9190610e83565b945094509450945050806001600160a01b031663fbfa77cf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610700573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107249190610ee1565b6001600160a01b0316886001600160a01b03161461076857604051630604b2a160e51b81526001600160a01b03808a16600483015282166024820152604401610151565b81851115610793576040516318dac02160e01b81526004810186905260248101839052604401610151565b604051633e64ce9960e01b81526001600160a01b03888116600483015260248201889052604482018590528581166064830152821690633e64ce99906084016020604051808303815f875af11580156107ee573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108129190610efc565b506108286001600160a01b038816853088610848565b61083c6001600160a01b0388168b87610963565b50505050505050505050565b5f6040516323b872dd60e01b81526001600160a01b03851660048201526001600160a01b038416602482015282604482015260205f6064835f8a5af13d15601f3d1160015f5114161716915050806108d95760405162461bcd60e51b81526020600482015260146024820152731514905394d1915497d19493d357d1905253115160621b6044820152606401610151565b5050505050565b5f60405163a9059cbb60e01b81526001600160a01b038416600482015282602482015260205f6044835f895af13d15601f3d1160015f51141617169150508061095d5760405162461bcd60e51b815260206004820152600f60248201526e1514905394d1915497d19052531151608a1b6044820152606401610151565b50505050565b5f60405163095ea7b360e01b81526001600160a01b038416600482015282602482015260205f6044835f895af13d15601f3d1160015f51141617169150508061095d5760405162461bcd60e51b815260206004820152600e60248201526d1054141493d59157d1905253115160921b6044820152606401610151565b6001600160a01b03811681146109f3575f80fd5b50565b8035610a01816109df565b919050565b5f805f805f805f60c0888a031215610a1c575f80fd5b873567ffffffffffffffff80821115610a33575f80fd5b818a0191508a601f830112610a46575f80fd5b813581811115610a54575f80fd5b8b6020828501011115610a65575f80fd5b602092830199509750610a7b918a0190506109f6565b9450610a89604089016109f6565b9350610a97606089016109f6565b92506080880135915060a0880135905092959891949750929550565b5f60208284031215610ac3575f80fd5b8135610ace816109df565b9392505050565b5f8083601f840112610ae5575f80fd5b50813567ffffffffffffffff811115610afc575f80fd5b6020830191508360208260051b8501011115610b16575f80fd5b9250929050565b5f805f805f805f8060e0898b031215610b34575f80fd5b8835610b3f816109df565b97506020890135610b4f816109df565b96506040890135610b5f816109df565b9550606089013567ffffffffffffffff811115610b7a575f80fd5b610b868b828c01610ad5565b9096509450506080890135925060a0890135915060c0890135610ba8816109df565b809150509295985092959890939650565b5f805f805f805f60c0888a031215610bcf575f80fd5b8735610bda816109df565b96506020880135610bea816109df565b95506040880135610bfa816109df565b9450606088013567ffffffffffffffff811115610c15575f80fd5b610c218a828b01610ad5565b989b979a50959895979660808701359660a0013595509350505050565b6020808252600c908201526b15539055551213d49256915160a21b604082015260600190565b600281106109f3575f80fd5b5f60208284031215610c80575f80fd5b8135610ace81610c64565b634e487b7160e01b5f52602160045260245ffd5b6001600160a01b0393841681529190921660208201526001600160e01b0319909116604082015260600190565b5f60208284031215610cdc575f80fd5b81518015158114610ace575f80fd5b60028110610d0757634e487b7160e01b5f52602160045260245ffd5b9052565b60a08101610d198288610ceb565b6001600160a01b03958616602083015260408201949094526060810192909252909216608090920191909152919050565b6001600160a01b03878116825286811660208084019190915260a06040840181905283018690525f91879160c08501845b89811015610da2578435610d8e816109df565b841682529382019390820190600101610d7b565b508581036060870152875193508381525f92505b83831015610dd35787830182015181840183015291810191610db6565b5f8185018301526001600160a01b0387166080870152601f909301601f19169092019091019150610e019050565b979650505050505050565b60808101610e1a8287610ceb565b6001600160a01b039490941660208201526040810192909252606090910152919050565b5f805f8060808587031215610e51575f80fd5b8451610e5c81610c64565b6020860151909450610e6d816109df565b6040860151606090960151949790965092505050565b5f805f805f60a08688031215610e97575f80fd5b8551610ea281610c64565b6020870151909550610eb3816109df565b8094505060408601519250606086015191506080860151610ed3816109df565b809150509295509295909350565b5f60208284031215610ef1575f80fd5b8151610ace816109df565b5f60208284031215610f0c575f80fd5b505191905056fea2646970667358221220985b63d8d09e4ec39cc415829921046f43f02856036382bb198152ff79e2dd3564736f6c634300081500330000000000000000000000002322ba43eff1542b6a7baed35e66099ea0d12bd10000000000000000000000004df6b73328b639073db150c4584196c4d97053b7

Deployed Bytecode

0x608060405234801561000f575f80fd5b506004361061007a575f3560e01c80638da5cb5b116100585780638da5cb5b146100b9578063bf7e214f146100e7578063e8a78115146100fa578063f2fde38b1461010d575f80fd5b80632ddd62ce1461007e5780637a9e5e4b14610093578063839799fd146100a6575b5f80fd5b61009161008c366004610a06565b610120565b005b6100916100a1366004610ab3565b61025e565b6100916100b4366004610b1d565b610342565b5f546100cb906001600160a01b031681565b6040516001600160a01b03909116815260200160405180910390f35b6001546100cb906001600160a01b031681565b610091610108366004610bb9565b61040c565b61009161011b366004610ab3565b6104d2565b610135335f356001600160e01b03191661054d565b61015a5760405162461bcd60e51b815260040161015190610c3e565b60405180910390fd5b6001600160a01b03851630146101835760405163091ffe5b60e21b815260040160405180910390fd5b335f610191888a018a610c70565b90505f8160018111156101a6576101a6610c8b565b036101f5576101f0828a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508b92508a9150899050886105f3565b610253565b600181600181111561020957610209610c8b565b0361025357610253828a8a8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f920191909152508b92508a9150899050886106a3565b505050505050505050565b5f546001600160a01b03163314806102ef575060015460405163b700961360e01b81526001600160a01b039091169063b7009613906102b090339030906001600160e01b03195f351690600401610c9f565b602060405180830381865afa1580156102cb573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906102ef9190610ccc565b6102f7575f80fd5b600180546001600160a01b0319166001600160a01b03831690811790915560405133907fa3396fd7f6e0a21b50e5089d2da70d5ac0a3bbbd1f617a93f134b76389980198905f90a350565b610357335f356001600160e01b03191661054d565b6103735760405162461bcd60e51b815260040161015190610c3e565b5f60013385858560405160200161038e959493929190610d0b565b60408051601f198184030181529082905263d93fc20360e01b825291506001600160a01b038a169063d93fc203906103d4908b908b908b908b9088903090600401610d4a565b5f604051808303815f87803b1580156103eb575f80fd5b505af11580156103fd573d5f803e3d5ffd5b50505050505050505050505050565b610421335f356001600160e01b03191661054d565b61043d5760405162461bcd60e51b815260040161015190610c3e565b5f803384846040516020016104559493929190610e0c565b60408051601f198184030181529082905263d93fc20360e01b825291506001600160a01b0389169063d93fc2039061049b908a908a908a908a9088903090600401610d4a565b5f604051808303815f87803b1580156104b2575f80fd5b505af11580156104c4573d5f803e3d5ffd5b505050505050505050505050565b6104e7335f356001600160e01b03191661054d565b6105035760405162461bcd60e51b815260040161015190610c3e565b5f80546001600160a01b0319166001600160a01b0383169081178255604051909133917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a350565b6001545f906001600160a01b031680158015906105d4575060405163b700961360e01b81526001600160a01b0382169063b70096139061059590879030908890600401610c9f565b602060405180830381865afa1580156105b0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105d49190610ccc565b806105eb57505f546001600160a01b038581169116145b949350505050565b5f805f8780602001905181019061060a9190610e3e565b935093509350508185101561063b5760405162d306a160e11b81526004810186905260248101839052604401610151565b80841115610666576040516318dac02160e01b81526004810185905260248101829052604401610151565b61067b6001600160a01b038716843087610848565b61068f6001600160a01b03881684876108e0565b6102536001600160a01b0387168a86610963565b5f805f80888060200190518101906106bb9190610e83565b945094509450945050806001600160a01b031663fbfa77cf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610700573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107249190610ee1565b6001600160a01b0316886001600160a01b03161461076857604051630604b2a160e51b81526001600160a01b03808a16600483015282166024820152604401610151565b81851115610793576040516318dac02160e01b81526004810186905260248101839052604401610151565b604051633e64ce9960e01b81526001600160a01b03888116600483015260248201889052604482018590528581166064830152821690633e64ce99906084016020604051808303815f875af11580156107ee573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108129190610efc565b506108286001600160a01b038816853088610848565b61083c6001600160a01b0388168b87610963565b50505050505050505050565b5f6040516323b872dd60e01b81526001600160a01b03851660048201526001600160a01b038416602482015282604482015260205f6064835f8a5af13d15601f3d1160015f5114161716915050806108d95760405162461bcd60e51b81526020600482015260146024820152731514905394d1915497d19493d357d1905253115160621b6044820152606401610151565b5050505050565b5f60405163a9059cbb60e01b81526001600160a01b038416600482015282602482015260205f6044835f895af13d15601f3d1160015f51141617169150508061095d5760405162461bcd60e51b815260206004820152600f60248201526e1514905394d1915497d19052531151608a1b6044820152606401610151565b50505050565b5f60405163095ea7b360e01b81526001600160a01b038416600482015282602482015260205f6044835f895af13d15601f3d1160015f51141617169150508061095d5760405162461bcd60e51b815260206004820152600e60248201526d1054141493d59157d1905253115160921b6044820152606401610151565b6001600160a01b03811681146109f3575f80fd5b50565b8035610a01816109df565b919050565b5f805f805f805f60c0888a031215610a1c575f80fd5b873567ffffffffffffffff80821115610a33575f80fd5b818a0191508a601f830112610a46575f80fd5b813581811115610a54575f80fd5b8b6020828501011115610a65575f80fd5b602092830199509750610a7b918a0190506109f6565b9450610a89604089016109f6565b9350610a97606089016109f6565b92506080880135915060a0880135905092959891949750929550565b5f60208284031215610ac3575f80fd5b8135610ace816109df565b9392505050565b5f8083601f840112610ae5575f80fd5b50813567ffffffffffffffff811115610afc575f80fd5b6020830191508360208260051b8501011115610b16575f80fd5b9250929050565b5f805f805f805f8060e0898b031215610b34575f80fd5b8835610b3f816109df565b97506020890135610b4f816109df565b96506040890135610b5f816109df565b9550606089013567ffffffffffffffff811115610b7a575f80fd5b610b868b828c01610ad5565b9096509450506080890135925060a0890135915060c0890135610ba8816109df565b809150509295985092959890939650565b5f805f805f805f60c0888a031215610bcf575f80fd5b8735610bda816109df565b96506020880135610bea816109df565b95506040880135610bfa816109df565b9450606088013567ffffffffffffffff811115610c15575f80fd5b610c218a828b01610ad5565b989b979a50959895979660808701359660a0013595509350505050565b6020808252600c908201526b15539055551213d49256915160a21b604082015260600190565b600281106109f3575f80fd5b5f60208284031215610c80575f80fd5b8135610ace81610c64565b634e487b7160e01b5f52602160045260245ffd5b6001600160a01b0393841681529190921660208201526001600160e01b0319909116604082015260600190565b5f60208284031215610cdc575f80fd5b81518015158114610ace575f80fd5b60028110610d0757634e487b7160e01b5f52602160045260245ffd5b9052565b60a08101610d198288610ceb565b6001600160a01b03958616602083015260408201949094526060810192909252909216608090920191909152919050565b6001600160a01b03878116825286811660208084019190915260a06040840181905283018690525f91879160c08501845b89811015610da2578435610d8e816109df565b841682529382019390820190600101610d7b565b508581036060870152875193508381525f92505b83831015610dd35787830182015181840183015291810191610db6565b5f8185018301526001600160a01b0387166080870152601f909301601f19169092019091019150610e019050565b979650505050505050565b60808101610e1a8287610ceb565b6001600160a01b039490941660208201526040810192909252606090910152919050565b5f805f8060808587031215610e51575f80fd5b8451610e5c81610c64565b6020860151909450610e6d816109df565b6040860151606090960151949790965092505050565b5f805f805f60a08688031215610e97575f80fd5b8551610ea281610c64565b6020870151909550610eb3816109df565b8094505060408601519250606086015191506080860151610ed3816109df565b809150509295509295909350565b5f60208284031215610ef1575f80fd5b8151610ace816109df565b5f60208284031215610f0c575f80fd5b505191905056fea2646970667358221220985b63d8d09e4ec39cc415829921046f43f02856036382bb198152ff79e2dd3564736f6c63430008150033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000002322ba43eff1542b6a7baed35e66099ea0d12bd10000000000000000000000004df6b73328b639073db150c4584196c4d97053b7

-----Decoded View---------------
Arg [0] : _owner (address): 0x2322ba43eFF1542b6A7bAeD35e66099Ea0d12Bd1
Arg [1] : _authority (address): 0x4df6b73328B639073db150C4584196c4d97053b7

-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 0000000000000000000000002322ba43eff1542b6a7baed35e66099ea0d12bd1
Arg [1] : 0000000000000000000000004df6b73328b639073db150c4584196c4d97053b7


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.