ETH Price: $3,247.91 (-0.19%)

Contract

0x98Cf78d3ff5fB46CA3C5A9B07AB8e3D2a81aFFDB
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Pull Liquidity192101512024-02-12 6:26:35333 days ago1707719195IN
0x98Cf78d3...2a81aFFDB
0 ETH0.0017876520.98240224
Create Liquidity192100822024-02-12 6:12:47333 days ago1707718367IN
0x98Cf78d3...2a81aFFDB
0 ETH0.0044190120.65569045
Create Liquidity190768922024-01-24 13:47:59352 days ago1706104079IN
0x98Cf78d3...2a81aFFDB
0 ETH0.0042577718.81997079
Create Liquidity190280072024-01-17 17:12:35359 days ago1705511555IN
0x98Cf78d3...2a81aFFDB
0 ETH0.0215017851.14200418

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block
From
To
190267452024-01-17 12:55:35359 days ago1705496135  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x9f2b2f5b3733520564c4365856d4f7b54d4fc977

Contract Name:
RoboNetStrategy

Compiler Version
v0.8.19+commit.7dd6d404

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion, None license

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 87 : RoboNetStrategy.sol
// SPDX-License-Identifier: AGPL-3.0

pragma solidity ^0.8.0;

import {Fee} from "../../../struct/Fee.sol";
import {DittoPool} from "../../DittoPool.sol";
import {IDittoPool} from "../../../interface/IDittoPool.sol";
import {CurveErrorCode} from "../../../utils/CurveErrorCode.sol";
import {NftCostData} from "../../../struct/NftCostData.sol";
import {DittoPoolTrade} from "../../DittoPoolTrade.sol";
import {FixedPointMathLib} from "solmate/utils/FixedPointMathLib.sol";
import {SafeTransferLib} from "solmate/utils/SafeTransferLib.sol";
import {ERC20} from "solmate/tokens/ERC20.sol";
import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import {ERC165} from "@openzeppelin/contracts/utils/introspection/ERC165.sol";
import {SignedZoneInterface} from "seaport/contracts/zones/interfaces/SignedZoneInterface.sol";
import {SIP5Interface} from "seaport/contracts/zones/interfaces/SIP5Interface.sol";
import {ZoneInterface} from "seaport/contracts/interfaces/ZoneInterface.sol";
import {SignedZoneEventsAndErrors} from "seaport/contracts/zones/interfaces/SignedZoneEventsAndErrors.sol";
import {
    ZoneParameters, SpentItem, ReceivedItem, ItemType, Schema
} from "seaport/contracts/lib/ConsiderationStructs.sol";
import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";
import {EnumerableMap} from "@openzeppelin/contracts/utils/structs/EnumerableMap.sol";
import {Seaport} from "seaport/contracts/Seaport.sol";

/**
 * @title RoboNet strategy curve
 * @notice This zone implements the SIP-7 standard documented here: https://github.com/ProjectOpenSea/SIPs/blob/main/SIPS/sip-7.md
 */
contract RoboNetStrategy is
    DittoPool,
    SignedZoneInterface,
    SignedZoneEventsAndErrors,
    ZoneInterface,
    SIP5Interface,
    ERC165
{
    using SafeTransferLib for ERC20;
    using FixedPointMathLib for uint256;
    using EnumerableSet for EnumerableSet.UintSet;
    using EnumerableMap for EnumerableMap.UintToUintMap;
    /**
     * @dev revert if lp don't have the requested nfts to execute order
     */

    error LpNftOwnershipMismatch(uint256 expectedLp, uint256 lpId, bytes32 orderHash);
    /**
     * @dev revert if the items specified in the order are not valid
     */
    error InvalidOrderItems(string, bytes32 orderHash);
    /**
     * @dev revert if order was signed by signer that is not active
     */
    error InvalidOrderSigner(bytes32 digest, bytes signature);

    /// @dev The allowed signers by strategist.
    mapping(address => SignerInfo) private _strategistSigners;

    /// @dev The HTTP URL for the API endpoint where orders for this strategist can be retrieved.
    ///      Request and response payloads are defined in SIP-7.
    string private _sip7APIEndpoint;

    /// @dev The name for this zone returned in getSeaportMetadata().
    string private _ZONE_NAME;

    /// @dev The EIP-712 digest parameters.
    bytes32 internal immutable _NAME_HASH = keccak256(bytes("RoboNetStrategy"));
    bytes32 internal immutable _VERSION_HASH = keccak256(bytes("1.0.0"));
    // prettier-ignore
    bytes32 internal immutable _EIP_712_DOMAIN_TYPEHASH = keccak256(
        abi.encodePacked(
            "EIP712Domain(", "string name,", "string version,", "uint256 chainId,", "address verifyingContract", ")"
        )
    );
    // prettier-ignore
    bytes32 internal immutable _SIGNED_ORDER_TYPEHASH = keccak256(
        abi.encodePacked(
            "SignedOrder(", "address fulfiller,", "uint64 expiration,", "bytes32 orderHash,", "uint256 lpId", ")"
        )
    );
    uint256 internal immutable _CHAIN_ID = block.chainid;
    bytes32 internal _DOMAIN_SEPARATOR;

    /* solhint-disable private-vars-leading-underscore */
    /* solhint-disable const-name-snakecase */
    bytes constant EIP_712_PREFIX = "\x19\x01";
    // ***************************************************************
    // * ================== ZONE IMPLEMENTATION ==================== *
    // ***************************************************************

    /**
     * @notice Add a new signer to the zone.
     *
     * @param signer The new signer address to add.
     */
    function addSigner(address signer) external override onlyOwner {
        // Do not allow the zero address to be added as a signer.
        if (signer == address(0)) {
            revert SignerCannotBeZeroAddress();
        }

        // Revert if the signer is already added.
        if (_strategistSigners[signer].active) {
            revert SignerAlreadyAdded(signer);
        }

        // Revert if the signer was previously authorized.
        if (_strategistSigners[signer].previouslyActive) {
            revert SignerCannotBeReauthorized(signer);
        }

        // Set the signer info.
        _strategistSigners[signer] = SignerInfo(true, true);

        // Emit an event that the signer was added.
        emit SignerAdded(signer);
    }

    /**
     * @notice Remove an active signer from the zone.
     *
     * @param signer The signer address to remove.
     */
    function removeSigner(address signer) external override onlyOwner {
        // Revert if the signer is not active.
        if (!_strategistSigners[signer].active) {
            revert SignerNotPresent(signer);
        }

        // Set the signer's active status to false.
        _strategistSigners[signer].active = false;

        // Emit an event that the signer was removed.
        emit SignerRemoved(signer);
    }

    /**
     * @notice Invalidate all the active orders.
     *
     * @param marketplaceAddress The marketplace address the orders are invalidated.
     */
    function invalidateOrders(address payable marketplaceAddress) external onlyOwner nonReentrant returns (uint256) {
        return Seaport(marketplaceAddress).incrementCounter();
    }

    /**
     * @notice Update the API endpoint returned by this zone.
     *
     * @param newApiEndpoint The new API endpoint.
     */
    function updateAPIEndpoint(string calldata newApiEndpoint) external override onlyOwner {
        // Update to the new API endpoint.
        _sip7APIEndpoint = newApiEndpoint;
    }

    /**
     * @notice Check if a given order including extraData is currently valid.
     *
     * @dev This function is called by Seaport whenever any extraData is
     *      provided by the caller.
     *
     * @return validOrderMagicValue A magic value indicating if the order is currently valid.
     */
    function validateOrder(ZoneParameters calldata zoneParameters)
        external
        override
        nonReentrant
        returns (bytes4 validOrderMagicValue)
    {
        // Extract order details from the extra data.
        bytes32 orderHash = zoneParameters.orderHash;
        (address expectedFulfiller, uint64 expiration, bytes calldata signature, uint256 lpId) =
            _parseOrderExtraData(zoneParameters.extraData, orderHash);

        // Revert if expected fulfiller is not the zero address and does not match the actual fulfiller.
        if (expectedFulfiller != address(0) && expectedFulfiller != zoneParameters.fulfiller) {
            revert InvalidFulfiller(expectedFulfiller, zoneParameters.fulfiller, orderHash);
        }

        // Revert if expired.
        if (block.timestamp > expiration) {
            revert SignatureExpired(expiration, orderHash);
        }

        // Derive the signedOrder hash.
        bytes32 signedOrderHash = _deriveSignedOrderHash(expectedFulfiller, expiration, orderHash, lpId);

        // Derive the EIP-712 digest using the domain separator and signedOrder
        // hash.
        bytes32 digest = _deriveEIP712Digest(_domainSeparator(), signedOrderHash);

        // Recover the signer address from the digest and signature.
        address recoveredSigner = ECDSA.recover(digest, signature);

        // Revert if the signer is not active.
        if (!_strategistSigners[recoveredSigner].active) {
            revert SignerNotActive(recoveredSigner, orderHash);
        }

        // Update lpId state
        uint256 totalERC20OfferAmount = _updateLpStateFromOffer(lpId, zoneParameters.offer, orderHash);
        uint256 totalErc20ConsiderationAmount =
            _updateLpStateFromConsideration(lpId, zoneParameters.consideration, orderHash);

        // Calculate the fees applied for the order fulfillment
        Fee memory fulfillmentFees = _calculateFulfillmentFees(
            recoveredSigner == zoneParameters.fulfiller, totalERC20OfferAmount, totalErc20ConsiderationAmount, orderHash
        );

        // Pay fees from the LP
        _payFulfillmentFeesFromLp(lpId, fulfillmentFees);

        // Return the selector of validateOrder as the magic value.
        validOrderMagicValue = ZoneInterface.validateOrder.selector;
    }

    /**
     * @dev Validate that the order signature was produced by a valid signer.
     *      This method is called by the seaport contract during order validation.
     *
     * @return magic number
     */
    function isValidSignature(bytes32 digest, bytes memory signature) external view virtual returns (bytes4) {
        // Recover the signer address from the digest and signature.
        address recoveredSigner = ECDSA.recover(digest, signature);
        // Revert if the signer is not active.
        if (!_strategistSigners[recoveredSigner].active) {
            revert InvalidOrderSigner(digest, signature);
        }
        return 0x1626ba7e;
    }

    /**
     * @notice Returns signing information about the zone.
     *
     * @return domainSeparator The domain separator used for signing.
     */
    function sip7Information() external view override returns (bytes32 domainSeparator, string memory apiEndpoint) {
        // Derive the domain separator.
        domainSeparator = _domainSeparator();

        // Return the API endpoint.
        apiEndpoint = _sip7APIEndpoint;
    }

    /**
     * @dev Returns Seaport metadata for this contract, returning the
     *      contract name and supported schemas.
     *
     * @return name    The contract name
     * @return schemas The supported SIPs
     */
    function getSeaportMetadata()
        external
        view
        override(SIP5Interface, ZoneInterface)
        returns (string memory name, Schema[] memory schemas)
    {
        name = _ZONE_NAME;
        schemas = new Schema[](1);
        schemas[0].id = 7;
    }

    /**
     * @notice Returns whether the interface is supported.
     *
     * @param interfaceId The interface id to check against.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165) returns (bool) {
        return interfaceId == type(SIP5Interface).interfaceId // SIP-5
            || interfaceId == type(ZoneInterface).interfaceId // ZoneInterface
            || super.supportsInterface(interfaceId); // ERC-165
    }

    // ***************************************************************
    // * ================= INTERNAL FUNCTIONS ====================== *
    // ***************************************************************

    /**
     * @dev Custom initialization function for the RoboNetStrategy strategist to initialize the pool
     *
     * @param templateInitData_ initialization data
     */
    function _initializeCustomPoolData(bytes calldata templateInitData_) internal override {
        (string memory zoneName_, address marketplaceContract_, string memory apiEndpoint_) =
            abi.decode(templateInitData_, (string, address, string));

        // Approve the marketplace contract for handling NFT and token transfers.
        _nft.setApprovalForAll(marketplaceContract_, true);
        _token.approve(marketplaceContract_, type(uint256).max);

        // Set the zone name.
        _ZONE_NAME = zoneName_;

        // Set the API endpoint.
        _sip7APIEndpoint = apiEndpoint_;

        // Derive and set the domain separator.
        _DOMAIN_SEPARATOR = _deriveDomainSeparator();

        // Add pool manager as a strategy signer
        _strategistSigners[owner()] = SignerInfo(true, true);
        emit SignerAdded(owner());

        // Emit an event to signal a SIP-5 contract has been deployed.
        emit SeaportCompatibleContractDeployed();
    }

    /**
     * @dev Updates the state of the liquidity pool based on the offer items transferred after processing a seaport order.
     *      At this point, the liquidity was already transferred from the pool and the extracted tokens are the tokens supported by the pool.
     *      Adjusts the ERC20 and ERC721 balance of the counterparty LP and emits events to reflect the changes in liquidity.
     *      Reverts if the LP does not own the NFTs transferred.
     *
     * @param lpId The LP id where the liquidity is added.
     * @param offer The list of the spent items (ERC20 tokens and ERC721 tokens) after fulfilling the order.
     * @param orderHash The hash of the seaport order.
     *
     * @return The total amount of ERC20 tokens removed from the LP.
     *
     */
    function _updateLpStateFromOffer(uint256 lpId, SpentItem[] memory offer, bytes32 orderHash)
        internal
        returns (uint256)
    {
        uint256 initialLPTokenBalance = getTokenBalanceForLpId(lpId);
        uint256 currentLPTokenBalance = initialLPTokenBalance;
        uint256 nftIdsCountRemoved = 0;
        uint256 offerLength = offer.length;
        uint256[] memory removedNftIds = new uint256[](offerLength);
        SpentItem memory spentItem;

        // TRACK REMAINING LP TOKEN BALANCE
        // REMOVE NFT LIQUIDITY
        for (uint256 i = 0; i < offerLength;) {
            spentItem = offer[i];

            if (spentItem.itemType == ItemType.ERC20) {
                currentLPTokenBalance -= spentItem.amount;
            } else if (spentItem.itemType == ItemType.ERC721 || spentItem.itemType == ItemType.ERC721_WITH_CRITERIA) {
                // Validate that the lpId owns the order tokenId
                if (getLpIdForNftId(spentItem.identifier) != lpId) {
                    revert LpNftOwnershipMismatch(lpId, getLpIdForNftId(spentItem.identifier), orderHash);
                }

                _poolOwnedNftIds.remove(spentItem.identifier);
                delete _nftIdToLpId[spentItem.identifier];
                // track removed nfts
                removedNftIds[nftIdsCountRemoved] = spentItem.identifier;
                nftIdsCountRemoved++;
            } else {
                // ERC1155 or NATIVE (e.g ETH) tokens are not supported
                revert InvalidExtraData("Order invalid SpentItem", orderHash);
            }

            unchecked {
                ++i;
            }
        }

        // REMOVE TOKEN LIQUIDITY
        if (currentLPTokenBalance < initialLPTokenBalance) {
            _lpIdToTokenBalance.set(lpId, currentLPTokenBalance);
            _tokenLiquidityRemoved(initialLPTokenBalance - currentLPTokenBalance);
        }

        // REMOVE FROM LP NFT BALANCE
        if (nftIdsCountRemoved > 0) {
            _lpIdToNftBalance[lpId] -= nftIdsCountRemoved;
            _nftLiquidityRemoved(nftIdsCountRemoved);
        }

        _updateLpNftMetadataOnTrade(lpId);

        emit DittoPoolMarketMakeLiquidityRemoved(lpId, removedNftIds, initialLPTokenBalance - currentLPTokenBalance);

        return initialLPTokenBalance - currentLPTokenBalance;
    }

    /**
     * @dev Updates the state of the liquidity pool based on the consideration items received after processing a seaport order.
     *      Adjusts the ERC20 and ERC721 balance of the counterparty LP and emits events to reflect the changes in liquidity.
     *      Only accepts the pool as the consideration items recipient.
     *      Reverts if the tokens received are not supported by the pool.
     *
     * @param lpId The LP id where the liquidity is added.
     * @param consideration The list of the received items (ERC20 tokens and ERC721 tokens) after fulfilling the order.
     * @param orderHash The hash of the seaport order.
     *
     * @return The total amount of ERC20 tokens received by the LP.
     */
    function _updateLpStateFromConsideration(uint256 lpId, ReceivedItem[] memory consideration, bytes32 orderHash)
        internal
        returns (uint256)
    {
        uint256 initialLPTokenBalance = getTokenBalanceForLpId(lpId);
        uint256 currentLPTokenBalance = initialLPTokenBalance;
        uint256 nftIdsCountReceived = 0;
        uint256 considerationLength = consideration.length;
        uint256[] memory receivedNftIds = new uint256[](considerationLength);
        ReceivedItem memory receivedItem;

        // ADD CONSIDERATION ITEMS TO LP
        for (uint256 i = 0; i < considerationLength;) {
            receivedItem = consideration[i];

            // only process consideration items that were sent to the pool
            if (receivedItem.recipient != address(this)) {
                revert InvalidOrderItems("Invalid consideration item recipient", orderHash);
            }

            if (receivedItem.itemType == ItemType.ERC20) {
                // Validate pool ERC20 token
                if (receivedItem.token != address(_token)) {
                    revert InvalidOrderItems("Invalid token provided as consideration item", orderHash);
                }

                currentLPTokenBalance += receivedItem.amount;
            } else if (
                receivedItem.itemType == ItemType.ERC721 || receivedItem.itemType == ItemType.ERC721_WITH_CRITERIA
            ) {
                // Validate pool ERC721 token
                if (receivedItem.token != address(_nft)) {
                    revert InvalidOrderItems("Invalid nft provided as consideration item", orderHash);
                }

                _poolOwnedNftIds.add(receivedItem.identifier);
                _nftIdToLpId[receivedItem.identifier] = lpId;
                // track received nfts
                receivedNftIds[nftIdsCountReceived] = receivedItem.identifier;
                nftIdsCountReceived++;
            } else {
                // ERC1155 or NATIVE (e.g ETH) tokens are not supported
                revert InvalidExtraData("Order invalid ReceivedItem", orderHash);
            }

            unchecked {
                ++i;
            }
        }

        // ADD TOKEN LIQUIDITY
        if (currentLPTokenBalance > initialLPTokenBalance) {
            _lpIdToTokenBalance.set(lpId, currentLPTokenBalance);
            _tokenLiquidityAdded(currentLPTokenBalance - initialLPTokenBalance);
        }

        // ADD TO LP NFT BALANCE
        if (nftIdsCountReceived > 0) {
            _lpIdToNftBalance[lpId] += nftIdsCountReceived;
            _nftLiquidityAdded(nftIdsCountReceived);
        }

        emit DittoPoolMarketMakeLiquidityAdded(
            address(0), lpId, receivedNftIds, currentLPTokenBalance - initialLPTokenBalance, ""
        );

        return currentLPTokenBalance - initialLPTokenBalance;
    }

    /**
     * @dev Calculates the fulfillment fees should be paid for an order.
     * @param isOrderFulfilledByPool Boolean indicating if the order is fulfilled by the pool (the pool is the taker of the order).
     * @param totalERC20OfferAmount Total amount of ERC20 tokens removed from the pool.
     * @param totalERC20ConsiderationAmount Total amount of ERC20 tokens received by the pool.
     * @param orderHash Hash of the order.
     * @return Fee structure containing the protocol fee, admin fee, and LP fee.
     */
    function _calculateFulfillmentFees(
        bool isOrderFulfilledByPool,
        uint256 totalERC20OfferAmount,
        uint256 totalERC20ConsiderationAmount,
        bytes32 orderHash
    ) internal view returns (Fee memory) {
        // By default, the fees are applied to the consideration amount of the order
        // Fees are applied as follows:
        // 1. Pool is the taker of the order
        //
        // CASE 1.1:
        //
        // MIRROR ORDER:
        // Strategist offer: [...NFTs]
        // Strategist consideration: ERC20 amount
        //
        // Fees applied on the total ERC20 consideration amount
        //
        // -------------------------------------------------------
        //
        // CASE 1.2:
        //
        // MIRROR ORDER:
        // Strategist offer: ERC20 amount
        // Strategist consideration: [...NFTs]
        //
        // Fees not applied
        // =======================================================
        //
        // 2. Pool is the maker of the order
        //
        // CASE 2.1:
        //
        // ORDER:
        // Offer: [...NFTs]
        // Consideration: ERC20 amount
        //
        // Fees applied on the total ERC20 consideration amount

        // The pool is the maker of the order and the fees are applied to the offer amount
        uint256 protocolFee = _dittoPoolFactory.getProtocolFee();
        uint256 totalOrderAmount = totalERC20ConsiderationAmount;

        if (!isOrderFulfilledByPool && totalERC20OfferAmount > 0) {
            if (totalERC20ConsiderationAmount > 0) {
                //
                // ORDER type not supported
                // Offer: [...NFTs(optional), ERC20 amount]
                // Consideration: ERC20 amount
                //
                revert InvalidOrderItems("Invalid consideration provided", orderHash);
            }

            // CASE 2.2:
            //
            // ORDER:
            // Offer: ERC20 amount (not including fees)
            // Consideration: [...NFTs]
            //
            // Fees are applied to the offer amount.
            // Offer amount = total order amount / (1 + s_fee + p_fee)
            totalOrderAmount = totalERC20OfferAmount;
        }

        return Fee({protocol: _mul(totalOrderAmount, protocolFee), admin: _mul(totalOrderAmount, _feeAdmin), lp: 0});
    }

    /**
     * @dev Pays the fulfillment fees from the LP token balance.
     *      This function transfers the specified fees from the LP token balance to the fee recipients.
     *      It also updates the LP token balance by subtracting the fees.
     *
     * @param lpId The ID of the LP token.
     * @param fees The structure containing the protocol and admin fees.
     * @dev Throws a `DittoPoolTradeInsufficientBalanceToPayFees` error if the LP token balance is insufficient to cover the total fees amount.
     */
    function _payFulfillmentFeesFromLp(uint256 lpId, Fee memory fees) internal {
        uint256 lpTokenBalance = getTokenBalanceForLpId(lpId);
        uint256 totalNonLpFees = fees.protocol + fees.admin;

        if (lpTokenBalance < totalNonLpFees) {
            revert DittoPoolTradeInsufficientBalanceToPayFees();
        }

        // Update LP state
        _lpIdToTokenBalance.set(lpId, lpTokenBalance - totalNonLpFees);

        // Transfer out the fee amounts
        ERC20 token = _token;
        if (fees.protocol > 0) {
            token.safeTransfer(_dittoPoolFactory.protocolFeeRecipient(), fees.protocol);
        }

        if (fees.admin > 0) {
            token.safeTransfer(_adminFeeRecipient, fees.admin);
        }

        emit DittoPoolMarketMakeLiquidityRemoved(lpId, new uint256[](0), totalNonLpFees);
    }

    /**
     * @dev Parses the extra data of an order to extract relevant details.
     *
     * @param extraData The calldata containing additional order information.
     * @param orderHash The hash of the order.
     *
     * @return fulfiller The expected fulfiller's address (zero address implies no restriction to a specific address).
     * @return expiration The expiration timestamp of the order.
     * @return signature The signature of the order hash.
     * @return lpId The identifier of the RoboNetStrategy LP against which the order is executed.
     */
    function _parseOrderExtraData(bytes calldata extraData, bytes32 orderHash)
        internal
        pure
        returns (address fulfiller, uint64 expiration, bytes calldata signature, uint256 lpId)
    {
        // Revert with an error if the extraData does not have valid length.
        if (extraData.length < 125) {
            revert InvalidExtraData("extraData length must be at least 125 bytes", orderHash);
        }

        // extraData bytes 0-20: expected fulfiller
        // (zero address means not restricted)
        fulfiller = address(bytes20(extraData[:20]));

        // extraData bytes 20-28: expiration timestamp (uint64)
        expiration = uint64(bytes8(extraData[20:28]));

        // extraData bytes 28-93: signature
        signature = extraData[28:93];

        // extraData bytes 93-125: RoboNetStrategy lpId (lpId position the SpentItems will come from)
        lpId = uint256(bytes32(extraData[93:125]));
    }

    /**
     * @dev Derive the signedOrder hash from the orderHash and expiration.
     *
     * @param fulfiller  The expected fulfiller address.
     * @param expiration The signature expiration timestamp.
     * @param orderHash  The order hash.
     * @param lpId The lp position to draw liquidity from
     *
     * @return signedOrderHash The signedOrder hash.
     *
     */
    function _deriveSignedOrderHash(address fulfiller, uint64 expiration, bytes32 orderHash, uint256 lpId)
        internal
        view
        returns (bytes32 signedOrderHash)
    {
        // Derive the signed order hash.
        signedOrderHash = keccak256(abi.encode(_SIGNED_ORDER_TYPEHASH, fulfiller, expiration, orderHash, lpId));
    }

    /**
     * @dev Internal pure function to efficiently derive an digest to sign for
     *      an order in accordance with EIP-712.
     *
     * @param domainSeparator The domain separator.
     * @param signedOrderHash The signedOrder hash.
     *
     * @return digest The digest hash.
     */
    function _deriveEIP712Digest(bytes32 domainSeparator, bytes32 signedOrderHash)
        internal
        pure
        returns (bytes32 digest)
    {
        digest = keccak256(abi.encodePacked(EIP_712_PREFIX, domainSeparator, signedOrderHash));
    }

    /**
     * @dev Internal view function to get the EIP-712 domain separator. If the
     *      chainId matches the chainId set on deployment, the cached domain
     *      separator will be returned; otherwise, it will be derived from
     *      scratch.
     *
     * @return The domain separator.
     */
    function _domainSeparator() internal view returns (bytes32) {
        // prettier-ignore
        return block.chainid == _CHAIN_ID ? _DOMAIN_SEPARATOR : _deriveDomainSeparator();
    }

    /**
     * @dev Internal view function to derive the EIP-712 domain separator.
     *
     * @return domainSeparator The derived domain separator.
     */
    function _deriveDomainSeparator() internal view returns (bytes32 domainSeparator) {
        domainSeparator = keccak256(
            abi.encodePacked(_EIP_712_DOMAIN_TYPEHASH, _NAME_HASH, _VERSION_HASH, block.chainid, address(this))
        );
    }
    // ***************************************************************
    // * ================== CURVE IMPLEMENTATION =================== *
    // ***************************************************************

    /**
     * @dev See {DittPool-_validateBasePrice}
     */
    function _invalidBasePrice(uint128 /*newBasePrice*/ ) internal pure override returns (bool) {
        return false;
    }

    /**
     * @dev See {DittPool-_validateDelta}
     */
    function _invalidDelta(uint128 /*delta*/ ) internal pure override returns (bool valid) {
        return false;
    }

    ///@inheritdoc IDittoPool
    function bondingCurve() public pure virtual override(IDittoPool) returns (string memory curve) {
        return "Curve: Strat";
    }

    /**
     * @dev See {DittPool-_getBuyInfo}
     * NOTE: Buying not supported for pool type
     */
    function _getBuyInfo(
        uint128, /*basePrice*/
        uint128, /*delta*/
        uint256, /*numItems*/
        bytes calldata, /*swapData_*/
        Fee memory /*fee_*/
    )
        internal
        virtual
        override
        returns (
            CurveErrorCode error,
            uint128 newBasePrice,
            uint128 newDelta,
            uint256 inputValue,
            NftCostData[] memory nftCostData
        )
    {
        error = CurveErrorCode.BUY_NOT_SUPPORTED;
        return (error, 0, 0, 0, nftCostData);
    }

    /**
     *  @dev See {DittPool-_getSellInfo}
     *  NOTE: Selling not supported for pool type
     */
    function _getSellInfo(
        uint128, /*basePrice*/
        uint128, /*delta*/
        uint256, /*numItems*/
        bytes calldata, /*swapData_*/
        Fee memory /*fee_*/
    )
        internal
        virtual
        override
        returns (
            CurveErrorCode error,
            uint128 newBasePrice,
            uint128 newDelta,
            uint256 outputValue,
            NftCostData[] memory nftCostData
        )
    {
        // If we got all the way here, no math error happened
        error = CurveErrorCode.SELL_NOT_SUPPORTED;
        return (error, 0, 0, 0, nftCostData);
    }

    function getBuyNftQuote(uint256, /* numNfts_ */ bytes calldata /* swapData_ */ )
        external
        pure
        override(IDittoPool, DittoPoolTrade)
        returns (
            CurveErrorCode error,
            uint256 newBasePrice,
            uint256 newDelta,
            uint256 inputAmount,
            NftCostData[] memory nftCostData
        )
    {
        NftCostData[] memory nftCostData_;
        return (CurveErrorCode.NOOP, 0, 0, 0, nftCostData_);
    }

    function getSellNftQuote(uint256, /* numNfts_ */ bytes calldata /* swapData_ */ )
        external
        pure
        override(IDittoPool, DittoPoolTrade)
        returns (
            CurveErrorCode error,
            uint256 newBasePrice,
            uint256 newDelta,
            uint256 outputAmount,
            NftCostData[] memory nftCostData
        )
    {
        NftCostData[] memory nftCostData_;
        return (CurveErrorCode.NOOP, 0, 0, 0, nftCostData_);
    }
}

File 2 of 87 : Fee.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

/**
 * @title Fee
 * @notice Struct to hold the fee amounts for LP, admin and protocol. Is used in the protocol to 
 *   pass the fee percentages and the total fee amount depending on the context.
 */
struct Fee {
    uint256 lp;
    uint256 admin;
    uint256 protocol;
}

File 3 of 87 : DittoPool.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { IDittoPool } from "../interface/IDittoPool.sol";

import { DittoPoolMain } from "./DittoPoolMain.sol";
import { DittoPoolMarketMake } from "./DittoPoolMarketMake.sol";
import { DittoPoolTrade } from "./DittoPoolTrade.sol";

/**
 * @title DittoPool
 * @notice DittoPool AMM shared liquidity trading pools. See DittoPoolMain, MarketMake and Trade for implementation.
 */
abstract contract DittoPool is IDittoPool, DittoPoolMain, DittoPoolMarketMake, DittoPoolTrade { }

File 4 of 87 : IDittoPool.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { Fee } from "../struct/Fee.sol";
import { SwapNftsForTokensArgs, SwapTokensForNftsArgs } from "../struct/SwapArgs.sol";
import { LpNft } from "../pool/lpNft/LpNft.sol";
import { PoolTemplate } from "../struct/FactoryTemplates.sol";
import { LpIdToTokenBalance } from "../struct/LpIdToTokenBalance.sol";
import { NftCostData } from "../struct/NftCostData.sol";
import { IPermitter } from "../interface/IPermitter.sol";

import { IERC721 } from "../../lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";
import { CurveErrorCode } from "../utils/CurveErrorCode.sol";

import { IOwnerTwoStep } from "./IOwnerTwoStep.sol";

interface IDittoPool is IOwnerTwoStep {
    // ***************************************************************
    // * =============== ADMINISTRATIVE FUNCTIONS ================== *
    // ***************************************************************

    /**
     * @notice For use in tokenURI function metadata
     * @return curve type of curve
     */
    function bondingCurve() external pure returns (string memory curve);

    /**
     * @notice Used by the Contract Factory to set the initial state & parameters of the pool.
     * @dev Necessarily separate from constructor due to [ERC-1167](https://eips.ethereum.org/EIPS/eip-1167) factory clone paradigm.
     * @param params_ A struct that contains various initialization parameters for the pool. See `PoolTemplate.sol` for details.
     * @param template_ which address was used to clone business logic for this pool.
     * @param lpNft_ The Liquidity Provider Positions NFT contract that tokenizes liquidity provisions in the protocol
     * @param permitter_ Contract to authorize which tokenIds from the underlying nft collection are allowed to be traded in this pool.
     * @dev Set permitter to address(0) to allow any tokenIds from the underlying NFT collection.
     */
    function initPool(
        PoolTemplate calldata params_,
        address template_,
        LpNft lpNft_,
        IPermitter permitter_
    ) external;

    /**
     * @notice Admin function to change the base price charged to buy an NFT from the pair. Each bonding curve uses this differently.
     * @param newBasePrice_ The updated base price
     */
    function changeBasePrice(uint128 newBasePrice_) external;

    /**
     * @notice Admin function to change the delta parameter associated with the bonding curve. Each bonding curve uses this differently. 
     * @param newDelta_ The updated delta
     */
    function changeDelta(uint128 newDelta_) external;

    /**
     * @notice Admin function to change the pool lp fee, set by owner, paid to LPers only when they are the counterparty in a trade
     * @param newFeeLp_ New fee, in wei / 1e18, charged by the pool for trades with it (i.e. 1% = 0.01e18)
     */
    function changeLpFee(uint96 newFeeLp_) external;

    /**
     * @notice Change the pool admin fee, set by owner, paid to an address of the owner's choosing
     * @param newFeeAdmin_ New fee, in wei / 1e18, charged by the pool for trades with it (i.e. 1% = 0.01e18)
     */
    function changeAdminFee(uint96 newFeeAdmin_) external;

    /**
     * @notice Change who the pool admin fee for this pool is sent to.
     * @param newAdminFeeRecipient_ New address to send admin fees to
     */
    function changeAdminFeeRecipient(address newAdminFeeRecipient_) external;

    // ***************************************************************
    // * ================== LIQUIDITY FUNCTIONS ==================== *
    // ***************************************************************
    /**
     * @notice Function for liquidity providers to create new Liquidity Positions within the pool by depositing liquidity.
     * @dev Provides the liquidity provider with a new liquidity position tracking NFT every time. 
     * @dev This function assumes that msg.sender is the owner of the NFTs and Tokens.
     * @dev This function expects that this contract has permission to move NFTs and tokens to itself from the owner.
     * @dev The **lpRecipient_** parameter to this function is intended to allow creating positions on behalf of
     * another party. msg.sender can send nfts and tokens to the pool and then have the pool create the liquidity position
     * for someone who is not msg.sender. The `DittoPoolFactory` uses this feature to create a new DittoPool and deposit
     * liquidity into it in one step. NFTs flow from user -> factory -> pool and then lpRecipient_ is set to the user.
     * @dev `lpRecipient_` can steal liquidity deposited by msg.sender if lpRecipient_ is not set to msg.sender.
     * @param lpRecipient_ The address that will receive the LP position ownership NFT.
     * @param nftIdList_ The list of NFT tokenIds msg.sender wishes to deposit into the pool.
     * @param tokenDepositAmount_ The amount of ERC20 tokens msg.sender wishes to deposit into the pool.
     * @param permitterData_ Data to check that the NFT Token IDs are permitted to deposited into this pool if a permitter is set.
     * @return lpId The tokenId of the LP position NFT that was minted as a result of this liquidity deposit.
     */
    function createLiquidity(
        address lpRecipient_,
        uint256[] calldata nftIdList_,
        uint256 tokenDepositAmount_,
        bytes calldata permitterData_,
        bytes calldata referrer_
    ) external returns (uint256 lpId);

    /**
     * @notice Function for market makers / liquidity providers to deposit NFTs and ERC20s into existing LP Positions.
     * @dev Anybody may add liquidity to existing LP Positions, regardless of whether they own the position or not.
     * @dev This function expects that this contract has permission to move NFTs and tokens to itself from the msg.sender.
     * @param lpId_ TokenId of existing LP position to add liquidity to. Does not have to be owned by msg.sender!
     * @param nftIdList_ The list of NFT tokenIds msg.sender wishes to deposit into the pool.
     * @param tokenDepositAmount_ The amount of ERC20 tokens msg.sender wishes to deposit into the pool.
     * @param permitterData_ Data to check that the NFT Token IDs are permitted to deposited into this pool if a permitter is set.
     */
    function addLiquidity(
        uint256 lpId_,
        uint256[] calldata nftIdList_,
        uint256 tokenDepositAmount_,
        bytes calldata permitterData_,
        bytes calldata referrer_
    ) external;

    /**
     * @notice Function for liquidity providers to withdraw NFTs and ERC20 tokens from their LP positions.
     * @dev Can be called to change an existing liquidity position, or remove an LP position by withdrawing all liquidity.
     * @dev May be called by an authorized party (approved on the LP NFT) to withdraw liquidity on behalf of the LP Position owner.
     * @param withdrawalAddress_ the address that will receive the ERC20 tokens and NFTs withdrawn from the pool.
     * @param lpId_ LP Position TokenID that liquidity is being removed from. Does not have to be owned by msg.sender if the msg.sender is authorized.
     * @param nftIdList_ The list of NFT tokenIds msg.sender wishes to withdraw from the pool.
     * @param tokenWithdrawAmount_ The amount of ERC20 tokens the msg.sender wishes to withdraw from the pool.
     */
    function pullLiquidity(
        address withdrawalAddress_,
        uint256 lpId_,
        uint256[] calldata nftIdList_,
        uint256 tokenWithdrawAmount_
    ) external;

    // ***************************************************************
    // * =================== TRADE FUNCTIONS ======================= *
    // ***************************************************************

    /**
     * @notice Trade ERC20s for a specific list of NFT token ids.
     * @dev To compute the amount of token to send, call bondingCurve.getBuyInfo
     * This swap is meant for users who want specific IDs. 
     * 
     * @param args_ The arguments for the swap. See SwapArgs.sol for parameters
     * @return inputAmount The actual amount of tokens spent to purchase the NFTs.
     */
    function swapTokensForNfts(
        SwapTokensForNftsArgs calldata args_
    ) external returns (uint256 inputAmount);

    /**
     * @notice Trade a list of allowed nft ids for ERC20s.
     * @dev To compute the amount of token to that will be received, call bondingCurve.getSellInfo.
     * @dev Key difference with sudoswap here:
     * In sudoswap, each market maker has a separate smart contract with their liquidity.
     * To sell to a market maker, you just check if their specific `LSSVMPair` contract has enough money.
     * In DittoSwap, we share different market makers' liquidity in the same pool contract.
     * So this function has an additional parameter `lpIds` forcing the buyer to check
     * off-chain which market maker's LP position that they want to trade with, for each specific NFT
     * that they are selling into the pool. The lpIds array should correspond with the nftIds
     * array in the same order & indexes. e.g. to sell NFT with tokenId 1337 to the market maker who's
     * LP position has id 42, the buyer would call this function with
     * nftIds = [1337] and lpIds = [42].
     *
     * @param args_ The arguments for the swap. See SwapArgs.sol for parameters
     * @return outputAmount The amount of token received
     */
    function swapNftsForTokens(
        SwapNftsForTokensArgs calldata args_
    ) external returns (uint256 outputAmount);

    /**
     * @notice Read-only function used to query the bonding curve for buy pricing info.
     * @param numNfts The number of NFTs to buy out of the pair
     * @param swapData_ Extra data to pass to the curve
     * @return error any errors that would be throw if trying to buy that many NFTs
     * @return newBasePrice the new base price after the trade
     * @return newDelta the new delta after the trade
     * @return inputAmount the amount of token to send to the pool to purchase that many NFTs
     * @return nftCostData the cost data for each NFT purchased
     */
    function getBuyNftQuote(uint256 numNfts, bytes calldata swapData_)
        external
        view
        returns (
            CurveErrorCode error,
            uint256 newBasePrice,
            uint256 newDelta,
            uint256 inputAmount,
            NftCostData[] memory nftCostData
        );

    /**
     * @notice Read-only function used to query the bonding curve for sell pricing info
     * @param numNfts The number of NFTs to sell into the pair
     * @param swapData_ Extra data to pass to the curve
     * @return error any errors that would be throw if trying to sell that many NFTs
     * @return newBasePrice the new base price after the trade
     * @return newDelta the new delta after the trade
     * @return outputAmount the amount of tokens the pool will send out for selling that many NFTs
     * @return nftCostData the cost data for each NFT sold
     */
    function getSellNftQuote(uint256 numNfts, bytes calldata swapData_)
        external
        view
        returns (
            CurveErrorCode error,
            uint256 newBasePrice,
            uint256 newDelta,
            uint256 outputAmount,
            NftCostData[] memory nftCostData
        );

    // ***************************************************************
    // * ===================== VIEW FUNCTIONS ====================== *
    // ***************************************************************

    /**
     * @notice returns the status of whether this contract has been initialized
     * @dev see [ERC-1167](https://eips.ethereum.org/EIPS/eip-1167) factory clone paradigm
     * and also `DittoPoolFactory.sol`
     *
     * @return initialized whether the contract has been initialized
     */
    function initialized() external view returns (bool);

    /**
     * @notice returns which DittoPool Template this pool was created with.
     * @dev see [ERC-1167](https://eips.ethereum.org/EIPS/eip-1167) factory clone paradigm
     * @return template the address of the DittoPool template used to create this pool.
     */
    function template() external view returns (address);

    /**
     * @notice Function to determine if a given DittoPool can support muliple LP providers or not.
     * @return isPrivatePool_ boolean value indicating if the pool is private or not
     */
    function isPrivatePool() external view returns (bool isPrivatePool_);

    /**
     * @notice Returns the cumulative fee associated with trading with this pool as a 1e18 based percentage.
     * @return fee_ the total fee(s) associated with this pool, for display purposes.
     */
    function fee() external view returns (uint256 fee_);

    /**
     * @notice Returns the protocol fee associated with trading with this pool as a 1e18 based percentage.
     * @return feeProtocol_ the protocol fee associated with trading with this pool
     */
    function protocolFee() external view returns (uint256 feeProtocol_);

    /**
     * @notice Returns the admin fee given to the pool admin as a 1e18 based percentage.
     * @return adminFee_ the fee associated with trading with any pair of this pool
     */
    function adminFee() external view returns (uint96 adminFee_);

    /**
     * @notice Returns the fee given to liquidity providers for trading with this pool.
     * @return lpFee_ the fee associated with trading with a particular pair of this pool.
     */
    function lpFee() external view returns (uint96 lpFee_);

    /**
     * @notice Returns the delta parameter for the bonding curve associated this pool
     * Each bonding curve uses delta differently, but in general it is used as an input
     *   to determine the next price on the bonding curve.
     * @return delta_ The delta parameter for the bonding curve of this pool
     */
    function delta() external view returns (uint128 delta_);

    /**
     * @notice Returns the base price to sell the next NFT into this pool, base+delta to buy
     * Each bonding curve uses base price differently, but in general it is used as the current price of the pool.
     * @return basePrice_ this pool's current base price
     */
    function basePrice() external view returns (uint128 basePrice_);

    /**
     * @notice Returns the factory that created this pool.
     * @return dittoPoolFactory the ditto pool factory for the contract
     */
    function dittoPoolFactory() external view returns (address);

    /**
     * @notice Returns the address that recieves admin fees from trades with this pool
     * @return adminFeeRecipient The admin fee recipient of this pool
     */
    function adminFeeRecipient() external view returns (address);

    /**
     * @notice Returns the NFT collection that represents liquidity positions in this pool
     * @return lpNft The LP Position NFT collection for this pool
     */
    function getLpNft() external view returns (address);

    /**
     * @notice Returns the nft collection that this pool trades 
     * @return nft_ the address of the underlying nft collection contract
     */
    function nft() external view returns (IERC721 nft_);

    /**
     * @notice Returns the address of the ERC20 token that this pool is trading NFTs against.
     * @return token_ The address of the ERC20 token that this pool is trading NFTs against.
     */
    function token() external view returns (address token_);

    /**
     * @notice Returns the permitter contract that allows or denies specific NFT tokenIds to be traded in this pool
     * @dev if this address is zero, then all NFTs from the underlying collection are allowed to be traded in this pool
     * @return permitter the address of this pool's permitter contract, or zero if no permitter is set
     */
    function permitter() external view returns (IPermitter);

    /**
     * @notice Returns how many ERC20 tokens a liquidity provider has in the pool
     * @dev this function mimics mappings: an invalid lpId_ will return 0 rather than throwing for being invalid
     * @param lpId_ LP Position NFT token ID to query for
     * @return lpTokenBalance the amount of ERC20 tokens the liquidity provider has in the pool
     */
    function getTokenBalanceForLpId(uint256 lpId_) external view returns (uint256);

    /**
     * @notice Returns the full list of NFT tokenIds that are owned by a specific liquidity provider in this pool
     * @dev This function is not gas efficient and not-meant to be used on chain, only as a convenience for off-chain.
     * @dev worst-case is O(n) over the length of all the NFTs owned by the pool
     * @param lpId_ an LP position NFT token Id for a user providing liquidity to this pool
     * @return nftIds the list of NFT tokenIds in this pool that are owned by the specific liquidity provider
     */
    function getNftIdsForLpId(uint256 lpId_) external view returns (uint256[] memory nftIds);

    /**
     * @notice returns the number of NFTs owned by a specific liquidity provider in this pool
     * @param lpId_ a user providing liquidity to this pool for trading with
     * @return userNftCount the number of NFTs in this pool owned by the liquidity provider
     */
    function getNftCountForLpId(uint256 lpId_) external view returns (uint256);

    /**
     * @notice returns the number of NFTs and number of ERC20s owned by a specific liquidity provider in this pool
     * pretty much equivalent to the user's liquidity position in non-nft form.
     * @dev this function mimics mappings: an invalid lpId_ will return (0,0) rather than throwing for being invalid
     * @param lpId_ a user providing liquidity to this pool for trading with
     * @return tokenBalance the amount of ERC20 tokens the liquidity provider has in the pool
     * @return nftBalance the number of NFTs in this pool owned by the liquidity provider
     */
    function getTotalBalanceForLpId(uint256 lpId_)
        external
        view
        returns (uint256 tokenBalance, uint256 nftBalance);

    /**
     * @notice returns the Lp Position NFT token Id that owns a specific NFT token Id in this pool
     * @dev this function mimics mappings: an invalid NFT token Id will return 0 rather than throwing for being invalid
     * @param nftId_ an NFT token Id that is owned by a liquidity provider in this pool
     * @return lpId the Lp Position NFT token Id that owns the NFT token Id
     */
    function getLpIdForNftId(uint256 nftId_) external view returns (uint256);

    /**
     * @notice returns the full list of all NFT tokenIds that are owned by this pool
     * @dev does not have to match what the underlying NFT contract balanceOf(dittoPool)
     * thinks is owned by this pool: this is only valid liquidity tradeable in this pool
     * NFTs can be lost by unsafe transferring them to a dittoPool
     * also this function is O(n) gas efficient, only really meant to be used off-chain
     * @return nftIds the list of all NFT Token Ids in this pool, across all liquidity positions
     */
    function getAllPoolHeldNftIds() external view returns (uint256[] memory);

    /**
     * @dev Returns the number of NFTs owned by the pool
     * @return nftBalance_ The number of NFTs owned by the pool
     */
    function getPoolTotalNftBalance() external view returns (uint256);

    /**
     * @notice returns the full list of all LP Position NFT tokenIds that represent liquidity in this pool
     * @return lpIds the list of all LP Position NFT Token Ids corresponding to liquidity in this pool
     */
    function getAllPoolLpIds() external view returns (uint256[] memory);

    /**
     * @notice returns the full amount of all ERC20 tokens that the pool thinks it owns
     * @dev may not match the underlying ERC20 contract balanceOf() because of unsafe transfers
     * this is only accounting for valid liquidity tradeable in the pool
     * @dev this function is not gas efficient and almost certainly should never actually be used on chain
     * @return totalPoolTokenBalance the amount of ERC20 tokens the pool thinks it owns
     */
    function getPoolTotalTokenBalance() external view returns (uint256);

    /**
     * @notice returns the enumerated list of all token balances for all LP positions in this pool
     * @dev this function is not gas efficient and almost certainly should never actually be used on chain
     * @return balances the list of all LP Position NFT Token Ids and the amount of ERC20 tokens they are apportioned in the pool
     */
    function getAllLpIdTokenBalances()
        external
        view
        returns (LpIdToTokenBalance[] memory balances);

    /**
     * @notice function called on SafeTransferFrom of NFTs to this contract
     * @dev see [ERC-721](https://eips.ethereum.org/EIPS/eip-721) for details
     */
    function onERC721Received(address, address, uint256, bytes memory) external returns (bytes4);
}

File 5 of 87 : CurveErrorCode.sol
// SPDX-License-Identifier: AGPL-3.0

pragma solidity ^0.8.0;

enum CurveErrorCode {
    OK, // No error
    INVALID_NUMITEMS, // The numItem value is 0 or too large
    BASE_PRICE_OVERFLOW, // The updated base price doesn't fit into 128 bits
    SELL_NOT_SUPPORTED, // The pool doesn't support sell
    BUY_NOT_SUPPORTED, // The pool doesn't support buy
    MISSING_SWAP_DATA, // No swap data provided for a pool that requires it
    NOOP // No operation was performed
}

File 6 of 87 : NftCostData.sol
// SPDX-License-Identifier: AGPL-3.0

pragma solidity 0.8.19;

import { Fee } from "./Fee.sol";

struct NftCostData {
    bool specificNftId;
    uint256 nftId;
    uint256 price;
    Fee fee;
}

File 7 of 87 : DittoPoolTrade.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { CurveErrorCode } from "../utils/CurveErrorCode.sol";

import { EnumerableSet } from
    "../../lib/openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol";
import { EnumerableMap } from
    "../../lib/openzeppelin-contracts/contracts/utils/structs/EnumerableMap.sol";
import { SafeTransferLib } from "../../lib/solmate/src/utils/SafeTransferLib.sol";
import { ERC20 } from "../../lib/solmate/src/tokens/ERC20.sol";

import { Fee } from "../struct/Fee.sol";
import { SwapNftsForTokensArgs, SwapTokensForNftsArgs } from "../struct/SwapArgs.sol";
import { NftCostData } from "../struct/NftCostData.sol";
import { IDittoPool } from "../interface/IDittoPool.sol";
import { IDittoRouter } from "../interface/IDittoRouter.sol";
import { DittoPoolMain } from "./DittoPoolMain.sol";


/**
 * @title DittoPool
 * @notice Parent contract defines common functions for DittoPool AMM shared liquidity trading pools.
 */
abstract contract DittoPoolTrade is DittoPoolMain {
    using SafeTransferLib for ERC20;
    using EnumerableSet for EnumerableSet.UintSet;
    using EnumerableMap for EnumerableMap.UintToUintMap;

    // ***************************************************************
    // * ========================= EVENTS ========================== *
    // ***************************************************************

    event DittoPoolTradeSwappedTokensForNfts(
        address caller,
        SwapTokensForNftsArgs args,
        uint128 newBasePrice,
        uint128 newDelta
    );
    event DittoPoolTradeSwappedTokensForNft(
        uint256 sellerLpId,
        uint256 nftId,
        uint256 price,
        Fee fee
    );

    event DittoPoolTradeSwappedNftsForTokens(
        address caller,
        SwapNftsForTokensArgs args,
        uint128 newBasePrice,
        uint128 newDelta
    );
    event DittoPoolTradeSwappedNftForTokens(
        uint256 buyerLpId,
        uint256 nftId,
        uint256 price,
        Fee fee
    );

    // ***************************************************************
    // * ========================= ERRORS ========================== *
    // ***************************************************************

    error DittoPoolTradeBondingCurveError(CurveErrorCode error);
    error DittoPoolTradeNoNftsProvided();
    error DittoPoolTradeNftAndLpIdsMustBeSameLength();
    error DittoPoolTradeInvalidTokenRecipient();
    error DittoPoolTradeInsufficientBalanceToBuyNft();
    error DittoPoolTradeInsufficientBalanceToPayFees();
    error DittoPoolTradeInTooManyTokens();
    error DittoPoolTradeOutTooFewTokens();
    error DittoPoolTradeNftNotOwnedByPool(uint256 nftId);
    error DittoPoolTradeInvalidTokenSender();
    error DittoPoolTradeNftIdDoesNotMatchSwapData();
    error DittoPoolTradeNftAndCostDataLengthMismatch();

    // ***************************************************************
    // * =========== FUNCTIONS TO TRADE WITH THE POOL ============== *
    // ***************************************************************

    ///@inheritdoc IDittoPool
    function swapTokensForNfts(
        SwapTokensForNftsArgs calldata args_
    ) external nonReentrant returns (uint256 inputAmount) {
        uint256 countNfts = args_.nftIds.length;

        // STEP 1: Input validation
        if (countNfts == 0) {
            revert DittoPoolTradeNoNftsProvided();
        }

        // STEP 2: Get price information from bonding curve
        NftCostData[] memory nftCostData;
        uint128 newBasePrice;
        uint128 newDelta;
        (inputAmount, nftCostData, newBasePrice, newDelta) =
            _calculateBuyInfoAndUpdatePoolParams(countNfts, args_.swapData, args_.maxExpectedTokenInput);
        
        _checkNftIdsMatch(args_.nftIds, nftCostData);
        
        // STEP 3: Take in tokens for sellers (doesn't include fees)
        if (_dittoPoolFactory.isWhitelistedRouter(msg.sender)) {
            IDittoRouter(msg.sender).poolTransferErc20From(
                _token, args_.tokenSender, address(this), inputAmount
            );
        } else {
            if (args_.tokenSender != msg.sender){
                revert DittoPoolTradeInvalidTokenSender();
            }
            _token.transferFrom(args_.tokenSender, address(this), inputAmount);
        }

        // STEP 4: Transfer nfts to buyer and adjust nft balance of seller accounts
        uint256[] memory sellersLpIds = _sendNftsToBuyer(args_.nftRecipient, args_.nftIds);

        // STEP 5: Increase the token balance of the positions selling the nfts
        _increaseTokenBalanceOfSellers(nftCostData, sellersLpIds, args_.nftIds);

        // STEP 6: Pay protocol and admin fees
        _payProtocolAndAdminFees(nftCostData);

        emit DittoPoolTradeSwappedTokensForNfts(msg.sender, args_, newBasePrice, newDelta);
    }

    ///@inheritdoc IDittoPool
    function swapNftsForTokens(
        SwapNftsForTokensArgs calldata args_
    ) external nonReentrant returns (uint256 outputAmount) {
        uint256 countNfts = args_.nftIds.length;
        bool isWhitelistedRouter = _dittoPoolFactory.isWhitelistedRouter(msg.sender);

        // STEP 1: Input validation
        if (countNfts == 0) {
            revert DittoPoolTradeNoNftsProvided();
        }
        if (countNfts != args_.lpIds.length) {
            revert DittoPoolTradeNftAndLpIdsMustBeSameLength();
        }
        if (args_.tokenRecipient == address(0)) {
            revert DittoPoolTradeInvalidTokenRecipient();
        }
        if(!isWhitelistedRouter && args_.nftSender != msg.sender){
            revert DittoPoolTradeInvalidTokenSender();
        }

        _checkPermittedTokens(args_.nftIds, args_.permitterData);

        // STEP 2: Get price information from bonding curve
        NftCostData[] memory nftCostData;
        uint128 newBasePrice;
        uint128 newDelta;
        (outputAmount, nftCostData, newBasePrice, newDelta) =
            _calculateSellInfoAndUpdatePoolParams(countNfts, args_.swapData, args_.minExpectedTokenOutput);

        _checkNftIdsMatch(args_.nftIds, nftCostData);

        // STEP 3: Charge the buyers for the Nfts by reducing their token balance
        _decreaseTokenBalanceOfBuyers(nftCostData, args_.nftIds, args_.lpIds);

        // STEP 4: Transfer Nfts from seller to buyer accounts
        _takeSpecificNftsFromSeller(isWhitelistedRouter, args_.nftSender, args_.nftIds, args_.lpIds);

        // STEP 5: Transfer the token proceeds to the seller and pay fees
        _token.safeTransfer(args_.tokenRecipient, outputAmount);

        // STEP 6: Pay protocol and admin fees
        _payProtocolAndAdminFees(nftCostData);

        emit DittoPoolTradeSwappedNftsForTokens(msg.sender, args_, newBasePrice, newDelta);
    }

    ///@inheritdoc IDittoPool
    function getBuyNftQuote(uint256 numNfts_, bytes calldata swapData_)
        external
        view
        virtual
        returns (
            CurveErrorCode error,
            uint256 newBasePrice,
            uint256 newDelta,
            uint256 inputAmount,
            NftCostData[] memory nftCostData
        );

    ///@inheritdoc IDittoPool
    function getSellNftQuote(uint256 numNfts_, bytes calldata swapData_)
        external
        view
        virtual
        returns (
            CurveErrorCode error,
            uint256 newBasePrice,
            uint256 newDelta,
            uint256 outputAmount,
            NftCostData[] memory nftCostData
        );

    // ***************************************************************
    // * ============= INTERNAL HELPER FUNCTIONS =================== *
    // ***************************************************************
    /**
     * Check that the cost data matches the nft ids if that is important for the curve type 
     *   giving the cost data
     * @param nftIds_ The nft ids
     * @param nftCostData_ The cost data that may or may not require specific nft ids
     */
    function _checkNftIdsMatch(
        uint256[] memory nftIds_, 
        NftCostData[] memory nftCostData_
    ) internal pure {
        uint256 countNfts = nftIds_.length;
        if (countNfts != nftCostData_.length) {
            revert DittoPoolTradeNftAndCostDataLengthMismatch();
        }
        for (uint256 i = 0; i < countNfts;) {
            if (nftCostData_[i].specificNftId && nftIds_[i] != nftCostData_[i].nftId) {
                revert DittoPoolTradeNftIdDoesNotMatchSwapData();
            }
            unchecked {
                ++i;
            }
        }
    }

    /**
     * Pays protocol and admin fees to the appropriate recipients
     * 
     * @param nftCostData_ the cost data including the fees
     */
    function _payProtocolAndAdminFees(NftCostData[] memory nftCostData_) internal {
        uint256 totalProtocolFee;
        uint256 totalAdminFee;
        uint256 numItems = nftCostData_.length;

        for (uint256 i = 0; i < numItems;) {
            totalProtocolFee += nftCostData_[i].fee.protocol;
            totalAdminFee += nftCostData_[i].fee.admin;
            unchecked {
                ++i;
            }
        }


        ERC20 token = _token;
        uint256 balance = token.balanceOf(address(this));
        if (balance < totalProtocolFee + totalAdminFee) {
            revert DittoPoolTradeInsufficientBalanceToPayFees();
        }
        token.safeTransfer(_dittoPoolFactory.protocolFeeRecipient(), totalProtocolFee);
        token.safeTransfer(_adminFeeRecipient, totalAdminFee);
    }

    /**
     * @notice In purchases of NFTs leaving the pool, increase token balance accounting of the NFT seller in the pool.
     * @param nftCostData array of NFT buy cost data
     * @param sellersLpIds_ list of addresses of NFT selling counterparties (LP providers within the pool) in this trade
     */
    function _increaseTokenBalanceOfSellers(
        NftCostData[] memory nftCostData,
        uint256[] memory sellersLpIds_,
        uint256[] memory nftIds_
    ) private {
        uint256 sellerLpId;
        uint256 sellerCurrentBalance;
        uint256 countSellerPositions = sellersLpIds_.length;

        for (uint256 i = 0; i < countSellerPositions;) {
            sellerLpId = sellersLpIds_[i];
            (, sellerCurrentBalance) = _lpIdToTokenBalance.tryGet(sellerLpId);
            _lpIdToTokenBalance.set(
                sellerLpId, 
                sellerCurrentBalance + nftCostData[i].price + nftCostData[i].fee.lp
            );

            emit DittoPoolTradeSwappedTokensForNft(
                sellerLpId,
                nftIds_[i],
                nftCostData[i].price,
                nftCostData[i].fee
            );

            unchecked {
                ++i;
            }
        }
    }

    /**
     * @notice In sales of NFTs into the pool for tokens, decrease the NFT seller's tokens balance accounting in the pool.
     * @dev this function throws if the liquidity provider does not have enough tokens to buy the NFTs
     * @param nftCostData_ array of NFT sell cost data
     * @param buyerLpIds_ the NFT buying counterparties, LP providers within the pool's Lp Position Token Ids
     */
    function _decreaseTokenBalanceOfBuyers(
        NftCostData[] memory nftCostData_,
        uint256[] memory nftIds_,
        uint256[] memory buyerLpIds_
    ) private {
        uint256 buyerLpId;
        uint256 buyerCurrentBalance;
        uint256 countBuyerPositions = buyerLpIds_.length;
        uint256 sellPriceIgnoreLpFee;
        for (uint256 i = 0; i < countBuyerPositions;) {
            buyerLpId = buyerLpIds_[i];
            sellPriceIgnoreLpFee = nftCostData_[i].price - nftCostData_[i].fee.lp;
            buyerCurrentBalance = _lpIdToTokenBalance.get(buyerLpId);
            if (buyerCurrentBalance < sellPriceIgnoreLpFee) {
                revert DittoPoolTradeInsufficientBalanceToBuyNft();
            }

            emit DittoPoolTradeSwappedNftForTokens(
                buyerLpId,
                nftIds_[i],
                nftCostData_[i].price,
                nftCostData_[i].fee
            );

            unchecked {
                _lpIdToTokenBalance.set(buyerLpId, buyerCurrentBalance - sellPriceIgnoreLpFee);
                ++i;
            }
        }
    }

    /**
     * @notice Updates LP position NFT metadata on trades, as LP's LP information changes due to the trade
     * @dev see [EIP-4906](https://eips.ethereum.org/EIPS/eip-4906) EIP-721 Metadata Update Extension
     * @param lpId_ LP position NFT token id whose metadata needs updating
     */
    function _updateLpNftMetadataOnTrade(uint256 lpId_) internal {
        _lpNft.emitMetadataUpdate(lpId_);
    }

    /**
     * @notice In a purchase of NFTs leaving the pool (`swapTokenForNfts`), sends NFTs to buyer, and
     * updates the pool's internal accounting of NFTs in the pool
     * @param nftRecipient_ the address to send the NFTs to
     * @param nftIds_ the list of specific NFT token Ids being purchased out of the pool in this transaction
     * @return sellersLpIds position ids of the lp positions selling within the pool
     */
    function _sendNftsToBuyer(
        address nftRecipient_,
        uint256[] calldata nftIds_
    ) internal returns (uint256[] memory sellersLpIds) {
        uint256 countNftIds = nftIds_.length;

        uint256 nftId;
        sellersLpIds = new uint256[](countNftIds);

        for (uint256 i = 0; i < countNftIds;) {
            nftId = nftIds_[i];

            if (_poolOwnedNftIds.contains(nftId) == false) {
                revert DittoPoolTradeNftNotOwnedByPool(nftId);
            }

            _nft.safeTransferFrom(address(this), nftRecipient_, nftId);

            _poolOwnedNftIds.remove(nftId);
            uint256 prevOwnerLpId = _nftIdToLpId[nftId];
            delete _nftIdToLpId[nftId];
            _lpIdToNftBalance[prevOwnerLpId]--;

            _updateLpNftMetadataOnTrade(prevOwnerLpId);
            sellersLpIds[i] = prevOwnerLpId;

            unchecked {
                ++i;
            }
        }
    }

    /**
     * @notice In a sale of NFTs into the pool, transfers the NFTs from the seller to the pool, and
     * updates the pool's internal accounting of NFTs in the pool
     * @dev Sends NFTs to recipients
     * @dev This adds the ids to to the global id set and increments the nft count for each buyer.
     * @param from_ the address to take the NFTs from, only used if msg.sender is an approved IDittoRouter
     * @param nftIds_ the list of specific NFT token Ids being purchased into the pool in this transaction
     * @param buyerLpIds_ the list of addresses of NFT buying counterparties (LP providers within the pool) buying NFTs in this trade
     */
    function _takeSpecificNftsFromSeller(
        bool isWhitelistedRouter_,
        address from_,
        uint256[] calldata nftIds_,
        uint256[] memory buyerLpIds_
    ) internal {
        uint256 countNftIds = nftIds_.length;
        uint256 nftId;
        for (uint256 i = 0; i < countNftIds;) {
            nftId = nftIds_[i];
            if (isWhitelistedRouter_) {
                IDittoRouter(msg.sender).poolTransferNftFrom(_nft, from_, address(this), nftId);
            } else {
                _nft.transferFrom(msg.sender, address(this), nftId);
            }
            _poolOwnedNftIds.add(nftId);
            _nftIdToLpId[nftId] = buyerLpIds_[i];
            _lpIdToNftBalance[buyerLpIds_[i]]++;

            _updateLpNftMetadataOnTrade(buyerLpIds_[i]);
            unchecked {
                ++i;
            }
        }
    }

    /**
     * @notice In purchase of NFTs out of the pool, call bonding curve to find out how much erc20 is required, and
     * update new prices for the next NFT in the pool after this trade completes
     * @param numNFTs_ the number of NFTs being purchased
     * @param swapData_ extra data to be passed to the curve
     * @param maxExpectedTokenInput_ the maximum amount of tokens the user is willing to pay for the NFTs
     * @return inputAmount the amount of tokens the user needs to send to pay for the NFTsgetProtocolFee
     * @return nftCostData the data returned from the bonding curve
     */
    function _calculateBuyInfoAndUpdatePoolParams(
        uint256 numNFTs_,
        bytes calldata swapData_,
        uint256 maxExpectedTokenInput_
    ) internal returns (
        uint256 inputAmount, 
        NftCostData[] memory nftCostData,
        uint128 newBasePrice,
        uint128 newDelta
    ) {
        CurveErrorCode error;
        // Save on 2 SLOADs by caching
        uint128 currentBasePrice = _basePrice;
        uint128 currentDelta = _delta;
        (error, newBasePrice, newDelta, inputAmount, nftCostData) = _getBuyInfo(
            currentBasePrice,
            currentDelta,
            numNFTs_,
            swapData_,
            Fee({lp: _feeLp, admin: _feeAdmin, protocol: _dittoPoolFactory.getProtocolFee()})
        );

        // Revert if bonding curve had an error
        if (error != CurveErrorCode.OK) {
            revert DittoPoolTradeBondingCurveError(error);
        }

        // Revert if input is more than expected
        if (inputAmount > maxExpectedTokenInput_) {
            revert DittoPoolTradeInTooManyTokens();
        }

        if (currentBasePrice != newBasePrice) {
            _changeBasePrice(newBasePrice);
        }

        if (currentDelta != newDelta) {
            _changeDelta(newDelta);
        }
    }

    /**
     * @notice In sales of NFTs into the pool, call bonding curve to find out
     *   how much money the seller will receive, and update new prices for the
     *   next NFT in the pool after this trade completes
     * @param numNFTs_ the number of NFTs being purchased
     * @param swapData_ extra data to be passed to the curve
     * @param minExpectedTokenOutput_ minimium amount of ERC20 msg.sender is willing
     *   to recieve for the sale of their NFTs
     * @return outputAmount the amount of tokens the msg.sender will recieve
     *   from the sale of their NFTs into the pool
     * @return nftCostData the data returned from the bonding curve
     */
    function _calculateSellInfoAndUpdatePoolParams(
        uint256 numNFTs_,
        bytes calldata swapData_,
        uint256 minExpectedTokenOutput_
    ) internal returns (
        uint256 outputAmount, 
        NftCostData[] memory nftCostData,
        uint128 newBasePrice,
        uint128 newDelta
    ) {
        // Save on 2 SLOADs by caching
        uint128 currentBasePrice = _basePrice;
        uint128 currentDelta = _delta;

        CurveErrorCode error;
        (error, newBasePrice, newDelta, outputAmount, nftCostData) =
            _getSellInfo(
                currentBasePrice,
                currentDelta,
                numNFTs_,
                swapData_,
                Fee({lp: _feeLp, admin: _feeAdmin, protocol: _dittoPoolFactory.getProtocolFee()})
            );

        // Revert if bonding curve had an error
        if (error != CurveErrorCode.OK) {
            revert DittoPoolTradeBondingCurveError(error);
        }

        // Revert if output is too little
        if (outputAmount < minExpectedTokenOutput_) {
            revert DittoPoolTradeOutTooFewTokens();
        }

        if (currentBasePrice != newBasePrice) {
            _changeBasePrice(newBasePrice);
        }

        if (currentDelta != newDelta) {
            _changeDelta(newDelta);
        }
    }

    /**
     * @notice Calculate the total fees and price per NFT for a uniform trade, meaning all nfts 
     *   involved in the trade have the same price
     * 
     * @param totalCost_ The total cost across all nfts in the trade
     * @param numItems_ The number of nfts in the trade. Assumed not to be zero
     * @param feeRates_ The fees to be applied to the trade
     * @return totalFees_ The total fees to be paid for the trade
     * @return nftCostData_ The price and fees per nft in the trade
     */
    function _calculateUniformNftCostData(
        uint256 totalCost_,
        uint256 numItems_,
        Fee memory feeRates_
    ) internal pure returns (
        uint256 totalFees_,
        NftCostData[] memory nftCostData_
    ) {
        uint256 pricePerNft = totalCost_ / numItems_;

        Fee memory calculatedFees = Fee({
            protocol: _mul(totalCost_, feeRates_.protocol),
            admin: _mul(totalCost_, feeRates_.admin),
            lp: _mul(totalCost_, feeRates_.lp)
        });

        totalFees_ = calculatedFees.protocol + calculatedFees.admin + calculatedFees.lp;

        Fee memory calculatedFeesPerNft = Fee({
            protocol: calculatedFees.protocol / numItems_,
            admin: calculatedFees.admin / numItems_,
            lp: calculatedFees.lp / numItems_
        });

        nftCostData_ = new NftCostData[](numItems_);

        for (uint256 i = 0; i < numItems_;) {
            nftCostData_[i].price = pricePerNft;
            nftCostData_[i].fee = calculatedFeesPerNft;

            unchecked {
                ++i;
            }
        }
    }

    // ***********************************************************************
    // * ============= INTERNAL HELPER FUNCTIONS (Curve) =================== *
    // ***********************************************************************

    /**
     * @notice Given the current state of the pair and the trade, computes how much the user
     * should pay to purchase an NFT from the pair, the new base price, and other values.
     * @param basePrice_ The current selling base price of the pair, in tokens
     * @param delta_ The delta parameter of the pair, what it means depends on the curve
     * @param numItems_ The number of NFTs the user is buying from the pair
     * @param fee_ The fee Lp, Admin, and Protocol fee multipliers
     * @return error Any math calculation errors, only Error.OK means the returned values are valid
     * @return newBasePrice The updated selling base price, in tokens
     * @return newDelta The updated delta, used to parameterize the bonding curve
     * @return inputValue The amount that the user should pay, in tokens
     * @return nftCostData The fees and buyPriceAndLpFeePerNft for each NFT being purchased
     */
    function _getBuyInfo(
        uint128 basePrice_,
        uint128 delta_,
        uint256 numItems_,
        bytes calldata swapData_,
        Fee memory fee_
    )
        internal
        virtual
        returns (
            CurveErrorCode error,
            uint128 newBasePrice,
            uint128 newDelta,
            uint256 inputValue,
            NftCostData[] memory nftCostData
        );

    /**
     * @notice Given the current state of the pair and the trade, computes how much the user
     * should receive when selling NFTs to the pair, the new base price, and other values.
     * @param basePrice_ The current selling base price of the pair, in tokens
     * @param delta_ The delta parameter of the pair, what it means depends on the curve
     * @param numItems_ The number of NFTs the user is selling to the pair
     * @param fee_ The Lp, Admin, and Protocol fees multipliers
     * @return error Any math calculation errors, only Error.OK means the returned values are valid
     * @return newBasePrice The updated selling base price, in tokens
     * @return newDelta The updated delta, used to parameterize the bonding curve
     * @return outputValue The amount that the user should receive, in tokens
     * @return nftCostData The fees and sellPricePerNftWithoutFees for each NFT being sold
     */
    function _getSellInfo(
        uint128 basePrice_,
        uint128 delta_,
        uint256 numItems_,
        bytes calldata swapData_,
        Fee memory fee_
    )
        internal
        virtual
        returns (
            CurveErrorCode error,
            uint128 newBasePrice,
            uint128 newDelta,
            uint256 outputValue,
            NftCostData[] memory nftCostData
        );
}

File 8 of 87 : FixedPointMathLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
    /*///////////////////////////////////////////////////////////////
                            COMMON BASE UNITS
    //////////////////////////////////////////////////////////////*/

    uint256 internal constant YAD = 1e8;
    uint256 internal constant WAD = 1e18;
    uint256 internal constant RAY = 1e27;
    uint256 internal constant RAD = 1e45;

    /*///////////////////////////////////////////////////////////////
                         FIXED POINT OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function fmul(
        uint256 x,
        uint256 y,
        uint256 baseUnit
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * y in z for now.
            z := mul(x, y)

            // Equivalent to require(x == 0 || (x * y) / x == y)
            if iszero(or(iszero(x), eq(div(z, x), y))) {
                revert(0, 0)
            }

            // If baseUnit is zero this will return zero instead of reverting.
            z := div(z, baseUnit)
        }
    }

    function fdiv(
        uint256 x,
        uint256 y,
        uint256 baseUnit
    ) internal pure returns (uint256 z) {
        assembly {
            // Store x * baseUnit in z for now.
            z := mul(x, baseUnit)

            // Equivalent to require(y != 0 && (x == 0 || (x * baseUnit) / x == baseUnit))
            if iszero(and(iszero(iszero(y)), or(iszero(x), eq(div(z, x), baseUnit)))) {
                revert(0, 0)
            }

            // We ensure y is not zero above, so there is never division by zero here.
            z := div(z, y)
        }
    }

    function fpow(
        uint256 x,
        uint256 n,
        uint256 baseUnit
    ) internal pure returns (uint256 z) {
        assembly {
            switch x
            case 0 {
                switch n
                case 0 {
                    // 0 ** 0 = 1
                    z := baseUnit
                }
                default {
                    // 0 ** n = 0
                    z := 0
                }
            }
            default {
                switch mod(n, 2)
                case 0 {
                    // If n is even, store baseUnit in z for now.
                    z := baseUnit
                }
                default {
                    // If n is odd, store x in z for now.
                    z := x
                }

                // Shifting right by 1 is like dividing by 2.
                let half := shr(1, baseUnit)

                for {
                    // Shift n right by 1 before looping to halve it.
                    n := shr(1, n)
                } n {
                    // Shift n right by 1 each iteration to halve it.
                    n := shr(1, n)
                } {
                    // Revert immediately if x ** 2 would overflow.
                    // Equivalent to iszero(eq(div(xx, x), x)) here.
                    if shr(128, x) {
                        revert(0, 0)
                    }

                    // Store x squared.
                    let xx := mul(x, x)

                    // Round to the nearest number.
                    let xxRound := add(xx, half)

                    // Revert if xx + half overflowed.
                    if lt(xxRound, xx) {
                        revert(0, 0)
                    }

                    // Set x to scaled xxRound.
                    x := div(xxRound, baseUnit)

                    // If n is even:
                    if mod(n, 2) {
                        // Compute z * x.
                        let zx := mul(z, x)

                        // If z * x overflowed:
                        if iszero(eq(div(zx, x), z)) {
                            // Revert if x is non-zero.
                            if iszero(iszero(x)) {
                                revert(0, 0)
                            }
                        }

                        // Round to the nearest number.
                        let zxRound := add(zx, half)

                        // Revert if zx + half overflowed.
                        if lt(zxRound, zx) {
                            revert(0, 0)
                        }

                        // Return properly scaled zxRound.
                        z := div(zxRound, baseUnit)
                    }
                }
            }
        }
    }

    /*///////////////////////////////////////////////////////////////
                        GENERAL NUMBER UTILITIES
    //////////////////////////////////////////////////////////////*/

    function sqrt(uint256 x) internal pure returns (uint256 z) {
        assembly {
            // Start off with z at 1.
            z := 1

            // Used below to help find a nearby power of 2.
            let y := x

            // Find the lowest power of 2 that is at least sqrt(x).
            if iszero(lt(y, 0x100000000000000000000000000000000)) {
                y := shr(128, y) // Like dividing by 2 ** 128.
                z := shl(64, z)
            }
            if iszero(lt(y, 0x10000000000000000)) {
                y := shr(64, y) // Like dividing by 2 ** 64.
                z := shl(32, z)
            }
            if iszero(lt(y, 0x100000000)) {
                y := shr(32, y) // Like dividing by 2 ** 32.
                z := shl(16, z)
            }
            if iszero(lt(y, 0x10000)) {
                y := shr(16, y) // Like dividing by 2 ** 16.
                z := shl(8, z)
            }
            if iszero(lt(y, 0x100)) {
                y := shr(8, y) // Like dividing by 2 ** 8.
                z := shl(4, z)
            }
            if iszero(lt(y, 0x10)) {
                y := shr(4, y) // Like dividing by 2 ** 4.
                z := shl(2, z)
            }
            if iszero(lt(y, 0x8)) {
                // Equivalent to 2 ** z.
                z := shl(1, z)
            }

            // Shifting right by 1 is like dividing by 2.
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            // Compute a rounded down version of z.
            let zRoundDown := div(x, z)

            // If zRoundDown is smaller, use it.
            if lt(zRoundDown, z) {
                z := zRoundDown
            }
        }
    }
}

File 9 of 87 : SafeTransferLib.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

import {ERC20} from "../tokens/ERC20.sol";

/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @author Modified from Gnosis (https://github.com/gnosis/gp-v2-contracts/blob/main/src/contracts/libraries/GPv2SafeERC20.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
library SafeTransferLib {
    /*///////////////////////////////////////////////////////////////
                            ETH OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferETH(address to, uint256 amount) internal {
        bool callStatus;

        assembly {
            // Transfer the ETH and store if it succeeded or not.
            callStatus := call(gas(), to, amount, 0, 0, 0, 0)
        }

        require(callStatus, "ETH_TRANSFER_FAILED");
    }

    /*///////////////////////////////////////////////////////////////
                           ERC20 OPERATIONS
    //////////////////////////////////////////////////////////////*/

    function safeTransferFrom(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bool callStatus;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata to memory piece by piece:
            mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000) // Begin with the function selector.
            mstore(add(freeMemoryPointer, 4), and(from, 0xffffffffffffffffffffffffffffffffffffffff)) // Mask and append the "from" argument.
            mstore(add(freeMemoryPointer, 36), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Mask and append the "to" argument.
            mstore(add(freeMemoryPointer, 68), amount) // Finally append the "amount" argument. No mask as it's a full 32 byte value.

            // Call the token and store if it succeeded or not.
            // We use 100 because the calldata length is 4 + 32 * 3.
            callStatus := call(gas(), token, 0, freeMemoryPointer, 100, 0, 0)
        }

        require(didLastOptionalReturnCallSucceed(callStatus), "TRANSFER_FROM_FAILED");
    }

    function safeTransfer(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool callStatus;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata to memory piece by piece:
            mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000) // Begin with the function selector.
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Mask and append the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Finally append the "amount" argument. No mask as it's a full 32 byte value.

            // Call the token and store if it succeeded or not.
            // We use 68 because the calldata length is 4 + 32 * 2.
            callStatus := call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)
        }

        require(didLastOptionalReturnCallSucceed(callStatus), "TRANSFER_FAILED");
    }

    function safeApprove(
        ERC20 token,
        address to,
        uint256 amount
    ) internal {
        bool callStatus;

        assembly {
            // Get a pointer to some free memory.
            let freeMemoryPointer := mload(0x40)

            // Write the abi-encoded calldata to memory piece by piece:
            mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000) // Begin with the function selector.
            mstore(add(freeMemoryPointer, 4), and(to, 0xffffffffffffffffffffffffffffffffffffffff)) // Mask and append the "to" argument.
            mstore(add(freeMemoryPointer, 36), amount) // Finally append the "amount" argument. No mask as it's a full 32 byte value.

            // Call the token and store if it succeeded or not.
            // We use 68 because the calldata length is 4 + 32 * 2.
            callStatus := call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)
        }

        require(didLastOptionalReturnCallSucceed(callStatus), "APPROVE_FAILED");
    }

    /*///////////////////////////////////////////////////////////////
                         INTERNAL HELPER LOGIC
    //////////////////////////////////////////////////////////////*/

    function didLastOptionalReturnCallSucceed(bool callStatus) private pure returns (bool success) {
        assembly {
            // Get how many bytes the call returned.
            let returnDataSize := returndatasize()

            // If the call reverted:
            if iszero(callStatus) {
                // Copy the revert message into memory.
                returndatacopy(0, 0, returnDataSize)

                // Revert with the same message.
                revert(0, returnDataSize)
            }

            switch returnDataSize
            case 32 {
                // Copy the return data into memory.
                returndatacopy(0, 0, returnDataSize)

                // Set success to whether it returned true.
                success := iszero(iszero(mload(0)))
            }
            case 0 {
                // There was no return data.
                success := 1
            }
            default {
                // It returned some malformed input.
                success := 0
            }
        }
    }
}

File 10 of 87 : ERC20.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*///////////////////////////////////////////////////////////////
                                  EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*///////////////////////////////////////////////////////////////
                             METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*///////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*///////////////////////////////////////////////////////////////
                             EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    bytes32 public constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*///////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*///////////////////////////////////////////////////////////////
                              ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*///////////////////////////////////////////////////////////////
                              EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            bytes32 digest = keccak256(
                abi.encodePacked(
                    "\x19\x01",
                    DOMAIN_SEPARATOR(),
                    keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
                )
            );

            address recoveredAddress = ecrecover(digest, v, r, s);

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*///////////////////////////////////////////////////////////////
                       INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

File 11 of 87 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.19;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }
}

File 12 of 87 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.19;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 13 of 87 : SignedZoneInterface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/**
 * @title  SignedZone
 * @author ryanio
 * @notice SignedZone is an implementation of SIP-7 that requires orders
 *         to be signed by an approved signer.
 *         https://github.com/ProjectOpenSea/SIPs/blob/main/SIPS/sip-7.md
 *
 */
interface SignedZoneInterface {
    /**
     * @dev The struct for storing signer info.
     */
    struct SignerInfo {
        bool active; /// If the signer is currently active.
        bool previouslyActive; /// If the signer has been active before.
    }

    /**
     * @notice Add a new signer to the zone.
     *
     * @param signer The new signer address to add.
     */
    function addSigner(address signer) external;

    /**
     * @notice Remove an active signer from the zone.
     *
     * @param signer The signer address to remove.
     */
    function removeSigner(address signer) external;

    /**
     * @notice Update the API endpoint returned by this zone.
     *
     * @param newApiEndpoint The new API endpoint.
     */
    function updateAPIEndpoint(string calldata newApiEndpoint) external;

    /**
     * @notice Returns signing information about the zone.
     *
     * @return domainSeparator The domain separator used for signing.
     * @return apiEndpoint     The API endpoint to get signatures for orders
     *                         using this zone.
     */
    function sip7Information()
        external
        view
        returns (bytes32 domainSeparator, string memory apiEndpoint);
}

File 14 of 87 : SIP5Interface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import { Schema } from "../../lib/ConsiderationStructs.sol";

/**
 * @dev SIP-5: Contract Metadata Interface for Seaport Contracts
 *      https://github.com/ProjectOpenSea/SIPs/blob/main/SIPS/sip-5.md
 */
interface SIP5Interface {
    /**
     * @dev An event that is emitted when a SIP-5 compatible contract is deployed.
     */
    event SeaportCompatibleContractDeployed();

    /**
     * @dev Returns Seaport metadata for this contract, returning the
     *      contract name and supported schemas.
     *
     * @return name    The contract name
     * @return schemas The supported SIPs
     */
    function getSeaportMetadata()
        external
        view
        returns (string memory name, Schema[] memory schemas);
}

File 15 of 87 : ZoneInterface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import { ZoneParameters, Schema } from "../lib/ConsiderationStructs.sol";

interface ZoneInterface {
    function validateOrder(
        ZoneParameters calldata zoneParameters
    ) external returns (bytes4 validOrderMagicValue);

    function getSeaportMetadata()
        external
        view
        returns (
            string memory name,
            Schema[] memory schemas // map to Seaport Improvement Proposal IDs
        );
}

File 16 of 87 : SignedZoneEventsAndErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/**
 * @notice SignedZoneEventsAndErrors contains errors and events
 *         related to zone interaction.
 */
interface SignedZoneEventsAndErrors {
    /**
     * @dev Emit an event when a new signer is added.
     */
    event SignerAdded(address signer);

    /**
     * @dev Emit an event when a signer is removed.
     */
    event SignerRemoved(address signer);

    /**
     * @dev Revert with an error if trying to add a signer that is
     *      already active.
     */
    error SignerAlreadyAdded(address signer);

    /**
     * @dev Revert with an error if trying to remove a signer that is
     *      not present.
     */
    error SignerNotPresent(address signer);

    /**
     * @dev Revert with an error if a new signer is the zero address.
     */
    error SignerCannotBeZeroAddress();

    /**
     * @dev Revert with an error if a removed signer is trying to be
     *      reauthorized.
     */
    error SignerCannotBeReauthorized(address signer);

    /**
     * @dev Revert with an error when an order is signed with a signer
     *      that is not active.
     */
    error SignerNotActive(address signer, bytes32 orderHash);

    /**
     * @dev Revert with an error when the signature has expired.
     */
    error SignatureExpired(uint256 expiration, bytes32 orderHash);

    /**
     * @dev Revert with an error if the fulfiller does not match.
     */
    error InvalidFulfiller(
        address expectedFulfiller,
        address actualFulfiller,
        bytes32 orderHash
    );

    /**
     * @dev Revert with an error if supplied order extraData is invalid
     *      or improperly formatted.
     */
    error InvalidExtraData(string reason, bytes32 orderHash);
}

File 17 of 87 : ConsiderationStructs.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {
    OrderType,
    BasicOrderType,
    ItemType,
    Side
} from "./ConsiderationEnums.sol";

import {
    CalldataPointer,
    MemoryPointer
} from "../helpers/PointerLibraries.sol";

/**
 * @dev An order contains eleven components: an offerer, a zone (or account that
 *      can cancel the order or restrict who can fulfill the order depending on
 *      the type), the order type (specifying partial fill support as well as
 *      restricted order status), the start and end time, a hash that will be
 *      provided to the zone when validating restricted orders, a salt, a key
 *      corresponding to a given conduit, a counter, and an arbitrary number of
 *      offer items that can be spent along with consideration items that must
 *      be received by their respective recipient.
 */
struct OrderComponents {
    address offerer;
    address zone;
    OfferItem[] offer;
    ConsiderationItem[] consideration;
    OrderType orderType;
    uint256 startTime;
    uint256 endTime;
    bytes32 zoneHash;
    uint256 salt;
    bytes32 conduitKey;
    uint256 counter;
}

/**
 * @dev An offer item has five components: an item type (ETH or other native
 *      tokens, ERC20, ERC721, and ERC1155, as well as criteria-based ERC721 and
 *      ERC1155), a token address, a dual-purpose "identifierOrCriteria"
 *      component that will either represent a tokenId or a merkle root
 *      depending on the item type, and a start and end amount that support
 *      increasing or decreasing amounts over the duration of the respective
 *      order.
 */
struct OfferItem {
    ItemType itemType;
    address token;
    uint256 identifierOrCriteria;
    uint256 startAmount;
    uint256 endAmount;
}

/**
 * @dev A consideration item has the same five components as an offer item and
 *      an additional sixth component designating the required recipient of the
 *      item.
 */
struct ConsiderationItem {
    ItemType itemType;
    address token;
    uint256 identifierOrCriteria;
    uint256 startAmount;
    uint256 endAmount;
    address payable recipient;
}

/**
 * @dev A spent item is translated from a utilized offer item and has four
 *      components: an item type (ETH or other native tokens, ERC20, ERC721, and
 *      ERC1155), a token address, a tokenId, and an amount.
 */
struct SpentItem {
    ItemType itemType;
    address token;
    uint256 identifier;
    uint256 amount;
}

/**
 * @dev A received item is translated from a utilized consideration item and has
 *      the same four components as a spent item, as well as an additional fifth
 *      component designating the required recipient of the item.
 */
struct ReceivedItem {
    ItemType itemType;
    address token;
    uint256 identifier;
    uint256 amount;
    address payable recipient;
}

/**
 * @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155
 *      matching, a group of six functions may be called that only requires a
 *      subset of the usual order arguments. Note the use of a "basicOrderType"
 *      enum; this represents both the usual order type as well as the "route"
 *      of the basic order (a simple derivation function for the basic order
 *      type is `basicOrderType = orderType + (4 * basicOrderRoute)`.)
 */
struct BasicOrderParameters {
    // calldata offset
    address considerationToken; // 0x24
    uint256 considerationIdentifier; // 0x44
    uint256 considerationAmount; // 0x64
    address payable offerer; // 0x84
    address zone; // 0xa4
    address offerToken; // 0xc4
    uint256 offerIdentifier; // 0xe4
    uint256 offerAmount; // 0x104
    BasicOrderType basicOrderType; // 0x124
    uint256 startTime; // 0x144
    uint256 endTime; // 0x164
    bytes32 zoneHash; // 0x184
    uint256 salt; // 0x1a4
    bytes32 offererConduitKey; // 0x1c4
    bytes32 fulfillerConduitKey; // 0x1e4
    uint256 totalOriginalAdditionalRecipients; // 0x204
    AdditionalRecipient[] additionalRecipients; // 0x224
    bytes signature; // 0x244
    // Total length, excluding dynamic array data: 0x264 (580)
}

/**
 * @dev Basic orders can supply any number of additional recipients, with the
 *      implied assumption that they are supplied from the offered ETH (or other
 *      native token) or ERC20 token for the order.
 */
struct AdditionalRecipient {
    uint256 amount;
    address payable recipient;
}

/**
 * @dev The full set of order components, with the exception of the counter,
 *      must be supplied when fulfilling more sophisticated orders or groups of
 *      orders. The total number of original consideration items must also be
 *      supplied, as the caller may specify additional consideration items.
 */
struct OrderParameters {
    address offerer; // 0x00
    address zone; // 0x20
    OfferItem[] offer; // 0x40
    ConsiderationItem[] consideration; // 0x60
    OrderType orderType; // 0x80
    uint256 startTime; // 0xa0
    uint256 endTime; // 0xc0
    bytes32 zoneHash; // 0xe0
    uint256 salt; // 0x100
    bytes32 conduitKey; // 0x120
    uint256 totalOriginalConsiderationItems; // 0x140
    // offer.length                          // 0x160
}

/**
 * @dev Orders require a signature in addition to the other order parameters.
 */
struct Order {
    OrderParameters parameters;
    bytes signature;
}

/**
 * @dev Advanced orders include a numerator (i.e. a fraction to attempt to fill)
 *      and a denominator (the total size of the order) in addition to the
 *      signature and other order parameters. It also supports an optional field
 *      for supplying extra data; this data will be provided to the zone if the
 *      order type is restricted and the zone is not the caller, or will be
 *      provided to the offerer as context for contract order types.
 */
struct AdvancedOrder {
    OrderParameters parameters;
    uint120 numerator;
    uint120 denominator;
    bytes signature;
    bytes extraData;
}

/**
 * @dev Orders can be validated (either explicitly via `validate`, or as a
 *      consequence of a full or partial fill), specifically cancelled (they can
 *      also be cancelled in bulk via incrementing a per-zone counter), and
 *      partially or fully filled (with the fraction filled represented by a
 *      numerator and denominator).
 */
struct OrderStatus {
    bool isValidated;
    bool isCancelled;
    uint120 numerator;
    uint120 denominator;
}

/**
 * @dev A criteria resolver specifies an order, side (offer vs. consideration),
 *      and item index. It then provides a chosen identifier (i.e. tokenId)
 *      alongside a merkle proof demonstrating the identifier meets the required
 *      criteria.
 */
struct CriteriaResolver {
    uint256 orderIndex;
    Side side;
    uint256 index;
    uint256 identifier;
    bytes32[] criteriaProof;
}

/**
 * @dev A fulfillment is applied to a group of orders. It decrements a series of
 *      offer and consideration items, then generates a single execution
 *      element. A given fulfillment can be applied to as many offer and
 *      consideration items as desired, but must contain at least one offer and
 *      at least one consideration that match. The fulfillment must also remain
 *      consistent on all key parameters across all offer items (same offerer,
 *      token, type, tokenId, and conduit preference) as well as across all
 *      consideration items (token, type, tokenId, and recipient).
 */
struct Fulfillment {
    FulfillmentComponent[] offerComponents;
    FulfillmentComponent[] considerationComponents;
}

/**
 * @dev Each fulfillment component contains one index referencing a specific
 *      order and another referencing a specific offer or consideration item.
 */
struct FulfillmentComponent {
    uint256 orderIndex;
    uint256 itemIndex;
}

/**
 * @dev An execution is triggered once all consideration items have been zeroed
 *      out. It sends the item in question from the offerer to the item's
 *      recipient, optionally sourcing approvals from either this contract
 *      directly or from the offerer's chosen conduit if one is specified. An
 *      execution is not provided as an argument, but rather is derived via
 *      orders, criteria resolvers, and fulfillments (where the total number of
 *      executions will be less than or equal to the total number of indicated
 *      fulfillments) and returned as part of `matchOrders`.
 */
struct Execution {
    ReceivedItem item;
    address offerer;
    bytes32 conduitKey;
}

/**
 * @dev Restricted orders are validated post-execution by calling validateOrder
 *      on the zone. This struct provides context about the order fulfillment
 *      and any supplied extraData, as well as all order hashes fulfilled in a
 *      call to a match or fulfillAvailable method.
 */
struct ZoneParameters {
    bytes32 orderHash;
    address fulfiller;
    address offerer;
    SpentItem[] offer;
    ReceivedItem[] consideration;
    bytes extraData;
    bytes32[] orderHashes;
    uint256 startTime;
    uint256 endTime;
    bytes32 zoneHash;
}

/**
 * @dev Zones and contract offerers can communicate which schemas they implement
 *      along with any associated metadata related to each schema.
 */
struct Schema {
    uint256 id;
    bytes metadata;
}

using StructPointers for OrderComponents global;
using StructPointers for OfferItem global;
using StructPointers for ConsiderationItem global;
using StructPointers for SpentItem global;
using StructPointers for ReceivedItem global;
using StructPointers for BasicOrderParameters global;
using StructPointers for AdditionalRecipient global;
using StructPointers for OrderParameters global;
using StructPointers for Order global;
using StructPointers for AdvancedOrder global;
using StructPointers for OrderStatus global;
using StructPointers for CriteriaResolver global;
using StructPointers for Fulfillment global;
using StructPointers for FulfillmentComponent global;
using StructPointers for Execution global;
using StructPointers for ZoneParameters global;

library StructPointers {
    function toMemoryPointer(
        OrderComponents memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        OrderComponents calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        OfferItem memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        OfferItem calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        ConsiderationItem memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        ConsiderationItem calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        SpentItem memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        SpentItem calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        ReceivedItem memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        ReceivedItem calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        BasicOrderParameters memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        BasicOrderParameters calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        AdditionalRecipient memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        AdditionalRecipient calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        OrderParameters memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        OrderParameters calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        Order memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        Order calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        AdvancedOrder memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        AdvancedOrder calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        OrderStatus memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        OrderStatus calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        CriteriaResolver memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        CriteriaResolver calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        Fulfillment memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        Fulfillment calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        FulfillmentComponent memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        FulfillmentComponent calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        Execution memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        Execution calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toMemoryPointer(
        ZoneParameters memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    function toCalldataPointer(
        ZoneParameters calldata obj
    ) internal pure returns (CalldataPointer ptr) {
        assembly {
            ptr := obj
        }
    }
}

File 18 of 87 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.

pragma solidity ^0.8.19;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        bytes32[] memory store = _values(set._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

File 19 of 87 : EnumerableMap.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableMap.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableMap.js.

pragma solidity ^0.8.19;

import "./EnumerableSet.sol";

/**
 * @dev Library for managing an enumerable variant of Solidity's
 * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`]
 * type.
 *
 * Maps have the following properties:
 *
 * - Entries are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Entries are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using EnumerableMap for EnumerableMap.UintToAddressMap;
 *
 *     // Declare a set state variable
 *     EnumerableMap.UintToAddressMap private myMap;
 * }
 * ```
 *
 * The following map types are supported:
 *
 * - `uint256 -> address` (`UintToAddressMap`) since v3.0.0
 * - `address -> uint256` (`AddressToUintMap`) since v4.6.0
 * - `bytes32 -> bytes32` (`Bytes32ToBytes32Map`) since v4.6.0
 * - `uint256 -> uint256` (`UintToUintMap`) since v4.7.0
 * - `bytes32 -> uint256` (`Bytes32ToUintMap`) since v4.7.0
 *
 * [WARNING]
 * ====
 * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
 * unusable.
 * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 * In order to clean an EnumerableMap, you can either remove all elements one by one or create a fresh instance using an
 * array of EnumerableMap.
 * ====
 */
library EnumerableMap {
    using EnumerableSet for EnumerableSet.Bytes32Set;

    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Map type with
    // bytes32 keys and values.
    // The Map implementation uses private functions, and user-facing
    // implementations (such as Uint256ToAddressMap) are just wrappers around
    // the underlying Map.
    // This means that we can only create new EnumerableMaps for types that fit
    // in bytes32.

    /**
     * @dev Query for a nonexistent map key.
     */
    error EnumerableMapNonexistentKey(bytes32 key);

    struct Bytes32ToBytes32Map {
        // Storage of keys
        EnumerableSet.Bytes32Set _keys;
        mapping(bytes32 => bytes32) _values;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(Bytes32ToBytes32Map storage map, bytes32 key, bytes32 value) internal returns (bool) {
        map._values[key] = value;
        return map._keys.add(key);
    }

    /**
     * @dev Removes a key-value pair from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(Bytes32ToBytes32Map storage map, bytes32 key) internal returns (bool) {
        delete map._values[key];
        return map._keys.remove(key);
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bool) {
        return map._keys.contains(key);
    }

    /**
     * @dev Returns the number of key-value pairs in the map. O(1).
     */
    function length(Bytes32ToBytes32Map storage map) internal view returns (uint256) {
        return map._keys.length();
    }

    /**
     * @dev Returns the key-value pair stored at position `index` in the map. O(1).
     *
     * Note that there are no guarantees on the ordering of entries inside the
     * array, and it may change when more entries are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32ToBytes32Map storage map, uint256 index) internal view returns (bytes32, bytes32) {
        bytes32 key = map._keys.at(index);
        return (key, map._values[key]);
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bool, bytes32) {
        bytes32 value = map._values[key];
        if (value == bytes32(0)) {
            return (contains(map, key), bytes32(0));
        } else {
            return (true, value);
        }
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(Bytes32ToBytes32Map storage map, bytes32 key) internal view returns (bytes32) {
        bytes32 value = map._values[key];
        if (value == 0 && !contains(map, key)) {
            revert EnumerableMapNonexistentKey(key);
        }
        return value;
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(Bytes32ToBytes32Map storage map) internal view returns (bytes32[] memory) {
        return map._keys.values();
    }

    // UintToUintMap

    struct UintToUintMap {
        Bytes32ToBytes32Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(UintToUintMap storage map, uint256 key, uint256 value) internal returns (bool) {
        return set(map._inner, bytes32(key), bytes32(value));
    }

    /**
     * @dev Removes a value from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(UintToUintMap storage map, uint256 key) internal returns (bool) {
        return remove(map._inner, bytes32(key));
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(UintToUintMap storage map, uint256 key) internal view returns (bool) {
        return contains(map._inner, bytes32(key));
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(UintToUintMap storage map) internal view returns (uint256) {
        return length(map._inner);
    }

    /**
     * @dev Returns the element stored at position `index` in the map. O(1).
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintToUintMap storage map, uint256 index) internal view returns (uint256, uint256) {
        (bytes32 key, bytes32 value) = at(map._inner, index);
        return (uint256(key), uint256(value));
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(UintToUintMap storage map, uint256 key) internal view returns (bool, uint256) {
        (bool success, bytes32 value) = tryGet(map._inner, bytes32(key));
        return (success, uint256(value));
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(UintToUintMap storage map, uint256 key) internal view returns (uint256) {
        return uint256(get(map._inner, bytes32(key)));
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(UintToUintMap storage map) internal view returns (uint256[] memory) {
        bytes32[] memory store = keys(map._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintToAddressMap

    struct UintToAddressMap {
        Bytes32ToBytes32Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(UintToAddressMap storage map, uint256 key, address value) internal returns (bool) {
        return set(map._inner, bytes32(key), bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(UintToAddressMap storage map, uint256 key) internal returns (bool) {
        return remove(map._inner, bytes32(key));
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(UintToAddressMap storage map, uint256 key) internal view returns (bool) {
        return contains(map._inner, bytes32(key));
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(UintToAddressMap storage map) internal view returns (uint256) {
        return length(map._inner);
    }

    /**
     * @dev Returns the element stored at position `index` in the map. O(1).
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintToAddressMap storage map, uint256 index) internal view returns (uint256, address) {
        (bytes32 key, bytes32 value) = at(map._inner, index);
        return (uint256(key), address(uint160(uint256(value))));
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(UintToAddressMap storage map, uint256 key) internal view returns (bool, address) {
        (bool success, bytes32 value) = tryGet(map._inner, bytes32(key));
        return (success, address(uint160(uint256(value))));
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(UintToAddressMap storage map, uint256 key) internal view returns (address) {
        return address(uint160(uint256(get(map._inner, bytes32(key)))));
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(UintToAddressMap storage map) internal view returns (uint256[] memory) {
        bytes32[] memory store = keys(map._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // AddressToUintMap

    struct AddressToUintMap {
        Bytes32ToBytes32Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(AddressToUintMap storage map, address key, uint256 value) internal returns (bool) {
        return set(map._inner, bytes32(uint256(uint160(key))), bytes32(value));
    }

    /**
     * @dev Removes a value from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(AddressToUintMap storage map, address key) internal returns (bool) {
        return remove(map._inner, bytes32(uint256(uint160(key))));
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(AddressToUintMap storage map, address key) internal view returns (bool) {
        return contains(map._inner, bytes32(uint256(uint160(key))));
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(AddressToUintMap storage map) internal view returns (uint256) {
        return length(map._inner);
    }

    /**
     * @dev Returns the element stored at position `index` in the map. O(1).
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressToUintMap storage map, uint256 index) internal view returns (address, uint256) {
        (bytes32 key, bytes32 value) = at(map._inner, index);
        return (address(uint160(uint256(key))), uint256(value));
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(AddressToUintMap storage map, address key) internal view returns (bool, uint256) {
        (bool success, bytes32 value) = tryGet(map._inner, bytes32(uint256(uint160(key))));
        return (success, uint256(value));
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(AddressToUintMap storage map, address key) internal view returns (uint256) {
        return uint256(get(map._inner, bytes32(uint256(uint160(key)))));
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(AddressToUintMap storage map) internal view returns (address[] memory) {
        bytes32[] memory store = keys(map._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // Bytes32ToUintMap

    struct Bytes32ToUintMap {
        Bytes32ToBytes32Map _inner;
    }

    /**
     * @dev Adds a key-value pair to a map, or updates the value for an existing
     * key. O(1).
     *
     * Returns true if the key was added to the map, that is if it was not
     * already present.
     */
    function set(Bytes32ToUintMap storage map, bytes32 key, uint256 value) internal returns (bool) {
        return set(map._inner, key, bytes32(value));
    }

    /**
     * @dev Removes a value from a map. O(1).
     *
     * Returns true if the key was removed from the map, that is if it was present.
     */
    function remove(Bytes32ToUintMap storage map, bytes32 key) internal returns (bool) {
        return remove(map._inner, key);
    }

    /**
     * @dev Returns true if the key is in the map. O(1).
     */
    function contains(Bytes32ToUintMap storage map, bytes32 key) internal view returns (bool) {
        return contains(map._inner, key);
    }

    /**
     * @dev Returns the number of elements in the map. O(1).
     */
    function length(Bytes32ToUintMap storage map) internal view returns (uint256) {
        return length(map._inner);
    }

    /**
     * @dev Returns the element stored at position `index` in the map. O(1).
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32ToUintMap storage map, uint256 index) internal view returns (bytes32, uint256) {
        (bytes32 key, bytes32 value) = at(map._inner, index);
        return (key, uint256(value));
    }

    /**
     * @dev Tries to returns the value associated with `key`. O(1).
     * Does not revert if `key` is not in the map.
     */
    function tryGet(Bytes32ToUintMap storage map, bytes32 key) internal view returns (bool, uint256) {
        (bool success, bytes32 value) = tryGet(map._inner, key);
        return (success, uint256(value));
    }

    /**
     * @dev Returns the value associated with `key`. O(1).
     *
     * Requirements:
     *
     * - `key` must be in the map.
     */
    function get(Bytes32ToUintMap storage map, bytes32 key) internal view returns (uint256) {
        return uint256(get(map._inner, key));
    }

    /**
     * @dev Return the an array containing all the keys
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function keys(Bytes32ToUintMap storage map) internal view returns (bytes32[] memory) {
        bytes32[] memory store = keys(map._inner);
        bytes32[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

File 20 of 87 : Seaport.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { Consideration } from "./lib/Consideration.sol";

/**
 * @title Seaport
 * @custom:version 1.2
 * @author 0age (0age.eth)
 * @custom:coauthor d1ll0n (d1ll0n.eth)
 * @custom:coauthor transmissions11 (t11s.eth)
 * @custom:coauthor James Wenzel (emo.eth)
 * @custom:contributor Kartik (slokh.eth)
 * @custom:contributor LeFevre (lefevre.eth)
 * @custom:contributor Joseph Schiarizzi (CupOJoseph.eth)
 * @custom:contributor Aspyn Palatnick (stuckinaboot.eth)
 * @custom:contributor Stephan Min (stephanm.eth)
 * @custom:contributor Ryan Ghods (ralxz.eth)
 * @custom:contributor Daniel Viau (snotrocket.eth)
 * @custom:contributor hack3r-0m (hack3r-0m.eth)
 * @custom:contributor Diego Estevez (antidiego.eth)
 * @custom:contributor Chomtana (chomtana.eth)
 * @custom:contributor Saw-mon and Natalie (sawmonandnatalie.eth)
 * @custom:contributor 0xBeans (0xBeans.eth)
 * @custom:contributor 0x4non (punkdev.eth)
 * @custom:contributor Laurence E. Day (norsefire.eth)
 * @custom:contributor vectorized.eth (vectorized.eth)
 * @custom:contributor karmacoma (karmacoma.eth)
 * @custom:contributor horsefacts (horsefacts.eth)
 * @custom:contributor UncarvedBlock (uncarvedblock.eth)
 * @custom:contributor Zoraiz Mahmood (zorz.eth)
 * @custom:contributor William Poulin (wpoulin.eth)
 * @custom:contributor Rajiv Patel-O'Connor (rajivpoc.eth)
 * @custom:contributor tserg (tserg.eth)
 * @custom:contributor cygaar (cygaar.eth)
 * @custom:contributor Meta0xNull (meta0xnull.eth)
 * @custom:contributor gpersoon (gpersoon.eth)
 * @custom:contributor Matt Solomon (msolomon.eth)
 * @custom:contributor Weikang Song (weikangs.eth)
 * @custom:contributor zer0dot (zer0dot.eth)
 * @custom:contributor Mudit Gupta (mudit.eth)
 * @custom:contributor leonardoalt (leoalt.eth)
 * @custom:contributor cmichel (cmichel.eth)
 * @custom:contributor PraneshASP (pranesh.eth)
 * @custom:contributor JasperAlexander (jasperalexander.eth)
 * @custom:contributor Ellahi (ellahi.eth)
 * @custom:contributor zaz (1zaz1.eth)
 * @custom:contributor berndartmueller (berndartmueller.eth)
 * @custom:contributor dmfxyz (dmfxyz.eth)
 * @custom:contributor daltoncoder (dontkillrobots.eth)
 * @custom:contributor 0xf4ce (0xf4ce.eth)
 * @custom:contributor phaze (phaze.eth)
 * @custom:contributor hrkrshnn (hrkrshnn.eth)
 * @custom:contributor axic (axic.eth)
 * @custom:contributor leastwood (leastwood.eth)
 * @custom:contributor 0xsanson (sanson.eth)
 * @custom:contributor blockdev (blockd3v.eth)
 * @custom:contributor fiveoutofnine (fiveoutofnine.eth)
 * @custom:contributor shuklaayush (shuklaayush.eth)
 * @custom:contributor 0xPatissier
 * @custom:contributor pcaversaccio
 * @custom:contributor David Eiber
 * @custom:contributor csanuragjain
 * @custom:contributor sach1r0
 * @custom:contributor twojoy0
 * @custom:contributor ori_dabush
 * @custom:contributor Daniel Gelfand
 * @custom:contributor okkothejawa
 * @custom:contributor FlameHorizon
 * @custom:contributor vdrg
 * @custom:contributor dmitriia
 * @custom:contributor bokeh-eth
 * @custom:contributor asutorufos
 * @custom:contributor rfart(rfa)
 * @custom:contributor Riley Holterhus
 * @custom:contributor big-tech-sux
 * @notice Seaport is a generalized ETH/ERC20/ERC721/ERC1155 marketplace with
 *         lightweight methods for common routes as well as more flexible
 *         methods for composing advanced orders or groups of orders. Each order
 *         contains an arbitrary number of items that may be spent (the "offer")
 *         along with an arbitrary number of items that must be received back by
 *         the indicated recipients (the "consideration").
 */
contract Seaport is Consideration {
    /**
     * @notice Derive and set hashes, reference chainId, and associated domain
     *         separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(address conduitController) Consideration(conduitController) {}

    /**
     * @dev Internal pure function to retrieve and return the name of this
     *      contract.
     *
     * @return The name of this contract.
     */
    function _name() internal pure override returns (string memory) {
        // Return the name of the contract.
        assembly {
            mstore(0x20, 0x20)
            mstore(0x47, 0x07536561706f7274)
            return(0x20, 0x60)
        }
    }

    /**
     * @dev Internal pure function to retrieve the name of this contract as a
     *      string that will be used to derive the name hash in the constructor.
     *
     * @return The name of this contract as a string.
     */
    function _nameString() internal pure override returns (string memory) {
        // Return the name of the contract.
        return "Seaport";
    }
}

File 21 of 87 : DittoPoolMain.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { Math } from "../../lib/openzeppelin-contracts/contracts/utils/math/Math.sol";
import { OwnerTwoStep } from "../utils/OwnerTwoStep.sol";
import { LpNft } from "./lpNft/LpNft.sol";
import { IOwnerTwoStep } from "../interface/IOwnerTwoStep.sol";
import { IDittoPool } from "../interface/IDittoPool.sol";
import { IDittoPoolFactory } from "../interface/IDittoPoolFactory.sol";
import { IPermitter } from "../interface/IPermitter.sol";
import { PoolTemplate } from "../struct/FactoryTemplates.sol";
import { LpIdToTokenBalance } from "../struct/LpIdToTokenBalance.sol";
import { ERC20 } from "../../lib/solmate/src/tokens/ERC20.sol";
import { ReentrancyGuard } from
    "../../lib/openzeppelin-contracts/contracts/security/ReentrancyGuard.sol";
import { IERC721 } from "../../lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";
import { EnumerableSet } from
    "../../lib/openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol";
import { EnumerableMap } from
    "../../lib/openzeppelin-contracts/contracts/utils/structs/EnumerableMap.sol";

/**
 * @title DittoPool
 * @notice Contract that defines basic pool functionality used in DittoPoolMarketMake and DittoPoolTrade contracts
 * @notice Also defines admin functions for changing pool variables
 */
abstract contract DittoPoolMain is OwnerTwoStep, IDittoPool, ReentrancyGuard {
    using EnumerableSet for EnumerableSet.UintSet;
    using EnumerableMap for EnumerableMap.UintToUintMap;

    ///@dev Indication of whether or not this pool has more than one possible liquidity provider
    bool internal _isPrivatePool;
    ///@dev The ID of the LP Position that owns the pool if it is a private pool
    uint256 public _privatePoolOwnerLpId;

    ///@dev The full list of NFT ids owned by this pool that the pool is tracking. 
    EnumerableSet.UintSet internal _poolOwnedNftIds;

    ///@dev Stores which Lp Position owns which NFT in the pool
    mapping(uint256 => uint256) internal _nftIdToLpId;

    ///@dev Stores how many NFTs each Lp Position owns in the pool
    mapping(uint256 => uint256) internal _lpIdToNftBalance;

    ///@dev Stores how much erc20 liquidity that a given Lp Position owns within the pool.
    ///@dev Also stores list of all LP Position Token IDs representing liquidity in this specific DittoPool:
    ///   a position that has 0 tokens will return 0 but still will be included in .tryGet, .contains() and .length()
    EnumerableMap.UintToUintMap internal _lpIdToTokenBalance;

    ///@dev LP Position NFT contract that tokenizes liquidity provisions in the protocol
    LpNft internal _lpNft;
    ///@dev Permitter contract that decides which NFT tokenIds are permitted in this pool. If not set, all ids allowed
    IPermitter internal _permitter;

    ///@dev flag to prevent pool variables from being set multiple times. Pack with previous address.
    bool internal _initialized;

    ///@dev The ERC721 collection stored in this pool
    IERC721 internal _nft;
    ///@dev The ERC20 collection stored in this pool
    ERC20 internal _token;
    ///@dev The DittoPoolFactory contract that created this pool. Used to fetch up to date protocol fee values
    IDittoPoolFactory internal _dittoPoolFactory;

    ///@dev The fee charged by and paid to the administrator of this pool on each trade. Packed with previous address.
    uint96 internal _feeAdmin;

    ///@dev The recipient address of admin fee.
    address internal _adminFeeRecipient;

    ///@dev The lp fee charged on trades and provided to the liquidit provider. Packed with previous address.
    uint96 internal _feeLp;

    ///@dev A variable used differently by each bonding curve type to update the price after each trade
    uint128 internal _delta;
    ///@dev The current price of the pool, used differently by each bonding curve type
    uint128 internal _basePrice;

    ///@dev the maximum permissible admin fee and Lp value (both capped at 10%)
    uint96 internal constant MAX_FEE = 0.10e18;

    ///@dev which DittoPoolTemplate address was used when creating this pool
    address internal _template;

    // ***************************************************************
    // * ========================= EVENTS ========================== *
    // ***************************************************************
    event DittoPoolMainPoolInitialized(address template, address lpNft, address permitter);
    event DittoPoolMainAdminChangedBasePrice(uint128 newBasePrice);
    event DittoPoolMainAdminChangedDelta(uint128 newDelta);
    event DittoPoolMainAdminChangedAdminFeeRecipient(address adminFeeRecipient);
    event DittoPoolMainAdminChangedAdminFee(uint256 newAdminFee);
    event DittoPoolMainAdminChangedLpFee(uint256 newLpFee);

    // ***************************************************************
    // * ========================= ERRORS ========================== *
    // ***************************************************************

    error DittoPoolMainInvalidAdminFeeRecipient();
    error DittoPoolMainInvalidPermitterData();
    error DittoPoolMainAlreadyInitialized();
    error DittoPoolMainInvalidBasePrice(uint128 basePrice);
    error DittoPoolMainInvalidDelta(uint128 delta);
    error DittoPoolMainInvalidOwnerOperation();
    error DittoPoolMainNoDirectNftTransfers();
    error DittoPoolMainInvalidMsgSender();
    error DittoPoolMainInvalidFee();

    // ***************************************************************
    // * ================ OWNERSHIP FUNCTIONS ====================== *
    // ***************************************************************

    ///@inheritdoc OwnerTwoStep
    function owner() public view virtual override(IOwnerTwoStep, OwnerTwoStep) returns (address) {
        if(_isPrivatePool) {
            return _lpNft.ownerOf(_privatePoolOwnerLpId);
        }
        return OwnerTwoStep.owner();
    }

    ///@inheritdoc OwnerTwoStep
    function _onlyOwner() internal view override(OwnerTwoStep) {
        if(msg.sender != owner()) {
            revert DittoPoolMainInvalidMsgSender();
        }
    }

    ///@inheritdoc OwnerTwoStep
    function acceptOwnership() public override (IOwnerTwoStep, OwnerTwoStep) nonReentrant onlyPendingOwner {
        if(_isPrivatePool) {
            revert DittoPoolMainInvalidOwnerOperation();
        }
        super.acceptOwnership();
        _lpNft.emitMetadataUpdateForAll();
    }

    // ***************************************************************
    // * ============= CONSTRUCTOR AND MODIFIERS =================== *
    // ***************************************************************

    /**
     * @inheritdoc IDittoPool
     */
    function initPool(
        PoolTemplate calldata params_,
        address template_,
        LpNft lpNft_,
        IPermitter permitter_
    ) external {
        // CHECK PRECONDITIONS
        if (_initialized) {
            revert DittoPoolMainAlreadyInitialized();
        }
        _initialized = true;

        // SET STATE
        _isPrivatePool = params_.isPrivatePool;
        _nft = IERC721(params_.nft);
        _token = ERC20(params_.token);
        _lpNft = lpNft_;
        _permitter = permitter_;
        _changeFeeLp(params_.feeLp);
        _changeFeeAdmin(params_.feeAdmin);
        _adminChangeDelta(params_.delta);
        _adminChangeBasePrice(params_.basePrice);
        _transferOwnership(params_.owner);
        _adminFeeRecipient = params_.owner;
        _dittoPoolFactory = IDittoPoolFactory(msg.sender);
        _template = template_;

        _initializeCustomPoolData(params_.templateInitData);

        emit DittoPoolMainPoolInitialized(template_, address(lpNft_), address(permitter_));
    }

    // ***************************************************************
    // * =============== ADMINISTRATIVE FUNCTIONS ================== *
    // ***************************************************************

    ///@inheritdoc IDittoPool
    function changeBasePrice(uint128 newBasePrice_) external virtual onlyOwner {
        _adminChangeBasePrice(newBasePrice_);
    }

    ///@inheritdoc IDittoPool
    function changeDelta(uint128 newDelta_) external virtual onlyOwner {
        _adminChangeDelta(newDelta_);
    }

    ///@inheritdoc IDittoPool
    function changeLpFee(uint96 newFeeLp_) external onlyOwner {
        _changeFeeLp(newFeeLp_);
    }

    ///@inheritdoc IDittoPool
    function changeAdminFee(uint96 newFeeAdmin_) external onlyOwner {
        _changeFeeAdmin(newFeeAdmin_);
    }

    ///@inheritdoc IDittoPool
    function changeAdminFeeRecipient(address newAdminFeeRecipient_) external onlyOwner {
        if (newAdminFeeRecipient_ == address(0)) {
            revert DittoPoolMainInvalidAdminFeeRecipient();
        }

        _adminFeeRecipient = newAdminFeeRecipient_;

        emit DittoPoolMainAdminChangedAdminFeeRecipient(newAdminFeeRecipient_);
    }

    // ***************************************************************
    // * ======= EXTERNALLY CALLABLE READ-ONLY VIEW FUNCTIONS ====== *
    // ***************************************************************

    ///@inheritdoc IDittoPool
    function isPrivatePool() external view returns (bool isPrivatePool_) {
        isPrivatePool_ = _isPrivatePool;
    }

    ///@inheritdoc IDittoPool
    function initialized() external view returns (bool) {
        return _initialized;
    }

    ///@inheritdoc IDittoPool
    function template() external view returns (address) {
        return _template;
    }

    ///@inheritdoc IDittoPool
    function adminFee() external view returns (uint96 feeAdmin_) {
        feeAdmin_ = _feeAdmin;
    }

    ///@inheritdoc IDittoPool
    function lpFee() external view returns (uint96 feeLp_) {
        feeLp_ = _feeLp;
    }

    ///@inheritdoc IDittoPool
    function protocolFee() external view returns (uint256 feeProtocol_) {
        feeProtocol_ = _dittoPoolFactory.getProtocolFee();
    }

    ///@inheritdoc IDittoPool
    function fee() public view returns (uint256 fee_) {
        fee_ = _feeLp + _feeAdmin + _dittoPoolFactory.getProtocolFee();
    }

    ///@inheritdoc IDittoPool
    function delta() external view returns (uint128) {
        return _delta;
    }

    ///@inheritdoc IDittoPool
    function basePrice() external view returns (uint128) {
        return _basePrice;
    }

    ///@inheritdoc IDittoPool
    function dittoPoolFactory() external view returns (address) {
        return address(_dittoPoolFactory);
    }

    ///@inheritdoc IDittoPool
    function adminFeeRecipient() external view returns (address) {
        return _adminFeeRecipient;
    }

    ///@inheritdoc IDittoPool
    function getLpNft() external view returns (address) {
        return address(_lpNft);
    }

    ///@inheritdoc IDittoPool
    function nft() external view returns (IERC721) {
        return _nft;
    }

    ///@inheritdoc IDittoPool
    function token() external view returns (address) {
        return address(_token);
    }

    ///@inheritdoc IDittoPool
    function permitter() public view returns (IPermitter) {
        return _permitter;
    }

    ///@inheritdoc IDittoPool
    function getTokenBalanceForLpId(uint256 lpId_) public view returns (uint256 tokenBalance) {
        (, tokenBalance) = _lpIdToTokenBalance.tryGet(lpId_);
    }

    ///@inheritdoc IDittoPool
    function getNftIdsForLpId(uint256 lpId_) public view returns (uint256[] memory nftIds) {
        nftIds = new uint256[](_lpIdToNftBalance[lpId_]);

        uint256 nftId;
        uint256 nftIdIndex;
        uint256 countOwnedNftIds = _poolOwnedNftIds.length();

        for (uint256 i = 0; i < countOwnedNftIds;) {
            nftId = _poolOwnedNftIds.at(i);
            if (lpId_ == _nftIdToLpId[nftId]) {
                nftIds[nftIdIndex] = nftId;
                unchecked {
                    ++nftIdIndex;
                }
            }
            unchecked {
                ++i;
            }
        }
    }

    ///@inheritdoc IDittoPool
    function getNftCountForLpId(uint256 lpId_) public view returns (uint256) {
        return _lpIdToNftBalance[lpId_];
    }

    ///@inheritdoc IDittoPool
    function getTotalBalanceForLpId(uint256 lpId_)
        public
        view
        returns (uint256 tokenBalance, uint256 nftBalance)
    {
        (, tokenBalance) = _lpIdToTokenBalance.tryGet(lpId_);
        nftBalance = _lpIdToNftBalance[lpId_];
    }

    ///@inheritdoc IDittoPool
    function getLpIdForNftId(uint256 nftId_) public view returns (uint256 lpId) {
        lpId = _nftIdToLpId[nftId_];
    }

    ///@inheritdoc IDittoPool
    function getAllPoolHeldNftIds() external view returns (uint256[] memory) {
        return _poolOwnedNftIds.values();
    }

    ///@inheritdoc IDittoPool
    function getPoolTotalNftBalance() external view returns (uint256) {
        return _poolOwnedNftIds.length();
    }

    ///@inheritdoc IDittoPool
    function getAllPoolLpIds() external view returns (uint256[] memory lpIds) {
        uint256 countLpIds = _lpIdToTokenBalance.length();
        lpIds = new uint256[](countLpIds);

        for (uint256 i = 0; i < countLpIds;) {
            (lpIds[i],) = _lpIdToTokenBalance.at(i);
            unchecked {
                ++i;
            }
        }
    }

    ///@inheritdoc IDittoPool
    function getPoolTotalTokenBalance() external view returns (uint256 totalTokenBalance) {
        uint256 countLpIds = _lpIdToTokenBalance.length();
        uint256 tokenBalance;
        for (uint256 i = 0; i < countLpIds;) {
            (, tokenBalance) = _lpIdToTokenBalance.at(i);
            totalTokenBalance += tokenBalance;
            unchecked {
                ++i;
            }
        }
    }

    ///@inheritdoc IDittoPool
    function getAllLpIdTokenBalances()
        external
        view
        returns (LpIdToTokenBalance[] memory balances)
    {
        uint256 countLpIds = _lpIdToTokenBalance.length();
        balances = new LpIdToTokenBalance[](countLpIds);

        for (uint256 i = 0; i < countLpIds;) {
            (balances[i].lpId, balances[i].tokenBalance) = _lpIdToTokenBalance.at(i);
            unchecked {
                ++i;
            }
        }
    }

    // ***************************************************************
    // * ============= INTERNAL HELPER FUNCTIONS =================== *
    // ***************************************************************

    /**
     * @dev multiply two values that are scaled by 1e18
     */
    function _mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return Math.mulDiv(a, b, 1e18);
    }

    /**
     * @notice check if the tokens being added to the pool are permitted to be added 
     * @param tokenIds_ the token ids to check
     * @param permitterData_ data to pass to permitter for determining validity (e.g. merkle proofs)
     */
    function _checkPermittedTokens(
        uint256[] calldata tokenIds_,
        bytes calldata permitterData_
    ) internal view {
        if (
            address(_permitter) != address(0)
            && !_permitter.checkPermitterData(tokenIds_, permitterData_)
        ) {
            revert DittoPoolMainInvalidPermitterData();
        }
    }

    /**
     * @notice A function to be called to change the _feeAdmin state variable
     * @param newFeeAdmin_ The proposedvalue.
     */
    function _changeFeeAdmin(uint96 newFeeAdmin_) internal virtual {
        _requireValidFee(newFeeAdmin_);
        _feeAdmin = newFeeAdmin_;
        emit DittoPoolMainAdminChangedAdminFee(newFeeAdmin_);
    }

    /**
     * @notice A function to be called to change the _feeLp state variable
     * @param newFeeLp_ The proposed value.
     */
    function _changeFeeLp(uint96 newFeeLp_) internal virtual {
        _requireValidFee(newFeeLp_);
        _feeLp = newFeeLp_;
        emit DittoPoolMainAdminChangedLpFee(newFeeLp_);
    }

    /**
     * @dev Ensure the proosed admin fee is below the max threshold (0.10e18)
     */
    function _requireValidFee(uint96 fee_) internal pure {
        if (fee_ > MAX_FEE) {
            revert DittoPoolMainInvalidFee();
        }
    }

    /**
     * @notice Helper function to change the base price of the pool used by extending contracts
     * @param newBasePrice_ The new base price to set
     */
    function _changeBasePrice(uint128 newBasePrice_) internal {
        if (_invalidBasePrice(newBasePrice_)) {
            revert DittoPoolMainInvalidBasePrice(newBasePrice_);
        }
        _basePrice = newBasePrice_;
    }

    /**
     * @notice Helper function to update the pool's basePrice and log
     * 
     * @param newBasePrice_ The new base price to set
     */
    function _adminChangeBasePrice(uint128 newBasePrice_) internal {
        _changeBasePrice(newBasePrice_);

        emit DittoPoolMainAdminChangedBasePrice(newBasePrice_);
    }

    /**
     * @notice Helper function to change the delta of the pool used by extending contracts
     * @param newDelta_ The new delta to set
     */
    function _changeDelta(uint128 newDelta_) internal {
        if (_invalidDelta(newDelta_)) {
            revert DittoPoolMainInvalidDelta(newDelta_);
        }
        _delta = newDelta_;
    }

    /**
     * @notice Helper function to update the pool's delta and log
     * 
     * @param newDelta_ The new delta to set
     */
    function _adminChangeDelta(uint128 newDelta_) internal {
        _changeDelta(newDelta_);

        emit DittoPoolMainAdminChangedDelta(newDelta_);
    }

    // ***************************************************************
    // * ================== CURVE CUSTOM HOOKS ===================== *
    // ***************************************************************

    /**
     * @notice A function to be called when the pool is initialized. Each curve type
     *   can choose to override this function to introduce custom behavior. 
     */
    function _initializeCustomPoolData(bytes calldata /*templateInitData*/) internal virtual { }

    /**
     * @notice A function to be called when nft liquidity is added. Each curve type
     *   can choose to override this function to introduce custom behavior.
     * @param count_ The count of nft liquidity added.
     */
    function _nftLiquidityAdded(uint256 count_) internal virtual { }

    /**
     * @notice A function to be called when nft liquidity is removed. Each curve type
     *   can choose to override this function to introduce custom behavior.
     * @param count_ The count of nft liquidity removed.
     */
    function _nftLiquidityRemoved(uint256 count_) internal virtual { }

    /**
     * @notice A function to be called when token liquidity is added. Each curve type
     *   can choose to override this function to introduce custom behavior.
     * @param count_ The count of token liquidity added.
     */
    function _tokenLiquidityAdded(uint256 count_) internal virtual { }

    /**
     * @notice A function to be called when token liquidity is removed. Each curve type
     *   can choose to override this function to introduce custom behavior.
     * @param count_ The count of token liquidity removed.
     */
    function _tokenLiquidityRemoved(uint256 count_) internal virtual { }

    /**
     * @notice Validates if a delta value is valid for the curve. The criteria for
     * validity can be different for each type of curve, for instance ExponentialCurve
     * requires delta to be greater than 1.
     * @param delta_ The delta value to be validated
     * @return valid True if delta is invalid, false otherwise
     */
    function _invalidDelta(uint128 delta_) internal pure virtual returns (bool valid);

    /**
     * @notice Validates if a new base price is valid for the curve.
     *   Spot price is generally assumed to be the immediate sell price of 1 NFT to the pool,
     *   in units of the pool's paired token.
     * @param newBasePrice_ The new base price to be set
     * @return valid True if the new base price is invalid, false otherwise
     */
    function _invalidBasePrice(uint128 newBasePrice_) internal pure virtual returns (bool valid);

    // ***************************************************************
    // * ================== ON ERC721 RECEIVED ===================== *
    // ***************************************************************
    ///@inheritdoc IDittoPool
    function onERC721Received(
        address,
        address,
        uint256,
        bytes memory
    ) public virtual returns (bytes4) {
        revert DittoPoolMainNoDirectNftTransfers();
    }
}

File 22 of 87 : DittoPoolMarketMake.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { IDittoPool } from "../interface/IDittoPool.sol";
import { DittoPoolMain } from "./DittoPoolMain.sol";
import { ERC20 } from "../../lib/solmate/src/tokens/ERC20.sol";
import { SafeTransferLib } from "../../lib/solmate/src/utils/SafeTransferLib.sol";
import { ReentrancyGuard } from
    "../../lib/openzeppelin-contracts/contracts/security/ReentrancyGuard.sol";
import { EnumerableSet } from
    "../../lib/openzeppelin-contracts/contracts/utils/structs/EnumerableSet.sol";
import { EnumerableMap } from
    "../../lib/openzeppelin-contracts/contracts/utils/structs/EnumerableMap.sol";

/**
 * @title DittoPool
 * @notice Parent contract defines common functions for DittoPool AMM shared liquidity trading pools.
 */
abstract contract DittoPoolMarketMake is DittoPoolMain {
    using SafeTransferLib for ERC20;
    using EnumerableSet for EnumerableSet.UintSet;
    using EnumerableMap for EnumerableMap.UintToUintMap;

    // ***************************************************************
    // * ========================= EVENTS ========================== *
    // ***************************************************************

    event DittoPoolMarketMakeLiquidityAdded(
        address liquidityProvider, 
        uint256 lpId, 
        uint256[] tokenIds, 
        uint256 tokenDepositAmount,
        bytes referrer
    );
    event DittoPoolMarketMakeLiquidityCreated(
        address liquidityProvider, 
        uint256 lpId, 
        uint256[] tokenIds, 
        uint256 tokenDepositAmount,
        address initialPositionTokenOwner,
        bytes referrer
    );
    event DittoPoolMarketMakeLiquidityRemoved(
        uint256 lpId, 
        uint256[] nftIds, 
        uint256 tokenWithdrawAmount
    );

    // ***************************************************************
    // * ========================= ERRORS ========================== *
    // ***************************************************************
    error DittoPoolMarketMakeMustDepositLiquidity();
    error DittoPoolMarketMakeWrongPoolForLpId();
    error DittoPoolMarketMakeNotAuthorizedForLpId();
    error DittoPoolMarketMakeInsufficientBalance();
    error DittoPoolMarketMakeInvalidNftTokenId();
    error DittoPoolMarketMakeOneLpPerPrivatePool();

    // ***************************************************************
    // * ======= FUNCTIONS TO MARKET MAKE: ADD LIQUIDITY =========== *
    // ***************************************************************

    ///@inheritdoc IDittoPool
    function createLiquidity(
        address lpRecipient_,
        uint256[] calldata nftIdList_,
        uint256 tokenDepositAmount_,
        bytes calldata permitterData_,
        bytes calldata referrer_
    ) external nonReentrant returns (uint256 lpId) {
        if (tokenDepositAmount_ == 0 && nftIdList_.length == 0) {
            revert DittoPoolMarketMakeMustDepositLiquidity();
        }
        lpId = _lpNft.mint(lpRecipient_);
        if(_isPrivatePool) {
            if(_privatePoolOwnerLpId != 0) {
                revert DittoPoolMarketMakeOneLpPerPrivatePool();
            } else {
                _privatePoolOwnerLpId = lpId;
            }
        }
        _lpIdToTokenBalance.set(lpId, 0); // tracking full set of lpIds for this pool
        _transferInLiquidity(lpId, nftIdList_, tokenDepositAmount_, permitterData_);

        emit DittoPoolMarketMakeLiquidityCreated(msg.sender, lpId, nftIdList_, tokenDepositAmount_, lpRecipient_, referrer_);
    }

    ///@inheritdoc IDittoPool
    function addLiquidity(
        uint256 lpId_,
        uint256[] calldata nftIdList_,
        uint256 tokenDepositAmount_,
        bytes calldata permitterData_,
        bytes calldata referrer_
    ) external nonReentrant {
        if(_isPrivatePool){
            _onlyOwner();
            if(_privatePoolOwnerLpId != lpId_){
                revert DittoPoolMarketMakeOneLpPerPrivatePool();
            }
        }
        if (tokenDepositAmount_ == 0 && nftIdList_.length == 0) {
            revert DittoPoolMarketMakeMustDepositLiquidity();
        }
        if (address(_lpNft.getPoolForLpId(lpId_)) != address(this)) {
            revert DittoPoolMarketMakeWrongPoolForLpId();
        }
        _transferInLiquidity(lpId_, nftIdList_, tokenDepositAmount_, permitterData_);

        emit DittoPoolMarketMakeLiquidityAdded(msg.sender, lpId_, nftIdList_, tokenDepositAmount_, referrer_);
    }

    /**
     * @notice Helper function to deposits NFTS+ERC20 liquidity into the pool. See the external function documentation.
     * @dev If the msg.sender has not set approvals for this contract then the transaction will fail.
     */
    function _transferInLiquidity(
        uint256 lpId_,
        uint256[] calldata nftIdList_,
        uint256 tokenDepositAmount_,
        bytes calldata permitterData_
    ) internal {
        uint256 nftId;
        uint256 countNftIds = nftIdList_.length;

        // TRANSFER IN NFT LIQUIDITY
        if (countNftIds > 0) {
            _checkPermittedTokens(nftIdList_, permitterData_);

            for (uint256 i = 0; i < countNftIds;) {
                nftId = nftIdList_[i];
                _nft.transferFrom(msg.sender, address(this), nftId);
                _poolOwnedNftIds.add(nftId);
                _nftIdToLpId[nftId] = lpId_;

                unchecked {
                    ++i;
                }
            }

            _lpIdToNftBalance[lpId_] += countNftIds;
            _nftLiquidityAdded(countNftIds);
        }

        // TRANSFER IN TOKEN LIQUIDITY
        if (tokenDepositAmount_ > 0) {
            _token.transferFrom(msg.sender, address(this), tokenDepositAmount_);

            (, uint256 currentTokenBalance) = _lpIdToTokenBalance.tryGet(lpId_);
            _lpIdToTokenBalance.set(lpId_, currentTokenBalance + tokenDepositAmount_);
            _tokenLiquidityAdded(tokenDepositAmount_);
        }
    }

    // ***************************************************************
    // * ===== FUNCTIONS TO MARKET MAKE: REMOVE LIQUIDITY ========== *
    // ***************************************************************

    ///@inheritdoc IDittoPool
    function pullLiquidity(
        address withdrawalAddress_,
        uint256 lpId_,
        uint256[] calldata nftIdList_,
        uint256 tokenWithdrawAmount_
    ) external nonReentrant {
        // CHECK INPUTS
        (IDittoPool pool, address lpNftOwner) = _lpNft.getPoolAndOwnerForLpId(lpId_);
        if (address(pool) != address(this)) {
            revert DittoPoolMarketMakeWrongPoolForLpId();
        }
        if (lpNftOwner != msg.sender && !_lpNft.isApproved(msg.sender, lpId_)) {
            revert DittoPoolMarketMakeNotAuthorizedForLpId();
        }

        // TRANSFER OUT NFT LIQUIDITY
        {
            uint256 countNftIds = nftIdList_.length;
            for (uint256 i = 0; i < countNftIds;) {
                uint256 nftId = nftIdList_[i];
                if (_nftIdToLpId[nftId] != lpId_) {
                    revert DittoPoolMarketMakeInvalidNftTokenId();
                }

                _nft.safeTransferFrom(address(this), withdrawalAddress_, nftId);

                _poolOwnedNftIds.remove(nftId);
                delete _nftIdToLpId[nftId];

                unchecked {
                    ++i;
                }
            }

            _lpIdToNftBalance[lpId_] -= countNftIds;
            _nftLiquidityRemoved(countNftIds);
        }

        // TRANSFER OUT TOKEN LIQUIDITY
        (, uint256 currentTokenBalance) = _lpIdToTokenBalance.tryGet(lpId_);
        if (tokenWithdrawAmount_ > 0) {
            if (tokenWithdrawAmount_ > currentTokenBalance) {
                revert DittoPoolMarketMakeInsufficientBalance();
            }

            _token.safeTransfer(withdrawalAddress_, tokenWithdrawAmount_);

            currentTokenBalance -= tokenWithdrawAmount_;
            _lpIdToTokenBalance.set(lpId_, currentTokenBalance);

            _tokenLiquidityRemoved(tokenWithdrawAmount_);
        }

        // HANDLE LP POSITION BURNING
        if (_lpIdToNftBalance[lpId_] == 0 && currentTokenBalance == 0) {
            _lpNft.burn(lpId_);
            _lpIdToTokenBalance.remove(lpId_); // tracking full set of lpIds for this pool
        }

        emit DittoPoolMarketMakeLiquidityRemoved(lpId_, nftIdList_, tokenWithdrawAmount_);
    }
}

File 23 of 87 : SwapArgs.sol
// SPDX-License-Identifier: AGPL-3.0

pragma solidity 0.8.19;

/**
 * @param nftIds The list of IDs of the NFTs to purchase
 * @param maxExpectedTokenInput The maximum acceptable cost from the sender (in wei or base units of ERC20).
 *   If the actual amount is greater than this value, the transaction will be reverted.
 * @param tokenSender ERC20 sender. Only used if msg.sender is an approved IDittoRouter, else msg.sender is used.
 * @param nftRecipient Address to send the purchased NFTs to.
 */
struct SwapTokensForNftsArgs {
    uint256[] nftIds;
    uint256 maxExpectedTokenInput;
    address tokenSender;
    address nftRecipient;
    bytes swapData;
}

/**
 * @param nftIds The list of IDs of the NFTs to sell to the pair
 * @param lpIds The list of IDs of the LP positions sell the NFTs to
 * @param minExpectedTokenOutput The minimum acceptable token count received by the sender. 
 *   If the actual amount is less than this value, the transaction will be reverted.
 * @param nftSender NFT sender. Only used if msg.sender is an approved IDittoRouter, else msg.sender is used.
 * @param tokenRecipient The recipient of the ERC20 proceeds.
 * @param permitterData Data to profe that the NFT Token IDs are permitted to be sold to this pool if a permitter is set.
 * @param swapData Extra data to pass to the curve
 */
struct SwapNftsForTokensArgs {
    uint256[] nftIds;
    uint256[] lpIds;
    uint256 minExpectedTokenOutput;
    address nftSender;
    address tokenRecipient;
    bytes permitterData;
    bytes swapData;
}

File 24 of 87 : LpNft.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { ILpNft } from "../../interface/ILpNft.sol";
import { IMetadataGenerator } from "../../interface/IMetadataGenerator.sol";
import { MetadataGeneratorError } from "../metadata/MetadataGeneratorError.sol";
import { IDittoPool } from "../../interface/IDittoPool.sol";
import { IDittoPoolFactory } from "../../interface/IDittoPoolFactory.sol";
import { OwnerTwoStep } from "../../utils/OwnerTwoStep.sol";

import { IERC721 } from "../../../lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";
import { ERC721 } from "../../../lib/solmate/src/tokens/ERC721.sol";

/**
 * @title LpNft
 * @notice LpNft is an ERC721 NFT collection that tokenizes market makers' liquidity positions in the Robonet protocol.
 */
contract LpNft is ILpNft, ERC721, OwnerTwoStep {
    IDittoPoolFactory internal _dittoPoolFactory;

    ///@dev stores which pool each lpId corresponds to
    mapping(uint256 => IDittoPool) internal _lpIdToPool;

    /// @dev dittoPool address is the key of the mapping, underlying NFT address traded by that pool is the value
    mapping(address => IERC721) internal _approvedDittoPoolToNft;

    IMetadataGenerator internal _metadataGenerator;

    ///@dev NFTs are minted sequentially, starting at tokenId 1
    uint96 internal _nextId = 1;

    // ***************************************************************
    // * ========================= EVENTS ========================== *
    // ***************************************************************

    event LpNftAdminUpdatedMetadataGenerator(address metadataGenerator);
    event LpNftAdminUpdatedDittoPoolFactory(address dittoPoolFactory);

    // ***************************************************************
    // * ========================= ERRORS ========================== *
    // ***************************************************************
    error LpNftDittoFactoryOnly();
    error LpNftDittoPoolOnly();

    // ***************************************************************
    // * ==================== ADMIN FUNCTIONS ====================== *
    // ***************************************************************

    /**
     * @notice Constructor. Records the DittoPoolFactory address. Sets the owner of this contract. 
     *   Assigns the metadataGenerator address.
     */
    constructor(
        address initialOwner_,
        address metadataGenerator_
    ) ERC721("RoboNet V1 LP Positions", "ROBONET-V1-POS") {
        _transferOwnership(initialOwner_);
        _metadataGenerator = IMetadataGenerator(metadataGenerator_);
    }

    ///@inheritdoc ILpNft
    function setDittoPoolFactory(IDittoPoolFactory dittoPoolFactory_) external onlyOwner {
        _dittoPoolFactory = dittoPoolFactory_;
        emit LpNftAdminUpdatedDittoPoolFactory(address(dittoPoolFactory_));
    }

    ///@inheritdoc ILpNft
    function setMetadataGenerator(IMetadataGenerator metadataGenerator_) external onlyOwner {
        _metadataGenerator = metadataGenerator_;

        emit LpNftAdminUpdatedMetadataGenerator(address(metadataGenerator_));
    }

    ///@inheritdoc ILpNft
    function setApprovedDittoPool(address dittoPool_, IERC721 nft_) external onlyDittoPoolFactory {
        _approvedDittoPoolToNft[dittoPool_] = nft_;
    }

    // ***************************************************************
    // * =============== PROTECTED POOL FUNCTIONS ================== *
    // ***************************************************************

    ///@inheritdoc ILpNft
    function mint(address to_) public onlyApprovedDittoPools returns (uint256 lpId) {
        lpId = _nextId;

        _lpIdToPool[lpId] = IDittoPool(msg.sender);

        _safeMint(to_, lpId);
        unchecked {
            ++_nextId;
        }
    }

    ///@inheritdoc ILpNft
    function burn(uint256 lpId_) external onlyApprovedDittoPools {
        delete _lpIdToPool[lpId_];

        _burn(lpId_);
    }

    ///@inheritdoc ILpNft
    function emitMetadataUpdate(uint256 lpId_) external onlyApprovedDittoPools {
        emit MetadataUpdate(lpId_);
    }

    ///@inheritdoc ILpNft
    function emitMetadataUpdateForAll() external onlyApprovedDittoPools {
        if (totalSupply > 0) {
            emit BatchMetadataUpdate(1, totalSupply);
        }
    }

    // ***************************************************************
    // * ==================== AUTH MODIFIERS ======================= *
    // ***************************************************************
    /**
     * @notice Modifier that restricts access to the DittoPoolFactory contract 
     *   that created this NFT collection.
     */
    modifier onlyDittoPoolFactory() {
        if (msg.sender != address(_dittoPoolFactory)) {
            revert LpNftDittoFactoryOnly();
        }
        _;
    }

    /**
     * @notice Modifier that restricts access to DittoPool contracts that have been 
     *   approved to mint and burn liquidity position NFTs by the DittoPoolFactory.
     */
    modifier onlyApprovedDittoPools() {
        if (address(_approvedDittoPoolToNft[msg.sender]) == address(0)) {
            revert LpNftDittoPoolOnly();
        }
        _;
    }

    // ***************************************************************
    // * ====================== VIEW FUNCTIONS ===================== *
    // ***************************************************************

    ///@inheritdoc ILpNft
    function isApproved(address spender_, uint256 lpId_) external view returns (bool) {
        address ownerOf = ownerOf[lpId_];
        return (
            spender_ == ownerOf || isApprovedForAll[ownerOf][spender_]
                || spender_ == getApproved[lpId_]
        );
    }

    ///@inheritdoc ILpNft
    function isApprovedDittoPool(address pool_) external view returns (bool) {
        return address(_approvedDittoPoolToNft[pool_]) != address(0);
    }

    ///@inheritdoc ILpNft
    function getPoolForLpId(uint256 lpId_) external view returns (IDittoPool) {
        return _lpIdToPool[lpId_];
    }

    ///@inheritdoc ILpNft
    function getPoolAndOwnerForLpId(uint256 lpId_)
        external
        view
        returns (IDittoPool pool, address owner)
    {
        pool = _lpIdToPool[lpId_];
        owner = ownerOf[lpId_];
    }

    ///@inheritdoc ILpNft
    function getNftForLpId(uint256 lpId_) external view returns (IERC721) {
        return _approvedDittoPoolToNft[address(_lpIdToPool[lpId_])];
    }

    ///@inheritdoc ILpNft
    function getLpValueToken(uint256 lpId_) public view returns (uint256) {
        return _lpIdToPool[lpId_].getTokenBalanceForLpId(lpId_);
    }

    ///@inheritdoc ILpNft
    function getAllHeldNftIds(uint256 lpId_) external view returns (uint256[] memory) {
        return _lpIdToPool[lpId_].getNftIdsForLpId(lpId_);
    }

    ///@inheritdoc ILpNft
    function getNumNftsHeld(uint256 lpId_) public view returns (uint256) {
        return _lpIdToPool[lpId_].getNftCountForLpId(lpId_);
    }

    ///@inheritdoc ILpNft
    function getLpValueNft(uint256 lpId_) public view returns (uint256) {
        return getNumNftsHeld(lpId_) * _lpIdToPool[lpId_].basePrice();
    }

    ///@inheritdoc ILpNft
    function getLpValue(uint256 lpId_) external view returns (uint256) {
        return getLpValueToken(lpId_) + getLpValueNft(lpId_);
    }

    ///@inheritdoc ILpNft
    function dittoPoolFactory() external view returns (IDittoPoolFactory) {
        return _dittoPoolFactory;
    }

    ///@inheritdoc ILpNft
    function nextId() external view returns (uint256) {
        return _nextId;
    }

    ///@inheritdoc ILpNft
    function metadataGenerator() external view returns (IMetadataGenerator) {
        return _metadataGenerator;
    }

    // ***************************************************************
    // * ================== ERC721 INTERFACE ======================= *
    // ***************************************************************

    /**
     *  @notice returns storefront-level metadata to be viewed on marketplaces.
     */
    function contractURI() external view returns (string memory) {
        return _metadataGenerator.payloadContractUri();
    }

    /**
     * @notice returns the metadata for a given token, to be viewed on marketplaces and off-chain
     * @dev see [EIP-721](https://eips.ethereum.org/EIPS/eip-721) EIP-721 Metadata Extension
     * @param lpId_ the tokenId of the NFT to get metadata for
     */
    function tokenURI(uint256 lpId_) public view override returns (string memory) {
        IDittoPool pool = IDittoPool(_lpIdToPool[lpId_]);
        uint256 tokenCount = getLpValueToken(lpId_);
        uint256 nftCount = getNumNftsHeld(lpId_);
        try _metadataGenerator.payloadTokenUri(lpId_, pool, tokenCount, nftCount) returns (string memory tokenUri) {
            return tokenUri;
        } catch (bytes memory reason) {
            return MetadataGeneratorError.errorTokenUri(lpId_, address(pool), tokenCount, nftCount, reason);
        }
    }

    /**
     * @notice Whether or not this contract supports the given interface. 
     *   See [EIP-165](https://eips.ethereum.org/EIPS/eip-165)
     */
    function supportsInterface(bytes4 interfaceId) public pure override returns (bool) {
        return interfaceId == 0x01ffc9a7 // ERC165 Interface ID for ERC165
            || interfaceId == 0x80ac58cd // ERC165 Interface ID for ERC721
            || interfaceId == 0x49064906 // ERC165 Interface ID for ERC4906
            || interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
    }
}

File 25 of 87 : FactoryTemplates.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

/**
 * @notice A struct for creating a DittoSwap pool.
 */
struct PoolTemplate {
    bool isPrivatePool; // whether the pool is private or not
    uint256 templateIndex; // which DittoSwap template to use. Must be less than the number of available templates
    address token; // ERC20 token address
    address nft; // the address of the NFT collection that we are creating a pool for
    uint96 feeLp; // set by owner, paid to LPers only when they are the counterparty in a trade
    address owner; // owner creating the pool
    uint96 feeAdmin; // set by owner, paid to admin fee recipient
    uint128 delta; // the delta of the pool, see bonding curve documentation
    uint128 basePrice; // the base price of the pool, see bonding curve documentation
    uint256[] nftIdList; // the token IDs of NFTs to deposit into the pool
    uint256 initialTokenBalance; // the number of ERC20 tokens to transfer to the pool
    bytes templateInitData; // initial data to pass to the pool contract in its initializer
    bytes referrer; // the address of the referrer
}

/**
 * @notice A struct for containing Pool Manager template data.
 *  
 * @dev **templateIndex** Which DittoSwap template to use. If templateIndex is set to a value 
 *   larger than the number of templates, no pool manager is created
 * @dev **templateInitData** initial data to pass to the poolManager contract in its initializer.
 */
struct PoolManagerTemplate {
    uint256 templateIndex;
    bytes templateInitData;
}

/**
 * @notice A struct for containing Permitter template data.
 * @dev **templateIndex** Which DittoSwap template to use. If templateIndex is set to a value 
 *   larger than the number of templates, no permitter is created.
 * @dev **templateInitData** initial data to pass to the permitter contract in its initializer.
 * @dev **liquidityDepositPermissionData** Deposit data to pass in an all-in-one step to create a pool and deposit liquidity at the same time
 */
struct PermitterTemplate {
    uint256 templateIndex;
    bytes templateInitData;
    bytes liquidityDepositPermissionData;
}

File 26 of 87 : LpIdToTokenBalance.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

/**
 * @notice Tuple struct to encapsulate a LP Position NFT token Id and the amount of ERC20 tokens it owns in the pool
 * @dev **lpId** the LP Position NFT token Id of a liquidity provider
 * @dev **tokenBalance** the amount of ERC20 tokens the liquidity provider has in the pool attributed to them
 */
struct LpIdToTokenBalance {
    uint256 lpId;
    uint256 tokenBalance;
}

File 27 of 87 : IPermitter.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

/**
 * @title IPermitter
 * @notice Interface for the Permitter contracts. They are used to check whether a set of tokenIds
 *   are are allowed in a pool.
 */
interface IPermitter {
    /**
     * @notice Initializes the permitter contract with initial state.
     * @param data_ Any data necessary for initializing the permitter implementation.
     */
    function initialize(bytes memory data_) external returns (bytes memory);

    /**
     * @notice Returns whether or not the contract has been initialized.
     * @return initialized Whether or not the contract has been initialized.
     */
    function initialized() external view returns (bool);

    /**
     * @notice Checks that the provided permission data are valid for the provided tokenIds.
     * @param tokenIds_ The token ids to check.
     * @param permitterData_ data used by the permitter to perform checking.
     * @return permitted Whether or not the tokenIds are permitted to be added to the pool.
     */
    function checkPermitterData(uint256[] calldata tokenIds_, bytes memory permitterData_)
        external
        view
        returns (bool permitted);
}

File 28 of 87 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.19;

import "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 29 of 87 : IOwnerTwoStep.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

/**
 * @title IOwnerTwoStep
 * @notice Interface for the OwnerTwoStep contract
 */
interface IOwnerTwoStep {

    // ***************************************************************
    // * =================== USER INTERFACE ======================== *
    // ***************************************************************

    /**
     * @notice Starts the ownership transfer of the contract to a new account. Replaces the 
     *   pending transfer if there is one. 
     * @dev Can only be called by the current owner.
     * @param newOwner_ The address of the new owner
     */
    function transferOwnership(address newOwner_) external;

    /**
     * @notice Completes the transfer process to a new owner.
     * @dev only callable by the pending owner that is accepting the new ownership.
     */
    function acceptOwnership() external;

    /**
     * @notice Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     */
    function renounceOwnership() external;

    // ***************************************************************
    // * =================== VIEW FUNCTIONS ======================== *
    // ***************************************************************

    /**
     * @notice Getter function to find out the current owner address
     * @return owner The current owner address
     */
    function owner() external view returns (address);

    /**
     * @notice Getter function to find out the pending owner address
     * @dev The pending address is 0 when there is no transfer of owner in progress
     * @return pendingOwner The pending owner address, if any
     */
    function pendingOwner() external view returns (address);
}

File 30 of 87 : IDittoRouter.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import {
    Swap,
    NftInSwap,
    RobustSwap,
    RobustNftInSwap,
    ComplexSwap,
    RobustComplexSwap
} from "../struct/RouterStructs.sol";
import { IERC721 } from "../../lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";
import { ERC20 } from "../../lib/solmate/src/tokens/ERC20.sol";

/**
 * @title Ditto Swap Router Interface
 * @notice Performs swaps between Nfts and ERC20 tokens, across multiple pools, or more complicated multi-swap paths
 * @dev All swaps assume that a single ERC20 token is used for all the pools involved.
 * Swapping using multiple tokens in the same transaction is possible, but the slippage checks and the return values
 * will be meaningless, and may lead to undefined behavior.
 * @dev UX: The sender should grant infinite token approvals to the router in order for Nft-to-Nft swaps to work smoothly.
 * @dev This router has a notion of robust, and non-robust swaps. "Robust" versions of a swap will never revert due to
 * slippage. Instead, users specify a per-swap max cost. If the price changes more than the user specifies, no swap is
 * attempted. This allows users to specify a batch of swaps, and execute as many of them as possible.
 * On non-robust swaps, if any slippage check per trade fails in the chain, the entire transaction reverts.
 */
interface IDittoRouter {
    // ***************************************************************
    // * ============ TRADING ERC20 TOKENS FOR STUFF =============== *
    // ***************************************************************

    /**
     * @notice Swaps ERC20 tokens into specific Nfts using multiple pools.
     * @param swapList The list of pools to trade with and the IDs of the Nfts to buy from each.
     * @param inputAmount The amount of ERC20 tokens to add to the ERC20-to-Nft swaps
     * @param nftRecipient The address that will receive the Nft output
     * @param deadline The Unix timestamp (in seconds) at/after which the swap will revert
     * @return remainingValue The unspent token amount
     */
    function swapTokensForNfts(
        Swap[] calldata swapList,
        uint256 inputAmount,
        address nftRecipient,
        uint256 deadline
    ) external returns (uint256 remainingValue);

    /**
     * @notice Swaps as many ERC20 tokens for specific Nfts as possible, respecting the per-swap max cost.
     * @param swapList The list of pools to trade with and the IDs of the Nfts to buy from each.
     * @param inputAmount The amount of ERC20 tokens to add to the ERC20-to-Nft swaps
     *
     * @param nftRecipient The address that will receive the Nft output
     * @param deadline The Unix timestamp (in seconds) at/after which the swap will revert
     * @return remainingValue The unspent token amount
     */
    function robustSwapTokensForNfts(
        RobustSwap[] calldata swapList,
        uint256 inputAmount,
        address nftRecipient,
        uint256 deadline
    ) external returns (uint256 remainingValue);

    /**
     * @notice Buys Nfts with ERC20, and sells them for tokens in one transaction
     * @param params All the parameters for the swap (packed in struct to avoid stack too deep), containing:
     * - ethToNftSwapList The list of Nfts to buy
     * - nftToTokenSwapList The list of Nfts to sell
     * - inputAmount The max amount of tokens to send (if ERC20)
     * - tokenRecipient The address that receives tokens from the Nfts sold
     * - nftRecipient The address that receives Nfts
     * - deadline UNIX timestamp deadline for the swap
     */
    function robustSwapTokensForNftsAndNftsForTokens(RobustComplexSwap calldata params)
        external
        returns (uint256 remainingValue, uint256 outputAmount);

    // ***************************************************************
    // * ================= TRADING NFTs FOR STUFF ================== *
    // ***************************************************************

    /**
     * @notice Swaps Nfts into ETH/ERC20 using multiple pools.
     * @param swapList The list of pools to trade with and the IDs of the Nfts to sell to each.
     * @param minOutput The minimum acceptable total tokens received
     * @param tokenRecipient The address that will receive the token output
     * @param deadline The Unix timestamp (in seconds) at/after which the swap will revert
     * @return outputAmount The total tokens received
     */
    function swapNftsForTokens(
        NftInSwap[] calldata swapList,
        uint256 minOutput,
        address tokenRecipient,
        uint256 deadline
    ) external returns (uint256 outputAmount);

    /**
     * @notice Swaps as many Nfts for tokens as possible, respecting the per-swap min output
     * @param swapList The list of pools to trade with and the IDs of the Nfts to sell to each.
     * @param tokenRecipient The address that will receive the token output
     * @param deadline The Unix timestamp (in seconds) at/after which the swap will revert
     * @return outputAmount The total ETH/ERC20 received
     */
    function robustSwapNftsForTokens(
        RobustNftInSwap[] calldata swapList,
        address tokenRecipient,
        uint256 deadline
    ) external returns (uint256 outputAmount);

    /**
     * @notice Swaps one set of Nfts into another set of specific Nfts using multiple pools, using
     * an ERC20 token as the intermediary.
     * @param trade The struct containing all Nft-to-ERC20 swaps and ERC20-to-Nft swaps.
     * @param inputAmount The amount of ERC20 tokens to add to the ERC20-to-Nft swaps
     * @param minOutput The minimum acceptable total excess tokens received
     * @param nftRecipient The address that will receive the Nft output
     * @param deadline The Unix timestamp (in seconds) at/after which the swap will revert
     * @return outputAmount The total ERC20 tokens received
     */
    function swapNftsForSpecificNftsThroughTokens(
        ComplexSwap calldata trade,
        uint256 inputAmount,
        uint256 minOutput,
        address nftRecipient,
        uint256 deadline
    ) external returns (uint256 outputAmount);

    // ***************************************************************
    // * ================= RESTRICTED FUNCTIONS ==================== *
    // ***************************************************************

    /**
     * @notice Allows pool contracts to transfer ERC20 tokens directly from
     * the sender, in order to minimize the number of token transfers.
     * @dev Only callable by valid IDittoPools.
     * @param token The ERC20 token to transfer
     * @param from The address to transfer tokens from
     * @param to The address to transfer tokens to
     * @param amount The amount of tokens to transfer
     */
    function poolTransferErc20From(
        ERC20 token,
        address from,
        address to,
        uint256 amount
    ) external;

    /**
     * @notice Allows pool contracts to transfer ERC721 NFTs directly from
     * the sender, in order to minimize the number of token transfers.
     * @dev Only callable by valid IDittoPools.
     * @param nft The ERC721 NFT to transfer
     * @param from The address to transfer tokens from
     * @param to The address to transfer tokens to
     * @param id The ID of the NFT to transfer
     */
    function poolTransferNftFrom(IERC721 nft, address from, address to, uint256 id) external;
}

File 31 of 87 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.19;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 32 of 87 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.19;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 33 of 87 : ConsiderationEnums.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

// prettier-ignore
enum OrderType {
    // 0: no partial fills, anyone can execute
    FULL_OPEN,

    // 1: partial fills supported, anyone can execute
    PARTIAL_OPEN,

    // 2: no partial fills, only offerer or zone can execute
    FULL_RESTRICTED,

    // 3: partial fills supported, only offerer or zone can execute
    PARTIAL_RESTRICTED,

    // 4: contract order type
    CONTRACT
}

// prettier-ignore
enum BasicOrderType {
    // 0: no partial fills, anyone can execute
    ETH_TO_ERC721_FULL_OPEN,

    // 1: partial fills supported, anyone can execute
    ETH_TO_ERC721_PARTIAL_OPEN,

    // 2: no partial fills, only offerer or zone can execute
    ETH_TO_ERC721_FULL_RESTRICTED,

    // 3: partial fills supported, only offerer or zone can execute
    ETH_TO_ERC721_PARTIAL_RESTRICTED,

    // 4: no partial fills, anyone can execute
    ETH_TO_ERC1155_FULL_OPEN,

    // 5: partial fills supported, anyone can execute
    ETH_TO_ERC1155_PARTIAL_OPEN,

    // 6: no partial fills, only offerer or zone can execute
    ETH_TO_ERC1155_FULL_RESTRICTED,

    // 7: partial fills supported, only offerer or zone can execute
    ETH_TO_ERC1155_PARTIAL_RESTRICTED,

    // 8: no partial fills, anyone can execute
    ERC20_TO_ERC721_FULL_OPEN,

    // 9: partial fills supported, anyone can execute
    ERC20_TO_ERC721_PARTIAL_OPEN,

    // 10: no partial fills, only offerer or zone can execute
    ERC20_TO_ERC721_FULL_RESTRICTED,

    // 11: partial fills supported, only offerer or zone can execute
    ERC20_TO_ERC721_PARTIAL_RESTRICTED,

    // 12: no partial fills, anyone can execute
    ERC20_TO_ERC1155_FULL_OPEN,

    // 13: partial fills supported, anyone can execute
    ERC20_TO_ERC1155_PARTIAL_OPEN,

    // 14: no partial fills, only offerer or zone can execute
    ERC20_TO_ERC1155_FULL_RESTRICTED,

    // 15: partial fills supported, only offerer or zone can execute
    ERC20_TO_ERC1155_PARTIAL_RESTRICTED,

    // 16: no partial fills, anyone can execute
    ERC721_TO_ERC20_FULL_OPEN,

    // 17: partial fills supported, anyone can execute
    ERC721_TO_ERC20_PARTIAL_OPEN,

    // 18: no partial fills, only offerer or zone can execute
    ERC721_TO_ERC20_FULL_RESTRICTED,

    // 19: partial fills supported, only offerer or zone can execute
    ERC721_TO_ERC20_PARTIAL_RESTRICTED,

    // 20: no partial fills, anyone can execute
    ERC1155_TO_ERC20_FULL_OPEN,

    // 21: partial fills supported, anyone can execute
    ERC1155_TO_ERC20_PARTIAL_OPEN,

    // 22: no partial fills, only offerer or zone can execute
    ERC1155_TO_ERC20_FULL_RESTRICTED,

    // 23: partial fills supported, only offerer or zone can execute
    ERC1155_TO_ERC20_PARTIAL_RESTRICTED
}

// prettier-ignore
enum BasicOrderRouteType {
    // 0: provide Ether (or other native token) to receive offered ERC721 item.
    ETH_TO_ERC721,

    // 1: provide Ether (or other native token) to receive offered ERC1155 item.
    ETH_TO_ERC1155,

    // 2: provide ERC20 item to receive offered ERC721 item.
    ERC20_TO_ERC721,

    // 3: provide ERC20 item to receive offered ERC1155 item.
    ERC20_TO_ERC1155,

    // 4: provide ERC721 item to receive offered ERC20 item.
    ERC721_TO_ERC20,

    // 5: provide ERC1155 item to receive offered ERC20 item.
    ERC1155_TO_ERC20
}

// prettier-ignore
enum ItemType {
    // 0: ETH on mainnet, MATIC on polygon, etc.
    NATIVE,

    // 1: ERC20 items (ERC777 and ERC20 analogues could also technically work)
    ERC20,

    // 2: ERC721 items
    ERC721,

    // 3: ERC1155 items
    ERC1155,

    // 4: ERC721 items where a number of tokenIds are supported
    ERC721_WITH_CRITERIA,

    // 5: ERC1155 items where a number of ids are supported
    ERC1155_WITH_CRITERIA
}

// prettier-ignore
enum Side {
    // 0: Items that can be spent
    OFFER,

    // 1: Items that must be received
    CONSIDERATION
}

File 34 of 87 : PointerLibraries.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

type CalldataPointer is uint256;

type ReturndataPointer is uint256;

type MemoryPointer is uint256;

using CalldataPointerLib for CalldataPointer global;
using MemoryPointerLib for MemoryPointer global;
using ReturndataPointerLib for ReturndataPointer global;

using CalldataReaders for CalldataPointer global;
using ReturndataReaders for ReturndataPointer global;
using MemoryReaders for MemoryPointer global;
using MemoryWriters for MemoryPointer global;

CalldataPointer constant CalldataStart = CalldataPointer.wrap(0x04);
MemoryPointer constant FreeMemoryPPtr = MemoryPointer.wrap(0x40);
uint256 constant IdentityPrecompileAddress = 4;
uint256 constant OffsetOrLengthMask = 0xffffffff;

/// @dev Allocates `size` bytes in memory by increasing the free memory pointer
///    and returns the memory pointer to the first byte of the allocated region.
// (Free functions cannot have visibility.)
// solhint-disable-next-line func-visibility
function malloc(uint256 size) pure returns (MemoryPointer mPtr) {
    assembly {
        mPtr := mload(0x40)
        mstore(0x40, add(mPtr, size))
    }
}

// (Free functions cannot have visibility.)
// solhint-disable-next-line func-visibility
function getFreeMemoryPointer() pure returns (MemoryPointer mPtr) {
    mPtr = FreeMemoryPPtr.readMemoryPointer();
}

// (Free functions cannot have visibility.)
// solhint-disable-next-line func-visibility
function setFreeMemoryPointer(MemoryPointer mPtr) pure {
    FreeMemoryPPtr.write(mPtr);
}

library CalldataPointerLib {
    function lt(
        CalldataPointer a,
        CalldataPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := lt(a, b)
        }
    }

    function gt(
        CalldataPointer a,
        CalldataPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := gt(a, b)
        }
    }

    function eq(
        CalldataPointer a,
        CalldataPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := eq(a, b)
        }
    }

    /// @dev Resolves an offset stored at `cdPtr + headOffset` to a calldata.
    ///      pointer `cdPtr` must point to some parent object with a dynamic
    ///      type's head stored at `cdPtr + headOffset`.
    function pptr(
        CalldataPointer cdPtr,
        uint256 headOffset
    ) internal pure returns (CalldataPointer cdPtrChild) {
        cdPtrChild = cdPtr.offset(
            cdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask
        );
    }

    /// @dev Resolves an offset stored at `cdPtr` to a calldata pointer.
    ///      `cdPtr` must point to some parent object with a dynamic type as its
    ///      first member, e.g. `struct { bytes data; }`
    function pptr(
        CalldataPointer cdPtr
    ) internal pure returns (CalldataPointer cdPtrChild) {
        cdPtrChild = cdPtr.offset(cdPtr.readUint256() & OffsetOrLengthMask);
    }

    /// @dev Returns the calldata pointer one word after `cdPtr`.
    function next(
        CalldataPointer cdPtr
    ) internal pure returns (CalldataPointer cdPtrNext) {
        assembly {
            cdPtrNext := add(cdPtr, 32)
        }
    }

    /// @dev Returns the calldata pointer `_offset` bytes after `cdPtr`.
    function offset(
        CalldataPointer cdPtr,
        uint256 _offset
    ) internal pure returns (CalldataPointer cdPtrNext) {
        assembly {
            cdPtrNext := add(cdPtr, _offset)
        }
    }

    /// @dev Copies `size` bytes from calldata starting at `src` to memory at
    ///      `dst`.
    function copy(
        CalldataPointer src,
        MemoryPointer dst,
        uint256 size
    ) internal pure {
        assembly {
            calldatacopy(dst, src, size)
        }
    }
}

library ReturndataPointerLib {
    function lt(
        ReturndataPointer a,
        ReturndataPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := lt(a, b)
        }
    }

    function gt(
        ReturndataPointer a,
        ReturndataPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := gt(a, b)
        }
    }

    function eq(
        ReturndataPointer a,
        ReturndataPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := eq(a, b)
        }
    }

    /// @dev Resolves an offset stored at `rdPtr + headOffset` to a returndata
    ///      pointer. `rdPtr` must point to some parent object with a dynamic
    ///      type's head stored at `rdPtr + headOffset`.
    function pptr(
        ReturndataPointer rdPtr,
        uint256 headOffset
    ) internal pure returns (ReturndataPointer rdPtrChild) {
        rdPtrChild = rdPtr.offset(
            rdPtr.offset(headOffset).readUint256() & OffsetOrLengthMask
        );
    }

    /// @dev Resolves an offset stored at `rdPtr` to a returndata pointer.
    ///    `rdPtr` must point to some parent object with a dynamic type as its
    ///    first member, e.g. `struct { bytes data; }`
    function pptr(
        ReturndataPointer rdPtr
    ) internal pure returns (ReturndataPointer rdPtrChild) {
        rdPtrChild = rdPtr.offset(rdPtr.readUint256() & OffsetOrLengthMask);
    }

    /// @dev Returns the returndata pointer one word after `cdPtr`.
    function next(
        ReturndataPointer rdPtr
    ) internal pure returns (ReturndataPointer rdPtrNext) {
        assembly {
            rdPtrNext := add(rdPtr, 32)
        }
    }

    /// @dev Returns the returndata pointer `_offset` bytes after `cdPtr`.
    function offset(
        ReturndataPointer rdPtr,
        uint256 _offset
    ) internal pure returns (ReturndataPointer rdPtrNext) {
        assembly {
            rdPtrNext := add(rdPtr, _offset)
        }
    }

    /// @dev Copies `size` bytes from returndata starting at `src` to memory at
    /// `dst`.
    function copy(
        ReturndataPointer src,
        MemoryPointer dst,
        uint256 size
    ) internal pure {
        assembly {
            returndatacopy(dst, src, size)
        }
    }
}

library MemoryPointerLib {
    function copy(
        MemoryPointer src,
        MemoryPointer dst,
        uint256 size
    ) internal view {
        assembly {
            let success := staticcall(
                gas(),
                IdentityPrecompileAddress,
                src,
                size,
                dst,
                size
            )
            if or(iszero(success), iszero(returndatasize())) {
                revert(0, 0)
            }
        }
    }

    function lt(
        MemoryPointer a,
        MemoryPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := lt(a, b)
        }
    }

    function gt(
        MemoryPointer a,
        MemoryPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := gt(a, b)
        }
    }

    function eq(
        MemoryPointer a,
        MemoryPointer b
    ) internal pure returns (bool c) {
        assembly {
            c := eq(a, b)
        }
    }

    /// @dev Returns the memory pointer one word after `mPtr`.
    function next(
        MemoryPointer mPtr
    ) internal pure returns (MemoryPointer mPtrNext) {
        assembly {
            mPtrNext := add(mPtr, 32)
        }
    }

    /// @dev Returns the memory pointer `_offset` bytes after `mPtr`.
    function offset(
        MemoryPointer mPtr,
        uint256 _offset
    ) internal pure returns (MemoryPointer mPtrNext) {
        assembly {
            mPtrNext := add(mPtr, _offset)
        }
    }

    /// @dev Resolves a pointer pointer at `mPtr + headOffset` to a memory
    ///    pointer. `mPtr` must point to some parent object with a dynamic
    ///    type's pointer stored at `mPtr + headOffset`.
    function pptr(
        MemoryPointer mPtr,
        uint256 headOffset
    ) internal pure returns (MemoryPointer mPtrChild) {
        mPtrChild = mPtr.offset(headOffset).readMemoryPointer();
    }

    /// @dev Resolves a pointer pointer stored at `mPtr` to a memory pointer.
    ///    `mPtr` must point to some parent object with a dynamic type as its
    ///    first member, e.g. `struct { bytes data; }`
    function pptr(
        MemoryPointer mPtr
    ) internal pure returns (MemoryPointer mPtrChild) {
        mPtrChild = mPtr.readMemoryPointer();
    }
}

library CalldataReaders {
    /// @dev Reads the value at `cdPtr` and applies a mask to return only the
    ///    last 4 bytes.
    function readMaskedUint256(
        CalldataPointer cdPtr
    ) internal pure returns (uint256 value) {
        value = cdPtr.readUint256() & OffsetOrLengthMask;
    }

    /// @dev Reads the bool at `cdPtr` in calldata.
    function readBool(
        CalldataPointer cdPtr
    ) internal pure returns (bool value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the address at `cdPtr` in calldata.
    function readAddress(
        CalldataPointer cdPtr
    ) internal pure returns (address value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes1 at `cdPtr` in calldata.
    function readBytes1(
        CalldataPointer cdPtr
    ) internal pure returns (bytes1 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes2 at `cdPtr` in calldata.
    function readBytes2(
        CalldataPointer cdPtr
    ) internal pure returns (bytes2 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes3 at `cdPtr` in calldata.
    function readBytes3(
        CalldataPointer cdPtr
    ) internal pure returns (bytes3 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes4 at `cdPtr` in calldata.
    function readBytes4(
        CalldataPointer cdPtr
    ) internal pure returns (bytes4 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes5 at `cdPtr` in calldata.
    function readBytes5(
        CalldataPointer cdPtr
    ) internal pure returns (bytes5 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes6 at `cdPtr` in calldata.
    function readBytes6(
        CalldataPointer cdPtr
    ) internal pure returns (bytes6 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes7 at `cdPtr` in calldata.
    function readBytes7(
        CalldataPointer cdPtr
    ) internal pure returns (bytes7 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes8 at `cdPtr` in calldata.
    function readBytes8(
        CalldataPointer cdPtr
    ) internal pure returns (bytes8 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes9 at `cdPtr` in calldata.
    function readBytes9(
        CalldataPointer cdPtr
    ) internal pure returns (bytes9 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes10 at `cdPtr` in calldata.
    function readBytes10(
        CalldataPointer cdPtr
    ) internal pure returns (bytes10 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes11 at `cdPtr` in calldata.
    function readBytes11(
        CalldataPointer cdPtr
    ) internal pure returns (bytes11 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes12 at `cdPtr` in calldata.
    function readBytes12(
        CalldataPointer cdPtr
    ) internal pure returns (bytes12 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes13 at `cdPtr` in calldata.
    function readBytes13(
        CalldataPointer cdPtr
    ) internal pure returns (bytes13 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes14 at `cdPtr` in calldata.
    function readBytes14(
        CalldataPointer cdPtr
    ) internal pure returns (bytes14 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes15 at `cdPtr` in calldata.
    function readBytes15(
        CalldataPointer cdPtr
    ) internal pure returns (bytes15 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes16 at `cdPtr` in calldata.
    function readBytes16(
        CalldataPointer cdPtr
    ) internal pure returns (bytes16 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes17 at `cdPtr` in calldata.
    function readBytes17(
        CalldataPointer cdPtr
    ) internal pure returns (bytes17 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes18 at `cdPtr` in calldata.
    function readBytes18(
        CalldataPointer cdPtr
    ) internal pure returns (bytes18 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes19 at `cdPtr` in calldata.
    function readBytes19(
        CalldataPointer cdPtr
    ) internal pure returns (bytes19 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes20 at `cdPtr` in calldata.
    function readBytes20(
        CalldataPointer cdPtr
    ) internal pure returns (bytes20 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes21 at `cdPtr` in calldata.
    function readBytes21(
        CalldataPointer cdPtr
    ) internal pure returns (bytes21 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes22 at `cdPtr` in calldata.
    function readBytes22(
        CalldataPointer cdPtr
    ) internal pure returns (bytes22 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes23 at `cdPtr` in calldata.
    function readBytes23(
        CalldataPointer cdPtr
    ) internal pure returns (bytes23 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes24 at `cdPtr` in calldata.
    function readBytes24(
        CalldataPointer cdPtr
    ) internal pure returns (bytes24 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes25 at `cdPtr` in calldata.
    function readBytes25(
        CalldataPointer cdPtr
    ) internal pure returns (bytes25 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes26 at `cdPtr` in calldata.
    function readBytes26(
        CalldataPointer cdPtr
    ) internal pure returns (bytes26 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes27 at `cdPtr` in calldata.
    function readBytes27(
        CalldataPointer cdPtr
    ) internal pure returns (bytes27 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes28 at `cdPtr` in calldata.
    function readBytes28(
        CalldataPointer cdPtr
    ) internal pure returns (bytes28 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes29 at `cdPtr` in calldata.
    function readBytes29(
        CalldataPointer cdPtr
    ) internal pure returns (bytes29 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes30 at `cdPtr` in calldata.
    function readBytes30(
        CalldataPointer cdPtr
    ) internal pure returns (bytes30 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes31 at `cdPtr` in calldata.
    function readBytes31(
        CalldataPointer cdPtr
    ) internal pure returns (bytes31 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the bytes32 at `cdPtr` in calldata.
    function readBytes32(
        CalldataPointer cdPtr
    ) internal pure returns (bytes32 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint8 at `cdPtr` in calldata.
    function readUint8(
        CalldataPointer cdPtr
    ) internal pure returns (uint8 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint16 at `cdPtr` in calldata.
    function readUint16(
        CalldataPointer cdPtr
    ) internal pure returns (uint16 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint24 at `cdPtr` in calldata.
    function readUint24(
        CalldataPointer cdPtr
    ) internal pure returns (uint24 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint32 at `cdPtr` in calldata.
    function readUint32(
        CalldataPointer cdPtr
    ) internal pure returns (uint32 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint40 at `cdPtr` in calldata.
    function readUint40(
        CalldataPointer cdPtr
    ) internal pure returns (uint40 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint48 at `cdPtr` in calldata.
    function readUint48(
        CalldataPointer cdPtr
    ) internal pure returns (uint48 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint56 at `cdPtr` in calldata.
    function readUint56(
        CalldataPointer cdPtr
    ) internal pure returns (uint56 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint64 at `cdPtr` in calldata.
    function readUint64(
        CalldataPointer cdPtr
    ) internal pure returns (uint64 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint72 at `cdPtr` in calldata.
    function readUint72(
        CalldataPointer cdPtr
    ) internal pure returns (uint72 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint80 at `cdPtr` in calldata.
    function readUint80(
        CalldataPointer cdPtr
    ) internal pure returns (uint80 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint88 at `cdPtr` in calldata.
    function readUint88(
        CalldataPointer cdPtr
    ) internal pure returns (uint88 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint96 at `cdPtr` in calldata.
    function readUint96(
        CalldataPointer cdPtr
    ) internal pure returns (uint96 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint104 at `cdPtr` in calldata.
    function readUint104(
        CalldataPointer cdPtr
    ) internal pure returns (uint104 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint112 at `cdPtr` in calldata.
    function readUint112(
        CalldataPointer cdPtr
    ) internal pure returns (uint112 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint120 at `cdPtr` in calldata.
    function readUint120(
        CalldataPointer cdPtr
    ) internal pure returns (uint120 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint128 at `cdPtr` in calldata.
    function readUint128(
        CalldataPointer cdPtr
    ) internal pure returns (uint128 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint136 at `cdPtr` in calldata.
    function readUint136(
        CalldataPointer cdPtr
    ) internal pure returns (uint136 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint144 at `cdPtr` in calldata.
    function readUint144(
        CalldataPointer cdPtr
    ) internal pure returns (uint144 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint152 at `cdPtr` in calldata.
    function readUint152(
        CalldataPointer cdPtr
    ) internal pure returns (uint152 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint160 at `cdPtr` in calldata.
    function readUint160(
        CalldataPointer cdPtr
    ) internal pure returns (uint160 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint168 at `cdPtr` in calldata.
    function readUint168(
        CalldataPointer cdPtr
    ) internal pure returns (uint168 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint176 at `cdPtr` in calldata.
    function readUint176(
        CalldataPointer cdPtr
    ) internal pure returns (uint176 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint184 at `cdPtr` in calldata.
    function readUint184(
        CalldataPointer cdPtr
    ) internal pure returns (uint184 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint192 at `cdPtr` in calldata.
    function readUint192(
        CalldataPointer cdPtr
    ) internal pure returns (uint192 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint200 at `cdPtr` in calldata.
    function readUint200(
        CalldataPointer cdPtr
    ) internal pure returns (uint200 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint208 at `cdPtr` in calldata.
    function readUint208(
        CalldataPointer cdPtr
    ) internal pure returns (uint208 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint216 at `cdPtr` in calldata.
    function readUint216(
        CalldataPointer cdPtr
    ) internal pure returns (uint216 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint224 at `cdPtr` in calldata.
    function readUint224(
        CalldataPointer cdPtr
    ) internal pure returns (uint224 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint232 at `cdPtr` in calldata.
    function readUint232(
        CalldataPointer cdPtr
    ) internal pure returns (uint232 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint240 at `cdPtr` in calldata.
    function readUint240(
        CalldataPointer cdPtr
    ) internal pure returns (uint240 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint248 at `cdPtr` in calldata.
    function readUint248(
        CalldataPointer cdPtr
    ) internal pure returns (uint248 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the uint256 at `cdPtr` in calldata.
    function readUint256(
        CalldataPointer cdPtr
    ) internal pure returns (uint256 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int8 at `cdPtr` in calldata.
    function readInt8(
        CalldataPointer cdPtr
    ) internal pure returns (int8 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int16 at `cdPtr` in calldata.
    function readInt16(
        CalldataPointer cdPtr
    ) internal pure returns (int16 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int24 at `cdPtr` in calldata.
    function readInt24(
        CalldataPointer cdPtr
    ) internal pure returns (int24 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int32 at `cdPtr` in calldata.
    function readInt32(
        CalldataPointer cdPtr
    ) internal pure returns (int32 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int40 at `cdPtr` in calldata.
    function readInt40(
        CalldataPointer cdPtr
    ) internal pure returns (int40 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int48 at `cdPtr` in calldata.
    function readInt48(
        CalldataPointer cdPtr
    ) internal pure returns (int48 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int56 at `cdPtr` in calldata.
    function readInt56(
        CalldataPointer cdPtr
    ) internal pure returns (int56 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int64 at `cdPtr` in calldata.
    function readInt64(
        CalldataPointer cdPtr
    ) internal pure returns (int64 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int72 at `cdPtr` in calldata.
    function readInt72(
        CalldataPointer cdPtr
    ) internal pure returns (int72 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int80 at `cdPtr` in calldata.
    function readInt80(
        CalldataPointer cdPtr
    ) internal pure returns (int80 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int88 at `cdPtr` in calldata.
    function readInt88(
        CalldataPointer cdPtr
    ) internal pure returns (int88 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int96 at `cdPtr` in calldata.
    function readInt96(
        CalldataPointer cdPtr
    ) internal pure returns (int96 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int104 at `cdPtr` in calldata.
    function readInt104(
        CalldataPointer cdPtr
    ) internal pure returns (int104 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int112 at `cdPtr` in calldata.
    function readInt112(
        CalldataPointer cdPtr
    ) internal pure returns (int112 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int120 at `cdPtr` in calldata.
    function readInt120(
        CalldataPointer cdPtr
    ) internal pure returns (int120 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int128 at `cdPtr` in calldata.
    function readInt128(
        CalldataPointer cdPtr
    ) internal pure returns (int128 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int136 at `cdPtr` in calldata.
    function readInt136(
        CalldataPointer cdPtr
    ) internal pure returns (int136 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int144 at `cdPtr` in calldata.
    function readInt144(
        CalldataPointer cdPtr
    ) internal pure returns (int144 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int152 at `cdPtr` in calldata.
    function readInt152(
        CalldataPointer cdPtr
    ) internal pure returns (int152 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int160 at `cdPtr` in calldata.
    function readInt160(
        CalldataPointer cdPtr
    ) internal pure returns (int160 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int168 at `cdPtr` in calldata.
    function readInt168(
        CalldataPointer cdPtr
    ) internal pure returns (int168 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int176 at `cdPtr` in calldata.
    function readInt176(
        CalldataPointer cdPtr
    ) internal pure returns (int176 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int184 at `cdPtr` in calldata.
    function readInt184(
        CalldataPointer cdPtr
    ) internal pure returns (int184 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int192 at `cdPtr` in calldata.
    function readInt192(
        CalldataPointer cdPtr
    ) internal pure returns (int192 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int200 at `cdPtr` in calldata.
    function readInt200(
        CalldataPointer cdPtr
    ) internal pure returns (int200 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int208 at `cdPtr` in calldata.
    function readInt208(
        CalldataPointer cdPtr
    ) internal pure returns (int208 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int216 at `cdPtr` in calldata.
    function readInt216(
        CalldataPointer cdPtr
    ) internal pure returns (int216 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int224 at `cdPtr` in calldata.
    function readInt224(
        CalldataPointer cdPtr
    ) internal pure returns (int224 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int232 at `cdPtr` in calldata.
    function readInt232(
        CalldataPointer cdPtr
    ) internal pure returns (int232 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int240 at `cdPtr` in calldata.
    function readInt240(
        CalldataPointer cdPtr
    ) internal pure returns (int240 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int248 at `cdPtr` in calldata.
    function readInt248(
        CalldataPointer cdPtr
    ) internal pure returns (int248 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }

    /// @dev Reads the int256 at `cdPtr` in calldata.
    function readInt256(
        CalldataPointer cdPtr
    ) internal pure returns (int256 value) {
        assembly {
            value := calldataload(cdPtr)
        }
    }
}

library ReturndataReaders {
    /// @dev Reads value at `rdPtr` & applies a mask to return only last 4 bytes
    function readMaskedUint256(
        ReturndataPointer rdPtr
    ) internal pure returns (uint256 value) {
        value = rdPtr.readUint256() & OffsetOrLengthMask;
    }

    /// @dev Reads the bool at `rdPtr` in returndata.
    function readBool(
        ReturndataPointer rdPtr
    ) internal pure returns (bool value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the address at `rdPtr` in returndata.
    function readAddress(
        ReturndataPointer rdPtr
    ) internal pure returns (address value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes1 at `rdPtr` in returndata.
    function readBytes1(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes1 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes2 at `rdPtr` in returndata.
    function readBytes2(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes2 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes3 at `rdPtr` in returndata.
    function readBytes3(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes3 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes4 at `rdPtr` in returndata.
    function readBytes4(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes4 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes5 at `rdPtr` in returndata.
    function readBytes5(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes5 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes6 at `rdPtr` in returndata.
    function readBytes6(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes6 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes7 at `rdPtr` in returndata.
    function readBytes7(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes7 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes8 at `rdPtr` in returndata.
    function readBytes8(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes8 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes9 at `rdPtr` in returndata.
    function readBytes9(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes9 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes10 at `rdPtr` in returndata.
    function readBytes10(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes10 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes11 at `rdPtr` in returndata.
    function readBytes11(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes11 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes12 at `rdPtr` in returndata.
    function readBytes12(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes12 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes13 at `rdPtr` in returndata.
    function readBytes13(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes13 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes14 at `rdPtr` in returndata.
    function readBytes14(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes14 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes15 at `rdPtr` in returndata.
    function readBytes15(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes15 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes16 at `rdPtr` in returndata.
    function readBytes16(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes16 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes17 at `rdPtr` in returndata.
    function readBytes17(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes17 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes18 at `rdPtr` in returndata.
    function readBytes18(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes18 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes19 at `rdPtr` in returndata.
    function readBytes19(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes19 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes20 at `rdPtr` in returndata.
    function readBytes20(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes20 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes21 at `rdPtr` in returndata.
    function readBytes21(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes21 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes22 at `rdPtr` in returndata.
    function readBytes22(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes22 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes23 at `rdPtr` in returndata.
    function readBytes23(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes23 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes24 at `rdPtr` in returndata.
    function readBytes24(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes24 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes25 at `rdPtr` in returndata.
    function readBytes25(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes25 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes26 at `rdPtr` in returndata.
    function readBytes26(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes26 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes27 at `rdPtr` in returndata.
    function readBytes27(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes27 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes28 at `rdPtr` in returndata.
    function readBytes28(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes28 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes29 at `rdPtr` in returndata.
    function readBytes29(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes29 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes30 at `rdPtr` in returndata.
    function readBytes30(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes30 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes31 at `rdPtr` in returndata.
    function readBytes31(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes31 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the bytes32 at `rdPtr` in returndata.
    function readBytes32(
        ReturndataPointer rdPtr
    ) internal pure returns (bytes32 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint8 at `rdPtr` in returndata.
    function readUint8(
        ReturndataPointer rdPtr
    ) internal pure returns (uint8 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint16 at `rdPtr` in returndata.
    function readUint16(
        ReturndataPointer rdPtr
    ) internal pure returns (uint16 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint24 at `rdPtr` in returndata.
    function readUint24(
        ReturndataPointer rdPtr
    ) internal pure returns (uint24 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint32 at `rdPtr` in returndata.
    function readUint32(
        ReturndataPointer rdPtr
    ) internal pure returns (uint32 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint40 at `rdPtr` in returndata.
    function readUint40(
        ReturndataPointer rdPtr
    ) internal pure returns (uint40 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint48 at `rdPtr` in returndata.
    function readUint48(
        ReturndataPointer rdPtr
    ) internal pure returns (uint48 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint56 at `rdPtr` in returndata.
    function readUint56(
        ReturndataPointer rdPtr
    ) internal pure returns (uint56 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint64 at `rdPtr` in returndata.
    function readUint64(
        ReturndataPointer rdPtr
    ) internal pure returns (uint64 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint72 at `rdPtr` in returndata.
    function readUint72(
        ReturndataPointer rdPtr
    ) internal pure returns (uint72 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint80 at `rdPtr` in returndata.
    function readUint80(
        ReturndataPointer rdPtr
    ) internal pure returns (uint80 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint88 at `rdPtr` in returndata.
    function readUint88(
        ReturndataPointer rdPtr
    ) internal pure returns (uint88 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint96 at `rdPtr` in returndata.
    function readUint96(
        ReturndataPointer rdPtr
    ) internal pure returns (uint96 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint104 at `rdPtr` in returndata.
    function readUint104(
        ReturndataPointer rdPtr
    ) internal pure returns (uint104 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint112 at `rdPtr` in returndata.
    function readUint112(
        ReturndataPointer rdPtr
    ) internal pure returns (uint112 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint120 at `rdPtr` in returndata.
    function readUint120(
        ReturndataPointer rdPtr
    ) internal pure returns (uint120 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint128 at `rdPtr` in returndata.
    function readUint128(
        ReturndataPointer rdPtr
    ) internal pure returns (uint128 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint136 at `rdPtr` in returndata.
    function readUint136(
        ReturndataPointer rdPtr
    ) internal pure returns (uint136 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint144 at `rdPtr` in returndata.
    function readUint144(
        ReturndataPointer rdPtr
    ) internal pure returns (uint144 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint152 at `rdPtr` in returndata.
    function readUint152(
        ReturndataPointer rdPtr
    ) internal pure returns (uint152 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint160 at `rdPtr` in returndata.
    function readUint160(
        ReturndataPointer rdPtr
    ) internal pure returns (uint160 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint168 at `rdPtr` in returndata.
    function readUint168(
        ReturndataPointer rdPtr
    ) internal pure returns (uint168 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint176 at `rdPtr` in returndata.
    function readUint176(
        ReturndataPointer rdPtr
    ) internal pure returns (uint176 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint184 at `rdPtr` in returndata.
    function readUint184(
        ReturndataPointer rdPtr
    ) internal pure returns (uint184 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint192 at `rdPtr` in returndata.
    function readUint192(
        ReturndataPointer rdPtr
    ) internal pure returns (uint192 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint200 at `rdPtr` in returndata.
    function readUint200(
        ReturndataPointer rdPtr
    ) internal pure returns (uint200 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint208 at `rdPtr` in returndata.
    function readUint208(
        ReturndataPointer rdPtr
    ) internal pure returns (uint208 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint216 at `rdPtr` in returndata.
    function readUint216(
        ReturndataPointer rdPtr
    ) internal pure returns (uint216 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint224 at `rdPtr` in returndata.
    function readUint224(
        ReturndataPointer rdPtr
    ) internal pure returns (uint224 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint232 at `rdPtr` in returndata.
    function readUint232(
        ReturndataPointer rdPtr
    ) internal pure returns (uint232 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint240 at `rdPtr` in returndata.
    function readUint240(
        ReturndataPointer rdPtr
    ) internal pure returns (uint240 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint248 at `rdPtr` in returndata.
    function readUint248(
        ReturndataPointer rdPtr
    ) internal pure returns (uint248 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the uint256 at `rdPtr` in returndata.
    function readUint256(
        ReturndataPointer rdPtr
    ) internal pure returns (uint256 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int8 at `rdPtr` in returndata.
    function readInt8(
        ReturndataPointer rdPtr
    ) internal pure returns (int8 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int16 at `rdPtr` in returndata.
    function readInt16(
        ReturndataPointer rdPtr
    ) internal pure returns (int16 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int24 at `rdPtr` in returndata.
    function readInt24(
        ReturndataPointer rdPtr
    ) internal pure returns (int24 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int32 at `rdPtr` in returndata.
    function readInt32(
        ReturndataPointer rdPtr
    ) internal pure returns (int32 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int40 at `rdPtr` in returndata.
    function readInt40(
        ReturndataPointer rdPtr
    ) internal pure returns (int40 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int48 at `rdPtr` in returndata.
    function readInt48(
        ReturndataPointer rdPtr
    ) internal pure returns (int48 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int56 at `rdPtr` in returndata.
    function readInt56(
        ReturndataPointer rdPtr
    ) internal pure returns (int56 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int64 at `rdPtr` in returndata.
    function readInt64(
        ReturndataPointer rdPtr
    ) internal pure returns (int64 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int72 at `rdPtr` in returndata.
    function readInt72(
        ReturndataPointer rdPtr
    ) internal pure returns (int72 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int80 at `rdPtr` in returndata.
    function readInt80(
        ReturndataPointer rdPtr
    ) internal pure returns (int80 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int88 at `rdPtr` in returndata.
    function readInt88(
        ReturndataPointer rdPtr
    ) internal pure returns (int88 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int96 at `rdPtr` in returndata.
    function readInt96(
        ReturndataPointer rdPtr
    ) internal pure returns (int96 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int104 at `rdPtr` in returndata.
    function readInt104(
        ReturndataPointer rdPtr
    ) internal pure returns (int104 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int112 at `rdPtr` in returndata.
    function readInt112(
        ReturndataPointer rdPtr
    ) internal pure returns (int112 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int120 at `rdPtr` in returndata.
    function readInt120(
        ReturndataPointer rdPtr
    ) internal pure returns (int120 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int128 at `rdPtr` in returndata.
    function readInt128(
        ReturndataPointer rdPtr
    ) internal pure returns (int128 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int136 at `rdPtr` in returndata.
    function readInt136(
        ReturndataPointer rdPtr
    ) internal pure returns (int136 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int144 at `rdPtr` in returndata.
    function readInt144(
        ReturndataPointer rdPtr
    ) internal pure returns (int144 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int152 at `rdPtr` in returndata.
    function readInt152(
        ReturndataPointer rdPtr
    ) internal pure returns (int152 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int160 at `rdPtr` in returndata.
    function readInt160(
        ReturndataPointer rdPtr
    ) internal pure returns (int160 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int168 at `rdPtr` in returndata.
    function readInt168(
        ReturndataPointer rdPtr
    ) internal pure returns (int168 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int176 at `rdPtr` in returndata.
    function readInt176(
        ReturndataPointer rdPtr
    ) internal pure returns (int176 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int184 at `rdPtr` in returndata.
    function readInt184(
        ReturndataPointer rdPtr
    ) internal pure returns (int184 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int192 at `rdPtr` in returndata.
    function readInt192(
        ReturndataPointer rdPtr
    ) internal pure returns (int192 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int200 at `rdPtr` in returndata.
    function readInt200(
        ReturndataPointer rdPtr
    ) internal pure returns (int200 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int208 at `rdPtr` in returndata.
    function readInt208(
        ReturndataPointer rdPtr
    ) internal pure returns (int208 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int216 at `rdPtr` in returndata.
    function readInt216(
        ReturndataPointer rdPtr
    ) internal pure returns (int216 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int224 at `rdPtr` in returndata.
    function readInt224(
        ReturndataPointer rdPtr
    ) internal pure returns (int224 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int232 at `rdPtr` in returndata.
    function readInt232(
        ReturndataPointer rdPtr
    ) internal pure returns (int232 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int240 at `rdPtr` in returndata.
    function readInt240(
        ReturndataPointer rdPtr
    ) internal pure returns (int240 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int248 at `rdPtr` in returndata.
    function readInt248(
        ReturndataPointer rdPtr
    ) internal pure returns (int248 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }

    /// @dev Reads the int256 at `rdPtr` in returndata.
    function readInt256(
        ReturndataPointer rdPtr
    ) internal pure returns (int256 value) {
        assembly {
            returndatacopy(0, rdPtr, 0x20)
            value := mload(0)
        }
    }
}

library MemoryReaders {
    /// @dev Reads the memory pointer at `mPtr` in memory.
    function readMemoryPointer(
        MemoryPointer mPtr
    ) internal pure returns (MemoryPointer value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads value at `mPtr` & applies a mask to return only last 4 bytes
    function readMaskedUint256(
        MemoryPointer mPtr
    ) internal pure returns (uint256 value) {
        value = mPtr.readUint256() & OffsetOrLengthMask;
    }

    /// @dev Reads the bool at `mPtr` in memory.
    function readBool(MemoryPointer mPtr) internal pure returns (bool value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the address at `mPtr` in memory.
    function readAddress(
        MemoryPointer mPtr
    ) internal pure returns (address value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes1 at `mPtr` in memory.
    function readBytes1(
        MemoryPointer mPtr
    ) internal pure returns (bytes1 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes2 at `mPtr` in memory.
    function readBytes2(
        MemoryPointer mPtr
    ) internal pure returns (bytes2 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes3 at `mPtr` in memory.
    function readBytes3(
        MemoryPointer mPtr
    ) internal pure returns (bytes3 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes4 at `mPtr` in memory.
    function readBytes4(
        MemoryPointer mPtr
    ) internal pure returns (bytes4 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes5 at `mPtr` in memory.
    function readBytes5(
        MemoryPointer mPtr
    ) internal pure returns (bytes5 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes6 at `mPtr` in memory.
    function readBytes6(
        MemoryPointer mPtr
    ) internal pure returns (bytes6 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes7 at `mPtr` in memory.
    function readBytes7(
        MemoryPointer mPtr
    ) internal pure returns (bytes7 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes8 at `mPtr` in memory.
    function readBytes8(
        MemoryPointer mPtr
    ) internal pure returns (bytes8 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes9 at `mPtr` in memory.
    function readBytes9(
        MemoryPointer mPtr
    ) internal pure returns (bytes9 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes10 at `mPtr` in memory.
    function readBytes10(
        MemoryPointer mPtr
    ) internal pure returns (bytes10 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes11 at `mPtr` in memory.
    function readBytes11(
        MemoryPointer mPtr
    ) internal pure returns (bytes11 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes12 at `mPtr` in memory.
    function readBytes12(
        MemoryPointer mPtr
    ) internal pure returns (bytes12 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes13 at `mPtr` in memory.
    function readBytes13(
        MemoryPointer mPtr
    ) internal pure returns (bytes13 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes14 at `mPtr` in memory.
    function readBytes14(
        MemoryPointer mPtr
    ) internal pure returns (bytes14 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes15 at `mPtr` in memory.
    function readBytes15(
        MemoryPointer mPtr
    ) internal pure returns (bytes15 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes16 at `mPtr` in memory.
    function readBytes16(
        MemoryPointer mPtr
    ) internal pure returns (bytes16 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes17 at `mPtr` in memory.
    function readBytes17(
        MemoryPointer mPtr
    ) internal pure returns (bytes17 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes18 at `mPtr` in memory.
    function readBytes18(
        MemoryPointer mPtr
    ) internal pure returns (bytes18 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes19 at `mPtr` in memory.
    function readBytes19(
        MemoryPointer mPtr
    ) internal pure returns (bytes19 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes20 at `mPtr` in memory.
    function readBytes20(
        MemoryPointer mPtr
    ) internal pure returns (bytes20 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes21 at `mPtr` in memory.
    function readBytes21(
        MemoryPointer mPtr
    ) internal pure returns (bytes21 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes22 at `mPtr` in memory.
    function readBytes22(
        MemoryPointer mPtr
    ) internal pure returns (bytes22 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes23 at `mPtr` in memory.
    function readBytes23(
        MemoryPointer mPtr
    ) internal pure returns (bytes23 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes24 at `mPtr` in memory.
    function readBytes24(
        MemoryPointer mPtr
    ) internal pure returns (bytes24 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes25 at `mPtr` in memory.
    function readBytes25(
        MemoryPointer mPtr
    ) internal pure returns (bytes25 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes26 at `mPtr` in memory.
    function readBytes26(
        MemoryPointer mPtr
    ) internal pure returns (bytes26 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes27 at `mPtr` in memory.
    function readBytes27(
        MemoryPointer mPtr
    ) internal pure returns (bytes27 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes28 at `mPtr` in memory.
    function readBytes28(
        MemoryPointer mPtr
    ) internal pure returns (bytes28 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes29 at `mPtr` in memory.
    function readBytes29(
        MemoryPointer mPtr
    ) internal pure returns (bytes29 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes30 at `mPtr` in memory.
    function readBytes30(
        MemoryPointer mPtr
    ) internal pure returns (bytes30 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes31 at `mPtr` in memory.
    function readBytes31(
        MemoryPointer mPtr
    ) internal pure returns (bytes31 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the bytes32 at `mPtr` in memory.
    function readBytes32(
        MemoryPointer mPtr
    ) internal pure returns (bytes32 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint8 at `mPtr` in memory.
    function readUint8(MemoryPointer mPtr) internal pure returns (uint8 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint16 at `mPtr` in memory.
    function readUint16(
        MemoryPointer mPtr
    ) internal pure returns (uint16 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint24 at `mPtr` in memory.
    function readUint24(
        MemoryPointer mPtr
    ) internal pure returns (uint24 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint32 at `mPtr` in memory.
    function readUint32(
        MemoryPointer mPtr
    ) internal pure returns (uint32 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint40 at `mPtr` in memory.
    function readUint40(
        MemoryPointer mPtr
    ) internal pure returns (uint40 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint48 at `mPtr` in memory.
    function readUint48(
        MemoryPointer mPtr
    ) internal pure returns (uint48 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint56 at `mPtr` in memory.
    function readUint56(
        MemoryPointer mPtr
    ) internal pure returns (uint56 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint64 at `mPtr` in memory.
    function readUint64(
        MemoryPointer mPtr
    ) internal pure returns (uint64 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint72 at `mPtr` in memory.
    function readUint72(
        MemoryPointer mPtr
    ) internal pure returns (uint72 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint80 at `mPtr` in memory.
    function readUint80(
        MemoryPointer mPtr
    ) internal pure returns (uint80 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint88 at `mPtr` in memory.
    function readUint88(
        MemoryPointer mPtr
    ) internal pure returns (uint88 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint96 at `mPtr` in memory.
    function readUint96(
        MemoryPointer mPtr
    ) internal pure returns (uint96 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint104 at `mPtr` in memory.
    function readUint104(
        MemoryPointer mPtr
    ) internal pure returns (uint104 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint112 at `mPtr` in memory.
    function readUint112(
        MemoryPointer mPtr
    ) internal pure returns (uint112 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint120 at `mPtr` in memory.
    function readUint120(
        MemoryPointer mPtr
    ) internal pure returns (uint120 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint128 at `mPtr` in memory.
    function readUint128(
        MemoryPointer mPtr
    ) internal pure returns (uint128 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint136 at `mPtr` in memory.
    function readUint136(
        MemoryPointer mPtr
    ) internal pure returns (uint136 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint144 at `mPtr` in memory.
    function readUint144(
        MemoryPointer mPtr
    ) internal pure returns (uint144 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint152 at `mPtr` in memory.
    function readUint152(
        MemoryPointer mPtr
    ) internal pure returns (uint152 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint160 at `mPtr` in memory.
    function readUint160(
        MemoryPointer mPtr
    ) internal pure returns (uint160 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint168 at `mPtr` in memory.
    function readUint168(
        MemoryPointer mPtr
    ) internal pure returns (uint168 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint176 at `mPtr` in memory.
    function readUint176(
        MemoryPointer mPtr
    ) internal pure returns (uint176 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint184 at `mPtr` in memory.
    function readUint184(
        MemoryPointer mPtr
    ) internal pure returns (uint184 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint192 at `mPtr` in memory.
    function readUint192(
        MemoryPointer mPtr
    ) internal pure returns (uint192 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint200 at `mPtr` in memory.
    function readUint200(
        MemoryPointer mPtr
    ) internal pure returns (uint200 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint208 at `mPtr` in memory.
    function readUint208(
        MemoryPointer mPtr
    ) internal pure returns (uint208 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint216 at `mPtr` in memory.
    function readUint216(
        MemoryPointer mPtr
    ) internal pure returns (uint216 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint224 at `mPtr` in memory.
    function readUint224(
        MemoryPointer mPtr
    ) internal pure returns (uint224 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint232 at `mPtr` in memory.
    function readUint232(
        MemoryPointer mPtr
    ) internal pure returns (uint232 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint240 at `mPtr` in memory.
    function readUint240(
        MemoryPointer mPtr
    ) internal pure returns (uint240 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint248 at `mPtr` in memory.
    function readUint248(
        MemoryPointer mPtr
    ) internal pure returns (uint248 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the uint256 at `mPtr` in memory.
    function readUint256(
        MemoryPointer mPtr
    ) internal pure returns (uint256 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int8 at `mPtr` in memory.
    function readInt8(MemoryPointer mPtr) internal pure returns (int8 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int16 at `mPtr` in memory.
    function readInt16(MemoryPointer mPtr) internal pure returns (int16 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int24 at `mPtr` in memory.
    function readInt24(MemoryPointer mPtr) internal pure returns (int24 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int32 at `mPtr` in memory.
    function readInt32(MemoryPointer mPtr) internal pure returns (int32 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int40 at `mPtr` in memory.
    function readInt40(MemoryPointer mPtr) internal pure returns (int40 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int48 at `mPtr` in memory.
    function readInt48(MemoryPointer mPtr) internal pure returns (int48 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int56 at `mPtr` in memory.
    function readInt56(MemoryPointer mPtr) internal pure returns (int56 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int64 at `mPtr` in memory.
    function readInt64(MemoryPointer mPtr) internal pure returns (int64 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int72 at `mPtr` in memory.
    function readInt72(MemoryPointer mPtr) internal pure returns (int72 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int80 at `mPtr` in memory.
    function readInt80(MemoryPointer mPtr) internal pure returns (int80 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int88 at `mPtr` in memory.
    function readInt88(MemoryPointer mPtr) internal pure returns (int88 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int96 at `mPtr` in memory.
    function readInt96(MemoryPointer mPtr) internal pure returns (int96 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int104 at `mPtr` in memory.
    function readInt104(
        MemoryPointer mPtr
    ) internal pure returns (int104 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int112 at `mPtr` in memory.
    function readInt112(
        MemoryPointer mPtr
    ) internal pure returns (int112 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int120 at `mPtr` in memory.
    function readInt120(
        MemoryPointer mPtr
    ) internal pure returns (int120 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int128 at `mPtr` in memory.
    function readInt128(
        MemoryPointer mPtr
    ) internal pure returns (int128 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int136 at `mPtr` in memory.
    function readInt136(
        MemoryPointer mPtr
    ) internal pure returns (int136 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int144 at `mPtr` in memory.
    function readInt144(
        MemoryPointer mPtr
    ) internal pure returns (int144 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int152 at `mPtr` in memory.
    function readInt152(
        MemoryPointer mPtr
    ) internal pure returns (int152 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int160 at `mPtr` in memory.
    function readInt160(
        MemoryPointer mPtr
    ) internal pure returns (int160 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int168 at `mPtr` in memory.
    function readInt168(
        MemoryPointer mPtr
    ) internal pure returns (int168 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int176 at `mPtr` in memory.
    function readInt176(
        MemoryPointer mPtr
    ) internal pure returns (int176 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int184 at `mPtr` in memory.
    function readInt184(
        MemoryPointer mPtr
    ) internal pure returns (int184 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int192 at `mPtr` in memory.
    function readInt192(
        MemoryPointer mPtr
    ) internal pure returns (int192 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int200 at `mPtr` in memory.
    function readInt200(
        MemoryPointer mPtr
    ) internal pure returns (int200 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int208 at `mPtr` in memory.
    function readInt208(
        MemoryPointer mPtr
    ) internal pure returns (int208 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int216 at `mPtr` in memory.
    function readInt216(
        MemoryPointer mPtr
    ) internal pure returns (int216 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int224 at `mPtr` in memory.
    function readInt224(
        MemoryPointer mPtr
    ) internal pure returns (int224 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int232 at `mPtr` in memory.
    function readInt232(
        MemoryPointer mPtr
    ) internal pure returns (int232 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int240 at `mPtr` in memory.
    function readInt240(
        MemoryPointer mPtr
    ) internal pure returns (int240 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int248 at `mPtr` in memory.
    function readInt248(
        MemoryPointer mPtr
    ) internal pure returns (int248 value) {
        assembly {
            value := mload(mPtr)
        }
    }

    /// @dev Reads the int256 at `mPtr` in memory.
    function readInt256(
        MemoryPointer mPtr
    ) internal pure returns (int256 value) {
        assembly {
            value := mload(mPtr)
        }
    }
}

library MemoryWriters {
    /// @dev Writes `valuePtr` to memory at `mPtr`.
    function write(MemoryPointer mPtr, MemoryPointer valuePtr) internal pure {
        assembly {
            mstore(mPtr, valuePtr)
        }
    }

    /// @dev Writes a boolean `value` to `mPtr` in memory.
    function write(MemoryPointer mPtr, bool value) internal pure {
        assembly {
            mstore(mPtr, value)
        }
    }

    /// @dev Writes an address `value` to `mPtr` in memory.
    function write(MemoryPointer mPtr, address value) internal pure {
        assembly {
            mstore(mPtr, value)
        }
    }

    /// @dev Writes a bytes32 `value` to `mPtr` in memory.
    /// Separate name to disambiguate literal write parameters.
    function writeBytes32(MemoryPointer mPtr, bytes32 value) internal pure {
        assembly {
            mstore(mPtr, value)
        }
    }

    /// @dev Writes a uint256 `value` to `mPtr` in memory.
    function write(MemoryPointer mPtr, uint256 value) internal pure {
        assembly {
            mstore(mPtr, value)
        }
    }

    /// @dev Writes an int256 `value` to `mPtr` in memory.
    /// Separate name to disambiguate literal write parameters.
    function writeInt(MemoryPointer mPtr, int256 value) internal pure {
        assembly {
            mstore(mPtr, value)
        }
    }
}

File 35 of 87 : Consideration.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import {
    ConsiderationInterface
} from "../interfaces/ConsiderationInterface.sol";

import {
    OrderComponents,
    BasicOrderParameters,
    OrderParameters,
    Order,
    AdvancedOrder,
    OrderStatus,
    CriteriaResolver,
    Fulfillment,
    FulfillmentComponent,
    Execution
} from "./ConsiderationStructs.sol";

import { OrderCombiner } from "./OrderCombiner.sol";

import "../helpers/PointerLibraries.sol";

import "./ConsiderationConstants.sol";

/**
 * @title Consideration
 * @author 0age (0age.eth)
 * @custom:coauthor d1ll0n (d1ll0n.eth)
 * @custom:coauthor transmissions11 (t11s.eth)
 * @custom:coauthor James Wenzel (emo.eth)
 * @custom:version 1.2
 * @notice Consideration is a generalized ETH/ERC20/ERC721/ERC1155 marketplace
 *         that provides lightweight methods for common routes as well as more
 *         flexible methods for composing advanced orders or groups of orders.
 *         Each order contains an arbitrary number of items that may be spent
 *         (the "offer") along with an arbitrary number of items that must be
 *         received back by the indicated recipients (the "consideration").
 */
contract Consideration is ConsiderationInterface, OrderCombiner {
    /**
     * @notice Derive and set hashes, reference chainId, and associated domain
     *         separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(address conduitController) OrderCombiner(conduitController) {}

    /**
     * @notice Accept native token transfers during execution that may then be
     *         used to facilitate native token transfers, where any tokens that
     *         remain will be transferred to the caller. Native tokens are only
     *         acceptable mid-fulfillment (and not during basic fulfillment).
     */
    receive() external payable {
        // Ensure the reentrancy guard is currently set to accept native tokens.
        _assertAcceptingNativeTokens();
    }

    /**
     * @notice Fulfill an order offering an ERC20, ERC721, or ERC1155 item by
     *         supplying Ether (or other native tokens), ERC20 tokens, an ERC721
     *         item, or an ERC1155 item as consideration. Six permutations are
     *         supported: Native token to ERC721, Native token to ERC1155, ERC20
     *         to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and ERC1155 to
     *         ERC20 (with native tokens supplied as msg.value). For an order to
     *         be eligible for fulfillment via this method, it must contain a
     *         single offer item (though that item may have a greater amount if
     *         the item is not an ERC721). An arbitrary number of "additional
     *         recipients" may also be supplied which will each receive native
     *         tokens or ERC20 items from the fulfiller as consideration. Refer
     *         to the documentation for a more comprehensive summary of how to
     *         utilize this method and what orders are compatible with it.
     *
     * @param parameters Additional information on the fulfilled order. Note
     *                   that the offerer and the fulfiller must first approve
     *                   this contract (or their chosen conduit if indicated)
     *                   before any tokens can be transferred. Also note that
     *                   contract recipients of ERC1155 consideration items must
     *                   implement `onERC1155Received` to receive those items.
     *
     * @return fulfilled A boolean indicating whether the order has been
     *                   successfully fulfilled.
     */
    function fulfillBasicOrder(
        BasicOrderParameters calldata parameters
    ) external payable override returns (bool fulfilled) {
        // Validate and fulfill the basic order.
        fulfilled = _validateAndFulfillBasicOrder(parameters);
    }

    /**
     * @notice Fulfill an order with an arbitrary number of items for offer and
     *         consideration. Note that this function does not support
     *         criteria-based orders or partial filling of orders (though
     *         filling the remainder of a partially-filled order is supported).
     *
     * @custom:param order        The order to fulfill. Note that both the
     *                            offerer and the fulfiller must first approve
     *                            this contract (or the corresponding conduit if
     *                            indicated) to transfer any relevant tokens on
     *                            their behalf and that contracts must implement
     *                            `onERC1155Received` to receive ERC1155 tokens
     *                            as consideration.
     * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
     *                            any, to source the fulfiller's token approvals
     *                            from. The zero hash signifies that no conduit
     *                            should be used (and direct approvals set on
     *                            this contract).
     *
     * @return fulfilled A boolean indicating whether the order has been
     *                   successfully fulfilled.
     */
    function fulfillOrder(
        /**
         * @custom:name order
         */
        Order calldata,
        bytes32 fulfillerConduitKey
    ) external payable override returns (bool fulfilled) {
        // Convert order to "advanced" order, then validate and fulfill it.
        fulfilled = _validateAndFulfillAdvancedOrder(
            _toAdvancedOrderReturnType(_decodeOrderAsAdvancedOrder)(
                CalldataStart.pptr()
            ),
            new CriteriaResolver[](0), // No criteria resolvers supplied.
            fulfillerConduitKey,
            msg.sender
        );
    }

    /**
     * @notice Fill an order, fully or partially, with an arbitrary number of
     *         items for offer and consideration alongside criteria resolvers
     *         containing specific token identifiers and associated proofs.
     *
     * @custom:param advancedOrder     The order to fulfill along with the
     *                                 fraction of the order to attempt to fill.
     *                                 Note that both the offerer and the
     *                                 fulfiller must first approve this
     *                                 contract (or their conduit if indicated
     *                                 by the order) to transfer any relevant
     *                                 tokens on their behalf and that contracts
     *                                 must implement `onERC1155Received` to
     *                                 receive ERC1155 tokens as consideration.
     *                                 Also note that all offer and
     *                                 consideration components must have no
     *                                 remainder after multiplication of the
     *                                 respective amount with the supplied
     *                                 fraction for the partial fill to be
     *                                 considered valid.
     * @custom:param criteriaResolvers An array where each element contains a
     *                                 reference to a specific offer or
     *                                 consideration, a token identifier, and a
     *                                 proof that the supplied token identifier
     *                                 is contained in the merkle root held by
     *                                 the item in question's criteria element.
     *                                 Note that an empty criteria indicates
     *                                 that any (transferable) token identifier
     *                                 on the token in question is valid and
     *                                 that no associated proof needs to be
     *                                 supplied.
     * @param fulfillerConduitKey      A bytes32 value indicating what conduit,
     *                                 if any, to source the fulfiller's token
     *                                 approvals from. The zero hash signifies
     *                                 that no conduit should be used (and
     *                                 direct approvals set on this contract).
     * @param recipient                The intended recipient for all received
     *                                 items, with `address(0)` indicating that
     *                                 the caller should receive the items.
     *
     * @return fulfilled A boolean indicating whether the order has been
     *                   successfully fulfilled.
     */
    function fulfillAdvancedOrder(
        /**
         * @custom:name advancedOrder
         */
        AdvancedOrder calldata,
        /**
         * @custom:name criteriaResolvers
         */
        CriteriaResolver[] calldata,
        bytes32 fulfillerConduitKey,
        address recipient
    ) external payable override returns (bool fulfilled) {
        // Validate and fulfill the order.
        fulfilled = _validateAndFulfillAdvancedOrder(
            _toAdvancedOrderReturnType(_decodeAdvancedOrder)(
                CalldataStart.pptr()
            ),
            _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                CalldataStart.pptr(
                    Offset_fulfillAdvancedOrder_criteriaResolvers
                )
            ),
            fulfillerConduitKey,
            _substituteCallerForEmptyRecipient(recipient)
        );
    }

    /**
     * @notice Attempt to fill a group of orders, each with an arbitrary number
     *         of items for offer and consideration. Any order that is not
     *         currently active, has already been fully filled, or has been
     *         cancelled will be omitted. Remaining offer and consideration
     *         items will then be aggregated where possible as indicated by the
     *         supplied offer and consideration component arrays and aggregated
     *         items will be transferred to the fulfiller or to each intended
     *         recipient, respectively. Note that a failing item transfer or an
     *         issue with order formatting will cause the entire batch to fail.
     *         Note that this function does not support criteria-based orders or
     *         partial filling of orders (though filling the remainder of a
     *         partially-filled order is supported).
     *
     * @custom:param orders                    The orders to fulfill. Note that
     *                                         both the offerer and the
     *                                         fulfiller must first approve this
     *                                         contract (or the corresponding
     *                                         conduit if indicated) to transfer
     *                                         any relevant tokens on their
     *                                         behalf and that contracts must
     *                                         implement `onERC1155Received` to
     *                                         receive ERC1155 tokens as
     *                                         consideration.
     * @custom:param offerFulfillments         An array of FulfillmentComponent
     *                                         arrays indicating which offer
     *                                         items to attempt to aggregate
     *                                         when preparing executions. Note
     *                                         that any offer items not included
     *                                         as part of a fulfillment will be
     *                                         sent unaggregated to the caller.
     * @custom:param considerationFulfillments An array of FulfillmentComponent
     *                                         arrays indicating which
     *                                         consideration items to attempt to
     *                                         aggregate when preparing
     *                                         executions.
     * @param fulfillerConduitKey              A bytes32 value indicating what
     *                                         conduit, if any, to source the
     *                                         fulfiller's token approvals from.
     *                                         The zero hash signifies that no
     *                                         conduit should be used (and
     *                                         direct approvals set on this
     *                                         contract).
     * @param maximumFulfilled                 The maximum number of orders to
     *                                         fulfill.
     *
     * @return availableOrders An array of booleans indicating if each order
     *                         with an index corresponding to the index of the
     *                         returned boolean was fulfillable or not.
     * @return executions      An array of elements indicating the sequence of
     *                         transfers performed as part of matching the given
     *                         orders.
     */
    function fulfillAvailableOrders(
        /**
         * @custom:name orders
         */
        Order[] calldata,
        /**
         * @custom:name offerFulfillments
         */
        FulfillmentComponent[][] calldata,
        /**
         * @custom:name considerationFulfillments
         */
        FulfillmentComponent[][] calldata,
        bytes32 fulfillerConduitKey,
        uint256 maximumFulfilled
    )
        external
        payable
        override
        returns (
            bool[] memory /* availableOrders */,
            Execution[] memory /* executions */
        )
    {
        // Convert orders to "advanced" orders and fulfill all available orders.
        return
            _fulfillAvailableAdvancedOrders(
                _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)(
                    CalldataStart.pptr()
                ), // Convert to advanced orders.
                new CriteriaResolver[](0), // No criteria resolvers supplied.
                _toNestedFulfillmentComponentsReturnType(
                    _decodeNestedFulfillmentComponents
                )(
                    CalldataStart.pptr(
                        Offset_fulfillAvailableOrders_offerFulfillments
                    )
                ),
                _toNestedFulfillmentComponentsReturnType(
                    _decodeNestedFulfillmentComponents
                )(
                    CalldataStart.pptr(
                        Offset_fulfillAvailableOrders_considerationFulfillments
                    )
                ),
                fulfillerConduitKey,
                msg.sender,
                maximumFulfilled
            );
    }

    /**
     * @notice Attempt to fill a group of orders, fully or partially, with an
     *         arbitrary number of items for offer and consideration per order
     *         alongside criteria resolvers containing specific token
     *         identifiers and associated proofs. Any order that is not
     *         currently active, has already been fully filled, or has been
     *         cancelled will be omitted. Remaining offer and consideration
     *         items will then be aggregated where possible as indicated by the
     *         supplied offer and consideration component arrays and aggregated
     *         items will be transferred to the fulfiller or to each intended
     *         recipient, respectively. Note that a failing item transfer or an
     *         issue with order formatting will cause the entire batch to fail.
     *
     * @custom:param advancedOrders            The orders to fulfill along with
     *                                         the fraction of those orders to
     *                                         attempt to fill. Note that both
     *                                         the offerer and the fulfiller
     *                                         must first approve this contract
     *                                         (or their conduit if indicated by
     *                                         the order) to transfer any
     *                                         relevant tokens on their behalf
     *                                         and that contracts must implement
     *                                         `onERC1155Received` to receive
     *                                         ERC1155 tokens as consideration.
     *                                         Also note that all offer and
     *                                         consideration components must
     *                                         have no remainder after
     *                                         multiplication of the respective
     *                                         amount with the supplied fraction
     *                                         for an order's partial fill
     *                                         amount to be considered valid.
     * @custom:param criteriaResolvers         An array where each element
     *                                         contains a reference to a
     *                                         specific offer or consideration,
     *                                         a token identifier, and a proof
     *                                         that the supplied token
     *                                         identifier is contained in the
     *                                         merkle root held by the item in
     *                                         question's criteria element. Note
     *                                         that an empty criteria indicates
     *                                         that any (transferable) token
     *                                         identifier on the token in
     *                                         question is valid and that no
     *                                         associated proof needs to be
     *                                         supplied.
     * @custom:param offerFulfillments         An array of FulfillmentComponent
     *                                         arrays indicating which offer
     *                                         items to attempt to aggregate
     *                                         when preparing executions. Note
     *                                         that any offer items not included
     *                                         as part of a fulfillment will be
     *                                         sent unaggregated to the caller.
     * @custom:param considerationFulfillments An array of FulfillmentComponent
     *                                         arrays indicating which
     *                                         consideration items to attempt to
     *                                         aggregate when preparing
     *                                         executions.
     * @param fulfillerConduitKey              A bytes32 value indicating what
     *                                         conduit, if any, to source the
     *                                         fulfiller's token approvals from.
     *                                         The zero hash signifies that no
     *                                         conduit should be used (and
     *                                         direct approvals set on this
     *                                         contract).
     * @param recipient                        The intended recipient for all
     *                                         received items, with `address(0)`
     *                                         indicating that the caller should
     *                                         receive the offer items.
     * @param maximumFulfilled                 The maximum number of orders to
     *                                         fulfill.
     *
     * @return availableOrders An array of booleans indicating if each order
     *                         with an index corresponding to the index of the
     *                         returned boolean was fulfillable or not.
     * @return executions      An array of elements indicating the sequence of
     *                         transfers performed as part of matching the given
     *                         orders.
     */
    function fulfillAvailableAdvancedOrders(
        /**
         * @custom:name advancedOrders
         */
        AdvancedOrder[] calldata,
        /**
         * @custom:name criteriaResolvers
         */
        CriteriaResolver[] calldata,
        /**
         * @custom:name offerFulfillments
         */
        FulfillmentComponent[][] calldata,
        /**
         * @custom:name considerationFulfillments
         */
        FulfillmentComponent[][] calldata,
        bytes32 fulfillerConduitKey,
        address recipient,
        uint256 maximumFulfilled
    )
        external
        payable
        override
        returns (
            bool[] memory /* availableOrders */,
            Execution[] memory /* executions */
        )
    {
        // Fulfill all available orders.
        return
            _fulfillAvailableAdvancedOrders(
                _toAdvancedOrdersReturnType(_decodeAdvancedOrders)(
                    CalldataStart.pptr()
                ),
                _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                    CalldataStart.pptr(
                        Offset_fulfillAvailableAdvancedOrders_criteriaResolvers
                    )
                ),
                _toNestedFulfillmentComponentsReturnType(
                    _decodeNestedFulfillmentComponents
                )(
                    CalldataStart.pptr(
                        Offset_fulfillAvailableAdvancedOrders_offerFulfillments
                    )
                ),
                _toNestedFulfillmentComponentsReturnType(
                    _decodeNestedFulfillmentComponents
                )(
                    CalldataStart.pptr(
                        Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts
                    )
                ),
                fulfillerConduitKey,
                _substituteCallerForEmptyRecipient(recipient),
                maximumFulfilled
            );
    }

    /**
     * @notice Match an arbitrary number of orders, each with an arbitrary
     *         number of items for offer and consideration along with a set of
     *         fulfillments allocating offer components to consideration
     *         components. Note that this function does not support
     *         criteria-based or partial filling of orders (though filling the
     *         remainder of a partially-filled order is supported). Any unspent
     *         offer item amounts or native tokens will be transferred to the
     *         caller.
     *
     * @custom:param orders       The orders to match. Note that both the
     *                            offerer and fulfiller on each order must first
     *                            approve this contract (or their conduit if
     *                            indicated by the order) to transfer any
     *                            relevant tokens on their behalf and each
     *                            consideration recipient must implement
     *                            `onERC1155Received` to receive ERC1155 tokens.
     * @custom:param fulfillments An array of elements allocating offer
     *                            components to consideration components. Note
     *                            that each consideration component must be
     *                            fully met for the match operation to be valid,
     *                            and that any unspent offer items will be sent
     *                            unaggregated to the caller.
     *
     * @return executions An array of elements indicating the sequence of
     *                    transfers performed as part of matching the given
     *                    orders. Note that unspent offer item amounts or native
     *                    tokens will not be reflected as part of this array.
     */
    function matchOrders(
        /**
         * @custom:name orders
         */
        Order[] calldata,
        /**
         * @custom:name fulfillments
         */
        Fulfillment[] calldata
    ) external payable override returns (Execution[] memory /* executions */) {
        // Convert to advanced, validate, and match orders using fulfillments.
        return
            _matchAdvancedOrders(
                _toAdvancedOrdersReturnType(_decodeOrdersAsAdvancedOrders)(
                    CalldataStart.pptr()
                ),
                new CriteriaResolver[](0), // No criteria resolvers supplied.
                _toFulfillmentsReturnType(_decodeFulfillments)(
                    CalldataStart.pptr(Offset_matchOrders_fulfillments)
                ),
                msg.sender
            );
    }

    /**
     * @notice Match an arbitrary number of full, partial, or contract orders,
     *         each with an arbitrary number of items for offer and
     *         consideration, supplying criteria resolvers containing specific
     *         token identifiers and associated proofs as well as fulfillments
     *         allocating offer components to consideration components. Any
     *         unspent offer item amounts will be transferred to the designated
     *         recipient (with the null address signifying to use the caller)
     *         and any unspent native tokens will be returned to the caller.
     *
     * @custom:param advancedOrders    The advanced orders to match. Note that
     *                                 both the offerer and fulfiller on each
     *                                 order must first approve this contract
     *                                 (or their conduit if indicated by the
     *                                 order) to transfer any relevant tokens on
     *                                 their behalf and each consideration
     *                                 recipient must implement
     *                                 `onERC1155Received` to receive ERC1155
     *                                 tokens. Also note that the offer and
     *                                 consideration components for each order
     *                                 must have no remainder after multiplying
     *                                 the respective amount with the supplied
     *                                 fraction for the group of partial fills
     *                                 to be considered valid.
     * @custom:param criteriaResolvers An array where each element contains a
     *                                 reference to a specific offer or
     *                                 consideration, a token identifier, and a
     *                                 proof that the supplied token identifier
     *                                 is contained in the merkle root held by
     *                                 the item in question's criteria element.
     *                                 Note that an empty criteria indicates
     *                                 that any (transferable) token identifier
     *                                 on the token in question is valid and
     *                                 that no associated proof needs to be
     *                                 supplied.
     * @custom:param fulfillments      An array of elements allocating offer
     *                                 components to consideration components.
     *                                 Note that each consideration component
     *                                 must be fully met for the match operation
     *                                 to be valid, and that any unspent offer
     *                                 items will be sent unaggregated to the
     *                                 designated recipient.
     * @param recipient                The intended recipient for all unspent
     *                                 offer item amounts, or the caller if the
     *                                 null address is supplied.
     *
     * @return executions An array of elements indicating the sequence of
     *                     transfers performed as part of matching the given
     *                     orders. Note that unspent offer item amounts or
     *                     native tokens will not be reflected as part of this
     *                     array.
     */
    function matchAdvancedOrders(
        /**
         * @custom:name advancedOrders
         */
        AdvancedOrder[] calldata,
        /**
         * @custom:name criteriaResolvers
         */
        CriteriaResolver[] calldata,
        /**
         * @custom:name fulfillments
         */
        Fulfillment[] calldata,
        address recipient
    ) external payable override returns (Execution[] memory /* executions */) {
        // Validate and match the advanced orders using supplied fulfillments.
        return
            _matchAdvancedOrders(
                _toAdvancedOrdersReturnType(_decodeAdvancedOrders)(
                    CalldataStart.pptr()
                ),
                _toCriteriaResolversReturnType(_decodeCriteriaResolvers)(
                    CalldataStart.pptr(
                        Offset_matchAdvancedOrders_criteriaResolvers
                    )
                ),
                _toFulfillmentsReturnType(_decodeFulfillments)(
                    CalldataStart.pptr(Offset_matchAdvancedOrders_fulfillments)
                ),
                _substituteCallerForEmptyRecipient(recipient)
            );
    }

    /**
     * @notice Cancel an arbitrary number of orders. Note that only the offerer
     *         or the zone of a given order may cancel it. Callers should ensure
     *         that the intended order was cancelled by calling `getOrderStatus`
     *         and confirming that `isCancelled` returns `true`.
     *
     * @param orders The orders to cancel.
     *
     * @return cancelled A boolean indicating whether the supplied orders have
     *                   been successfully cancelled.
     */
    function cancel(
        OrderComponents[] calldata orders
    ) external override returns (bool cancelled) {
        // Cancel the orders.
        cancelled = _cancel(orders);
    }

    /**
     * @notice Validate an arbitrary number of orders, thereby registering their
     *         signatures as valid and allowing the fulfiller to skip signature
     *         verification on fulfillment. Note that validated orders may still
     *         be unfulfillable due to invalid item amounts or other factors;
     *         callers should determine whether validated orders are fulfillable
     *         by simulating the fulfillment call prior to execution. Also note
     *         that anyone can validate a signed order, but only the offerer can
     *         validate an order without supplying a signature.
     *
     * @custom:param orders The orders to validate.
     *
     * @return validated A boolean indicating whether the supplied orders have
     *                   been successfully validated.
     */
    function validate(
        /**
         * @custom:name orders
         */
        Order[] calldata
    ) external override returns (bool /* validated */) {
        return
            _validate(_toOrdersReturnType(_decodeOrders)(CalldataStart.pptr()));
    }

    /**
     * @notice Cancel all orders from a given offerer with a given zone in bulk
     *         by incrementing a counter. Note that only the offerer may
     *         increment the counter.
     *
     * @return newCounter The new counter.
     */
    function incrementCounter() external override returns (uint256 newCounter) {
        // Increment current counter for the supplied offerer.  Note that the
        // counter is incremented by a large, quasi-random interval.
        newCounter = _incrementCounter();
    }

    /**
     * @notice Retrieve the order hash for a given order.
     *
     * @custom:param order The components of the order.
     *
     * @return orderHash The order hash.
     */
    function getOrderHash(
        /**
         * @custom:name order
         */
        OrderComponents calldata
    ) external view override returns (bytes32 orderHash) {
        CalldataPointer orderPointer = CalldataStart.pptr();

        // Derive order hash by supplying order parameters along with counter.
        orderHash = _deriveOrderHash(
            _toOrderParametersReturnType(
                _decodeOrderComponentsAsOrderParameters
            )(orderPointer),
            // Read order counter
            orderPointer.offset(OrderParameters_counter_offset).readUint256()
        );
    }

    /**
     * @notice Retrieve the status of a given order by hash, including whether
     *         the order has been cancelled or validated and the fraction of the
     *         order that has been filled. Since the _orderStatus[orderHash]
     *         does not get set for contract orders, getOrderStatus will always
     *         return (false, false, 0, 0) for those hashes. Note that this
     *         function is susceptible to view reentrancy and so should be used
     *         with care when calling from other contracts.
     *
     * @param orderHash The order hash in question.
     *
     * @return isValidated A boolean indicating whether the order in question
     *                     has been validated (i.e. previously approved or
     *                     partially filled).
     * @return isCancelled A boolean indicating whether the order in question
     *                     has been cancelled.
     * @return totalFilled The total portion of the order that has been filled
     *                     (i.e. the "numerator").
     * @return totalSize   The total size of the order that is either filled or
     *                     unfilled (i.e. the "denominator").
     */
    function getOrderStatus(
        bytes32 orderHash
    )
        external
        view
        override
        returns (
            bool isValidated,
            bool isCancelled,
            uint256 totalFilled,
            uint256 totalSize
        )
    {
        // Retrieve the order status using the order hash.
        return _getOrderStatus(orderHash);
    }

    /**
     * @notice Retrieve the current counter for a given offerer.
     *
     * @param offerer The offerer in question.
     *
     * @return counter The current counter.
     */
    function getCounter(
        address offerer
    ) external view override returns (uint256 counter) {
        // Return the counter for the supplied offerer.
        counter = _getCounter(offerer);
    }

    /**
     * @notice Retrieve configuration information for this contract.
     *
     * @return version           The contract version.
     * @return domainSeparator   The domain separator for this contract.
     * @return conduitController The conduit Controller set for this contract.
     */
    function information()
        external
        view
        override
        returns (
            string memory version,
            bytes32 domainSeparator,
            address conduitController
        )
    {
        // Return the information for this contract.
        return _information();
    }

    /**
     * @dev Gets the contract offerer nonce for the specified contract offerer.
     *      Note that this function is susceptible to view reentrancy and so
     *      should be used with care when calling from other contracts.
     *
     * @param contractOfferer The contract offerer for which to get the nonce.
     *
     * @return nonce The contract offerer nonce.
     */
    function getContractOffererNonce(
        address contractOfferer
    ) external view override returns (uint256 nonce) {
        nonce = _contractNonces[contractOfferer];
    }

    /**
     * @notice Retrieve the name of this contract.
     *
     * @return contractName The name of this contract.
     */
    function name()
        external
        pure
        override
        returns (string memory /* contractName */)
    {
        // Return the name of the contract.
        return _name();
    }
}

File 36 of 87 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.19;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v5.0._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v5.0._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v5.0._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v5.0._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v5.0._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 37 of 87 : OwnerTwoStep.sol
// SPDX-License-Identifier: AGPL-3.0

pragma solidity ^0.8.0;

import { IOwnerTwoStep } from "../interface/IOwnerTwoStep.sol";

abstract contract OwnerTwoStep is IOwnerTwoStep {

    /// @dev The owner of the contract
    address private _owner;

    /// @dev The pending owner of the contract
    address private _pendingOwner;

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(msg.sender);
    }

    // ***************************************************************
    // * ========================= EVENTS ========================== *
    // ***************************************************************

    event OwnerTwoStepOwnerStartedTransfer(address currentOwner, address newPendingOwner);
    event OwnerTwoStepPendingOwnerAcceptedTransfer(address newOwner);
    event OwnerTwoStepOwnershipTransferred(address previousOwner, address newOwner);
    event OwnerTwoStepOwnerRenouncedOwnership(address previousOwner);

    // ***************************************************************
    // * ========================= ERRORS ========================== *
    // ***************************************************************

    error OwnerTwoStepNotOwner();
    error OwnerTwoStepNotPendingOwner();

    // ***************************************************************
    // * =================== USER INTERFACE ======================== *
    // ***************************************************************

    ///@inheritdoc IOwnerTwoStep
    function transferOwnership(address newPendingOwner_) public virtual override onlyOwner {
        _pendingOwner = newPendingOwner_;

        emit OwnerTwoStepOwnerStartedTransfer(_owner, newPendingOwner_);
    }

    ///@inheritdoc IOwnerTwoStep
    function acceptOwnership() public virtual override onlyPendingOwner {
        emit OwnerTwoStepPendingOwnerAcceptedTransfer(msg.sender);

        _transferOwnership(msg.sender);
    }

    ///@inheritdoc IOwnerTwoStep
    function renounceOwnership() public virtual onlyOwner {

        emit OwnerTwoStepOwnerRenouncedOwnership(msg.sender);

        _transferOwnership(address(0));
    }

    // ***************************************************************
    // * =================== VIEW FUNCTIONS ======================== *
    // ***************************************************************

    ///@inheritdoc IOwnerTwoStep
    function owner() public view virtual override returns (address) {
        return _owner;
    }

    ///@inheritdoc IOwnerTwoStep
    function pendingOwner() external view override returns (address) {
        return _pendingOwner;
    }

    // ***************************************************************
    // * ===================== MODIFIERS =========================== *
    // ***************************************************************

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _onlyOwner();
        _;
    }

    /**
     * @dev Throws if called by any account other than the pending owner.
     */
    modifier onlyPendingOwner {
        if (msg.sender != _pendingOwner) {
            revert OwnerTwoStepNotPendingOwner();
        }
        _;
    }

    // ***************************************************************
    // * ================== INTERNAL HELPERS ======================= *
    // ***************************************************************

    /**
     * @dev Throws if called by any account other than the owner. Saves contract size over copying 
     *   implementation into every function that uses the modifier.
     */
    function _onlyOwner() internal view virtual {
        if (msg.sender != _owner) {
            revert OwnerTwoStepNotOwner();
        }
    }


    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * @param newOwner_ New owner to transfer to
     */
    function _transferOwnership(address newOwner_) internal {
        delete _pendingOwner;

        emit OwnerTwoStepOwnershipTransferred(_owner, newOwner_);

        _owner = newOwner_;
    }
}

File 38 of 87 : IDittoPoolFactory.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { PoolTemplate } from "../struct/FactoryTemplates.sol";
import { LpNft } from "../pool/lpNft/LpNft.sol";
import { IOwnerTwoStep } from "./IOwnerTwoStep.sol";
import { IDittoPool } from "./IDittoPool.sol";
import { IDittoRouter } from "./IDittoRouter.sol";
import { IPermitter } from "./IPermitter.sol";
import { IMetadataGenerator } from "./IMetadataGenerator.sol";
import { IPoolManager } from "./IPoolManager.sol";
import { PoolManagerTemplate, PermitterTemplate } from "../struct/FactoryTemplates.sol";

interface IDittoPoolFactory is IOwnerTwoStep {
    // ***************************************************************
    // * ====================== MAIN INTERFACE ===================== *
    // ***************************************************************

    /**
     * @notice Create a ditto pool along with a permitter and pool manager if requested. 
     *
     * @param params_ The pool creation parameters including initial liquidity and fee settings
     *   **uint256 templateIndex** The index of the pool template to clone
     *   **address token** ERC20 token address trading against the nft collection
     *   **address nft** the address of the NFT collection that we are creating a pool for
     *   **uint96 feeLp** the fee percentage paid to LPers when they are the counterparty in a trade
     *   **address owner** The liquidity initial provider and owner of the pool, overwritten by pool manager if present
     *   **uint96 feeAdmin** the fee percentage paid to the pool admin 
     *   **uint128 delta** the delta of the pool, see bonding curve documentation
     *   **uint128 basePrice** the base price of the pool, see bonding curve documentation
     *   **uint256[] nftIdList** the token IDs of NFTs to deposit into the pool as it is created. Empty arrays are allowed
     *   **uint256 initialTokenBalance** the number of ERC20 tokens to transfer to the pool as you create it. Zero is allowed
     *   **bytes initialTemplateData** initial data to pass to the pool contract in its initializer
     * @param poolManagerTemplate_ The template for the pool manager to manage the pool. Provide type(uint256).max to opt out
     * @param permitterTemplate_  The template for the permitter to manage the pool. Provide type(uint256).max to opt out
     * @return dittoPool The newly created DittoPool
     * @return lpId The ID of the LP position NFT representing the initial liquidity deposited, or zero, if none deposited
     * @return poolManager The pool manager or the zero address if none was created
     * @return permitter The permitter or the zero address if none was created
     */
    function createDittoPool(
        PoolTemplate memory params_,
        PoolManagerTemplate calldata poolManagerTemplate_,
        PermitterTemplate calldata permitterTemplate_
    )
        external
        returns (IDittoPool dittoPool, uint256 lpId, IPoolManager poolManager, IPermitter permitter);

    // ***************************************************************
    // * ============== EXTERNAL VIEW FUNCTIONS ==================== *
    // ***************************************************************

    /**
     * @notice Get the list of pool templates that can be used to create new pools
     * @return poolTemplates_ The list of pool templates that can be used to create new pools
     */
    function poolTemplates() external view returns (address[] memory);

    /**
     * @notice Get the list of pool manager templates that can be used to manage a new pool
     * @return poolManagerTemplates_ The list of pool manager templates that can be used to manage a new pool
     */
    function poolManagerTemplates() external view returns (IPoolManager[] memory);

    /**
     * @notice Get the list of permitter templates that can be used to restrict nft ids in a pool
     * @return permitterTemplates_ The list of permitter templates that can be used to restrict nft ids in a pool
     */
    function permitterTemplates() external view returns (IPermitter[] memory);

    /**
     * @notice Check if an address is an approved whitelisted router that can trade with the pools
     * @param potentialRouter_ The address to check if it is a whitelisted router
     * @return isWhitelistedRouter True if the address is a whitelisted router
     */
    function isWhitelistedRouter(address potentialRouter_) external view returns (bool);

    /**
     * @notice Get the protocol fee recipient address
     * @return poolFeeRecipient of the protocol fee recipient
     */
    function protocolFeeRecipient() external view returns (address);

    /**
     * @notice Get the protocol fee multiplier used to calculate fees on all trades 
     * @return protocolFeeMultiplier the multiplier for global protocol fees on all trades
     */
    function getProtocolFee() external view returns (uint96);

    /**
     * @notice The nft used to represent liquidity positions
     */
    function lpNft() external view returns (LpNft lpNft_);

    // ***************************************************************
    // * ==================== ADMIN FUNCTIONS ====================== *
    // ***************************************************************

    /**
     * @notice Admin function to add additional pool templates 
     * @param poolTemplates_ addresses of the new pool templates
     */
    function addPoolTemplates(address[] calldata poolTemplates_) external;

    /**
     * @notice Admin function to add additional pool manager templates
     * @param poolManagerTemplates_ addresses of the new pool manager templates
     */
    function addPoolManagerTemplates(IPoolManager[] calldata poolManagerTemplates_) external;

    /**
     * @notice Admin function to add additional permitter templates
     * @param permitterTemplates_ addresses of the new permitter templates
     */
    function addPermitterTemplates(IPermitter[] calldata permitterTemplates_) external;

    /**
     * @notice Admin function to add additional whitelisted routers
     * @param routers_ addresses of the new routers to whitelist
     */
    function addRouters(IDittoRouter[] calldata routers_) external;

    /**
     * @notice Admin function to set the protocol fee recipient
     * @param feeProtocolRecipient_ address of the new protocol fee recipient
     */
    function setProtocolFeeRecipient(address feeProtocolRecipient_) external;

    /**
     * @notice Admin function to set the protocol fee multiplier used to calculate fees on all trades, base 1e18
     * @param feeProtocol_ the new protocol fee multiplier
     */
    function setProtocolFee(uint96 feeProtocol_) external;

    /**
     * @notice Admin function to change the LP position NFT collection used by this Ditto Pool Factory
     * @param lpNft_ address of the new LpNft
     */
    function setLpNft(LpNft lpNft_) external;
}

File 39 of 87 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.19;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        if (_status == _ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }
}

File 40 of 87 : ILpNft.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { IERC4906 } from "./IERC4906.sol";
import { IDittoPool } from "./IDittoPool.sol";
import { IDittoPoolFactory } from "./IDittoPoolFactory.sol";
import { IMetadataGenerator } from "./IMetadataGenerator.sol";
import { IERC721 } from "../../lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";

interface ILpNft is IERC4906 {
    // * =============== State Changing Functions ================== *

    /**
     * @notice Allows an administrator to change the DittoPoolFactory contract that interacts with this LP NFT.
     * @param dittoPoolFactory_ The address of a Ditto Pool Factory contract.
     */
    function setDittoPoolFactory(IDittoPoolFactory dittoPoolFactory_) external;

    /**
     * @notice Allows an admin to update the metadata generator through the pool factory.
     * @dev only the Ditto Pool Factory is allowed to call this function
     * @param metadataGenerator_ The address of the metadata generator contract.
     */
    function setMetadataGenerator(IMetadataGenerator metadataGenerator_) external;

    /**
     * @notice Allows the factory to whitelist DittoPool contracts as allowed to mint and burn liquidity position NFTs.
     * @dev only the Ditto Pool Factory is allowed to call this function
     * @param dittoPool_ The address of the DittoPool contract to whitelist.
     * @param nft_ The address of the NFT contract that the DittoPool trades.
     */
    function setApprovedDittoPool(address dittoPool_, IERC721 nft_) external;

    /**
     * @notice mint function used to create new LP Position NFTs 
     * @dev only callable by approved DittoPool contracts
     * @param to_ The address of the user who will own the new NFT.
     * @return lpId The tokenId of the newly minted NFT.
     */
    function mint(address to_) external returns (uint256 lpId);

    /**
     * @notice burn function used to destroy LP Position NFTs
     * @dev only callable approved DittoPool contracts
     * @param lpId_ The tokenId of the NFT to burn.
     */
    function burn(uint256 lpId_) external;

    /**
     * @notice Updates LP position NFT metadata on trades, as LP's LP information changes due to the trade
     * @dev see [EIP-4906](https://eips.ethereum.org/EIPS/eip-4906) EIP-721 Metadata Update Extension
     * @dev only callable by approved DittoPool contracts
     * @param lpId_ the tokenId of the NFT who's metadata needs to be updated
     */
    function emitMetadataUpdate(uint256 lpId_) external;

    /**
     * @notice Tells off-chain actors to update LP position NFT metadata for all tokens in the collection
     * @dev see [EIP-4906](https://eips.ethereum.org/EIPS/eip-4906) EIP-721 Metadata Update Extension
     * @dev only callable by approved DittoPool contracts
     */
    function emitMetadataUpdateForAll() external;

    // * ======= EXTERNALLY CALLABLE READ-ONLY VIEW FUNCTIONS ====== *

    /**
     * @notice Tells you whether a given tokenId is allowed to be spent/used by a given spender on behalf of its owner.
     * @dev see EIP-721 approve() and setApprovalForAll() functions
     * @param spender_ The address of the operator/spender to check.
     * @param lpId_ The tokenId of the NFT to check.
     * @return approved Whether the spender is allowed to send or manipulate the NFT.
     */
    function isApproved(address spender_, uint256 lpId_) external view returns (bool);

    /**
     * @notice Check if an address has been approved as a DittoPool on the LpNft contract
     * @param dittoPool_ The address of the DittoPool contract to check.
     * @return approved Whether the DittoPool is approved to mint and burn liquidity position NFTs.
     */
    function isApprovedDittoPool(address dittoPool_) external view returns (bool);

    /**
     * @notice Returns which DittoPool applies to a given LP Position NFT tokenId.
     * @param lpId_ The LP Position tokenId to get info for.
     * @return pool The DittoPool contract that the LP Position NFT is tied to.
     */
    function getPoolForLpId(uint256 lpId_) external view returns (IDittoPool pool);

    /**
     * @notice Returns the DittoPool and liquidity provider's address for a given LP Position NFT tokenId.
     * @param lpId_ The LP Position tokenId to get info for.
     * @return pool The DittoPool contract that the LP Position NFT is tied to.
     * @return owner The owner of the lpId.
     */
    function getPoolAndOwnerForLpId(uint256 lpId_)
        external
        view
        returns (IDittoPool pool, address owner);

    /**
     * @notice Returns the address of the underlying NFT collection traded by the DittoPool corresponding to an LP Position NFT tokenId.
     * @param lpId_ The LP Position tokenId to get info for.
     * @return nft The address of the underlying NFT collection for that LP position
     */
    function getNftForLpId(uint256 lpId_) external view returns (IERC721);

    /**
     * @notice Returns the amount of ERC20 tokens held by a liquidity provider in a given LP Position.
     * @param lpId_ The LP Position tokenId to get info for.
     * @return value the amount of ERC20 tokens held by the liquidity provider in the given LP Position.
     */
    function getLpValueToken(uint256 lpId_) external view returns (uint256);

    /**
     * @notice Returns the list of NFT Ids (of the underlying NFT collection) held by a liquidity provider in a given LP Position.
     * @param lpId_ The LP Position tokenId to get info for.
     * @return nftIds the list of NFT Ids held by the liquidity provider in the given LP Position.
     */
    function getAllHeldNftIds(uint256 lpId_) external view returns (uint256[] memory);

    /**
     * @notice Returns the count of NFTs held by a liquidity provider in a given LP Position.
     * @param lpId_ The LP Position tokenId to get info for.
     * @return nftCount the count of NFTs held by the liquidity provider in the given LP Position.
     */
    function getNumNftsHeld(uint256 lpId_) external view returns (uint256);

    /**
     * @notice Returns the "value" of an LP positions NFT holdings in ERC20 Tokens,
     *   if it were to be sold at the current base price.
     * @param lpId_ The LP Position tokenId to get info for.
     * @return value the "value" of an LP positions NFT holdings in ERC20 Tokens.
     */
    function getLpValueNft(uint256 lpId_) external view returns (uint256);

    /**
     * @notice Returns the "value" of an LP positions total holdings in ERC20s + NFTs,
     *   if all the Nfts in the holdings were sold at the current base price.
     * @param lpId_ The LP Position tokenId to get info for.
     * @return value the "value" of an LP positions sum total holdings in ERC20s + NFTs.
     */
    function getLpValue(uint256 lpId_) external view returns (uint256);

    /**
     * @notice Returns the address of the DittoPoolFactory contract
     * @return factory the address of the DittoPoolFactory contract
     */
    function dittoPoolFactory() external view returns (IDittoPoolFactory);

    /**
     * @notice returns the next tokenId to be minted
     * @dev NFTs are minted sequentially, starting at tokenId 1
     * @return nextId the next tokenId to be minted
     */
    function nextId() external view returns (uint256);

    /**
     * @notice returns the address of the contract that generates the metadata for LP Position NFTs
     * @return metadataGenerator the address of the contract that generates the metadata for LP Position NFTs
     */
    function metadataGenerator() external view returns (IMetadataGenerator);
}

File 41 of 87 : IMetadataGenerator.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { IDittoPool } from "./IDittoPool.sol";

/**
 * @title IMetadataGenerator
 * @notice Provides a standard interface for interacting with the MetadataGenerator contract 
 *   to return a base64 encoded tokenURI for a given tokenId.
 */
interface IMetadataGenerator {
    /**
     * @notice Called in the tokenURI() function of the LpNft contract.
     * @param lpId_ The identifier for a liquidity position NFT
     * @param pool_ The DittoPool address associated with this liquidity position NFT
     * @param countToken_ Count of all ERC20 tokens assigned to the owner of the liquidity position NFT in the DittoPool
     * @param countNft_ Count of all NFTs assigned to the owner of the liquidity position NFT in the DittoPool
     * @return tokenUri A distinct Uniform Resource Identifier (URI) for a given asset.
     */
    function payloadTokenUri(
        uint256 lpId_,
        IDittoPool pool_,
        uint256 countToken_,
        uint256 countNft_
    ) external view returns (string memory tokenUri);

    /**
     * @notice Called in the contractURI() function of the LpNft contract.
     * @return contractUri A distinct Uniform Resource Identifier (URI) for a given asset.
     */
    function payloadContractUri() external view returns (string memory contractUri);
}

File 42 of 87 : MetadataGeneratorError.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import {Base64} from "./library/Base64.sol";
import {Strings} from "../../../lib/openzeppelin-contracts/contracts/utils/Strings.sol";

library MetadataGeneratorError {
    string internal constant SVG_PREFIX = "<?xml version=\"1.0\" encoding=\"UTF-8\"?>"
        "<svg xmlns=\"http://www.w3.org/2000/svg\" viewBox=\"0 0 768 768\">"
        "<style>.t{font:bold 13px monospace}</style>"
        "<rect width=\"768\" height=\"768\" style=\"fill:#e5e5e5;stroke:#000;stroke-width:1.5px;\"/>"
        "<text class=\"t\" x=\"1\" y=\"300\">Unable to make LP NFT Image. Funds are unaffected by this error.</text>";
    string internal constant SVG_POSTFIX = "</svg>";

    ///@notice A human readable description of the item.
    string internal constant DESCRIPTION =
        "RoboNet is a gas-efficient, DeFi-optimized automated market maker (AMM) that enables efficient and seamless trading between NFTs and ERC-20 tokens. "
        "Users can effortlessly create on-chain pools for trading NFTs, allowing for more composable NFT liquidity provision. "
        "RoboNet streamlines the process of exchanging digital assets in the ever-growing NFT market and makes them more compatible with the growing vertical at the intersection of DeFi and NFTs.";

    function uint8ToHexChar(uint8 raw) internal pure returns (uint8) {
        return (raw > 9)
            ? (raw + (0x61 - 0xa)) // ascii lowercase a
            : (raw + 0x30); // ascii 0
    }

    function bytesToHexString(bytes memory buffer) internal pure returns (string memory) {
        bytes memory hexBuffer = new bytes(buffer.length * 2);
        for (uint256 i = 0; i < buffer.length; i++) {
            uint8 raw = uint8(buffer[i]);
            uint8 highNibble = raw >> 4;
            uint8 lowNibble = raw & 0x0f;
            hexBuffer[i * 2] = bytes1(uint8ToHexChar(highNibble));
            hexBuffer[i * 2 + 1] = bytes1(uint8ToHexChar(lowNibble));
        }
        return string(abi.encodePacked("0x", hexBuffer));
    }

    function generateLpIdString(uint256 lpId_) internal pure returns (string memory) {
        return string.concat("<text class=\"t\" x=\"1\" y=\"350\">LpId: ", Strings.toString(lpId_), "</text>");
    }

    function generatePoolString(address pool_) internal pure returns (string memory) {
        return
            string.concat("<text class=\"t\" x=\"1\" y=\"375\">Pool: ", Strings.toHexString(uint160(pool_)), "</text>");
    }

    function generateTokenCount(uint256 tokenCount_) internal pure returns (string memory) {
        return
            string.concat("<text class=\"t\" x=\"1\" y=\"400\">Token Count: ", Strings.toString(tokenCount_), "</text>");
    }

    function generateNftCount(uint256 nftCount_) internal pure returns (string memory) {
        return string.concat("<text class=\"t\" x=\"1\" y=\"425\">NFT Count: ", Strings.toString(nftCount_), "</text>");
    }

    function generateErrorComment(bytes memory reasonCode_) internal pure returns (string memory) {
        return string.concat("<!-- Error Reason Code: ", bytesToHexString(reasonCode_), "-->");
    }

    function _generateImage(
        uint256 lpId_,
        address pool_,
        uint256 tokenCount_,
        uint256 nftCount_,
        bytes memory reasonCode_
    ) internal pure returns (string memory) {
        return string.concat(
            SVG_PREFIX,
            generateLpIdString(lpId_),
            generatePoolString(pool_),
            generateTokenCount(tokenCount_),
            generateNftCount(nftCount_),
            generateErrorComment(reasonCode_),
            SVG_POSTFIX
        );
    }

    function errorTokenUri(
        uint256 lpId_,
        address pool_,
        uint256 tokenCount_,
        uint256 nftCount_,
        bytes memory reasonCode_
    ) internal pure returns (string memory) {
        string memory image = Base64.encode(bytes(_generateImage(lpId_, pool_, tokenCount_, nftCount_, reasonCode_)));
        return string(
            abi.encodePacked(
                "data:application/json;base64,",
                Base64.encode(
                    bytes(
                        abi.encodePacked(
                            '{"name":"',
                            string(abi.encodePacked("RoboNet V1 LP Position #", Strings.toString(lpId_))),
                            '", "description":"',
                            DESCRIPTION,
                            '", "image": "',
                            "data:image/svg+xml;base64,",
                            image,
                            '"}'
                        )
                    )
                )
            )
        );
    }
}

File 43 of 87 : ERC721.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern, minimalist, and gas efficient ERC-721 implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC721.sol)
/// @dev Note that balanceOf does not revert if passed the zero address, in defiance of the ERC.
abstract contract ERC721 {
    /*///////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 indexed id);

    event Approval(address indexed owner, address indexed spender, uint256 indexed id);

    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /*///////////////////////////////////////////////////////////////
                          METADATA STORAGE/LOGIC
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    function tokenURI(uint256 id) public view virtual returns (string memory);

    /*///////////////////////////////////////////////////////////////
                            ERC721 STORAGE                        
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(uint256 => address) public ownerOf;

    mapping(uint256 => address) public getApproved;

    mapping(address => mapping(address => bool)) public isApprovedForAll;

    /*///////////////////////////////////////////////////////////////
                              CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(string memory _name, string memory _symbol) {
        name = _name;
        symbol = _symbol;
    }

    /*///////////////////////////////////////////////////////////////
                              ERC721 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 id) public virtual {
        address owner = ownerOf[id];

        require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED");

        getApproved[id] = spender;

        emit Approval(owner, spender, id);
    }

    function setApprovalForAll(address operator, bool approved) public virtual {
        isApprovedForAll[msg.sender][operator] = approved;

        emit ApprovalForAll(msg.sender, operator, approved);
    }

    function transferFrom(
        address from,
        address to,
        uint256 id
    ) public virtual {
        require(from == ownerOf[id], "WRONG_FROM");

        require(to != address(0), "INVALID_RECIPIENT");

        require(
            msg.sender == from || msg.sender == getApproved[id] || isApprovedForAll[from][msg.sender],
            "NOT_AUTHORIZED"
        );

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        unchecked {
            balanceOf[from]--;

            balanceOf[to]++;
        }

        delete getApproved[id];

        ownerOf[id] = to;

        emit Transfer(from, to, id);
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 id
    ) public virtual {
        transferFrom(from, to, id);

        require(
            to.code.length == 0 ||
                ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") ==
                ERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    function safeTransferFrom(
        address from,
        address to,
        uint256 id,
        bytes memory data
    ) public virtual {
        transferFrom(from, to, id);

        require(
            to.code.length == 0 ||
                ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) ==
                ERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    /*///////////////////////////////////////////////////////////////
                              ERC165 LOGIC
    //////////////////////////////////////////////////////////////*/

    function supportsInterface(bytes4 interfaceId) public pure virtual returns (bool) {
        return
            interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
            interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721
            interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
    }

    /*///////////////////////////////////////////////////////////////
                       INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 id) internal virtual {
        require(to != address(0), "INVALID_RECIPIENT");

        require(ownerOf[id] == address(0), "ALREADY_MINTED");

        // Counter overflow is incredibly unrealistic.
        unchecked {
            totalSupply++;

            balanceOf[to]++;
        }

        ownerOf[id] = to;

        emit Transfer(address(0), to, id);
    }

    function _burn(uint256 id) internal virtual {
        address owner = ownerOf[id];

        require(ownerOf[id] != address(0), "NOT_MINTED");

        // Ownership check above ensures no underflow.
        unchecked {
            totalSupply--;

            balanceOf[owner]--;
        }

        delete ownerOf[id];

        emit Transfer(owner, address(0), id);
    }

    /*///////////////////////////////////////////////////////////////
                       INTERNAL SAFE MINT LOGIC
    //////////////////////////////////////////////////////////////*/

    function _safeMint(address to, uint256 id) internal virtual {
        _mint(to, id);

        require(
            to.code.length == 0 ||
                ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") ==
                ERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }

    function _safeMint(
        address to,
        uint256 id,
        bytes memory data
    ) internal virtual {
        _mint(to, id);

        require(
            to.code.length == 0 ||
                ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) ==
                ERC721TokenReceiver.onERC721Received.selector,
            "UNSAFE_RECIPIENT"
        );
    }
}

/// @notice A generic interface for a contract which properly accepts ERC721 tokens.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC721.sol)
interface ERC721TokenReceiver {
    function onERC721Received(
        address operator,
        address from,
        uint256 id,
        bytes calldata data
    ) external returns (bytes4);
}

File 44 of 87 : RouterStructs.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

import { IDittoPool } from "../interface/IDittoPool.sol";

/**
 * @notice Basic Struct used by DittoRouter For Specifying trades
 * @dev **pool** the pool to trade with
 * @dev **nftIds** which Nfts you wish to buy out of or sell into the pool
 */
struct Swap {
    IDittoPool pool;
    uint256[] nftIds;
    bytes swapData;
}

/**
 * @notice Struct used by DittoRouter when selling Nfts into a pool.
 * @dev **swapInfo** Swap info with pool and and Nfts being traded
 * @dev **lpIds** The LP Position TokenIds of the counterparties you wish to sell to in the pool
 * @dev **permitterData** Optional: data to pass to the pool for permission checks that the tokenIds are allowed in the pool
 */
struct NftInSwap {
    IDittoPool pool;
    uint256[] nftIds;
    uint256[] lpIds;
    bytes permitterData;
    bytes swapData;
}

/**
 * @notice Struct used for "robust" swaps that may have partial fills buying NFTs out of a pool
 * @dev **swapInfo** Swap info with pool and and Nfts being traded
 * @dev **maxCost** The maximum amount of tokens you are willing to pay for the Nfts total
 */
struct RobustSwap {
    IDittoPool pool;
    uint256[] nftIds;
    uint256 maxCost;
    bytes swapData;
}

/**
 * @notice Struct used for "robust" swaps that may have partial fills selling NFTs into a pool
 * @dev **nftSwapInfo** Swap info with pool, Nfts being traded, lp counterparties, and permitter data
 * @dev **minOutput** The total minimum amount of tokens you are willing to receive for the Nfts you sell, or abort
 */
struct RobustNftInSwap {
    IDittoPool pool;
    uint256[] nftIds;
    uint256[] lpIds;
    bytes permitterData;
    uint256 minOutput;
    bytes swapData;
}

/**
 * @notice DittoRouter struct for complex swaps with tokens bought and sold in one transaction
 * @dev **nftToTokenTrades** array of trade info where you are selling Nfts into pools
 * @dev **tokenToNftTrades** array of trade info where you are buying Nfts out of pools
 */
struct ComplexSwap {
    NftInSwap[] nftToTokenTrades;
    Swap[] tokenToNftTrades;
}

/**
 * @notice DittoRouter struct for robust partially-fillable complex swaps with tokens bought and sold in one transaction
 * @dev **nftToTokenTrades** array of trade info where you are selling Nfts into pools
 * @dev **tokenToNftTrades** array of trade info where you are buying Nfts out of pools
 * @dev **inputAmount** The total amount of tokens you are willing to spend on the Nfts you buy
 * @dev **tokenRecipient** The address to send the tokens to after the swap
 * @dev **nftRecipient** The address to send the Nfts to after the swap
 */
struct RobustComplexSwap {
    RobustSwap[] tokenToNftTrades;
    RobustNftInSwap[] nftToTokenTrades;
    uint256 inputAmount;
    address tokenRecipient;
    address nftRecipient;
    uint256 deadline;
}

File 45 of 87 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.19;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 46 of 87 : ConsiderationInterface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {
    BasicOrderParameters,
    OrderComponents,
    Fulfillment,
    FulfillmentComponent,
    Execution,
    Order,
    AdvancedOrder,
    CriteriaResolver
} from "../lib/ConsiderationStructs.sol";

/**
 * @title ConsiderationInterface
 * @author 0age
 * @custom:version 1.2
 * @notice Consideration is a generalized ETH/ERC20/ERC721/ERC1155 marketplace.
 *         It minimizes external calls to the greatest extent possible and
 *         provides lightweight methods for common routes as well as more
 *         flexible methods for composing advanced orders.
 *
 * @dev ConsiderationInterface contains all external function interfaces for
 *      Consideration.
 */
interface ConsiderationInterface {
    /**
     * @notice Fulfill an order offering an ERC721 token by supplying Ether (or
     *         the native token for the given chain) as consideration for the
     *         order. An arbitrary number of "additional recipients" may also be
     *         supplied which will each receive native tokens from the fulfiller
     *         as consideration.
     *
     * @param parameters Additional information on the fulfilled order. Note
     *                   that the offerer must first approve this contract (or
     *                   their preferred conduit if indicated by the order) for
     *                   their offered ERC721 token to be transferred.
     *
     * @return fulfilled A boolean indicating whether the order has been
     *                   successfully fulfilled.
     */
    function fulfillBasicOrder(
        BasicOrderParameters calldata parameters
    ) external payable returns (bool fulfilled);

    /**
     * @notice Fulfill an order with an arbitrary number of items for offer and
     *         consideration. Note that this function does not support
     *         criteria-based orders or partial filling of orders (though
     *         filling the remainder of a partially-filled order is supported).
     *
     * @param order               The order to fulfill. Note that both the
     *                            offerer and the fulfiller must first approve
     *                            this contract (or the corresponding conduit if
     *                            indicated) to transfer any relevant tokens on
     *                            their behalf and that contracts must implement
     *                            `onERC1155Received` to receive ERC1155 tokens
     *                            as consideration.
     * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
     *                            any, to source the fulfiller's token approvals
     *                            from. The zero hash signifies that no conduit
     *                            should be used, with direct approvals set on
     *                            Consideration.
     *
     * @return fulfilled A boolean indicating whether the order has been
     *                   successfully fulfilled.
     */
    function fulfillOrder(
        Order calldata order,
        bytes32 fulfillerConduitKey
    ) external payable returns (bool fulfilled);

    /**
     * @notice Fill an order, fully or partially, with an arbitrary number of
     *         items for offer and consideration alongside criteria resolvers
     *         containing specific token identifiers and associated proofs.
     *
     * @param advancedOrder       The order to fulfill along with the fraction
     *                            of the order to attempt to fill. Note that
     *                            both the offerer and the fulfiller must first
     *                            approve this contract (or their preferred
     *                            conduit if indicated by the order) to transfer
     *                            any relevant tokens on their behalf and that
     *                            contracts must implement `onERC1155Received`
     *                            to receive ERC1155 tokens as consideration.
     *                            Also note that all offer and consideration
     *                            components must have no remainder after
     *                            multiplication of the respective amount with
     *                            the supplied fraction for the partial fill to
     *                            be considered valid.
     * @param criteriaResolvers   An array where each element contains a
     *                            reference to a specific offer or
     *                            consideration, a token identifier, and a proof
     *                            that the supplied token identifier is
     *                            contained in the merkle root held by the item
     *                            in question's criteria element. Note that an
     *                            empty criteria indicates that any
     *                            (transferable) token identifier on the token
     *                            in question is valid and that no associated
     *                            proof needs to be supplied.
     * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
     *                            any, to source the fulfiller's token approvals
     *                            from. The zero hash signifies that no conduit
     *                            should be used, with direct approvals set on
     *                            Consideration.
     * @param recipient           The intended recipient for all received items,
     *                            with `address(0)` indicating that the caller
     *                            should receive the items.
     *
     * @return fulfilled A boolean indicating whether the order has been
     *                   successfully fulfilled.
     */
    function fulfillAdvancedOrder(
        AdvancedOrder calldata advancedOrder,
        CriteriaResolver[] calldata criteriaResolvers,
        bytes32 fulfillerConduitKey,
        address recipient
    ) external payable returns (bool fulfilled);

    /**
     * @notice Attempt to fill a group of orders, each with an arbitrary number
     *         of items for offer and consideration. Any order that is not
     *         currently active, has already been fully filled, or has been
     *         cancelled will be omitted. Remaining offer and consideration
     *         items will then be aggregated where possible as indicated by the
     *         supplied offer and consideration component arrays and aggregated
     *         items will be transferred to the fulfiller or to each intended
     *         recipient, respectively. Note that a failing item transfer or an
     *         issue with order formatting will cause the entire batch to fail.
     *         Note that this function does not support criteria-based orders or
     *         partial filling of orders (though filling the remainder of a
     *         partially-filled order is supported).
     *
     * @param orders                    The orders to fulfill. Note that both
     *                                  the offerer and the fulfiller must first
     *                                  approve this contract (or the
     *                                  corresponding conduit if indicated) to
     *                                  transfer any relevant tokens on their
     *                                  behalf and that contracts must implement
     *                                  `onERC1155Received` to receive ERC1155
     *                                  tokens as consideration.
     * @param offerFulfillments         An array of FulfillmentComponent arrays
     *                                  indicating which offer items to attempt
     *                                  to aggregate when preparing executions.
     * @param considerationFulfillments An array of FulfillmentComponent arrays
     *                                  indicating which consideration items to
     *                                  attempt to aggregate when preparing
     *                                  executions.
     * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
     *                                  if any, to source the fulfiller's token
     *                                  approvals from. The zero hash signifies
     *                                  that no conduit should be used, with
     *                                  direct approvals set on this contract.
     * @param maximumFulfilled          The maximum number of orders to fulfill.
     *
     * @return availableOrders An array of booleans indicating if each order
     *                         with an index corresponding to the index of the
     *                         returned boolean was fulfillable or not.
     * @return executions      An array of elements indicating the sequence of
     *                         transfers performed as part of matching the given
     *                         orders. Note that unspent offer item amounts or
     *                         native tokens will not be reflected as part of
     *                         this array.
     */
    function fulfillAvailableOrders(
        Order[] calldata orders,
        FulfillmentComponent[][] calldata offerFulfillments,
        FulfillmentComponent[][] calldata considerationFulfillments,
        bytes32 fulfillerConduitKey,
        uint256 maximumFulfilled
    )
        external
        payable
        returns (bool[] memory availableOrders, Execution[] memory executions);

    /**
     * @notice Attempt to fill a group of orders, fully or partially, with an
     *         arbitrary number of items for offer and consideration per order
     *         alongside criteria resolvers containing specific token
     *         identifiers and associated proofs. Any order that is not
     *         currently active, has already been fully filled, or has been
     *         cancelled will be omitted. Remaining offer and consideration
     *         items will then be aggregated where possible as indicated by the
     *         supplied offer and consideration component arrays and aggregated
     *         items will be transferred to the fulfiller or to each intended
     *         recipient, respectively. Note that a failing item transfer or an
     *         issue with order formatting will cause the entire batch to fail.
     *
     * @param advancedOrders            The orders to fulfill along with the
     *                                  fraction of those orders to attempt to
     *                                  fill. Note that both the offerer and the
     *                                  fulfiller must first approve this
     *                                  contract (or their preferred conduit if
     *                                  indicated by the order) to transfer any
     *                                  relevant tokens on their behalf and that
     *                                  contracts must implement
     *                                  `onERC1155Received` to enable receipt of
     *                                  ERC1155 tokens as consideration. Also
     *                                  note that all offer and consideration
     *                                  components must have no remainder after
     *                                  multiplication of the respective amount
     *                                  with the supplied fraction for an
     *                                  order's partial fill amount to be
     *                                  considered valid.
     * @param criteriaResolvers         An array where each element contains a
     *                                  reference to a specific offer or
     *                                  consideration, a token identifier, and a
     *                                  proof that the supplied token identifier
     *                                  is contained in the merkle root held by
     *                                  the item in question's criteria element.
     *                                  Note that an empty criteria indicates
     *                                  that any (transferable) token
     *                                  identifier on the token in question is
     *                                  valid and that no associated proof needs
     *                                  to be supplied.
     * @param offerFulfillments         An array of FulfillmentComponent arrays
     *                                  indicating which offer items to attempt
     *                                  to aggregate when preparing executions.
     * @param considerationFulfillments An array of FulfillmentComponent arrays
     *                                  indicating which consideration items to
     *                                  attempt to aggregate when preparing
     *                                  executions.
     * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
     *                                  if any, to source the fulfiller's token
     *                                  approvals from. The zero hash signifies
     *                                  that no conduit should be used, with
     *                                  direct approvals set on this contract.
     * @param recipient                 The intended recipient for all received
     *                                  items, with `address(0)` indicating that
     *                                  the caller should receive the items.
     * @param maximumFulfilled          The maximum number of orders to fulfill.
     *
     * @return availableOrders An array of booleans indicating if each order
     *                         with an index corresponding to the index of the
     *                         returned boolean was fulfillable or not.
     * @return executions      An array of elements indicating the sequence of
     *                         transfers performed as part of matching the given
     *                         orders. Note that unspent offer item amounts or
     *                         native tokens will not be reflected as part of
     *                         this array.
     */
    function fulfillAvailableAdvancedOrders(
        AdvancedOrder[] calldata advancedOrders,
        CriteriaResolver[] calldata criteriaResolvers,
        FulfillmentComponent[][] calldata offerFulfillments,
        FulfillmentComponent[][] calldata considerationFulfillments,
        bytes32 fulfillerConduitKey,
        address recipient,
        uint256 maximumFulfilled
    )
        external
        payable
        returns (bool[] memory availableOrders, Execution[] memory executions);

    /**
     * @notice Match an arbitrary number of orders, each with an arbitrary
     *         number of items for offer and consideration along with a set of
     *         fulfillments allocating offer components to consideration
     *         components. Note that this function does not support
     *         criteria-based or partial filling of orders (though filling the
     *         remainder of a partially-filled order is supported). Any unspent
     *         offer item amounts or native tokens will be transferred to the
     *         caller.
     *
     * @param orders       The orders to match. Note that both the offerer and
     *                     fulfiller on each order must first approve this
     *                     contract (or their conduit if indicated by the order)
     *                     to transfer any relevant tokens on their behalf and
     *                     each consideration recipient must implement
     *                     `onERC1155Received` to enable ERC1155 token receipt.
     * @param fulfillments An array of elements allocating offer components to
     *                     consideration components. Note that each
     *                     consideration component must be fully met for the
     *                     match operation to be valid.
     *
     * @return executions An array of elements indicating the sequence of
     *                    transfers performed as part of matching the given
     *                    orders. Note that unspent offer item amounts or
     *                    native tokens will not be reflected as part of this
     *                    array.
     */
    function matchOrders(
        Order[] calldata orders,
        Fulfillment[] calldata fulfillments
    ) external payable returns (Execution[] memory executions);

    /**
     * @notice Match an arbitrary number of full or partial orders, each with an
     *         arbitrary number of items for offer and consideration, supplying
     *         criteria resolvers containing specific token identifiers and
     *         associated proofs as well as fulfillments allocating offer
     *         components to consideration components. Any unspent offer item
     *         amounts will be transferred to the designated recipient (with the
     *         null address signifying to use the caller) and any unspent native
     *         tokens will be returned to the caller.
     *
     * @param orders            The advanced orders to match. Note that both the
     *                          offerer and fulfiller on each order must first
     *                          approve this contract (or a preferred conduit if
     *                          indicated by the order) to transfer any relevant
     *                          tokens on their behalf and each consideration
     *                          recipient must implement `onERC1155Received` in
     *                          order to receive ERC1155 tokens. Also note that
     *                          the offer and consideration components for each
     *                          order must have no remainder after multiplying
     *                          the respective amount with the supplied fraction
     *                          in order for the group of partial fills to be
     *                          considered valid.
     * @param criteriaResolvers An array where each element contains a reference
     *                          to a specific order as well as that order's
     *                          offer or consideration, a token identifier, and
     *                          a proof that the supplied token identifier is
     *                          contained in the order's merkle root. Note that
     *                          an empty root indicates that any (transferable)
     *                          token identifier is valid and that no associated
     *                          proof needs to be supplied.
     * @param fulfillments      An array of elements allocating offer components
     *                          to consideration components. Note that each
     *                          consideration component must be fully met in
     *                          order for the match operation to be valid.
     * @param recipient         The intended recipient for all unspent offer
     *                          item amounts, or the caller if the null address
     *                          is supplied.
     *
     * @return executions An array of elements indicating the sequence of
     *                    transfers performed as part of matching the given
     *                    orders. Note that unspent offer item amounts or native
     *                    tokens will not be reflected as part of this array.
     */
    function matchAdvancedOrders(
        AdvancedOrder[] calldata orders,
        CriteriaResolver[] calldata criteriaResolvers,
        Fulfillment[] calldata fulfillments,
        address recipient
    ) external payable returns (Execution[] memory executions);

    /**
     * @notice Cancel an arbitrary number of orders. Note that only the offerer
     *         or the zone of a given order may cancel it. Callers should ensure
     *         that the intended order was cancelled by calling `getOrderStatus`
     *         and confirming that `isCancelled` returns `true`.
     *
     * @param orders The orders to cancel.
     *
     * @return cancelled A boolean indicating whether the supplied orders have
     *                   been successfully cancelled.
     */
    function cancel(
        OrderComponents[] calldata orders
    ) external returns (bool cancelled);

    /**
     * @notice Validate an arbitrary number of orders, thereby registering their
     *         signatures as valid and allowing the fulfiller to skip signature
     *         verification on fulfillment. Note that validated orders may still
     *         be unfulfillable due to invalid item amounts or other factors;
     *         callers should determine whether validated orders are fulfillable
     *         by simulating the fulfillment call prior to execution. Also note
     *         that anyone can validate a signed order, but only the offerer can
     *         validate an order without supplying a signature.
     *
     * @param orders The orders to validate.
     *
     * @return validated A boolean indicating whether the supplied orders have
     *                   been successfully validated.
     */
    function validate(
        Order[] calldata orders
    ) external returns (bool validated);

    /**
     * @notice Cancel all orders from a given offerer with a given zone in bulk
     *         by incrementing a counter. Note that only the offerer may
     *         increment the counter.
     *
     * @return newCounter The new counter.
     */
    function incrementCounter() external returns (uint256 newCounter);

    /**
     * @notice Retrieve the order hash for a given order.
     *
     * @param order The components of the order.
     *
     * @return orderHash The order hash.
     */
    function getOrderHash(
        OrderComponents calldata order
    ) external view returns (bytes32 orderHash);

    /**
     * @notice Retrieve the status of a given order by hash, including whether
     *         the order has been cancelled or validated and the fraction of the
     *         order that has been filled.
     *
     * @param orderHash The order hash in question.
     *
     * @return isValidated A boolean indicating whether the order in question
     *                     has been validated (i.e. previously approved or
     *                     partially filled).
     * @return isCancelled A boolean indicating whether the order in question
     *                     has been cancelled.
     * @return totalFilled The total portion of the order that has been filled
     *                     (i.e. the "numerator").
     * @return totalSize   The total size of the order that is either filled or
     *                     unfilled (i.e. the "denominator").
     */
    function getOrderStatus(
        bytes32 orderHash
    )
        external
        view
        returns (
            bool isValidated,
            bool isCancelled,
            uint256 totalFilled,
            uint256 totalSize
        );

    /**
     * @notice Retrieve the current counter for a given offerer.
     *
     * @param offerer The offerer in question.
     *
     * @return counter The current counter.
     */
    function getCounter(
        address offerer
    ) external view returns (uint256 counter);

    /**
     * @notice Retrieve configuration information for this contract.
     *
     * @return version           The contract version.
     * @return domainSeparator   The domain separator for this contract.
     * @return conduitController The conduit Controller set for this contract.
     */
    function information()
        external
        view
        returns (
            string memory version,
            bytes32 domainSeparator,
            address conduitController
        );

    function getContractOffererNonce(
        address contractOfferer
    ) external view returns (uint256 nonce);

    /**
     * @notice Retrieve the name of this contract.
     *
     * @return contractName The name of this contract.
     */
    function name() external view returns (string memory contractName);
}

File 47 of 87 : OrderCombiner.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { Side, ItemType, OrderType } from "./ConsiderationEnums.sol";

import {
    OfferItem,
    ConsiderationItem,
    ReceivedItem,
    OrderParameters,
    Fulfillment,
    FulfillmentComponent,
    Execution,
    Order,
    AdvancedOrder,
    CriteriaResolver
} from "./ConsiderationStructs.sol";

import { OrderFulfiller } from "./OrderFulfiller.sol";

import { FulfillmentApplier } from "./FulfillmentApplier.sol";

import "./ConsiderationErrors.sol";

/**
 * @title OrderCombiner
 * @author 0age
 * @notice OrderCombiner contains logic for fulfilling combinations of orders,
 *         either by matching offer items to consideration items or by
 *         fulfilling orders where available.
 */
contract OrderCombiner is OrderFulfiller, FulfillmentApplier {
    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(address conduitController) OrderFulfiller(conduitController) {}

    /**
     * @notice Internal function to attempt to fill a group of orders, fully or
     *         partially, with an arbitrary number of items for offer and
     *         consideration per order alongside criteria resolvers containing
     *         specific token identifiers and associated proofs. Any order that
     *         is not currently active, has already been fully filled, or has
     *         been cancelled will be omitted. Remaining offer and consideration
     *         items will then be aggregated where possible as indicated by the
     *         supplied offer and consideration component arrays and aggregated
     *         items will be transferred to the fulfiller or to each intended
     *         recipient, respectively. Note that a failing item transfer or an
     *         issue with order formatting will cause the entire batch to fail.
     *
     * @param advancedOrders            The orders to fulfill along with the
     *                                  fraction of those orders to attempt to
     *                                  fill. Note that both the offerer and the
     *                                  fulfiller must first approve this
     *                                  contract (or a conduit if indicated by
     *                                  the order) to transfer any relevant
     *                                  tokens on their behalf and that
     *                                  contracts must implement
     *                                  `onERC1155Received` in order to receive
     *                                  ERC1155 tokens as consideration. Also
     *                                  note that all offer and consideration
     *                                  components must have no remainder after
     *                                  multiplication of the respective amount
     *                                  with the supplied fraction for an
     *                                  order's partial fill amount to be
     *                                  considered valid.
     * @param criteriaResolvers         An array where each element contains a
     *                                  reference to a specific offer or
     *                                  consideration, a token identifier, and a
     *                                  proof that the supplied token identifier
     *                                  is contained in the merkle root held by
     *                                  the item in question's criteria element.
     *                                  Note that an empty criteria indicates
     *                                  that any (transferable) token
     *                                  identifier on the token in question is
     *                                  valid and that no associated proof needs
     *                                  to be supplied.
     * @param offerFulfillments         An array of FulfillmentComponent arrays
     *                                  indicating which offer items to attempt
     *                                  to aggregate when preparing executions.
     * @param considerationFulfillments An array of FulfillmentComponent arrays
     *                                  indicating which consideration items to
     *                                  attempt to aggregate when preparing
     *                                  executions.
     * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
     *                                  if any, to source the fulfiller's token
     *                                  approvals from. The zero hash signifies
     *                                  that no conduit should be used (and
     *                                  direct approvals set on Consideration).
     * @param recipient                 The intended recipient for all received
     *                                  items.
     * @param maximumFulfilled          The maximum number of orders to fulfill.
     *
     * @return availableOrders An array of booleans indicating if each order
     *                         with an index corresponding to the index of the
     *                         returned boolean was fulfillable or not.
     * @return executions      An array of elements indicating the sequence of
     *                         transfers performed as part of matching the given
     *                         orders.
     */
    function _fulfillAvailableAdvancedOrders(
        AdvancedOrder[] memory advancedOrders,
        CriteriaResolver[] memory criteriaResolvers,
        FulfillmentComponent[][] memory offerFulfillments,
        FulfillmentComponent[][] memory considerationFulfillments,
        bytes32 fulfillerConduitKey,
        address recipient,
        uint256 maximumFulfilled
    )
        internal
        returns (
            bool[] memory /* availableOrders */,
            Execution[] memory /* executions */
        )
    {
        // Validate orders, apply amounts, & determine if they utilize conduits.
        bytes32[] memory orderHashes = _validateOrdersAndPrepareToFulfill(
            advancedOrders,
            criteriaResolvers,
            false, // Signifies that invalid orders should NOT revert.
            maximumFulfilled,
            recipient
        );

        // Aggregate used offer and consideration items and execute transfers.
        return
            _executeAvailableFulfillments(
                advancedOrders,
                offerFulfillments,
                considerationFulfillments,
                fulfillerConduitKey,
                recipient,
                orderHashes
            );
    }

    /**
     * @dev Internal function to validate a group of orders, update their
     *      statuses, reduce amounts by their previously filled fractions, apply
     *      criteria resolvers, and emit OrderFulfilled events. Note that this
     *      function needs to be called before
     *      _aggregateValidFulfillmentConsiderationItems to set the memory
     *      layout that _aggregateValidFulfillmentConsiderationItems depends on.
     *
     * @param advancedOrders    The advanced orders to validate and reduce by
     *                          their previously filled amounts.
     * @param criteriaResolvers An array where each element contains a reference
     *                          to a specific order as well as that order's
     *                          offer or consideration, a token identifier, and
     *                          a proof that the supplied token identifier is
     *                          contained in the order's merkle root. Note that
     *                          a root of zero indicates that any transferable
     *                          token identifier is valid and that no proof
     *                          needs to be supplied.
     * @param revertOnInvalid   A boolean indicating whether to revert on any
     *                          order being invalid; setting this to false will
     *                          instead cause the invalid order to be skipped.
     * @param maximumFulfilled  The maximum number of orders to fulfill.
     * @param recipient         The intended recipient for all items that do not
     *                          already have a designated recipient and are not
     *                          already used as part of a provided fulfillment.
     *
     * @return orderHashes      The hashes of the orders being fulfilled.
     */
    function _validateOrdersAndPrepareToFulfill(
        AdvancedOrder[] memory advancedOrders,
        CriteriaResolver[] memory criteriaResolvers,
        bool revertOnInvalid,
        uint256 maximumFulfilled,
        address recipient
    ) internal returns (bytes32[] memory orderHashes) {
        // Ensure this function cannot be triggered during a reentrant call.
        _setReentrancyGuard(true); // Native tokens accepted during execution.

        // Declare an error buffer indicating status of any native offer items.
        // Note that contract orders may still designate native offer items.
        // {00} == 0 => In a match function, no native offer items: allow.
        // {01} == 1 => In a match function, some native offer items: allow.
        // {10} == 2 => Not in a match function, no native offer items: allow.
        // {11} == 3 => Not in a match function, some native offer items: THROW.
        uint256 invalidNativeOfferItemErrorBuffer;

        // Use assembly to set the value for the second bit of the error buffer.
        assembly {
            /**
             * Use the 231st bit of the error buffer to indicate whether the
             * current function is not matchAdvancedOrders or matchOrders.
             *
             * sig                                func
             * -----------------------------------------------------------------
             * 1010100000010111010001000 0 000100 matchOrders
             * 1111001011010001001010110 0 010010 matchAdvancedOrders
             * 1110110110011000101001010 1 110100 fulfillAvailableOrders
             * 1000011100100000000110110 1 000001 fulfillAvailableAdvancedOrders
             *                           ^ 7th bit
             */
            invalidNativeOfferItemErrorBuffer := and(
                NonMatchSelector_MagicMask,
                calldataload(0)
            )
        }

        // Declare variables for later use.
        AdvancedOrder memory advancedOrder;
        uint256 terminalMemoryOffset;

        unchecked {
            // Read length of orders array and place on the stack.
            uint256 totalOrders = advancedOrders.length;

            // Track the order hash for each order being fulfilled.
            orderHashes = new bytes32[](totalOrders);

            // Determine the memory offset to terminate on during loops.
            terminalMemoryOffset = (totalOrders + 1) * 32;
        }

        // Skip overflow checks as all for loops are indexed starting at zero.
        unchecked {
            // Declare inner variables.
            OfferItem[] memory offer;
            ConsiderationItem[] memory consideration;

            // Iterate over each order.
            for (uint256 i = 32; i < terminalMemoryOffset; i += 32) {
                // Retrieve order using assembly to bypass out-of-range check.
                assembly {
                    advancedOrder := mload(add(advancedOrders, i))
                }

                // Determine if max number orders have already been fulfilled.
                if (maximumFulfilled == 0) {
                    // Mark fill fraction as zero as the order will not be used.
                    advancedOrder.numerator = 0;

                    // Continue iterating through the remaining orders.
                    continue;
                }

                // Validate it, update status, and determine fraction to fill.
                (
                    bytes32 orderHash,
                    uint256 numerator,
                    uint256 denominator
                ) = _validateOrderAndUpdateStatus(
                        advancedOrder,
                        revertOnInvalid
                    );

                // Do not track hash or adjust prices if order is not fulfilled.
                if (numerator == 0) {
                    // Mark fill fraction as zero if the order is not fulfilled.
                    advancedOrder.numerator = 0;

                    // Continue iterating through the remaining orders.
                    continue;
                }

                // Otherwise, track the order hash in question.
                assembly {
                    mstore(add(orderHashes, i), orderHash)
                }

                // Decrement the number of fulfilled orders.
                // Skip underflow check as the condition before
                // implies that maximumFulfilled > 0.
                maximumFulfilled--;

                // Place the start time for the order on the stack.
                uint256 startTime = advancedOrder.parameters.startTime;

                // Place the end time for the order on the stack.
                uint256 endTime = advancedOrder.parameters.endTime;

                // Retrieve array of offer items for the order in question.
                offer = advancedOrder.parameters.offer;

                // Read length of offer array and place on the stack.
                uint256 totalOfferItems = offer.length;

                {
                    // Create a variable indicating if the order is not a
                    // contract order. Cache in scratch space to avoid stack
                    // depth errors.
                    OrderType orderType = advancedOrder.parameters.orderType;
                    assembly {
                        let isNonContract := lt(orderType, 4)
                        mstore(0, isNonContract)
                    }
                }

                // Iterate over each offer item on the order.
                for (uint256 j = 0; j < totalOfferItems; ++j) {
                    // Retrieve the offer item.
                    OfferItem memory offerItem = offer[j];

                    {
                        assembly {
                            // If the offer item is for the native token and the
                            // order type is not a contract order type, set the
                            // first bit of the error buffer to true.
                            invalidNativeOfferItemErrorBuffer := or(
                                invalidNativeOfferItemErrorBuffer,
                                lt(mload(offerItem), mload(0))
                            )
                        }
                    }

                    // Apply order fill fraction to offer item end amount.
                    uint256 endAmount = _getFraction(
                        numerator,
                        denominator,
                        offerItem.endAmount
                    );

                    // Reuse same fraction if start and end amounts are equal.
                    if (offerItem.startAmount == offerItem.endAmount) {
                        // Apply derived amount to both start and end amount.
                        offerItem.startAmount = endAmount;
                    } else {
                        // Apply order fill fraction to offer item start amount.
                        offerItem.startAmount = _getFraction(
                            numerator,
                            denominator,
                            offerItem.startAmount
                        );
                    }

                    // Adjust offer amount using current time; round down.
                    uint256 currentAmount = _locateCurrentAmount(
                        offerItem.startAmount,
                        endAmount,
                        startTime,
                        endTime,
                        false // round down
                    );

                    // Update amounts in memory to match the current amount.
                    // Note that the end amount is used to track spent amounts.
                    offerItem.startAmount = currentAmount;
                    offerItem.endAmount = currentAmount;
                }

                // Retrieve array of consideration items for order in question.
                consideration = (advancedOrder.parameters.consideration);

                // Read length of consideration array and place on the stack.
                uint256 totalConsiderationItems = consideration.length;

                // Iterate over each consideration item on the order.
                for (uint256 j = 0; j < totalConsiderationItems; ++j) {
                    // Retrieve the consideration item.
                    ConsiderationItem memory considerationItem = (
                        consideration[j]
                    );

                    // Apply fraction to consideration item end amount.
                    uint256 endAmount = _getFraction(
                        numerator,
                        denominator,
                        considerationItem.endAmount
                    );

                    // Reuse same fraction if start and end amounts are equal.
                    if (
                        considerationItem.startAmount ==
                        considerationItem.endAmount
                    ) {
                        // Apply derived amount to both start and end amount.
                        considerationItem.startAmount = endAmount;
                    } else {
                        // Apply fraction to consideration item start amount.
                        considerationItem.startAmount = _getFraction(
                            numerator,
                            denominator,
                            considerationItem.startAmount
                        );
                    }

                    // Adjust consideration amount using current time; round up.
                    uint256 currentAmount = (
                        _locateCurrentAmount(
                            considerationItem.startAmount,
                            endAmount,
                            startTime,
                            endTime,
                            true // round up
                        )
                    );

                    considerationItem.startAmount = currentAmount;

                    // Utilize assembly to manually "shift" the recipient value,
                    // then to copy the start amount to the recipient.
                    // Note that this sets up the memory layout that is
                    // subsequently relied upon by
                    // _aggregateValidFulfillmentConsiderationItems.
                    assembly {
                        // Derive the pointer to the recipient using the item
                        // pointer along with the offset to the recipient.
                        let considerationItemRecipient := add(
                            considerationItem,
                            ConsiderationItem_recipient_offset // recipient
                        )

                        // Write recipient to endAmount, as endAmount is not
                        // used from this point on and can be repurposed to fit
                        // the layout of a ReceivedItem.
                        mstore(
                            add(
                                considerationItem,
                                ReceivedItem_recipient_offset // old endAmount
                            ),
                            mload(considerationItemRecipient)
                        )

                        // Write startAmount to recipient, as recipient is not
                        // used from this point on and can be repurposed to
                        // track received amounts.
                        mstore(considerationItemRecipient, currentAmount)
                    }
                }
            }
        }

        // If the first bit is set, a native offer item was encountered. If the
        // second bit is set in the error buffer, the current function is not
        // matchOrders or matchAdvancedOrders. If the value is three, both the
        // first and second bits were set; in that case, revert with an error.
        if (
            invalidNativeOfferItemErrorBuffer ==
            NonMatchSelector_InvalidErrorValue
        ) {
            _revertInvalidNativeOfferItem();
        }

        // Apply criteria resolvers to each order as applicable.
        _applyCriteriaResolvers(advancedOrders, criteriaResolvers);

        // Emit an event for each order signifying that it has been fulfilled.
        // Skip overflow checks as all for loops are indexed starting at zero.
        unchecked {
            bytes32 orderHash;

            // Iterate over each order.
            for (uint256 i = 32; i < terminalMemoryOffset; i += 32) {
                assembly {
                    orderHash := mload(add(orderHashes, i))
                }

                // Do not emit an event if no order hash is present.
                if (orderHash == bytes32(0)) {
                    continue;
                }

                // Retrieve order using assembly to bypass out-of-range check.
                assembly {
                    advancedOrder := mload(add(advancedOrders, i))
                }

                // Retrieve parameters for the order in question.
                OrderParameters memory orderParameters = (
                    advancedOrder.parameters
                );

                // Emit an OrderFulfilled event.
                _emitOrderFulfilledEvent(
                    orderHash,
                    orderParameters.offerer,
                    orderParameters.zone,
                    recipient,
                    orderParameters.offer,
                    orderParameters.consideration
                );
            }
        }
    }

    /**
     * @dev Internal function to fulfill a group of validated orders, fully or
     *      partially, with an arbitrary number of items for offer and
     *      consideration per order and to execute transfers. Any order that is
     *      not currently active, has already been fully filled, or has been
     *      cancelled will be omitted. Remaining offer and consideration items
     *      will then be aggregated where possible as indicated by the supplied
     *      offer and consideration component arrays and aggregated items will
     *      be transferred to the fulfiller or to each intended recipient,
     *      respectively. Note that a failing item transfer or an issue with
     *      order formatting will cause the entire batch to fail.
     *
     * @param advancedOrders            The orders to fulfill along with the
     *                                  fraction of those orders to attempt to
     *                                  fill. Note that both the offerer and the
     *                                  fulfiller must first approve this
     *                                  contract (or the conduit if indicated by
     *                                  the order) to transfer any relevant
     *                                  tokens on their behalf and that
     *                                  contracts must implement
     *                                  `onERC1155Received` in order to receive
     *                                  ERC1155 tokens as consideration. Also
     *                                  note that all offer and consideration
     *                                  components must have no remainder after
     *                                  multiplication of the respective amount
     *                                  with the supplied fraction for an
     *                                  order's partial fill amount to be
     *                                  considered valid.
     * @param offerFulfillments         An array of FulfillmentComponent arrays
     *                                  indicating which offer items to attempt
     *                                  to aggregate when preparing executions.
     * @param considerationFulfillments An array of FulfillmentComponent arrays
     *                                  indicating which consideration items to
     *                                  attempt to aggregate when preparing
     *                                  executions.
     * @param fulfillerConduitKey       A bytes32 value indicating what conduit,
     *                                  if any, to source the fulfiller's token
     *                                  approvals from. The zero hash signifies
     *                                  that no conduit should be used, with
     *                                  direct approvals set on Consideration.
     * @param recipient                 The intended recipient for all items
     *                                  that do not already have a designated
     *                                  recipient and are not already used as
     *                                  part of a provided fulfillment.
     * @param orderHashes               An array of order hashes for each order.
     *
     * @return availableOrders An array of booleans indicating if each order
     *                         with an index corresponding to the index of the
     *                         returned boolean was fulfillable or not.
     * @return executions      An array of elements indicating the sequence of
     *                         transfers performed as part of matching the given
     *                         orders.
     */
    function _executeAvailableFulfillments(
        AdvancedOrder[] memory advancedOrders,
        FulfillmentComponent[][] memory offerFulfillments,
        FulfillmentComponent[][] memory considerationFulfillments,
        bytes32 fulfillerConduitKey,
        address recipient,
        bytes32[] memory orderHashes
    )
        internal
        returns (bool[] memory availableOrders, Execution[] memory executions)
    {
        // Retrieve length of offer fulfillments array and place on the stack.
        uint256 totalOfferFulfillments = offerFulfillments.length;

        // Retrieve length of consideration fulfillments array & place on stack.
        uint256 totalConsiderationFulfillments = (
            considerationFulfillments.length
        );

        // Allocate an execution for each offer and consideration fulfillment.
        executions = new Execution[](
            totalOfferFulfillments + totalConsiderationFulfillments
        );

        // Skip overflow checks as all for loops are indexed starting at zero.
        unchecked {
            // Track number of filtered executions.
            uint256 totalFilteredExecutions = 0;

            // Iterate over each offer fulfillment.
            for (uint256 i = 0; i < totalOfferFulfillments; ) {
                // Derive aggregated execution corresponding with fulfillment.
                Execution memory execution = _aggregateAvailable(
                    advancedOrders,
                    Side.OFFER,
                    offerFulfillments[i],
                    fulfillerConduitKey,
                    recipient
                );

                // If offerer and recipient on the execution are the same...
                if (
                    _unmaskedAddressComparison(
                        execution.item.recipient,
                        execution.offerer
                    )
                ) {
                    // Increment total filtered executions.
                    ++totalFilteredExecutions;
                } else {
                    // Otherwise, assign the execution to the executions array.
                    executions[i - totalFilteredExecutions] = execution;
                }

                // Increment iterator.
                ++i;
            }

            // Iterate over each consideration fulfillment.
            for (uint256 i = 0; i < totalConsiderationFulfillments; ) {
                // Derive aggregated execution corresponding with fulfillment.
                Execution memory execution = _aggregateAvailable(
                    advancedOrders,
                    Side.CONSIDERATION,
                    considerationFulfillments[i],
                    fulfillerConduitKey,
                    address(0) // unused
                );

                // If offerer and recipient on the execution are the same...
                if (
                    _unmaskedAddressComparison(
                        execution.item.recipient,
                        execution.offerer
                    )
                ) {
                    // Increment total filtered executions.
                    ++totalFilteredExecutions;
                } else {
                    // Otherwise, assign the execution to the executions array.
                    executions[
                        i + totalOfferFulfillments - totalFilteredExecutions
                    ] = execution;
                }

                // Increment iterator.
                ++i;
            }

            // If some number of executions have been filtered...
            if (totalFilteredExecutions != 0) {
                // reduce the total length of the executions array.
                assembly {
                    mstore(
                        executions,
                        sub(mload(executions), totalFilteredExecutions)
                    )
                }
            }
        }

        // Revert if no orders are available.
        if (executions.length == 0) {
            _revertNoSpecifiedOrdersAvailable();
        }

        // Perform final checks and return.
        availableOrders = _performFinalChecksAndExecuteOrders(
            advancedOrders,
            executions,
            orderHashes,
            recipient
        );

        return (availableOrders, executions);
    }

    /**
     * @dev Internal function to perform a final check that each consideration
     *      item for an arbitrary number of fulfilled orders has been met and to
     *      trigger associated executions, transferring the respective items.
     *
     * @param advancedOrders     The orders to check and perform executions for.
     * @param executions         An array of elements indicating the sequence of
     *                           transfers to perform when fulfilling the given
     *                           orders.
     * @param orderHashes        An array of order hashes for each order.
     * @param recipient          The intended recipient for all items that do
     *                           not already have a designated recipient and are
     *                           not used as part of a provided fulfillment.
     *
     * @return availableOrders   An array of booleans indicating if each order
     *                           with an index corresponding to the index of the
     *                           returned boolean was fulfillable or not.
     */
    function _performFinalChecksAndExecuteOrders(
        AdvancedOrder[] memory advancedOrders,
        Execution[] memory executions,
        bytes32[] memory orderHashes,
        address recipient
    ) internal returns (bool[] memory /* availableOrders */) {
        // Declare a variable for the available native token balance.
        uint256 nativeTokenBalance;

        // Retrieve the length of the advanced orders array and place on stack.
        uint256 totalOrders = advancedOrders.length;

        // Initialize array for tracking available orders.
        bool[] memory availableOrders = new bool[](totalOrders);

        // Initialize an accumulator array. From this point forward, no new
        // memory regions can be safely allocated until the accumulator is no
        // longer being utilized, as the accumulator operates in an open-ended
        // fashion from this memory pointer; existing memory may still be
        // accessed and modified, however.
        bytes memory accumulator = new bytes(AccumulatorDisarmed);

        // Retrieve the length of the executions array and place on stack.
        uint256 totalExecutions = executions.length;

        // Iterate over each execution.
        for (uint256 i = 0; i < totalExecutions; ) {
            // Retrieve the execution and the associated received item.
            Execution memory execution = executions[i];
            ReceivedItem memory item = execution.item;

            // If execution transfers native tokens, reduce value available.
            if (item.itemType == ItemType.NATIVE) {
                // Get the current available balance of native tokens.
                assembly {
                    nativeTokenBalance := selfbalance()
                }

                // Ensure that sufficient native tokens are still available.
                if (item.amount > nativeTokenBalance) {
                    _revertInsufficientEtherSupplied();
                }
            }

            // Transfer the item specified by the execution.
            _transfer(
                item,
                execution.offerer,
                execution.conduitKey,
                accumulator
            );

            // Skip overflow check as for loop is indexed starting at zero.
            unchecked {
                ++i;
            }
        }

        // Skip overflow checks as all for loops are indexed starting at zero.
        unchecked {
            // duplicate recipient address to stack to avoid stack-too-deep
            address _recipient = recipient;

            // Iterate over orders to ensure all consideration items are met.
            for (uint256 i = 0; i < totalOrders; ++i) {
                // Retrieve the order in question.
                AdvancedOrder memory advancedOrder = advancedOrders[i];

                // Skip consideration item checks for order if not fulfilled.
                if (advancedOrder.numerator == 0) {
                    // This is required because the current memory region, which
                    // was previously used by the accumulator, might be dirty.
                    availableOrders[i] = false;
                    continue;
                }

                // Mark the order as available.
                availableOrders[i] = true;

                // Retrieve the order parameters.
                OrderParameters memory parameters = advancedOrder.parameters;

                {
                    // Retrieve offer items.
                    OfferItem[] memory offer = parameters.offer;

                    // Read length of offer array & place on the stack.
                    uint256 totalOfferItems = offer.length;

                    // Iterate over each offer item to restore it.
                    for (uint256 j = 0; j < totalOfferItems; ++j) {
                        OfferItem memory offerItem = offer[j];
                        // Retrieve original amount on the offer item.
                        uint256 originalAmount = offerItem.endAmount;
                        // Retrieve remaining amount on the offer item.
                        uint256 unspentAmount = offerItem.startAmount;

                        // Transfer to recipient if unspent amount is not zero.
                        // Note that the transfer will not be reflected in the
                        // executions array.
                        if (unspentAmount != 0) {
                            _transfer(
                                _convertOfferItemToReceivedItemWithRecipient(
                                    offerItem,
                                    _recipient
                                ),
                                parameters.offerer,
                                parameters.conduitKey,
                                accumulator
                            );
                        }

                        // Restore original amount on the offer item.
                        offerItem.startAmount = originalAmount;
                    }
                }

                {
                    // Retrieve consideration items & ensure they are fulfilled.
                    ConsiderationItem[] memory consideration = (
                        parameters.consideration
                    );

                    // Read length of consideration array & place on the stack.
                    uint256 totalConsiderationItems = consideration.length;

                    // Iterate over each consideration item to ensure it is met.
                    for (uint256 j = 0; j < totalConsiderationItems; ++j) {
                        ConsiderationItem memory considerationItem = (
                            consideration[j]
                        );

                        // Retrieve remaining amount on the consideration item.
                        uint256 unmetAmount = considerationItem.startAmount;

                        // Revert if the remaining amount is not zero.
                        if (unmetAmount != 0) {
                            _revertConsiderationNotMet(i, j, unmetAmount);
                        }

                        // Utilize assembly to restore the original value.
                        assembly {
                            // Write recipient to startAmount.
                            mstore(
                                add(
                                    considerationItem,
                                    ReceivedItem_amount_offset
                                ),
                                mload(
                                    add(
                                        considerationItem,
                                        ConsiderationItem_recipient_offset
                                    )
                                )
                            )
                        }
                    }
                }

                // Check restricted orders and contract orders.
                _assertRestrictedAdvancedOrderValidity(
                    advancedOrder,
                    orderHashes,
                    orderHashes[i]
                );
            }
        }

        // Trigger any remaining accumulated transfers via call to the conduit.
        _triggerIfArmed(accumulator);

        // Determine whether any native token balance remains.
        assembly {
            nativeTokenBalance := selfbalance()
        }

        // Return any remaining native token balance to the caller.
        if (nativeTokenBalance != 0) {
            _transferNativeTokens(payable(msg.sender), nativeTokenBalance);
        }

        // Clear the reentrancy guard.
        _clearReentrancyGuard();

        // Return the array containing available orders.
        return availableOrders;
    }

    /**
     * @dev Internal function to emit an OrdersMatched event using the same
     *      memory region as the existing order hash array.
     *
     * @param orderHashes An array of order hashes to include as an argument for
     *                    the OrdersMatched event.
     */
    function _emitOrdersMatched(bytes32[] memory orderHashes) internal {
        assembly {
            // Load the array length from memory.
            let length := mload(orderHashes)

            // Get the full size of the event data - one word for the offset,
            // one for the array length and one per hash.
            let dataSize := add(TwoWords, shl(OneWordShift, length))

            // Get pointer to start of data, reusing word before array length
            // for the offset.
            let dataPointer := sub(orderHashes, OneWord)

            // Cache the existing word in memory at the offset pointer.
            let cache := mload(dataPointer)

            // Write an offset of 32.
            mstore(dataPointer, OneWord)

            // Emit the OrdersMatched event.
            log1(dataPointer, dataSize, OrdersMatchedTopic0)

            // Restore the cached word.
            mstore(dataPointer, cache)
        }
    }

    /**
     * @dev Internal function to match an arbitrary number of full or partial
     *      orders, each with an arbitrary number of items for offer and
     *      consideration, supplying criteria resolvers containing specific
     *      token identifiers and associated proofs as well as fulfillments
     *      allocating offer components to consideration components.
     *
     * @param advancedOrders    The advanced orders to match. Note that both the
     *                          offerer and fulfiller on each order must first
     *                          approve this contract (or their conduit if
     *                          indicated by the order) to transfer any relevant
     *                          tokens on their behalf and each consideration
     *                          recipient must implement `onERC1155Received` in
     *                          order to receive ERC1155 tokens. Also note that
     *                          the offer and consideration components for each
     *                          order must have no remainder after multiplying
     *                          the respective amount with the supplied fraction
     *                          in order for the group of partial fills to be
     *                          considered valid.
     * @param criteriaResolvers An array where each element contains a reference
     *                          to a specific order as well as that order's
     *                          offer or consideration, a token identifier, and
     *                          a proof that the supplied token identifier is
     *                          contained in the order's merkle root. Note that
     *                          an empty root indicates that any (transferable)
     *                          token identifier is valid and that no associated
     *                          proof needs to be supplied.
     * @param fulfillments      An array of elements allocating offer components
     *                          to consideration components. Note that each
     *                          consideration component must be fully met in
     *                          order for the match operation to be valid.
     * @param recipient         The intended recipient for all unspent offer
     *                          item amounts.
     *
     * @return executions An array of elements indicating the sequence of
     *                    transfers performed as part of matching the given
     *                    orders.
     */
    function _matchAdvancedOrders(
        AdvancedOrder[] memory advancedOrders,
        CriteriaResolver[] memory criteriaResolvers,
        Fulfillment[] memory fulfillments,
        address recipient
    ) internal returns (Execution[] memory /* executions */) {
        // Validate orders, update order status, and determine item amounts.
        bytes32[] memory orderHashes = _validateOrdersAndPrepareToFulfill(
            advancedOrders,
            criteriaResolvers,
            true, // Signifies that invalid orders should revert.
            advancedOrders.length,
            recipient
        );

        // Emit OrdersMatched event, providing an array of matched order hashes.
        _emitOrdersMatched(orderHashes);

        // Fulfill the orders using the supplied fulfillments and recipient.
        return
            _fulfillAdvancedOrders(
                advancedOrders,
                fulfillments,
                orderHashes,
                recipient
            );
    }

    /**
     * @dev Internal function to fulfill an arbitrary number of orders, either
     *      full or partial, after validating, adjusting amounts, and applying
     *      criteria resolvers.
     *
     * @param advancedOrders     The orders to match, including a fraction to
     *                           attempt to fill for each order.
     * @param fulfillments       An array of elements allocating offer
     *                           components to consideration components. Note
     *                           that the final amount of each consideration
     *                           component must be zero for a match operation to
     *                           be considered valid.
     * @param orderHashes        An array of order hashes for each order.
     * @param recipient          The intended recipient for all items that do
     *                           not already have a designated recipient and are
     *                           not used as part of a provided fulfillment.
     *
     * @return executions        An array of elements indicating the sequence of
     *                           transfers performed as part of matching the
     *                           given orders.
     */
    function _fulfillAdvancedOrders(
        AdvancedOrder[] memory advancedOrders,
        Fulfillment[] memory fulfillments,
        bytes32[] memory orderHashes,
        address recipient
    ) internal returns (Execution[] memory executions) {
        // Retrieve fulfillments array length and place on the stack.
        uint256 totalFulfillments = fulfillments.length;

        // Allocate executions by fulfillment and apply them to each execution.
        executions = new Execution[](totalFulfillments);

        // Skip overflow checks as all for loops are indexed starting at zero.
        unchecked {
            // Track number of filtered executions.
            uint256 totalFilteredExecutions = 0;

            // Iterate over each fulfillment.
            for (uint256 i = 0; i < totalFulfillments; ++i) {
                /// Retrieve the fulfillment in question.
                Fulfillment memory fulfillment = fulfillments[i];

                // Derive the execution corresponding with the fulfillment.
                Execution memory execution = _applyFulfillment(
                    advancedOrders,
                    fulfillment.offerComponents,
                    fulfillment.considerationComponents,
                    i
                );

                // If offerer and recipient on the execution are the same...
                if (
                    _unmaskedAddressComparison(
                        execution.item.recipient,
                        execution.offerer
                    )
                ) {
                    // Increment total filtered executions.
                    ++totalFilteredExecutions;
                } else {
                    // Otherwise, assign the execution to the executions array.
                    executions[i - totalFilteredExecutions] = execution;
                }
            }

            // If some number of executions have been filtered...
            if (totalFilteredExecutions != 0) {
                // reduce the total length of the executions array.
                assembly {
                    mstore(
                        executions,
                        sub(mload(executions), totalFilteredExecutions)
                    )
                }
            }
        }

        // Perform final checks and execute orders.
        _performFinalChecksAndExecuteOrders(
            advancedOrders,
            executions,
            orderHashes,
            recipient
        );

        // Return the executions array.
        return executions;
    }
}

File 48 of 87 : ConsiderationConstants.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/*
 * -------------------------- Disambiguation & Other Notes ---------------------
 *    - The term "head" is used as it is in the documentation for ABI encoding,
 *      but only in reference to dynamic types, i.e. it always refers to the
 *      offset or pointer to the body of a dynamic type. In calldata, the head
 *      is always an offset (relative to the parent object), while in memory,
 *      the head is always the pointer to the body. More information found here:
 *      https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding
 *        - Note that the length of an array is separate from and precedes the
 *          head of the array.
 *
 *    - The term "body" is used in place of the term "head" used in the ABI
 *      documentation. It refers to the start of the data for a dynamic type,
 *      e.g. the first word of a struct or the first word of the first element
 *      in an array.
 *
 *    - The term "pointer" is used to describe the absolute position of a value
 *      and never an offset relative to another value.
 *        - The suffix "_ptr" refers to a memory pointer.
 *        - The suffix "_cdPtr" refers to a calldata pointer.
 *
 *    - The term "offset" is used to describe the position of a value relative
 *      to some parent value. For example, OrderParameters_conduit_offset is the
 *      offset to the "conduit" value in the OrderParameters struct relative to
 *      the start of the body.
 *        - Note: Offsets are used to derive pointers.
 *
 *    - Some structs have pointers defined for all of their fields in this file.
 *      Lines which are commented out are fields that are not used in the
 *      codebase but have been left in for readability.
 */

// Declare constants for name, version, and reentrancy sentinel values.

// Name is right padded, so it touches the length which is left padded. This
// enables writing both values at once. Length goes at byte 95 in memory, and
// name fills bytes 96-109, so both values can be written left-padded to 77.
uint256 constant NameLengthPtr = 77;
uint256 constant NameWithLength = 0x0d436F6E73696465726174696F6E;

uint256 constant information_version_offset = 0;
uint256 constant information_version_cd_offset = 0x60;
uint256 constant information_domainSeparator_offset = 0x20;
uint256 constant information_conduitController_offset = 0x40;
uint256 constant information_versionLengthPtr = 0x63;
uint256 constant information_versionWithLength = 0x03312e32; // 1.2
uint256 constant information_length = 0xa0;

uint256 constant _NOT_ENTERED = 1;
uint256 constant _ENTERED = 2;
uint256 constant _ENTERED_AND_ACCEPTING_NATIVE_TOKENS = 3;

uint256 constant Offset_fulfillAdvancedOrder_criteriaResolvers = 0x20;

uint256 constant Offset_fulfillAvailableOrders_offerFulfillments = 0x20;
uint256 constant Offset_fulfillAvailableOrders_considerationFulfillments = 0x40;

uint256 constant Offset_fulfillAvailableAdvancedOrders_criteriaResolvers = 0x20;
uint256 constant Offset_fulfillAvailableAdvancedOrders_offerFulfillments = 0x40;
uint256 constant Offset_fulfillAvailableAdvancedOrders_cnsdrationFlflmnts = (
    0x60
);

uint256 constant Offset_matchOrders_fulfillments = 0x20;

uint256 constant Offset_matchAdvancedOrders_criteriaResolvers = 0x20;
uint256 constant Offset_matchAdvancedOrders_fulfillments = 0x40;

// Common Offsets
// Offsets for identically positioned fields shared by:
// OfferItem, ConsiderationItem, SpentItem, ReceivedItem

uint256 constant Selector_length = 4;

uint256 constant Common_token_offset = 0x20;
uint256 constant Common_identifier_offset = 0x40;
uint256 constant Common_amount_offset = 0x60;
uint256 constant Common_endAmount_offset = 0x80;

uint256 constant SpentItem_size = 0x80;
uint256 constant SpentItem_size_shift = 7;

uint256 constant OfferItem_size = 0xa0;
uint256 constant OfferItem_size_with_length = 0xc0;

uint256 constant ReceivedItem_size = 0xa0;
uint256 constant ReceivedItem_amount_offset = 0x60;
uint256 constant ReceivedItem_recipient_offset = 0x80;

uint256 constant ReceivedItem_CommonParams_size = 0x60;

uint256 constant ConsiderationItem_size = 0xc0;
uint256 constant ConsiderationItem_size_with_length = 0xe0;

uint256 constant ConsiderationItem_recipient_offset = 0xa0;
// Store the same constant in an abbreviated format for a line length fix.
uint256 constant ConsiderItem_recipient_offset = 0xa0;

uint256 constant Execution_offerer_offset = 0x20;
uint256 constant Execution_conduit_offset = 0x40;

uint256 constant Panic_arithmetic = 0x11;
uint256 constant Panic_resource = 0x41;

uint256 constant OrderParameters_offerer_offset = 0x00;
uint256 constant OrderParameters_zone_offset = 0x20;
uint256 constant OrderParameters_offer_head_offset = 0x40;
uint256 constant OrderParameters_consideration_head_offset = 0x60;
uint256 constant OrderParameters_orderType_offset = 0x80;
uint256 constant OrderParameters_startTime_offset = 0xa0;
uint256 constant OrderParameters_endTime_offset = 0xc0;
uint256 constant OrderParameters_zoneHash_offset = 0xe0;
uint256 constant OrderParameters_salt_offset = 0x100;
uint256 constant OrderParameters_conduit_offset = 0x120;
uint256 constant OrderParameters_counter_offset = 0x140;

uint256 constant Fulfillment_itemIndex_offset = 0x20;

uint256 constant AdvancedOrder_head_size = 0xa0;
uint256 constant AdvancedOrder_numerator_offset = 0x20;
uint256 constant AdvancedOrder_denominator_offset = 0x40;
uint256 constant AdvancedOrder_signature_offset = 0x60;
uint256 constant AdvancedOrder_extraData_offset = 0x80;

uint256 constant OrderStatus_ValidatedAndNotCancelled = 1;
uint256 constant OrderStatus_filledNumerator_offset = 0x10;
uint256 constant OrderStatus_filledDenominator_offset = 0x88;

uint256 constant AlmostOneWord = 0x1f;
uint256 constant OneWord = 0x20;
uint256 constant TwoWords = 0x40;
uint256 constant ThreeWords = 0x60;
uint256 constant FourWords = 0x80;
uint256 constant FiveWords = 0xa0;

uint256 constant OneWordShift = 5;
uint256 constant TwoWordsShift = 6;

uint256 constant AlmostTwoWords = 0x3f;
uint256 constant OnlyFullWordMask = 0xffffffe0;

uint256 constant FreeMemoryPointerSlot = 0x40;
uint256 constant ZeroSlot = 0x60;
uint256 constant DefaultFreeMemoryPointer = 0x80;

uint256 constant Slot0x80 = 0x80;
uint256 constant Slot0xA0 = 0xa0;

uint256 constant BasicOrder_endAmount_cdPtr = 0x104;
uint256 constant BasicOrder_common_params_size = 0xa0;
uint256 constant BasicOrder_considerationHashesArray_ptr = 0x160;

uint256 constant BasicOrder_receivedItemByteMap = (
    0x0000010102030000000000000000000000000000000000000000000000000000
);
uint256 constant BasicOrder_offeredItemByteMap = (
    0x0203020301010000000000000000000000000000000000000000000000000000
);

bytes32 constant OrdersMatchedTopic0 = 0x4b9f2d36e1b4c93de62cc077b00b1a91d84b6c31b4a14e012718dcca230689e7;

uint256 constant EIP712_Order_size = 0x180;
uint256 constant EIP712_OfferItem_size = 0xc0;
uint256 constant EIP712_ConsiderationItem_size = 0xe0;
uint256 constant AdditionalRecipient_size = 0x40;
uint256 constant AdditionalRecipient_size_shift = 6;

uint256 constant EIP712_DomainSeparator_offset = 0x02;
uint256 constant EIP712_OrderHash_offset = 0x22;
uint256 constant EIP712_DigestPayload_size = 0x42;

uint256 constant EIP712_domainData_nameHash_offset = 0x20;
uint256 constant EIP712_domainData_versionHash_offset = 0x40;
uint256 constant EIP712_domainData_chainId_offset = 0x60;
uint256 constant EIP712_domainData_verifyingContract_offset = 0x80;
uint256 constant EIP712_domainData_size = 0xa0;

// Minimum BulkOrder proof size: 64 bytes for signature + 3 for key + 32 for 1
// sibling. Maximum BulkOrder proof size: 65 bytes for signature + 3 for key +
// 768 for 24 siblings.

uint256 constant BulkOrderProof_minSize = 0x63;
uint256 constant BulkOrderProof_rangeSize = 0x2e2;
uint256 constant BulkOrderProof_lengthAdjustmentBeforeMask = 0x1d;
uint256 constant BulkOrderProof_lengthRangeAfterMask = 0x2;
uint256 constant BulkOrderProof_keyShift = 0xe8;
uint256 constant BulkOrderProof_keySize = 0x3;

uint256 constant receivedItemsHash_ptr = 0x60;

/*
 *  Memory layout in _prepareBasicFulfillmentFromCalldata of
 *  data for OrderFulfilled
 *
 *   event OrderFulfilled(
 *     bytes32 orderHash,
 *     address indexed offerer,
 *     address indexed zone,
 *     address fulfiller,
 *     SpentItem[] offer,
 *       > (itemType, token, id, amount)
 *     ReceivedItem[] consideration
 *       > (itemType, token, id, amount, recipient)
 *   )
 *
 *  - 0x00: orderHash
 *  - 0x20: fulfiller
 *  - 0x40: offer offset (0x80)
 *  - 0x60: consideration offset (0x120)
 *  - 0x80: offer.length (1)
 *  - 0xa0: offerItemType
 *  - 0xc0: offerToken
 *  - 0xe0: offerIdentifier
 *  - 0x100: offerAmount
 *  - 0x120: consideration.length (1 + additionalRecipients.length)
 *  - 0x140: considerationItemType
 *  - 0x160: considerationToken
 *  - 0x180: considerationIdentifier
 *  - 0x1a0: considerationAmount
 *  - 0x1c0: considerationRecipient
 *  - ...
 */

// Minimum length of the OrderFulfilled event data.
// Must be added to the size of the ReceivedItem array for additionalRecipients
// (0xa0 * additionalRecipients.length) to calculate full size of the buffer.
uint256 constant OrderFulfilled_baseSize = 0x1e0;
uint256 constant OrderFulfilled_selector = (
    0x9d9af8e38d66c62e2c12f0225249fd9d721c54b83f48d9352c97c6cacdcb6f31
);

// Minimum offset in memory to OrderFulfilled event data.
// Must be added to the size of the EIP712 hash array for additionalRecipients
// (32 * additionalRecipients.length) to calculate the pointer to event data.
uint256 constant OrderFulfilled_baseOffset = 0x180;
uint256 constant OrderFulfilled_consideration_length_baseOffset = 0x2a0;
uint256 constant OrderFulfilled_offer_length_baseOffset = 0x200;

// Related constants used for restricted order checks on basic orders.

address constant IdentityPrecompile = address(4);
uint256 constant OrderFulfilled_baseDataSize = 0x160;
uint256 constant ValidateOrder_offerDataOffset = 0x184;

uint256 constant RatifyOrder_offerDataOffset = 0xc4;

// uint256 constant OrderFulfilled_orderHash_offset = 0x00;
uint256 constant OrderFulfilled_fulfiller_offset = 0x20;
uint256 constant OrderFulfilled_offer_head_offset = 0x40;
uint256 constant OrderFulfilled_offer_body_offset = 0x80;
uint256 constant OrderFulfilled_consideration_head_offset = 0x60;
uint256 constant OrderFulfilled_consideration_body_offset = 0x120;

// BasicOrderParameters
uint256 constant BasicOrder_parameters_cdPtr = 0x04;
uint256 constant BasicOrder_considerationToken_cdPtr = 0x24;
// uint256 constant BasicOrder_considerationIdentifier_cdPtr = 0x44;
uint256 constant BasicOrder_considerationAmount_cdPtr = 0x64;
uint256 constant BasicOrder_offerer_cdPtr = 0x84;
uint256 constant BasicOrder_zone_cdPtr = 0xa4;
uint256 constant BasicOrder_offerToken_cdPtr = 0xc4;
// uint256 constant BasicOrder_offerIdentifier_cdPtr = 0xe4;
uint256 constant BasicOrder_offerAmount_cdPtr = 0x104;
uint256 constant BasicOrder_basicOrderType_cdPtr = 0x124;
uint256 constant BasicOrder_startTime_cdPtr = 0x144;
// uint256 constant BasicOrder_endTime_cdPtr = 0x164;
// uint256 constant BasicOrder_zoneHash_cdPtr = 0x184;
// uint256 constant BasicOrder_salt_cdPtr = 0x1a4;
uint256 constant BasicOrder_offererConduit_cdPtr = 0x1c4;
uint256 constant BasicOrder_fulfillerConduit_cdPtr = 0x1e4;
uint256 constant BasicOrder_totalOriginalAdditionalRecipients_cdPtr = 0x204;
uint256 constant BasicOrder_additionalRecipients_head_cdPtr = 0x224;
uint256 constant BasicOrder_signature_cdPtr = 0x244;
uint256 constant BasicOrder_additionalRecipients_length_cdPtr = 0x264;
uint256 constant BasicOrder_additionalRecipients_data_cdPtr = 0x284;

uint256 constant BasicOrder_parameters_ptr = 0x20;

uint256 constant BasicOrder_basicOrderType_range = 0x18; // 24 values

/*
 *  Memory layout in _prepareBasicFulfillmentFromCalldata of
 *  EIP712 data for ConsiderationItem
 *   - 0x80: ConsiderationItem EIP-712 typehash (constant)
 *   - 0xa0: itemType
 *   - 0xc0: token
 *   - 0xe0: identifier
 *   - 0x100: startAmount
 *   - 0x120: endAmount
 *   - 0x140: recipient
 */
uint256 constant BasicOrder_considerationItem_typeHash_ptr = 0x80; // memoryPtr
uint256 constant BasicOrder_considerationItem_itemType_ptr = 0xa0;
uint256 constant BasicOrder_considerationItem_token_ptr = 0xc0;
uint256 constant BasicOrder_considerationItem_identifier_ptr = 0xe0;
uint256 constant BasicOrder_considerationItem_startAmount_ptr = 0x100;
uint256 constant BasicOrder_considerationItem_endAmount_ptr = 0x120;
// uint256 constant BasicOrder_considerationItem_recipient_ptr = 0x140;

/*
 *  Memory layout in _prepareBasicFulfillmentFromCalldata of
 *  EIP712 data for OfferItem
 *   - 0x80:  OfferItem EIP-712 typehash (constant)
 *   - 0xa0:  itemType
 *   - 0xc0:  token
 *   - 0xe0:  identifier (reused for offeredItemsHash)
 *   - 0x100: startAmount
 *   - 0x120: endAmount
 */
uint256 constant BasicOrder_offerItem_typeHash_ptr = DefaultFreeMemoryPointer;
uint256 constant BasicOrder_offerItem_itemType_ptr = 0xa0;
uint256 constant BasicOrder_offerItem_token_ptr = 0xc0;
// uint256 constant BasicOrder_offerItem_identifier_ptr = 0xe0;
// uint256 constant BasicOrder_offerItem_startAmount_ptr = 0x100;
uint256 constant BasicOrder_offerItem_endAmount_ptr = 0x120;

/*
 *  Memory layout in _prepareBasicFulfillmentFromCalldata of
 *  EIP712 data for Order
 *   - 0x80:   Order EIP-712 typehash (constant)
 *   - 0xa0:   orderParameters.offerer
 *   - 0xc0:   orderParameters.zone
 *   - 0xe0:   keccak256(abi.encodePacked(offerHashes))
 *   - 0x100:  keccak256(abi.encodePacked(considerationHashes))
 *   - 0x120:  orderType
 *   - 0x140:  startTime
 *   - 0x160:  endTime
 *   - 0x180:  zoneHash
 *   - 0x1a0:  salt
 *   - 0x1c0:  conduit
 *   - 0x1e0:  _counters[orderParameters.offerer] (from storage)
 */
uint256 constant BasicOrder_order_typeHash_ptr = 0x80;
uint256 constant BasicOrder_order_offerer_ptr = 0xa0;
// uint256 constant BasicOrder_order_zone_ptr = 0xc0;
uint256 constant BasicOrder_order_offerHashes_ptr = 0xe0;
uint256 constant BasicOrder_order_considerationHashes_ptr = 0x100;
uint256 constant BasicOrder_order_orderType_ptr = 0x120;
uint256 constant BasicOrder_order_startTime_ptr = 0x140;
// uint256 constant BasicOrder_order_endTime_ptr = 0x160;
// uint256 constant BasicOrder_order_zoneHash_ptr = 0x180;
// uint256 constant BasicOrder_order_salt_ptr = 0x1a0;
// uint256 constant BasicOrder_order_conduitKey_ptr = 0x1c0;
uint256 constant BasicOrder_order_counter_ptr = 0x1e0;
uint256 constant BasicOrder_additionalRecipients_head_ptr = 0x240;
uint256 constant BasicOrder_signature_ptr = 0x260;
uint256 constant BasicOrder_startTimeThroughZoneHash_size = 0x60;

uint256 constant ContractOrder_orderHash_offerer_shift = 0x60;

uint256 constant Counter_blockhash_shift = 0x80;

// Signature-related
bytes32 constant EIP2098_allButHighestBitMask = (
    0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
);
bytes32 constant ECDSA_twentySeventhAndTwentyEighthBytesSet = (
    0x0000000000000000000000000000000000000000000000000000000101000000
);
uint256 constant ECDSA_MaxLength = 65;
uint256 constant ECDSA_signature_s_offset = 0x40;
uint256 constant ECDSA_signature_v_offset = 0x60;

bytes32 constant EIP1271_isValidSignature_selector = (
    0x1626ba7e00000000000000000000000000000000000000000000000000000000
);
uint256 constant EIP1271_isValidSignature_signatureHead_negativeOffset = 0x20;
uint256 constant EIP1271_isValidSignature_digest_negativeOffset = 0x40;
uint256 constant EIP1271_isValidSignature_selector_negativeOffset = 0x44;
uint256 constant EIP1271_isValidSignature_calldata_baseLength = 0x64;

uint256 constant EIP1271_isValidSignature_signature_head_offset = 0x40;

uint256 constant EIP_712_PREFIX = (
    0x1901000000000000000000000000000000000000000000000000000000000000
);

uint256 constant ExtraGasBuffer = 0x20;
uint256 constant CostPerWord = 3;
uint256 constant MemoryExpansionCoefficientShift = 9;

uint256 constant Create2AddressDerivation_ptr = 0x0b;
uint256 constant Create2AddressDerivation_length = 0x55;

uint256 constant MaskOverByteTwelve = (
    0x0000000000000000000000ff0000000000000000000000000000000000000000
);

uint256 constant MaskOverLastTwentyBytes = (
    0x000000000000000000000000ffffffffffffffffffffffffffffffffffffffff
);

uint256 constant MaskOverFirstFourBytes = (
    0xffffffff00000000000000000000000000000000000000000000000000000000
);

uint256 constant Conduit_execute_signature = (
    0x4ce34aa200000000000000000000000000000000000000000000000000000000
);

uint256 constant MaxUint8 = 0xff;
uint256 constant MaxUint120 = 0xffffffffffffffffffffffffffffff;

uint256 constant Conduit_execute_ConduitTransfer_ptr = 0x20;
uint256 constant Conduit_execute_ConduitTransfer_length = 0x01;

uint256 constant Conduit_execute_ConduitTransfer_offset_ptr = 0x04;
uint256 constant Conduit_execute_ConduitTransfer_length_ptr = 0x24;
uint256 constant Conduit_execute_transferItemType_ptr = 0x44;
uint256 constant Conduit_execute_transferToken_ptr = 0x64;
uint256 constant Conduit_execute_transferFrom_ptr = 0x84;
uint256 constant Conduit_execute_transferTo_ptr = 0xa4;
uint256 constant Conduit_execute_transferIdentifier_ptr = 0xc4;
uint256 constant Conduit_execute_transferAmount_ptr = 0xe4;

uint256 constant OneConduitExecute_size = 0x104;

// Sentinel value to indicate that the conduit accumulator is not armed.
uint256 constant AccumulatorDisarmed = 0x20;
uint256 constant AccumulatorArmed = 0x40;
uint256 constant Accumulator_conduitKey_ptr = 0x20;
uint256 constant Accumulator_selector_ptr = 0x40;
uint256 constant Accumulator_array_offset_ptr = 0x44;
uint256 constant Accumulator_array_length_ptr = 0x64;

uint256 constant Accumulator_itemSizeOffsetDifference = 0x3c;

uint256 constant Accumulator_array_offset = 0x20;
uint256 constant Conduit_transferItem_size = 0xc0;
uint256 constant Conduit_transferItem_token_ptr = 0x20;
uint256 constant Conduit_transferItem_from_ptr = 0x40;
uint256 constant Conduit_transferItem_to_ptr = 0x60;
uint256 constant Conduit_transferItem_identifier_ptr = 0x80;
uint256 constant Conduit_transferItem_amount_ptr = 0xa0;

uint256 constant Ecrecover_precompile = 1;
uint256 constant Ecrecover_args_size = 0x80;
uint256 constant Signature_lower_v = 27;

// Bitmask that only gives a non-zero value if masked with a non-match selector.
uint256 constant NonMatchSelector_MagicMask = (
    0x4000000000000000000000000000000000000000000000000000000000
);

// First bit indicates that a NATIVE offer items has been used and the 231st bit
// indicates that a non match selector has been called.
uint256 constant NonMatchSelector_InvalidErrorValue = (
    0x4000000000000000000000000000000000000000000000000000000001
);

uint256 constant IsValidOrder_signature = (
    0x0e1d31dc00000000000000000000000000000000000000000000000000000000
);
uint256 constant IsValidOrder_sig_ptr = 0x0;
uint256 constant IsValidOrder_orderHash_ptr = 0x04;
uint256 constant IsValidOrder_caller_ptr = 0x24;
uint256 constant IsValidOrder_offerer_ptr = 0x44;
uint256 constant IsValidOrder_zoneHash_ptr = 0x64;
uint256 constant IsValidOrder_length = 0x84; // 4 + 32 * 4 == 132

uint256 constant Error_selector_offset = 0x1c;

/*
 *  error MissingFulfillmentComponentOnAggregation(uint8 side)
 *    - Defined in FulfillmentApplicationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: side
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant MissingFulfillmentComponentOnAggregation_error_selector = (
    0x375c24c1
);
uint256 constant MissingFulfillmentComponentOnAggregation_error_side_ptr = 0x20;
uint256 constant MissingFulfillmentComponentOnAggregation_error_length = 0x24;

/*
 *  error OfferAndConsiderationRequiredOnFulfillment()
 *    - Defined in FulfillmentApplicationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_selector = (
    0x98e9db6e
);
uint256 constant OfferAndConsiderationRequiredOnFulfillment_error_length = 0x04;

/*
 *  error MismatchedFulfillmentOfferAndConsiderationComponents(
 *      uint256 fulfillmentIndex
 *  )
 *    - Defined in FulfillmentApplicationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: fulfillmentIndex
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant MismatchedFulfillmentOfferAndConsiderationComponents_error_selector = 0xbced929d;
uint256 constant MismatchedFulfillmentOfferAndConsiderationComponents_error_fulfillmentIndex_ptr = 0x20;
uint256 constant MismatchedFulfillmentOfferAndConsiderationComponents_error_length = 0x24;

/*
 *  error InvalidFulfillmentComponentData()
 *    - Defined in FulfillmentApplicationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant InvalidFulfillmentComponentData_error_selector = 0x7fda7279;
uint256 constant InvalidFulfillmentComponentData_error_length = 0x04;

/*
 *  error InexactFraction()
 *    - Defined in AmountDerivationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant InexactFraction_error_selector = 0xc63cf089;
uint256 constant InexactFraction_error_length = 0x04;

/*
 *  error OrderCriteriaResolverOutOfRange(uint8 side)
 *    - Defined in CriteriaResolutionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: side
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant OrderCriteriaResolverOutOfRange_error_selector = 0x133c37c6;
uint256 constant OrderCriteriaResolverOutOfRange_error_side_ptr = 0x20;
uint256 constant OrderCriteriaResolverOutOfRange_error_length = 0x24;

/*
 *  error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex)
 *    - Defined in CriteriaResolutionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: orderIndex
 *    - 0x40: offerIndex
 * Revert buffer is memory[0x1c:0x60]
 */
uint256 constant UnresolvedOfferCriteria_error_selector = 0xd6929332;
uint256 constant UnresolvedOfferCriteria_error_orderIndex_ptr = 0x20;
uint256 constant UnresolvedOfferCriteria_error_offerIndex_ptr = 0x40;
uint256 constant UnresolvedOfferCriteria_error_length = 0x44;

/*
 *  error UnresolvedConsiderationCriteria(uint256 orderIndex, uint256 considerationIndex)
 *    - Defined in CriteriaResolutionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: orderIndex
 *    - 0x40: considerationIndex
 * Revert buffer is memory[0x1c:0x60]
 */
uint256 constant UnresolvedConsiderationCriteria_error_selector = 0xa8930e9a;
uint256 constant UnresolvedConsiderationCriteria_error_orderIndex_ptr = 0x20;
uint256 constant UnresolvedConsiderationCriteria_error_considerationIndex_ptr = 0x40;
uint256 constant UnresolvedConsiderationCriteria_error_length = 0x44;

/*
 *  error OfferCriteriaResolverOutOfRange()
 *    - Defined in CriteriaResolutionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant OfferCriteriaResolverOutOfRange_error_selector = 0xbfb3f8ce;
uint256 constant OfferCriteriaResolverOutOfRange_error_length = 0x04;

/*
 *  error ConsiderationCriteriaResolverOutOfRange()
 *    - Defined in CriteriaResolutionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant ConsiderationCriteriaResolverOutOfRange_error_selector = 0x6088d7de;
uint256 constant ConsiderationCriteriaResolverOutOfRange_err_selector = 0x6088d7de;
uint256 constant ConsiderationCriteriaResolverOutOfRange_error_length = 0x04;

/*
 *  error CriteriaNotEnabledForItem()
 *    - Defined in CriteriaResolutionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant CriteriaNotEnabledForItem_error_selector = 0x94eb6af6;
uint256 constant CriteriaNotEnabledForItem_error_length = 0x04;

/*
 *  error InvalidProof()
 *    - Defined in CriteriaResolutionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant InvalidProof_error_selector = 0x09bde339;
uint256 constant InvalidProof_error_length = 0x04;

/*
 *  error InvalidRestrictedOrder(bytes32 orderHash)
 *    - Defined in ZoneInteractionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: orderHash
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant InvalidRestrictedOrder_error_selector = 0xfb5014fc;
uint256 constant InvalidRestrictedOrder_error_orderHash_ptr = 0x20;
uint256 constant InvalidRestrictedOrder_error_length = 0x24;

/*
 *  error InvalidContractOrder(bytes32 orderHash)
 *    - Defined in ZoneInteractionErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: orderHash
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant InvalidContractOrder_error_selector = 0x93979285;
uint256 constant InvalidContractOrder_error_orderHash_ptr = 0x20;
uint256 constant InvalidContractOrder_error_length = 0x24;

/*
 *  error BadSignatureV(uint8 v)
 *    - Defined in SignatureVerificationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: v
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant BadSignatureV_error_selector = 0x1f003d0a;
uint256 constant BadSignatureV_error_v_ptr = 0x20;
uint256 constant BadSignatureV_error_length = 0x24;

/*
 *  error InvalidSigner()
 *    - Defined in SignatureVerificationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant InvalidSigner_error_selector = 0x815e1d64;
uint256 constant InvalidSigner_error_length = 0x04;

/*
 *  error InvalidSignature()
 *    - Defined in SignatureVerificationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant InvalidSignature_error_selector = 0x8baa579f;
uint256 constant InvalidSignature_error_length = 0x04;

/*
 *  error BadContractSignature()
 *    - Defined in SignatureVerificationErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant BadContractSignature_error_selector = 0x4f7fb80d;
uint256 constant BadContractSignature_error_length = 0x04;

/*
 *  error InvalidERC721TransferAmount(uint256 amount)
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: amount
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant InvalidERC721TransferAmount_error_selector = 0x69f95827;
uint256 constant InvalidERC721TransferAmount_error_amount_ptr = 0x20;
uint256 constant InvalidERC721TransferAmount_error_length = 0x24;

/*
 *  error MissingItemAmount()
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant MissingItemAmount_error_selector = 0x91b3e514;
uint256 constant MissingItemAmount_error_length = 0x04;

/*
 *  error UnusedItemParameters()
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant UnusedItemParameters_error_selector = 0x6ab37ce7;
uint256 constant UnusedItemParameters_error_length = 0x04;

/*
 *  error BadReturnValueFromERC20OnTransfer(address token, address from, address to, uint256 amount)
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: token
 *    - 0x40: from
 *    - 0x60: to
 *    - 0x80: amount
 * Revert buffer is memory[0x1c:0xa0]
 */
uint256 constant BadReturnValueFromERC20OnTransfer_error_selector = 0x98891923;
uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x20;
uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x40;
uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x60;
uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x80;
uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;

/*
 *  error NoContract(address account)
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: account
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant NoContract_error_selector = 0x5f15d672;
uint256 constant NoContract_error_account_ptr = 0x20;
uint256 constant NoContract_error_length = 0x24;

/*
 *  error TokenTransferGenericFailure(address token, address from, address to, uint256 identifier, uint256 amount)
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: token
 *    - 0x40: from
 *    - 0x60: to
 *    - 0x80: identifier
 *    - 0xa0: amount
 * Revert buffer is memory[0x1c:0xc0]
 */
uint256 constant TokenTransferGenericFailure_error_selector = 0xf486bc87;
uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x20;
uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x40;
uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x60;
uint256 constant TokenTransferGenericFailure_error_identifier_ptr = 0x80;
uint256 constant TokenTransferGenericFailure_err_identifier_ptr = 0x80;
uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0xa0;
uint256 constant TokenTransferGenericFailure_error_length = 0xa4;

/*
 *  error Invalid1155BatchTransferEncoding()
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant Invalid1155BatchTransferEncoding_error_selector = 0xeba2084c;
uint256 constant Invalid1155BatchTransferEncoding_error_length = 0x04;

/*
 *  error NoReentrantCalls()
 *    - Defined in ReentrancyErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant NoReentrantCalls_error_selector = 0x7fa8a987;
uint256 constant NoReentrantCalls_error_length = 0x04;

/*
 *  error OrderAlreadyFilled(bytes32 orderHash)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: orderHash
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant OrderAlreadyFilled_error_selector = 0x10fda3e1;
uint256 constant OrderAlreadyFilled_error_orderHash_ptr = 0x20;
uint256 constant OrderAlreadyFilled_error_length = 0x24;

/*
 *  error InvalidTime(uint256 startTime, uint256 endTime)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: startTime
 *    - 0x40: endTime
 * Revert buffer is memory[0x1c:0x60]
 */
uint256 constant InvalidTime_error_selector = 0x21ccfeb7;
uint256 constant InvalidTime_error_startTime_ptr = 0x20;
uint256 constant InvalidTime_error_endTime_ptr = 0x40;
uint256 constant InvalidTime_error_length = 0x44;

/*
 *  error InvalidConduit(bytes32 conduitKey, address conduit)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: conduitKey
 *    - 0x40: conduit
 * Revert buffer is memory[0x1c:0x60]
 */
uint256 constant InvalidConduit_error_selector = 0x1cf99b26;
uint256 constant InvalidConduit_error_conduitKey_ptr = 0x20;
uint256 constant InvalidConduit_error_conduit_ptr = 0x40;
uint256 constant InvalidConduit_error_length = 0x44;

/*
 *  error MissingOriginalConsiderationItems()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant MissingOriginalConsiderationItems_error_selector = 0x466aa616;
uint256 constant MissingOriginalConsiderationItems_error_length = 0x04;

/*
 *  error InvalidCallToConduit(address conduit)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: conduit
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant InvalidCallToConduit_error_selector = 0xd13d53d4;
uint256 constant InvalidCallToConduit_error_conduit_ptr = 0x20;
uint256 constant InvalidCallToConduit_error_length = 0x24;

/*
 *  error ConsiderationNotMet(uint256 orderIndex, uint256 considerationIndex, uint256 shortfallAmount)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: orderIndex
 *    - 0x40: considerationIndex
 *    - 0x60: shortfallAmount
 * Revert buffer is memory[0x1c:0x80]
 */
uint256 constant ConsiderationNotMet_error_selector = 0xa5f54208;
uint256 constant ConsiderationNotMet_error_orderIndex_ptr = 0x20;
uint256 constant ConsiderationNotMet_error_considerationIndex_ptr = 0x40;
uint256 constant ConsiderationNotMet_error_shortfallAmount_ptr = 0x60;
uint256 constant ConsiderationNotMet_error_length = 0x64;

/*
 *  error InsufficientEtherSupplied()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant InsufficientEtherSupplied_error_selector = 0x1a783b8d;
uint256 constant InsufficientEtherSupplied_error_length = 0x04;

/*
 *  error EtherTransferGenericFailure(address account, uint256 amount)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: account
 *    - 0x40: amount
 * Revert buffer is memory[0x1c:0x60]
 */
uint256 constant EtherTransferGenericFailure_error_selector = 0x470c7c1d;
uint256 constant EtherTransferGenericFailure_error_account_ptr = 0x20;
uint256 constant EtherTransferGenericFailure_error_amount_ptr = 0x40;
uint256 constant EtherTransferGenericFailure_error_length = 0x44;

/*
 *  error PartialFillsNotEnabledForOrder()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant PartialFillsNotEnabledForOrder_error_selector = 0xa11b63ff;
uint256 constant PartialFillsNotEnabledForOrder_error_length = 0x04;

/*
 *  error OrderIsCancelled(bytes32 orderHash)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: orderHash
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant OrderIsCancelled_error_selector = 0x1a515574;
uint256 constant OrderIsCancelled_error_orderHash_ptr = 0x20;
uint256 constant OrderIsCancelled_error_length = 0x24;

/*
 *  error OrderPartiallyFilled(bytes32 orderHash)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: orderHash
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant OrderPartiallyFilled_error_selector = 0xee9e0e63;
uint256 constant OrderPartiallyFilled_error_orderHash_ptr = 0x20;
uint256 constant OrderPartiallyFilled_error_length = 0x24;

/*
 *  error CannotCancelOrder()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant CannotCancelOrder_error_selector = 0xfed398fc;
uint256 constant CannotCancelOrder_error_length = 0x04;

/*
 *  error BadFraction()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant BadFraction_error_selector = 0x5a052b32;
uint256 constant BadFraction_error_length = 0x04;

/*
 *  error InvalidMsgValue(uint256 value)
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: value
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant InvalidMsgValue_error_selector = 0xa61be9f0;
uint256 constant InvalidMsgValue_error_value_ptr = 0x20;
uint256 constant InvalidMsgValue_error_length = 0x24;

/*
 *  error InvalidBasicOrderParameterEncoding()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant InvalidBasicOrderParameterEncoding_error_selector = 0x39f3e3fd;
uint256 constant InvalidBasicOrderParameterEncoding_error_length = 0x04;

/*
 *  error NoSpecifiedOrdersAvailable()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant NoSpecifiedOrdersAvailable_error_selector = 0xd5da9a1b;
uint256 constant NoSpecifiedOrdersAvailable_error_length = 0x04;

/*
 *  error InvalidNativeOfferItem()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant InvalidNativeOfferItem_error_selector = 0x12d3f5a3;
uint256 constant InvalidNativeOfferItem_error_length = 0x04;

/*
 *  error ConsiderationLengthNotEqualToTotalOriginal()
 *    - Defined in ConsiderationEventsAndErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 * Revert buffer is memory[0x1c:0x20]
 */
uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_selector = (
    0x2165628a
);
uint256 constant ConsiderationLengthNotEqualToTotalOriginal_error_length = 0x04;

/*
 *  error Panic(uint256 code)
 *    - Built-in Solidity error
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: code
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant Panic_error_selector = 0x4e487b71;
uint256 constant Panic_error_code_ptr = 0x20;
uint256 constant Panic_error_length = 0x24;

/**
 * @dev Selector and offsets for generateOrder
 *
 * function generateOrder(
 *   address fulfiller,
 *   SpentItem[] calldata minimumReceived,
 *   SpentItem[] calldata maximumSpent,
 *   bytes calldata context
 * )
 */
uint256 constant generateOrder_selector = 0x98919765;
uint256 constant generateOrder_selector_offset = 0x1c;
uint256 constant generateOrder_head_offset = 0x04;
uint256 constant generateOrder_minimumReceived_head_offset = 0x20;
uint256 constant generateOrder_maximumSpent_head_offset = 0x40;
uint256 constant generateOrder_context_head_offset = 0x60;
uint256 constant generateOrder_base_tail_offset = 0x80;

uint256 constant ratifyOrder_selector = 0xf4dd92ce;
uint256 constant ratifyOrder_selector_offset = 0x1c;
uint256 constant ratifyOrder_head_offset = 0x04;
uint256 constant ratifyOrder_offer_head_offset = 0x00;
uint256 constant ratifyOrder_consideration_head_offset = 0x20;
uint256 constant ratifyOrder_context_head_offset = 0x40;
uint256 constant ratifyOrder_orderHashes_head_offset = 0x60;
uint256 constant ratifyOrder_contractNonce_offset = 0x80;
uint256 constant ratifyOrder_base_tail_offset = 0xa0;

uint256 constant validateOrder_selector = 0x17b1f942;
uint256 constant validateOrder_selector_offset = 0x1c;
uint256 constant validateOrder_head_offset = 0x04;
uint256 constant validateOrder_zoneParameters_offset = 0x20;

uint256 constant ZoneParameters_orderHash_offset = 0x00;
uint256 constant ZoneParameters_fulfiller_offset = 0x20;
uint256 constant ZoneParameters_offerer_offset = 0x40;
uint256 constant ZoneParameters_offer_head_offset = 0x60;
uint256 constant ZoneParameters_consideration_head_offset = 0x80;
uint256 constant ZoneParameters_extraData_head_offset = 0xa0;
uint256 constant ZoneParameters_orderHashes_head_offset = 0xc0;
uint256 constant ZoneParameters_startTime_offset = 0xe0;
uint256 constant ZoneParameters_endTime_offset = 0x100;
uint256 constant ZoneParameters_zoneHash_offset = 0x120;
uint256 constant ZoneParameters_base_tail_offset = 0x140;
uint256 constant ZoneParameters_selectorAndPointer_length = 0x24;
uint256 constant ZoneParameters_basicOrderFixedElements_length = 0x64;

// ConsiderationDecoder Constants
uint256 constant BasicOrderParameters_head_size = 0x0240;
uint256 constant BasicOrderParameters_fixed_segment_0 = 0x0200;
uint256 constant BasicOrderParameters_additionalRecipients_offset = 0x0200;
uint256 constant BasicOrderParameters_signature_offset = 0x0220;

uint256 constant OrderParameters_head_size = 0x0160;
uint256 constant OrderParameters_totalOriginalConsiderationItems_offset = (
    0x0140
);
uint256 constant AdvancedOrderPlusOrderParameters_head_size = 0x0200;

uint256 constant Order_signature_offset = 0x20;
uint256 constant Order_head_size = 0x40;

uint256 constant AdvancedOrder_fixed_segment_0 = 0x40;

uint256 constant CriteriaResolver_head_size = 0xa0;
uint256 constant CriteriaResolver_fixed_segment_0 = 0x80;
uint256 constant CriteriaResolver_criteriaProof_offset = 0x80;

uint256 constant FulfillmentComponent_mem_tail_size = 0x40;
uint256 constant FulfillmentComponent_mem_tail_size_shift = 6;
uint256 constant Fulfillment_head_size = 0x40;
uint256 constant Fulfillment_considerationComponents_offset = 0x20;

uint256 constant OrderComponents_OrderParameters_common_head_size = 0x0140;

File 49 of 87 : IPoolManager.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity 0.8.19;

/**
 * @title IPoolManager
 * @notice Interface for the PoolManager contract
 */
interface IPoolManager {
    /**
     * @notice Initializes the permitter contract with some initial state.
     * @param dittoPool_ the address of the DittoPool that this manager is managing.
     * @param data_ any data necessary for initializing the permitter.
     */
    function initialize(address dittoPool_, bytes memory data_) external;

    /**
     * @notice Returns whether or not the contract has been initialized.
     * @return initialized Whether or not the contract has been initialized.
     */
    function initialized() external view returns (bool);

    /**
     * @notice Change the base price charged to buy an NFT from the pair
     * @param newBasePrice_ New base price: now NFTs purchased at this price, sold at `newBasePrice_ + Delta`
     */
    function changeBasePrice(uint128 newBasePrice_) external;

    /**
     * @notice Change the delta parameter associated with the bonding curve
     * @dev see the bonding curve documentation on bonding curves for additional information
     * Each bonding curve uses delta differently, but in general it is used as an input
     * to determine the next price on the bonding curve
     * @param newDelta_ New delta parameter
     */
    function changeDelta(uint128 newDelta_) external;

    /**
     * @notice Change the pool lp fee, set by owner, paid to LPers only when they are the counterparty in a trade
     * @param newFeeLp_ New fee, in wei / 1e18, charged by the pool for trades with it (i.e. 1% = 0.01e18)
     */
    function changeLpFee(uint96 newFeeLp_) external;

    /**
     * @notice Change the pool admin fee, set by owner, paid to admin (or whoever they want)
     * @param newFeeAdmin_ New fee, in wei / 1e18, charged by the pool for trades with it (i.e. 1% = 0.01e18)
     */
    function changeAdminFee(uint96 newFeeAdmin_) external;

    /**
     * @notice Change who the pool admin fee for this pool is sent to.
     * @param newAdminFeeRecipient_ New address to send admin fees to.
     */
    function changeAdminFeeRecipient(address newAdminFeeRecipient_) external;

    /**
     * @notice Change the owner of the underlying DittoPool, functions independently of PoolManager
     *   ownership transfer.
     * @param newOwner_ The new owner of the underlying DittoPool
     */
    function transferPoolOwnership(address newOwner_) external;
}

File 50 of 87 : IERC4906.sol
// SPDX-License-Identifier: CC0-1.0
pragma solidity 0.8.19;

/**
 * @title IERC4906
 * @notice Copied from https://github.com/ethereum/EIPs/blob/master/EIPS/eip-4906.md
 */
interface IERC4906 {
    /// @dev This event emits when the metadata of a token is changed.
    /// So that the third-party platforms such as NFT market could
    /// timely update the images and related attributes of the NFT.
    event MetadataUpdate(uint256 _tokenId);

    /// @dev This event emits when the metadata of a range of tokens is changed.
    /// So that the third-party platforms such as NFT market could
    /// timely update the images and related attributes of the NFTs.
    event BatchMetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId);
}

File 51 of 87 : Base64.sol
// SPDX-License-Identifier: AGPL-3.0
pragma solidity >=0.6.0;

/// @title Base64
/// @author Brecht Devos - <[email protected]>
/// @notice Provides functions for encoding/decoding base64
library Base64 {
    string internal constant TABLE_ENCODE =
        "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    bytes internal constant TABLE_DECODE =
        hex"0000000000000000000000000000000000000000000000000000000000000000"
        hex"00000000000000000000003e0000003f3435363738393a3b3c3d000000000000"
        hex"00000102030405060708090a0b0c0d0e0f101112131415161718190000000000"
        hex"001a1b1c1d1e1f202122232425262728292a2b2c2d2e2f303132330000000000";

    function encode(bytes memory data) internal pure returns (string memory) {
        if (data.length == 0) return "";

        // load the table into memory
        string memory table = TABLE_ENCODE;

        // multiply by 4/3 rounded up
        uint256 encodedLen = 4 * ((data.length + 2) / 3);

        // add some extra buffer at the end required for the writing
        string memory result = new string(encodedLen + 32);

        assembly {
            // set the actual output length
            mstore(result, encodedLen)

            // prepare the lookup table
            let tablePtr := add(table, 1)

            // input ptr
            let dataPtr := data
            let endPtr := add(dataPtr, mload(data))

            // result ptr, jump over length
            let resultPtr := add(result, 32)

            // run over the input, 3 bytes at a time
            for { } lt(dataPtr, endPtr) { } {
                // read 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

                // write 4 characters
                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1)
                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1)
                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1)
                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1)
            }

            // padding with '='
            switch mod(mload(data), 3)
            case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) }
            case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) }
        }

        return result;
    }

    function decode(string memory _data) internal pure returns (bytes memory) {
        bytes memory data = bytes(_data);

        if (data.length == 0) return new bytes(0);
        require(data.length % 4 == 0, "invalid base64 decoder input");

        // load the table into memory
        bytes memory table = TABLE_DECODE;

        // every 4 characters represent 3 bytes
        uint256 decodedLen = (data.length / 4) * 3;

        // add some extra buffer at the end required for the writing
        bytes memory result = new bytes(decodedLen + 32);

        assembly {
            // padding with '='
            let lastBytes := mload(add(data, mload(data)))
            if eq(and(lastBytes, 0xFF), 0x3d) {
                decodedLen := sub(decodedLen, 1)
                if eq(and(lastBytes, 0xFFFF), 0x3d3d) { decodedLen := sub(decodedLen, 1) }
            }

            // set the actual output length
            mstore(result, decodedLen)

            // prepare the lookup table
            let tablePtr := add(table, 1)

            // input ptr
            let dataPtr := data
            let endPtr := add(dataPtr, mload(data))

            // result ptr, jump over length
            let resultPtr := add(result, 32)

            // run over the input, 4 characters at a time
            for { } lt(dataPtr, endPtr) { } {
                // read 4 characters
                dataPtr := add(dataPtr, 4)
                let input := mload(dataPtr)

                // write 3 bytes
                let output :=
                    add(
                        add(
                            shl(18, and(mload(add(tablePtr, and(shr(24, input), 0xFF))), 0xFF)),
                            shl(12, and(mload(add(tablePtr, and(shr(16, input), 0xFF))), 0xFF))
                        ),
                        add(
                            shl(6, and(mload(add(tablePtr, and(shr(8, input), 0xFF))), 0xFF)),
                            and(mload(add(tablePtr, and(input, 0xFF))), 0xFF)
                        )
                    )
                mstore(resultPtr, shl(232, output))
                resultPtr := add(resultPtr, 3)
            }
        }

        return result;
    }
}

File 52 of 87 : OrderFulfiller.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { ItemType, OrderType } from "./ConsiderationEnums.sol";

import {
    OfferItem,
    ConsiderationItem,
    SpentItem,
    ReceivedItem,
    OrderParameters,
    Order,
    AdvancedOrder,
    CriteriaResolver
} from "./ConsiderationStructs.sol";

import { BasicOrderFulfiller } from "./BasicOrderFulfiller.sol";

import { CriteriaResolution } from "./CriteriaResolution.sol";

import { AmountDeriver } from "./AmountDeriver.sol";

import "./ConsiderationErrors.sol";

/**
 * @title OrderFulfiller
 * @author 0age
 * @notice OrderFulfiller contains logic related to order fulfillment where a
 *         single order is being fulfilled and where basic order fulfillment is
 *         not available as an option.
 */
contract OrderFulfiller is
    BasicOrderFulfiller,
    CriteriaResolution,
    AmountDeriver
{
    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(
        address conduitController
    ) BasicOrderFulfiller(conduitController) {}

    /**
     * @dev Internal function to validate an order and update its status, adjust
     *      prices based on current time, apply criteria resolvers, determine
     *      what portion to fill, and transfer relevant tokens.
     *
     * @param advancedOrder       The order to fulfill as well as the fraction
     *                            to fill. Note that all offer and consideration
     *                            components must divide with no remainder for
     *                            the partial fill to be valid.
     * @param criteriaResolvers   An array where each element contains a
     *                            reference to a specific offer or
     *                            consideration, a token identifier, and a proof
     *                            that the supplied token identifier is
     *                            contained in the order's merkle root. Note
     *                            that a criteria of zero indicates that any
     *                            (transferable) token identifier is valid and
     *                            that no proof needs to be supplied.
     * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
     *                            any, to source the fulfiller's token approvals
     *                            from. The zero hash signifies that no conduit
     *                            should be used, with direct approvals set on
     *                            Consideration.
     * @param recipient           The intended recipient for all received items.
     *
     * @return A boolean indicating whether the order has been fulfilled.
     */
    function _validateAndFulfillAdvancedOrder(
        AdvancedOrder memory advancedOrder,
        CriteriaResolver[] memory criteriaResolvers,
        bytes32 fulfillerConduitKey,
        address recipient
    ) internal returns (bool) {
        // Ensure this function cannot be triggered during a reentrant call.
        _setReentrancyGuard(
            // Native tokens accepted during execution for contract order types.
            advancedOrder.parameters.orderType == OrderType.CONTRACT
        );

        // Validate order, update status, and determine fraction to fill.
        (
            bytes32 orderHash,
            uint256 fillNumerator,
            uint256 fillDenominator
        ) = _validateOrderAndUpdateStatus(advancedOrder, true);

        // Create an array with length 1 containing the order.
        AdvancedOrder[] memory advancedOrders = new AdvancedOrder[](1);

        // Populate the order as the first and only element of the new array.
        advancedOrders[0] = advancedOrder;

        // Apply criteria resolvers using generated orders and details arrays.
        _applyCriteriaResolvers(advancedOrders, criteriaResolvers);

        // Retrieve the order parameters after applying criteria resolvers.
        OrderParameters memory orderParameters = advancedOrders[0].parameters;

        // Perform each item transfer with the appropriate fractional amount.
        _applyFractionsAndTransferEach(
            orderParameters,
            fillNumerator,
            fillDenominator,
            fulfillerConduitKey,
            recipient
        );

        // Declare empty bytes32 array and populate with the order hash.
        bytes32[] memory orderHashes = new bytes32[](1);
        orderHashes[0] = orderHash;

        // Ensure restricted orders have a valid submitter or pass a zone check.
        _assertRestrictedAdvancedOrderValidity(
            advancedOrders[0],
            orderHashes,
            orderHash
        );

        // Emit an event signifying that the order has been fulfilled.
        _emitOrderFulfilledEvent(
            orderHash,
            orderParameters.offerer,
            orderParameters.zone,
            recipient,
            orderParameters.offer,
            orderParameters.consideration
        );

        // Clear the reentrancy guard.
        _clearReentrancyGuard();

        return true;
    }

    /**
     * @dev Internal function to transfer each item contained in a given single
     *      order fulfillment after applying a respective fraction to the amount
     *      being transferred.
     *
     * @param orderParameters     The parameters for the fulfilled order.
     * @param numerator           A value indicating the portion of the order
     *                            that should be filled.
     * @param denominator         A value indicating the total order size.
     * @param fulfillerConduitKey A bytes32 value indicating what conduit, if
     *                            any, to source the fulfiller's token approvals
     *                            from. The zero hash signifies that no conduit
     *                            should be used, with direct approvals set on
     *                            Consideration.
     * @param recipient           The intended recipient for all received items.
     */
    function _applyFractionsAndTransferEach(
        OrderParameters memory orderParameters,
        uint256 numerator,
        uint256 denominator,
        bytes32 fulfillerConduitKey,
        address recipient
    ) internal {
        // Read start time & end time from order parameters and place on stack.
        uint256 startTime = orderParameters.startTime;
        uint256 endTime = orderParameters.endTime;

        // Initialize an accumulator array. From this point forward, no new
        // memory regions can be safely allocated until the accumulator is no
        // longer being utilized, as the accumulator operates in an open-ended
        // fashion from this memory pointer; existing memory may still be
        // accessed and modified, however.
        bytes memory accumulator = new bytes(AccumulatorDisarmed);

        // As of solidity 0.6.0, inline assembly cannot directly access function
        // definitions, but can still access locally scoped function variables.
        // This means that a local variable to reference the internal function
        // definition (using the same type), along with a local variable with
        // the desired type, must first be created. Then, the original function
        // pointer can be recast to the desired type.

        /**
         * Repurpose existing OfferItem memory regions on the offer array for
         * the order by overriding the _transfer function pointer to accept a
         * modified OfferItem argument in place of the usual ReceivedItem:
         *
         *   ========= OfferItem ==========   ====== ReceivedItem ======
         *   ItemType itemType; ------------> ItemType itemType;
         *   address token; ----------------> address token;
         *   uint256 identifierOrCriteria; -> uint256 identifier;
         *   uint256 startAmount; ----------> uint256 amount;
         *   uint256 endAmount; ------------> address recipient;
         */

        // Declare a nested scope to minimize stack depth.
        unchecked {
            // Read offer array length from memory and place on stack.
            uint256 totalOfferItems = orderParameters.offer.length;

            // Create a variable to indicate whether the order has any
            // native offer items
            uint256 anyNativeItems;

            // Iterate over each offer on the order.
            // Skip overflow check as for loop is indexed starting at zero.
            for (uint256 i = 0; i < totalOfferItems; ++i) {
                // Retrieve the offer item.
                OfferItem memory offerItem = orderParameters.offer[i];

                // Offer items for the native token can not be received outside
                // of a match order function except as part of a contract order.
                {
                    ItemType itemType = offerItem.itemType;
                    assembly {
                        anyNativeItems := or(anyNativeItems, iszero(itemType))
                    }
                }

                // Declare an additional nested scope to minimize stack depth.
                {
                    // Apply fill fraction to get offer item amount to transfer.
                    uint256 amount = _applyFraction(
                        offerItem.startAmount,
                        offerItem.endAmount,
                        numerator,
                        denominator,
                        startTime,
                        endTime,
                        false
                    );

                    // Utilize assembly to set overloaded offerItem arguments.
                    assembly {
                        // Write new fractional amount to startAmount as amount.
                        mstore(
                            add(offerItem, ReceivedItem_amount_offset),
                            amount
                        )

                        // Write recipient to endAmount.
                        mstore(
                            add(offerItem, ReceivedItem_recipient_offset),
                            recipient
                        )
                    }
                }

                // Transfer the item from the offerer to the recipient.
                _toOfferItemInput(_transfer)(
                    offerItem,
                    orderParameters.offerer,
                    orderParameters.conduitKey,
                    accumulator
                );
            }

            // If non-contract order has native offer items, throw InvalidNativeOfferItem.
            {
                OrderType orderType = orderParameters.orderType;
                uint256 invalidNativeOfferItem;
                assembly {
                    invalidNativeOfferItem := and(
                        lt(orderType, 4),
                        anyNativeItems
                    )
                }
                if (invalidNativeOfferItem != 0) {
                    _revertInvalidNativeOfferItem();
                }
            }
        }

        // Declare a variable for the available native token balance.
        uint256 nativeTokenBalance;

        /**
         * Repurpose existing ConsiderationItem memory regions on the
         * consideration array for the order by overriding the _transfer
         * function pointer to accept a modified ConsiderationItem argument in
         * place of the usual ReceivedItem:
         *
         *   ====== ConsiderationItem =====   ====== ReceivedItem ======
         *   ItemType itemType; ------------> ItemType itemType;
         *   address token; ----------------> address token;
         *   uint256 identifierOrCriteria;--> uint256 identifier;
         *   uint256 startAmount; ----------> uint256 amount;
         *   uint256 endAmount;        /----> address recipient;
         *   address recipient; ------/
         */

        // Declare a nested scope to minimize stack depth.
        unchecked {
            // Read consideration array length from memory and place on stack.
            uint256 totalConsiderationItems = orderParameters
                .consideration
                .length;

            // Iterate over each consideration item on the order.
            // Skip overflow check as for loop is indexed starting at zero.
            for (uint256 i = 0; i < totalConsiderationItems; ++i) {
                // Retrieve the consideration item.
                ConsiderationItem memory considerationItem = (
                    orderParameters.consideration[i]
                );

                // Apply fraction & derive considerationItem amount to transfer.
                uint256 amount = _applyFraction(
                    considerationItem.startAmount,
                    considerationItem.endAmount,
                    numerator,
                    denominator,
                    startTime,
                    endTime,
                    true
                );

                // Use assembly to set overloaded considerationItem arguments.
                assembly {
                    // Write derived fractional amount to startAmount as amount.
                    mstore(
                        add(considerationItem, ReceivedItem_amount_offset),
                        amount
                    )

                    // Write original recipient to endAmount as recipient.
                    mstore(
                        add(considerationItem, ReceivedItem_recipient_offset),
                        mload(
                            add(
                                considerationItem,
                                ConsiderationItem_recipient_offset
                            )
                        )
                    )
                }

                // Reduce available value if offer spent ETH or a native token.
                if (considerationItem.itemType == ItemType.NATIVE) {
                    // Get the current available balance of native tokens.
                    assembly {
                        nativeTokenBalance := selfbalance()
                    }

                    // Ensure that sufficient native tokens are still available.
                    if (amount > nativeTokenBalance) {
                        _revertInsufficientEtherSupplied();
                    }
                }

                // Transfer item from caller to recipient specified by the item.
                _toConsiderationItemInput(_transfer)(
                    considerationItem,
                    msg.sender,
                    fulfillerConduitKey,
                    accumulator
                );
            }
        }

        // Trigger any remaining accumulated transfers via call to the conduit.
        _triggerIfArmed(accumulator);

        // Determine whether any native token balance remains.
        assembly {
            nativeTokenBalance := selfbalance()
        }

        // Return any remaining native token balance to the caller.
        if (nativeTokenBalance != 0) {
            _transferNativeTokens(payable(msg.sender), nativeTokenBalance);
        }
    }

    /**
     * @dev Internal function to emit an OrderFulfilled event. OfferItems are
     *      translated into SpentItems and ConsiderationItems are translated
     *      into ReceivedItems.
     *
     * @param orderHash     The order hash.
     * @param offerer       The offerer for the order.
     * @param zone          The zone for the order.
     * @param recipient     The recipient of the order, or the null address if
     *                      the order was fulfilled via order matching.
     * @param offer         The offer items for the order.
     * @param consideration The consideration items for the order.
     */
    function _emitOrderFulfilledEvent(
        bytes32 orderHash,
        address offerer,
        address zone,
        address recipient,
        OfferItem[] memory offer,
        ConsiderationItem[] memory consideration
    ) internal {
        // Cast already-modified offer memory region as spent items.
        SpentItem[] memory spentItems;
        assembly {
            spentItems := offer
        }

        // Cast already-modified consideration memory region as received items.
        ReceivedItem[] memory receivedItems;
        assembly {
            receivedItems := consideration
        }

        // Emit an event signifying that the order has been fulfilled.
        emit OrderFulfilled(
            orderHash,
            offerer,
            zone,
            recipient,
            spentItems,
            receivedItems
        );
    }
}

File 53 of 87 : FulfillmentApplier.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { ItemType, Side } from "./ConsiderationEnums.sol";

import {
    OfferItem,
    ConsiderationItem,
    ReceivedItem,
    OrderParameters,
    AdvancedOrder,
    Execution,
    FulfillmentComponent
} from "./ConsiderationStructs.sol";

import "./ConsiderationErrors.sol";

import {
    FulfillmentApplicationErrors
} from "../interfaces/FulfillmentApplicationErrors.sol";

/**
 * @title FulfillmentApplier
 * @author 0age
 * @notice FulfillmentApplier contains logic related to applying fulfillments,
 *         both as part of order matching (where offer items are matched to
 *         consideration items) as well as fulfilling available orders (where
 *         order items and consideration items are independently aggregated).
 */
contract FulfillmentApplier is FulfillmentApplicationErrors {
    /**
     * @dev Internal pure function to match offer items to consideration items
     *      on a group of orders via a supplied fulfillment.
     *
     * @param advancedOrders          The orders to match.
     * @param offerComponents         An array designating offer components to
     *                                match to consideration components.
     * @param considerationComponents An array designating consideration
     *                                components to match to offer components.
     *                                Note that each consideration amount must
     *                                be zero in order for the match operation
     *                                to be valid.
     * @param fulfillmentIndex        The index of the fulfillment being
     *                                applied.
     *
     * @return execution The transfer performed as a result of the fulfillment.
     */
    function _applyFulfillment(
        AdvancedOrder[] memory advancedOrders,
        FulfillmentComponent[] memory offerComponents,
        FulfillmentComponent[] memory considerationComponents,
        uint256 fulfillmentIndex
    ) internal pure returns (Execution memory execution) {
        // Ensure 1+ of both offer and consideration components are supplied.
        if (
            offerComponents.length == 0 || considerationComponents.length == 0
        ) {
            _revertOfferAndConsiderationRequiredOnFulfillment();
        }

        // Declare a new Execution struct.
        Execution memory considerationExecution;

        // Validate & aggregate consideration items to new Execution object.
        _aggregateValidFulfillmentConsiderationItems(
            advancedOrders,
            considerationComponents,
            considerationExecution
        );

        // Retrieve the consideration item from the execution struct.
        ReceivedItem memory considerationItem = considerationExecution.item;

        // Skip aggregating offer items if no consideration items are available.
        if (considerationItem.amount == 0) {
            // Set the offerer and recipient to null address if execution
            // amount is zero. This will cause the execution item to be skipped.
            considerationExecution.offerer = address(0);
            considerationExecution.item.recipient = payable(0);
            return considerationExecution;
        }

        // Recipient does not need to be specified because it will always be set
        // to that of the consideration.
        // Validate & aggregate offer items to Execution object.
        _aggregateValidFulfillmentOfferItems(
            advancedOrders,
            offerComponents,
            execution
        );

        // Ensure offer and consideration share types, tokens and identifiers.
        if (
            execution.item.itemType != considerationItem.itemType ||
            execution.item.token != considerationItem.token ||
            execution.item.identifier != considerationItem.identifier
        ) {
            _revertMismatchedFulfillmentOfferAndConsiderationComponents(
                fulfillmentIndex
            );
        }

        // If total consideration amount exceeds the offer amount...
        if (considerationItem.amount > execution.item.amount) {
            // Retrieve the first consideration component from the fulfillment.
            FulfillmentComponent memory targetComponent = (
                considerationComponents[0]
            );

            // Skip underflow check as the conditional being true implies that
            // considerationItem.amount > execution.item.amount.
            unchecked {
                // Add excess consideration item amount to original order array.
                advancedOrders[targetComponent.orderIndex]
                    .parameters
                    .consideration[targetComponent.itemIndex]
                    .startAmount = (considerationItem.amount -
                    execution.item.amount);
            }
        } else {
            // Retrieve the first offer component from the fulfillment.
            FulfillmentComponent memory targetComponent = offerComponents[0];

            // Skip underflow check as the conditional being false implies that
            // execution.item.amount >= considerationItem.amount.
            unchecked {
                // Add excess offer item amount to the original array of orders.
                advancedOrders[targetComponent.orderIndex]
                    .parameters
                    .offer[targetComponent.itemIndex]
                    .startAmount = (execution.item.amount -
                    considerationItem.amount);
            }

            // Reduce total offer amount to equal the consideration amount.
            execution.item.amount = considerationItem.amount;
        }

        // Reuse consideration recipient.
        execution.item.recipient = considerationItem.recipient;

        // Return the final execution that will be triggered for relevant items.
        return execution; // Execution(considerationItem, offerer, conduitKey);
    }

    /**
     * @dev Internal view function to aggregate offer or consideration items
     *      from a group of orders into a single execution via a supplied array
     *      of fulfillment components. Items that are not available to aggregate
     *      will not be included in the aggregated execution.
     *
     * @param advancedOrders        The orders to aggregate.
     * @param side                  The side (i.e. offer or consideration).
     * @param fulfillmentComponents An array designating item components to
     *                              aggregate if part of an available order.
     * @param fulfillerConduitKey   A bytes32 value indicating what conduit, if
     *                              any, to source the fulfiller's token
     *                              approvals from. The zero hash signifies that
     *                              no conduit should be used, with approvals
     *                              set directly on this contract.
     * @param recipient             The intended recipient for all received
     *                              items.
     *
     * @return execution The transfer performed as a result of the fulfillment.
     */
    function _aggregateAvailable(
        AdvancedOrder[] memory advancedOrders,
        Side side,
        FulfillmentComponent[] memory fulfillmentComponents,
        bytes32 fulfillerConduitKey,
        address recipient
    ) internal view returns (Execution memory execution) {
        // Skip overflow / underflow checks; conditions checked or unreachable.
        unchecked {
            // Retrieve fulfillment components array length and place on stack.
            // Ensure at least one fulfillment component has been supplied.
            if (fulfillmentComponents.length == 0) {
                _revertMissingFulfillmentComponentOnAggregation(side);
            }

            // If the fulfillment components are offer components...
            if (side == Side.OFFER) {
                // Set the supplied recipient on the execution item.
                execution.item.recipient = payable(recipient);

                // Return execution for aggregated items provided by offerer.
                _aggregateValidFulfillmentOfferItems(
                    advancedOrders,
                    fulfillmentComponents,
                    execution
                );
            } else {
                // Otherwise, fulfillment components are consideration
                // components. Return execution for aggregated items provided by
                // the fulfiller.
                _aggregateValidFulfillmentConsiderationItems(
                    advancedOrders,
                    fulfillmentComponents,
                    execution
                );

                // Set the caller as the offerer on the execution.
                execution.offerer = msg.sender;

                // Set fulfiller conduit key as the conduit key on execution.
                execution.conduitKey = fulfillerConduitKey;
            }

            // Set the offerer and recipient to null address if execution
            // amount is zero. This will cause the execution item to be skipped.
            if (execution.item.amount == 0) {
                execution.offerer = address(0);
                execution.item.recipient = payable(0);
            }
        }
    }

    /**
     * @dev Internal pure function to aggregate a group of offer items using
     *      supplied directives on which component items are candidates for
     *      aggregation, skipping items on orders that are not available.
     *
     * @param advancedOrders  The orders to aggregate offer items from.
     * @param offerComponents An array of FulfillmentComponent structs
     *                        indicating the order index and item index of each
     *                        candidate offer item for aggregation.
     * @param execution       The execution to apply the aggregation to.
     */
    function _aggregateValidFulfillmentOfferItems(
        AdvancedOrder[] memory advancedOrders,
        FulfillmentComponent[] memory offerComponents,
        Execution memory execution
    ) internal pure {
        assembly {
            // Declare a variable for the final aggregated item amount.
            let amount

            // Declare a variable to track errors encountered with amount.
            let errorBuffer

            // Declare a variable for the hash of itemType, token, identifier
            let dataHash

            for {
                // Create variable to track position in offerComponents head.
                let fulfillmentHeadPtr := offerComponents

                // Get position one word past last element in head of array.
                let endPtr := add(
                    offerComponents,
                    shl(OneWordShift, mload(offerComponents))
                )
            } lt(fulfillmentHeadPtr, endPtr) {

            } {
                // Increment position in considerationComponents head.
                fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)

                // Retrieve the order index using the fulfillment pointer.
                let orderIndex := mload(mload(fulfillmentHeadPtr))

                // Ensure that the order index is not out of range.
                if iszero(lt(orderIndex, mload(advancedOrders))) {
                    throwInvalidFulfillmentComponentData()
                }

                // Read advancedOrders[orderIndex] pointer from its array head.
                let orderPtr := mload(
                    // Calculate head position of advancedOrders[orderIndex].
                    add(
                        add(advancedOrders, OneWord),
                        shl(OneWordShift, orderIndex)
                    )
                )

                // Read the pointer to OrderParameters from the AdvancedOrder.
                let paramsPtr := mload(orderPtr)

                // Retrieve item index using an offset of fulfillment pointer.
                let itemIndex := mload(
                    add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
                )

                let offerItemPtr
                {
                    // Load the offer array pointer.
                    let offerArrPtr := mload(
                        add(paramsPtr, OrderParameters_offer_head_offset)
                    )

                    // If the offer item index is out of range or the numerator
                    // is zero, skip this item.
                    if or(
                        iszero(lt(itemIndex, mload(offerArrPtr))),
                        iszero(
                            mload(add(orderPtr, AdvancedOrder_numerator_offset))
                        )
                    ) {
                        continue
                    }

                    // Retrieve offer item pointer using the item index.
                    offerItemPtr := mload(
                        add(
                            // Get pointer to beginning of receivedItem.
                            add(offerArrPtr, OneWord),
                            // Calculate offset to pointer for desired order.
                            shl(OneWordShift, itemIndex)
                        )
                    )
                }

                // Declare a separate scope for the amount update.
                {
                    // Retrieve amount pointer using consideration item pointer.
                    let amountPtr := add(offerItemPtr, Common_amount_offset)

                    // Add offer item amount to execution amount.
                    let newAmount := add(amount, mload(amountPtr))

                    // Update error buffer:
                    // 1 = zero amount, 2 = overflow, 3 = both.
                    errorBuffer := or(
                        errorBuffer,
                        or(
                            shl(1, lt(newAmount, amount)),
                            iszero(mload(amountPtr))
                        )
                    )

                    // Update the amount to the new, summed amount.
                    amount := newAmount

                    // Zero out amount on original item to indicate it is spent.
                    mstore(amountPtr, 0)
                }

                // Retrieve ReceivedItem pointer from Execution.
                let receivedItem := mload(execution)

                // Check if this is the first valid fulfillment item
                switch iszero(dataHash)
                case 1 {
                    // On first valid item, populate the received item in
                    // memory for later comparison.

                    // Set the item type on the received item.
                    mstore(receivedItem, mload(offerItemPtr))

                    // Set the token on the received item.
                    mstore(
                        add(receivedItem, Common_token_offset),
                        mload(add(offerItemPtr, Common_token_offset))
                    )

                    // Set the identifier on the received item.
                    mstore(
                        add(receivedItem, Common_identifier_offset),
                        mload(add(offerItemPtr, Common_identifier_offset))
                    )

                    // Set offerer on returned execution using order pointer.
                    mstore(
                        add(execution, Execution_offerer_offset),
                        mload(paramsPtr)
                    )

                    // Set execution conduitKey via order pointer offset.
                    mstore(
                        add(execution, Execution_conduit_offset),
                        mload(add(paramsPtr, OrderParameters_conduit_offset))
                    )

                    // Calculate the hash of (itemType, token, identifier).
                    dataHash := keccak256(
                        receivedItem,
                        ReceivedItem_CommonParams_size
                    )

                    // If component index > 0, swap component pointer with
                    // pointer to first component so that any remainder after
                    // fulfillment can be added back to the first item.
                    let firstFulfillmentHeadPtr := add(offerComponents, OneWord)
                    if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) {
                        let firstFulfillmentPtr := mload(
                            firstFulfillmentHeadPtr
                        )
                        let fulfillmentPtr := mload(fulfillmentHeadPtr)
                        mstore(firstFulfillmentHeadPtr, fulfillmentPtr)
                    }
                }
                default {
                    // Compare every subsequent item to the first
                    if or(
                        or(
                            // The offerer must match on both items.
                            xor(
                                mload(paramsPtr),
                                mload(add(execution, Execution_offerer_offset))
                            ),
                            // The conduit key must match on both items.
                            xor(
                                mload(
                                    add(
                                        paramsPtr,
                                        OrderParameters_conduit_offset
                                    )
                                ),
                                mload(add(execution, Execution_conduit_offset))
                            )
                        ),
                        // The itemType, token, and identifier must match.
                        xor(
                            dataHash,
                            keccak256(
                                offerItemPtr,
                                ReceivedItem_CommonParams_size
                            )
                        )
                    ) {
                        // Throw if any of the requirements are not met.
                        throwInvalidFulfillmentComponentData()
                    }
                }
            }

            // Write final amount to execution.
            mstore(add(mload(execution), Common_amount_offset), amount)

            // Determine whether the error buffer contains a nonzero error code.
            if errorBuffer {
                // If errorBuffer is 1, an item had an amount of zero.
                if eq(errorBuffer, 1) {
                    // Store left-padded selector with push4 (reduces bytecode)
                    // mem[28:32] = selector
                    mstore(0, MissingItemAmount_error_selector)

                    // revert(abi.encodeWithSignature("MissingItemAmount()"))
                    revert(
                        Error_selector_offset,
                        MissingItemAmount_error_length
                    )
                }

                // If errorBuffer is not 1 or 0, the sum overflowed.
                // Panic!
                throwOverflow()
            }

            // Declare function for reverts on invalid fulfillment data.
            function throwInvalidFulfillmentComponentData() {
                // Store left-padded selector (uses push4 and reduces code size)
                mstore(0, InvalidFulfillmentComponentData_error_selector)

                // revert(abi.encodeWithSignature(
                //     "InvalidFulfillmentComponentData()"
                // ))
                revert(
                    Error_selector_offset,
                    InvalidFulfillmentComponentData_error_length
                )
            }

            // Declare function for reverts due to arithmetic overflows.
            function throwOverflow() {
                // Store the Panic error signature.
                mstore(0, Panic_error_selector)
                // Store the arithmetic (0x11) panic code.
                mstore(Panic_error_code_ptr, Panic_arithmetic)
                // revert(abi.encodeWithSignature("Panic(uint256)", 0x11))
                revert(Error_selector_offset, Panic_error_length)
            }
        }
    }

    /**
     * @dev Internal pure function to aggregate a group of consideration items
     *      using supplied directives on which component items are candidates
     *      for aggregation, skipping items on orders that are not available.
     *      Note that this function depends on memory layout affected by an
     *      earlier call to _validateOrdersAndPrepareToFulfill.  The memory for
     *      the consideration arrays needs to be updated before calling
     *      _aggregateValidFulfillmentConsiderationItems.
     *      _validateOrdersAndPrepareToFulfill is called in _matchAdvancedOrders
     *      and _fulfillAvailableAdvancedOrders in the current version.
     *
     * @param advancedOrders          The orders to aggregate consideration
     *                                items from.
     * @param considerationComponents An array of FulfillmentComponent structs
     *                                indicating the order index and item index
     *                                of each candidate consideration item for
     *                                aggregation.
     * @param execution               The execution to apply the aggregation to.
     */
    function _aggregateValidFulfillmentConsiderationItems(
        AdvancedOrder[] memory advancedOrders,
        FulfillmentComponent[] memory considerationComponents,
        Execution memory execution
    ) internal pure {
        // Utilize assembly in order to efficiently aggregate the items.
        assembly {
            // Declare a variable for the final aggregated item amount.
            let amount

            // Create variable to track errors encountered with amount.
            let errorBuffer

            // Declare variable for hash(itemType, token, identifier, recipient)
            let dataHash

            for {
                // Track position in considerationComponents head.
                let fulfillmentHeadPtr := considerationComponents

                // Get position one word past last element in head of array.
                let endPtr := add(
                    considerationComponents,
                    shl(OneWordShift, mload(considerationComponents))
                )
            } lt(fulfillmentHeadPtr, endPtr) {

            } {
                // Increment position in considerationComponents head.
                fulfillmentHeadPtr := add(fulfillmentHeadPtr, OneWord)

                // Retrieve the order index using the fulfillment pointer.
                let orderIndex := mload(mload(fulfillmentHeadPtr))

                // Ensure that the order index is not out of range.
                if iszero(lt(orderIndex, mload(advancedOrders))) {
                    throwInvalidFulfillmentComponentData()
                }

                // Read advancedOrders[orderIndex] pointer from its array head.
                let orderPtr := mload(
                    // Calculate head position of advancedOrders[orderIndex].
                    add(
                        add(advancedOrders, OneWord),
                        shl(OneWordShift, orderIndex)
                    )
                )

                // Retrieve item index using an offset of fulfillment pointer.
                let itemIndex := mload(
                    add(mload(fulfillmentHeadPtr), Fulfillment_itemIndex_offset)
                )

                let considerationItemPtr
                {
                    // Load consideration array pointer.
                    let considerationArrPtr := mload(
                        add(
                            // Read OrderParameters pointer from AdvancedOrder.
                            mload(orderPtr),
                            OrderParameters_consideration_head_offset
                        )
                    )

                    // If the consideration item index is out of range or the
                    // numerator is zero, skip this item.
                    if or(
                        iszero(lt(itemIndex, mload(considerationArrPtr))),
                        iszero(
                            mload(add(orderPtr, AdvancedOrder_numerator_offset))
                        )
                    ) {
                        continue
                    }

                    // Retrieve consideration item pointer using the item index.
                    considerationItemPtr := mload(
                        add(
                            // Get pointer to beginning of receivedItem.
                            add(considerationArrPtr, OneWord),
                            // Calculate offset to pointer for desired order.
                            shl(OneWordShift, itemIndex)
                        )
                    )
                }

                // Declare a separate scope for the amount update
                {
                    // Retrieve amount pointer using consideration item pointer.
                    let amountPtr := add(
                        considerationItemPtr,
                        Common_amount_offset
                    )

                    // Add consideration item amount to execution amount.
                    let newAmount := add(amount, mload(amountPtr))

                    // Update error buffer:
                    // 1 = zero amount, 2 = overflow, 3 = both.
                    errorBuffer := or(
                        errorBuffer,
                        or(
                            shl(1, lt(newAmount, amount)),
                            iszero(mload(amountPtr))
                        )
                    )

                    // Update the amount to the new, summed amount.
                    amount := newAmount

                    // Zero out original item amount to indicate it is credited.
                    mstore(amountPtr, 0)
                }

                // Retrieve ReceivedItem pointer from Execution.
                let receivedItem := mload(execution)

                switch iszero(dataHash)
                case 1 {
                    // On first valid item, populate the received item in
                    // memory for later comparison.

                    // Set the item type on the received item.
                    mstore(receivedItem, mload(considerationItemPtr))

                    // Set the token on the received item.
                    mstore(
                        add(receivedItem, Common_token_offset),
                        mload(add(considerationItemPtr, Common_token_offset))
                    )

                    // Set the identifier on the received item.
                    mstore(
                        add(receivedItem, Common_identifier_offset),
                        mload(
                            add(considerationItemPtr, Common_identifier_offset)
                        )
                    )

                    // Set the recipient on the received item.
                    // Note that this depends on the memory layout affected by
                    // _validateOrdersAndPrepareToFulfill.
                    mstore(
                        add(receivedItem, ReceivedItem_recipient_offset),
                        mload(
                            add(
                                considerationItemPtr,
                                ReceivedItem_recipient_offset
                            )
                        )
                    )

                    // Calculate the hash of (itemType, token, identifier,
                    // recipient). This is run after amount is set to zero, so
                    // there will be one blank word after identifier included in
                    // the hash buffer.
                    dataHash := keccak256(
                        considerationItemPtr,
                        ReceivedItem_size
                    )

                    // If component index > 0, swap component pointer with
                    // pointer to first component so that any remainder after
                    // fulfillment can be added back to the first item.
                    let firstFulfillmentHeadPtr := add(
                        considerationComponents,
                        OneWord
                    )
                    if xor(firstFulfillmentHeadPtr, fulfillmentHeadPtr) {
                        let firstFulfillmentPtr := mload(
                            firstFulfillmentHeadPtr
                        )
                        let fulfillmentPtr := mload(fulfillmentHeadPtr)
                        mstore(firstFulfillmentHeadPtr, fulfillmentPtr)
                    }
                }
                default {
                    // Compare every subsequent item to the first
                    // The itemType, token, identifier and recipient must match.
                    if xor(
                        dataHash,
                        // Calculate the hash of (itemType, token, identifier,
                        // recipient). This is run after amount is set to zero,
                        // so there will be one blank word after identifier
                        // included in the hash buffer.
                        keccak256(considerationItemPtr, ReceivedItem_size)
                    ) {
                        // Throw if any of the requirements are not met.
                        throwInvalidFulfillmentComponentData()
                    }
                }
            }

            // Retrieve ReceivedItem pointer from Execution.
            let receivedItem := mload(execution)

            // Write final amount to execution.
            mstore(add(receivedItem, Common_amount_offset), amount)

            // Determine whether the error buffer contains a nonzero error code.
            if errorBuffer {
                // If errorBuffer is 1, an item had an amount of zero.
                if eq(errorBuffer, 1) {
                    // Store left-padded selector with push4, mem[28:32]
                    mstore(0, MissingItemAmount_error_selector)

                    // revert(abi.encodeWithSignature("MissingItemAmount()"))
                    revert(
                        Error_selector_offset,
                        MissingItemAmount_error_length
                    )
                }

                // If errorBuffer is not 1 or 0, `amount` overflowed.
                // Panic!
                throwOverflow()
            }

            // Declare function for reverts on invalid fulfillment data.
            function throwInvalidFulfillmentComponentData() {
                // Store the InvalidFulfillmentComponentData error signature.
                mstore(0, InvalidFulfillmentComponentData_error_selector)

                // Return, supplying InvalidFulfillmentComponentData signature.
                revert(
                    Error_selector_offset,
                    InvalidFulfillmentComponentData_error_length
                )
            }

            // Declare function for reverts due to arithmetic overflows.
            function throwOverflow() {
                // Store the Panic error signature.
                mstore(0, Panic_error_selector)
                // Store the arithmetic (0x11) panic code.
                mstore(Panic_error_code_ptr, Panic_arithmetic)
                // revert(abi.encodeWithSignature("Panic(uint256)", 0x11))
                revert(Error_selector_offset, Panic_error_length)
            }
        }
    }
}

File 54 of 87 : ConsiderationErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { Side } from "./ConsiderationEnums.sol";

import "./ConsiderationConstants.sol";

/**
 * @dev Reverts the current transaction with a "BadFraction" error message.
 */
function _revertBadFraction() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, BadFraction_error_selector)

        // revert(abi.encodeWithSignature("BadFraction()"))
        revert(Error_selector_offset, BadFraction_error_length)
    }
}

/**
 * @dev Reverts the current transaction with a "ConsiderationNotMet" error
 *      message, including the provided order index, consideration index, and
 *      shortfall amount.
 *
 * @param orderIndex         The index of the order that did not meet the
 *                           consideration criteria.
 * @param considerationIndex The index of the consideration item that did not
 *                           meet its criteria.
 * @param shortfallAmount    The amount by which the consideration criteria were
 *                           not met.
 */
function _revertConsiderationNotMet(
    uint256 orderIndex,
    uint256 considerationIndex,
    uint256 shortfallAmount
) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, ConsiderationNotMet_error_selector)

        // Store arguments.
        mstore(ConsiderationNotMet_error_orderIndex_ptr, orderIndex)
        mstore(
            ConsiderationNotMet_error_considerationIndex_ptr,
            considerationIndex
        )
        mstore(ConsiderationNotMet_error_shortfallAmount_ptr, shortfallAmount)

        // revert(abi.encodeWithSignature(
        //     "ConsiderationNotMet(uint256,uint256,uint256)",
        //     orderIndex,
        //     considerationIndex,
        //     shortfallAmount
        // ))
        revert(Error_selector_offset, ConsiderationNotMet_error_length)
    }
}

/**
 * @dev Reverts the current transaction with a "CriteriaNotEnabledForItem" error
 *      message.
 */
function _revertCriteriaNotEnabledForItem() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, CriteriaNotEnabledForItem_error_selector)

        // revert(abi.encodeWithSignature("CriteriaNotEnabledForItem()"))
        revert(Error_selector_offset, CriteriaNotEnabledForItem_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "InsufficientEtherSupplied"
 *      error message.
 */
function _revertInsufficientEtherSupplied() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InsufficientEtherSupplied_error_selector)

        // revert(abi.encodeWithSignature("InsufficientEtherSupplied()"))
        revert(Error_selector_offset, InsufficientEtherSupplied_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an
 *      "InvalidBasicOrderParameterEncoding" error message.
 */
function _revertInvalidBasicOrderParameterEncoding() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidBasicOrderParameterEncoding_error_selector)

        // revert(abi.encodeWithSignature(
        //     "InvalidBasicOrderParameterEncoding()"
        // ))
        revert(
            Error_selector_offset,
            InvalidBasicOrderParameterEncoding_error_length
        )
    }
}

/**
 * @dev Reverts the current transaction with an "InvalidCallToConduit" error
 *      message, including the provided address of the conduit that was called
 *      improperly.
 *
 * @param conduit The address of the conduit that was called improperly.
 */
function _revertInvalidCallToConduit(address conduit) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidCallToConduit_error_selector)

        // Store argument.
        mstore(InvalidCallToConduit_error_conduit_ptr, conduit)

        // revert(abi.encodeWithSignature(
        //     "InvalidCallToConduit(address)",
        //     conduit
        // ))
        revert(Error_selector_offset, InvalidCallToConduit_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "CannotCancelOrder" error
 *      message.
 */
function _revertCannotCancelOrder() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, CannotCancelOrder_error_selector)

        // revert(abi.encodeWithSignature("CannotCancelOrder()"))
        revert(Error_selector_offset, CannotCancelOrder_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "InvalidConduit" error message,
 *      including the provided key and address of the invalid conduit.
 *
 * @param conduitKey    The key of the invalid conduit.
 * @param conduit       The address of the invalid conduit.
 */
function _revertInvalidConduit(bytes32 conduitKey, address conduit) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidConduit_error_selector)

        // Store arguments.
        mstore(InvalidConduit_error_conduitKey_ptr, conduitKey)
        mstore(InvalidConduit_error_conduit_ptr, conduit)

        // revert(abi.encodeWithSignature(
        //     "InvalidConduit(bytes32,address)",
        //     conduitKey,
        //     conduit
        // ))
        revert(Error_selector_offset, InvalidConduit_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "InvalidERC721TransferAmount"
 *      error message.
 *
 * @param amount The invalid amount.
 */
function _revertInvalidERC721TransferAmount(uint256 amount) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidERC721TransferAmount_error_selector)

        // Store argument.
        mstore(InvalidERC721TransferAmount_error_amount_ptr, amount)

        // revert(abi.encodeWithSignature(
        //     "InvalidERC721TransferAmount(uint256)",
        //     amount
        // ))
        revert(Error_selector_offset, InvalidERC721TransferAmount_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "InvalidMsgValue" error message,
 *      including the invalid value that was sent in the transaction's
 *      `msg.value` field.
 *
 * @param value The invalid value that was sent in the transaction's `msg.value`
 *              field.
 */
function _revertInvalidMsgValue(uint256 value) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidMsgValue_error_selector)

        // Store argument.
        mstore(InvalidMsgValue_error_value_ptr, value)

        // revert(abi.encodeWithSignature("InvalidMsgValue(uint256)", value))
        revert(Error_selector_offset, InvalidMsgValue_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "InvalidNativeOfferItem" error
 *      message.
 */
function _revertInvalidNativeOfferItem() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidNativeOfferItem_error_selector)

        // revert(abi.encodeWithSignature("InvalidNativeOfferItem()"))
        revert(Error_selector_offset, InvalidNativeOfferItem_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "InvalidProof" error message.
 */
function _revertInvalidProof() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidProof_error_selector)

        // revert(abi.encodeWithSignature("InvalidProof()"))
        revert(Error_selector_offset, InvalidProof_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "InvalidContractOrder" error
 *      message.
 *
 * @param orderHash The hash of the contract order that caused the error.
 */
function _revertInvalidContractOrder(bytes32 orderHash) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidContractOrder_error_selector)

        // Store arguments.
        mstore(InvalidContractOrder_error_orderHash_ptr, orderHash)

        // revert(abi.encodeWithSignature(
        //     "InvalidContractOrder(bytes32)",
        //     orderHash
        // ))
        revert(Error_selector_offset, InvalidContractOrder_error_length)
    }
}

/**
 * @dev Reverts the current transaction with an "InvalidTime" error message.
 *
 * @param startTime       The time at which the order becomes active.
 * @param endTime         The time at which the order becomes inactive.
 */
function _revertInvalidTime(uint256 startTime, uint256 endTime) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, InvalidTime_error_selector)

        // Store arguments.
        mstore(InvalidTime_error_startTime_ptr, startTime)
        mstore(InvalidTime_error_endTime_ptr, endTime)

        // revert(abi.encodeWithSignature(
        //     "InvalidTime(uint256,uint256)",
        //     startTime,
        //     endTime
        // ))
        revert(Error_selector_offset, InvalidTime_error_length)
    }
}

/**
 * @dev Reverts execution with a
 *      "MismatchedFulfillmentOfferAndConsiderationComponents" error message.
 *
 * @param fulfillmentIndex         The index of the fulfillment that caused the
 *                                 error.
 */
function _revertMismatchedFulfillmentOfferAndConsiderationComponents(
    uint256 fulfillmentIndex
) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(
            0,
            MismatchedFulfillmentOfferAndConsiderationComponents_error_selector
        )

        // Store argument.
        mstore(
            MismatchedFulfillmentOfferAndConsiderationComponents_error_fulfillmentIndex_ptr,
            fulfillmentIndex
        )

        // revert(abi.encodeWithSignature(
        //     "MismatchedFulfillmentOfferAndConsiderationComponents(uint256)",
        //     fulfillmentIndex
        // ))
        revert(
            Error_selector_offset,
            MismatchedFulfillmentOfferAndConsiderationComponents_error_length
        )
    }
}

/**
 * @dev Reverts execution with a "MissingFulfillmentComponentOnAggregation"
 *       error message.
 *
 * @param side The side of the fulfillment component that is missing (0 for
 *             offer, 1 for consideration).
 *
 */
function _revertMissingFulfillmentComponentOnAggregation(Side side) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, MissingFulfillmentComponentOnAggregation_error_selector)

        // Store argument.
        mstore(MissingFulfillmentComponentOnAggregation_error_side_ptr, side)

        // revert(abi.encodeWithSignature(
        //     "MissingFulfillmentComponentOnAggregation(uint8)",
        //     side
        // ))
        revert(
            Error_selector_offset,
            MissingFulfillmentComponentOnAggregation_error_length
        )
    }
}

/**
 * @dev Reverts execution with a "MissingOriginalConsiderationItems" error
 *      message.
 */
function _revertMissingOriginalConsiderationItems() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, MissingOriginalConsiderationItems_error_selector)

        // revert(abi.encodeWithSignature(
        //     "MissingOriginalConsiderationItems()"
        // ))
        revert(
            Error_selector_offset,
            MissingOriginalConsiderationItems_error_length
        )
    }
}

/**
 * @dev Reverts execution with a "NoReentrantCalls" error message.
 */
function _revertNoReentrantCalls() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, NoReentrantCalls_error_selector)

        // revert(abi.encodeWithSignature("NoReentrantCalls()"))
        revert(Error_selector_offset, NoReentrantCalls_error_length)
    }
}

/**
 * @dev Reverts execution with a "NoSpecifiedOrdersAvailable" error message.
 */
function _revertNoSpecifiedOrdersAvailable() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, NoSpecifiedOrdersAvailable_error_selector)

        // revert(abi.encodeWithSignature("NoSpecifiedOrdersAvailable()"))
        revert(Error_selector_offset, NoSpecifiedOrdersAvailable_error_length)
    }
}

/**
 * @dev Reverts execution with a "OfferAndConsiderationRequiredOnFulfillment"
 *      error message.
 */
function _revertOfferAndConsiderationRequiredOnFulfillment() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, OfferAndConsiderationRequiredOnFulfillment_error_selector)

        // revert(abi.encodeWithSignature(
        //     "OfferAndConsiderationRequiredOnFulfillment()"
        // ))
        revert(
            Error_selector_offset,
            OfferAndConsiderationRequiredOnFulfillment_error_length
        )
    }
}

/**
 * @dev Reverts execution with an "OrderAlreadyFilled" error message.
 *
 * @param orderHash The hash of the order that has already been filled.
 */
function _revertOrderAlreadyFilled(bytes32 orderHash) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, OrderAlreadyFilled_error_selector)

        // Store argument.
        mstore(OrderAlreadyFilled_error_orderHash_ptr, orderHash)

        // revert(abi.encodeWithSignature(
        //     "OrderAlreadyFilled(bytes32)",
        //     orderHash
        // ))
        revert(Error_selector_offset, OrderAlreadyFilled_error_length)
    }
}

/**
 * @dev Reverts execution with an "OrderCriteriaResolverOutOfRange" error
 *      message.
 *
 * @param side The side of the criteria that is missing (0 for offer, 1 for
 *             consideration).
 *
 */
function _revertOrderCriteriaResolverOutOfRange(Side side) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, OrderCriteriaResolverOutOfRange_error_selector)

        // Store argument.
        mstore(OrderCriteriaResolverOutOfRange_error_side_ptr, side)

        // revert(abi.encodeWithSignature(
        //     "OrderCriteriaResolverOutOfRange(uint8)",
        //     side
        // ))
        revert(
            Error_selector_offset,
            OrderCriteriaResolverOutOfRange_error_length
        )
    }
}

/**
 * @dev Reverts execution with an "OrderIsCancelled" error message.
 *
 * @param orderHash The hash of the order that has already been cancelled.
 */
function _revertOrderIsCancelled(bytes32 orderHash) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, OrderIsCancelled_error_selector)

        // Store argument.
        mstore(OrderIsCancelled_error_orderHash_ptr, orderHash)

        // revert(abi.encodeWithSignature(
        //     "OrderIsCancelled(bytes32)",
        //     orderHash
        // ))
        revert(Error_selector_offset, OrderIsCancelled_error_length)
    }
}

/**
 * @dev Reverts execution with an "OrderPartiallyFilled" error message.
 *
 * @param orderHash The hash of the order that has already been partially
 *                  filled.
 */
function _revertOrderPartiallyFilled(bytes32 orderHash) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, OrderPartiallyFilled_error_selector)

        // Store argument.
        mstore(OrderPartiallyFilled_error_orderHash_ptr, orderHash)

        // revert(abi.encodeWithSignature(
        //     "OrderPartiallyFilled(bytes32)",
        //     orderHash
        // ))
        revert(Error_selector_offset, OrderPartiallyFilled_error_length)
    }
}

/**
 * @dev Reverts execution with a "PartialFillsNotEnabledForOrder" error message.
 */
function _revertPartialFillsNotEnabledForOrder() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, PartialFillsNotEnabledForOrder_error_selector)

        // revert(abi.encodeWithSignature("PartialFillsNotEnabledForOrder()"))
        revert(
            Error_selector_offset,
            PartialFillsNotEnabledForOrder_error_length
        )
    }
}

/**
 * @dev Reverts execution with an "UnresolvedConsiderationCriteria" error
 *      message.
 */
function _revertUnresolvedConsiderationCriteria(
    uint256 orderIndex,
    uint256 considerationIndex
) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, UnresolvedConsiderationCriteria_error_selector)

        // Store arguments.
        mstore(UnresolvedConsiderationCriteria_error_orderIndex_ptr, orderIndex)
        mstore(
            UnresolvedConsiderationCriteria_error_considerationIndex_ptr,
            considerationIndex
        )

        // revert(abi.encodeWithSignature(
        //     "UnresolvedConsiderationCriteria(uint256, uint256)",
        //     orderIndex,
        //     considerationIndex
        // ))
        revert(
            Error_selector_offset,
            UnresolvedConsiderationCriteria_error_length
        )
    }
}

/**
 * @dev Reverts execution with an "UnresolvedOfferCriteria" error message.
 */
function _revertUnresolvedOfferCriteria(
    uint256 orderIndex,
    uint256 offerIndex
) pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, UnresolvedOfferCriteria_error_selector)

        // Store arguments.
        mstore(UnresolvedOfferCriteria_error_orderIndex_ptr, orderIndex)
        mstore(UnresolvedOfferCriteria_error_offerIndex_ptr, offerIndex)

        // revert(abi.encodeWithSignature(
        //     "UnresolvedOfferCriteria(uint256, uint256)",
        //     orderIndex,
        //     offerIndex
        // ))
        revert(Error_selector_offset, UnresolvedOfferCriteria_error_length)
    }
}

/**
 * @dev Reverts execution with an "UnusedItemParameters" error message.
 */
function _revertUnusedItemParameters() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, UnusedItemParameters_error_selector)

        // revert(abi.encodeWithSignature("UnusedItemParameters()"))
        revert(Error_selector_offset, UnusedItemParameters_error_length)
    }
}

/**
 * @dev Reverts execution with a "ConsiderationLengthNotEqualToTotalOriginal"
 *      error message.
 */
function _revertConsiderationLengthNotEqualToTotalOriginal() pure {
    assembly {
        // Store left-padded selector with push4 (reduces bytecode),
        // mem[28:32] = selector
        mstore(0, ConsiderationLengthNotEqualToTotalOriginal_error_selector)

        // revert(abi.encodeWithSignature(
        //     "ConsiderationLengthNotEqualToTotalOriginal()"
        // ))
        revert(
            Error_selector_offset,
            ConsiderationLengthNotEqualToTotalOriginal_error_length
        )
    }
}

File 55 of 87 : BasicOrderFulfiller.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { ConduitInterface } from "../interfaces/ConduitInterface.sol";

import {
    OrderType,
    ItemType,
    BasicOrderRouteType
} from "./ConsiderationEnums.sol";

import {
    AdditionalRecipient,
    BasicOrderParameters,
    OfferItem,
    ConsiderationItem,
    SpentItem,
    ReceivedItem
} from "./ConsiderationStructs.sol";

import { OrderValidator } from "./OrderValidator.sol";

import "./ConsiderationErrors.sol";

/**
 * @title BasicOrderFulfiller
 * @author 0age
 * @notice BasicOrderFulfiller contains functionality for fulfilling "basic"
 *         orders with minimal overhead. See documentation for details on what
 *         qualifies as a basic order.
 */
contract BasicOrderFulfiller is OrderValidator {
    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(address conduitController) OrderValidator(conduitController) {}

    /**
     * @dev Internal function to fulfill an order offering an ERC20, ERC721, or
     *      ERC1155 item by supplying Ether (or other native tokens), ERC20
     *      tokens, an ERC721 item, or an ERC1155 item as consideration. Six
     *      permutations are supported: Native token to ERC721, Native token to
     *      ERC1155, ERC20 to ERC721, ERC20 to ERC1155, ERC721 to ERC20, and
     *      ERC1155 to ERC20 (with native tokens supplied as msg.value). For an
     *      order to be eligible for fulfillment via this method, it must
     *      contain a single offer item (though that item may have a greater
     *      amount if the item is not an ERC721). An arbitrary number of
     *      "additional recipients" may also be supplied which will each receive
     *      native tokens or ERC20 items from the fulfiller as consideration.
     *      Refer to the documentation for a more comprehensive summary of how
     *      to utilize this method and what orders are compatible with it.
     *
     * @param parameters Additional information on the fulfilled order. Note
     *                   that the offerer and the fulfiller must first approve
     *                   this contract (or their chosen conduit if indicated)
     *                   before any tokens can be transferred. Also note that
     *                   contract recipients of ERC1155 consideration items must
     *                   implement `onERC1155Received` in order to receive those
     *                   items.
     *
     * @return A boolean indicating whether the order has been fulfilled.
     */
    function _validateAndFulfillBasicOrder(
        BasicOrderParameters calldata parameters
    ) internal returns (bool) {
        // Declare enums for order type & route to extract from basicOrderType.
        BasicOrderRouteType route;
        OrderType orderType;

        // Declare additional recipient item type to derive from the route type.
        ItemType additionalRecipientsItemType;

        bytes32 orderHash;

        // Utilize assembly to extract the order type and the basic order route.
        assembly {
            // Read basicOrderType from calldata.
            let basicOrderType := calldataload(BasicOrder_basicOrderType_cdPtr)

            // Mask all but 2 least-significant bits to derive the order type.
            orderType := and(basicOrderType, 3)

            // Divide basicOrderType by four to derive the route.
            route := shr(2, basicOrderType)

            // If route > 1 additionalRecipient items are ERC20 (1) else Eth (0)
            additionalRecipientsItemType := gt(route, 1)
        }

        {
            // Declare temporary variable for enforcing payable status.
            bool correctPayableStatus;

            // Utilize assembly to compare the route to the callvalue.
            assembly {
                // route 0 and 1 are payable, otherwise route is not payable.
                correctPayableStatus := eq(
                    additionalRecipientsItemType,
                    iszero(callvalue())
                )
            }

            // Revert if msg.value has not been supplied as part of payable
            // routes or has been supplied as part of non-payable routes.
            if (!correctPayableStatus) {
                _revertInvalidMsgValue(msg.value);
            }
        }

        // Declare more arguments that will be derived from route and calldata.
        address additionalRecipientsToken;
        ItemType offeredItemType;
        bool offerTypeIsAdditionalRecipientsType;

        // Declare scope for received item type to manage stack pressure.
        {
            ItemType receivedItemType;

            // Utilize assembly to retrieve function arguments and cast types.
            assembly {
                // Check if offered item type == additional recipient item type.
                offerTypeIsAdditionalRecipientsType := gt(route, 3)

                // If route > 3 additionalRecipientsToken is at 0xc4 else 0x24.
                additionalRecipientsToken := calldataload(
                    add(
                        BasicOrder_considerationToken_cdPtr,
                        mul(
                            offerTypeIsAdditionalRecipientsType,
                            BasicOrder_common_params_size
                        )
                    )
                )

                // If route > 2, receivedItemType is route - 2. If route is 2,
                // the receivedItemType is ERC20 (1). Otherwise, it is Eth (0).
                receivedItemType := byte(route, BasicOrder_receivedItemByteMap)

                // If route > 3, offeredItemType is ERC20 (1). Route is 2 or 3,
                // offeredItemType = route. Route is 0 or 1, it is route + 2.
                offeredItemType := byte(route, BasicOrder_offeredItemByteMap)
            }

            // Derive & validate order using parameters and update order status.
            orderHash = _prepareBasicFulfillmentFromCalldata(
                parameters,
                orderType,
                receivedItemType,
                additionalRecipientsItemType,
                additionalRecipientsToken,
                offeredItemType
            );
        }

        // Declare conduitKey argument used by transfer functions.
        bytes32 conduitKey;

        // Utilize assembly to derive conduit (if relevant) based on route.
        assembly {
            // use offerer conduit for routes 0-3, fulfiller conduit otherwise.
            conduitKey := calldataload(
                add(
                    BasicOrder_offererConduit_cdPtr,
                    shl(OneWordShift, offerTypeIsAdditionalRecipientsType)
                )
            )
        }

        // Transfer tokens based on the route.
        if (additionalRecipientsItemType == ItemType.NATIVE) {
            // Ensure neither the token nor the identifier parameters are set.
            if (
                (uint160(parameters.considerationToken) |
                    parameters.considerationIdentifier) != 0
            ) {
                _revertUnusedItemParameters();
            }

            // Transfer the ERC721 or ERC1155 item, bypassing the accumulator.
            _transferIndividual721Or1155Item(
                offeredItemType,
                parameters.offerToken,
                parameters.offerer,
                msg.sender,
                parameters.offerIdentifier,
                parameters.offerAmount,
                conduitKey
            );

            // Transfer native to recipients, return excess to caller & wrap up.
            _transferNativeTokensAndFinalize(
                parameters.considerationAmount,
                parameters.offerer
            );
        } else {
            // Initialize an accumulator array. From this point forward, no new
            // memory regions can be safely allocated until the accumulator is
            // no longer being utilized, as the accumulator operates in an
            // open-ended fashion from this memory pointer; existing memory may
            // still be accessed and modified, however.
            bytes memory accumulator = new bytes(AccumulatorDisarmed);

            // Choose transfer method for ERC721 or ERC1155 item based on route.
            if (route == BasicOrderRouteType.ERC20_TO_ERC721) {
                // Transfer ERC721 to caller using offerer's conduit preference.
                _transferERC721(
                    parameters.offerToken,
                    parameters.offerer,
                    msg.sender,
                    parameters.offerIdentifier,
                    parameters.offerAmount,
                    conduitKey,
                    accumulator
                );
            } else if (route == BasicOrderRouteType.ERC20_TO_ERC1155) {
                // Transfer ERC1155 to caller with offerer's conduit preference.
                _transferERC1155(
                    parameters.offerToken,
                    parameters.offerer,
                    msg.sender,
                    parameters.offerIdentifier,
                    parameters.offerAmount,
                    conduitKey,
                    accumulator
                );
            } else if (route == BasicOrderRouteType.ERC721_TO_ERC20) {
                // Transfer ERC721 to offerer using caller's conduit preference.
                _transferERC721(
                    parameters.considerationToken,
                    msg.sender,
                    parameters.offerer,
                    parameters.considerationIdentifier,
                    parameters.considerationAmount,
                    conduitKey,
                    accumulator
                );
            } else {
                // route == BasicOrderRouteType.ERC1155_TO_ERC20

                // Transfer ERC1155 to offerer with caller's conduit preference.
                _transferERC1155(
                    parameters.considerationToken,
                    msg.sender,
                    parameters.offerer,
                    parameters.considerationIdentifier,
                    parameters.considerationAmount,
                    conduitKey,
                    accumulator
                );
            }

            // Transfer ERC20 tokens to all recipients and wrap up.
            _transferERC20AndFinalize(
                parameters.offerer,
                parameters,
                offerTypeIsAdditionalRecipientsType,
                accumulator
            );

            // Trigger any remaining accumulated transfers via call to conduit.
            _triggerIfArmed(accumulator);
        }

        // Determine whether order is restricted and, if so, that it is valid.
        _assertRestrictedBasicOrderValidity(orderHash, orderType, parameters);

        // Clear the reentrancy guard.
        _clearReentrancyGuard();

        return true;
    }

    /**
     * @dev Internal function to prepare fulfillment of a basic order with
     *      manual calldata and memory access. This calculates the order hash,
     *      emits an OrderFulfilled event, and asserts basic order validity.
     *      Note that calldata offsets must be validated as this function
     *      accesses constant calldata pointers for dynamic types that match
     *      default ABI encoding, but valid ABI encoding can use arbitrary
     *      offsets. Checking that the offsets were produced by default encoding
     *      will ensure that other functions using Solidity's calldata accessors
     *      (which calculate pointers from the stored offsets) are reading the
     *      same data as the order hash is derived from. Also note that this
     *      function accesses memory directly.
     *
     * @param parameters                   The parameters of the basic order.
     * @param orderType                    The order type.
     * @param receivedItemType             The item type of the initial
     *                                     consideration item on the order.
     * @param additionalRecipientsItemType The item type of any additional
     *                                     consideration item on the order.
     * @param additionalRecipientsToken    The ERC20 token contract address (if
     *                                     applicable) for any additional
     *                                     consideration item on the order.
     * @param offeredItemType              The item type of the offered item on
     *                                     the order.
     * @return orderHash The calculated order hash.
     */
    function _prepareBasicFulfillmentFromCalldata(
        BasicOrderParameters calldata parameters,
        OrderType orderType,
        ItemType receivedItemType,
        ItemType additionalRecipientsItemType,
        address additionalRecipientsToken,
        ItemType offeredItemType
    ) internal returns (bytes32 orderHash) {
        // Ensure this function cannot be triggered during a reentrant call.
        _setReentrancyGuard(false); // Native tokens rejected during execution.

        // Ensure current timestamp falls between order start time and end time.
        _verifyTime(parameters.startTime, parameters.endTime, true);

        // Verify that calldata offsets for all dynamic types were produced by
        // default encoding. This ensures that the constants used for calldata
        // pointers to dynamic types are the same as those calculated by
        // Solidity using their offsets. Also verify that the basic order type
        // is within range.
        _assertValidBasicOrderParameters();

        {
            // Retrieve total number of additional recipients & place on stack.
            uint256 totalAdditionalRecipients;
            assembly {
                totalAdditionalRecipients := calldataload(
                    BasicOrder_additionalRecipients_length_cdPtr
                )
            }

            // Ensure consideration array length is not less than original.
            _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
                totalAdditionalRecipients,
                parameters.totalOriginalAdditionalRecipients
            );
        }

        {
            /**
             * First, handle consideration items. Memory Layout:
             *  0x60: final hash of the array of consideration item hashes
             *  0x80-0x160: reused space for EIP712 hashing of each item
             *   - 0x80: ConsiderationItem EIP-712 typehash (constant)
             *   - 0xa0: itemType
             *   - 0xc0: token
             *   - 0xe0: identifier
             *   - 0x100: startAmount
             *   - 0x120: endAmount
             *   - 0x140: recipient
             *  0x160-END_ARR: array of consideration item hashes
             *   - 0x160: primary consideration item EIP712 hash
             *   - 0x180-END_ARR: additional recipient item EIP712 hashes
             *  END_ARR: beginning of data for OrderFulfilled event
             *   - END_ARR + 0x120: length of ReceivedItem array
             *   - END_ARR + 0x140: beginning of data for first ReceivedItem
             * (Note: END_ARR = 0x180 + RECIPIENTS_LENGTH * 0x20)
             */

            // Load consideration item typehash from runtime and place on stack.
            bytes32 typeHash = _CONSIDERATION_ITEM_TYPEHASH;

            // Utilize assembly to enable reuse of memory regions and use
            // constant pointers when possible.
            assembly {
                /*
                 * 1. Calculate the EIP712 ConsiderationItem hash for the
                 * primary consideration item of the basic order.
                 */

                // Write ConsiderationItem type hash and item type to memory.
                mstore(BasicOrder_considerationItem_typeHash_ptr, typeHash)
                mstore(
                    BasicOrder_considerationItem_itemType_ptr,
                    receivedItemType
                )

                // Copy calldata region with (token, identifier, amount) from
                // BasicOrderParameters to ConsiderationItem. The
                // considerationAmount is written to startAmount and endAmount
                // as basic orders do not have dynamic amounts.
                calldatacopy(
                    BasicOrder_considerationItem_token_ptr,
                    BasicOrder_considerationToken_cdPtr,
                    ThreeWords
                )

                // Copy calldata region with considerationAmount and offerer
                // from BasicOrderParameters to endAmount and recipient in
                // ConsiderationItem.
                calldatacopy(
                    BasicOrder_considerationItem_endAmount_ptr,
                    BasicOrder_considerationAmount_cdPtr,
                    TwoWords
                )

                // Calculate EIP712 ConsiderationItem hash and store it in the
                // array of EIP712 consideration hashes.
                mstore(
                    BasicOrder_considerationHashesArray_ptr,
                    keccak256(
                        BasicOrder_considerationItem_typeHash_ptr,
                        EIP712_ConsiderationItem_size
                    )
                )

                /*
                 * 2. Write a ReceivedItem struct for the primary consideration
                 * item to the consideration array in OrderFulfilled.
                 */

                // Get the length of the additional recipients array.
                let totalAdditionalRecipients := calldataload(
                    BasicOrder_additionalRecipients_length_cdPtr
                )

                // Calculate pointer to length of OrderFulfilled consideration
                // array.
                let eventConsiderationArrPtr := add(
                    OrderFulfilled_consideration_length_baseOffset,
                    shl(OneWordShift, totalAdditionalRecipients)
                )

                // Set the length of the consideration array to the number of
                // additional recipients, plus one for the primary consideration
                // item.
                mstore(
                    eventConsiderationArrPtr,
                    add(totalAdditionalRecipients, 1)
                )

                // Overwrite the consideration array pointer so it points to the
                // body of the first element
                eventConsiderationArrPtr := add(
                    eventConsiderationArrPtr,
                    OneWord
                )

                // Set itemType at start of the ReceivedItem memory region.
                mstore(eventConsiderationArrPtr, receivedItemType)

                // Copy calldata region (token, identifier, amount & recipient)
                // from BasicOrderParameters to ReceivedItem memory.
                calldatacopy(
                    add(eventConsiderationArrPtr, Common_token_offset),
                    BasicOrder_considerationToken_cdPtr,
                    FourWords
                )

                /*
                 * 3. Calculate EIP712 ConsiderationItem hashes for original
                 * additional recipients and add a ReceivedItem for each to the
                 * consideration array in the OrderFulfilled event. The original
                 * additional recipients are all the consideration items signed
                 * by the offerer aside from the primary consideration items of
                 * the order. Uses memory region from 0x80-0x160 as a buffer for
                 * calculating EIP712 ConsiderationItem hashes.
                 */

                // Put pointer to consideration hashes array on the stack.
                // This will be updated as each additional recipient is hashed
                let
                    considerationHashesPtr
                := BasicOrder_considerationHashesArray_ptr

                // Write item type, token, & identifier for additional recipient
                // to memory region for hashing EIP712 ConsiderationItem; these
                // values will be reused for each recipient.
                mstore(
                    BasicOrder_considerationItem_itemType_ptr,
                    additionalRecipientsItemType
                )
                mstore(
                    BasicOrder_considerationItem_token_ptr,
                    additionalRecipientsToken
                )
                mstore(BasicOrder_considerationItem_identifier_ptr, 0)

                // Read length of the additionalRecipients array from calldata
                // and iterate.
                totalAdditionalRecipients := calldataload(
                    BasicOrder_totalOriginalAdditionalRecipients_cdPtr
                )
                let i := 0
                // prettier-ignore
                for {} lt(i, totalAdditionalRecipients) {
                    i := add(i, 1)
                } {
                    /*
                     * Calculate EIP712 ConsiderationItem hash for recipient.
                     */

                    // Retrieve calldata pointer for additional recipient.
                    let additionalRecipientCdPtr := add(
                        BasicOrder_additionalRecipients_data_cdPtr,
                        mul(AdditionalRecipient_size, i)
                    )

                    // Copy startAmount from calldata to the ConsiderationItem
                    // struct.
                    calldatacopy(
                        BasicOrder_considerationItem_startAmount_ptr,
                        additionalRecipientCdPtr,
                        OneWord
                    )

                    // Copy endAmount and recipient from calldata to the
                    // ConsiderationItem struct.
                    calldatacopy(
                        BasicOrder_considerationItem_endAmount_ptr,
                        additionalRecipientCdPtr,
                        AdditionalRecipient_size
                    )

                    // Add 1 word to the pointer as part of each loop to reduce
                    // operations needed to get local offset into the array.
                    considerationHashesPtr := add(
                        considerationHashesPtr,
                        OneWord
                    )

                    // Calculate EIP712 ConsiderationItem hash and store it in
                    // the array of consideration hashes.
                    mstore(
                        considerationHashesPtr,
                        keccak256(
                            BasicOrder_considerationItem_typeHash_ptr,
                            EIP712_ConsiderationItem_size
                        )
                    )

                    /*
                     * Write ReceivedItem to OrderFulfilled data.
                     */

                    // At this point, eventConsiderationArrPtr points to the
                    // beginning of the ReceivedItem struct of the previous
                    // element in the array. Increase it by the size of the
                    // struct to arrive at the pointer for the current element.
                    eventConsiderationArrPtr := add(
                        eventConsiderationArrPtr,
                        ReceivedItem_size
                    )

                    // Write itemType to the ReceivedItem struct.
                    mstore(
                        eventConsiderationArrPtr,
                        additionalRecipientsItemType
                    )

                    // Write token to the next word of the ReceivedItem struct.
                    mstore(
                        add(eventConsiderationArrPtr, OneWord),
                        additionalRecipientsToken
                    )

                    // Copy endAmount & recipient words to ReceivedItem struct.
                    calldatacopy(
                        add(
                            eventConsiderationArrPtr,
                            ReceivedItem_amount_offset
                        ),
                        additionalRecipientCdPtr,
                        TwoWords
                    )
                }

                /*
                 * 4. Hash packed array of ConsiderationItem EIP712 hashes:
                 *   `keccak256(abi.encodePacked(receivedItemHashes))`
                 * Note that it is set at 0x60 — all other memory begins at
                 * 0x80. 0x60 is the "zero slot" and will be restored at the end
                 * of the assembly section and before required by the compiler.
                 */
                mstore(
                    receivedItemsHash_ptr,
                    keccak256(
                        BasicOrder_considerationHashesArray_ptr,
                        shl(OneWordShift, add(totalAdditionalRecipients, 1))
                    )
                )

                /*
                 * 5. Add a ReceivedItem for each tip to the consideration array
                 * in the OrderFulfilled event. The tips are all the
                 * consideration items that were not signed by the offerer and
                 * were provided by the fulfiller.
                 */

                // Overwrite length to length of the additionalRecipients array.
                totalAdditionalRecipients := calldataload(
                    BasicOrder_additionalRecipients_length_cdPtr
                )
                // prettier-ignore
                for {} lt(i, totalAdditionalRecipients) {
                    i := add(i, 1)
                } {
                    // Retrieve calldata pointer for additional recipient.
                    let additionalRecipientCdPtr := add(
                        BasicOrder_additionalRecipients_data_cdPtr,
                        mul(AdditionalRecipient_size, i)
                    )

                    // At this point, eventConsiderationArrPtr points to the
                    // beginning of the ReceivedItem struct of the previous
                    // element in the array. Increase it by the size of the
                    // struct to arrive at the pointer for the current element.
                    eventConsiderationArrPtr := add(
                        eventConsiderationArrPtr,
                        ReceivedItem_size
                    )

                    // Write itemType to the ReceivedItem struct.
                    mstore(
                        eventConsiderationArrPtr,
                        additionalRecipientsItemType
                    )

                    // Write token to the next word of the ReceivedItem struct.
                    mstore(
                        add(eventConsiderationArrPtr, OneWord),
                        additionalRecipientsToken
                    )

                    // Copy endAmount & recipient words to ReceivedItem struct.
                    calldatacopy(
                        add(
                            eventConsiderationArrPtr,
                            ReceivedItem_amount_offset
                        ),
                        additionalRecipientCdPtr,
                        TwoWords
                    )
                }
            }
        }

        {
            /**
             * Next, handle offered items. Memory Layout:
             *  EIP712 data for OfferItem
             *   - 0x80:  OfferItem EIP-712 typehash (constant)
             *   - 0xa0:  itemType
             *   - 0xc0:  token
             *   - 0xe0:  identifier (reused for offeredItemsHash)
             *   - 0x100: startAmount
             *   - 0x120: endAmount
             */

            // Place offer item typehash on the stack.
            bytes32 typeHash = _OFFER_ITEM_TYPEHASH;

            // Utilize assembly to enable reuse of memory regions when possible.
            assembly {
                /*
                 * 1. Calculate OfferItem EIP712 hash
                 */

                // Write the OfferItem typeHash to memory.
                mstore(BasicOrder_offerItem_typeHash_ptr, typeHash)

                // Write the OfferItem item type to memory.
                mstore(BasicOrder_offerItem_itemType_ptr, offeredItemType)

                // Copy calldata region with (offerToken, offerIdentifier,
                // offerAmount) from OrderParameters to (token, identifier,
                // startAmount) in OfferItem struct. The offerAmount is written
                // to startAmount and endAmount as basic orders do not have
                // dynamic amounts.
                calldatacopy(
                    BasicOrder_offerItem_token_ptr,
                    BasicOrder_offerToken_cdPtr,
                    ThreeWords
                )

                // Copy offerAmount from calldata to endAmount in OfferItem
                // struct.
                calldatacopy(
                    BasicOrder_offerItem_endAmount_ptr,
                    BasicOrder_offerAmount_cdPtr,
                    OneWord
                )

                // Compute EIP712 OfferItem hash, write result to scratch space:
                //   `keccak256(abi.encode(offeredItem))`
                mstore(
                    0,
                    keccak256(
                        BasicOrder_offerItem_typeHash_ptr,
                        EIP712_OfferItem_size
                    )
                )

                /*
                 * 2. Calculate hash of array of EIP712 hashes and write the
                 * result to the corresponding OfferItem struct:
                 *   `keccak256(abi.encodePacked(offerItemHashes))`
                 */
                mstore(BasicOrder_order_offerHashes_ptr, keccak256(0, OneWord))

                /*
                 * 3. Write SpentItem to offer array in OrderFulfilled event.
                 */
                let eventConsiderationArrPtr := add(
                    OrderFulfilled_offer_length_baseOffset,
                    shl(
                        OneWordShift,
                        calldataload(
                            BasicOrder_additionalRecipients_length_cdPtr
                        )
                    )
                )

                // Set a length of 1 for the offer array.
                mstore(eventConsiderationArrPtr, 1)

                // Write itemType to the SpentItem struct.
                mstore(add(eventConsiderationArrPtr, OneWord), offeredItemType)

                // Copy calldata region with (offerToken, offerIdentifier,
                // offerAmount) from OrderParameters to (token, identifier,
                // amount) in SpentItem struct.
                calldatacopy(
                    add(eventConsiderationArrPtr, AdditionalRecipient_size),
                    BasicOrder_offerToken_cdPtr,
                    ThreeWords
                )
            }
        }

        {
            /**
             * Once consideration items and offer items have been handled,
             * derive the final order hash. Memory Layout:
             *  0x80-0x1c0: EIP712 data for order
             *   - 0x80:   Order EIP-712 typehash (constant)
             *   - 0xa0:   orderParameters.offerer
             *   - 0xc0:   orderParameters.zone
             *   - 0xe0:   keccak256(abi.encodePacked(offerHashes))
             *   - 0x100:  keccak256(abi.encodePacked(considerationHashes))
             *   - 0x120:  orderParameters.basicOrderType (% 4 = orderType)
             *   - 0x140:  orderParameters.startTime
             *   - 0x160:  orderParameters.endTime
             *   - 0x180:  orderParameters.zoneHash
             *   - 0x1a0:  orderParameters.salt
             *   - 0x1c0:  orderParameters.conduitKey
             *   - 0x1e0:  _counters[orderParameters.offerer] (from storage)
             */

            // Read the offerer from calldata and place on the stack.
            address offerer;
            assembly {
                offerer := calldataload(BasicOrder_offerer_cdPtr)
            }

            // Read offerer's current counter from storage and place on stack.
            uint256 counter = _getCounter(offerer);

            // Load order typehash from runtime code and place on stack.
            bytes32 typeHash = _ORDER_TYPEHASH;

            assembly {
                // Set the OrderItem typeHash in memory.
                mstore(BasicOrder_order_typeHash_ptr, typeHash)

                // Copy offerer and zone from OrderParameters in calldata to the
                // Order struct.
                calldatacopy(
                    BasicOrder_order_offerer_ptr,
                    BasicOrder_offerer_cdPtr,
                    TwoWords
                )

                // Copy receivedItemsHash from zero slot to the Order struct.
                mstore(
                    BasicOrder_order_considerationHashes_ptr,
                    mload(receivedItemsHash_ptr)
                )

                // Write the supplied orderType to the Order struct.
                mstore(BasicOrder_order_orderType_ptr, orderType)

                // Copy startTime, endTime, zoneHash, salt & conduit from
                // calldata to the Order struct.
                calldatacopy(
                    BasicOrder_order_startTime_ptr,
                    BasicOrder_startTime_cdPtr,
                    FiveWords
                )

                // Write offerer's counter, retrieved from storage, to struct.
                mstore(BasicOrder_order_counter_ptr, counter)

                // Compute the EIP712 Order hash.
                orderHash := keccak256(
                    BasicOrder_order_typeHash_ptr,
                    EIP712_Order_size
                )
            }
        }

        assembly {
            /**
             * After the order hash has been derived, emit OrderFulfilled event:
             *   event OrderFulfilled(
             *     bytes32 orderHash,
             *     address indexed offerer,
             *     address indexed zone,
             *     address fulfiller,
             *     SpentItem[] offer,
             *       > (itemType, token, id, amount)
             *     ReceivedItem[] consideration
             *       > (itemType, token, id, amount, recipient)
             *   )
             * topic0 - OrderFulfilled event signature
             * topic1 - offerer
             * topic2 - zone
             * data:
             *  - 0x00: orderHash
             *  - 0x20: fulfiller
             *  - 0x40: offer arr ptr (0x80)
             *  - 0x60: consideration arr ptr (0x120)
             *  - 0x80: offer arr len (1)
             *  - 0xa0: offer.itemType
             *  - 0xc0: offer.token
             *  - 0xe0: offer.identifier
             *  - 0x100: offer.amount
             *  - 0x120: 1 + recipients.length
             *  - 0x140: recipient 0
             */

            // Derive pointer to start of OrderFulfilled event data
            let eventDataPtr := add(
                OrderFulfilled_baseOffset,
                shl(
                    OneWordShift,
                    calldataload(BasicOrder_additionalRecipients_length_cdPtr)
                )
            )

            // Write the order hash to the head of the event's data region.
            mstore(eventDataPtr, orderHash)

            // Write the fulfiller (i.e. the caller) next for receiver argument.
            mstore(add(eventDataPtr, OrderFulfilled_fulfiller_offset), caller())

            // Write the SpentItem and ReceivedItem array offsets (constants).
            mstore(
                // SpentItem array offset
                add(eventDataPtr, OrderFulfilled_offer_head_offset),
                OrderFulfilled_offer_body_offset
            )
            mstore(
                // ReceivedItem array offset
                add(eventDataPtr, OrderFulfilled_consideration_head_offset),
                OrderFulfilled_consideration_body_offset
            )

            // Derive total data size including SpentItem and ReceivedItem data.
            // SpentItem portion is already included in the baseSize constant,
            // as there can only be one element in the array.
            let dataSize := add(
                OrderFulfilled_baseSize,
                mul(
                    calldataload(BasicOrder_additionalRecipients_length_cdPtr),
                    ReceivedItem_size
                )
            )

            // Emit OrderFulfilled log with three topics (the event signature
            // as well as the two indexed arguments, the offerer and the zone).
            log3(
                // Supply the pointer for event data in memory.
                eventDataPtr,
                // Supply the size of event data in memory.
                dataSize,
                // Supply the OrderFulfilled event signature.
                OrderFulfilled_selector,
                // Supply the first topic (the offerer).
                calldataload(BasicOrder_offerer_cdPtr),
                // Supply the second topic (the zone).
                calldataload(BasicOrder_zone_cdPtr)
            )

            // Restore the zero slot.
            mstore(ZeroSlot, 0)

            // Update the free memory pointer so that event data is persisted.
            mstore(FreeMemoryPointerSlot, add(eventDataPtr, dataSize))
        }

        // Verify and update the status of the derived order.
        _validateBasicOrderAndUpdateStatus(
            orderHash,
            parameters.offerer,
            parameters.signature
        );

        // Return the derived order hash.
        return orderHash;
    }

    /**
     * @dev Internal function to transfer Ether (or other native tokens) to a
     *      given recipient as part of basic order fulfillment. Note that
     *      conduits are not utilized for native tokens as the transferred
     *      amount must be provided as msg.value. Also note that this function
     *      may only be safely called as part of basic orders, as it assumes a
     *      specific calldata encoding structure that must first be validated.
     *
     * @param amount The amount to transfer.
     * @param to     The recipient of the native token transfer.
     */
    function _transferNativeTokensAndFinalize(
        uint256 amount,
        address payable to
    ) internal {
        // Put native token value supplied by the caller on the stack.
        uint256 nativeTokensRemaining = msg.value;

        // Retrieve total size of additional recipients data and place on stack.
        uint256 totalAdditionalRecipientsDataSize;
        assembly {
            totalAdditionalRecipientsDataSize := shl(
                AdditionalRecipient_size_shift,
                calldataload(BasicOrder_additionalRecipients_length_cdPtr)
            )
        }

        uint256 additionalRecipientAmount;
        address payable recipient;

        // Skip overflow check as for loop is indexed starting at zero.
        unchecked {
            // Iterate over additional recipient data by two-word element.
            for (
                uint256 i = 0;
                i < totalAdditionalRecipientsDataSize;
                i += AdditionalRecipient_size
            ) {
                assembly {
                    // Retrieve calldata pointer for additional recipient.
                    let additionalRecipientCdPtr := add(
                        BasicOrder_additionalRecipients_data_cdPtr,
                        i
                    )

                    additionalRecipientAmount := calldataload(
                        additionalRecipientCdPtr
                    )
                    recipient := calldataload(
                        add(OneWord, additionalRecipientCdPtr)
                    )
                }

                // Ensure that sufficient native tokens are available.
                if (additionalRecipientAmount > nativeTokensRemaining) {
                    _revertInsufficientEtherSupplied();
                }

                // Reduce native token value available. Skip underflow check as
                // subtracted value is confirmed above as less than remaining.
                nativeTokensRemaining -= additionalRecipientAmount;

                // Transfer native tokens to the additional recipient.
                _transferNativeTokens(recipient, additionalRecipientAmount);
            }
        }

        // Ensure that sufficient native tokens are still available.
        if (amount > nativeTokensRemaining) {
            _revertInsufficientEtherSupplied();
        }

        // Transfer native tokens to the offerer.
        _transferNativeTokens(to, amount);

        // If any native tokens remain after transfers, return to the caller.
        if (nativeTokensRemaining > amount) {
            // Skip underflow check as nativeTokensRemaining > amount.
            unchecked {
                // Transfer remaining native tokens to the caller.
                _transferNativeTokens(
                    payable(msg.sender),
                    nativeTokensRemaining - amount
                );
            }
        }
    }

    /**
     * @dev Internal function to transfer ERC20 tokens to a given recipient as
     *      part of basic order fulfillment. Note that this function may only be
     *      safely called as part of basic orders, as it assumes a specific
     *      calldata encoding structure that must first be validated.
     *
     * @param offerer     The offerer of the fulfiller order.
     * @param parameters  The basic order parameters.
     * @param fromOfferer A boolean indicating whether to decrement amount from
     *                    the offered amount.
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     */
    function _transferERC20AndFinalize(
        address offerer,
        BasicOrderParameters calldata parameters,
        bool fromOfferer,
        bytes memory accumulator
    ) internal {
        // Declare from and to variables determined by fromOfferer value.
        address from;
        address to;

        // Declare token and amount variables determined by fromOfferer value.
        address token;
        uint256 amount;

        // Declare and check identifier variable within an isolated scope.
        {
            // Declare identifier variable determined by fromOfferer value.
            uint256 identifier;

            // Set ERC20 token transfer variables based on fromOfferer boolean.
            if (fromOfferer) {
                // Use offerer as from value and msg.sender as to value.
                from = offerer;
                to = msg.sender;

                // Use offer token and related values if token is from offerer.
                token = parameters.offerToken;
                identifier = parameters.offerIdentifier;
                amount = parameters.offerAmount;
            } else {
                // Use msg.sender as from value and offerer as to value.
                from = msg.sender;
                to = offerer;

                // Otherwise, use consideration token and related values.
                token = parameters.considerationToken;
                identifier = parameters.considerationIdentifier;
                amount = parameters.considerationAmount;
            }

            // Ensure that no identifier is supplied.
            if (identifier != 0) {
                _revertUnusedItemParameters();
            }
        }

        // Determine the appropriate conduit to utilize.
        bytes32 conduitKey;

        // Utilize assembly to derive conduit (if relevant) based on route.
        assembly {
            // Use offerer conduit if fromOfferer, fulfiller conduit otherwise.
            conduitKey := calldataload(
                sub(
                    BasicOrder_fulfillerConduit_cdPtr,
                    shl(OneWordShift, fromOfferer)
                )
            )
        }

        // Retrieve total size of additional recipients data and place on stack.
        uint256 totalAdditionalRecipientsDataSize;
        assembly {
            totalAdditionalRecipientsDataSize := shl(
                AdditionalRecipient_size_shift,
                calldataload(BasicOrder_additionalRecipients_length_cdPtr)
            )
        }

        uint256 additionalRecipientAmount;
        address recipient;

        // Iterate over each additional recipient.
        for (uint256 i = 0; i < totalAdditionalRecipientsDataSize; ) {
            assembly {
                // Retrieve calldata pointer for additional recipient.
                let additionalRecipientCdPtr := add(
                    BasicOrder_additionalRecipients_data_cdPtr,
                    i
                )

                additionalRecipientAmount := calldataload(
                    additionalRecipientCdPtr
                )
                recipient := calldataload(
                    add(OneWord, additionalRecipientCdPtr)
                )
            }

            // Decrement the amount to transfer to fulfiller if indicated.
            if (fromOfferer) {
                amount -= additionalRecipientAmount;
            }

            // Transfer ERC20 tokens to additional recipient given approval.
            _transferERC20(
                token,
                from,
                recipient,
                additionalRecipientAmount,
                conduitKey,
                accumulator
            );

            // Skip overflow check as for loop is indexed starting at zero.
            unchecked {
                i += AdditionalRecipient_size;
            }
        }

        // Transfer ERC20 token amount (from account must have proper approval).
        _transferERC20(token, from, to, amount, conduitKey, accumulator);
    }
}

File 56 of 87 : CriteriaResolution.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { ItemType, Side } from "./ConsiderationEnums.sol";

import {
    OfferItem,
    ConsiderationItem,
    OrderParameters,
    AdvancedOrder,
    CriteriaResolver,
    MemoryPointer
} from "./ConsiderationStructs.sol";

import "./ConsiderationErrors.sol";

import "../helpers/PointerLibraries.sol";

import {
    CriteriaResolutionErrors
} from "../interfaces/CriteriaResolutionErrors.sol";

/**
 * @title CriteriaResolution
 * @author 0age
 * @notice CriteriaResolution contains a collection of pure functions related to
 *         resolving criteria-based items.
 */
contract CriteriaResolution is CriteriaResolutionErrors {
    /**
     * @dev Internal pure function to apply criteria resolvers containing
     *      specific token identifiers and associated proofs to order items.
     *
     * @param advancedOrders     The orders to apply criteria resolvers to.
     * @param criteriaResolvers  An array where each element contains a
     *                           reference to a specific order as well as that
     *                           order's offer or consideration, a token
     *                           identifier, and a proof that the supplied token
     *                           identifier is contained in the order's merkle
     *                           root. Note that a root of zero indicates that
     *                           any transferable token identifier is valid and
     *                           that no proof needs to be supplied.
     */
    function _applyCriteriaResolvers(
        AdvancedOrder[] memory advancedOrders,
        CriteriaResolver[] memory criteriaResolvers
    ) internal pure {
        // Skip overflow checks as all for loops are indexed starting at zero.
        unchecked {
            // Retrieve length of criteria resolvers array and place on stack.
            uint256 totalCriteriaResolvers = criteriaResolvers.length;

            // Retrieve length of orders array and place on stack.
            uint256 totalAdvancedOrders = advancedOrders.length;

            // Iterate over each criteria resolver.
            for (uint256 i = 0; i < totalCriteriaResolvers; ++i) {
                // Retrieve the criteria resolver.
                CriteriaResolver memory criteriaResolver = (
                    criteriaResolvers[i]
                );

                // Read the order index from memory and place it on the stack.
                uint256 orderIndex = criteriaResolver.orderIndex;

                // Ensure that the order index is in range.
                if (orderIndex >= totalAdvancedOrders) {
                    _revertOrderCriteriaResolverOutOfRange(
                        criteriaResolver.side
                    );
                }

                // Retrieve the referenced advanced order.
                AdvancedOrder memory advancedOrder = advancedOrders[orderIndex];

                // Skip criteria resolution for order if not fulfilled.
                if (advancedOrder.numerator == 0) {
                    continue;
                }

                // Retrieve the parameters for the order.
                OrderParameters memory orderParameters = (
                    advancedOrder.parameters
                );

                {
                    // Get a pointer to the list of items to give to
                    // _updateCriteriaItem. If the resolver refers to a
                    // consideration item, this array pointer will be replaced
                    // with the consideration array.
                    OfferItem[] memory items = orderParameters.offer;

                    // Read component index from memory and place it on stack.
                    uint256 componentIndex = criteriaResolver.index;

                    // Get error selector for `OfferCriteriaResolverOutOfRange`.
                    uint256 errorSelector = (
                        OfferCriteriaResolverOutOfRange_error_selector
                    );

                    // If the resolver refers to a consideration item...
                    if (criteriaResolver.side != Side.OFFER) {
                        // Get the pointer to `orderParameters.consideration`
                        // Using the array directly has a significant impact on
                        // the optimized compiler output.
                        MemoryPointer considerationPtr = orderParameters
                            .toMemoryPointer()
                            .pptr(OrderParameters_consideration_head_offset);

                        // Replace the items pointer with a pointer to the
                        // consideration array.
                        assembly {
                            items := considerationPtr
                        }

                        // Replace the error selector with the selector for
                        // `ConsiderationCriteriaResolverOutOfRange`.
                        errorSelector = (
                            ConsiderationCriteriaResolverOutOfRange_err_selector
                        );
                    }

                    // Ensure that the component index is in range.
                    if (componentIndex >= items.length) {
                        assembly {
                            mstore(0, errorSelector)
                            revert(Error_selector_offset, Selector_length)
                        }
                    }

                    // Apply the criteria resolver to the item in question.
                    _updateCriteriaItem(
                        items,
                        componentIndex,
                        criteriaResolver
                    );
                }
            }

            // Iterate over each advanced order.
            for (uint256 i = 0; i < totalAdvancedOrders; ++i) {
                // Retrieve the advanced order.
                AdvancedOrder memory advancedOrder = advancedOrders[i];

                // Skip criteria resolution for order if not fulfilled.
                if (advancedOrder.numerator == 0) {
                    continue;
                }

                // Retrieve the parameters for the order.
                OrderParameters memory orderParameters = (
                    advancedOrder.parameters
                );

                // Read consideration length from memory and place on stack.
                uint256 totalItems = orderParameters.consideration.length;

                // Iterate over each consideration item on the order.
                for (uint256 j = 0; j < totalItems; ++j) {
                    // Ensure item type no longer indicates criteria usage.
                    if (
                        _isItemWithCriteria(
                            orderParameters.consideration[j].itemType
                        )
                    ) {
                        _revertUnresolvedConsiderationCriteria(i, j);
                    }
                }

                // Read offer length from memory and place on stack.
                totalItems = orderParameters.offer.length;

                // Iterate over each offer item on the order.
                for (uint256 j = 0; j < totalItems; ++j) {
                    // Ensure item type no longer indicates criteria usage.
                    if (
                        _isItemWithCriteria(orderParameters.offer[j].itemType)
                    ) {
                        _revertUnresolvedOfferCriteria(i, j);
                    }
                }
            }
        }
    }

    /**
     * @dev Internal pure function to update a criteria item.
     *
     * @param offer             The offer containing the item to update.
     * @param componentIndex    The index of the item to update.
     * @param criteriaResolver  The criteria resolver to use to update the item.
     */
    function _updateCriteriaItem(
        OfferItem[] memory offer,
        uint256 componentIndex,
        CriteriaResolver memory criteriaResolver
    ) internal pure {
        // Retrieve relevant item using the component index.
        OfferItem memory offerItem = offer[componentIndex];

        // Read item type and criteria from memory & place on stack.
        ItemType itemType = offerItem.itemType;

        // Ensure the specified item type indicates criteria usage.
        if (!_isItemWithCriteria(itemType)) {
            _revertCriteriaNotEnabledForItem();
        }

        uint256 identifierOrCriteria = offerItem.identifierOrCriteria;

        // If criteria is not 0 (i.e. a collection-wide criteria-based item)...
        if (identifierOrCriteria != uint256(0)) {
            // Verify identifier inclusion in criteria root using proof.
            _verifyProof(
                criteriaResolver.identifier,
                identifierOrCriteria,
                criteriaResolver.criteriaProof
            );
        } else if (criteriaResolver.criteriaProof.length != 0) {
            // Revert if non-empty proof is supplied for a collection-wide item.
            _revertInvalidProof();
        }

        // Update item type to remove criteria usage.
        // Use assembly to operate on ItemType enum as a number.
        ItemType newItemType;
        assembly {
            // Item type 4 becomes 2 and item type 5 becomes 3.
            newItemType := sub(3, eq(itemType, 4))
        }
        offerItem.itemType = newItemType;

        // Update identifier w/ supplied identifier.
        offerItem.identifierOrCriteria = criteriaResolver.identifier;
    }

    /**
     * @dev Internal pure function to check whether a given item type represents
     *      a criteria-based ERC721 or ERC1155 item (e.g. an item that can be
     *      resolved to one of a number of different identifiers at the time of
     *      order fulfillment).
     *
     * @param itemType The item type in question.
     *
     * @return withCriteria A boolean indicating that the item type in question
     *                      represents a criteria-based item.
     */
    function _isItemWithCriteria(
        ItemType itemType
    ) internal pure returns (bool withCriteria) {
        // ERC721WithCriteria is ItemType 4. ERC1155WithCriteria is ItemType 5.
        assembly {
            withCriteria := gt(itemType, 3)
        }
    }

    /**
     * @dev Internal pure function to ensure that a given element is contained
     *      in a merkle root via a supplied proof.
     *
     * @param leaf  The element for which to prove inclusion.
     * @param root  The merkle root that inclusion will be proved against.
     * @param proof The merkle proof.
     */
    function _verifyProof(
        uint256 leaf,
        uint256 root,
        bytes32[] memory proof
    ) internal pure {
        // Declare a variable that will be used to determine proof validity.
        bool isValid;

        // Utilize assembly to efficiently verify the proof against the root.
        assembly {
            // Store the leaf at the beginning of scratch space.
            mstore(0, leaf)

            // Derive the hash of the leaf to use as the initial proof element.
            let computedHash := keccak256(0, OneWord)

            // Get memory start location of the first element in proof array.
            let data := add(proof, OneWord)

            // Iterate over each proof element to compute the root hash.
            for {
                // Left shift by 5 is equivalent to multiplying by 0x20.
                let end := add(data, shl(OneWordShift, mload(proof)))
            } lt(data, end) {
                // Increment by one word at a time.
                data := add(data, OneWord)
            } {
                // Get the proof element.
                let loadedData := mload(data)

                // Sort proof elements and place them in scratch space.
                // Slot of `computedHash` in scratch space.
                // If the condition is true: 0x20, otherwise: 0x00.
                let scratch := shl(OneWordShift, gt(computedHash, loadedData))

                // Store elements to hash contiguously in scratch space. Scratch
                // space is 64 bytes (0x00 - 0x3f) & both elements are 32 bytes.
                mstore(scratch, computedHash)
                mstore(xor(scratch, OneWord), loadedData)

                // Derive the updated hash.
                computedHash := keccak256(0, TwoWords)
            }

            // Compare the final hash to the supplied root.
            isValid := eq(computedHash, root)
        }

        // Revert if computed hash does not equal supplied root.
        if (!isValid) {
            _revertInvalidProof();
        }
    }
}

File 57 of 87 : AmountDeriver.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import {
    AmountDerivationErrors
} from "../interfaces/AmountDerivationErrors.sol";

import "./ConsiderationConstants.sol";

/**
 * @title AmountDeriver
 * @author 0age
 * @notice AmountDeriver contains view and pure functions related to deriving
 *         item amounts based on partial fill quantity and on linear
 *         interpolation based on current time when the start amount and end
 *         amount differ.
 */
contract AmountDeriver is AmountDerivationErrors {
    /**
     * @dev Internal view function to derive the current amount of a given item
     *      based on the current price, the starting price, and the ending
     *      price. If the start and end prices differ, the current price will be
     *      interpolated on a linear basis. Note that this function expects that
     *      the startTime parameter of orderParameters is not greater than the
     *      current block timestamp and that the endTime parameter is greater
     *      than the current block timestamp. If this condition is not upheld,
     *      duration / elapsed / remaining variables will underflow.
     *
     * @param startAmount The starting amount of the item.
     * @param endAmount   The ending amount of the item.
     * @param startTime   The starting time of the order.
     * @param endTime     The end time of the order.
     * @param roundUp     A boolean indicating whether the resultant amount
     *                    should be rounded up or down.
     *
     * @return amount The current amount.
     */
    function _locateCurrentAmount(
        uint256 startAmount,
        uint256 endAmount,
        uint256 startTime,
        uint256 endTime,
        bool roundUp
    ) internal view returns (uint256 amount) {
        // Only modify end amount if it doesn't already equal start amount.
        if (startAmount != endAmount) {
            // Declare variables to derive in the subsequent unchecked scope.
            uint256 duration;
            uint256 elapsed;
            uint256 remaining;

            // Skip underflow checks as startTime <= block.timestamp < endTime.
            unchecked {
                // Derive the duration for the order and place it on the stack.
                duration = endTime - startTime;

                // Derive time elapsed since the order started & place on stack.
                elapsed = block.timestamp - startTime;

                // Derive time remaining until order expires and place on stack.
                remaining = duration - elapsed;
            }

            // Aggregate new amounts weighted by time with rounding factor.
            uint256 totalBeforeDivision = ((startAmount * remaining) +
                (endAmount * elapsed));

            // Use assembly to combine operations and skip divide-by-zero check.
            assembly {
                // Multiply by iszero(iszero(totalBeforeDivision)) to ensure
                // amount is set to zero if totalBeforeDivision is zero,
                // as intermediate overflow can occur if it is zero.
                amount := mul(
                    iszero(iszero(totalBeforeDivision)),
                    // Subtract 1 from the numerator and add 1 to the result if
                    // roundUp is true to get the proper rounding direction.
                    // Division is performed with no zero check as duration
                    // cannot be zero as long as startTime < endTime.
                    add(
                        div(sub(totalBeforeDivision, roundUp), duration),
                        roundUp
                    )
                )
            }

            // Return the current amount.
            return amount;
        }

        // Return the original amount as startAmount == endAmount.
        return endAmount;
    }

    /**
     * @dev Internal pure function to return a fraction of a given value and to
     *      ensure the resultant value does not have any fractional component.
     *      Note that this function assumes that zero will never be supplied as
     *      the denominator parameter; invalid / undefined behavior will result
     *      should a denominator of zero be provided.
     *
     * @param numerator   A value indicating the portion of the order that
     *                    should be filled.
     * @param denominator A value indicating the total size of the order. Note
     *                    that this value cannot be equal to zero.
     * @param value       The value for which to compute the fraction.
     *
     * @return newValue The value after applying the fraction.
     */
    function _getFraction(
        uint256 numerator,
        uint256 denominator,
        uint256 value
    ) internal pure returns (uint256 newValue) {
        // Return value early in cases where the fraction resolves to 1.
        if (numerator == denominator) {
            return value;
        }

        // Ensure fraction can be applied to the value with no remainder. Note
        // that the denominator cannot be zero.
        assembly {
            // Ensure new value contains no remainder via mulmod operator.
            // Credit to @hrkrshnn + @axic for proposing this optimal solution.
            if mulmod(value, numerator, denominator) {
                // Store left-padded selector with push4, mem[28:32] = selector
                mstore(0, InexactFraction_error_selector)

                // revert(abi.encodeWithSignature("InexactFraction()"))
                revert(Error_selector_offset, InexactFraction_error_length)
            }
        }

        // Multiply the numerator by the value and ensure no overflow occurs.
        uint256 valueTimesNumerator = value * numerator;

        // Divide and check for remainder. Note that denominator cannot be zero.
        assembly {
            // Perform division without zero check.
            newValue := div(valueTimesNumerator, denominator)
        }
    }

    /**
     * @dev Internal view function to apply a fraction to a consideration
     * or offer item.
     *
     * @param startAmount     The starting amount of the item.
     * @param endAmount       The ending amount of the item.
     * @param numerator       A value indicating the portion of the order that
     *                        should be filled.
     * @param denominator     A value indicating the total size of the order.
     * @param startTime       The starting time of the order.
     * @param endTime         The end time of the order.
     * @param roundUp         A boolean indicating whether the resultant
     *                        amount should be rounded up or down.
     *
     * @return amount The received item to transfer with the final amount.
     */
    function _applyFraction(
        uint256 startAmount,
        uint256 endAmount,
        uint256 numerator,
        uint256 denominator,
        uint256 startTime,
        uint256 endTime,
        bool roundUp
    ) internal view returns (uint256 amount) {
        // If start amount equals end amount, apply fraction to end amount.
        if (startAmount == endAmount) {
            // Apply fraction to end amount.
            amount = _getFraction(numerator, denominator, endAmount);
        } else {
            // Otherwise, apply fraction to both and interpolated final amount.
            amount = _locateCurrentAmount(
                _getFraction(numerator, denominator, startAmount),
                _getFraction(numerator, denominator, endAmount),
                startTime,
                endTime,
                roundUp
            );
        }
    }
}

File 58 of 87 : FulfillmentApplicationErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import { Side } from "../lib/ConsiderationEnums.sol";

/**
 * @title FulfillmentApplicationErrors
 * @author 0age
 * @notice FulfillmentApplicationErrors contains errors related to fulfillment
 *         application and aggregation.
 */
interface FulfillmentApplicationErrors {
    /**
     * @dev Revert with an error when a fulfillment is provided that does not
     *      declare at least one component as part of a call to fulfill
     *      available orders.
     */
    error MissingFulfillmentComponentOnAggregation(Side side);

    /**
     * @dev Revert with an error when a fulfillment is provided that does not
     *      declare at least one offer component and at least one consideration
     *      component.
     */
    error OfferAndConsiderationRequiredOnFulfillment();

    /**
     * @dev Revert with an error when the initial offer item named by a
     *      fulfillment component does not match the type, token, identifier,
     *      or conduit preference of the initial consideration item.
     *
     * @param fulfillmentIndex The index of the fulfillment component that
     *                         does not match the initial offer item.
     */
    error MismatchedFulfillmentOfferAndConsiderationComponents(
        uint256 fulfillmentIndex
    );

    /**
     * @dev Revert with an error when an order or item index are out of range
     *      or a fulfillment component does not match the type, token,
     *      identifier, or conduit preference of the initial consideration item.
     */
    error InvalidFulfillmentComponentData();
}

File 59 of 87 : ConduitInterface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {
    ConduitTransfer,
    ConduitBatch1155Transfer
} from "../conduit/lib/ConduitStructs.sol";

/**
 * @title ConduitInterface
 * @author 0age
 * @notice ConduitInterface contains all external function interfaces, events,
 *         and errors for conduit contracts.
 */
interface ConduitInterface {
    /**
     * @dev Revert with an error when attempting to execute transfers using a
     *      caller that does not have an open channel.
     */
    error ChannelClosed(address channel);

    /**
     * @dev Revert with an error when attempting to update a channel to the
     *      current status of that channel.
     */
    error ChannelStatusAlreadySet(address channel, bool isOpen);

    /**
     * @dev Revert with an error when attempting to execute a transfer for an
     *      item that does not have an ERC20/721/1155 item type.
     */
    error InvalidItemType();

    /**
     * @dev Revert with an error when attempting to update the status of a
     *      channel from a caller that is not the conduit controller.
     */
    error InvalidController();

    /**
     * @dev Emit an event whenever a channel is opened or closed.
     *
     * @param channel The channel that has been updated.
     * @param open    A boolean indicating whether the conduit is open or not.
     */
    event ChannelUpdated(address indexed channel, bool open);

    /**
     * @notice Execute a sequence of ERC20/721/1155 transfers. Only a caller
     *         with an open channel can call this function.
     *
     * @param transfers The ERC20/721/1155 transfers to perform.
     *
     * @return magicValue A magic value indicating that the transfers were
     *                    performed successfully.
     */
    function execute(
        ConduitTransfer[] calldata transfers
    ) external returns (bytes4 magicValue);

    /**
     * @notice Execute a sequence of batch 1155 transfers. Only a caller with an
     *         open channel can call this function.
     *
     * @param batch1155Transfers The 1155 batch transfers to perform.
     *
     * @return magicValue A magic value indicating that the transfers were
     *                    performed successfully.
     */
    function executeBatch1155(
        ConduitBatch1155Transfer[] calldata batch1155Transfers
    ) external returns (bytes4 magicValue);

    /**
     * @notice Execute a sequence of transfers, both single and batch 1155. Only
     *         a caller with an open channel can call this function.
     *
     * @param standardTransfers  The ERC20/721/1155 transfers to perform.
     * @param batch1155Transfers The 1155 batch transfers to perform.
     *
     * @return magicValue A magic value indicating that the transfers were
     *                    performed successfully.
     */
    function executeWithBatch1155(
        ConduitTransfer[] calldata standardTransfers,
        ConduitBatch1155Transfer[] calldata batch1155Transfers
    ) external returns (bytes4 magicValue);

    /**
     * @notice Open or close a given channel. Only callable by the controller.
     *
     * @param channel The channel to open or close.
     * @param isOpen  The status of the channel (either open or closed).
     */
    function updateChannel(address channel, bool isOpen) external;
}

File 60 of 87 : OrderValidator.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { OrderType, ItemType } from "./ConsiderationEnums.sol";

import {
    OrderParameters,
    Order,
    AdvancedOrder,
    OrderComponents,
    OrderStatus,
    CriteriaResolver,
    OfferItem,
    ConsiderationItem,
    SpentItem,
    ReceivedItem
} from "./ConsiderationStructs.sol";

import "./ConsiderationErrors.sol";

import { Executor } from "./Executor.sol";

import { ZoneInteraction } from "./ZoneInteraction.sol";

import {
    ContractOffererInterface
} from "../interfaces/ContractOffererInterface.sol";

import {
    MemoryPointer,
    getFreeMemoryPointer
} from "../helpers/PointerLibraries.sol";

/**
 * @title OrderValidator
 * @author 0age
 * @notice OrderValidator contains functionality related to validating orders
 *         and updating their status.
 */
contract OrderValidator is Executor, ZoneInteraction {
    // Track status of each order (validated, cancelled, and fraction filled).
    mapping(bytes32 => OrderStatus) private _orderStatus;

    // Track nonces for contract offerers.
    mapping(address => uint256) internal _contractNonces;

    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(address conduitController) Executor(conduitController) {}

    /**
     * @dev Internal function to verify and update the status of a basic order.
     *
     * @param orderHash The hash of the order.
     * @param offerer   The offerer of the order.
     * @param signature A signature from the offerer indicating that the order
     *                  has been approved.
     */
    function _validateBasicOrderAndUpdateStatus(
        bytes32 orderHash,
        address offerer,
        bytes memory signature
    ) internal {
        // Retrieve the order status for the given order hash.
        OrderStatus storage orderStatus = _orderStatus[orderHash];

        // Ensure order is fillable and is not cancelled.
        _verifyOrderStatus(
            orderHash,
            orderStatus,
            true, // Only allow unused orders when fulfilling basic orders.
            true // Signifies to revert if the order is invalid.
        );

        // If the order is not already validated, verify the supplied signature.
        if (!orderStatus.isValidated) {
            _verifySignature(offerer, orderHash, signature);
        }

        // Update order status as fully filled, packing struct values.
        orderStatus.isValidated = true;
        orderStatus.isCancelled = false;
        orderStatus.numerator = 1;
        orderStatus.denominator = 1;
    }

    /**
     * @dev Internal function to validate an order, determine what portion to
     *      fill, and update its status. The desired fill amount is supplied as
     *      a fraction, as is the returned amount to fill.
     *
     * @param advancedOrder     The order to fulfill as well as the fraction to
     *                          fill. Note that all offer and consideration
     *                          amounts must divide with no remainder in order
     *                          for a partial fill to be valid.
     * @param revertOnInvalid   A boolean indicating whether to revert if the
     *                          order is invalid due to the time or status.
     *
     * @return orderHash      The order hash.
     * @return numerator      A value indicating the portion of the order that
     *                        will be filled.
     * @return denominator    A value indicating the total size of the order.
     */
    function _validateOrderAndUpdateStatus(
        AdvancedOrder memory advancedOrder,
        bool revertOnInvalid
    )
        internal
        returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
    {
        // Retrieve the parameters for the order.
        OrderParameters memory orderParameters = advancedOrder.parameters;

        // Ensure current timestamp falls between order start time and end time.
        if (
            !_verifyTime(
                orderParameters.startTime,
                orderParameters.endTime,
                revertOnInvalid
            )
        ) {
            // Assuming an invalid time and no revert, return zeroed out values.
            return (bytes32(0), 0, 0);
        }

        // Read numerator and denominator from memory and place on the stack.
        // Note that overflowed values are masked.
        assembly {
            numerator := and(
                mload(add(advancedOrder, AdvancedOrder_numerator_offset)),
                MaxUint120
            )

            denominator := and(
                mload(add(advancedOrder, AdvancedOrder_denominator_offset)),
                MaxUint120
            )
        }

        // Declare variable for tracking the validity of the supplied fraction.
        bool invalidFraction;

        // If the order is a contract order, return the generated order.
        if (orderParameters.orderType == OrderType.CONTRACT) {
            // Ensure that the numerator and denominator are both equal to 1.
            assembly {
                // (1 ^ nd =/= 0) => (nd =/= 1) => (n =/= 1) || (d =/= 1)
                // It's important that the values are 120-bit masked before
                // multiplication is applied. Otherwise, the last implication
                // above is not correct (mod 2^256).
                invalidFraction := xor(mul(numerator, denominator), 1)
            }

            // Revert if the supplied numerator and denominator are not valid.
            if (invalidFraction) {
                _revertBadFraction();
            }

            // Return the generated order based on the order params and the
            // provided extra data. If revertOnInvalid is true, the function
            // will revert if the input is invalid.
            return
                _getGeneratedOrder(
                    orderParameters,
                    advancedOrder.extraData,
                    revertOnInvalid
                );
        }

        // Ensure numerator does not exceed denominator and is not zero.
        assembly {
            invalidFraction := or(gt(numerator, denominator), iszero(numerator))
        }

        // Revert if the supplied numerator and denominator are not valid.
        if (invalidFraction) {
            _revertBadFraction();
        }

        // If attempting partial fill (n < d) check order type & ensure support.
        if (
            _doesNotSupportPartialFills(
                orderParameters.orderType,
                numerator,
                denominator
            )
        ) {
            // Revert if partial fill was attempted on an unsupported order.
            _revertPartialFillsNotEnabledForOrder();
        }

        // Retrieve current counter & use it w/ parameters to derive order hash.
        orderHash = _assertConsiderationLengthAndGetOrderHash(orderParameters);

        // Retrieve the order status using the derived order hash.
        OrderStatus storage orderStatus = _orderStatus[orderHash];

        // Ensure order is fillable and is not cancelled.
        if (
            !_verifyOrderStatus(
                orderHash,
                orderStatus,
                false, // Allow partially used orders to be filled.
                revertOnInvalid
            )
        ) {
            // Assuming an invalid order status and no revert, return zero fill.
            return (orderHash, 0, 0);
        }

        // If the order is not already validated, verify the supplied signature.
        if (!orderStatus.isValidated) {
            _verifySignature(
                orderParameters.offerer,
                orderHash,
                advancedOrder.signature
            );
        }

        assembly {
            let orderStatusSlot := orderStatus.slot
            // Read filled amount as numerator and denominator and put on stack.
            let filledNumerator := sload(orderStatusSlot)
            let filledDenominator := shr(
                OrderStatus_filledDenominator_offset,
                filledNumerator
            )

            for {

            } 1 {

            } {
                if iszero(filledDenominator) {
                    filledNumerator := numerator

                    break
                }

                // Shift and mask to calculate the current filled numerator.
                filledNumerator := and(
                    shr(OrderStatus_filledNumerator_offset, filledNumerator),
                    MaxUint120
                )

                // If denominator of 1 supplied, fill entire remaining amount.
                if eq(denominator, 1) {
                    numerator := sub(filledDenominator, filledNumerator)
                    denominator := filledDenominator
                    filledNumerator := filledDenominator

                    break
                }

                // If supplied denominator equals to the current one:
                if eq(denominator, filledDenominator) {
                    // Increment the filled numerator by the new numerator.
                    filledNumerator := add(numerator, filledNumerator)

                    // Once adjusted, if current + supplied numerator exceeds
                    // the denominator:
                    let carry := mul(
                        sub(filledNumerator, denominator),
                        gt(filledNumerator, denominator)
                    )

                    numerator := sub(numerator, carry)

                    filledNumerator := sub(filledNumerator, carry)

                    break
                }

                // Otherwise, if supplied denominator differs from current one:
                filledNumerator := mul(filledNumerator, denominator)
                numerator := mul(numerator, filledDenominator)
                denominator := mul(denominator, filledDenominator)

                // Increment the filled numerator by the new numerator.
                filledNumerator := add(numerator, filledNumerator)

                // Once adjusted, if current + supplied numerator exceeds
                // denominator:
                let carry := mul(
                    sub(filledNumerator, denominator),
                    gt(filledNumerator, denominator)
                )

                numerator := sub(numerator, carry)

                filledNumerator := sub(filledNumerator, carry)

                // Check filledNumerator and denominator for uint120 overflow.
                if or(
                    gt(filledNumerator, MaxUint120),
                    gt(denominator, MaxUint120)
                ) {
                    // Derive greatest common divisor using euclidean algorithm.
                    function gcd(_a, _b) -> out {
                        for {

                        } _b {

                        } {
                            let _c := _b
                            _b := mod(_a, _c)
                            _a := _c
                        }
                        out := _a
                    }
                    let scaleDown := gcd(
                        numerator,
                        gcd(filledNumerator, denominator)
                    )

                    // Ensure that the divisor is at least one.
                    let safeScaleDown := add(scaleDown, iszero(scaleDown))

                    // Scale all fractional values down by gcd.
                    numerator := div(numerator, safeScaleDown)
                    filledNumerator := div(filledNumerator, safeScaleDown)
                    denominator := div(denominator, safeScaleDown)

                    // Perform the overflow check a second time.
                    if or(
                        gt(filledNumerator, MaxUint120),
                        gt(denominator, MaxUint120)
                    ) {
                        // Store the Panic error signature.
                        mstore(0, Panic_error_selector)
                        // Store the arithmetic (0x11) panic code.
                        mstore(Panic_error_code_ptr, Panic_arithmetic)

                        // revert(abi.encodeWithSignature(
                        //     "Panic(uint256)", 0x11
                        // ))
                        revert(Error_selector_offset, Panic_error_length)
                    }
                }

                break
            }

            // Update order status and fill amount, packing struct values.
            // [denominator: 15 bytes] [numerator: 15 bytes]
            // [isCancelled: 1 byte] [isValidated: 1 byte]
            sstore(
                orderStatusSlot,
                or(
                    OrderStatus_ValidatedAndNotCancelled,
                    or(
                        shl(
                            OrderStatus_filledNumerator_offset,
                            filledNumerator
                        ),
                        shl(OrderStatus_filledDenominator_offset, denominator)
                    )
                )
            )
        }
    }

    /**
     * @dev Internal pure function to check the compatibility of two offer
     *      or consideration items for contract orders.  Note that the itemType
     *      and identifier are reset in cases where criteria = 0 (collection-
     *      wide offers), which means that a contract offerer has full latitude
     *      to choose any identifier it wants mid-flight, in contrast to the
     *      normal behavior, where the fulfiller can pick which identifier to
     *      receive by providing a CriteriaResolver.
     *
     * @param originalItem The original offer or consideration item.
     * @param newItem      The new offer or consideration item.
     *
     * @return isInvalid Error buffer indicating if items are incompatible.
     */
    function _compareItems(
        MemoryPointer originalItem,
        MemoryPointer newItem
    ) internal pure returns (uint256 isInvalid) {
        assembly {
            let itemType := mload(originalItem)
            let identifier := mload(add(originalItem, Common_identifier_offset))

            // Set returned identifier for criteria-based items w/ criteria = 0.
            if and(gt(itemType, 3), iszero(identifier)) {
                // replace item type
                itemType := sub(3, eq(itemType, 4))
                identifier := mload(add(newItem, Common_identifier_offset))
            }

            let originalAmount := mload(add(originalItem, Common_amount_offset))
            let newAmount := mload(add(newItem, Common_amount_offset))

            isInvalid := iszero(
                and(
                    // originalItem.token == newItem.token &&
                    // originalItem.itemType == newItem.itemType
                    and(
                        eq(
                            mload(add(originalItem, Common_token_offset)),
                            mload(add(newItem, Common_token_offset))
                        ),
                        eq(itemType, mload(newItem))
                    ),
                    // originalItem.identifier == newItem.identifier &&
                    // originalItem.startAmount == originalItem.endAmount
                    and(
                        eq(
                            identifier,
                            mload(add(newItem, Common_identifier_offset))
                        ),
                        eq(
                            originalAmount,
                            mload(add(originalItem, Common_endAmount_offset))
                        )
                    )
                )
            )
        }
    }

    /**
     * @dev Internal pure function to check the compatibility of two recipients
     *      on consideration items for contract orders. This check is skipped if
     *      no recipient is originally supplied.
     *
     * @param originalRecipient The original consideration item recipient.
     * @param newRecipient      The new consideration item recipient.
     *
     * @return isInvalid Error buffer indicating if recipients are incompatible.
     */
    function _checkRecipients(
        address originalRecipient,
        address newRecipient
    ) internal pure returns (uint256 isInvalid) {
        assembly {
            isInvalid := iszero(
                or(
                    iszero(originalRecipient),
                    eq(newRecipient, originalRecipient)
                )
            )
        }
    }

    /**
     * @dev Internal function to generate a contract order. When a
     *      collection-wide criteria-based item (criteria = 0) is provided as an
     *      input to a contract order, the contract offerer has full latitude to
     *      choose any identifier it wants mid-flight, which differs from the
     *      usual behavior.  For regular criteria-based orders with
     *      identifierOrCriteria = 0, the fulfiller can pick which identifier to
     *      receive by providing a CriteriaResolver. For contract offers with
     *      identifierOrCriteria = 0, Seaport does not expect a corresponding
     *      CriteriaResolver, and will revert if one is provided.
     *
     * @param orderParameters The parameters for the order.
     * @param context         The context for generating the order.
     * @param revertOnInvalid Whether to revert on invalid input.
     *
     * @return orderHash   The order hash.
     * @return numerator   The numerator.
     * @return denominator The denominator.
     */
    function _getGeneratedOrder(
        OrderParameters memory orderParameters,
        bytes memory context,
        bool revertOnInvalid
    )
        internal
        returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
    {
        // Ensure that consideration array length is equal to the total original
        // consideration items value.
        if (
            orderParameters.consideration.length !=
            orderParameters.totalOriginalConsiderationItems
        ) {
            _revertConsiderationLengthNotEqualToTotalOriginal();
        }

        {
            address offerer = orderParameters.offerer;
            bool success;
            (MemoryPointer cdPtr, uint256 size) = _encodeGenerateOrder(
                orderParameters,
                context
            );
            assembly {
                success := call(gas(), offerer, 0, cdPtr, size, 0, 0)
            }

            {
                // Note: overflow impossible; nonce can't increment that high.
                uint256 contractNonce;
                unchecked {
                    // Note: nonce will be incremented even for skipped orders,
                    // and  even if generateOrder's return data does not satisfy
                    // all the constraints. This is the case when errorBuffer
                    // !=0 and revertOnInvalid == false.
                    contractNonce = _contractNonces[offerer]++;
                }

                assembly {
                    // Shift offerer address up 96 bytes and combine with nonce.
                    orderHash := xor(
                        contractNonce,
                        shl(ContractOrder_orderHash_offerer_shift, offerer)
                    )
                }
            }

            // Revert or skip if the call to generate the contract order failed.
            if (!success) {
                return _revertOrReturnEmpty(revertOnInvalid, orderHash);
            }
        }

        // Decode the returned contract order and/or update the error buffer.
        (
            uint256 errorBuffer,
            OfferItem[] memory offer,
            ConsiderationItem[] memory consideration
        ) = _convertGetGeneratedOrderResult(_decodeGenerateOrderReturndata)();

        // Revert or skip if the returndata could not be decoded correctly.
        if (errorBuffer != 0) {
            return _revertOrReturnEmpty(revertOnInvalid, orderHash);
        }

        {
            // Designate lengths.
            uint256 originalOfferLength = orderParameters.offer.length;
            uint256 newOfferLength = offer.length;

            // Explicitly specified offer items cannot be removed.
            if (originalOfferLength > newOfferLength) {
                return _revertOrReturnEmpty(revertOnInvalid, orderHash);
            }

            // Iterate over each specified offer (e.g. minimumReceived) item.
            for (uint256 i = 0; i < originalOfferLength; ) {
                // Retrieve the pointer to the originally supplied item.
                MemoryPointer mPtrOriginal = orderParameters
                    .offer[i]
                    .toMemoryPointer();

                // Retrieve the pointer to the newly returned item.
                MemoryPointer mPtrNew = offer[i].toMemoryPointer();

                // Compare the items and update the error buffer accordingly.
                errorBuffer |=
                    _cast(
                        mPtrOriginal
                            .offset(Common_amount_offset)
                            .readUint256() >
                            mPtrNew.offset(Common_amount_offset).readUint256()
                    ) |
                    _compareItems(mPtrOriginal, mPtrNew);

                // Increment the array (cannot overflow as index starts at 0).
                unchecked {
                    ++i;
                }
            }

            // Assign the returned offer item in place of the original item.
            orderParameters.offer = offer;
        }

        {
            // Designate lengths & memory locations.
            ConsiderationItem[] memory originalConsiderationArray = (
                orderParameters.consideration
            );
            uint256 newConsiderationLength = consideration.length;

            // New consideration items cannot be created.
            if (newConsiderationLength > originalConsiderationArray.length) {
                return _revertOrReturnEmpty(revertOnInvalid, orderHash);
            }

            // Iterate over returned consideration & do not exceed maximumSpent.
            for (uint256 i = 0; i < newConsiderationLength; ) {
                // Retrieve the pointer to the originally supplied item.
                MemoryPointer mPtrOriginal = originalConsiderationArray[i]
                    .toMemoryPointer();

                // Retrieve the pointer to the newly returned item.
                MemoryPointer mPtrNew = consideration[i].toMemoryPointer();

                // Compare the items and update the error buffer accordingly
                // and ensure that the recipients are equal when provided.
                errorBuffer |=
                    _cast(
                        mPtrNew.offset(Common_amount_offset).readUint256() >
                            mPtrOriginal
                                .offset(Common_amount_offset)
                                .readUint256()
                    ) |
                    _compareItems(mPtrOriginal, mPtrNew) |
                    _checkRecipients(
                        mPtrOriginal
                            .offset(ConsiderItem_recipient_offset)
                            .readAddress(),
                        mPtrNew
                            .offset(ConsiderItem_recipient_offset)
                            .readAddress()
                    );

                // Increment the array (cannot overflow as index starts at 0).
                unchecked {
                    ++i;
                }
            }

            // Assign returned consideration item in place of the original item.
            orderParameters.consideration = consideration;
        }

        // Revert or skip if any item comparison failed.
        if (errorBuffer != 0) {
            return _revertOrReturnEmpty(revertOnInvalid, orderHash);
        }

        // Return order hash and full fill amount (numerator & denominator = 1).
        return (orderHash, 1, 1);
    }

    /**
     * @dev Internal function to cancel an arbitrary number of orders. Note that
     *      only the offerer or the zone of a given order may cancel it. Callers
     *      should ensure that the intended order was cancelled by calling
     *      `getOrderStatus` and confirming that `isCancelled` returns `true`.
     *      Also note that contract orders are not cancellable.
     *
     * @param orders The orders to cancel.
     *
     * @return cancelled A boolean indicating whether the supplied orders were
     *                   successfully cancelled.
     */
    function _cancel(
        OrderComponents[] calldata orders
    ) internal returns (bool cancelled) {
        // Ensure that the reentrancy guard is not currently set.
        _assertNonReentrant();

        // Declare variables outside of the loop.
        OrderStatus storage orderStatus;

        // Declare a variable for tracking invariants in the loop.
        bool anyInvalidCallerOrContractOrder;

        // Skip overflow check as for loop is indexed starting at zero.
        unchecked {
            // Read length of the orders array from memory and place on stack.
            uint256 totalOrders = orders.length;

            // Iterate over each order.
            for (uint256 i = 0; i < totalOrders; ) {
                // Retrieve the order.
                OrderComponents calldata order = orders[i];

                address offerer = order.offerer;
                address zone = order.zone;
                OrderType orderType = order.orderType;

                assembly {
                    // If caller is neither the offerer nor zone, or a contract
                    // order is present, flag anyInvalidCallerOrContractOrder.
                    anyInvalidCallerOrContractOrder := or(
                        anyInvalidCallerOrContractOrder,
                        // orderType == CONTRACT ||
                        // !(caller == offerer || caller == zone)
                        or(
                            eq(orderType, 4),
                            iszero(
                                or(eq(caller(), offerer), eq(caller(), zone))
                            )
                        )
                    )
                }

                bytes32 orderHash = _deriveOrderHash(
                    _toOrderParametersReturnType(
                        _decodeOrderComponentsAsOrderParameters
                    )(order.toCalldataPointer()),
                    order.counter
                );

                // Retrieve the order status using the derived order hash.
                orderStatus = _orderStatus[orderHash];

                // Update the order status as not valid and cancelled.
                orderStatus.isValidated = false;
                orderStatus.isCancelled = true;

                // Emit an event signifying that the order has been cancelled.
                emit OrderCancelled(orderHash, offerer, zone);

                // Increment counter inside body of loop for gas efficiency.
                ++i;
            }
        }

        if (anyInvalidCallerOrContractOrder) {
            _revertCannotCancelOrder();
        }

        // Return a boolean indicating that orders were successfully cancelled.
        cancelled = true;
    }

    /**
     * @dev Internal function to validate an arbitrary number of orders, thereby
     *      registering their signatures as valid and allowing the fulfiller to
     *      skip signature verification on fulfillment. Note that validated
     *      orders may still be unfulfillable due to invalid item amounts or
     *      other factors; callers should determine whether validated orders are
     *      fulfillable by simulating the fulfillment call prior to execution.
     *      Also note that anyone can validate a signed order, but only the
     *      offerer can validate an order without supplying a signature.
     *
     * @param orders The orders to validate.
     *
     * @return validated A boolean indicating whether the supplied orders were
     *                   successfully validated.
     */
    function _validate(
        Order[] memory orders
    ) internal returns (bool validated) {
        // Ensure that the reentrancy guard is not currently set.
        _assertNonReentrant();

        // Declare variables outside of the loop.
        OrderStatus storage orderStatus;
        bytes32 orderHash;
        address offerer;

        // Skip overflow check as for loop is indexed starting at zero.
        unchecked {
            // Read length of the orders array from memory and place on stack.
            uint256 totalOrders = orders.length;

            // Iterate over each order.
            for (uint256 i = 0; i < totalOrders; ++i) {
                // Retrieve the order.
                Order memory order = orders[i];

                // Retrieve the order parameters.
                OrderParameters memory orderParameters = order.parameters;

                // Skip contract orders.
                if (orderParameters.orderType == OrderType.CONTRACT) {
                    continue;
                }

                // Move offerer from memory to the stack.
                offerer = orderParameters.offerer;

                // Get current counter & use it w/ params to derive order hash.
                orderHash = _assertConsiderationLengthAndGetOrderHash(
                    orderParameters
                );

                // Retrieve the order status using the derived order hash.
                orderStatus = _orderStatus[orderHash];

                // Ensure order is fillable and retrieve the filled amount.
                _verifyOrderStatus(
                    orderHash,
                    orderStatus,
                    false, // Signifies that partially filled orders are valid.
                    true // Signifies to revert if the order is invalid.
                );

                // If the order has not already been validated...
                if (!orderStatus.isValidated) {
                    // Ensure that consideration array length is equal to the
                    // total original consideration items value.
                    if (
                        orderParameters.consideration.length !=
                        orderParameters.totalOriginalConsiderationItems
                    ) {
                        _revertConsiderationLengthNotEqualToTotalOriginal();
                    }

                    // Verify the supplied signature.
                    _verifySignature(offerer, orderHash, order.signature);

                    // Update order status to mark the order as valid.
                    orderStatus.isValidated = true;

                    // Emit an event signifying the order has been validated.
                    emit OrderValidated(orderHash, orderParameters);
                }
            }
        }

        // Return a boolean indicating that orders were successfully validated.
        validated = true;
    }

    /**
     * @dev Internal view function to retrieve the status of a given order by
     *      hash, including whether the order has been cancelled or validated
     *      and the fraction of the order that has been filled.
     *
     * @param orderHash The order hash in question.
     *
     * @return isValidated A boolean indicating whether the order in question
     *                     has been validated (i.e. previously approved or
     *                     partially filled).
     * @return isCancelled A boolean indicating whether the order in question
     *                     has been cancelled.
     * @return totalFilled The total portion of the order that has been filled
     *                     (i.e. the "numerator").
     * @return totalSize   The total size of the order that is either filled or
     *                     unfilled (i.e. the "denominator").
     */
    function _getOrderStatus(
        bytes32 orderHash
    )
        internal
        view
        returns (
            bool isValidated,
            bool isCancelled,
            uint256 totalFilled,
            uint256 totalSize
        )
    {
        // Retrieve the order status using the order hash.
        OrderStatus storage orderStatus = _orderStatus[orderHash];

        // Return the fields on the order status.
        return (
            orderStatus.isValidated,
            orderStatus.isCancelled,
            orderStatus.numerator,
            orderStatus.denominator
        );
    }

    /**
     * @dev Internal pure function to either revert or return an empty tuple
     *      depending on the value of `revertOnInvalid`.
     *
     * @param revertOnInvalid   Whether to revert on invalid input.
     * @param contractOrderHash The contract order hash.
     *
     * @return orderHash   The order hash.
     * @return numerator   The numerator.
     * @return denominator The denominator.
     */
    function _revertOrReturnEmpty(
        bool revertOnInvalid,
        bytes32 contractOrderHash
    )
        internal
        pure
        returns (bytes32 orderHash, uint256 numerator, uint256 denominator)
    {
        if (!revertOnInvalid) {
            return (contractOrderHash, 0, 0);
        }

        _revertInvalidContractOrder(contractOrderHash);
    }

    /**
     * @dev Internal pure function to check whether a given order type indicates
     *      that partial fills are not supported (e.g. only "full fills" are
     *      allowed for the order in question).
     *
     * @param orderType   The order type in question.
     * @param numerator   The numerator in question.
     * @param denominator The denominator in question.
     *
     * @return isFullOrder A boolean indicating whether the order type only
     *                     supports full fills.
     */
    function _doesNotSupportPartialFills(
        OrderType orderType,
        uint256 numerator,
        uint256 denominator
    ) internal pure returns (bool isFullOrder) {
        // The "full" order types are even, while "partial" order types are odd.
        // Bitwise and by 1 is equivalent to modulo by 2, but 2 gas cheaper. The
        // check is only necessary if numerator is less than denominator.
        assembly {
            // Equivalent to `uint256(orderType) & 1 == 0`.
            isFullOrder := and(
                lt(numerator, denominator),
                iszero(and(orderType, 1))
            )
        }
    }
}

File 61 of 87 : CriteriaResolutionErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import { Side } from "../lib/ConsiderationEnums.sol";

/**
 * @title CriteriaResolutionErrors
 * @author 0age
 * @notice CriteriaResolutionErrors contains all errors related to criteria
 *         resolution.
 */
interface CriteriaResolutionErrors {
    /**
     * @dev Revert with an error when providing a criteria resolver that refers
     *      to an order that has not been supplied.
     *
     * @param side The side of the order that was not supplied.
     */
    error OrderCriteriaResolverOutOfRange(Side side);

    /**
     * @dev Revert with an error if an offer item still has unresolved criteria
     *      after applying all criteria resolvers.
     *
     * @param orderIndex The index of the order that contains the offer item.
     * @param offerIndex The index of the offer item that still has unresolved
     *                   criteria.
     */
    error UnresolvedOfferCriteria(uint256 orderIndex, uint256 offerIndex);

    /**
     * @dev Revert with an error if a consideration item still has unresolved
     *      criteria after applying all criteria resolvers.
     *
     * @param orderIndex         The index of the order that contains the
     *                           consideration item.
     * @param considerationIndex The index of the consideration item that still
     *                           has unresolved criteria.
     */
    error UnresolvedConsiderationCriteria(
        uint256 orderIndex,
        uint256 considerationIndex
    );

    /**
     * @dev Revert with an error when providing a criteria resolver that refers
     *      to an order with an offer item that has not been supplied.
     */
    error OfferCriteriaResolverOutOfRange();

    /**
     * @dev Revert with an error when providing a criteria resolver that refers
     *      to an order with a consideration item that has not been supplied.
     */
    error ConsiderationCriteriaResolverOutOfRange();

    /**
     * @dev Revert with an error when providing a criteria resolver that refers
     *      to an order with an item that does not expect a criteria to be
     *      resolved.
     */
    error CriteriaNotEnabledForItem();

    /**
     * @dev Revert with an error when providing a criteria resolver that
     *      contains an invalid proof with respect to the given item and
     *      chosen identifier.
     */
    error InvalidProof();
}

File 62 of 87 : AmountDerivationErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/**
 * @title AmountDerivationErrors
 * @author 0age
 * @notice AmountDerivationErrors contains errors related to amount derivation.
 */
interface AmountDerivationErrors {
    /**
     * @dev Revert with an error when attempting to apply a fraction as part of
     *      a partial fill that does not divide the target amount cleanly.
     */
    error InexactFraction();
}

File 63 of 87 : ConduitStructs.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import { ConduitItemType } from "./ConduitEnums.sol";

struct ConduitTransfer {
    ConduitItemType itemType;
    address token;
    address from;
    address to;
    uint256 identifier;
    uint256 amount;
}

struct ConduitBatch1155Transfer {
    address token;
    address from;
    address to;
    uint256[] ids;
    uint256[] amounts;
}

File 64 of 87 : Executor.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { ConduitInterface } from "../interfaces/ConduitInterface.sol";

import { ConduitItemType } from "../conduit/lib/ConduitEnums.sol";

import { ItemType } from "./ConsiderationEnums.sol";

import { ReceivedItem } from "./ConsiderationStructs.sol";

import { Verifiers } from "./Verifiers.sol";

import { TokenTransferrer } from "./TokenTransferrer.sol";

import "./ConsiderationConstants.sol";

import "./ConsiderationErrors.sol";

/**
 * @title Executor
 * @author 0age
 * @notice Executor contains functions related to processing executions (i.e.
 *         transferring items, either directly or via conduits).
 */
contract Executor is Verifiers, TokenTransferrer {
    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(address conduitController) Verifiers(conduitController) {}

    /**
     * @dev Internal function to transfer a given item, either directly or via
     *      a corresponding conduit.
     *
     * @param item        The item to transfer, including an amount and a
     *                    recipient.
     * @param from        The account supplying the item.
     * @param conduitKey  A bytes32 value indicating what corresponding conduit,
     *                    if any, to source token approvals from. The zero hash
     *                    signifies that no conduit should be used, with direct
     *                    approvals set on this contract.
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     */
    function _transfer(
        ReceivedItem memory item,
        address from,
        bytes32 conduitKey,
        bytes memory accumulator
    ) internal {
        // If the item type indicates Ether or a native token...
        if (item.itemType == ItemType.NATIVE) {
            // Ensure neither the token nor the identifier parameters are set.
            if ((uint160(item.token) | item.identifier) != 0) {
                _revertUnusedItemParameters();
            }

            // transfer the native tokens to the recipient.
            _transferNativeTokens(item.recipient, item.amount);
        } else if (item.itemType == ItemType.ERC20) {
            // Ensure that no identifier is supplied.
            if (item.identifier != 0) {
                _revertUnusedItemParameters();
            }

            // Transfer ERC20 tokens from the source to the recipient.
            _transferERC20(
                item.token,
                from,
                item.recipient,
                item.amount,
                conduitKey,
                accumulator
            );
        } else if (item.itemType == ItemType.ERC721) {
            // Transfer ERC721 token from the source to the recipient.
            _transferERC721(
                item.token,
                from,
                item.recipient,
                item.identifier,
                item.amount,
                conduitKey,
                accumulator
            );
        } else {
            // Transfer ERC1155 token from the source to the recipient.
            _transferERC1155(
                item.token,
                from,
                item.recipient,
                item.identifier,
                item.amount,
                conduitKey,
                accumulator
            );
        }
    }

    /**
     * @dev Internal function to transfer an individual ERC721 or ERC1155 item
     *      from a given originator to a given recipient. The accumulator will
     *      be bypassed, meaning that this function should be utilized in cases
     *      where multiple item transfers can be accumulated into a single
     *      conduit call. Sufficient approvals must be set, either on the
     *      respective conduit or on this contract itself.
     *
     * @param itemType   The type of item to transfer, either ERC721 or ERC1155.
     * @param token      The token to transfer.
     * @param from       The originator of the transfer.
     * @param to         The recipient of the transfer.
     * @param identifier The tokenId to transfer.
     * @param amount     The amount to transfer.
     * @param conduitKey A bytes32 value indicating what corresponding conduit,
     *                   if any, to source token approvals from. The zero hash
     *                   signifies that no conduit should be used, with direct
     *                   approvals set on this contract.
     */
    function _transferIndividual721Or1155Item(
        ItemType itemType,
        address token,
        address from,
        address to,
        uint256 identifier,
        uint256 amount,
        bytes32 conduitKey
    ) internal {
        // Determine if the transfer is to be performed via a conduit.
        if (conduitKey != bytes32(0)) {
            // Use free memory pointer as calldata offset for the conduit call.
            uint256 callDataOffset;

            // Utilize assembly to place each argument in free memory.
            assembly {
                // Retrieve the free memory pointer and use it as the offset.
                callDataOffset := mload(FreeMemoryPointerSlot)

                // Write ConduitInterface.execute.selector to memory.
                mstore(callDataOffset, Conduit_execute_signature)

                // Write the offset to the ConduitTransfer array in memory.
                mstore(
                    add(
                        callDataOffset,
                        Conduit_execute_ConduitTransfer_offset_ptr
                    ),
                    Conduit_execute_ConduitTransfer_ptr
                )

                // Write the length of the ConduitTransfer array to memory.
                mstore(
                    add(
                        callDataOffset,
                        Conduit_execute_ConduitTransfer_length_ptr
                    ),
                    Conduit_execute_ConduitTransfer_length
                )

                // Write the item type to memory.
                mstore(
                    add(callDataOffset, Conduit_execute_transferItemType_ptr),
                    itemType
                )

                // Write the token to memory.
                mstore(
                    add(callDataOffset, Conduit_execute_transferToken_ptr),
                    token
                )

                // Write the transfer source to memory.
                mstore(
                    add(callDataOffset, Conduit_execute_transferFrom_ptr),
                    from
                )

                // Write the transfer recipient to memory.
                mstore(add(callDataOffset, Conduit_execute_transferTo_ptr), to)

                // Write the token identifier to memory.
                mstore(
                    add(callDataOffset, Conduit_execute_transferIdentifier_ptr),
                    identifier
                )

                // Write the transfer amount to memory.
                mstore(
                    add(callDataOffset, Conduit_execute_transferAmount_ptr),
                    amount
                )
            }

            // Perform the call to the conduit.
            _callConduitUsingOffsets(
                conduitKey,
                callDataOffset,
                OneConduitExecute_size
            );
        } else {
            // Otherwise, determine whether it is an ERC721 or ERC1155 item.
            if (itemType == ItemType.ERC721) {
                // Ensure that exactly one 721 item is being transferred.
                if (amount != 1) {
                    _revertInvalidERC721TransferAmount(amount);
                }

                // Perform transfer via the token contract directly.
                _performERC721Transfer(token, from, to, identifier);
            } else {
                // Perform transfer via the token contract directly.
                _performERC1155Transfer(token, from, to, identifier, amount);
            }
        }
    }

    /**
     * @dev Internal function to transfer Ether or other native tokens to a
     *      given recipient.
     *
     * @param to     The recipient of the transfer.
     * @param amount The amount to transfer.
     */
    function _transferNativeTokens(
        address payable to,
        uint256 amount
    ) internal {
        // Ensure that the supplied amount is non-zero.
        _assertNonZeroAmount(amount);

        // Declare a variable indicating whether the call was successful or not.
        bool success;

        assembly {
            // Transfer the ETH and store if it succeeded or not.
            success := call(gas(), to, amount, 0, 0, 0, 0)
        }

        // If the call fails...
        if (!success) {
            // Revert and pass the revert reason along if one was returned.
            _revertWithReasonIfOneIsReturned();

            // Otherwise, revert with a generic error message.
            assembly {
                // Store left-padded selector with push4, mem[28:32] = selector
                mstore(0, EtherTransferGenericFailure_error_selector)
                mstore(EtherTransferGenericFailure_error_account_ptr, to)
                mstore(EtherTransferGenericFailure_error_amount_ptr, amount)

                // revert(abi.encodeWithSignature(
                //   "EtherTransferGenericFailure(address,uint256)", to, amount)
                // )
                revert(
                    Error_selector_offset,
                    EtherTransferGenericFailure_error_length
                )
            }
        }
    }

    /**
     * @dev Internal function to transfer ERC20 tokens from a given originator
     *      to a given recipient using a given conduit if applicable. Sufficient
     *      approvals must be set on this contract or on a respective conduit.
     *
     * @param token       The ERC20 token to transfer.
     * @param from        The originator of the transfer.
     * @param to          The recipient of the transfer.
     * @param amount      The amount to transfer.
     * @param conduitKey  A bytes32 value indicating what corresponding conduit,
     *                    if any, to source token approvals from. The zero hash
     *                    signifies that no conduit should be used, with direct
     *                    approvals set on this contract.
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     */
    function _transferERC20(
        address token,
        address from,
        address to,
        uint256 amount,
        bytes32 conduitKey,
        bytes memory accumulator
    ) internal {
        // Ensure that the supplied amount is non-zero.
        _assertNonZeroAmount(amount);

        // Trigger accumulated transfers if the conduits differ.
        _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);

        // If no conduit has been specified...
        if (conduitKey == bytes32(0)) {
            // Perform the token transfer directly.
            _performERC20Transfer(token, from, to, amount);
        } else {
            // Insert the call to the conduit into the accumulator.
            _insert(
                conduitKey,
                accumulator,
                ConduitItemType.ERC20,
                token,
                from,
                to,
                uint256(0),
                amount
            );
        }
    }

    /**
     * @dev Internal function to transfer a single ERC721 token from a given
     *      originator to a given recipient. Sufficient approvals must be set,
     *      either on the respective conduit or on this contract itself.
     *
     * @param token       The ERC721 token to transfer.
     * @param from        The originator of the transfer.
     * @param to          The recipient of the transfer.
     * @param identifier  The tokenId to transfer (must be 1 for ERC721).
     * @param amount      The amount to transfer.
     * @param conduitKey  A bytes32 value indicating what corresponding conduit,
     *                    if any, to source token approvals from. The zero hash
     *                    signifies that no conduit should be used, with direct
     *                    approvals set on this contract.
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     */
    function _transferERC721(
        address token,
        address from,
        address to,
        uint256 identifier,
        uint256 amount,
        bytes32 conduitKey,
        bytes memory accumulator
    ) internal {
        // Trigger accumulated transfers if the conduits differ.
        _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);

        // If no conduit has been specified...
        if (conduitKey == bytes32(0)) {
            // Ensure that exactly one 721 item is being transferred.
            if (amount != 1) {
                _revertInvalidERC721TransferAmount(amount);
            }

            // Perform transfer via the token contract directly.
            _performERC721Transfer(token, from, to, identifier);
        } else {
            // Insert the call to the conduit into the accumulator.
            _insert(
                conduitKey,
                accumulator,
                ConduitItemType.ERC721,
                token,
                from,
                to,
                identifier,
                amount
            );
        }
    }

    /**
     * @dev Internal function to transfer ERC1155 tokens from a given originator
     *      to a given recipient. Sufficient approvals must be set, either on
     *      the respective conduit or on this contract itself.
     *
     * @param token       The ERC1155 token to transfer.
     * @param from        The originator of the transfer.
     * @param to          The recipient of the transfer.
     * @param identifier  The id to transfer.
     * @param amount      The amount to transfer.
     * @param conduitKey  A bytes32 value indicating what corresponding conduit,
     *                    if any, to source token approvals from. The zero hash
     *                    signifies that no conduit should be used, with direct
     *                    approvals set on this contract.
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     */
    function _transferERC1155(
        address token,
        address from,
        address to,
        uint256 identifier,
        uint256 amount,
        bytes32 conduitKey,
        bytes memory accumulator
    ) internal {
        // Ensure that the supplied amount is non-zero.
        _assertNonZeroAmount(amount);

        // Trigger accumulated transfers if the conduits differ.
        _triggerIfArmedAndNotAccumulatable(accumulator, conduitKey);

        // If no conduit has been specified...
        if (conduitKey == bytes32(0)) {
            // Perform transfer via the token contract directly.
            _performERC1155Transfer(token, from, to, identifier, amount);
        } else {
            // Insert the call to the conduit into the accumulator.
            _insert(
                conduitKey,
                accumulator,
                ConduitItemType.ERC1155,
                token,
                from,
                to,
                identifier,
                amount
            );
        }
    }

    /**
     * @dev Internal function to trigger a call to the conduit currently held by
     *      the accumulator if the accumulator contains item transfers (i.e. it
     *      is "armed") and the supplied conduit key does not match the key held
     *      by the accumulator.
     *
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     * @param conduitKey  A bytes32 value indicating what corresponding conduit,
     *                    if any, to source token approvals from. The zero hash
     *                    signifies that no conduit should be used, with direct
     *                    approvals set on this contract.
     */
    function _triggerIfArmedAndNotAccumulatable(
        bytes memory accumulator,
        bytes32 conduitKey
    ) internal {
        // Retrieve the current conduit key from the accumulator.
        bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);

        // Perform conduit call if the set key does not match the supplied key.
        if (accumulatorConduitKey != conduitKey) {
            _triggerIfArmed(accumulator);
        }
    }

    /**
     * @dev Internal function to trigger a call to the conduit currently held by
     *      the accumulator if the accumulator contains item transfers (i.e. it
     *      is "armed").
     *
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     */
    function _triggerIfArmed(bytes memory accumulator) internal {
        // Exit if the accumulator is not "armed".
        if (accumulator.length != AccumulatorArmed) {
            return;
        }

        // Retrieve the current conduit key from the accumulator.
        bytes32 accumulatorConduitKey = _getAccumulatorConduitKey(accumulator);

        // Perform conduit call.
        _trigger(accumulatorConduitKey, accumulator);
    }

    /**
     * @dev Internal function to trigger a call to the conduit corresponding to
     *      a given conduit key, supplying all accumulated item transfers. The
     *      accumulator will be "disarmed" and reset in the process.
     *
     * @param conduitKey  A bytes32 value indicating what corresponding conduit,
     *                    if any, to source token approvals from. The zero hash
     *                    signifies that no conduit should be used, with direct
     *                    approvals set on this contract.
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     */
    function _trigger(bytes32 conduitKey, bytes memory accumulator) internal {
        // Declare variables for offset in memory & size of calldata to conduit.
        uint256 callDataOffset;
        uint256 callDataSize;

        // Call the conduit with all the accumulated transfers.
        assembly {
            // Call begins at third word; the first is length or "armed" status,
            // and the second is the current conduit key.
            callDataOffset := add(accumulator, TwoWords)

            // 68 + items * 192
            callDataSize := add(
                Accumulator_array_offset_ptr,
                mul(
                    mload(add(accumulator, Accumulator_array_length_ptr)),
                    Conduit_transferItem_size
                )
            )
        }

        // Call conduit derived from conduit key & supply accumulated transfers.
        _callConduitUsingOffsets(conduitKey, callDataOffset, callDataSize);

        // Reset accumulator length to signal that it is now "disarmed".
        assembly {
            mstore(accumulator, AccumulatorDisarmed)
        }
    }

    /**
     * @dev Internal function to perform a call to the conduit corresponding to
     *      a given conduit key based on the offset and size of the calldata in
     *      question in memory.
     *
     * @param conduitKey     A bytes32 value indicating what corresponding
     *                       conduit, if any, to source token approvals from.
     *                       The zero hash signifies that no conduit should be
     *                       used, with direct approvals set on this contract.
     * @param callDataOffset The memory pointer where calldata is contained.
     * @param callDataSize   The size of calldata in memory.
     */
    function _callConduitUsingOffsets(
        bytes32 conduitKey,
        uint256 callDataOffset,
        uint256 callDataSize
    ) internal {
        // Derive the address of the conduit using the conduit key.
        address conduit = _deriveConduit(conduitKey);

        bool success;
        bytes4 result;

        // call the conduit.
        assembly {
            // Ensure first word of scratch space is empty.
            mstore(0, 0)

            // Perform call, placing first word of return data in scratch space.
            success := call(
                gas(),
                conduit,
                0,
                callDataOffset,
                callDataSize,
                0,
                OneWord
            )

            // Take value from scratch space and place it on the stack.
            result := mload(0)
        }

        // If the call failed...
        if (!success) {
            // Pass along whatever revert reason was given by the conduit.
            _revertWithReasonIfOneIsReturned();

            // Otherwise, revert with a generic error.
            _revertInvalidCallToConduit(conduit);
        }

        // Ensure result was extracted and matches EIP-1271 magic value.
        if (result != ConduitInterface.execute.selector) {
            _revertInvalidConduit(conduitKey, conduit);
        }
    }

    /**
     * @dev Internal pure function to retrieve the current conduit key set for
     *      the accumulator.
     *
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     *
     * @return accumulatorConduitKey The conduit key currently set for the
     *                               accumulator.
     */
    function _getAccumulatorConduitKey(
        bytes memory accumulator
    ) internal pure returns (bytes32 accumulatorConduitKey) {
        // Retrieve the current conduit key from the accumulator.
        assembly {
            accumulatorConduitKey := mload(
                add(accumulator, Accumulator_conduitKey_ptr)
            )
        }
    }

    /**
     * @dev Internal pure function to place an item transfer into an accumulator
     *      that collects a series of transfers to execute against a given
     *      conduit in a single call.
     *
     * @param conduitKey  A bytes32 value indicating what corresponding conduit,
     *                    if any, to source token approvals from. The zero hash
     *                    signifies that no conduit should be used, with direct
     *                    approvals set on this contract.
     * @param accumulator An open-ended array that collects transfers to execute
     *                    against a given conduit in a single call.
     * @param itemType    The type of the item to transfer.
     * @param token       The token to transfer.
     * @param from        The originator of the transfer.
     * @param to          The recipient of the transfer.
     * @param identifier  The tokenId to transfer.
     * @param amount      The amount to transfer.
     */
    function _insert(
        bytes32 conduitKey,
        bytes memory accumulator,
        ConduitItemType itemType,
        address token,
        address from,
        address to,
        uint256 identifier,
        uint256 amount
    ) internal pure {
        uint256 elements;
        // "Arm" and prime accumulator if it's not already armed. The sentinel
        // value is held in the length of the accumulator array.
        if (accumulator.length == AccumulatorDisarmed) {
            elements = 1;
            bytes4 selector = ConduitInterface.execute.selector;
            assembly {
                mstore(accumulator, AccumulatorArmed) // "arm" the accumulator.
                mstore(add(accumulator, Accumulator_conduitKey_ptr), conduitKey)
                mstore(add(accumulator, Accumulator_selector_ptr), selector)
                mstore(
                    add(accumulator, Accumulator_array_offset_ptr),
                    Accumulator_array_offset
                )
                mstore(add(accumulator, Accumulator_array_length_ptr), elements)
            }
        } else {
            // Otherwise, increase the number of elements by one.
            assembly {
                elements := add(
                    mload(add(accumulator, Accumulator_array_length_ptr)),
                    1
                )
                mstore(add(accumulator, Accumulator_array_length_ptr), elements)
            }
        }

        // Insert the item.
        assembly {
            let itemPointer := sub(
                add(accumulator, mul(elements, Conduit_transferItem_size)),
                Accumulator_itemSizeOffsetDifference
            )
            mstore(itemPointer, itemType)
            mstore(add(itemPointer, Conduit_transferItem_token_ptr), token)
            mstore(add(itemPointer, Conduit_transferItem_from_ptr), from)
            mstore(add(itemPointer, Conduit_transferItem_to_ptr), to)
            mstore(
                add(itemPointer, Conduit_transferItem_identifier_ptr),
                identifier
            )
            mstore(add(itemPointer, Conduit_transferItem_amount_ptr), amount)
        }
    }
}

File 65 of 87 : ZoneInteraction.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { OrderType } from "./ConsiderationEnums.sol";

import {
    AdvancedOrder,
    OrderParameters,
    BasicOrderParameters
} from "./ConsiderationStructs.sol";

import { ZoneInteractionErrors } from "../interfaces/ZoneInteractionErrors.sol";

import { LowLevelHelpers } from "./LowLevelHelpers.sol";

import "./ConsiderationEncoder.sol";

/**
 * @title ZoneInteraction
 * @author 0age
 * @notice ZoneInteraction contains logic related to interacting with zones.
 */
contract ZoneInteraction is
    ConsiderationEncoder,
    ZoneInteractionErrors,
    LowLevelHelpers
{
    /**
     * @dev Internal function to determine if an order has a restricted order
     *      type and, if so, to ensure that either the zone is the caller or
     *      that a call to `validateOrder` on the zone returns a magic value
     *      indicating that the order is currently valid. Note that contract
     *      orders are not accessible via the basic fulfillment method.
     *
     * @param orderHash  The hash of the order.
     * @param orderType  The order type.
     * @param parameters The parameters of the basic order.
     */
    function _assertRestrictedBasicOrderValidity(
        bytes32 orderHash,
        OrderType orderType,
        BasicOrderParameters calldata parameters
    ) internal {
        // Order type 2-3 require zone be caller or zone to approve.
        // Note that in cases where fulfiller == zone, the restricted order
        // validation will be skipped.
        if (_isRestrictedAndCallerNotZone(orderType, parameters.zone)) {
            // Encode the `validateOrder` call in memory.
            (MemoryPointer callData, uint256 size) = _encodeValidateBasicOrder(
                orderHash,
                parameters
            );

            // Perform `validateOrder` call and ensure magic value was returned.
            _callAndCheckStatus(
                parameters.zone,
                orderHash,
                callData,
                size,
                InvalidRestrictedOrder_error_selector
            );
        }
    }

    /**
     * @dev Internal function to determine the post-execution validity of
     *      restricted and contract orders. Restricted orders where the caller
     *      is not the zone must successfully call `validateOrder` with the
     *      correct magic value returned. Contract orders must successfully call
     *      `ratifyOrder` with the correct magic value returned.
     *
     * @param advancedOrder The advanced order in question.
     * @param orderHashes   The order hashes of each order included as part of
     *                      the current fulfillment.
     * @param orderHash     The hash of the order.
     */
    function _assertRestrictedAdvancedOrderValidity(
        AdvancedOrder memory advancedOrder,
        bytes32[] memory orderHashes,
        bytes32 orderHash
    ) internal {
        // Declare variables that will be assigned based on the order type.
        address target;
        uint256 errorSelector;
        MemoryPointer callData;
        uint256 size;

        // Retrieve the parameters of the order in question.
        OrderParameters memory parameters = advancedOrder.parameters;

        // OrderType 2-3 require zone to be caller or approve via validateOrder.
        if (
            _isRestrictedAndCallerNotZone(parameters.orderType, parameters.zone)
        ) {
            // Encode the `validateOrder` call in memory.
            (callData, size) = _encodeValidateOrder(
                orderHash,
                parameters,
                advancedOrder.extraData,
                orderHashes
            );

            // Set the target to the zone.
            target = parameters.zone;

            // Set the restricted-order-specific error selector.
            errorSelector = InvalidRestrictedOrder_error_selector;
        } else if (parameters.orderType == OrderType.CONTRACT) {
            // Encode the `ratifyOrder` call in memory.
            (callData, size) = _encodeRatifyOrder(
                orderHash,
                parameters,
                advancedOrder.extraData,
                orderHashes
            );

            // Set the target to the offerer.
            target = parameters.offerer;

            // Set the contract-order-specific error selector.
            errorSelector = InvalidContractOrder_error_selector;
        } else {
            return;
        }

        // Perform call and ensure a corresponding magic value was returned.
        _callAndCheckStatus(target, orderHash, callData, size, errorSelector);
    }

    /**
     * @dev Determines whether the specified order type is restricted and the
     *      caller is not the specified zone.
     *
     * @param orderType     The type of the order to check.
     * @param zone          The address of the zone to check against.
     *
     * @return mustValidate True if the order type is restricted and the caller
     *                      is not the specified zone, false otherwise.
     */
    function _isRestrictedAndCallerNotZone(
        OrderType orderType,
        address zone
    ) internal view returns (bool mustValidate) {
        assembly {
            mustValidate := and(
                or(eq(orderType, 2), eq(orderType, 3)),
                iszero(eq(caller(), zone))
            )
        }
    }

    /**
     * @dev Calls the specified target with the given data and checks the status
     *      of the call. Revert reasons will be "bubbled up" if one is returned,
     *      otherwise reverting calls will throw a generic error based on the
     *      supplied error handler.
     *
     * @param target        The address of the contract to call.
     * @param orderHash     The hash of the order associated with the call.
     * @param callData      The data to pass to the contract call.
     * @param size          The size of calldata.
     * @param errorSelector The error handling function to call if the call
     *                      fails or the magic value does not match.
     */
    function _callAndCheckStatus(
        address target,
        bytes32 orderHash,
        MemoryPointer callData,
        uint256 size,
        uint256 errorSelector
    ) internal {
        bool success;
        bool magicMatch;
        assembly {
            // Get magic value from the selector at start of provided calldata.
            let magic := and(mload(callData), MaskOverFirstFourBytes)

            // Clear the start of scratch space.
            mstore(0, 0)

            // Perform call, placing result in the first word of scratch space.
            success := call(gas(), target, 0, callData, size, 0, OneWord)

            // Determine if returned magic value matches the calldata selector.
            magicMatch := eq(magic, mload(0))
        }

        // Revert if the call was not successful.
        if (!success) {
            // Revert and pass reason along if one was returned.
            _revertWithReasonIfOneIsReturned();

            // If no reason was returned, revert with supplied error selector.
            assembly {
                mstore(0, errorSelector)
                mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash)
                revert(
                    Error_selector_offset,
                    InvalidRestrictedOrder_error_length
                )
            }
        }

        // Revert if the correct magic value was not returned.
        if (!magicMatch) {
            // Revert with a generic error message.
            assembly {
                mstore(0, errorSelector)
                mstore(InvalidRestrictedOrder_error_orderHash_ptr, orderHash)
                revert(
                    Error_selector_offset,
                    InvalidRestrictedOrder_error_length
                )
            }
        }
    }
}

File 66 of 87 : ContractOffererInterface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {
    SpentItem,
    ReceivedItem,
    Schema
} from "../lib/ConsiderationStructs.sol";

interface ContractOffererInterface {
    function generateOrder(
        address fulfiller,
        SpentItem[] calldata minimumReceived,
        SpentItem[] calldata maximumSpent,
        bytes calldata context // encoded based on the schemaID
    )
        external
        returns (SpentItem[] memory offer, ReceivedItem[] memory consideration);

    function ratifyOrder(
        SpentItem[] calldata offer,
        ReceivedItem[] calldata consideration,
        bytes calldata context, // encoded based on the schemaID
        bytes32[] calldata orderHashes,
        uint256 contractNonce
    ) external returns (bytes4 ratifyOrderMagicValue);

    function previewOrder(
        address caller,
        address fulfiller,
        SpentItem[] calldata minimumReceived,
        SpentItem[] calldata maximumSpent,
        bytes calldata context // encoded based on the schemaID
    )
        external
        view
        returns (SpentItem[] memory offer, ReceivedItem[] memory consideration);

    function getSeaportMetadata()
        external
        view
        returns (
            string memory name,
            Schema[] memory schemas // map to Seaport Improvement Proposal IDs
        );

    // Additional functions and/or events based on implemented schemaIDs
}

File 67 of 87 : ConduitEnums.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

enum ConduitItemType {
    NATIVE, // unused
    ERC20,
    ERC721,
    ERC1155
}

File 68 of 87 : Verifiers.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { OrderStatus } from "./ConsiderationStructs.sol";

import { Assertions } from "./Assertions.sol";

import { SignatureVerification } from "./SignatureVerification.sol";

import "./ConsiderationErrors.sol";

/**
 * @title Verifiers
 * @author 0age
 * @notice Verifiers contains functions for performing verifications.
 */
contract Verifiers is Assertions, SignatureVerification {
    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(address conduitController) Assertions(conduitController) {}

    /**
     * @dev Internal view function to ensure that the current time falls within
     *      an order's valid timespan.
     *
     * @param startTime       The time at which the order becomes active.
     * @param endTime         The time at which the order becomes inactive.
     * @param revertOnInvalid A boolean indicating whether to revert if the
     *                        order is not active.
     *
     * @return valid A boolean indicating whether the order is active.
     */
    function _verifyTime(
        uint256 startTime,
        uint256 endTime,
        bool revertOnInvalid
    ) internal view returns (bool valid) {
        // Mark as valid if order has started and has not already ended.
        assembly {
            valid := and(
                iszero(gt(startTime, timestamp())),
                gt(endTime, timestamp())
            )
        }

        // Only revert on invalid if revertOnInvalid has been supplied as true.
        if (revertOnInvalid && !valid) {
            _revertInvalidTime(startTime, endTime);
        }
    }

    /**
     * @dev Internal view function to verify the signature of an order. An
     *      ERC-1271 fallback will be attempted if either the signature length
     *      is not 64 or 65 bytes or if the recovered signer does not match the
     *      supplied offerer. Note that in cases where a 64 or 65 byte signature
     *      is supplied, only standard ECDSA signatures that recover to a
     *      non-zero address are supported.
     *
     * @param offerer   The offerer for the order.
     * @param orderHash The order hash.
     * @param signature A signature from the offerer indicating that the order
     *                  has been approved.
     */
    function _verifySignature(
        address offerer,
        bytes32 orderHash,
        bytes memory signature
    ) internal view {
        // Skip signature verification if the offerer is the caller.
        if (_unmaskedAddressComparison(offerer, msg.sender)) {
            return;
        }

        bytes32 domainSeparator = _domainSeparator();

        // Derive original EIP-712 digest using domain separator and order hash.
        bytes32 originalDigest = _deriveEIP712Digest(
            domainSeparator,
            orderHash
        );

        uint256 originalSignatureLength = signature.length;

        bytes32 digest;
        if (_isValidBulkOrderSize(originalSignatureLength)) {
            // Rederive order hash and digest using bulk order proof.
            (orderHash) = _computeBulkOrderProof(signature, orderHash);
            digest = _deriveEIP712Digest(domainSeparator, orderHash);
        } else {
            digest = originalDigest;
        }

        // Ensure that the signature for the digest is valid for the offerer.
        _assertValidSignature(
            offerer,
            digest,
            originalDigest,
            originalSignatureLength,
            signature
        );
    }

    /**
     * @dev Determines whether the specified bulk order size is valid.
     *
     * @param signatureLength The signature length of the bulk order to check.
     *
     * @return validLength True if bulk order size is valid, false otherwise.
     */
    function _isValidBulkOrderSize(
        uint256 signatureLength
    ) internal pure returns (bool validLength) {
        // Utilize assembly to validate the length; the equivalent logic is
        // (64 + x) + 3 + 32y where (0 <= x <= 1) and (1 <= y <= 24).
        assembly {
            validLength := and(
                lt(
                    sub(signatureLength, BulkOrderProof_minSize),
                    BulkOrderProof_rangeSize
                ),
                lt(
                    and(
                        add(
                            signatureLength,
                            BulkOrderProof_lengthAdjustmentBeforeMask
                        ),
                        AlmostOneWord
                    ),
                    BulkOrderProof_lengthRangeAfterMask
                )
            )
        }
    }

    /**
     * @dev Computes the bulk order hash for the specified proof and leaf.
     *
     * @param proofAndSignature  The proof and signature of the bulk order.
     * @param leaf               The leaf of the bulk order tree.
     *
     * @return bulkOrderHash     The bulk order hash.
     */
    function _computeBulkOrderProof(
        bytes memory proofAndSignature,
        bytes32 leaf
    ) internal view returns (bytes32 bulkOrderHash) {
        // Declare arguments for the root hash and the height of the proof.
        bytes32 root;
        uint256 height;

        // Utilize assembly to efficiently derive the root hash using the proof.
        assembly {
            // Retrieve the length of the proof, key, and signature combined.
            let fullLength := mload(proofAndSignature)

            // If proofAndSignature has odd length, it is a compact signature
            // with 64 bytes.
            let signatureLength := sub(ECDSA_MaxLength, and(fullLength, 1))

            // Derive height (or depth of tree) with signature and proof length.
            height := shr(OneWordShift, sub(fullLength, signatureLength))

            // Update the length in memory to only include the signature.
            mstore(proofAndSignature, signatureLength)

            // Derive the pointer for the key using the signature length.
            let keyPtr := add(proofAndSignature, add(OneWord, signatureLength))

            // Retrieve the three-byte key using the derived pointer.
            let key := shr(BulkOrderProof_keyShift, mload(keyPtr))

            /// Retrieve pointer to first proof element by applying a constant
            // for the key size to the derived key pointer.
            let proof := add(keyPtr, BulkOrderProof_keySize)

            // Compute level 1.
            let scratchPtr1 := shl(OneWordShift, and(key, 1))
            mstore(scratchPtr1, leaf)
            mstore(xor(scratchPtr1, OneWord), mload(proof))

            // Compute remaining proofs.
            for {
                let i := 1
            } lt(i, height) {
                i := add(i, 1)
            } {
                proof := add(proof, OneWord)
                let scratchPtr := shl(OneWordShift, and(shr(i, key), 1))
                mstore(scratchPtr, keccak256(0, TwoWords))
                mstore(xor(scratchPtr, OneWord), mload(proof))
            }

            // Compute root hash.
            root := keccak256(0, TwoWords)
        }

        // Retrieve appropriate typehash from runtime storage based on height.
        bytes32 rootTypeHash = _lookupBulkOrderTypehash(height);

        // Use the typehash and the root hash to derive final bulk order hash.
        assembly {
            mstore(0, rootTypeHash)
            mstore(OneWord, root)
            bulkOrderHash := keccak256(0, TwoWords)
        }
    }

    /**
     * @dev Internal view function to validate that a given order is fillable
     *      and not cancelled based on the order status.
     *
     * @param orderHash       The order hash.
     * @param orderStatus     The status of the order, including whether it has
     *                        been cancelled and the fraction filled.
     * @param onlyAllowUnused A boolean flag indicating whether partial fills
     *                        are supported by the calling function.
     * @param revertOnInvalid A boolean indicating whether to revert if the
     *                        order has been cancelled or filled beyond the
     *                        allowable amount.
     *
     * @return valid          A boolean indicating whether the order is valid.
     */
    function _verifyOrderStatus(
        bytes32 orderHash,
        OrderStatus storage orderStatus,
        bool onlyAllowUnused,
        bool revertOnInvalid
    ) internal view returns (bool valid) {
        // Ensure that the order has not been cancelled.
        if (orderStatus.isCancelled) {
            // Only revert if revertOnInvalid has been supplied as true.
            if (revertOnInvalid) {
                _revertOrderIsCancelled(orderHash);
            }

            // Return false as the order status is invalid.
            return false;
        }

        // Read order status numerator from storage and place on stack.
        uint256 orderStatusNumerator = orderStatus.numerator;

        // If the order is not entirely unused...
        if (orderStatusNumerator != 0) {
            // ensure the order has not been partially filled when not allowed.
            if (onlyAllowUnused) {
                // Always revert on partial fills when onlyAllowUnused is true.
                _revertOrderPartiallyFilled(orderHash);
            }
            // Otherwise, ensure that order has not been entirely filled.
            else if (orderStatusNumerator >= orderStatus.denominator) {
                // Only revert if revertOnInvalid has been supplied as true.
                if (revertOnInvalid) {
                    _revertOrderAlreadyFilled(orderHash);
                }

                // Return false as the order status is invalid.
                return false;
            }
        }

        // Return true as the order status is valid.
        valid = true;
    }
}

File 69 of 87 : TokenTransferrer.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import "./TokenTransferrerConstants.sol";

import {
    TokenTransferrerErrors
} from "../interfaces/TokenTransferrerErrors.sol";

import { ConduitBatch1155Transfer } from "../conduit/lib/ConduitStructs.sol";

/**
 * @title TokenTransferrer
 * @author 0age
 * @custom:coauthor d1ll0n
 * @custom:coauthor transmissions11
 * @notice TokenTransferrer is a library for performing optimized ERC20, ERC721,
 *         ERC1155, and batch ERC1155 transfers, used by both Seaport as well as
 *         by conduits deployed by the ConduitController. Use great caution when
 *         considering these functions for use in other codebases, as there are
 *         significant side effects and edge cases that need to be thoroughly
 *         understood and carefully addressed.
 */
contract TokenTransferrer is TokenTransferrerErrors {
    /**
     * @dev Internal function to transfer ERC20 tokens from a given originator
     *      to a given recipient. Sufficient approvals must be set on the
     *      contract performing the transfer.
     *
     * @param token      The ERC20 token to transfer.
     * @param from       The originator of the transfer.
     * @param to         The recipient of the transfer.
     * @param amount     The amount to transfer.
     */
    function _performERC20Transfer(
        address token,
        address from,
        address to,
        uint256 amount
    ) internal {
        // Utilize assembly to perform an optimized ERC20 token transfer.
        assembly {
            // The free memory pointer memory slot will be used when populating
            // call data for the transfer; read the value and restore it later.
            let memPointer := mload(FreeMemoryPointerSlot)

            // Write call data into memory, starting with function selector.
            mstore(ERC20_transferFrom_sig_ptr, ERC20_transferFrom_signature)
            mstore(ERC20_transferFrom_from_ptr, from)
            mstore(ERC20_transferFrom_to_ptr, to)
            mstore(ERC20_transferFrom_amount_ptr, amount)

            // Make call & copy up to 32 bytes of return data to scratch space.
            // Scratch space does not need to be cleared ahead of time, as the
            // subsequent check will ensure that either at least a full word of
            // return data is received (in which case it will be overwritten) or
            // that no data is received (in which case scratch space will be
            // ignored) on a successful call to the given token.
            let callStatus := call(
                gas(),
                token,
                0,
                ERC20_transferFrom_sig_ptr,
                ERC20_transferFrom_length,
                0,
                OneWord
            )

            // Determine whether transfer was successful using status & result.
            let success := and(
                // Set success to whether the call reverted, if not check it
                // either returned exactly 1 (can't just be non-zero data), or
                // had no return data.
                or(
                    and(eq(mload(0), 1), gt(returndatasize(), 31)),
                    iszero(returndatasize())
                ),
                callStatus
            )

            // Handle cases where either the transfer failed or no data was
            // returned. Group these, as most transfers will succeed with data.
            // Equivalent to `or(iszero(success), iszero(returndatasize()))`
            // but after it's inverted for JUMPI this expression is cheaper.
            if iszero(and(success, iszero(iszero(returndatasize())))) {
                // If the token has no code or the transfer failed: Equivalent
                // to `or(iszero(success), iszero(extcodesize(token)))` but
                // after it's inverted for JUMPI this expression is cheaper.
                if iszero(and(iszero(iszero(extcodesize(token))), success)) {
                    // If the transfer failed:
                    if iszero(success) {
                        // If it was due to a revert:
                        if iszero(callStatus) {
                            // If it returned a message, bubble it up as long as
                            // sufficient gas remains to do so:
                            if returndatasize() {
                                // Ensure that sufficient gas is available to
                                // copy returndata while expanding memory where
                                // necessary. Start by computing the word size
                                // of returndata and allocated memory. Round up
                                // to the nearest full word.
                                let returnDataWords := shr(
                                    OneWordShift,
                                    add(returndatasize(), AlmostOneWord)
                                )

                                // Note: use the free memory pointer in place of
                                // msize() to work around a Yul warning that
                                // prevents accessing msize directly when the IR
                                // pipeline is activated.
                                let msizeWords := shr(OneWordShift, memPointer)

                                // Next, compute the cost of the returndatacopy.
                                let cost := mul(CostPerWord, returnDataWords)

                                // Then, compute cost of new memory allocation.
                                if gt(returnDataWords, msizeWords) {
                                    cost := add(
                                        cost,
                                        add(
                                            mul(
                                                sub(
                                                    returnDataWords,
                                                    msizeWords
                                                ),
                                                CostPerWord
                                            ),
                                            shr(
                                                MemoryExpansionCoefficientShift,
                                                sub(
                                                    mul(
                                                        returnDataWords,
                                                        returnDataWords
                                                    ),
                                                    mul(msizeWords, msizeWords)
                                                )
                                            )
                                        )
                                    )
                                }

                                // Finally, add a small constant and compare to
                                // gas remaining; bubble up the revert data if
                                // enough gas is still available.
                                if lt(add(cost, ExtraGasBuffer), gas()) {
                                    // Copy returndata to memory; overwrite
                                    // existing memory.
                                    returndatacopy(0, 0, returndatasize())

                                    // Revert, specifying memory region with
                                    // copied returndata.
                                    revert(0, returndatasize())
                                }
                            }

                            // Store left-padded selector with push4, mem[28:32]
                            mstore(
                                0,
                                TokenTransferGenericFailure_error_selector
                            )
                            mstore(
                                TokenTransferGenericFailure_error_token_ptr,
                                token
                            )
                            mstore(
                                TokenTransferGenericFailure_error_from_ptr,
                                from
                            )
                            mstore(TokenTransferGenericFailure_error_to_ptr, to)
                            mstore(
                                TokenTransferGenericFailure_err_identifier_ptr,
                                0
                            )
                            mstore(
                                TokenTransferGenericFailure_error_amount_ptr,
                                amount
                            )

                            // revert(abi.encodeWithSignature(
                            //     "TokenTransferGenericFailure(
                            //         address,address,address,uint256,uint256
                            //     )", token, from, to, identifier, amount
                            // ))
                            revert(
                                Generic_error_selector_offset,
                                TokenTransferGenericFailure_error_length
                            )
                        }

                        // Otherwise revert with a message about the token
                        // returning false or non-compliant return values.

                        // Store left-padded selector with push4, mem[28:32]
                        mstore(
                            0,
                            BadReturnValueFromERC20OnTransfer_error_selector
                        )
                        mstore(
                            BadReturnValueFromERC20OnTransfer_error_token_ptr,
                            token
                        )
                        mstore(
                            BadReturnValueFromERC20OnTransfer_error_from_ptr,
                            from
                        )
                        mstore(
                            BadReturnValueFromERC20OnTransfer_error_to_ptr,
                            to
                        )
                        mstore(
                            BadReturnValueFromERC20OnTransfer_error_amount_ptr,
                            amount
                        )

                        // revert(abi.encodeWithSignature(
                        //     "BadReturnValueFromERC20OnTransfer(
                        //         address,address,address,uint256
                        //     )", token, from, to, amount
                        // ))
                        revert(
                            Generic_error_selector_offset,
                            BadReturnValueFromERC20OnTransfer_error_length
                        )
                    }

                    // Otherwise, revert with error about token not having code:
                    // Store left-padded selector with push4, mem[28:32]
                    mstore(0, NoContract_error_selector)
                    mstore(NoContract_error_account_ptr, token)

                    // revert(abi.encodeWithSignature(
                    //      "NoContract(address)", account
                    // ))
                    revert(
                        Generic_error_selector_offset,
                        NoContract_error_length
                    )
                }

                // Otherwise, the token just returned no data despite the call
                // having succeeded; no need to optimize for this as it's not
                // technically ERC20 compliant.
            }

            // Restore the original free memory pointer.
            mstore(FreeMemoryPointerSlot, memPointer)

            // Restore the zero slot to zero.
            mstore(ZeroSlot, 0)
        }
    }

    /**
     * @dev Internal function to transfer an ERC721 token from a given
     *      originator to a given recipient. Sufficient approvals must be set on
     *      the contract performing the transfer. Note that this function does
     *      not check whether the receiver can accept the ERC721 token (i.e. it
     *      does not use `safeTransferFrom`).
     *
     * @param token      The ERC721 token to transfer.
     * @param from       The originator of the transfer.
     * @param to         The recipient of the transfer.
     * @param identifier The tokenId to transfer.
     */
    function _performERC721Transfer(
        address token,
        address from,
        address to,
        uint256 identifier
    ) internal {
        // Utilize assembly to perform an optimized ERC721 token transfer.
        assembly {
            // If the token has no code, revert.
            if iszero(extcodesize(token)) {
                // Store left-padded selector with push4, mem[28:32] = selector
                mstore(0, NoContract_error_selector)
                mstore(NoContract_error_account_ptr, token)

                // revert(abi.encodeWithSignature(
                //     "NoContract(address)", account
                // ))
                revert(Generic_error_selector_offset, NoContract_error_length)
            }

            // The free memory pointer memory slot will be used when populating
            // call data for the transfer; read the value and restore it later.
            let memPointer := mload(FreeMemoryPointerSlot)

            // Write call data to memory starting with function selector.
            mstore(ERC721_transferFrom_sig_ptr, ERC721_transferFrom_signature)
            mstore(ERC721_transferFrom_from_ptr, from)
            mstore(ERC721_transferFrom_to_ptr, to)
            mstore(ERC721_transferFrom_id_ptr, identifier)

            // Perform the call, ignoring return data.
            let success := call(
                gas(),
                token,
                0,
                ERC721_transferFrom_sig_ptr,
                ERC721_transferFrom_length,
                0,
                0
            )

            // If the transfer reverted:
            if iszero(success) {
                // If it returned a message, bubble it up as long as sufficient
                // gas remains to do so:
                if returndatasize() {
                    // Ensure that sufficient gas is available to copy
                    // returndata while expanding memory where necessary. Start
                    // by computing word size of returndata & allocated memory.
                    // Round up to the nearest full word.
                    let returnDataWords := shr(
                        OneWordShift,
                        add(returndatasize(), AlmostOneWord)
                    )

                    // Note: use the free memory pointer in place of msize() to
                    // work around a Yul warning that prevents accessing msize
                    // directly when the IR pipeline is activated.
                    let msizeWords := shr(OneWordShift, memPointer)

                    // Next, compute the cost of the returndatacopy.
                    let cost := mul(CostPerWord, returnDataWords)

                    // Then, compute cost of new memory allocation.
                    if gt(returnDataWords, msizeWords) {
                        cost := add(
                            cost,
                            add(
                                mul(
                                    sub(returnDataWords, msizeWords),
                                    CostPerWord
                                ),
                                shr(
                                    MemoryExpansionCoefficientShift,
                                    sub(
                                        mul(returnDataWords, returnDataWords),
                                        mul(msizeWords, msizeWords)
                                    )
                                )
                            )
                        )
                    }

                    // Finally, add a small constant and compare to gas
                    // remaining; bubble up the revert data if enough gas is
                    // still available.
                    if lt(add(cost, ExtraGasBuffer), gas()) {
                        // Copy returndata to memory; overwrite existing memory.
                        returndatacopy(0, 0, returndatasize())

                        // Revert, giving memory region with copied returndata.
                        revert(0, returndatasize())
                    }
                }

                // Otherwise revert with a generic error message.
                // Store left-padded selector with push4, mem[28:32] = selector
                mstore(0, TokenTransferGenericFailure_error_selector)
                mstore(TokenTransferGenericFailure_error_token_ptr, token)
                mstore(TokenTransferGenericFailure_error_from_ptr, from)
                mstore(TokenTransferGenericFailure_error_to_ptr, to)
                mstore(
                    TokenTransferGenericFailure_error_identifier_ptr,
                    identifier
                )
                mstore(TokenTransferGenericFailure_error_amount_ptr, 1)

                // revert(abi.encodeWithSignature(
                //     "TokenTransferGenericFailure(
                //         address,address,address,uint256,uint256
                //     )", token, from, to, identifier, amount
                // ))
                revert(
                    Generic_error_selector_offset,
                    TokenTransferGenericFailure_error_length
                )
            }

            // Restore the original free memory pointer.
            mstore(FreeMemoryPointerSlot, memPointer)

            // Restore the zero slot to zero.
            mstore(ZeroSlot, 0)
        }
    }

    /**
     * @dev Internal function to transfer ERC1155 tokens from a given
     *      originator to a given recipient. Sufficient approvals must be set on
     *      the contract performing the transfer and contract recipients must
     *      implement the ERC1155TokenReceiver interface to indicate that they
     *      are willing to accept the transfer.
     *
     * @param token      The ERC1155 token to transfer.
     * @param from       The originator of the transfer.
     * @param to         The recipient of the transfer.
     * @param identifier The id to transfer.
     * @param amount     The amount to transfer.
     */
    function _performERC1155Transfer(
        address token,
        address from,
        address to,
        uint256 identifier,
        uint256 amount
    ) internal {
        // Utilize assembly to perform an optimized ERC1155 token transfer.
        assembly {
            // If the token has no code, revert.
            if iszero(extcodesize(token)) {
                // Store left-padded selector with push4, mem[28:32] = selector
                mstore(0, NoContract_error_selector)
                mstore(NoContract_error_account_ptr, token)

                // revert(abi.encodeWithSignature(
                //     "NoContract(address)", account
                // ))
                revert(Generic_error_selector_offset, NoContract_error_length)
            }

            // The following memory slots will be used when populating call data
            // for the transfer; read the values and restore them later.
            let memPointer := mload(FreeMemoryPointerSlot)
            let slot0x80 := mload(Slot0x80)
            let slot0xA0 := mload(Slot0xA0)
            let slot0xC0 := mload(Slot0xC0)

            // Write call data into memory, beginning with function selector.
            mstore(
                ERC1155_safeTransferFrom_sig_ptr,
                ERC1155_safeTransferFrom_signature
            )
            mstore(ERC1155_safeTransferFrom_from_ptr, from)
            mstore(ERC1155_safeTransferFrom_to_ptr, to)
            mstore(ERC1155_safeTransferFrom_id_ptr, identifier)
            mstore(ERC1155_safeTransferFrom_amount_ptr, amount)
            mstore(
                ERC1155_safeTransferFrom_data_offset_ptr,
                ERC1155_safeTransferFrom_data_length_offset
            )
            mstore(ERC1155_safeTransferFrom_data_length_ptr, 0)

            // Perform the call, ignoring return data.
            let success := call(
                gas(),
                token,
                0,
                ERC1155_safeTransferFrom_sig_ptr,
                ERC1155_safeTransferFrom_length,
                0,
                0
            )

            // If the transfer reverted:
            if iszero(success) {
                // If it returned a message, bubble it up as long as sufficient
                // gas remains to do so:
                if returndatasize() {
                    // Ensure that sufficient gas is available to copy
                    // returndata while expanding memory where necessary. Start
                    // by computing word size of returndata & allocated memory.
                    // Round up to the nearest full word.
                    let returnDataWords := shr(
                        OneWordShift,
                        add(returndatasize(), AlmostOneWord)
                    )

                    // Note: use the free memory pointer in place of msize() to
                    // work around a Yul warning that prevents accessing msize
                    // directly when the IR pipeline is activated.
                    let msizeWords := shr(OneWordShift, memPointer)

                    // Next, compute the cost of the returndatacopy.
                    let cost := mul(CostPerWord, returnDataWords)

                    // Then, compute cost of new memory allocation.
                    if gt(returnDataWords, msizeWords) {
                        cost := add(
                            cost,
                            add(
                                mul(
                                    sub(returnDataWords, msizeWords),
                                    CostPerWord
                                ),
                                shr(
                                    MemoryExpansionCoefficientShift,
                                    sub(
                                        mul(returnDataWords, returnDataWords),
                                        mul(msizeWords, msizeWords)
                                    )
                                )
                            )
                        )
                    }

                    // Finally, add a small constant and compare to gas
                    // remaining; bubble up the revert data if enough gas is
                    // still available.
                    if lt(add(cost, ExtraGasBuffer), gas()) {
                        // Copy returndata to memory; overwrite existing memory.
                        returndatacopy(0, 0, returndatasize())

                        // Revert, giving memory region with copied returndata.
                        revert(0, returndatasize())
                    }
                }

                // Otherwise revert with a generic error message.

                // Store left-padded selector with push4, mem[28:32] = selector
                mstore(0, TokenTransferGenericFailure_error_selector)
                mstore(TokenTransferGenericFailure_error_token_ptr, token)
                mstore(TokenTransferGenericFailure_error_from_ptr, from)
                mstore(TokenTransferGenericFailure_error_to_ptr, to)
                mstore(
                    TokenTransferGenericFailure_error_identifier_ptr,
                    identifier
                )
                mstore(TokenTransferGenericFailure_error_amount_ptr, amount)

                // revert(abi.encodeWithSignature(
                //     "TokenTransferGenericFailure(
                //         address,address,address,uint256,uint256
                //     )", token, from, to, identifier, amount
                // ))
                revert(
                    Generic_error_selector_offset,
                    TokenTransferGenericFailure_error_length
                )
            }

            mstore(Slot0x80, slot0x80) // Restore slot 0x80.
            mstore(Slot0xA0, slot0xA0) // Restore slot 0xA0.
            mstore(Slot0xC0, slot0xC0) // Restore slot 0xC0.

            // Restore the original free memory pointer.
            mstore(FreeMemoryPointerSlot, memPointer)

            // Restore the zero slot to zero.
            mstore(ZeroSlot, 0)
        }
    }

    /**
     * @dev Internal function to transfer ERC1155 tokens from a given
     *      originator to a given recipient. Sufficient approvals must be set on
     *      the contract performing the transfer and contract recipients must
     *      implement the ERC1155TokenReceiver interface to indicate that they
     *      are willing to accept the transfer. NOTE: this function is not
     *      memory-safe; it will overwrite existing memory, restore the free
     *      memory pointer to the default value, and overwrite the zero slot.
     *      This function should only be called once memory is no longer
     *      required and when uninitialized arrays are not utilized, and memory
     *      should be considered fully corrupted (aside from the existence of a
     *      default-value free memory pointer) after calling this function.
     *
     * @param batchTransfers The group of 1155 batch transfers to perform.
     */
    function _performERC1155BatchTransfers(
        ConduitBatch1155Transfer[] calldata batchTransfers
    ) internal {
        // Utilize assembly to perform optimized batch 1155 transfers.
        assembly {
            let len := batchTransfers.length
            // Pointer to first head in the array, which is offset to the struct
            // at each index. This gets incremented after each loop to avoid
            // multiplying by 32 to get the offset for each element.
            let nextElementHeadPtr := batchTransfers.offset

            // Pointer to beginning of the head of the array. This is the
            // reference position each offset references. It's held static to
            // let each loop calculate the data position for an element.
            let arrayHeadPtr := nextElementHeadPtr

            // Write the function selector, which will be reused for each call:
            // safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)
            mstore(
                ConduitBatch1155Transfer_from_offset,
                ERC1155_safeBatchTransferFrom_signature
            )

            // Iterate over each batch transfer.
            for {
                let i := 0
            } lt(i, len) {
                i := add(i, 1)
            } {
                // Read the offset to the beginning of the element and add
                // it to pointer to the beginning of the array head to get
                // the absolute position of the element in calldata.
                let elementPtr := add(
                    arrayHeadPtr,
                    calldataload(nextElementHeadPtr)
                )

                // Retrieve the token from calldata.
                let token := calldataload(elementPtr)

                // If the token has no code, revert.
                if iszero(extcodesize(token)) {
                    // Store left-padded selector with push4, mem[28:32]
                    mstore(0, NoContract_error_selector)
                    mstore(NoContract_error_account_ptr, token)

                    // revert(abi.encodeWithSignature(
                    //     "NoContract(address)", account
                    // ))
                    revert(
                        Generic_error_selector_offset,
                        NoContract_error_length
                    )
                }

                // Get the total number of supplied ids.
                let idsLength := calldataload(
                    add(elementPtr, ConduitBatch1155Transfer_ids_length_offset)
                )

                // Determine the expected offset for the amounts array.
                let expectedAmountsOffset := add(
                    ConduitBatch1155Transfer_amounts_length_baseOffset,
                    shl(OneWordShift, idsLength)
                )

                // Validate struct encoding.
                let invalidEncoding := iszero(
                    and(
                        // ids.length == amounts.length
                        eq(
                            idsLength,
                            calldataload(add(elementPtr, expectedAmountsOffset))
                        ),
                        and(
                            // ids_offset == 0xa0
                            eq(
                                calldataload(
                                    add(
                                        elementPtr,
                                        ConduitBatch1155Transfer_ids_head_offset
                                    )
                                ),
                                ConduitBatch1155Transfer_ids_length_offset
                            ),
                            // amounts_offset == 0xc0 + ids.length*32
                            eq(
                                calldataload(
                                    add(
                                        elementPtr,
                                        ConduitBatchTransfer_amounts_head_offset
                                    )
                                ),
                                expectedAmountsOffset
                            )
                        )
                    )
                )

                // Revert with an error if the encoding is not valid.
                if invalidEncoding {
                    mstore(
                        Invalid1155BatchTransferEncoding_ptr,
                        Invalid1155BatchTransferEncoding_selector
                    )
                    revert(
                        Invalid1155BatchTransferEncoding_ptr,
                        Invalid1155BatchTransferEncoding_length
                    )
                }

                // Update the offset position for the next loop
                nextElementHeadPtr := add(nextElementHeadPtr, OneWord)

                // Copy the first section of calldata (before dynamic values).
                calldatacopy(
                    BatchTransfer1155Params_ptr,
                    add(elementPtr, ConduitBatch1155Transfer_from_offset),
                    ConduitBatch1155Transfer_usable_head_size
                )

                // Determine size of calldata required for ids and amounts. Note
                // that the size includes both lengths as well as the data.
                let idsAndAmountsSize := add(
                    TwoWords,
                    shl(TwoWordsShift, idsLength)
                )

                // Update the offset for the data array in memory.
                mstore(
                    BatchTransfer1155Params_data_head_ptr,
                    add(
                        BatchTransfer1155Params_ids_length_offset,
                        idsAndAmountsSize
                    )
                )

                // Set the length of the data array in memory to zero.
                mstore(
                    add(
                        BatchTransfer1155Params_data_length_basePtr,
                        idsAndAmountsSize
                    ),
                    0
                )

                // Determine the total calldata size for the call to transfer.
                let transferDataSize := add(
                    BatchTransfer1155Params_calldata_baseSize,
                    idsAndAmountsSize
                )

                // Copy second section of calldata (including dynamic values).
                calldatacopy(
                    BatchTransfer1155Params_ids_length_ptr,
                    add(elementPtr, ConduitBatch1155Transfer_ids_length_offset),
                    idsAndAmountsSize
                )

                // Perform the call to transfer 1155 tokens.
                let success := call(
                    gas(),
                    token,
                    0,
                    ConduitBatch1155Transfer_from_offset, // Data portion start.
                    transferDataSize, // Location of the length of callData.
                    0,
                    0
                )

                // If the transfer reverted:
                if iszero(success) {
                    // If it returned a message, bubble it up as long as
                    // sufficient gas remains to do so:
                    if returndatasize() {
                        // Ensure that sufficient gas is available to copy
                        // returndata while expanding memory where necessary.
                        // Start by computing word size of returndata and
                        // allocated memory. Round up to the nearest full word.
                        let returnDataWords := shr(
                            OneWordShift,
                            add(returndatasize(), AlmostOneWord)
                        )

                        // Note: use transferDataSize in place of msize() to
                        // work around a Yul warning that prevents accessing
                        // msize directly when the IR pipeline is activated.
                        // The free memory pointer is not used here because
                        // this function does almost all memory management
                        // manually and does not update it, and transferDataSize
                        // should be the largest memory value used (unless a
                        // previous batch was larger).
                        let msizeWords := shr(OneWordShift, transferDataSize)

                        // Next, compute the cost of the returndatacopy.
                        let cost := mul(CostPerWord, returnDataWords)

                        // Then, compute cost of new memory allocation.
                        if gt(returnDataWords, msizeWords) {
                            cost := add(
                                cost,
                                add(
                                    mul(
                                        sub(returnDataWords, msizeWords),
                                        CostPerWord
                                    ),
                                    shr(
                                        MemoryExpansionCoefficientShift,
                                        sub(
                                            mul(
                                                returnDataWords,
                                                returnDataWords
                                            ),
                                            mul(msizeWords, msizeWords)
                                        )
                                    )
                                )
                            )
                        }

                        // Finally, add a small constant and compare to gas
                        // remaining; bubble up the revert data if enough gas is
                        // still available.
                        if lt(add(cost, ExtraGasBuffer), gas()) {
                            // Copy returndata to memory; overwrite existing.
                            returndatacopy(0, 0, returndatasize())

                            // Revert with memory region containing returndata.
                            revert(0, returndatasize())
                        }
                    }

                    // Set the error signature.
                    mstore(
                        0,
                        ERC1155BatchTransferGenericFailure_error_signature
                    )

                    // Write the token.
                    mstore(ERC1155BatchTransferGenericFailure_token_ptr, token)

                    // Increase the offset to ids by 32.
                    mstore(
                        BatchTransfer1155Params_ids_head_ptr,
                        ERC1155BatchTransferGenericFailure_ids_offset
                    )

                    // Increase the offset to amounts by 32.
                    mstore(
                        BatchTransfer1155Params_amounts_head_ptr,
                        add(
                            OneWord,
                            mload(BatchTransfer1155Params_amounts_head_ptr)
                        )
                    )

                    // Return modified region. The total size stays the same as
                    // `token` uses the same number of bytes as `data.length`.
                    revert(0, transferDataSize)
                }
            }

            // Reset the free memory pointer to the default value; memory must
            // be assumed to be dirtied and not reused from this point forward.
            // Also note that the zero slot is not reset to zero, meaning empty
            // arrays cannot be safely created or utilized until it is restored.
            mstore(FreeMemoryPointerSlot, DefaultFreeMemoryPointer)
        }
    }
}

File 70 of 87 : ZoneInteractionErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/**
 * @title ZoneInteractionErrors
 * @author 0age
 * @notice ZoneInteractionErrors contains errors related to zone interaction.
 */
interface ZoneInteractionErrors {
    /**
     * @dev Revert with an error when attempting to fill an order that specifies
     *      a restricted submitter as its order type when not submitted by
     *      either the offerer or the order's zone or approved as valid by the
     *      zone in question via a call to `isValidOrder`.
     *
     * @param orderHash The order hash for the invalid restricted order.
     */
    error InvalidRestrictedOrder(bytes32 orderHash);

    /**
     * @dev Revert with an error when attempting to fill a contract order that
     *      fails to generate an order successfully, that does not adhere to the
     *      requirements for minimum spent or maximum received supplied by the
     *      fulfiller, or that fails the post-execution `ratifyOrder` check..
     *
     * @param orderHash The order hash for the invalid contract order.
     */
    error InvalidContractOrder(bytes32 orderHash);
}

File 71 of 87 : LowLevelHelpers.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import "./ConsiderationConstants.sol";

/**
 * @title LowLevelHelpers
 * @author 0age
 * @notice LowLevelHelpers contains logic for performing various low-level
 *         operations.
 */
contract LowLevelHelpers {
    /**
     * @dev Internal view function to revert and pass along the revert reason if
     *      data was returned by the last call and that the size of that data
     *      does not exceed the currently allocated memory size.
     */
    function _revertWithReasonIfOneIsReturned() internal view {
        assembly {
            // If it returned a message, bubble it up as long as sufficient gas
            // remains to do so:
            if returndatasize() {
                // Ensure that sufficient gas is available to copy returndata
                // while expanding memory where necessary. Start by computing
                // the word size of returndata and allocated memory.
                let returnDataWords := shr(
                    OneWordShift,
                    add(returndatasize(), AlmostOneWord)
                )

                // Note: use the free memory pointer in place of msize() to work
                // around a Yul warning that prevents accessing msize directly
                // when the IR pipeline is activated.
                let msizeWords := shr(
                    OneWordShift,
                    mload(FreeMemoryPointerSlot)
                )

                // Next, compute the cost of the returndatacopy.
                let cost := mul(CostPerWord, returnDataWords)

                // Then, compute cost of new memory allocation.
                if gt(returnDataWords, msizeWords) {
                    cost := add(
                        cost,
                        add(
                            mul(sub(returnDataWords, msizeWords), CostPerWord),
                            shr(
                                MemoryExpansionCoefficientShift,
                                sub(
                                    mul(returnDataWords, returnDataWords),
                                    mul(msizeWords, msizeWords)
                                )
                            )
                        )
                    )
                }

                // Finally, add a small constant and compare to gas remaining;
                // bubble up the revert data if enough gas is still available.
                if lt(add(cost, ExtraGasBuffer), gas()) {
                    // Copy returndata to memory; overwrite existing memory.
                    returndatacopy(0, 0, returndatasize())

                    // Revert, specifying memory region with copied returndata.
                    revert(0, returndatasize())
                }
            }
        }
    }

    /**
     * @dev Internal view function to branchlessly select either the caller (if
     *      a supplied recipient is equal to zero) or the supplied recipient (if
     *      that recipient is a nonzero value).
     *
     * @param recipient The supplied recipient.
     *
     * @return updatedRecipient The updated recipient.
     */
    function _substituteCallerForEmptyRecipient(
        address recipient
    ) internal view returns (address updatedRecipient) {
        // Utilize assembly to perform a branchless operation on the recipient.
        assembly {
            // Add caller to recipient if recipient equals 0; otherwise add 0.
            updatedRecipient := add(recipient, mul(iszero(recipient), caller()))
        }
    }

    /**
     * @dev Internal pure function to cast a `bool` value to a `uint256` value.
     *
     * @param b The `bool` value to cast.
     *
     * @return u The `uint256` value.
     */
    function _cast(bool b) internal pure returns (uint256 u) {
        assembly {
            u := b
        }
    }

    /**
     * @dev Internal pure function to compare two addresses without first
     *      masking them. Note that dirty upper bits will cause otherwise equal
     *      addresses to be recognized as unequal.
     *
     * @param a The first address.
     * @param b The second address
     *
     * @return areEqual A boolean representing whether the addresses are equal.
     */
    function _unmaskedAddressComparison(
        address a,
        address b
    ) internal pure returns (bool areEqual) {
        // Utilize assembly to perform the comparison without masking.
        assembly {
            areEqual := eq(a, b)
        }
    }
}

File 72 of 87 : ConsiderationEncoder.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import "./ConsiderationConstants.sol";

import {
    BasicOrderParameters,
    Order,
    CriteriaResolver,
    AdvancedOrder,
    FulfillmentComponent,
    Execution,
    Fulfillment,
    OrderComponents,
    OrderParameters,
    SpentItem,
    ReceivedItem
} from "./ConsiderationStructs.sol";

import "../helpers/PointerLibraries.sol";

contract ConsiderationEncoder {
    /**
     * @dev Takes a bytes array and casts it to a memory pointer.
     *
     * @param obj A bytes array in memory.
     *
     * @return ptr A memory pointer to the start of the bytes array in memory.
     */
    function toMemoryPointer(
        bytes memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    /**
     * @dev Takes an array of bytes32 types and casts it to a memory pointer.
     *
     * @param obj An array of bytes32 types in memory.
     *
     * @return ptr A memory pointer to the start of the array of bytes32 types
     *             in memory.
     */
    function toMemoryPointer(
        bytes32[] memory obj
    ) internal pure returns (MemoryPointer ptr) {
        assembly {
            ptr := obj
        }
    }

    /**
     * @dev Takes a bytes array in memory and copies it to a new location in
     *      memory.
     *
     * @param src A memory pointer referencing the bytes array to be copied (and
     *            pointing to the length of the bytes array).
     * @param src A memory pointer referencing the location in memory to copy
     *            the bytes array to (and pointing to the length of the copied
     *            bytes array).
     *
     * @return size The size of the bytes array.
     */
    function _encodeBytes(
        MemoryPointer src,
        MemoryPointer dst
    ) internal view returns (uint256 size) {
        unchecked {
            // Mask the length of the bytes array to protect against overflow
            // and round up to the nearest word.
            size = (src.readUint256() + AlmostTwoWords) & OnlyFullWordMask;

            // Copy the bytes array to the new memory location.
            src.copy(dst, size);
        }
    }

    /**
     * @dev Takes an OrderParameters struct and a context bytes array in memory
     *      and encodes it as `generateOrder` calldata.
     *
     * @param orderParameters The OrderParameters struct used to construct the
     *                        encoded `generateOrder` calldata.
     * @param context         The context bytes array used to construct the
     *                        encoded `generateOrder` calldata.
     *
     * @return dst  A memory pointer referencing the encoded `generateOrder`
     *              calldata.
     * @return size The size of the bytes array.
     */
    function _encodeGenerateOrder(
        OrderParameters memory orderParameters,
        bytes memory context
    ) internal view returns (MemoryPointer dst, uint256 size) {
        // Get the memory pointer for the OrderParameters struct.
        MemoryPointer src = orderParameters.toMemoryPointer();

        // Get free memory pointer to write calldata to.
        dst = getFreeMemoryPointer();

        // Write generateOrder selector and get pointer to start of calldata.
        dst.write(generateOrder_selector);
        dst = dst.offset(generateOrder_selector_offset);

        // Get pointer to the beginning of the encoded data.
        MemoryPointer dstHead = dst.offset(generateOrder_head_offset);

        // Write `fulfiller` to calldata.
        dstHead.write(msg.sender);

        // Initialize tail offset, used to populate the minimumReceived array.
        uint256 tailOffset = generateOrder_base_tail_offset;

        // Write offset to minimumReceived.
        dstHead.offset(generateOrder_minimumReceived_head_offset).write(
            tailOffset
        );

        // Get memory pointer to `orderParameters.offer.length`.
        MemoryPointer srcOfferPointer = src
            .offset(OrderParameters_offer_head_offset)
            .readMemoryPointer();

        // Encode the offer array as a `SpentItem[]`.
        uint256 minimumReceivedSize = _encodeSpentItems(
            srcOfferPointer,
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment tail offset, now used to populate maximumSpent array.
            tailOffset += minimumReceivedSize;
        }

        // Write offset to maximumSpent.
        dstHead.offset(generateOrder_maximumSpent_head_offset).write(
            tailOffset
        );

        // Get memory pointer to `orderParameters.consideration.length`.
        MemoryPointer srcConsiderationPointer = src
            .offset(OrderParameters_consideration_head_offset)
            .readMemoryPointer();

        // Encode the consideration array as a `SpentItem[]`.
        uint256 maximumSpentSize = _encodeSpentItems(
            srcConsiderationPointer,
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment tail offset, now used to populate context array.
            tailOffset += maximumSpentSize;
        }

        // Write offset to context.
        dstHead.offset(generateOrder_context_head_offset).write(tailOffset);

        // Get memory pointer to context.
        MemoryPointer srcContext = toMemoryPointer(context);

        // Encode context as a bytes array.
        uint256 contextSize = _encodeBytes(
            srcContext,
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment the tail offset, now used to determine final size.
            tailOffset += contextSize;

            // Derive the final size by including the selector.
            size = Selector_length + tailOffset;
        }
    }

    /**
     * @dev Takes an order hash (e.g. offerer + contract nonce in the case of
     *      contract orders), OrderParameters struct, context bytes array, and
     *      array of order hashes for each order included as part of the current
     *      fulfillment and encodes it as `ratifyOrder` calldata.
     *
     * @param orderHash       The order hash (e.g. offerer + contract nonce).
     * @param orderParameters The OrderParameters struct used to construct the
     *                        encoded `ratifyOrder` calldata.
     * @param context         The context bytes array used to construct the
     *                        encoded `ratifyOrder` calldata.
     * @param orderHashes     An array of bytes32 values representing the order
     *                        hashes of all orders included as part of the
     *                        current fulfillment.
     *
     * @return dst  A memory pointer referencing the encoded `ratifyOrder`
     *              calldata.
     * @return size The size of the bytes array.
     */
    function _encodeRatifyOrder(
        bytes32 orderHash, // e.g. offerer + contract nonce
        OrderParameters memory orderParameters,
        bytes memory context, // encoded based on the schemaID
        bytes32[] memory orderHashes
    ) internal view returns (MemoryPointer dst, uint256 size) {
        // Get free memory pointer to write calldata to. This isn't allocated as
        // it is only used for a single function call.
        dst = getFreeMemoryPointer();

        // Write ratifyOrder selector and get pointer to start of calldata.
        dst.write(ratifyOrder_selector);
        dst = dst.offset(ratifyOrder_selector_offset);

        // Get pointer to the beginning of the encoded data.
        MemoryPointer dstHead = dst.offset(ratifyOrder_head_offset);

        // Write contractNonce to calldata.
        dstHead.offset(ratifyOrder_contractNonce_offset).write(
            uint96(uint256(orderHash))
        );

        // Initialize tail offset, used to populate the offer array.
        uint256 tailOffset = ratifyOrder_base_tail_offset;
        MemoryPointer src = orderParameters.toMemoryPointer();

        // Write offset to `offer`.
        dstHead.write(tailOffset);

        // Get memory pointer to `orderParameters.offer.length`.
        MemoryPointer srcOfferPointer = src
            .offset(OrderParameters_offer_head_offset)
            .readMemoryPointer();

        // Encode the offer array as a `SpentItem[]`.
        uint256 offerSize = _encodeSpentItems(
            srcOfferPointer,
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment tail offset, now used to populate consideration array.
            tailOffset += offerSize;
        }

        // Write offset to consideration.
        dstHead.offset(ratifyOrder_consideration_head_offset).write(tailOffset);

        // Get pointer to `orderParameters.consideration.length`.
        MemoryPointer srcConsiderationPointer = src
            .offset(OrderParameters_consideration_head_offset)
            .readMemoryPointer();

        // Encode the consideration array as a `ReceivedItem[]`.
        uint256 considerationSize = _encodeConsiderationAsReceivedItems(
            srcConsiderationPointer,
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment tail offset, now used to populate context array.
            tailOffset += considerationSize;
        }

        // Write offset to context.
        dstHead.offset(ratifyOrder_context_head_offset).write(tailOffset);

        // Encode context.
        uint256 contextSize = _encodeBytes(
            toMemoryPointer(context),
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment tail offset, now used to populate orderHashes array.
            tailOffset += contextSize;
        }

        // Write offset to orderHashes.
        dstHead.offset(ratifyOrder_orderHashes_head_offset).write(tailOffset);

        // Encode orderHashes.
        uint256 orderHashesSize = _encodeOrderHashes(
            toMemoryPointer(orderHashes),
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment the tail offset, now used to determine final size.
            tailOffset += orderHashesSize;

            // Derive the final size by including the selector.
            size = Selector_length + tailOffset;
        }
    }

    /**
     * @dev Takes an order hash, OrderParameters struct, extraData bytes array,
     *      and array of order hashes for each order included as part of the
     *      current fulfillment and encodes it as `validateOrder` calldata.
     *      Note that future, new versions of this contract may end up writing
     *      to a memory region that might have been potentially dirtied by the
     *      accumulator. Since the book-keeping for the accumulator does not
     *      update the free memory pointer, it will be necessary to ensure that
     *      all bytes in the memory in the range [dst, dst+size) are fully
     *      updated/written to in this function.
     *
     * @param orderHash       The order hash.
     * @param orderParameters The OrderParameters struct used to construct the
     *                        encoded `validateOrder` calldata.
     * @param extraData       The extraData bytes array used to construct the
     *                        encoded `validateOrder` calldata.
     * @param orderHashes     An array of bytes32 values representing the order
     *                        hashes of all orders included as part of the
     *                        current fulfillment.
     *
     * @return dst  A memory pointer referencing the encoded `validateOrder`
     *              calldata.
     * @return size The size of the bytes array.
     */
    function _encodeValidateOrder(
        bytes32 orderHash,
        OrderParameters memory orderParameters,
        bytes memory extraData,
        bytes32[] memory orderHashes
    ) internal view returns (MemoryPointer dst, uint256 size) {
        // Get free memory pointer to write calldata to. This isn't allocated as
        // it is only used for a single function call.
        dst = getFreeMemoryPointer();

        // Write validateOrder selector and get pointer to start of calldata.
        dst.write(validateOrder_selector);
        dst = dst.offset(validateOrder_selector_offset);

        // Get pointer to the beginning of the encoded data.
        MemoryPointer dstHead = dst.offset(validateOrder_head_offset);

        // Write offset to zoneParameters to start of calldata.
        dstHead.write(validateOrder_zoneParameters_offset);

        // Reuse `dstHead` as pointer to zoneParameters.
        dstHead = dstHead.offset(validateOrder_zoneParameters_offset);

        // Write orderHash and fulfiller to zoneParameters.
        dstHead.writeBytes32(orderHash);
        dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender);

        // Get the memory pointer to the order paramaters struct.
        MemoryPointer src = orderParameters.toMemoryPointer();

        // Copy offerer, startTime, endTime and zoneHash to zoneParameters.
        dstHead.offset(ZoneParameters_offerer_offset).write(src.readUint256());
        dstHead.offset(ZoneParameters_startTime_offset).write(
            src.offset(OrderParameters_startTime_offset).readUint256()
        );
        dstHead.offset(ZoneParameters_endTime_offset).write(
            src.offset(OrderParameters_endTime_offset).readUint256()
        );
        dstHead.offset(ZoneParameters_zoneHash_offset).write(
            src.offset(OrderParameters_zoneHash_offset).readUint256()
        );

        // Initialize tail offset, used to populate the offer array.
        uint256 tailOffset = ZoneParameters_base_tail_offset;

        // Write offset to `offer`.
        dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset);

        // Get pointer to `orderParameters.offer.length`.
        MemoryPointer srcOfferPointer = src
            .offset(OrderParameters_offer_head_offset)
            .readMemoryPointer();

        // Encode the offer array as a `SpentItem[]`.
        uint256 offerSize = _encodeSpentItems(
            srcOfferPointer,
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment tail offset, now used to populate consideration array.
            tailOffset += offerSize;
        }

        // Write offset to consideration.
        dstHead.offset(ZoneParameters_consideration_head_offset).write(
            tailOffset
        );

        // Get pointer to `orderParameters.consideration.length`.
        MemoryPointer srcConsiderationPointer = src
            .offset(OrderParameters_consideration_head_offset)
            .readMemoryPointer();

        // Encode the consideration array as a `ReceivedItem[]`.
        uint256 considerationSize = _encodeConsiderationAsReceivedItems(
            srcConsiderationPointer,
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment tail offset, now used to populate extraData array.
            tailOffset += considerationSize;
        }

        // Write offset to extraData.
        dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset);
        // Copy extraData.
        uint256 extraDataSize = _encodeBytes(
            toMemoryPointer(extraData),
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment tail offset, now used to populate orderHashes array.
            tailOffset += extraDataSize;
        }

        // Write offset to orderHashes.
        dstHead.offset(ZoneParameters_orderHashes_head_offset).write(
            tailOffset
        );

        // Encode the order hashes array.
        uint256 orderHashesSize = _encodeOrderHashes(
            toMemoryPointer(orderHashes),
            dstHead.offset(tailOffset)
        );

        unchecked {
            // Increment the tail offset, now used to determine final size.
            tailOffset += orderHashesSize;

            // Derive final size including selector and ZoneParameters pointer.
            size = ZoneParameters_selectorAndPointer_length + tailOffset;
        }
    }

    /**
     * @dev Takes an order hash and BasicOrderParameters struct (from calldata)
     *      and encodes it as `validateOrder` calldata.
     *
     * @param orderHash  The order hash.
     * @param parameters The BasicOrderParameters struct used to construct the
     *                   encoded `validateOrder` calldata.
     *
     * @return dst  A memory pointer referencing the encoded `validateOrder`
     *              calldata.
     * @return size The size of the bytes array.
     */
    function _encodeValidateBasicOrder(
        bytes32 orderHash,
        BasicOrderParameters calldata parameters
    ) internal view returns (MemoryPointer dst, uint256 size) {
        // Get free memory pointer to write calldata to. This isn't allocated as
        // it is only used for a single function call.
        dst = getFreeMemoryPointer();

        // Write validateOrder selector and get pointer to start of calldata.
        dst.write(validateOrder_selector);
        dst = dst.offset(validateOrder_selector_offset);

        // Get pointer to the beginning of the encoded data.
        MemoryPointer dstHead = dst.offset(validateOrder_head_offset);

        // Write offset to zoneParameters to start of calldata.
        dstHead.write(validateOrder_zoneParameters_offset);

        // Reuse `dstHead` as pointer to zoneParameters.
        dstHead = dstHead.offset(validateOrder_zoneParameters_offset);

        // Write offerer, orderHash and fulfiller to zoneParameters.
        dstHead.writeBytes32(orderHash);
        dstHead.offset(ZoneParameters_fulfiller_offset).write(msg.sender);
        dstHead.offset(ZoneParameters_offerer_offset).write(parameters.offerer);

        // Copy startTime, endTime and zoneHash to zoneParameters.
        CalldataPointer.wrap(BasicOrder_startTime_cdPtr).copy(
            dstHead.offset(ZoneParameters_startTime_offset),
            BasicOrder_startTimeThroughZoneHash_size
        );

        // Initialize tail offset, used for the offer + consideration arrays.
        uint256 tailOffset = ZoneParameters_base_tail_offset;

        // Write offset to offer from event data into target calldata.
        dstHead.offset(ZoneParameters_offer_head_offset).write(tailOffset);

        unchecked {
            // Write consideration offset next (located 5 words after offer).
            dstHead.offset(ZoneParameters_consideration_head_offset).write(
                tailOffset + BasicOrder_common_params_size
            );

            // Retrieve the offset to the length of additional recipients.
            uint256 additionalRecipientsLength = CalldataPointer
                .wrap(BasicOrder_additionalRecipients_length_cdPtr)
                .readUint256();

            // Derive offset to event data using base offset & total recipients.
            uint256 offerDataOffset = OrderFulfilled_offer_length_baseOffset +
                additionalRecipientsLength *
                OneWord;

            // Derive size of offer and consideration data.
            // 2 words (lengths) + 4 (offer data) + 5 (consideration 1) + 5 * ar
            uint256 offerAndConsiderationSize = OrderFulfilled_baseDataSize +
                (additionalRecipientsLength * ReceivedItem_size);

            // Copy offer and consideration data from event data to calldata.
            MemoryPointer.wrap(offerDataOffset).copy(
                dstHead.offset(tailOffset),
                offerAndConsiderationSize
            );

            // Increment tail offset, now used to populate extraData array.
            tailOffset += offerAndConsiderationSize;
        }

        // Write empty bytes for extraData.
        dstHead.offset(ZoneParameters_extraData_head_offset).write(tailOffset);
        dstHead.offset(tailOffset).write(0);

        unchecked {
            // Increment tail offset, now used to populate orderHashes array.
            tailOffset += OneWord;
        }

        // Write offset to orderHashes.
        dstHead.offset(ZoneParameters_orderHashes_head_offset).write(
            tailOffset
        );

        // Write length = 1 to the orderHashes array.
        dstHead.offset(tailOffset).write(1);

        unchecked {
            // Write the single order hash to the orderHashes array.
            dstHead.offset(tailOffset + OneWord).writeBytes32(orderHash);

            // Final size: selector, ZoneParameters pointer, orderHashes & tail.
            size = ZoneParameters_basicOrderFixedElements_length + tailOffset;
        }
    }

    /**
     * @dev Takes a memory pointer to an array of bytes32 values representing
     *      the order hashes included as part of the fulfillment and a memory
     *      pointer to a location to copy it to, and copies the source data to
     *      the destination in memory.
     *
     * @param srcLength A memory pointer referencing the order hashes array to
     *                  be copied (and pointing to the length of the array).
     * @param dstLength A memory pointer referencing the location in memory to
     *                  copy the orderHashes array to (and pointing to the
     *                  length of the copied array).
     *
     * @return size The size of the order hashes array (including the length).
     */
    function _encodeOrderHashes(
        MemoryPointer srcLength,
        MemoryPointer dstLength
    ) internal view returns (uint256 size) {
        // Read length of the array from source and write to destination.
        uint256 length = srcLength.readUint256();
        dstLength.write(length);

        unchecked {
            // Determine head & tail size as one word per element in the array.
            uint256 headAndTailSize = length * OneWord;

            // Copy the tail starting from the next element of the source to the
            // next element of the destination.
            srcLength.next().offset(headAndTailSize).copy(
                dstLength.next(),
                headAndTailSize
            );

            // Set size to the length of the tail plus one word for length.
            size = headAndTailSize + OneWord;
        }
    }

    /**
     * @dev Takes a memory pointer to an offer or consideration array and a
     *      memory pointer to a location to copy it to, and copies the source
     *      data to the destination in memory as a SpentItem array.
     *
     * @param srcLength A memory pointer referencing the offer or consideration
     *                  array to be copied as a SpentItem array (and pointing to
     *                  the length of the original array).
     * @param dstLength A memory pointer referencing the location in memory to
     *                  copy the offer array to (and pointing to the length of
     *                  the copied array).
     *
     * @return size The size of the SpentItem array (including the length).
     */
    function _encodeSpentItems(
        MemoryPointer srcLength,
        MemoryPointer dstLength
    ) internal pure returns (uint256 size) {
        assembly {
            // Read length of the array from source and write to destination.
            let length := mload(srcLength)
            mstore(dstLength, length)

            // Get pointer to first item's head position in the array,
            // containing the item's pointer in memory. The head pointer will be
            // incremented until it reaches the tail position (start of the
            // array data).
            let mPtrHead := add(srcLength, OneWord)

            // Position in memory to write next item for calldata. Since
            // SpentItem has a fixed length, the array elements do not contain
            // head elements in calldata, they are concatenated together after
            // the array length.
            let cdPtrData := add(dstLength, OneWord)

            // Pointer to end of array head in memory.
            let mPtrHeadEnd := add(mPtrHead, shl(OneWordShift, length))

            for {

            } lt(mPtrHead, mPtrHeadEnd) {

            } {
                // Read pointer to data for array element from head position.
                let mPtrTail := mload(mPtrHead)

                // Copy itemType, token, identifier, amount to calldata.
                mstore(cdPtrData, mload(mPtrTail))
                mstore(
                    add(cdPtrData, Common_token_offset),
                    mload(add(mPtrTail, Common_token_offset))
                )
                mstore(
                    add(cdPtrData, Common_identifier_offset),
                    mload(add(mPtrTail, Common_identifier_offset))
                )
                mstore(
                    add(cdPtrData, Common_amount_offset),
                    mload(add(mPtrTail, Common_amount_offset))
                )

                mPtrHead := add(mPtrHead, OneWord)
                cdPtrData := add(cdPtrData, SpentItem_size)
            }

            size := add(OneWord, shl(SpentItem_size_shift, length))
        }
    }

    /**
     * @dev Takes a memory pointer to an consideration array and a memory
     *      pointer to a location to copy it to, and copies the source data to
     *      the destination in memory as a ReceivedItem array.
     *
     * @param srcLength A memory pointer referencing the consideration array to
     *                  be copied as a ReceivedItem array (and pointing to the
     *                  length of the original array).
     * @param dstLength A memory pointer referencing the location in memory to
     *                  copy the consideration array to as a ReceivedItem array
     *                  (and pointing to the length of the new array).
     *
     * @return size The size of the ReceivedItem array (including the length).
     */
    function _encodeConsiderationAsReceivedItems(
        MemoryPointer srcLength,
        MemoryPointer dstLength
    ) internal view returns (uint256 size) {
        unchecked {
            // Read length of the array from source and write to destination.
            uint256 length = srcLength.readUint256();
            dstLength.write(length);

            // Get pointer to first item's head position in the array,
            // containing the item's pointer in memory. The head pointer will be
            // incremented until it reaches the tail position (start of the
            // array data).
            MemoryPointer srcHead = srcLength.next();
            MemoryPointer srcHeadEnd = srcHead.offset(length * OneWord);

            // Position in memory to write next item for calldata. Since
            // ReceivedItem has a fixed length, the array elements do not
            // contain offsets in calldata, they are concatenated together after
            // the array length.
            MemoryPointer dstHead = dstLength.next();
            while (srcHead.lt(srcHeadEnd)) {
                MemoryPointer srcTail = srcHead.pptr();
                srcTail.copy(dstHead, ReceivedItem_size);
                srcHead = srcHead.next();
                dstHead = dstHead.offset(ReceivedItem_size);
            }

            size = OneWord + (length * ReceivedItem_size);
        }
    }
}

File 73 of 87 : Assertions.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { OrderParameters } from "./ConsiderationStructs.sol";

import { GettersAndDerivers } from "./GettersAndDerivers.sol";

import {
    TokenTransferrerErrors
} from "../interfaces/TokenTransferrerErrors.sol";

import { CounterManager } from "./CounterManager.sol";

import "./ConsiderationErrors.sol";

/**
 * @title Assertions
 * @author 0age
 * @notice Assertions contains logic for making various assertions that do not
 *         fit neatly within a dedicated semantic scope.
 */
contract Assertions is
    GettersAndDerivers,
    CounterManager,
    TokenTransferrerErrors
{
    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(
        address conduitController
    ) GettersAndDerivers(conduitController) {}

    /**
     * @dev Internal view function to ensure that the supplied consideration
     *      array length on a given set of order parameters is not less than the
     *      original consideration array length for that order and to retrieve
     *      the current counter for a given order's offerer and zone and use it
     *      to derive the order hash.
     *
     * @param orderParameters The parameters of the order to hash.
     *
     * @return The hash.
     */
    function _assertConsiderationLengthAndGetOrderHash(
        OrderParameters memory orderParameters
    ) internal view returns (bytes32) {
        // Ensure supplied consideration array length is not less than original.
        _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
            orderParameters.consideration.length,
            orderParameters.totalOriginalConsiderationItems
        );

        // Derive and return order hash using current counter for the offerer.
        return
            _deriveOrderHash(
                orderParameters,
                _getCounter(orderParameters.offerer)
            );
    }

    /**
     * @dev Internal pure function to ensure that the supplied consideration
     *      array length for an order to be fulfilled is not less than the
     *      original consideration array length for that order.
     *
     * @param suppliedConsiderationItemTotal The number of consideration items
     *                                       supplied when fulfilling the order.
     * @param originalConsiderationItemTotal The number of consideration items
     *                                       supplied on initial order creation.
     */
    function _assertConsiderationLengthIsNotLessThanOriginalConsiderationLength(
        uint256 suppliedConsiderationItemTotal,
        uint256 originalConsiderationItemTotal
    ) internal pure {
        // Ensure supplied consideration array length is not less than original.
        if (suppliedConsiderationItemTotal < originalConsiderationItemTotal) {
            _revertMissingOriginalConsiderationItems();
        }
    }

    /**
     * @dev Internal pure function to ensure that a given item amount is not
     *      zero.
     *
     * @param amount The amount to check.
     */
    function _assertNonZeroAmount(uint256 amount) internal pure {
        assembly {
            if iszero(amount) {
                // Store left-padded selector with push4, mem[28:32] = selector
                mstore(0, MissingItemAmount_error_selector)

                // revert(abi.encodeWithSignature("MissingItemAmount()"))
                revert(Error_selector_offset, MissingItemAmount_error_length)
            }
        }
    }

    /**
     * @dev Internal pure function to validate calldata offsets for dynamic
     *      types in BasicOrderParameters and other parameters. This ensures
     *      that functions using the calldata object normally will be using the
     *      same data as the assembly functions and that values that are bound
     *      to a given range are within that range. Note that no parameters are
     *      supplied as all basic order functions use the same calldata
     *      encoding.
     */
    function _assertValidBasicOrderParameters() internal pure {
        // Declare a boolean designating basic order parameter offset validity.
        bool validOffsets;

        // Utilize assembly in order to read offset data directly from calldata.
        assembly {
            /*
             * Checks:
             * 1. Order parameters struct offset == 0x20
             * 2. Additional recipients arr offset == 0x240
             * 3. Signature offset == 0x260 + (recipients.length * 0x40)
             * 4. BasicOrderType between 0 and 23 (i.e. < 24)
             */
            validOffsets := and(
                // Order parameters at calldata 0x04 must have offset of 0x20.
                eq(
                    calldataload(BasicOrder_parameters_cdPtr),
                    BasicOrder_parameters_ptr
                ),
                // Additional recipients at cd 0x224 must have offset of 0x240.
                eq(
                    calldataload(BasicOrder_additionalRecipients_head_cdPtr),
                    BasicOrder_additionalRecipients_head_ptr
                )
            )

            validOffsets := and(
                validOffsets,
                eq(
                    // Load signature offset from calldata 0x244.
                    calldataload(BasicOrder_signature_cdPtr),
                    // Derive expected offset as start of recipients + len * 64.
                    add(
                        BasicOrder_signature_ptr,
                        shl(
                            // Each additional recipient has a length of 0x40.
                            AdditionalRecipient_size_shift,
                            // Additional recipients length at calldata 0x264.
                            calldataload(
                                BasicOrder_additionalRecipients_length_cdPtr
                            )
                        )
                    )
                )
            )

            validOffsets := and(
                validOffsets,
                lt(
                    // BasicOrderType parameter at calldata offset 0x124.
                    calldataload(BasicOrder_basicOrderType_cdPtr),
                    // Value should be less than 24.
                    BasicOrder_basicOrderType_range
                )
            )
        }

        // Revert with an error if basic order parameter offsets are invalid.
        if (!validOffsets) {
            _revertInvalidBasicOrderParameterEncoding();
        }
    }
}

File 74 of 87 : SignatureVerification.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { EIP1271Interface } from "../interfaces/EIP1271Interface.sol";

import {
    SignatureVerificationErrors
} from "../interfaces/SignatureVerificationErrors.sol";

import { LowLevelHelpers } from "./LowLevelHelpers.sol";

import "./ConsiderationErrors.sol";

/**
 * @title SignatureVerification
 * @author 0age
 * @notice SignatureVerification contains logic for verifying signatures.
 */
contract SignatureVerification is SignatureVerificationErrors, LowLevelHelpers {
    /**
     * @dev Internal view function to verify the signature of an order. An
     *      ERC-1271 fallback will be attempted if either the signature length
     *      is not 64 or 65 bytes or if the recovered signer does not match the
     *      supplied signer.
     *
     * @param signer                  The signer for the order.
     * @param digest                  The digest to verify signature against.
     * @param originalDigest          The original digest to verify signature
     *                                against.
     * @param originalSignatureLength The original signature length.
     * @param signature               A signature from the signer indicating
     *                                that the order has been approved.
     */
    function _assertValidSignature(
        address signer,
        bytes32 digest,
        bytes32 originalDigest,
        uint256 originalSignatureLength,
        bytes memory signature
    ) internal view {
        // Declare value for ecrecover equality or 1271 call success status.
        bool success;

        // Utilize assembly to perform optimized signature verification check.
        assembly {
            // Ensure that first word of scratch space is empty.
            mstore(0, 0)

            // Get the length of the signature.
            let signatureLength := mload(signature)

            // Get the pointer to the value preceding the signature length.
            // This will be used for temporary memory overrides - either the
            // signature head for isValidSignature or the digest for ecrecover.
            let wordBeforeSignaturePtr := sub(signature, OneWord)

            // Cache the current value behind the signature to restore it later.
            let cachedWordBeforeSignature := mload(wordBeforeSignaturePtr)

            // Declare lenDiff + recoveredSigner scope to manage stack pressure.
            {
                // Take the difference between the max ECDSA signature length
                // and the actual signature length. Overflow desired for any
                // values > 65. If the diff is not 0 or 1, it is not a valid
                // ECDSA signature - move on to EIP1271 check.
                let lenDiff := sub(ECDSA_MaxLength, signatureLength)

                // Declare variable for recovered signer.
                let recoveredSigner

                // If diff is 0 or 1, it may be an ECDSA signature.
                // Try to recover signer.
                if iszero(gt(lenDiff, 1)) {
                    // Read the signature `s` value.
                    let originalSignatureS := mload(
                        add(signature, ECDSA_signature_s_offset)
                    )

                    // Read the first byte of the word after `s`. If the
                    // signature is 65 bytes, this will be the real `v` value.
                    // If not, it will need to be modified - doing it this way
                    // saves an extra condition.
                    let v := byte(
                        0,
                        mload(add(signature, ECDSA_signature_v_offset))
                    )

                    // If lenDiff is 1, parse 64-byte signature as ECDSA.
                    if lenDiff {
                        // Extract yParity from highest bit of vs and add 27 to
                        // get v.
                        v := add(
                            shr(MaxUint8, originalSignatureS),
                            Signature_lower_v
                        )

                        // Extract canonical s from vs, all but the highest bit.
                        // Temporarily overwrite the original `s` value in the
                        // signature.
                        mstore(
                            add(signature, ECDSA_signature_s_offset),
                            and(
                                originalSignatureS,
                                EIP2098_allButHighestBitMask
                            )
                        )
                    }
                    // Temporarily overwrite the signature length with `v` to
                    // conform to the expected input for ecrecover.
                    mstore(signature, v)

                    // Temporarily overwrite the word before the length with
                    // `digest` to conform to the expected input for ecrecover.
                    mstore(wordBeforeSignaturePtr, digest)

                    // Attempt to recover the signer for the given signature. Do
                    // not check the call status as ecrecover will return a null
                    // address if the signature is invalid.
                    pop(
                        staticcall(
                            gas(),
                            Ecrecover_precompile, // Call ecrecover precompile.
                            wordBeforeSignaturePtr, // Use data memory location.
                            Ecrecover_args_size, // Size of digest, v, r, and s.
                            0, // Write result to scratch space.
                            OneWord // Provide size of returned result.
                        )
                    )

                    // Restore cached word before signature.
                    mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)

                    // Restore cached signature length.
                    mstore(signature, signatureLength)

                    // Restore cached signature `s` value.
                    mstore(
                        add(signature, ECDSA_signature_s_offset),
                        originalSignatureS
                    )

                    // Read the recovered signer from the buffer given as return
                    // space for ecrecover.
                    recoveredSigner := mload(0)
                }

                // Set success to true if the signature provided was a valid
                // ECDSA signature and the signer is not the null address. Use
                // gt instead of direct as success is used outside of assembly.
                success := and(eq(signer, recoveredSigner), gt(signer, 0))
            }

            // If the signature was not verified with ecrecover, try EIP1271.
            if iszero(success) {
                // Reset the original signature length.
                mstore(signature, originalSignatureLength)

                // Temporarily overwrite the word before the signature length
                // and use it as the head of the signature input to
                // `isValidSignature`, which has a value of 64.
                mstore(
                    wordBeforeSignaturePtr,
                    EIP1271_isValidSignature_signature_head_offset
                )

                // Get pointer to use for the selector of `isValidSignature`.
                let selectorPtr := sub(
                    signature,
                    EIP1271_isValidSignature_selector_negativeOffset
                )

                // Cache the value currently stored at the selector pointer.
                let cachedWordOverwrittenBySelector := mload(selectorPtr)

                // Cache the value currently stored at the digest pointer.
                let cachedWordOverwrittenByDigest := mload(
                    sub(
                        signature,
                        EIP1271_isValidSignature_digest_negativeOffset
                    )
                )

                // Write the selector first, since it overlaps the digest.
                mstore(selectorPtr, EIP1271_isValidSignature_selector)

                // Next, write the original digest.
                mstore(
                    sub(
                        signature,
                        EIP1271_isValidSignature_digest_negativeOffset
                    ),
                    originalDigest
                )

                // Call signer with `isValidSignature` to validate signature.
                success := staticcall(
                    gas(),
                    signer,
                    selectorPtr,
                    add(
                        originalSignatureLength,
                        EIP1271_isValidSignature_calldata_baseLength
                    ),
                    0,
                    OneWord
                )

                // Determine if the signature is valid on successful calls.
                if success {
                    // If first word of scratch space does not contain EIP-1271
                    // signature selector, revert.
                    if iszero(eq(mload(0), EIP1271_isValidSignature_selector)) {
                        // Revert with bad 1271 signature if signer has code.
                        if extcodesize(signer) {
                            // Bad contract signature.
                            // Store left-padded selector with push4, mem[28:32]
                            mstore(0, BadContractSignature_error_selector)

                            // revert(abi.encodeWithSignature(
                            //     "BadContractSignature()"
                            // ))
                            revert(
                                Error_selector_offset,
                                BadContractSignature_error_length
                            )
                        }

                        // Check if signature length was invalid.
                        if gt(sub(ECDSA_MaxLength, signatureLength), 1) {
                            // Revert with generic invalid signature error.
                            // Store left-padded selector with push4, mem[28:32]
                            mstore(0, InvalidSignature_error_selector)

                            // revert(abi.encodeWithSignature(
                            //     "InvalidSignature()"
                            // ))
                            revert(
                                Error_selector_offset,
                                InvalidSignature_error_length
                            )
                        }

                        // Check if v was invalid.
                        if and(
                            eq(signatureLength, ECDSA_MaxLength),
                            iszero(
                                byte(
                                    byte(
                                        0,
                                        mload(
                                            add(
                                                signature,
                                                ECDSA_signature_v_offset
                                            )
                                        )
                                    ),
                                    ECDSA_twentySeventhAndTwentyEighthBytesSet
                                )
                            )
                        ) {
                            // Revert with invalid v value.
                            // Store left-padded selector with push4, mem[28:32]
                            mstore(0, BadSignatureV_error_selector)
                            mstore(
                                BadSignatureV_error_v_ptr,
                                byte(
                                    0,
                                    mload(
                                        add(signature, ECDSA_signature_v_offset)
                                    )
                                )
                            )

                            // revert(abi.encodeWithSignature(
                            //     "BadSignatureV(uint8)", v
                            // ))
                            revert(
                                Error_selector_offset,
                                BadSignatureV_error_length
                            )
                        }

                        // Revert with generic invalid signer error message.
                        // Store left-padded selector with push4, mem[28:32]
                        mstore(0, InvalidSigner_error_selector)

                        // revert(abi.encodeWithSignature("InvalidSigner()"))
                        revert(
                            Error_selector_offset,
                            InvalidSigner_error_length
                        )
                    }
                }

                // Restore the cached values overwritten by selector, digest and
                // signature head.
                mstore(wordBeforeSignaturePtr, cachedWordBeforeSignature)
                mstore(selectorPtr, cachedWordOverwrittenBySelector)
                mstore(
                    sub(
                        signature,
                        EIP1271_isValidSignature_digest_negativeOffset
                    ),
                    cachedWordOverwrittenByDigest
                )
            }
        }

        // If the call failed...
        if (!success) {
            // Revert and pass reason along if one was returned.
            _revertWithReasonIfOneIsReturned();

            // Otherwise, revert with error indicating bad contract signature.
            assembly {
                // Store left-padded selector with push4, mem[28:32] = selector
                mstore(0, BadContractSignature_error_selector)
                // revert(abi.encodeWithSignature("BadContractSignature()"))
                revert(Error_selector_offset, BadContractSignature_error_length)
            }
        }
    }
}

File 75 of 87 : TokenTransferrerConstants.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/*
 * -------------------------- Disambiguation & Other Notes ---------------------
 *    - The term "head" is used as it is in the documentation for ABI encoding,
 *      but only in reference to dynamic types, i.e. it always refers to the
 *      offset or pointer to the body of a dynamic type. In calldata, the head
 *      is always an offset (relative to the parent object), while in memory,
 *      the head is always the pointer to the body. More information found here:
 *      https://docs.soliditylang.org/en/v0.8.17/abi-spec.html#argument-encoding
 *        - Note that the length of an array is separate from and precedes the
 *          head of the array.
 *
 *    - The term "body" is used in place of the term "head" used in the ABI
 *      documentation. It refers to the start of the data for a dynamic type,
 *      e.g. the first word of a struct or the first word of the first element
 *      in an array.
 *
 *    - The term "pointer" is used to describe the absolute position of a value
 *      and never an offset relative to another value.
 *        - The suffix "_ptr" refers to a memory pointer.
 *        - The suffix "_cdPtr" refers to a calldata pointer.
 *
 *    - The term "offset" is used to describe the position of a value relative
 *      to some parent value. For example, OrderParameters_conduit_offset is the
 *      offset to the "conduit" value in the OrderParameters struct relative to
 *      the start of the body.
 *        - Note: Offsets are used to derive pointers.
 *
 *    - Some structs have pointers defined for all of their fields in this file.
 *      Lines which are commented out are fields that are not used in the
 *      codebase but have been left in for readability.
 */

uint256 constant AlmostOneWord = 0x1f;
uint256 constant OneWord = 0x20;
uint256 constant TwoWords = 0x40;
uint256 constant ThreeWords = 0x60;

uint256 constant OneWordShift = 5;
uint256 constant TwoWordsShift = 6;

uint256 constant FreeMemoryPointerSlot = 0x40;
uint256 constant ZeroSlot = 0x60;
uint256 constant DefaultFreeMemoryPointer = 0x80;

uint256 constant Slot0x80 = 0x80;
uint256 constant Slot0xA0 = 0xa0;
uint256 constant Slot0xC0 = 0xc0;

uint256 constant Generic_error_selector_offset = 0x1c;

// abi.encodeWithSignature("transferFrom(address,address,uint256)")
uint256 constant ERC20_transferFrom_signature = (
    0x23b872dd00000000000000000000000000000000000000000000000000000000
);
uint256 constant ERC20_transferFrom_sig_ptr = 0x0;
uint256 constant ERC20_transferFrom_from_ptr = 0x04;
uint256 constant ERC20_transferFrom_to_ptr = 0x24;
uint256 constant ERC20_transferFrom_amount_ptr = 0x44;
uint256 constant ERC20_transferFrom_length = 0x64; // 4 + 32 * 3 == 100

// abi.encodeWithSignature(
//     "safeTransferFrom(address,address,uint256,uint256,bytes)"
// )
uint256 constant ERC1155_safeTransferFrom_signature = (
    0xf242432a00000000000000000000000000000000000000000000000000000000
);
uint256 constant ERC1155_safeTransferFrom_sig_ptr = 0x0;
uint256 constant ERC1155_safeTransferFrom_from_ptr = 0x04;
uint256 constant ERC1155_safeTransferFrom_to_ptr = 0x24;
uint256 constant ERC1155_safeTransferFrom_id_ptr = 0x44;
uint256 constant ERC1155_safeTransferFrom_amount_ptr = 0x64;
uint256 constant ERC1155_safeTransferFrom_data_offset_ptr = 0x84;
uint256 constant ERC1155_safeTransferFrom_data_length_ptr = 0xa4;
uint256 constant ERC1155_safeTransferFrom_length = 0xc4; // 4 + 32 * 6 == 196
uint256 constant ERC1155_safeTransferFrom_data_length_offset = 0xa0;

// abi.encodeWithSignature(
//     "safeBatchTransferFrom(address,address,uint256[],uint256[],bytes)"
// )
uint256 constant ERC1155_safeBatchTransferFrom_signature = (
    0x2eb2c2d600000000000000000000000000000000000000000000000000000000
);

bytes4 constant ERC1155_safeBatchTransferFrom_selector = bytes4(
    bytes32(ERC1155_safeBatchTransferFrom_signature)
);

uint256 constant ERC721_transferFrom_signature = ERC20_transferFrom_signature;
uint256 constant ERC721_transferFrom_sig_ptr = 0x0;
uint256 constant ERC721_transferFrom_from_ptr = 0x04;
uint256 constant ERC721_transferFrom_to_ptr = 0x24;
uint256 constant ERC721_transferFrom_id_ptr = 0x44;
uint256 constant ERC721_transferFrom_length = 0x64; // 4 + 32 * 3 == 100

/*
 *  error NoContract(address account)
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x00: account
 * Revert buffer is memory[0x1c:0x40]
 */
uint256 constant NoContract_error_selector = 0x5f15d672;
uint256 constant NoContract_error_account_ptr = 0x20;
uint256 constant NoContract_error_length = 0x24;

/*
 *  error TokenTransferGenericFailure(address token, address from, address to, uint256 identifier, uint256 amount)
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x20: token
 *    - 0x40: from
 *    - 0x60: to
 *    - 0x80: identifier
 *    - 0xa0: amount
 * Revert buffer is memory[0x1c:0xc0]
 */
uint256 constant TokenTransferGenericFailure_error_selector = 0xf486bc87;
uint256 constant TokenTransferGenericFailure_error_token_ptr = 0x20;
uint256 constant TokenTransferGenericFailure_error_from_ptr = 0x40;
uint256 constant TokenTransferGenericFailure_error_to_ptr = 0x60;
uint256 constant TokenTransferGenericFailure_error_identifier_ptr = 0x80;
uint256 constant TokenTransferGenericFailure_err_identifier_ptr = 0x80;
uint256 constant TokenTransferGenericFailure_error_amount_ptr = 0xa0;
uint256 constant TokenTransferGenericFailure_error_length = 0xa4;

uint256 constant ExtraGasBuffer = 0x20;
uint256 constant CostPerWord = 3;
uint256 constant MemoryExpansionCoefficientShift = 9;

// Values are offset by 32 bytes in order to write the token to the beginning
// in the event of a revert
uint256 constant BatchTransfer1155Params_ptr = 0x24;
uint256 constant BatchTransfer1155Params_ids_head_ptr = 0x64;
uint256 constant BatchTransfer1155Params_amounts_head_ptr = 0x84;
uint256 constant BatchTransfer1155Params_data_head_ptr = 0xa4;
uint256 constant BatchTransfer1155Params_data_length_basePtr = 0xc4;
uint256 constant BatchTransfer1155Params_calldata_baseSize = 0xc4;

uint256 constant BatchTransfer1155Params_ids_length_ptr = 0xc4;

uint256 constant BatchTransfer1155Params_ids_length_offset = 0xa0;
uint256 constant BatchTransfer1155Params_amounts_length_baseOffset = 0xc0;
uint256 constant BatchTransfer1155Params_data_length_baseOffset = 0xe0;

uint256 constant ConduitBatch1155Transfer_usable_head_size = 0x80;

uint256 constant ConduitBatch1155Transfer_from_offset = 0x20;
uint256 constant ConduitBatch1155Transfer_ids_head_offset = 0x60;
uint256 constant ConduitBatch1155Transfer_amounts_head_offset = 0x80;
uint256 constant ConduitBatch1155Transfer_ids_length_offset = 0xa0;
uint256 constant ConduitBatch1155Transfer_amounts_length_baseOffset = 0xc0;
uint256 constant ConduitBatch1155Transfer_calldata_baseSize = 0xc0;

// Note: abbreviated version of above constant to adhere to line length limit.
uint256 constant ConduitBatchTransfer_amounts_head_offset = 0x80;

uint256 constant Invalid1155BatchTransferEncoding_ptr = 0x00;
uint256 constant Invalid1155BatchTransferEncoding_length = 0x04;
uint256 constant Invalid1155BatchTransferEncoding_selector = (
    0xeba2084c00000000000000000000000000000000000000000000000000000000
);

uint256 constant ERC1155BatchTransferGenericFailure_error_signature = (
    0xafc445e200000000000000000000000000000000000000000000000000000000
);
uint256 constant ERC1155BatchTransferGenericFailure_token_ptr = 0x04;
uint256 constant ERC1155BatchTransferGenericFailure_ids_offset = 0xc0;

/*
 *  error BadReturnValueFromERC20OnTransfer(address token, address from, address to, uint256 amount)
 *    - Defined in TokenTransferrerErrors.sol
 *  Memory layout:
 *    - 0x00: Left-padded selector (data begins at 0x1c)
 *    - 0x00: token
 *    - 0x20: from
 *    - 0x40: to
 *    - 0x60: amount
 * Revert buffer is memory[0x1c:0xa0]
 */
uint256 constant BadReturnValueFromERC20OnTransfer_error_selector = 0x98891923;
uint256 constant BadReturnValueFromERC20OnTransfer_error_token_ptr = 0x20;
uint256 constant BadReturnValueFromERC20OnTransfer_error_from_ptr = 0x40;
uint256 constant BadReturnValueFromERC20OnTransfer_error_to_ptr = 0x60;
uint256 constant BadReturnValueFromERC20OnTransfer_error_amount_ptr = 0x80;
uint256 constant BadReturnValueFromERC20OnTransfer_error_length = 0x84;

File 76 of 87 : TokenTransferrerErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/**
 * @title TokenTransferrerErrors
 */
interface TokenTransferrerErrors {
    /**
     * @dev Revert with an error when an ERC721 transfer with amount other than
     *      one is attempted.
     *
     * @param amount The amount of the ERC721 tokens to transfer.
     */
    error InvalidERC721TransferAmount(uint256 amount);

    /**
     * @dev Revert with an error when attempting to fulfill an order where an
     *      item has an amount of zero.
     */
    error MissingItemAmount();

    /**
     * @dev Revert with an error when attempting to fulfill an order where an
     *      item has unused parameters. This includes both the token and the
     *      identifier parameters for native transfers as well as the identifier
     *      parameter for ERC20 transfers. Note that the conduit does not
     *      perform this check, leaving it up to the calling channel to enforce
     *      when desired.
     */
    error UnusedItemParameters();

    /**
     * @dev Revert with an error when an ERC20, ERC721, or ERC1155 token
     *      transfer reverts.
     *
     * @param token      The token for which the transfer was attempted.
     * @param from       The source of the attempted transfer.
     * @param to         The recipient of the attempted transfer.
     * @param identifier The identifier for the attempted transfer.
     * @param amount     The amount for the attempted transfer.
     */
    error TokenTransferGenericFailure(
        address token,
        address from,
        address to,
        uint256 identifier,
        uint256 amount
    );

    /**
     * @dev Revert with an error when a batch ERC1155 token transfer reverts.
     *
     * @param token       The token for which the transfer was attempted.
     * @param from        The source of the attempted transfer.
     * @param to          The recipient of the attempted transfer.
     * @param identifiers The identifiers for the attempted transfer.
     * @param amounts     The amounts for the attempted transfer.
     */
    error ERC1155BatchTransferGenericFailure(
        address token,
        address from,
        address to,
        uint256[] identifiers,
        uint256[] amounts
    );

    /**
     * @dev Revert with an error when an ERC20 token transfer returns a falsey
     *      value.
     *
     * @param token      The token for which the ERC20 transfer was attempted.
     * @param from       The source of the attempted ERC20 transfer.
     * @param to         The recipient of the attempted ERC20 transfer.
     * @param amount     The amount for the attempted ERC20 transfer.
     */
    error BadReturnValueFromERC20OnTransfer(
        address token,
        address from,
        address to,
        uint256 amount
    );

    /**
     * @dev Revert with an error when an account being called as an assumed
     *      contract does not have code and returns no data.
     *
     * @param account The account that should contain code.
     */
    error NoContract(address account);

    /**
     * @dev Revert with an error when attempting to execute an 1155 batch
     *      transfer using calldata not produced by default ABI encoding or with
     *      different lengths for ids and amounts arrays.
     */
    error Invalid1155BatchTransferEncoding();
}

File 77 of 87 : GettersAndDerivers.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { OrderParameters } from "./ConsiderationStructs.sol";

import { ConsiderationBase } from "./ConsiderationBase.sol";

import "./ConsiderationConstants.sol";

/**
 * @title GettersAndDerivers
 * @author 0age
 * @notice ConsiderationInternal contains pure and internal view functions
 *         related to getting or deriving various values.
 */
contract GettersAndDerivers is ConsiderationBase {
    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(
        address conduitController
    ) ConsiderationBase(conduitController) {}

    /**
     * @dev Internal view function to derive the order hash for a given order.
     *      Note that only the original consideration items are included in the
     *      order hash, as additional consideration items may be supplied by the
     *      caller.
     *
     * @param orderParameters The parameters of the order to hash.
     * @param counter         The counter of the order to hash.
     *
     * @return orderHash The hash.
     */
    function _deriveOrderHash(
        OrderParameters memory orderParameters,
        uint256 counter
    ) internal view returns (bytes32 orderHash) {
        // Get length of original consideration array and place it on the stack.
        uint256 originalConsiderationLength = (
            orderParameters.totalOriginalConsiderationItems
        );

        /*
         * Memory layout for an array of structs (dynamic or not) is similar
         * to ABI encoding of dynamic types, with a head segment followed by
         * a data segment. The main difference is that the head of an element
         * is a memory pointer rather than an offset.
         */

        // Declare a variable for the derived hash of the offer array.
        bytes32 offerHash;

        // Read offer item EIP-712 typehash from runtime code & place on stack.
        bytes32 typeHash = _OFFER_ITEM_TYPEHASH;

        // Utilize assembly so that memory regions can be reused across hashes.
        assembly {
            // Retrieve the free memory pointer and place on the stack.
            let hashArrPtr := mload(FreeMemoryPointerSlot)

            // Get the pointer to the offers array.
            let offerArrPtr := mload(
                add(orderParameters, OrderParameters_offer_head_offset)
            )

            // Load the length.
            let offerLength := mload(offerArrPtr)

            // Set the pointer to the first offer's head.
            offerArrPtr := add(offerArrPtr, OneWord)

            // Iterate over the offer items.
            // prettier-ignore
            for { let i := 0 } lt(i, offerLength) {
                i := add(i, 1)
            } {
                // Read the pointer to the offer data and subtract one word
                // to get typeHash pointer.
                let ptr := sub(mload(offerArrPtr), OneWord)

                // Read the current value before the offer data.
                let value := mload(ptr)

                // Write the type hash to the previous word.
                mstore(ptr, typeHash)

                // Take the EIP712 hash and store it in the hash array.
                mstore(hashArrPtr, keccak256(ptr, EIP712_OfferItem_size))

                // Restore the previous word.
                mstore(ptr, value)

                // Increment the array pointers by one word.
                offerArrPtr := add(offerArrPtr, OneWord)
                hashArrPtr := add(hashArrPtr, OneWord)
            }

            // Derive the offer hash using the hashes of each item.
            offerHash := keccak256(
                mload(FreeMemoryPointerSlot),
                shl(OneWordShift, offerLength)
            )
        }

        // Declare a variable for the derived hash of the consideration array.
        bytes32 considerationHash;

        // Read consideration item typehash from runtime code & place on stack.
        typeHash = _CONSIDERATION_ITEM_TYPEHASH;

        // Utilize assembly so that memory regions can be reused across hashes.
        assembly {
            // Retrieve the free memory pointer and place on the stack.
            let hashArrPtr := mload(FreeMemoryPointerSlot)

            // Get the pointer to the consideration array.
            let considerationArrPtr := add(
                mload(
                    add(
                        orderParameters,
                        OrderParameters_consideration_head_offset
                    )
                ),
                OneWord
            )

            // Iterate over the consideration items (not including tips).
            // prettier-ignore
            for { let i := 0 } lt(i, originalConsiderationLength) {
                i := add(i, 1)
            } {
                // Read the pointer to the consideration data and subtract one
                // word to get typeHash pointer.
                let ptr := sub(mload(considerationArrPtr), OneWord)

                // Read the current value before the consideration data.
                let value := mload(ptr)

                // Write the type hash to the previous word.
                mstore(ptr, typeHash)

                // Take the EIP712 hash and store it in the hash array.
                mstore(
                    hashArrPtr,
                    keccak256(ptr, EIP712_ConsiderationItem_size)
                )

                // Restore the previous word.
                mstore(ptr, value)

                // Increment the array pointers by one word.
                considerationArrPtr := add(considerationArrPtr, OneWord)
                hashArrPtr := add(hashArrPtr, OneWord)
            }

            // Derive the consideration hash using the hashes of each item.
            considerationHash := keccak256(
                mload(FreeMemoryPointerSlot),
                shl(OneWordShift, originalConsiderationLength)
            )
        }

        // Read order item EIP-712 typehash from runtime code & place on stack.
        typeHash = _ORDER_TYPEHASH;

        // Utilize assembly to access derived hashes & other arguments directly.
        assembly {
            // Retrieve pointer to the region located just behind parameters.
            let typeHashPtr := sub(orderParameters, OneWord)

            // Store the value at that pointer location to restore later.
            let previousValue := mload(typeHashPtr)

            // Store the order item EIP-712 typehash at the typehash location.
            mstore(typeHashPtr, typeHash)

            // Retrieve the pointer for the offer array head.
            let offerHeadPtr := add(
                orderParameters,
                OrderParameters_offer_head_offset
            )

            // Retrieve the data pointer referenced by the offer head.
            let offerDataPtr := mload(offerHeadPtr)

            // Store the offer hash at the retrieved memory location.
            mstore(offerHeadPtr, offerHash)

            // Retrieve the pointer for the consideration array head.
            let considerationHeadPtr := add(
                orderParameters,
                OrderParameters_consideration_head_offset
            )

            // Retrieve the data pointer referenced by the consideration head.
            let considerationDataPtr := mload(considerationHeadPtr)

            // Store the consideration hash at the retrieved memory location.
            mstore(considerationHeadPtr, considerationHash)

            // Retrieve the pointer for the counter.
            let counterPtr := add(
                orderParameters,
                OrderParameters_counter_offset
            )

            // Store the counter at the retrieved memory location.
            mstore(counterPtr, counter)

            // Derive the order hash using the full range of order parameters.
            orderHash := keccak256(typeHashPtr, EIP712_Order_size)

            // Restore the value previously held at typehash pointer location.
            mstore(typeHashPtr, previousValue)

            // Restore offer data pointer at the offer head pointer location.
            mstore(offerHeadPtr, offerDataPtr)

            // Restore consideration data pointer at the consideration head ptr.
            mstore(considerationHeadPtr, considerationDataPtr)

            // Restore consideration item length at the counter pointer.
            mstore(counterPtr, originalConsiderationLength)
        }
    }

    /**
     * @dev Internal view function to derive the address of a given conduit
     *      using a corresponding conduit key.
     *
     * @param conduitKey A bytes32 value indicating what corresponding conduit,
     *                   if any, to source token approvals from. This value is
     *                   the "salt" parameter supplied by the deployer (i.e. the
     *                   conduit controller) when deploying the given conduit.
     *
     * @return conduit The address of the conduit associated with the given
     *                 conduit key.
     */
    function _deriveConduit(
        bytes32 conduitKey
    ) internal view returns (address conduit) {
        // Read conduit controller address from runtime and place on the stack.
        address conduitController = address(_CONDUIT_CONTROLLER);

        // Read conduit creation code hash from runtime and place on the stack.
        bytes32 conduitCreationCodeHash = _CONDUIT_CREATION_CODE_HASH;

        // Leverage scratch space to perform an efficient hash.
        assembly {
            // Retrieve the free memory pointer; it will be replaced afterwards.
            let freeMemoryPointer := mload(FreeMemoryPointerSlot)

            // Place the control character and the conduit controller in scratch
            // space; note that eleven bytes at the beginning are left unused.
            mstore(0, or(MaskOverByteTwelve, conduitController))

            // Place the conduit key in the next region of scratch space.
            mstore(OneWord, conduitKey)

            // Place conduit creation code hash in free memory pointer location.
            mstore(TwoWords, conduitCreationCodeHash)

            // Derive conduit by hashing and applying a mask over last 20 bytes.
            conduit := and(
                // Hash the relevant region.
                keccak256(
                    // The region starts at memory pointer 11.
                    Create2AddressDerivation_ptr,
                    // The region is 85 bytes long (1 + 20 + 32 + 32).
                    Create2AddressDerivation_length
                ),
                // The address equals the last twenty bytes of the hash.
                MaskOverLastTwentyBytes
            )

            // Restore the free memory pointer.
            mstore(FreeMemoryPointerSlot, freeMemoryPointer)
        }
    }

    /**
     * @dev Internal view function to get the EIP-712 domain separator. If the
     *      chainId matches the chainId set on deployment, the cached domain
     *      separator will be returned; otherwise, it will be derived from
     *      scratch.
     *
     * @return The domain separator.
     */
    function _domainSeparator() internal view returns (bytes32) {
        // prettier-ignore
        return block.chainid == _CHAIN_ID
            ? _DOMAIN_SEPARATOR
            : _deriveDomainSeparator();
    }

    /**
     * @dev Internal view function to retrieve configuration information for
     *      this contract.
     *
     * @return The contract version.
     * @return The domain separator for this contract.
     * @return The conduit Controller set for this contract.
     */
    function _information()
        internal
        view
        returns (
            string memory /* version */,
            bytes32 /* domainSeparator */,
            address /* conduitController */
        )
    {
        // Derive the domain separator.
        bytes32 domainSeparator = _domainSeparator();

        // Declare variable as immutables cannot be accessed within assembly.
        address conduitController = address(_CONDUIT_CONTROLLER);

        // Return the version, domain separator, and conduit controller.
        assembly {
            mstore(information_version_offset, information_version_cd_offset)
            mstore(information_domainSeparator_offset, domainSeparator)
            mstore(information_conduitController_offset, conduitController)
            mstore(information_versionLengthPtr, information_versionWithLength)
            return(information_version_offset, information_length)
        }
    }

    /**
     * @dev Internal pure function to efficiently derive an digest to sign for
     *      an order in accordance with EIP-712.
     *
     * @param domainSeparator The domain separator.
     * @param orderHash       The order hash.
     *
     * @return value The hash.
     */
    function _deriveEIP712Digest(
        bytes32 domainSeparator,
        bytes32 orderHash
    ) internal pure returns (bytes32 value) {
        // Leverage scratch space to perform an efficient hash.
        assembly {
            // Place the EIP-712 prefix at the start of scratch space.
            mstore(0, EIP_712_PREFIX)

            // Place the domain separator in the next region of scratch space.
            mstore(EIP712_DomainSeparator_offset, domainSeparator)

            // Place the order hash in scratch space, spilling into the first
            // two bytes of the free memory pointer — this should never be set
            // as memory cannot be expanded to that size, and will be zeroed out
            // after the hash is performed.
            mstore(EIP712_OrderHash_offset, orderHash)

            // Hash the relevant region (65 bytes).
            value := keccak256(0, EIP712_DigestPayload_size)

            // Clear out the dirtied bits in the memory pointer.
            mstore(EIP712_OrderHash_offset, 0)
        }
    }
}

File 78 of 87 : CounterManager.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import {
    ConsiderationEventsAndErrors
} from "../interfaces/ConsiderationEventsAndErrors.sol";

import { ReentrancyGuard } from "./ReentrancyGuard.sol";

import "./ConsiderationConstants.sol";

/**
 * @title CounterManager
 * @author 0age
 * @notice CounterManager contains a storage mapping and related functionality
 *         for retrieving and incrementing a per-offerer counter.
 */
contract CounterManager is ConsiderationEventsAndErrors, ReentrancyGuard {
    // Only orders signed using an offerer's current counter are fulfillable.
    mapping(address => uint256) private _counters;

    /**
     * @dev Internal function to cancel all orders from a given offerer in bulk
     *      by incrementing a counter by a large, quasi-random interval. Note
     *      that only the offerer may increment the counter. Note that the
     *      counter is incremented by a large, quasi-random interval, which
     *      makes it infeasible to "activate" signed orders by incrementing the
     *      counter.  This activation functionality can be achieved instead with
     *      restricted orders or contract orders.
     *
     * @return newCounter The new counter.
     */
    function _incrementCounter() internal returns (uint256 newCounter) {
        // Ensure that the reentrancy guard is not currently set.
        _assertNonReentrant();

        // Utilize assembly to access counters storage mapping directly. Skip
        // overflow check as counter cannot be incremented that far.
        assembly {
            // Use second half of previous block hash as a quasi-random number.
            let quasiRandomNumber := shr(
                Counter_blockhash_shift,
                blockhash(sub(number(), 1))
            )

            // Write the caller to scratch space.
            mstore(0, caller())

            // Write the storage slot for _counters to scratch space.
            mstore(OneWord, _counters.slot)

            // Derive the storage pointer for the counter value.
            let storagePointer := keccak256(0, TwoWords)

            // Derive new counter value using random number and original value.
            newCounter := add(quasiRandomNumber, sload(storagePointer))

            // Store the updated counter value.
            sstore(storagePointer, newCounter)
        }

        // Emit an event containing the new counter.
        emit CounterIncremented(newCounter, msg.sender);
    }

    /**
     * @dev Internal view function to retrieve the current counter for a given
     *      offerer.
     *
     * @param offerer The offerer in question.
     *
     * @return currentCounter The current counter.
     */
    function _getCounter(
        address offerer
    ) internal view returns (uint256 currentCounter) {
        // Return the counter for the supplied offerer.
        currentCounter = _counters[offerer];
    }
}

File 79 of 87 : EIP1271Interface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface EIP1271Interface {
    function isValidSignature(
        bytes32 digest,
        bytes calldata signature
    ) external view returns (bytes4);
}

File 80 of 87 : SignatureVerificationErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/**
 * @title SignatureVerificationErrors
 * @author 0age
 * @notice SignatureVerificationErrors contains all errors related to signature
 *         verification.
 */
interface SignatureVerificationErrors {
    /**
     * @dev Revert with an error when a signature that does not contain a v
     *      value of 27 or 28 has been supplied.
     *
     * @param v The invalid v value.
     */
    error BadSignatureV(uint8 v);

    /**
     * @dev Revert with an error when the signer recovered by the supplied
     *      signature does not match the offerer or an allowed EIP-1271 signer
     *      as specified by the offerer in the event they are a contract.
     */
    error InvalidSigner();

    /**
     * @dev Revert with an error when a signer cannot be recovered from the
     *      supplied signature.
     */
    error InvalidSignature();

    /**
     * @dev Revert with an error when an EIP-1271 call to an account fails.
     */
    error BadContractSignature();
}

File 81 of 87 : ConsiderationBase.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import {
    ConduitControllerInterface
} from "../interfaces/ConduitControllerInterface.sol";

import {
    ConsiderationEventsAndErrors
} from "../interfaces/ConsiderationEventsAndErrors.sol";

import "./ConsiderationConstants.sol";

import { ConsiderationDecoder } from "./ConsiderationDecoder.sol";
import { ConsiderationEncoder } from "./ConsiderationEncoder.sol";

import { TypehashDirectory } from "./TypehashDirectory.sol";

/**
 * @title ConsiderationBase
 * @author 0age
 * @notice ConsiderationBase contains immutable constants and constructor logic.
 */
contract ConsiderationBase is
    ConsiderationDecoder,
    ConsiderationEncoder,
    ConsiderationEventsAndErrors
{
    // Precompute hashes, original chainId, and domain separator on deployment.
    bytes32 internal immutable _NAME_HASH;
    bytes32 internal immutable _VERSION_HASH;
    bytes32 internal immutable _EIP_712_DOMAIN_TYPEHASH;
    bytes32 internal immutable _OFFER_ITEM_TYPEHASH;
    bytes32 internal immutable _CONSIDERATION_ITEM_TYPEHASH;
    bytes32 internal immutable _ORDER_TYPEHASH;
    uint256 internal immutable _CHAIN_ID;
    bytes32 internal immutable _DOMAIN_SEPARATOR;

    // Allow for interaction with the conduit controller.
    ConduitControllerInterface internal immutable _CONDUIT_CONTROLLER;

    // BulkOrder typehash storage
    TypehashDirectory internal immutable _BULK_ORDER_TYPEHASH_DIRECTORY;

    // Cache the conduit creation code hash used by the conduit controller.
    bytes32 internal immutable _CONDUIT_CREATION_CODE_HASH;

    /**
     * @dev Derive and set hashes, reference chainId, and associated domain
     *      separator during deployment.
     *
     * @param conduitController A contract that deploys conduits, or proxies
     *                          that may optionally be used to transfer approved
     *                          ERC20/721/1155 tokens.
     */
    constructor(address conduitController) {
        // Derive name and version hashes alongside required EIP-712 typehashes.
        (
            _NAME_HASH,
            _VERSION_HASH,
            _EIP_712_DOMAIN_TYPEHASH,
            _OFFER_ITEM_TYPEHASH,
            _CONSIDERATION_ITEM_TYPEHASH,
            _ORDER_TYPEHASH
        ) = _deriveTypehashes();

        _BULK_ORDER_TYPEHASH_DIRECTORY = new TypehashDirectory();

        // Store the current chainId and derive the current domain separator.
        _CHAIN_ID = block.chainid;
        _DOMAIN_SEPARATOR = _deriveDomainSeparator();

        // Set the supplied conduit controller.
        _CONDUIT_CONTROLLER = ConduitControllerInterface(conduitController);

        // Retrieve the conduit creation code hash from the supplied controller.
        (_CONDUIT_CREATION_CODE_HASH, ) = (
            _CONDUIT_CONTROLLER.getConduitCodeHashes()
        );
    }

    /**
     * @dev Internal view function to derive the EIP-712 domain separator.
     *
     * @return domainSeparator The derived domain separator.
     */
    function _deriveDomainSeparator()
        internal
        view
        returns (bytes32 domainSeparator)
    {
        bytes32 typehash = _EIP_712_DOMAIN_TYPEHASH;
        bytes32 nameHash = _NAME_HASH;
        bytes32 versionHash = _VERSION_HASH;

        // Leverage scratch space and other memory to perform an efficient hash.
        assembly {
            // Retrieve the free memory pointer; it will be replaced afterwards.
            let freeMemoryPointer := mload(FreeMemoryPointerSlot)

            // Retrieve value at 0x80; it will also be replaced afterwards.
            let slot0x80 := mload(Slot0x80)

            // Place typehash, name hash, and version hash at start of memory.
            mstore(0, typehash)
            mstore(EIP712_domainData_nameHash_offset, nameHash)
            mstore(EIP712_domainData_versionHash_offset, versionHash)

            // Place chainId in the next memory location.
            mstore(EIP712_domainData_chainId_offset, chainid())

            // Place the address of this contract in the next memory location.
            mstore(EIP712_domainData_verifyingContract_offset, address())

            // Hash relevant region of memory to derive the domain separator.
            domainSeparator := keccak256(0, EIP712_domainData_size)

            // Restore the free memory pointer.
            mstore(FreeMemoryPointerSlot, freeMemoryPointer)

            // Restore the zero slot to zero.
            mstore(ZeroSlot, 0)

            // Restore the value at 0x80.
            mstore(Slot0x80, slot0x80)
        }
    }

    /**
     * @dev Internal pure function to retrieve the default name of this
     *      contract and return.
     *
     * @return The name of this contract.
     */
    function _name() internal pure virtual returns (string memory) {
        // Return the name of the contract.
        assembly {
            // First element is the offset for the returned string. Offset the
            // value in memory by one word so that the free memory pointer will
            // be overwritten by the next write.
            mstore(OneWord, OneWord)

            // Name is right padded, so it touches the length which is left
            // padded. This enables writing both values at once. The free memory
            // pointer will be overwritten in the process.
            mstore(NameLengthPtr, NameWithLength)

            // Standard ABI encoding pads returned data to the nearest word. Use
            // the already empty zero slot memory region for this purpose and
            // return the final name string, offset by the original single word.
            return(OneWord, ThreeWords)
        }
    }

    /**
     * @dev Internal pure function to retrieve the default name of this contract
     *      as a string that can be used internally.
     *
     * @return The name of this contract.
     */
    function _nameString() internal pure virtual returns (string memory) {
        // Return the name of the contract.
        return "Consideration";
    }

    /**
     * @dev Internal pure function to derive required EIP-712 typehashes and
     *      other hashes during contract creation.
     *
     * @return nameHash                  The hash of the name of the contract.
     * @return versionHash               The hash of the version string of the
     *                                   contract.
     * @return eip712DomainTypehash      The primary EIP-712 domain typehash.
     * @return offerItemTypehash         The EIP-712 typehash for OfferItem
     *                                   types.
     * @return considerationItemTypehash The EIP-712 typehash for
     *                                   ConsiderationItem types.
     * @return orderTypehash             The EIP-712 typehash for Order types.
     */
    function _deriveTypehashes()
        internal
        pure
        returns (
            bytes32 nameHash,
            bytes32 versionHash,
            bytes32 eip712DomainTypehash,
            bytes32 offerItemTypehash,
            bytes32 considerationItemTypehash,
            bytes32 orderTypehash
        )
    {
        // Derive hash of the name of the contract.
        nameHash = keccak256(bytes(_nameString()));

        // Derive hash of the version string of the contract.
        versionHash = keccak256(bytes("1.2"));

        // Construct the OfferItem type string.
        // prettier-ignore
        bytes memory offerItemTypeString = bytes(
            "OfferItem("
                "uint8 itemType,"
                "address token,"
                "uint256 identifierOrCriteria,"
                "uint256 startAmount,"
                "uint256 endAmount"
            ")"
        );

        // Construct the ConsiderationItem type string.
        // prettier-ignore
        bytes memory considerationItemTypeString = bytes(
            "ConsiderationItem("
                "uint8 itemType,"
                "address token,"
                "uint256 identifierOrCriteria,"
                "uint256 startAmount,"
                "uint256 endAmount,"
                "address recipient"
            ")"
        );

        // Construct the OrderComponents type string, not including the above.
        // prettier-ignore
        bytes memory orderComponentsPartialTypeString = bytes(
            "OrderComponents("
                "address offerer,"
                "address zone,"
                "OfferItem[] offer,"
                "ConsiderationItem[] consideration,"
                "uint8 orderType,"
                "uint256 startTime,"
                "uint256 endTime,"
                "bytes32 zoneHash,"
                "uint256 salt,"
                "bytes32 conduitKey,"
                "uint256 counter"
            ")"
        );

        // Construct the primary EIP-712 domain type string.
        // prettier-ignore
        eip712DomainTypehash = keccak256(
            bytes(
                "EIP712Domain("
                    "string name,"
                    "string version,"
                    "uint256 chainId,"
                    "address verifyingContract"
                ")"
            )
        );

        // Derive the OfferItem type hash using the corresponding type string.
        offerItemTypehash = keccak256(offerItemTypeString);

        // Derive ConsiderationItem type hash using corresponding type string.
        considerationItemTypehash = keccak256(considerationItemTypeString);

        bytes memory orderTypeString = bytes.concat(
            orderComponentsPartialTypeString,
            considerationItemTypeString,
            offerItemTypeString
        );

        // Derive OrderItem type hash via combination of relevant type strings.
        orderTypehash = keccak256(orderTypeString);
    }

    function _lookupBulkOrderTypehash(
        uint256 treeHeight
    ) internal view returns (bytes32 typeHash) {
        TypehashDirectory directory = _BULK_ORDER_TYPEHASH_DIRECTORY;
        assembly {
            let typeHashOffset := add(1, shl(OneWordShift, sub(treeHeight, 1)))
            extcodecopy(directory, 0, typeHashOffset, OneWord)
            typeHash := mload(0)
        }
    }
}

File 82 of 87 : ConsiderationEventsAndErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

import {
    SpentItem,
    ReceivedItem,
    OrderParameters
} from "../lib/ConsiderationStructs.sol";

/**
 * @title ConsiderationEventsAndErrors
 * @author 0age
 * @notice ConsiderationEventsAndErrors contains all events and errors.
 */
interface ConsiderationEventsAndErrors {
    /**
     * @dev Emit an event whenever an order is successfully fulfilled.
     *
     * @param orderHash     The hash of the fulfilled order.
     * @param offerer       The offerer of the fulfilled order.
     * @param zone          The zone of the fulfilled order.
     * @param recipient     The recipient of each spent item on the fulfilled
     *                      order, or the null address if there is no specific
     *                      fulfiller (i.e. the order is part of a group of
     *                      orders). Defaults to the caller unless explicitly
     *                      specified otherwise by the fulfiller.
     * @param offer         The offer items spent as part of the order.
     * @param consideration The consideration items received as part of the
     *                      order along with the recipients of each item.
     */
    event OrderFulfilled(
        bytes32 orderHash,
        address indexed offerer,
        address indexed zone,
        address recipient,
        SpentItem[] offer,
        ReceivedItem[] consideration
    );

    /**
     * @dev Emit an event whenever an order is successfully cancelled.
     *
     * @param orderHash The hash of the cancelled order.
     * @param offerer   The offerer of the cancelled order.
     * @param zone      The zone of the cancelled order.
     */
    event OrderCancelled(
        bytes32 orderHash,
        address indexed offerer,
        address indexed zone
    );

    /**
     * @dev Emit an event whenever an order is explicitly validated. Note that
     *      this event will not be emitted on partial fills even though they do
     *      validate the order as part of partial fulfillment.
     *
     * @param orderHash        The hash of the validated order.
     * @param orderParameters  The parameters of the validated order.
     */
    event OrderValidated(bytes32 orderHash, OrderParameters orderParameters);

    /**
     * @dev Emit an event whenever one or more orders are matched using either
     *      matchOrders or matchAdvancedOrders.
     *
     * @param orderHashes The order hashes of the matched orders.
     */
    event OrdersMatched(bytes32[] orderHashes);

    /**
     * @dev Emit an event whenever a counter for a given offerer is incremented.
     *
     * @param newCounter The new counter for the offerer.
     * @param offerer    The offerer in question.
     */
    event CounterIncremented(uint256 newCounter, address indexed offerer);

    /**
     * @dev Revert with an error when attempting to fill an order that has
     *      already been fully filled.
     *
     * @param orderHash The order hash on which a fill was attempted.
     */
    error OrderAlreadyFilled(bytes32 orderHash);

    /**
     * @dev Revert with an error when attempting to fill an order outside the
     *      specified start time and end time.
     *
     * @param startTime The time at which the order becomes active.
     * @param endTime   The time at which the order becomes inactive.
     */
    error InvalidTime(uint256 startTime, uint256 endTime);

    /**
     * @dev Revert with an error when attempting to fill an order referencing an
     *      invalid conduit (i.e. one that has not been deployed).
     */
    error InvalidConduit(bytes32 conduitKey, address conduit);

    /**
     * @dev Revert with an error when an order is supplied for fulfillment with
     *      a consideration array that is shorter than the original array.
     */
    error MissingOriginalConsiderationItems();

    /**
     * @dev Revert with an error when an order is validated and the length of
     *      the consideration array is not equal to the supplied total original
     *      consideration items value. This error is also thrown when contract
     *      orders supply a total original consideration items value that does
     *      not match the supplied consideration array length.
     */
    error ConsiderationLengthNotEqualToTotalOriginal();

    /**
     * @dev Revert with an error when a call to a conduit fails with revert data
     *      that is too expensive to return.
     */
    error InvalidCallToConduit(address conduit);

    /**
     * @dev Revert with an error if a consideration amount has not been fully
     *      zeroed out after applying all fulfillments.
     *
     * @param orderIndex         The index of the order with the consideration
     *                           item with a shortfall.
     * @param considerationIndex The index of the consideration item on the
     *                           order.
     * @param shortfallAmount    The unfulfilled consideration amount.
     */
    error ConsiderationNotMet(
        uint256 orderIndex,
        uint256 considerationIndex,
        uint256 shortfallAmount
    );

    /**
     * @dev Revert with an error when insufficient ether is supplied as part of
     *      msg.value when fulfilling orders.
     */
    error InsufficientEtherSupplied();

    /**
     * @dev Revert with an error when an ether transfer reverts.
     */
    error EtherTransferGenericFailure(address account, uint256 amount);

    /**
     * @dev Revert with an error when a partial fill is attempted on an order
     *      that does not specify partial fill support in its order type.
     */
    error PartialFillsNotEnabledForOrder();

    /**
     * @dev Revert with an error when attempting to fill an order that has been
     *      cancelled.
     *
     * @param orderHash The hash of the cancelled order.
     */
    error OrderIsCancelled(bytes32 orderHash);

    /**
     * @dev Revert with an error when attempting to fill a basic order that has
     *      been partially filled.
     *
     * @param orderHash The hash of the partially used order.
     */
    error OrderPartiallyFilled(bytes32 orderHash);

    /**
     * @dev Revert with an error when attempting to cancel an order as a caller
     *      other than the indicated offerer or zone or when attempting to
     *      cancel a contract order.
     */
    error CannotCancelOrder();

    /**
     * @dev Revert with an error when supplying a fraction with a value of zero
     *      for the numerator or denominator, or one where the numerator exceeds
     *      the denominator.
     */
    error BadFraction();

    /**
     * @dev Revert with an error when a caller attempts to supply callvalue to a
     *      non-payable basic order route or does not supply any callvalue to a
     *      payable basic order route.
     */
    error InvalidMsgValue(uint256 value);

    /**
     * @dev Revert with an error when attempting to fill a basic order using
     *      calldata not produced by default ABI encoding.
     */
    error InvalidBasicOrderParameterEncoding();

    /**
     * @dev Revert with an error when attempting to fulfill any number of
     *      available orders when none are fulfillable.
     */
    error NoSpecifiedOrdersAvailable();

    /**
     * @dev Revert with an error when attempting to fulfill an order with an
     *      offer for ETH outside of matching orders.
     */
    error InvalidNativeOfferItem();
}

File 83 of 87 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import { ReentrancyErrors } from "../interfaces/ReentrancyErrors.sol";

import { LowLevelHelpers } from "./LowLevelHelpers.sol";

import "./ConsiderationErrors.sol";

/**
 * @title ReentrancyGuard
 * @author 0age
 * @notice ReentrancyGuard contains a storage variable and related functionality
 *         for protecting against reentrancy.
 */
contract ReentrancyGuard is ReentrancyErrors, LowLevelHelpers {
    // Prevent reentrant calls on protected functions.
    uint256 private _reentrancyGuard;

    /**
     * @dev Initialize the reentrancy guard during deployment.
     */
    constructor() {
        // Initialize the reentrancy guard in a cleared state.
        _reentrancyGuard = _NOT_ENTERED;
    }

    /**
     * @dev Internal function to ensure that a sentinel value for the reentrancy
     *      guard is not currently set and, if not, to set a sentinel value for
     *      the reentrancy guard based on whether or not native tokens may be
     *      received during execution or not.
     *
     * @param acceptNativeTokens A boolean indicating whether native tokens may
     *                           be received during execution or not.
     */
    function _setReentrancyGuard(bool acceptNativeTokens) internal {
        // Ensure that the reentrancy guard is not already set.
        _assertNonReentrant();

        // Set the reentrancy guard. A value of 2 indicates that native tokens
        // may not be accepted during execution, whereas a value of 3 indicates
        // that they will be accepted (with any remaining native tokens returned
        // to the caller).
        unchecked {
            _reentrancyGuard = _ENTERED + _cast(acceptNativeTokens);
        }
    }

    /**
     * @dev Internal function to unset the reentrancy guard sentinel value.
     */
    function _clearReentrancyGuard() internal {
        // Clear the reentrancy guard.
        _reentrancyGuard = _NOT_ENTERED;
    }

    /**
     * @dev Internal view function to ensure that a sentinel value for the
            reentrancy guard is not currently set.
     */
    function _assertNonReentrant() internal view {
        // Ensure that the reentrancy guard is not currently set.
        if (_reentrancyGuard != _NOT_ENTERED) {
            _revertNoReentrantCalls();
        }
    }

    /**
     * @dev Internal view function to ensure that the sentinel value indicating
     *      native tokens may be received during execution is currently set.
     */
    function _assertAcceptingNativeTokens() internal view {
        // Ensure that the reentrancy guard is not currently set.
        if (_reentrancyGuard != _ENTERED_AND_ACCEPTING_NATIVE_TOKENS) {
            _revertInvalidMsgValue(msg.value);
        }
    }
}

File 84 of 87 : ConduitControllerInterface.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/**
 * @title ConduitControllerInterface
 * @author 0age
 * @notice ConduitControllerInterface contains all external function interfaces,
 *         structs, events, and errors for the conduit controller.
 */
interface ConduitControllerInterface {
    /**
     * @dev Track the conduit key, current owner, new potential owner, and open
     *      channels for each deployed conduit.
     */
    struct ConduitProperties {
        bytes32 key;
        address owner;
        address potentialOwner;
        address[] channels;
        mapping(address => uint256) channelIndexesPlusOne;
    }

    /**
     * @dev Emit an event whenever a new conduit is created.
     *
     * @param conduit    The newly created conduit.
     * @param conduitKey The conduit key used to create the new conduit.
     */
    event NewConduit(address conduit, bytes32 conduitKey);

    /**
     * @dev Emit an event whenever conduit ownership is transferred.
     *
     * @param conduit       The conduit for which ownership has been
     *                      transferred.
     * @param previousOwner The previous owner of the conduit.
     * @param newOwner      The new owner of the conduit.
     */
    event OwnershipTransferred(
        address indexed conduit,
        address indexed previousOwner,
        address indexed newOwner
    );

    /**
     * @dev Emit an event whenever a conduit owner registers a new potential
     *      owner for that conduit.
     *
     * @param newPotentialOwner The new potential owner of the conduit.
     */
    event PotentialOwnerUpdated(address indexed newPotentialOwner);

    /**
     * @dev Revert with an error when attempting to create a new conduit using a
     *      conduit key where the first twenty bytes of the key do not match the
     *      address of the caller.
     */
    error InvalidCreator();

    /**
     * @dev Revert with an error when attempting to create a new conduit when no
     *      initial owner address is supplied.
     */
    error InvalidInitialOwner();

    /**
     * @dev Revert with an error when attempting to set a new potential owner
     *      that is already set.
     */
    error NewPotentialOwnerAlreadySet(
        address conduit,
        address newPotentialOwner
    );

    /**
     * @dev Revert with an error when attempting to cancel ownership transfer
     *      when no new potential owner is currently set.
     */
    error NoPotentialOwnerCurrentlySet(address conduit);

    /**
     * @dev Revert with an error when attempting to interact with a conduit that
     *      does not yet exist.
     */
    error NoConduit();

    /**
     * @dev Revert with an error when attempting to create a conduit that
     *      already exists.
     */
    error ConduitAlreadyExists(address conduit);

    /**
     * @dev Revert with an error when attempting to update channels or transfer
     *      ownership of a conduit when the caller is not the owner of the
     *      conduit in question.
     */
    error CallerIsNotOwner(address conduit);

    /**
     * @dev Revert with an error when attempting to register a new potential
     *      owner and supplying the null address.
     */
    error NewPotentialOwnerIsZeroAddress(address conduit);

    /**
     * @dev Revert with an error when attempting to claim ownership of a conduit
     *      with a caller that is not the current potential owner for the
     *      conduit in question.
     */
    error CallerIsNotNewPotentialOwner(address conduit);

    /**
     * @dev Revert with an error when attempting to retrieve a channel using an
     *      index that is out of range.
     */
    error ChannelOutOfRange(address conduit);

    /**
     * @notice Deploy a new conduit using a supplied conduit key and assigning
     *         an initial owner for the deployed conduit. Note that the first
     *         twenty bytes of the supplied conduit key must match the caller
     *         and that a new conduit cannot be created if one has already been
     *         deployed using the same conduit key.
     *
     * @param conduitKey   The conduit key used to deploy the conduit. Note that
     *                     the first twenty bytes of the conduit key must match
     *                     the caller of this contract.
     * @param initialOwner The initial owner to set for the new conduit.
     *
     * @return conduit The address of the newly deployed conduit.
     */
    function createConduit(
        bytes32 conduitKey,
        address initialOwner
    ) external returns (address conduit);

    /**
     * @notice Open or close a channel on a given conduit, thereby allowing the
     *         specified account to execute transfers against that conduit.
     *         Extreme care must be taken when updating channels, as malicious
     *         or vulnerable channels can transfer any ERC20, ERC721 and ERC1155
     *         tokens where the token holder has granted the conduit approval.
     *         Only the owner of the conduit in question may call this function.
     *
     * @param conduit The conduit for which to open or close the channel.
     * @param channel The channel to open or close on the conduit.
     * @param isOpen  A boolean indicating whether to open or close the channel.
     */
    function updateChannel(
        address conduit,
        address channel,
        bool isOpen
    ) external;

    /**
     * @notice Initiate conduit ownership transfer by assigning a new potential
     *         owner for the given conduit. Once set, the new potential owner
     *         may call `acceptOwnership` to claim ownership of the conduit.
     *         Only the owner of the conduit in question may call this function.
     *
     * @param conduit The conduit for which to initiate ownership transfer.
     * @param newPotentialOwner The new potential owner of the conduit.
     */
    function transferOwnership(
        address conduit,
        address newPotentialOwner
    ) external;

    /**
     * @notice Clear the currently set potential owner, if any, from a conduit.
     *         Only the owner of the conduit in question may call this function.
     *
     * @param conduit The conduit for which to cancel ownership transfer.
     */
    function cancelOwnershipTransfer(address conduit) external;

    /**
     * @notice Accept ownership of a supplied conduit. Only accounts that the
     *         current owner has set as the new potential owner may call this
     *         function.
     *
     * @param conduit The conduit for which to accept ownership.
     */
    function acceptOwnership(address conduit) external;

    /**
     * @notice Retrieve the current owner of a deployed conduit.
     *
     * @param conduit The conduit for which to retrieve the associated owner.
     *
     * @return owner The owner of the supplied conduit.
     */
    function ownerOf(address conduit) external view returns (address owner);

    /**
     * @notice Retrieve the conduit key for a deployed conduit via reverse
     *         lookup.
     *
     * @param conduit The conduit for which to retrieve the associated conduit
     *                key.
     *
     * @return conduitKey The conduit key used to deploy the supplied conduit.
     */
    function getKey(address conduit) external view returns (bytes32 conduitKey);

    /**
     * @notice Derive the conduit associated with a given conduit key and
     *         determine whether that conduit exists (i.e. whether it has been
     *         deployed).
     *
     * @param conduitKey The conduit key used to derive the conduit.
     *
     * @return conduit The derived address of the conduit.
     * @return exists  A boolean indicating whether the derived conduit has been
     *                 deployed or not.
     */
    function getConduit(
        bytes32 conduitKey
    ) external view returns (address conduit, bool exists);

    /**
     * @notice Retrieve the potential owner, if any, for a given conduit. The
     *         current owner may set a new potential owner via
     *         `transferOwnership` and that owner may then accept ownership of
     *         the conduit in question via `acceptOwnership`.
     *
     * @param conduit The conduit for which to retrieve the potential owner.
     *
     * @return potentialOwner The potential owner, if any, for the conduit.
     */
    function getPotentialOwner(
        address conduit
    ) external view returns (address potentialOwner);

    /**
     * @notice Retrieve the status (either open or closed) of a given channel on
     *         a conduit.
     *
     * @param conduit The conduit for which to retrieve the channel status.
     * @param channel The channel for which to retrieve the status.
     *
     * @return isOpen The status of the channel on the given conduit.
     */
    function getChannelStatus(
        address conduit,
        address channel
    ) external view returns (bool isOpen);

    /**
     * @notice Retrieve the total number of open channels for a given conduit.
     *
     * @param conduit The conduit for which to retrieve the total channel count.
     *
     * @return totalChannels The total number of open channels for the conduit.
     */
    function getTotalChannels(
        address conduit
    ) external view returns (uint256 totalChannels);

    /**
     * @notice Retrieve an open channel at a specific index for a given conduit.
     *         Note that the index of a channel can change as a result of other
     *         channels being closed on the conduit.
     *
     * @param conduit      The conduit for which to retrieve the open channel.
     * @param channelIndex The index of the channel in question.
     *
     * @return channel The open channel, if any, at the specified channel index.
     */
    function getChannel(
        address conduit,
        uint256 channelIndex
    ) external view returns (address channel);

    /**
     * @notice Retrieve all open channels for a given conduit. Note that calling
     *         this function for a conduit with many channels will revert with
     *         an out-of-gas error.
     *
     * @param conduit The conduit for which to retrieve open channels.
     *
     * @return channels An array of open channels on the given conduit.
     */
    function getChannels(
        address conduit
    ) external view returns (address[] memory channels);

    /**
     * @dev Retrieve the conduit creation code and runtime code hashes.
     */
    function getConduitCodeHashes()
        external
        view
        returns (bytes32 creationCodeHash, bytes32 runtimeCodeHash);
}

File 85 of 87 : ConsiderationDecoder.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import {
    BasicOrderParameters,
    Order,
    CriteriaResolver,
    AdvancedOrder,
    FulfillmentComponent,
    Execution,
    Fulfillment,
    OrderComponents,
    OrderParameters,
    SpentItem,
    OfferItem,
    ConsiderationItem,
    ReceivedItem
} from "./ConsiderationStructs.sol";

import "./ConsiderationConstants.sol";

import "../helpers/PointerLibraries.sol";

contract ConsiderationDecoder {
    /**
     * @dev Takes a bytes array from calldata and copies it into memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the bytes array in
     *                    calldata which contains the length of the array.
     *
     * @return mPtrLength A memory pointer to the start of the bytes array in
     *                    memory which contains the length of the array.
     */
    function _decodeBytes(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        assembly {
            // Get the current free memory pointer.
            mPtrLength := mload(FreeMemoryPointerSlot)

            // Derive the size of the bytes array, rounding up to nearest word
            // and adding a word for the length field.
            // Note: masking `calldataload(cdPtrLength)` is redundant here.
            let size := add(
                and(
                    add(calldataload(cdPtrLength), AlmostOneWord),
                    OnlyFullWordMask
                ),
                OneWord
            )

            // Copy bytes from calldata into memory based on pointers and size.
            calldatacopy(mPtrLength, cdPtrLength, size)
            // Store the masked value in memory.
            // Note: the value of `size` is at least 32.
            // So the previous line will at least write to `[mPtrLength, mPtrLength + 32)`.
            mstore(
                mPtrLength,
                and(calldataload(cdPtrLength), OffsetOrLengthMask)
            )

            // Update free memory pointer based on the size of the bytes array.
            mstore(FreeMemoryPointerSlot, add(mPtrLength, size))
        }
    }

    /**
     * @dev Takes an offer array from calldata and copies it into memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the offer array
     *                    in calldata which contains the length of the array.
     *
     * @return mPtrLength A memory pointer to the start of the offer array in
     *                    memory which contains the length of the array.
     */
    function _decodeOffer(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        assembly {
            // Retrieve length of array, masking to prevent potential overflow.
            let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)

            // Get the current free memory pointer.
            mPtrLength := mload(FreeMemoryPointerSlot)

            // Write the array length to memory.
            mstore(mPtrLength, arrLength)

            // Derive the head by adding one word to the length pointer.
            let mPtrHead := add(mPtrLength, OneWord)

            // Derive the tail by adding one word per element (note that structs
            // are written to memory with an offset per struct element).
            let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))

            // Track the next tail, beginning with the initial tail value.
            let mPtrTailNext := mPtrTail

            // Copy all offer array data into memory at the tail pointer.
            calldatacopy(
                mPtrTail,
                add(cdPtrLength, OneWord),
                mul(arrLength, OfferItem_size)
            )

            // Track the next head pointer, starting with initial head value.
            let mPtrHeadNext := mPtrHead

            // Iterate over each head pointer until it reaches the tail.
            for {

            } lt(mPtrHeadNext, mPtrTail) {

            } {
                // Write the next tail pointer to next head pointer in memory.
                mstore(mPtrHeadNext, mPtrTailNext)

                // Increment the next head pointer by one word.
                mPtrHeadNext := add(mPtrHeadNext, OneWord)

                // Increment the next tail pointer by the size of an offer item.
                mPtrTailNext := add(mPtrTailNext, OfferItem_size)
            }

            // Update free memory pointer to allocate memory up to end of tail.
            mstore(FreeMemoryPointerSlot, mPtrTailNext)
        }
    }

    /**
     * @dev Takes a consideration array from calldata and copies it into memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the consideration
     *                    array in calldata which contains the length of the
     *                    array.
     *
     * @return mPtrLength A memory pointer to the start of the consideration
     *                    array in memory which contains the length of the
     *                    array.
     */
    function _decodeConsideration(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        assembly {
            // Retrieve length of array, masking to prevent potential overflow.
            let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)

            // Get the current free memory pointer.
            mPtrLength := mload(FreeMemoryPointerSlot)

            // Write the array length to memory.
            mstore(mPtrLength, arrLength)

            // Derive the head by adding one word to the length pointer.
            let mPtrHead := add(mPtrLength, OneWord)

            // Derive the tail by adding one word per element (note that structs
            // are written to memory with an offset per struct element).
            let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))

            // Track the next tail, beginning with the initial tail value.
            let mPtrTailNext := mPtrTail

            // Copy all consideration array data into memory at tail pointer.
            calldatacopy(
                mPtrTail,
                add(cdPtrLength, OneWord),
                mul(arrLength, ConsiderationItem_size)
            )

            // Track the next head pointer, starting with initial head value.
            let mPtrHeadNext := mPtrHead

            // Iterate over each head pointer until it reaches the tail.
            for {

            } lt(mPtrHeadNext, mPtrTail) {

            } {
                // Write the next tail pointer to next head pointer in memory.
                mstore(mPtrHeadNext, mPtrTailNext)

                // Increment the next head pointer by one word.
                mPtrHeadNext := add(mPtrHeadNext, OneWord)

                // Increment next tail pointer by size of a consideration item.
                mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size)
            }

            // Update free memory pointer to allocate memory up to end of tail.
            mstore(FreeMemoryPointerSlot, mPtrTailNext)
        }
    }

    /**
     * @dev Takes a calldata pointer and memory pointer and copies a referenced
     *      OrderParameters struct and associated offer and consideration data
     *      to memory.
     *
     * @param cdPtr A calldata pointer for the OrderParameters struct.
     * @param mPtr A memory pointer to the OrderParameters struct head.
     */
    function _decodeOrderParametersTo(
        CalldataPointer cdPtr,
        MemoryPointer mPtr
    ) internal pure {
        // Copy the full OrderParameters head from calldata to memory.
        cdPtr.copy(mPtr, OrderParameters_head_size);

        // Resolve the offer calldata offset, use that to decode and copy offer
        // from calldata, and write resultant memory offset to head in memory.
        mPtr.offset(OrderParameters_offer_head_offset).write(
            _decodeOffer(cdPtr.pptr(OrderParameters_offer_head_offset))
        );

        // Resolve consideration calldata offset, use that to copy consideration
        // from calldata, and write resultant memory offset to head in memory.
        mPtr.offset(OrderParameters_consideration_head_offset).write(
            _decodeConsideration(
                cdPtr.pptr(OrderParameters_consideration_head_offset)
            )
        );
    }

    /**
     * @dev Takes a calldata pointer to an OrderParameters struct and copies the
     *      decoded struct to memory.
     *
     * @param cdPtr A calldata pointer for the OrderParameters struct.
     *
     * @return mPtr A memory pointer to the OrderParameters struct head.
     */
    function _decodeOrderParameters(
        CalldataPointer cdPtr
    ) internal pure returns (MemoryPointer mPtr) {
        // Allocate required memory for the OrderParameters head (offer and
        // consideration are allocated independently).
        mPtr = malloc(OrderParameters_head_size);

        // Decode and copy the order parameters to the newly allocated memory.
        _decodeOrderParametersTo(cdPtr, mPtr);
    }

    /**
     * @dev Takes a calldata pointer to an Order struct and copies the decoded
     *      struct to memory.
     *
     * @param cdPtr A calldata pointer for the Order struct.
     *
     * @return mPtr A memory pointer to the Order struct head.
     */
    function _decodeOrder(
        CalldataPointer cdPtr
    ) internal pure returns (MemoryPointer mPtr) {
        // Allocate required memory for the Order head (OrderParameters and
        // signature are allocated independently).
        mPtr = malloc(Order_head_size);

        // Resolve OrderParameters calldata offset, use it to decode and copy
        // from calldata, and write resultant memory offset to head in memory.
        mPtr.write(_decodeOrderParameters(cdPtr.pptr()));

        // Resolve signature calldata offset, use that to decode and copy from
        // calldata, and write resultant memory offset to head in memory.
        mPtr.offset(Order_signature_offset).write(
            _decodeBytes(cdPtr.pptr(Order_signature_offset))
        );
    }

    /**
     * @dev Takes a calldata pointer to an AdvancedOrder struct and copies the
     *      decoded struct to memory.
     *
     * @param cdPtr A calldata pointer for the AdvancedOrder struct.
     *
     * @return mPtr A memory pointer to the AdvancedOrder struct head.
     */
    function _decodeAdvancedOrder(
        CalldataPointer cdPtr
    ) internal pure returns (MemoryPointer mPtr) {
        // Allocate memory for AdvancedOrder head and OrderParameters head.
        mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size);

        // Use numerator + denominator calldata offset to decode and copy
        // from calldata and write resultant memory offset to head in memory.
        cdPtr.offset(AdvancedOrder_numerator_offset).copy(
            mPtr.offset(AdvancedOrder_numerator_offset),
            AdvancedOrder_fixed_segment_0
        );

        // Get pointer to memory immediately after advanced order.
        MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size);

        // Write pptr for advanced order parameters to memory.
        mPtr.write(mPtrParameters);

        // Resolve OrderParameters calldata pointer & write to allocated region.
        _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters);

        // Resolve signature calldata offset, use that to decode and copy from
        // calldata, and write resultant memory offset to head in memory.
        mPtr.offset(AdvancedOrder_signature_offset).write(
            _decodeBytes(cdPtr.pptr(AdvancedOrder_signature_offset))
        );

        // Resolve extraData calldata offset, use that to decode and copy from
        // calldata, and write resultant memory offset to head in memory.
        mPtr.offset(AdvancedOrder_extraData_offset).write(
            _decodeBytes(cdPtr.pptr(AdvancedOrder_extraData_offset))
        );
    }

    /**
     * @dev Allocates a single word of empty bytes in memory and returns the
     *      pointer to that memory region.
     *
     * @return mPtr The memory pointer to the new empty word in memory.
     */
    function _getEmptyBytesOrArray()
        internal
        pure
        returns (MemoryPointer mPtr)
    {
        mPtr = malloc(OneWord);
        mPtr.write(0);
    }

    /**
     * @dev Takes a calldata pointer to an Order struct and copies the decoded
     *      struct to memory as an AdvancedOrder.
     *
     * @param cdPtr A calldata pointer for the Order struct.
     *
     * @return mPtr A memory pointer to the AdvancedOrder struct head.
     */
    function _decodeOrderAsAdvancedOrder(
        CalldataPointer cdPtr
    ) internal pure returns (MemoryPointer mPtr) {
        // Allocate memory for AdvancedOrder head and OrderParameters head.
        mPtr = malloc(AdvancedOrderPlusOrderParameters_head_size);

        // Get pointer to memory immediately after advanced order.
        MemoryPointer mPtrParameters = mPtr.offset(AdvancedOrder_head_size);

        // Write pptr for advanced order parameters.
        mPtr.write(mPtrParameters);

        // Resolve OrderParameters calldata pointer & write to allocated region.
        _decodeOrderParametersTo(cdPtr.pptr(), mPtrParameters);

        // Write default Order numerator and denominator values (e.g. 1/1).
        mPtr.offset(AdvancedOrder_numerator_offset).write(1);
        mPtr.offset(AdvancedOrder_denominator_offset).write(1);

        // Resolve signature calldata offset, use that to decode and copy from
        // calldata, and write resultant memory offset to head in memory.
        mPtr.offset(AdvancedOrder_signature_offset).write(
            _decodeBytes(cdPtr.pptr(Order_signature_offset))
        );

        // Resolve extraData calldata offset, use that to decode and copy from
        // calldata, and write resultant memory offset to head in memory.
        mPtr.offset(AdvancedOrder_extraData_offset).write(
            _getEmptyBytesOrArray()
        );
    }

    /**
     * @dev Takes a calldata pointer to an array of Order structs and copies the
     *      decoded array to memory as an array of AdvancedOrder structs.
     *
     * @param cdPtrLength A calldata pointer to the start of the orders array in
     *                    calldata which contains the length of the array.
     *
     * @return mPtrLength A memory pointer to the start of the array of advanced
     *                    orders in memory which contains length of the array.
     */
    function _decodeOrdersAsAdvancedOrders(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        // Retrieve length of array, masking to prevent potential overflow.
        uint256 arrLength = cdPtrLength.readMaskedUint256();

        unchecked {
            // Derive offset to the tail based on one word per array element.
            uint256 tailOffset = arrLength * OneWord;

            // Add one additional word for the length and allocate memory.
            mPtrLength = malloc(tailOffset + OneWord);

            // Write the length of the array to memory.
            mPtrLength.write(arrLength);

            // Advance to first memory & calldata pointers (e.g. after length).
            MemoryPointer mPtrHead = mPtrLength.next();
            CalldataPointer cdPtrHead = cdPtrLength.next();

            // Iterate over each pointer, word by word, until tail is reached.
            for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                // Resolve Order calldata offset, use it to decode and copy from
                // calldata, and write resultant AdvancedOrder offset to memory.
                mPtrHead.offset(offset).write(
                    _decodeOrderAsAdvancedOrder(cdPtrHead.pptr(offset))
                );
            }
        }
    }

    /**
     * @dev Takes a calldata pointer to a criteria proof, or an array bytes32
     *      types, and copies the decoded proof to memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the criteria proof
     *                    in calldata which contains the length of the array.
     *
     * @return mPtrLength A memory pointer to the start of the criteria proof
     *                    in memory which contains length of the array.
     */
    function _decodeCriteriaProof(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        // Retrieve length of array, masking to prevent potential overflow.
        uint256 arrLength = cdPtrLength.readMaskedUint256();

        unchecked {
            // Derive array size based on one word per array element and length.
            uint256 arrSize = (arrLength + 1) * OneWord;

            // Allocate memory equal to the array size.
            mPtrLength = malloc(arrSize);

            // Copy the array from calldata into memory.
            cdPtrLength.copy(mPtrLength, arrSize);
        }
    }

    /**
     * @dev Takes a calldata pointer to a CriteriaResolver struct and copies the
     *      decoded struct to memory.
     *
     * @param cdPtr A calldata pointer for the CriteriaResolver struct.
     *
     * @return mPtr A memory pointer to the CriteriaResolver struct head.
     */
    function _decodeCriteriaResolver(
        CalldataPointer cdPtr
    ) internal pure returns (MemoryPointer mPtr) {
        // Allocate required memory for the CriteriaResolver head (the criteria
        // proof bytes32 array is allocated independently).
        mPtr = malloc(CriteriaResolver_head_size);

        // Decode and copy order index, side, index, and identifier from
        // calldata and write resultant memory offset to head in memory.
        cdPtr.copy(mPtr, CriteriaResolver_fixed_segment_0);

        // Resolve criteria proof calldata offset, use it to decode and copy
        // from calldata, and write resultant memory offset to head in memory.
        mPtr.offset(CriteriaResolver_criteriaProof_offset).write(
            _decodeCriteriaProof(
                cdPtr.pptr(CriteriaResolver_criteriaProof_offset)
            )
        );
    }

    /**
     * @dev Takes an array of criteria resolvers from calldata and copies it
     *      into memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the criteria
     *                    resolver array in calldata which contains the length
     *                    of the array.
     *
     * @return mPtrLength A memory pointer to the start of the criteria resolver
     *                    array in memory which contains the length of the
     *                    array.
     */
    function _decodeCriteriaResolvers(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        // Retrieve length of array, masking to prevent potential overflow.
        uint256 arrLength = cdPtrLength.readMaskedUint256();

        unchecked {
            // Derive offset to the tail based on one word per array element.
            uint256 tailOffset = arrLength * OneWord;

            // Add one additional word for the length and allocate memory.
            mPtrLength = malloc(tailOffset + OneWord);

            // Write the length of the array to memory.
            mPtrLength.write(arrLength);

            // Advance to first memory & calldata pointers (e.g. after length).
            MemoryPointer mPtrHead = mPtrLength.next();
            CalldataPointer cdPtrHead = cdPtrLength.next();

            // Iterate over each pointer, word by word, until tail is reached.
            for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                // Resolve CriteriaResolver calldata offset, use it to decode
                // and copy from calldata, and write resultant memory offset.
                mPtrHead.offset(offset).write(
                    _decodeCriteriaResolver(cdPtrHead.pptr(offset))
                );
            }
        }
    }

    /**
     * @dev Takes an array of orders from calldata and copies it into memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the orders array in
     *                    calldata which contains the length of the array.
     *
     * @return mPtrLength A memory pointer to the start of the orders array
     *                    in memory which contains the length of the array.
     */
    function _decodeOrders(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        // Retrieve length of array, masking to prevent potential overflow.
        uint256 arrLength = cdPtrLength.readMaskedUint256();

        unchecked {
            // Derive offset to the tail based on one word per array element.
            uint256 tailOffset = arrLength * OneWord;

            // Add one additional word for the length and allocate memory.
            mPtrLength = malloc(tailOffset + OneWord);

            // Write the length of the array to memory.
            mPtrLength.write(arrLength);

            // Advance to first memory & calldata pointers (e.g. after length).
            MemoryPointer mPtrHead = mPtrLength.next();
            CalldataPointer cdPtrHead = cdPtrLength.next();

            // Iterate over each pointer, word by word, until tail is reached.
            for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                // Resolve Order calldata offset, use it to decode and copy
                // from calldata, and write resultant memory offset.
                mPtrHead.offset(offset).write(
                    _decodeOrder(cdPtrHead.pptr(offset))
                );
            }
        }
    }

    /**
     * @dev Takes an array of fulfillment components from calldata and copies it
     *      into memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the fulfillment
     *                    components array in calldata which contains the length
     *                    of the array.
     *
     * @return mPtrLength A memory pointer to the start of the fulfillment
     *                    components array in memory which contains the length
     *                    of the array.
     */
    function _decodeFulfillmentComponents(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        assembly {
            let arrLength := and(calldataload(cdPtrLength), OffsetOrLengthMask)

            // Get the current free memory pointer.
            mPtrLength := mload(FreeMemoryPointerSlot)

            mstore(mPtrLength, arrLength)
            let mPtrHead := add(mPtrLength, OneWord)
            let mPtrTail := add(mPtrHead, shl(OneWordShift, arrLength))
            let mPtrTailNext := mPtrTail
            calldatacopy(
                mPtrTail,
                add(cdPtrLength, OneWord),
                shl(FulfillmentComponent_mem_tail_size_shift, arrLength)
            )
            let mPtrHeadNext := mPtrHead
            for {

            } lt(mPtrHeadNext, mPtrTail) {

            } {
                mstore(mPtrHeadNext, mPtrTailNext)
                mPtrHeadNext := add(mPtrHeadNext, OneWord)
                mPtrTailNext := add(
                    mPtrTailNext,
                    FulfillmentComponent_mem_tail_size
                )
            }

            // Update the free memory pointer.
            mstore(FreeMemoryPointerSlot, mPtrTailNext)
        }
    }

    /**
     * @dev Takes a nested array of fulfillment components from calldata and
     *      copies it into memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the nested
     *                    fulfillment components array in calldata which
     *                    contains the length of the array.
     *
     * @return mPtrLength A memory pointer to the start of the nested
     *                    fulfillment components array in memory which
     *                    contains the length of the array.
     */
    function _decodeNestedFulfillmentComponents(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        // Retrieve length of array, masking to prevent potential overflow.
        uint256 arrLength = cdPtrLength.readMaskedUint256();

        unchecked {
            // Derive offset to the tail based on one word per array element.
            uint256 tailOffset = arrLength * OneWord;

            // Add one additional word for the length and allocate memory.
            mPtrLength = malloc(tailOffset + OneWord);

            // Write the length of the array to memory.
            mPtrLength.write(arrLength);

            // Advance to first memory & calldata pointers (e.g. after length).
            MemoryPointer mPtrHead = mPtrLength.next();
            CalldataPointer cdPtrHead = cdPtrLength.next();

            // Iterate over each pointer, word by word, until tail is reached.
            for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                // Resolve FulfillmentComponents array calldata offset, use it
                // to decode and copy from calldata, and write memory offset.
                mPtrHead.offset(offset).write(
                    _decodeFulfillmentComponents(cdPtrHead.pptr(offset))
                );
            }
        }
    }

    /**
     * @dev Takes an array of advanced orders from calldata and copies it into
     *      memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the advanced orders
     *                    array in calldata which contains the length of the
     *                    array.
     *
     * @return mPtrLength A memory pointer to the start of the advanced orders
     *                    array in memory which contains the length of the
     *                    array.
     */
    function _decodeAdvancedOrders(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        // Retrieve length of array, masking to prevent potential overflow.
        uint256 arrLength = cdPtrLength.readMaskedUint256();

        unchecked {
            // Derive offset to the tail based on one word per array element.
            uint256 tailOffset = arrLength * OneWord;

            // Add one additional word for the length and allocate memory.
            mPtrLength = malloc(tailOffset + OneWord);

            // Write the length of the array to memory.
            mPtrLength.write(arrLength);

            // Advance to first memory & calldata pointers (e.g. after length).
            MemoryPointer mPtrHead = mPtrLength.next();
            CalldataPointer cdPtrHead = cdPtrLength.next();

            // Iterate over each pointer, word by word, until tail is reached.
            for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                // Resolve AdvancedOrder calldata offset, use it to decode and
                // copy from calldata, and write resultant memory offset.
                mPtrHead.offset(offset).write(
                    _decodeAdvancedOrder(cdPtrHead.pptr(offset))
                );
            }
        }
    }

    /**
     * @dev Takes a calldata pointer to a Fulfillment struct and copies the
     *      decoded struct to memory.
     *
     * @param cdPtr A calldata pointer for the Fulfillment struct.
     *
     * @return mPtr A memory pointer to the Fulfillment struct head.
     */
    function _decodeFulfillment(
        CalldataPointer cdPtr
    ) internal pure returns (MemoryPointer mPtr) {
        // Allocate required memory for the Fulfillment head (the fulfillment
        // components arrays are allocated independently).
        mPtr = malloc(Fulfillment_head_size);

        // Resolve offerComponents calldata offset, use it to decode and copy
        // from calldata, and write resultant memory offset to head in memory.
        mPtr.write(_decodeFulfillmentComponents(cdPtr.pptr()));

        // Resolve considerationComponents calldata offset, use it to decode and
        // copy from calldata, and write resultant memory offset to memory head.
        mPtr.offset(Fulfillment_considerationComponents_offset).write(
            _decodeFulfillmentComponents(
                cdPtr.pptr(Fulfillment_considerationComponents_offset)
            )
        );
    }

    /**
     * @dev Takes an array of fulfillments from calldata and copies it into
     *      memory.
     *
     * @param cdPtrLength A calldata pointer to the start of the fulfillments
     *                    array in calldata which contains the length of the
     *                    array.
     *
     * @return mPtrLength A memory pointer to the start of the fulfillments
     *                    array in memory which contains the length of the
     *                    array.
     */
    function _decodeFulfillments(
        CalldataPointer cdPtrLength
    ) internal pure returns (MemoryPointer mPtrLength) {
        // Retrieve length of array, masking to prevent potential overflow.
        uint256 arrLength = cdPtrLength.readMaskedUint256();

        unchecked {
            // Derive offset to the tail based on one word per array element.
            uint256 tailOffset = arrLength * OneWord;

            // Add one additional word for the length and allocate memory.
            mPtrLength = malloc(tailOffset + OneWord);

            // Write the length of the array to memory.
            mPtrLength.write(arrLength);

            // Advance to first memory & calldata pointers (e.g. after length).
            MemoryPointer mPtrHead = mPtrLength.next();
            CalldataPointer cdPtrHead = cdPtrLength.next();

            // Iterate over each pointer, word by word, until tail is reached.
            for (uint256 offset = 0; offset < tailOffset; offset += OneWord) {
                // Resolve Fulfillment calldata offset, use it to decode and
                // copy from calldata, and write resultant memory offset.
                mPtrHead.offset(offset).write(
                    _decodeFulfillment(cdPtrHead.pptr(offset))
                );
            }
        }
    }

    /**
     * @dev Takes a calldata pointer to an OrderComponents struct and copies the
     *      decoded struct to memory as an OrderParameters struct (with the
     *      totalOriginalConsiderationItems value set equal to the length of the
     *      supplied consideration array).
     *
     * @param cdPtr A calldata pointer for the OrderComponents struct.
     *
     * @return mPtr A memory pointer to the OrderParameters struct head.
     */
    function _decodeOrderComponentsAsOrderParameters(
        CalldataPointer cdPtr
    ) internal pure returns (MemoryPointer mPtr) {
        // Allocate memory for the OrderParameters head.
        mPtr = malloc(OrderParameters_head_size);

        // Copy the full OrderComponents head from calldata to memory.
        cdPtr.copy(mPtr, OrderComponents_OrderParameters_common_head_size);

        // Resolve the offer calldata offset, use that to decode and copy offer
        // from calldata, and write resultant memory offset to head in memory.
        mPtr.offset(OrderParameters_offer_head_offset).write(
            _decodeOffer(cdPtr.pptr(OrderParameters_offer_head_offset))
        );

        // Resolve consideration calldata offset, use that to copy consideration
        // from calldata, and write resultant memory offset to head in memory.
        MemoryPointer consideration = _decodeConsideration(
            cdPtr.pptr(OrderParameters_consideration_head_offset)
        );
        mPtr.offset(OrderParameters_consideration_head_offset).write(
            consideration
        );

        // Write masked consideration length to totalOriginalConsiderationItems.
        mPtr
            .offset(OrderParameters_totalOriginalConsiderationItems_offset)
            .write(consideration.readUint256());
    }

    /**
     * @dev Decodes the returndata from a call to generateOrder, or returns
     *      empty arrays and a boolean signifying that the returndata does not
     *      adhere to a valid encoding scheme if it cannot be decoded.
     *
     * @return invalidEncoding A boolean signifying whether the returndata has
     *                         an invalid encoding.
     * @return offer           The decoded offer array.
     * @return consideration   The decoded consideration array.
     */
    function _decodeGenerateOrderReturndata()
        internal
        pure
        returns (
            uint256 invalidEncoding,
            MemoryPointer offer,
            MemoryPointer consideration
        )
    {
        assembly {
            // check that returndatasize is at least 80 bytes:
            // offerOffset,considerationOffset,offerLength,considerationLength
            invalidEncoding := lt(returndatasize(), FourWords)

            let offsetOffer
            let offsetConsideration
            let offerLength
            let considerationLength

            if iszero(invalidEncoding) {
                // Copy first two words of calldata (the offsets to offer and
                // consideration array lengths) to scratch space. Multiply by
                // validLength to avoid panics if returndatasize is too small.
                returndatacopy(0, 0, TwoWords)
                offsetOffer := mload(0)
                offsetConsideration := mload(OneWord)

                // If valid length, check that offsets are within returndata.
                let invalidOfferOffset := gt(offsetOffer, returndatasize())
                let invalidConsiderationOffset := gt(
                    offsetConsideration,
                    returndatasize()
                )

                // Only proceed if length (and thus encoding) is valid so far.
                invalidEncoding := or(
                    invalidOfferOffset,
                    invalidConsiderationOffset
                )
                if iszero(invalidEncoding) {
                    // Copy length of offer array to scratch space.
                    returndatacopy(0, offsetOffer, OneWord)
                    offerLength := mload(0)

                    // Copy length of consideration array to scratch space.
                    returndatacopy(OneWord, offsetConsideration, OneWord)
                    considerationLength := mload(OneWord)

                    {
                        // Calculate total size of offer & consideration arrays.
                        let totalOfferSize := shl(
                            SpentItem_size_shift,
                            offerLength
                        )
                        let totalConsiderationSize := mul(
                            ReceivedItem_size,
                            considerationLength
                        )

                        // Add 4 words to total size to cover the offset and
                        // length fields of the two arrays.
                        let totalSize := add(
                            FourWords,
                            add(totalOfferSize, totalConsiderationSize)
                        )
                        // Don't continue if returndatasize exceeds 65535 bytes
                        // or is not equal to the calculated size.
                        invalidEncoding := or(
                            gt(or(offerLength, considerationLength), 0xffff),
                            xor(totalSize, returndatasize())
                        )
                        // Set first word of scratch space to 0 so length of
                        // offer/consideration are set to 0 on invalid encoding.
                        mstore(0, 0)
                    }
                }
            }

            if iszero(invalidEncoding) {
                offer := copySpentItemsAsOfferItems(
                    add(offsetOffer, OneWord),
                    offerLength
                )

                consideration := copyReceivedItemsAsConsiderationItems(
                    add(offsetConsideration, OneWord),
                    considerationLength
                )
            }

            function copySpentItemsAsOfferItems(rdPtrHead, length)
                -> mPtrLength
            {
                // Retrieve the current free memory pointer.
                mPtrLength := mload(FreeMemoryPointerSlot)

                // Allocate memory for the array.
                mstore(
                    FreeMemoryPointerSlot,
                    add(
                        mPtrLength,
                        add(OneWord, mul(length, OfferItem_size_with_length))
                    )
                )

                // Write the length of the array to the start of free memory.
                mstore(mPtrLength, length)

                // Use offset from length to minimize stack depth.
                let headOffsetFromLength := OneWord
                let headSizeWithLength := shl(OneWordShift, add(1, length))
                let mPtrTailNext := add(mPtrLength, headSizeWithLength)

                // Iterate over each element.
                for {

                } lt(headOffsetFromLength, headSizeWithLength) {

                } {
                    // Write the memory pointer to the accompanying head offset.
                    mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext)

                    // Copy itemType, token, identifier and amount.
                    returndatacopy(mPtrTailNext, rdPtrHead, SpentItem_size)

                    // Copy amount to endAmount.
                    mstore(
                        add(mPtrTailNext, Common_endAmount_offset),
                        mload(add(mPtrTailNext, Common_amount_offset))
                    )

                    // Update read pointer, next tail pointer, and head offset.
                    rdPtrHead := add(rdPtrHead, SpentItem_size)
                    mPtrTailNext := add(mPtrTailNext, OfferItem_size)
                    headOffsetFromLength := add(headOffsetFromLength, OneWord)
                }
            }

            function copyReceivedItemsAsConsiderationItems(rdPtrHead, length)
                -> mPtrLength
            {
                // Retrieve the current free memory pointer.
                mPtrLength := mload(FreeMemoryPointerSlot)

                // Allocate memory for the array.
                mstore(
                    FreeMemoryPointerSlot,
                    add(
                        mPtrLength,
                        add(
                            OneWord,
                            mul(length, ConsiderationItem_size_with_length)
                        )
                    )
                )

                // Write the length of the array to the start of free memory.
                mstore(mPtrLength, length)

                // Use offset from length to minimize stack depth.
                let headOffsetFromLength := OneWord
                let headSizeWithLength := shl(OneWordShift, add(1, length))
                let mPtrTailNext := add(mPtrLength, headSizeWithLength)

                // Iterate over each element.
                for {

                } lt(headOffsetFromLength, headSizeWithLength) {

                } {
                    // Write the memory pointer to the accompanying head offset.
                    mstore(add(mPtrLength, headOffsetFromLength), mPtrTailNext)

                    // Copy itemType, token, identifier and amount.
                    returndatacopy(
                        mPtrTailNext,
                        rdPtrHead,
                        Common_endAmount_offset
                    )

                    // Copy amount and recipient.
                    returndatacopy(
                        add(mPtrTailNext, Common_endAmount_offset),
                        add(rdPtrHead, Common_amount_offset),
                        TwoWords
                    )

                    // Update read pointer, next tail pointer, and head offset.
                    rdPtrHead := add(rdPtrHead, ReceivedItem_size)
                    mPtrTailNext := add(mPtrTailNext, ConsiderationItem_size)
                    headOffsetFromLength := add(headOffsetFromLength, OneWord)
                }
            }
        }
    }

    /**
     * @dev Converts a function returning _decodeGenerateOrderReturndata types
     *      into a function returning offer and consideration types.
     *
     * @param inFn The input function, taking no arguments and returning an
     *             error buffer, spent item array, and received item array.
     *
     * @return outFn The output function, taking no arguments and returning an
     *               error buffer, offer array, and consideration array.
     */
    function _convertGetGeneratedOrderResult(
        function()
            internal
            pure
            returns (uint256, MemoryPointer, MemoryPointer) inFn
    )
        internal
        pure
        returns (
            function()
                internal
                pure
                returns (
                    uint256,
                    OfferItem[] memory,
                    ConsiderationItem[] memory
                ) outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes
     *      types (e.g. the _transfer function) into a function taking
     *      OfferItem, address, bytes32, and bytes types.
     *
     * @param inFn The input function, taking ReceivedItem, address, bytes32,
     *             and bytes types (e.g. the _transfer function).
     *
     * @return outFn The output function, taking OfferItem, address, bytes32,
     *               and bytes types.
     */
    function _toOfferItemInput(
        function(ReceivedItem memory, address, bytes32, bytes memory)
            internal inFn
    )
        internal
        pure
        returns (
            function(OfferItem memory, address, bytes32, bytes memory)
                internal outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking ReceivedItem, address, bytes32, and bytes
     *      types (e.g. the _transfer function) into a function taking
     *      ConsiderationItem, address, bytes32, and bytes types.
     *
     * @param inFn The input function, taking ReceivedItem, address, bytes32,
     *             and bytes types (e.g. the _transfer function).
     *
     * @return outFn The output function, taking ConsiderationItem, address,
     *               bytes32, and bytes types.
     */
    function _toConsiderationItemInput(
        function(ReceivedItem memory, address, bytes32, bytes memory)
            internal inFn
    )
        internal
        pure
        returns (
            function(ConsiderationItem memory, address, bytes32, bytes memory)
                internal outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking a calldata pointer and returning a memory
     *      pointer into a function taking that calldata pointer and returning
     *      an OrderParameters type.
     *
     * @param inFn The input function, taking an arbitrary calldata pointer and
     *             returning an arbitrary memory pointer.
     *
     * @return outFn The output function, taking an arbitrary calldata pointer
     *               and returning an OrderParameters type.
     */
    function _toOrderParametersReturnType(
        function(CalldataPointer) internal pure returns (MemoryPointer) inFn
    )
        internal
        pure
        returns (
            function(CalldataPointer)
                internal
                pure
                returns (OrderParameters memory) outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking a calldata pointer and returning a memory
     *      pointer into a function taking that calldata pointer and returning
     *      an AdvancedOrder type.
     *
     * @param inFn The input function, taking an arbitrary calldata pointer and
     *             returning an arbitrary memory pointer.
     *
     * @return outFn The output function, taking an arbitrary calldata pointer
     *               and returning an AdvancedOrder type.
     */
    function _toAdvancedOrderReturnType(
        function(CalldataPointer) internal pure returns (MemoryPointer) inFn
    )
        internal
        pure
        returns (
            function(CalldataPointer)
                internal
                pure
                returns (AdvancedOrder memory) outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking a calldata pointer and returning a memory
     *      pointer into a function taking that calldata pointer and returning
     *      a dynamic array of CriteriaResolver types.
     *
     * @param inFn The input function, taking an arbitrary calldata pointer and
     *             returning an arbitrary memory pointer.
     *
     * @return outFn The output function, taking an arbitrary calldata pointer
     *               and returning a dynamic array of CriteriaResolver types.
     */
    function _toCriteriaResolversReturnType(
        function(CalldataPointer) internal pure returns (MemoryPointer) inFn
    )
        internal
        pure
        returns (
            function(CalldataPointer)
                internal
                pure
                returns (CriteriaResolver[] memory) outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking a calldata pointer and returning a memory
     *      pointer into a function taking that calldata pointer and returning
     *      a dynamic array of Order types.
     *
     * @param inFn The input function, taking an arbitrary calldata pointer and
     *             returning an arbitrary memory pointer.
     *
     * @return outFn The output function, taking an arbitrary calldata pointer
     *               and returning a dynamic array of Order types.
     */
    function _toOrdersReturnType(
        function(CalldataPointer) internal pure returns (MemoryPointer) inFn
    )
        internal
        pure
        returns (
            function(CalldataPointer)
                internal
                pure
                returns (Order[] memory) outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking a calldata pointer and returning a memory
     *      pointer into a function taking that calldata pointer and returning
     *      a nested dynamic array of dynamic arrays of FulfillmentComponent
     *      types.
     *
     * @param inFn The input function, taking an arbitrary calldata pointer and
     *             returning an arbitrary memory pointer.
     *
     * @return outFn The output function, taking an arbitrary calldata pointer
     *               and returning a nested dynamic array of dynamic arrays of
     *               FulfillmentComponent types.
     */
    function _toNestedFulfillmentComponentsReturnType(
        function(CalldataPointer) internal pure returns (MemoryPointer) inFn
    )
        internal
        pure
        returns (
            function(CalldataPointer)
                internal
                pure
                returns (FulfillmentComponent[][] memory) outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking a calldata pointer and returning a memory
     *      pointer into a function taking that calldata pointer and returning
     *      a dynamic array of AdvancedOrder types.
     *
     * @param inFn The input function, taking an arbitrary calldata pointer and
     *             returning an arbitrary memory pointer.
     *
     * @return outFn The output function, taking an arbitrary calldata pointer
     *               and returning a dynamic array of AdvancedOrder types.
     */
    function _toAdvancedOrdersReturnType(
        function(CalldataPointer) internal pure returns (MemoryPointer) inFn
    )
        internal
        pure
        returns (
            function(CalldataPointer)
                internal
                pure
                returns (AdvancedOrder[] memory) outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts a function taking a calldata pointer and returning a memory
     *      pointer into a function taking that calldata pointer and returning
     *      a dynamic array of Fulfillment types.
     *
     * @param inFn The input function, taking an arbitrary calldata pointer and
     *             returning an arbitrary memory pointer.
     *
     * @return outFn The output function, taking an arbitrary calldata pointer
     *               and returning a dynamic array of Fulfillment types.
     */
    function _toFulfillmentsReturnType(
        function(CalldataPointer) internal pure returns (MemoryPointer) inFn
    )
        internal
        pure
        returns (
            function(CalldataPointer)
                internal
                pure
                returns (Fulfillment[] memory) outFn
        )
    {
        assembly {
            outFn := inFn
        }
    }

    /**
     * @dev Converts an offer item into a received item, applying a given
     *      recipient.
     *
     * @param offerItem The offer item.
     * @param recipient The recipient.
     *
     * @return receivedItem The received item.
     */
    function _convertOfferItemToReceivedItemWithRecipient(
        OfferItem memory offerItem,
        address recipient
    ) internal pure returns (ReceivedItem memory receivedItem) {
        assembly {
            receivedItem := offerItem
            mstore(add(receivedItem, ReceivedItem_recipient_offset), recipient)
        }
    }
}

File 86 of 87 : TypehashDirectory.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

/**
 * @title TypehashDirectory
 * @notice The typehash directory contains 24 bulk order EIP-712 typehashes,
 *         depending on the height of the tree in each bulk order payload, as
 *         its runtime code (with an invalid opcode prefix so that the contract
 *         cannot be called normally). This runtime code is designed to be read
 *         from by Seaport using `extcodecopy` while verifying bulk signatures.
 */
contract TypehashDirectory {
    // Encodes "[2]" for use in deriving typehashes.
    bytes3 internal constant twoSubstring = 0x5B325D;
    uint256 internal constant twoSubstringLength = 3;

    // Dictates maximum bulk order group size; 24 => 2^24 => 16,777,216 orders.
    uint256 internal constant MaxTreeHeight = 24;

    uint256 internal constant InvalidOpcode = 0xfe;
    uint256 internal constant OneWord = 0x20;
    uint256 internal constant OneWordShift = 5;
    uint256 internal constant AlmostOneWord = 0x1f;
    uint256 internal constant FreeMemoryPointerSlot = 0x40;

    /**
     * @dev Derive 24 bulk order EIP-712 typehashes, one for each supported
     *      tree height from 1 to 24, and write them to runtime code.
     */
    constructor() {
        // Declare an array where each type hash will be writter.
        bytes32[] memory typeHashes = new bytes32[](MaxTreeHeight);

        // Derive a string of 24 "[2]" substrings.
        bytes memory brackets = getMaxTreeBrackets(MaxTreeHeight);

        // Derive a string of subtypes for the order parameters.
        bytes memory subTypes = getTreeSubTypes();

        // Cache memory pointer before each loop so memory doesn't expand by the
        // full string size on each loop.
        uint256 freeMemoryPointer;
        assembly {
            freeMemoryPointer := mload(FreeMemoryPointerSlot)
        }

        // Iterate over each tree height.
        for (uint256 i = 0; i < MaxTreeHeight; ) {
            // The actual height is one greater than its respective index.
            uint256 height = i + 1;

            // Slice brackets length to size needed for `height`.
            assembly {
                mstore(brackets, mul(twoSubstringLength, height))
            }

            // Encode the type string for the BulkOrder struct.
            bytes memory bulkOrderTypeString = bytes.concat(
                "BulkOrder(OrderComponents",
                brackets,
                " tree)",
                subTypes
            );

            // Derive EIP712 type hash.
            bytes32 typeHash = keccak256(bulkOrderTypeString);
            typeHashes[i] = typeHash;

            // Reset the free memory pointer.
            assembly {
                mstore(FreeMemoryPointerSlot, freeMemoryPointer)
            }

            unchecked {
                ++i;
            }
        }

        assembly {
            // Overwrite length with zero to give the contract an INVALID prefix
            // and deploy the type hashes array as a contract.
            mstore(typeHashes, InvalidOpcode)

            return(
                add(typeHashes, AlmostOneWord),
                add(shl(OneWordShift, MaxTreeHeight), 1)
            )
        }
    }

    /**
     * @dev Internal pure function that returns a string of "[2]" substrings,
     *      with a number of substrings equal to the provided height.
     *
     * @param maxHeight The number of "[2]" substrings to include.
     *
     * @return A bytes array representing the string.
     */
    function getMaxTreeBrackets(
        uint256 maxHeight
    ) internal pure returns (bytes memory) {
        bytes memory suffixes = new bytes(twoSubstringLength * maxHeight);
        assembly {
            // Retrieve the pointer to the array head.
            let ptr := add(suffixes, OneWord)

            // Derive the terminal pointer.
            let endPtr := add(ptr, mul(maxHeight, twoSubstringLength))

            // Iterate over each pointer until terminal pointer is reached.
            for {

            } lt(ptr, endPtr) {
                ptr := add(ptr, twoSubstringLength)
            } {
                // Insert "[2]" substring directly at current pointer location.
                mstore(ptr, twoSubstring)
            }
        }

        // Return the fully populated array of substrings.
        return suffixes;
    }

    /**
     * @dev Internal pure function that returns a string of subtypes used in
     *      generating bulk order EIP-712 typehashes.
     *
     * @return A bytes array representing the string.
     */
    function getTreeSubTypes() internal pure returns (bytes memory) {
        // Construct the OfferItem type string.
        // prettier-ignore
        bytes memory offerItemTypeString = bytes(
                "OfferItem("
                    "uint8 itemType,"
                    "address token,"
                    "uint256 identifierOrCriteria,"
                    "uint256 startAmount,"
                    "uint256 endAmount"
                ")"
            );

        // Construct the ConsiderationItem type string.
        // prettier-ignore
        bytes memory considerationItemTypeString = bytes(
                "ConsiderationItem("
                    "uint8 itemType,"
                    "address token,"
                    "uint256 identifierOrCriteria,"
                    "uint256 startAmount,"
                    "uint256 endAmount,"
                    "address recipient"
                ")"
            );

        // Construct the OrderComponents type string, not including the above.
        // prettier-ignore
        bytes memory orderComponentsPartialTypeString = bytes(
                "OrderComponents("
                    "address offerer,"
                    "address zone,"
                    "OfferItem[] offer,"
                    "ConsiderationItem[] consideration,"
                    "uint8 orderType,"
                    "uint256 startTime,"
                    "uint256 endTime,"
                    "bytes32 zoneHash,"
                    "uint256 salt,"
                    "bytes32 conduitKey,"
                    "uint256 counter"
                ")"
            );

        // Return the combined string.
        return
            abi.encodePacked(
                considerationItemTypeString,
                offerItemTypeString,
                orderComponentsPartialTypeString
            );
    }
}

File 87 of 87 : ReentrancyErrors.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

/**
 * @title ReentrancyErrors
 * @author 0age
 * @notice ReentrancyErrors contains errors related to reentrancy.
 */
interface ReentrancyErrors {
    /**
     * @dev Revert with an error when a caller attempts to reenter a protected
     *      function.
     */
    error NoReentrantCalls();
}

Settings
{
  "remappings": [
    "ds-test/=lib/ds-test/src/",
    "manifoldxyz/=lib/manifoldxyz/contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@manifoldxyz/libraries-solidity/=lib/manifold-libraries-solidity/",
    "solmate/=lib/solmate/src/",
    "seaport/=lib/seaport/",
    "@opensea/=node_modules/@opensea/",
    "@rari-capital/solmate/=lib/seaport/lib/solmate/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "manifold-libraries-solidity/=lib/manifold-libraries-solidity/contracts/",
    "murky/=lib/seaport/lib/murky/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin/=lib/openzeppelin-contracts/contracts/",
    "upshot-oracle/=lib/upshot-oracle/contracts/",
    "weird-erc20/=lib/solmate/lib/weird-erc20/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "libraries": {}
}

Contract ABI

[{"inputs":[],"name":"DittoPoolMainAlreadyInitialized","type":"error"},{"inputs":[],"name":"DittoPoolMainInvalidAdminFeeRecipient","type":"error"},{"inputs":[{"internalType":"uint128","name":"basePrice","type":"uint128"}],"name":"DittoPoolMainInvalidBasePrice","type":"error"},{"inputs":[{"internalType":"uint128","name":"delta","type":"uint128"}],"name":"DittoPoolMainInvalidDelta","type":"error"},{"inputs":[],"name":"DittoPoolMainInvalidFee","type":"error"},{"inputs":[],"name":"DittoPoolMainInvalidMsgSender","type":"error"},{"inputs":[],"name":"DittoPoolMainInvalidOwnerOperation","type":"error"},{"inputs":[],"name":"DittoPoolMainInvalidPermitterData","type":"error"},{"inputs":[],"name":"DittoPoolMainNoDirectNftTransfers","type":"error"},{"inputs":[],"name":"DittoPoolMarketMakeInsufficientBalance","type":"error"},{"inputs":[],"name":"DittoPoolMarketMakeInvalidNftTokenId","type":"error"},{"inputs":[],"name":"DittoPoolMarketMakeMustDepositLiquidity","type":"error"},{"inputs":[],"name":"DittoPoolMarketMakeNotAuthorizedForLpId","type":"error"},{"inputs":[],"name":"DittoPoolMarketMakeOneLpPerPrivatePool","type":"error"},{"inputs":[],"name":"DittoPoolMarketMakeWrongPoolForLpId","type":"error"},{"inputs":[{"internalType":"enum CurveErrorCode","name":"error","type":"uint8"}],"name":"DittoPoolTradeBondingCurveError","type":"error"},{"inputs":[],"name":"DittoPoolTradeInTooManyTokens","type":"error"},{"inputs":[],"name":"DittoPoolTradeInsufficientBalanceToBuyNft","type":"error"},{"inputs":[],"name":"DittoPoolTradeInsufficientBalanceToPayFees","type":"error"},{"inputs":[],"name":"DittoPoolTradeInvalidTokenRecipient","type":"error"},{"inputs":[],"name":"DittoPoolTradeInvalidTokenSender","type":"error"},{"inputs":[],"name":"DittoPoolTradeNftAndCostDataLengthMismatch","type":"error"},{"inputs":[],"name":"DittoPoolTradeNftAndLpIdsMustBeSameLength","type":"error"},{"inputs":[],"name":"DittoPoolTradeNftIdDoesNotMatchSwapData","type":"error"},{"inputs":[{"internalType":"uint256","name":"nftId","type":"uint256"}],"name":"DittoPoolTradeNftNotOwnedByPool","type":"error"},{"inputs":[],"name":"DittoPoolTradeNoNftsProvided","type":"error"},{"inputs":[],"name":"DittoPoolTradeOutTooFewTokens","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"bytes32","name":"key","type":"bytes32"}],"name":"EnumerableMapNonexistentKey","type":"error"},{"inputs":[{"internalType":"string","name":"reason","type":"string"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"InvalidExtraData","type":"error"},{"inputs":[{"internalType":"address","name":"expectedFulfiller","type":"address"},{"internalType":"address","name":"actualFulfiller","type":"address"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"InvalidFulfiller","type":"error"},{"inputs":[{"internalType":"string","name":"","type":"string"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"InvalidOrderItems","type":"error"},{"inputs":[{"internalType":"bytes32","name":"digest","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"InvalidOrderSigner","type":"error"},{"inputs":[{"internalType":"uint256","name":"expectedLp","type":"uint256"},{"internalType":"uint256","name":"lpId","type":"uint256"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"LpNftOwnershipMismatch","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[],"name":"OwnerTwoStepNotOwner","type":"error"},{"inputs":[],"name":"OwnerTwoStepNotPendingOwner","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"uint256","name":"expiration","type":"uint256"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"SignatureExpired","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"SignerAlreadyAdded","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"SignerCannotBeReauthorized","type":"error"},{"inputs":[],"name":"SignerCannotBeZeroAddress","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"}],"name":"SignerNotActive","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"SignerNotPresent","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newAdminFee","type":"uint256"}],"name":"DittoPoolMainAdminChangedAdminFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"adminFeeRecipient","type":"address"}],"name":"DittoPoolMainAdminChangedAdminFeeRecipient","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint128","name":"newBasePrice","type":"uint128"}],"name":"DittoPoolMainAdminChangedBasePrice","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint128","name":"newDelta","type":"uint128"}],"name":"DittoPoolMainAdminChangedDelta","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newLpFee","type":"uint256"}],"name":"DittoPoolMainAdminChangedLpFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"template","type":"address"},{"indexed":false,"internalType":"address","name":"lpNft","type":"address"},{"indexed":false,"internalType":"address","name":"permitter","type":"address"}],"name":"DittoPoolMainPoolInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"liquidityProvider","type":"address"},{"indexed":false,"internalType":"uint256","name":"lpId","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"tokenDepositAmount","type":"uint256"},{"indexed":false,"internalType":"bytes","name":"referrer","type":"bytes"}],"name":"DittoPoolMarketMakeLiquidityAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"liquidityProvider","type":"address"},{"indexed":false,"internalType":"uint256","name":"lpId","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"tokenDepositAmount","type":"uint256"},{"indexed":false,"internalType":"address","name":"initialPositionTokenOwner","type":"address"},{"indexed":false,"internalType":"bytes","name":"referrer","type":"bytes"}],"name":"DittoPoolMarketMakeLiquidityCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"lpId","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"nftIds","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"tokenWithdrawAmount","type":"uint256"}],"name":"DittoPoolMarketMakeLiquidityRemoved","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"buyerLpId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nftId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"price","type":"uint256"},{"components":[{"internalType":"uint256","name":"lp","type":"uint256"},{"internalType":"uint256","name":"admin","type":"uint256"},{"internalType":"uint256","name":"protocol","type":"uint256"}],"indexed":false,"internalType":"struct Fee","name":"fee","type":"tuple"}],"name":"DittoPoolTradeSwappedNftForTokens","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"caller","type":"address"},{"components":[{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"},{"internalType":"uint256[]","name":"lpIds","type":"uint256[]"},{"internalType":"uint256","name":"minExpectedTokenOutput","type":"uint256"},{"internalType":"address","name":"nftSender","type":"address"},{"internalType":"address","name":"tokenRecipient","type":"address"},{"internalType":"bytes","name":"permitterData","type":"bytes"},{"internalType":"bytes","name":"swapData","type":"bytes"}],"indexed":false,"internalType":"struct SwapNftsForTokensArgs","name":"args","type":"tuple"},{"indexed":false,"internalType":"uint128","name":"newBasePrice","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"newDelta","type":"uint128"}],"name":"DittoPoolTradeSwappedNftsForTokens","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"sellerLpId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nftId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"price","type":"uint256"},{"components":[{"internalType":"uint256","name":"lp","type":"uint256"},{"internalType":"uint256","name":"admin","type":"uint256"},{"internalType":"uint256","name":"protocol","type":"uint256"}],"indexed":false,"internalType":"struct Fee","name":"fee","type":"tuple"}],"name":"DittoPoolTradeSwappedTokensForNft","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"caller","type":"address"},{"components":[{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"},{"internalType":"uint256","name":"maxExpectedTokenInput","type":"uint256"},{"internalType":"address","name":"tokenSender","type":"address"},{"internalType":"address","name":"nftRecipient","type":"address"},{"internalType":"bytes","name":"swapData","type":"bytes"}],"indexed":false,"internalType":"struct SwapTokensForNftsArgs","name":"args","type":"tuple"},{"indexed":false,"internalType":"uint128","name":"newBasePrice","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"newDelta","type":"uint128"}],"name":"DittoPoolTradeSwappedTokensForNfts","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"previousOwner","type":"address"}],"name":"OwnerTwoStepOwnerRenouncedOwnership","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"currentOwner","type":"address"},{"indexed":false,"internalType":"address","name":"newPendingOwner","type":"address"}],"name":"OwnerTwoStepOwnerStartedTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerTwoStepOwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnerTwoStepPendingOwnerAcceptedTransfer","type":"event"},{"anonymous":false,"inputs":[],"name":"SeaportCompatibleContractDeployed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"signer","type":"address"}],"name":"SignerAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"signer","type":"address"}],"name":"SignerRemoved","type":"event"},{"inputs":[],"name":"_privatePoolOwnerLpId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpId_","type":"uint256"},{"internalType":"uint256[]","name":"nftIdList_","type":"uint256[]"},{"internalType":"uint256","name":"tokenDepositAmount_","type":"uint256"},{"internalType":"bytes","name":"permitterData_","type":"bytes"},{"internalType":"bytes","name":"referrer_","type":"bytes"}],"name":"addLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"addSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"adminFee","outputs":[{"internalType":"uint96","name":"feeAdmin_","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"adminFeeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"basePrice","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bondingCurve","outputs":[{"internalType":"string","name":"curve","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint96","name":"newFeeAdmin_","type":"uint96"}],"name":"changeAdminFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newAdminFeeRecipient_","type":"address"}],"name":"changeAdminFeeRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint128","name":"newBasePrice_","type":"uint128"}],"name":"changeBasePrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint128","name":"newDelta_","type":"uint128"}],"name":"changeDelta","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint96","name":"newFeeLp_","type":"uint96"}],"name":"changeLpFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"lpRecipient_","type":"address"},{"internalType":"uint256[]","name":"nftIdList_","type":"uint256[]"},{"internalType":"uint256","name":"tokenDepositAmount_","type":"uint256"},{"internalType":"bytes","name":"permitterData_","type":"bytes"},{"internalType":"bytes","name":"referrer_","type":"bytes"}],"name":"createLiquidity","outputs":[{"internalType":"uint256","name":"lpId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"delta","outputs":[{"internalType":"uint128","name":"","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dittoPoolFactory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"fee","outputs":[{"internalType":"uint256","name":"fee_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllLpIdTokenBalances","outputs":[{"components":[{"internalType":"uint256","name":"lpId","type":"uint256"},{"internalType":"uint256","name":"tokenBalance","type":"uint256"}],"internalType":"struct LpIdToTokenBalance[]","name":"balances","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllPoolHeldNftIds","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllPoolLpIds","outputs":[{"internalType":"uint256[]","name":"lpIds","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"getBuyNftQuote","outputs":[{"internalType":"enum CurveErrorCode","name":"error","type":"uint8"},{"internalType":"uint256","name":"newBasePrice","type":"uint256"},{"internalType":"uint256","name":"newDelta","type":"uint256"},{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"components":[{"internalType":"bool","name":"specificNftId","type":"bool"},{"internalType":"uint256","name":"nftId","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"},{"components":[{"internalType":"uint256","name":"lp","type":"uint256"},{"internalType":"uint256","name":"admin","type":"uint256"},{"internalType":"uint256","name":"protocol","type":"uint256"}],"internalType":"struct Fee","name":"fee","type":"tuple"}],"internalType":"struct NftCostData[]","name":"nftCostData","type":"tuple[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"nftId_","type":"uint256"}],"name":"getLpIdForNftId","outputs":[{"internalType":"uint256","name":"lpId","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLpNft","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpId_","type":"uint256"}],"name":"getNftCountForLpId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpId_","type":"uint256"}],"name":"getNftIdsForLpId","outputs":[{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolTotalNftBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolTotalTokenBalance","outputs":[{"internalType":"uint256","name":"totalTokenBalance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSeaportMetadata","outputs":[{"internalType":"string","name":"name","type":"string"},{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"metadata","type":"bytes"}],"internalType":"struct Schema[]","name":"schemas","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"getSellNftQuote","outputs":[{"internalType":"enum CurveErrorCode","name":"error","type":"uint8"},{"internalType":"uint256","name":"newBasePrice","type":"uint256"},{"internalType":"uint256","name":"newDelta","type":"uint256"},{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"components":[{"internalType":"bool","name":"specificNftId","type":"bool"},{"internalType":"uint256","name":"nftId","type":"uint256"},{"internalType":"uint256","name":"price","type":"uint256"},{"components":[{"internalType":"uint256","name":"lp","type":"uint256"},{"internalType":"uint256","name":"admin","type":"uint256"},{"internalType":"uint256","name":"protocol","type":"uint256"}],"internalType":"struct Fee","name":"fee","type":"tuple"}],"internalType":"struct NftCostData[]","name":"nftCostData","type":"tuple[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpId_","type":"uint256"}],"name":"getTokenBalanceForLpId","outputs":[{"internalType":"uint256","name":"tokenBalance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpId_","type":"uint256"}],"name":"getTotalBalanceForLpId","outputs":[{"internalType":"uint256","name":"tokenBalance","type":"uint256"},{"internalType":"uint256","name":"nftBalance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bool","name":"isPrivatePool","type":"bool"},{"internalType":"uint256","name":"templateIndex","type":"uint256"},{"internalType":"address","name":"token","type":"address"},{"internalType":"address","name":"nft","type":"address"},{"internalType":"uint96","name":"feeLp","type":"uint96"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint96","name":"feeAdmin","type":"uint96"},{"internalType":"uint128","name":"delta","type":"uint128"},{"internalType":"uint128","name":"basePrice","type":"uint128"},{"internalType":"uint256[]","name":"nftIdList","type":"uint256[]"},{"internalType":"uint256","name":"initialTokenBalance","type":"uint256"},{"internalType":"bytes","name":"templateInitData","type":"bytes"},{"internalType":"bytes","name":"referrer","type":"bytes"}],"internalType":"struct PoolTemplate","name":"params_","type":"tuple"},{"internalType":"address","name":"template_","type":"address"},{"internalType":"contract LpNft","name":"lpNft_","type":"address"},{"internalType":"contract IPermitter","name":"permitter_","type":"address"}],"name":"initPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address payable","name":"marketplaceAddress","type":"address"}],"name":"invalidateOrders","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isPrivatePool","outputs":[{"internalType":"bool","name":"isPrivatePool_","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"digest","type":"bytes32"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"isValidSignature","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lpFee","outputs":[{"internalType":"uint96","name":"feeLp_","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nft","outputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"onERC721Received","outputs":[{"internalType":"bytes4","name":"","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"permitter","outputs":[{"internalType":"contract IPermitter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protocolFee","outputs":[{"internalType":"uint256","name":"feeProtocol_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"withdrawalAddress_","type":"address"},{"internalType":"uint256","name":"lpId_","type":"uint256"},{"internalType":"uint256[]","name":"nftIdList_","type":"uint256[]"},{"internalType":"uint256","name":"tokenWithdrawAmount_","type":"uint256"}],"name":"pullLiquidity","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"signer","type":"address"}],"name":"removeSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sip7Information","outputs":[{"internalType":"bytes32","name":"domainSeparator","type":"bytes32"},{"internalType":"string","name":"apiEndpoint","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"},{"internalType":"uint256[]","name":"lpIds","type":"uint256[]"},{"internalType":"uint256","name":"minExpectedTokenOutput","type":"uint256"},{"internalType":"address","name":"nftSender","type":"address"},{"internalType":"address","name":"tokenRecipient","type":"address"},{"internalType":"bytes","name":"permitterData","type":"bytes"},{"internalType":"bytes","name":"swapData","type":"bytes"}],"internalType":"struct SwapNftsForTokensArgs","name":"args_","type":"tuple"}],"name":"swapNftsForTokens","outputs":[{"internalType":"uint256","name":"outputAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256[]","name":"nftIds","type":"uint256[]"},{"internalType":"uint256","name":"maxExpectedTokenInput","type":"uint256"},{"internalType":"address","name":"tokenSender","type":"address"},{"internalType":"address","name":"nftRecipient","type":"address"},{"internalType":"bytes","name":"swapData","type":"bytes"}],"internalType":"struct SwapTokensForNftsArgs","name":"args_","type":"tuple"}],"name":"swapTokensForNfts","outputs":[{"internalType":"uint256","name":"inputAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"template","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"token","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newPendingOwner_","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newApiEndpoint","type":"string"}],"name":"updateAPIEndpoint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"address","name":"fulfiller","type":"address"},{"internalType":"address","name":"offerer","type":"address"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"internalType":"struct SpentItem[]","name":"offer","type":"tuple[]"},{"components":[{"internalType":"enum ItemType","name":"itemType","type":"uint8"},{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"identifier","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address payable","name":"recipient","type":"address"}],"internalType":"struct ReceivedItem[]","name":"consideration","type":"tuple[]"},{"internalType":"bytes","name":"extraData","type":"bytes"},{"internalType":"bytes32[]","name":"orderHashes","type":"bytes32[]"},{"internalType":"uint256","name":"startTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"},{"internalType":"bytes32","name":"zoneHash","type":"bytes32"}],"internalType":"struct ZoneParameters","name":"zoneParameters","type":"tuple"}],"name":"validateOrder","outputs":[{"internalType":"bytes4","name":"validOrderMagicValue","type":"bytes4"}],"stateMutability":"nonpayable","type":"function"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.