ETH Price: $3,183.98 (+1.64%)
 

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Exchange_underly...216593972025-01-19 15:21:479 days ago1737300107IN
0x9a81f5a6...977d80Bd5
0 ETH0.0238641468.26167778
Exchange_underly...209286202024-10-09 14:26:11111 days ago1728483971IN
0x9a81f5a6...977d80Bd5
0 ETH0.0103742128.10359676
Exchange_underly...207769542024-09-18 10:42:23132 days ago1726656143IN
0x9a81f5a6...977d80Bd5
0 ETH0.002272026.10377917
Exchange_underly...207640582024-09-16 15:26:11134 days ago1726500371IN
0x9a81f5a6...977d80Bd5
0 ETH0.0042075911.68068089
Exchange_underly...207286212024-09-11 16:40:35138 days ago1726072835IN
0x9a81f5a6...977d80Bd5
0 ETH0.000946042.72689258
Exchange_underly...204609922024-08-05 7:52:11176 days ago1722844331IN
0x9a81f5a6...977d80Bd5
0 ETH0.0114259244.47823585
Exchange_underly...204191302024-07-30 11:39:23182 days ago1722339563IN
0x9a81f5a6...977d80Bd5
0 ETH0.002037467.21033105
Add_liquidity204167732024-07-30 3:43:11182 days ago1722310991IN
0x9a81f5a6...977d80Bd5
0 ETH0.000404281.36975702
Exchange_underly...204167502024-07-30 3:38:23182 days ago1722310703IN
0x9a81f5a6...977d80Bd5
0 ETH0.000494791.52388594
Exchange_underly...202732482024-07-10 2:56:11202 days ago1720580171IN
0x9a81f5a6...977d80Bd5
0 ETH0.000746762.91266529
Exchange_underly...202516012024-07-07 2:18:11205 days ago1720318691IN
0x9a81f5a6...977d80Bd5
0 ETH0.000343341.21083865
Exchange_underly...201747822024-06-26 8:51:23216 days ago1719391883IN
0x9a81f5a6...977d80Bd5
0 ETH0.001223023.73108024
Exchange_underly...201021632024-06-16 5:08:47226 days ago1718514527IN
0x9a81f5a6...977d80Bd5
0 ETH0.001108493.14985277
Exchange_underly...200847782024-06-13 18:47:11228 days ago1718304431IN
0x9a81f5a6...977d80Bd5
0 ETH0.0029819810.61086126
Exchange_underly...200838092024-06-13 15:31:11229 days ago1718292671IN
0x9a81f5a6...977d80Bd5
0 ETH0.0069122621.14975483
Exchange_underly...199887152024-05-31 8:46:59242 days ago1717145219IN
0x9a81f5a6...977d80Bd5
0 ETH0.003086328.35267244
Exchange_underly...199883152024-05-31 7:26:23242 days ago1717140383IN
0x9a81f5a6...977d80Bd5
0 ETH0.002635517.14453149
Exchange_underly...199442472024-05-25 3:36:59248 days ago1716608219IN
0x9a81f5a6...977d80Bd5
0 ETH0.001339643.79733902
Exchange_underly...198947702024-05-18 5:32:11255 days ago1716010331IN
0x9a81f5a6...977d80Bd5
0 ETH0.000947833.2939641
Exchange_underly...198899992024-05-17 13:30:23256 days ago1715952623IN
0x9a81f5a6...977d80Bd5
0 ETH0.002418356.84460083
Exchange_underly...194586722024-03-18 2:20:23316 days ago1710728423IN
0x9a81f5a6...977d80Bd5
0 ETH0.0087023424.43793316
Exchange_underly...192982142024-02-24 15:02:47339 days ago1708786967IN
0x9a81f5a6...977d80Bd5
0 ETH0.0113555330.34738404
Exchange_underly...192685892024-02-20 11:22:23343 days ago1708428143IN
0x9a81f5a6...977d80Bd5
0 ETH0.004005529.69991737
Exchange_underly...192475032024-02-17 12:12:59346 days ago1708171979IN
0x9a81f5a6...977d80Bd5
0 ETH0.0064364317.20212719
Exchange_underly...192324972024-02-15 9:40:47348 days ago1707990047IN
0x9a81f5a6...977d80Bd5
0 ETH0.0070605818.17568285
View all transactions

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block
From
To
166761932023-02-21 10:10:59707 days ago1676974259  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0xa85461afc2deec01bda23b5cd267d51f765fba10

Contract Name:
Vyper_contract

Compiler Version
vyper:0.3.1

Optimization Enabled:
N/A

Other Settings:
default evmVersion, None license

Contract Source Code (Vyper language format)

# @version 0.3.1
# (c) Curve.Fi, 2021
# Pool for two crypto assets

# Universal implementation which can use both ETH and ERC20s
from vyper.interfaces import ERC20


interface Factory:
    def admin() -> address: view
    def fee_receiver() -> address: view

interface CurveToken:
    def totalSupply() -> uint256: view
    def mint(_to: address, _value: uint256) -> bool: nonpayable
    def mint_relative(_to: address, frac: uint256) -> uint256: nonpayable
    def burnFrom(_to: address, _value: uint256) -> bool: nonpayable

interface WETH:
    def deposit(): payable
    def withdraw(_amount: uint256): nonpayable


# Events
event TokenExchange:
    buyer: indexed(address)
    sold_id: uint256
    tokens_sold: uint256
    bought_id: uint256
    tokens_bought: uint256

event AddLiquidity:
    provider: indexed(address)
    token_amounts: uint256[N_COINS]
    fee: uint256
    token_supply: uint256

event RemoveLiquidity:
    provider: indexed(address)
    token_amounts: uint256[N_COINS]
    token_supply: uint256

event RemoveLiquidityOne:
    provider: indexed(address)
    token_amount: uint256
    coin_index: uint256
    coin_amount: uint256

event CommitNewParameters:
    deadline: indexed(uint256)
    admin_fee: uint256
    mid_fee: uint256
    out_fee: uint256
    fee_gamma: uint256
    allowed_extra_profit: uint256
    adjustment_step: uint256
    ma_half_time: uint256

event NewParameters:
    admin_fee: uint256
    mid_fee: uint256
    out_fee: uint256
    fee_gamma: uint256
    allowed_extra_profit: uint256
    adjustment_step: uint256
    ma_half_time: uint256

event RampAgamma:
    initial_A: uint256
    future_A: uint256
    initial_gamma: uint256
    future_gamma: uint256
    initial_time: uint256
    future_time: uint256

event StopRampA:
    current_A: uint256
    current_gamma: uint256
    time: uint256

event ClaimAdminFee:
    admin: indexed(address)
    tokens: uint256


ADMIN_ACTIONS_DELAY: constant(uint256) = 3 * 86400
MIN_RAMP_TIME: constant(uint256) = 86400

MAX_ADMIN_FEE: constant(uint256) = 10 * 10 ** 9
MIN_FEE: constant(uint256) = 5 * 10 ** 5  # 0.5 bps
MAX_FEE: constant(uint256) = 10 * 10 ** 9
MAX_A_CHANGE: constant(uint256) = 10
NOISE_FEE: constant(uint256) = 10**5  # 0.1 bps

MIN_GAMMA: constant(uint256) = 10**10
MAX_GAMMA: constant(uint256) = 2 * 10**16

MIN_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER / 10
MAX_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER * 100000

EXP_PRECISION: constant(uint256) = 10**10

N_COINS: constant(int128) = 2
PRECISION: constant(uint256) = 10 ** 18  # The precision to convert to
A_MULTIPLIER: constant(uint256) = 10000


# Implementation can be changed by changing this constant
WETH20: immutable(address)


token: public(address)
coins: public(address[N_COINS])

price_scale: public(uint256)   # Internal price scale
_price_oracle: uint256  # Price target given by MA

last_prices: public(uint256)
last_prices_timestamp: public(uint256)

initial_A_gamma: public(uint256)
future_A_gamma: public(uint256)
initial_A_gamma_time: public(uint256)
future_A_gamma_time: public(uint256)

allowed_extra_profit: public(uint256)  # 2 * 10**12 - recommended value
future_allowed_extra_profit: public(uint256)

fee_gamma: public(uint256)
future_fee_gamma: public(uint256)

adjustment_step: public(uint256)
future_adjustment_step: public(uint256)

ma_half_time: public(uint256)
future_ma_half_time: public(uint256)

mid_fee: public(uint256)
out_fee: public(uint256)
admin_fee: public(uint256)
future_mid_fee: public(uint256)
future_out_fee: public(uint256)
future_admin_fee: public(uint256)

balances: public(uint256[N_COINS])
D: public(uint256)

factory: public(address)

xcp_profit: public(uint256)
xcp_profit_a: public(uint256)  # Full profit at last claim of admin fees
virtual_price: public(uint256)  # Cached (fast to read) virtual price also used internally
not_adjusted: bool

admin_actions_deadline: public(uint256)

# This must be changed for different N_COINS
# For example:
# N_COINS = 3 -> 1  (10**18 -> 10**18)
# N_COINS = 4 -> 10**8  (10**18 -> 10**10)
# PRICE_PRECISION_MUL: constant(uint256) = 1
PRECISIONS: uint256  # packed


@external
def __init__(_weth: address):
    WETH20 = _weth
    self.mid_fee = 22022022


@payable
@external
def __default__():
    pass


# Internal Functions

@internal
@view
def _get_precisions() -> uint256[2]:
    p0: uint256 = self.PRECISIONS
    p1: uint256 = 10 ** shift(p0, -8)
    p0 = 10 ** bitwise_and(p0, 255)
    return [p0, p1]


@internal
@view
def xp() -> uint256[N_COINS]:
    precisions: uint256[2] = self._get_precisions()
    return [self.balances[0] * precisions[0],
            self.balances[1] * precisions[1] * self.price_scale / PRECISION]


@view
@internal
def _A_gamma() -> uint256[2]:
    t1: uint256 = self.future_A_gamma_time

    A_gamma_1: uint256 = self.future_A_gamma
    gamma1: uint256 = bitwise_and(A_gamma_1, 2**128-1)
    A1: uint256 = shift(A_gamma_1, -128)

    if block.timestamp < t1:
        # handle ramping up and down of A
        A_gamma_0: uint256 = self.initial_A_gamma
        t0: uint256 = self.initial_A_gamma_time

        # Less readable but more compact way of writing and converting to uint256
        # gamma0: uint256 = bitwise_and(A_gamma_0, 2**128-1)
        # A0: uint256 = shift(A_gamma_0, -128)
        # A1 = A0 + (A1 - A0) * (block.timestamp - t0) / (t1 - t0)
        # gamma1 = gamma0 + (gamma1 - gamma0) * (block.timestamp - t0) / (t1 - t0)

        t1 -= t0
        t0 = block.timestamp - t0
        t2: uint256 = t1 - t0

        A1 = (shift(A_gamma_0, -128) * t2 + A1 * t0) / t1
        gamma1 = (bitwise_and(A_gamma_0, 2**128-1) * t2 + gamma1 * t0) / t1

    return [A1, gamma1]


@internal
@view
def _fee(xp: uint256[N_COINS]) -> uint256:
    """
    f = fee_gamma / (fee_gamma + (1 - K))
    where
    K = prod(x) / (sum(x) / N)**N
    (all normalized to 1e18)
    """
    fee_gamma: uint256 = self.fee_gamma
    f: uint256 = xp[0] + xp[1]  # sum
    f = fee_gamma * 10**18 / (
        fee_gamma + 10**18 - (10**18 * N_COINS**N_COINS) * xp[0] / f * xp[1] / f
    )
    return (self.mid_fee * f + self.out_fee * (10**18 - f)) / 10**18


### Math functions
@internal
@pure
def geometric_mean(unsorted_x: uint256[N_COINS], sort: bool) -> uint256:
    """
    (x[0] * x[1] * ...) ** (1/N)
    """
    x: uint256[N_COINS] = unsorted_x
    if sort and x[0] < x[1]:
        x = [unsorted_x[1], unsorted_x[0]]
    D: uint256 = x[0]
    diff: uint256 = 0
    for i in range(255):
        D_prev: uint256 = D
        # tmp: uint256 = 10**18
        # for _x in x:
        #     tmp = tmp * _x / D
        # D = D * ((N_COINS - 1) * 10**18 + tmp) / (N_COINS * 10**18)
        # line below makes it for 2 coins
        D = (D + x[0] * x[1] / D) / N_COINS
        if D > D_prev:
            diff = D - D_prev
        else:
            diff = D_prev - D
        if diff <= 1 or diff * 10**18 < D:
            return D
    raise "Did not converge"


@internal
@view
def newton_D(ANN: uint256, gamma: uint256, x_unsorted: uint256[N_COINS]) -> uint256:
    """
    Finding the invariant using Newton method.
    ANN is higher by the factor A_MULTIPLIER
    ANN is already A * N**N

    Currently uses 60k gas
    """
    # Safety checks
    assert ANN > MIN_A - 1 and ANN < MAX_A + 1  # dev: unsafe values A
    assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1  # dev: unsafe values gamma

    # Initial value of invariant D is that for constant-product invariant
    x: uint256[N_COINS] = x_unsorted
    if x[0] < x[1]:
        x = [x_unsorted[1], x_unsorted[0]]

    assert x[0] > 10**9 - 1 and x[0] < 10**15 * 10**18 + 1  # dev: unsafe values x[0]
    assert x[1] * 10**18 / x[0] > 10**14-1  # dev: unsafe values x[i] (input)

    D: uint256 = N_COINS * self.geometric_mean(x, False)
    S: uint256 = x[0] + x[1]

    for i in range(255):
        D_prev: uint256 = D

        # K0: uint256 = 10**18
        # for _x in x:
        #     K0 = K0 * _x * N_COINS / D
        # collapsed for 2 coins
        K0: uint256 = (10**18 * N_COINS**2) * x[0] / D * x[1] / D

        _g1k0: uint256 = gamma + 10**18
        if _g1k0 > K0:
            _g1k0 = _g1k0 - K0 + 1
        else:
            _g1k0 = K0 - _g1k0 + 1

        # D / (A * N**N) * _g1k0**2 / gamma**2
        mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN

        # 2*N*K0 / _g1k0
        mul2: uint256 = (2 * 10**18) * N_COINS * K0 / _g1k0

        neg_fprime: uint256 = (S + S * mul2 / 10**18) + mul1 * N_COINS / K0 - mul2 * D / 10**18

        # D -= f / fprime
        D_plus: uint256 = D * (neg_fprime + S) / neg_fprime
        D_minus: uint256 = D*D / neg_fprime
        if 10**18 > K0:
            D_minus += D * (mul1 / neg_fprime) / 10**18 * (10**18 - K0) / K0
        else:
            D_minus -= D * (mul1 / neg_fprime) / 10**18 * (K0 - 10**18) / K0

        if D_plus > D_minus:
            D = D_plus - D_minus
        else:
            D = (D_minus - D_plus) / 2

        diff: uint256 = 0
        if D > D_prev:
            diff = D - D_prev
        else:
            diff = D_prev - D
        if diff * 10**14 < max(10**16, D):  # Could reduce precision for gas efficiency here
            # Test that we are safe with the next newton_y
            for _x in x:
                frac: uint256 = _x * 10**18 / D
                assert (frac > 10**16 - 1) and (frac < 10**20 + 1)  # dev: unsafe values x[i]
            return D

    raise "Did not converge"


@internal
@pure
def newton_y(ANN: uint256, gamma: uint256, x: uint256[N_COINS], D: uint256, i: uint256) -> uint256:
    """
    Calculating x[i] given other balances x[0..N_COINS-1] and invariant D
    ANN = A * N**N
    """
    # Safety checks
    assert ANN > MIN_A - 1 and ANN < MAX_A + 1  # dev: unsafe values A
    assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1  # dev: unsafe values gamma
    assert D > 10**17 - 1 and D < 10**15 * 10**18 + 1 # dev: unsafe values D

    x_j: uint256 = x[1 - i]
    y: uint256 = D**2 / (x_j * N_COINS**2)
    K0_i: uint256 = (10**18 * N_COINS) * x_j / D
    # S_i = x_j

    # frac = x_j * 1e18 / D => frac = K0_i / N_COINS
    assert (K0_i > 10**16*N_COINS - 1) and (K0_i < 10**20*N_COINS + 1)  # dev: unsafe values x[i]

    # x_sorted: uint256[N_COINS] = x
    # x_sorted[i] = 0
    # x_sorted = self.sort(x_sorted)  # From high to low
    # x[not i] instead of x_sorted since x_soted has only 1 element

    convergence_limit: uint256 = max(max(x_j / 10**14, D / 10**14), 100)

    for j in range(255):
        y_prev: uint256 = y

        K0: uint256 = K0_i * y * N_COINS / D
        S: uint256 = x_j + y

        _g1k0: uint256 = gamma + 10**18
        if _g1k0 > K0:
            _g1k0 = _g1k0 - K0 + 1
        else:
            _g1k0 = K0 - _g1k0 + 1

        # D / (A * N**N) * _g1k0**2 / gamma**2
        mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN

        # 2*K0 / _g1k0
        mul2: uint256 = 10**18 + (2 * 10**18) * K0 / _g1k0

        yfprime: uint256 = 10**18 * y + S * mul2 + mul1
        _dyfprime: uint256 = D * mul2
        if yfprime < _dyfprime:
            y = y_prev / 2
            continue
        else:
            yfprime -= _dyfprime
        fprime: uint256 = yfprime / y

        # y -= f / f_prime;  y = (y * fprime - f) / fprime
        # y = (yfprime + 10**18 * D - 10**18 * S) // fprime + mul1 // fprime * (10**18 - K0) // K0
        y_minus: uint256 = mul1 / fprime
        y_plus: uint256 = (yfprime + 10**18 * D) / fprime + y_minus * 10**18 / K0
        y_minus += 10**18 * S / fprime

        if y_plus < y_minus:
            y = y_prev / 2
        else:
            y = y_plus - y_minus

        diff: uint256 = 0
        if y > y_prev:
            diff = y - y_prev
        else:
            diff = y_prev - y
        if diff < max(convergence_limit, y / 10**14):
            frac: uint256 = y * 10**18 / D
            assert (frac > 10**16 - 1) and (frac < 10**20 + 1)  # dev: unsafe value for y
            return y

    raise "Did not converge"


@internal
@pure
def halfpow(power: uint256) -> uint256:
    """
    1e18 * 0.5 ** (power/1e18)

    Inspired by: https://github.com/balancer-labs/balancer-core/blob/master/contracts/BNum.sol#L128
    """
    intpow: uint256 = power / 10**18
    otherpow: uint256 = power - intpow * 10**18
    if intpow > 59:
        return 0
    result: uint256 = 10**18 / (2**intpow)
    if otherpow == 0:
        return result

    term: uint256 = 10**18
    x: uint256 = 5 * 10**17
    S: uint256 = 10**18
    neg: bool = False

    for i in range(1, 256):
        K: uint256 = i * 10**18
        c: uint256 = K - 10**18
        if otherpow > c:
            c = otherpow - c
            neg = not neg
        else:
            c -= otherpow
        term = term * (c * x / 10**18) / K
        if neg:
            S -= term
        else:
            S += term
        if term < EXP_PRECISION:
            return result * S / 10**18

    raise "Did not converge"
### end of Math functions


@internal
@view
def get_xcp(D: uint256) -> uint256:
    x: uint256[N_COINS] = [D / N_COINS, D * PRECISION / (self.price_scale * N_COINS)]
    return self.geometric_mean(x, True)


@internal
def _claim_admin_fees():
    A_gamma: uint256[2] = self._A_gamma()

    xcp_profit: uint256 = self.xcp_profit
    xcp_profit_a: uint256 = self.xcp_profit_a

    # Gulp here
    for i in range(N_COINS):
        coin: address = self.coins[i]
        if coin == WETH20:
            self.balances[i] = self.balance
        else:
            self.balances[i] = ERC20(coin).balanceOf(self)

    vprice: uint256 = self.virtual_price

    if xcp_profit > xcp_profit_a:
        fees: uint256 = (xcp_profit - xcp_profit_a) * self.admin_fee / (2 * 10**10)
        if fees > 0:
            receiver: address = Factory(self.factory).fee_receiver()
            if receiver != ZERO_ADDRESS:
                frac: uint256 = vprice * 10**18 / (vprice - fees) - 10**18
                claimed: uint256 = CurveToken(self.token).mint_relative(receiver, frac)
                xcp_profit -= fees*2
                self.xcp_profit = xcp_profit
                log ClaimAdminFee(receiver, claimed)

    total_supply: uint256 = CurveToken(self.token).totalSupply()

    # Recalculate D b/c we gulped
    D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], self.xp())
    self.D = D

    self.virtual_price = 10**18 * self.get_xcp(D) / total_supply

    if xcp_profit > xcp_profit_a:
        self.xcp_profit_a = xcp_profit


@internal
@view
def internal_price_oracle() -> uint256:
    price_oracle: uint256 = self._price_oracle
    last_prices_timestamp: uint256 = self.last_prices_timestamp

    if last_prices_timestamp < block.timestamp:
        ma_half_time: uint256 = self.ma_half_time
        last_prices: uint256 = self.last_prices
        alpha: uint256 = self.halfpow((block.timestamp - last_prices_timestamp) * 10**18 / ma_half_time)
        return (last_prices * (10**18 - alpha) + price_oracle * alpha) / 10**18

    else:
        return price_oracle


@internal
def tweak_price(A_gamma: uint256[2],_xp: uint256[N_COINS], p_i: uint256, new_D: uint256):
    price_oracle: uint256 = self._price_oracle
    last_prices: uint256 = self.last_prices
    price_scale: uint256 = self.price_scale
    last_prices_timestamp: uint256 = self.last_prices_timestamp
    p_new: uint256 = 0

    if last_prices_timestamp < block.timestamp:
        # MA update required
        ma_half_time: uint256 = self.ma_half_time
        alpha: uint256 = self.halfpow((block.timestamp - last_prices_timestamp) * 10**18 / ma_half_time)
        price_oracle = (last_prices * (10**18 - alpha) + price_oracle * alpha) / 10**18
        self._price_oracle = price_oracle
        self.last_prices_timestamp = block.timestamp

    D_unadjusted: uint256 = new_D  # Withdrawal methods know new D already
    if new_D == 0:
        # We will need this a few times (35k gas)
        D_unadjusted = self.newton_D(A_gamma[0], A_gamma[1], _xp)

    if p_i > 0:
        last_prices = p_i

    else:
        # calculate real prices
        __xp: uint256[N_COINS] = _xp
        dx_price: uint256 = __xp[0] / 10**6
        __xp[0] += dx_price
        last_prices = price_scale * dx_price / (_xp[1] - self.newton_y(A_gamma[0], A_gamma[1], __xp, D_unadjusted, 1))

    self.last_prices = last_prices

    total_supply: uint256 = CurveToken(self.token).totalSupply()
    old_xcp_profit: uint256 = self.xcp_profit
    old_virtual_price: uint256 = self.virtual_price

    # Update profit numbers without price adjustment first
    xp: uint256[N_COINS] = [D_unadjusted / N_COINS, D_unadjusted * PRECISION / (N_COINS * price_scale)]
    xcp_profit: uint256 = 10**18
    virtual_price: uint256 = 10**18

    if old_virtual_price > 0:
        xcp: uint256 = self.geometric_mean(xp, True)
        virtual_price = 10**18 * xcp / total_supply
        xcp_profit = old_xcp_profit * virtual_price / old_virtual_price

        t: uint256 = self.future_A_gamma_time
        if virtual_price < old_virtual_price and t == 0:
            raise "Loss"
        if t == 1:
            self.future_A_gamma_time = 0

    self.xcp_profit = xcp_profit

    norm: uint256 = price_oracle * 10**18 / price_scale
    if norm > 10**18:
        norm -= 10**18
    else:
        norm = 10**18 - norm
    adjustment_step: uint256 = max(self.adjustment_step, norm / 5)

    needs_adjustment: bool = self.not_adjusted
    # if not needs_adjustment and (virtual_price-10**18 > (xcp_profit-10**18)/2 + self.allowed_extra_profit):
    # (re-arrange for gas efficiency)
    if not needs_adjustment and (virtual_price * 2 - 10**18 > xcp_profit + 2*self.allowed_extra_profit) and (norm > adjustment_step) and (old_virtual_price > 0):
        needs_adjustment = True
        self.not_adjusted = True

    if needs_adjustment:
        if norm > adjustment_step and old_virtual_price > 0:
            p_new = (price_scale * (norm - adjustment_step) + adjustment_step * price_oracle) / norm

            # Calculate balances*prices
            xp = [_xp[0], _xp[1] * p_new / price_scale]

            # Calculate "extended constant product" invariant xCP and virtual price
            D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)
            xp = [D / N_COINS, D * PRECISION / (N_COINS * p_new)]
            # We reuse old_virtual_price here but it's not old anymore
            old_virtual_price = 10**18 * self.geometric_mean(xp, True) / total_supply

            # Proceed if we've got enough profit
            # if (old_virtual_price > 10**18) and (2 * (old_virtual_price - 10**18) > xcp_profit - 10**18):
            if (old_virtual_price > 10**18) and (2 * old_virtual_price - 10**18 > xcp_profit):
                self.price_scale = p_new
                self.D = D
                self.virtual_price = old_virtual_price

                return

            else:
                self.not_adjusted = False

                # Can instead do another flag variable if we want to save bytespace
                self.D = D_unadjusted
                self.virtual_price = virtual_price
                self._claim_admin_fees()

                return

    # If we are here, the price_scale adjustment did not happen
    # Still need to update the profit counter and D
    self.D = D_unadjusted
    self.virtual_price = virtual_price

    # norm appeared < adjustment_step after
    if needs_adjustment:
        self.not_adjusted = False
        self._claim_admin_fees()


@internal
def _exchange(sender: address, mvalue: uint256, i: uint256, j: uint256, dx: uint256, min_dy: uint256,
              use_eth: bool, receiver: address, callbacker: address, callback_sig: bytes32) -> uint256:
    assert i != j  # dev: coin index out of range
    assert i < N_COINS  # dev: coin index out of range
    assert j < N_COINS  # dev: coin index out of range
    assert dx > 0  # dev: do not exchange 0 coins

    A_gamma: uint256[2] = self._A_gamma()
    xp: uint256[N_COINS] = self.balances
    p: uint256 = 0
    dy: uint256 = 0

    in_coin: address = self.coins[i]
    out_coin: address = self.coins[j]

    y: uint256 = xp[j]
    x0: uint256 = xp[i]
    xp[i] = x0 + dx
    self.balances[i] = xp[i]

    price_scale: uint256 = self.price_scale
    precisions: uint256[2] = self._get_precisions()

    xp = [xp[0] * precisions[0], xp[1] * price_scale * precisions[1] / PRECISION]

    prec_i: uint256 = precisions[0]
    prec_j: uint256 = precisions[1]
    if i == 1:
        prec_i = precisions[1]
        prec_j = precisions[0]

    # In case ramp is happening
    t: uint256 = self.future_A_gamma_time
    if t > 0:
        x0 *= prec_i
        if i > 0:
            x0 = x0 * price_scale / PRECISION
        x1: uint256 = xp[i]  # Back up old value in xp
        xp[i] = x0
        self.D = self.newton_D(A_gamma[0], A_gamma[1], xp)
        xp[i] = x1  # And restore
        if block.timestamp >= t:
            self.future_A_gamma_time = 1

    dy = xp[j] - self.newton_y(A_gamma[0], A_gamma[1], xp, self.D, j)
    # Not defining new "y" here to have less variables / make subsequent calls cheaper
    xp[j] -= dy
    dy -= 1

    if j > 0:
        dy = dy * PRECISION / price_scale
    dy /= prec_j

    dy -= self._fee(xp) * dy / 10**10
    assert dy >= min_dy, "Slippage"
    y -= dy

    self.balances[j] = y

    # Do transfers in and out together
    # XXX coin vs ETH
    if use_eth and in_coin == WETH20:
        assert mvalue == dx  # dev: incorrect eth amount
    else:
        assert mvalue == 0  # dev: nonzero eth amount
        if callback_sig == EMPTY_BYTES32:
            response: Bytes[32] = raw_call(
                in_coin,
                _abi_encode(
                    sender, self, dx, method_id=method_id("transferFrom(address,address,uint256)")
                ),
                max_outsize=32,
            )
            if len(response) != 0:
                assert convert(response, bool)  # dev: failed transfer
        else:
            b: uint256 = ERC20(in_coin).balanceOf(self)
            raw_call(
                callbacker,
                concat(slice(callback_sig, 0, 4), _abi_encode(sender, receiver, in_coin, dx, dy))
            )
            assert ERC20(in_coin).balanceOf(self) - b == dx  # dev: callback didn't give us coins
        if in_coin == WETH20:
            WETH(WETH20).withdraw(dx)

    if use_eth and out_coin == WETH20:
        raw_call(receiver, b"", value=dy)
    else:
        if out_coin == WETH20:
            WETH(WETH20).deposit(value=dy)
        response: Bytes[32] = raw_call(
            out_coin,
            _abi_encode(receiver, dy, method_id=method_id("transfer(address,uint256)")),
            max_outsize=32,
        )
        if len(response) != 0:
            assert convert(response, bool)

    y *= prec_j
    if j > 0:
        y = y * price_scale / PRECISION
    xp[j] = y

    # Calculate price
    if dx > 10**5 and dy > 10**5:
        _dx: uint256 = dx * prec_i
        _dy: uint256 = dy * prec_j
        if i == 0:
            p = _dx * 10**18 / _dy
        else:  # j == 0
            p = _dy * 10**18 / _dx

    self.tweak_price(A_gamma, xp, p, 0)

    log TokenExchange(sender, i, dx, j, dy)

    return dy


@view
@internal
def _calc_token_fee(amounts: uint256[N_COINS], xp: uint256[N_COINS]) -> uint256:
    # fee = sum(amounts_i - avg(amounts)) * fee' / sum(amounts)
    fee: uint256 = self._fee(xp) * N_COINS / (4 * (N_COINS-1))
    S: uint256 = 0
    for _x in amounts:
        S += _x
    avg: uint256 = S / N_COINS
    Sdiff: uint256 = 0
    for _x in amounts:
        if _x > avg:
            Sdiff += _x - avg
        else:
            Sdiff += avg - _x
    return fee * Sdiff / S + NOISE_FEE


@internal
@view
def _calc_withdraw_one_coin(A_gamma: uint256[2], token_amount: uint256, i: uint256, update_D: bool,
                            calc_price: bool) -> (uint256, uint256, uint256, uint256[N_COINS]):
    token_supply: uint256 = CurveToken(self.token).totalSupply()
    assert token_amount <= token_supply  # dev: token amount more than supply
    assert i < N_COINS  # dev: coin out of range

    xx: uint256[N_COINS] = self.balances
    D0: uint256 = 0
    precisions: uint256[2] = self._get_precisions()

    price_scale_i: uint256 = self.price_scale * precisions[1]
    xp: uint256[N_COINS] = [xx[0] * precisions[0], xx[1] * price_scale_i / PRECISION]
    if i == 0:
        price_scale_i = PRECISION * precisions[0]

    if update_D:
        D0 = self.newton_D(A_gamma[0], A_gamma[1], xp)
    else:
        D0 = self.D

    D: uint256 = D0

    # Charge the fee on D, not on y, e.g. reducing invariant LESS than charging the user
    fee: uint256 = self._fee(xp)
    dD: uint256 = token_amount * D / token_supply
    D -= (dD - (fee * dD / (2 * 10**10) + 1))
    y: uint256 = self.newton_y(A_gamma[0], A_gamma[1], xp, D, i)
    dy: uint256 = (xp[i] - y) * PRECISION / price_scale_i
    xp[i] = y

    # Price calc
    p: uint256 = 0
    if calc_price and dy > 10**5 and token_amount > 10**5:
        # p_i = dD / D0 * sum'(p_k * x_k) / (dy - dD / D0 * y0)
        S: uint256 = 0
        precision: uint256 = precisions[0]
        if i == 1:
            S = xx[0] * precisions[0]
            precision = precisions[1]
        else:
            S = xx[1] * precisions[1]
        S = S * dD / D0
        p = S * PRECISION / (dy * precision - dD * xx[i] * precision / D0)
        if i == 0:
            p = (10**18)**2 / p

    return dy, p, D, xp


@internal
@pure
def sqrt_int(x: uint256) -> uint256:
    """
    Originating from: https://github.com/vyperlang/vyper/issues/1266
    """

    if x == 0:
        return 0

    z: uint256 = (x + 10**18) / 2
    y: uint256 = x

    for i in range(256):
        if z == y:
            return y
        y = z
        z = (x * 10**18 / z + z) / 2

    raise "Did not converge"


# External Functions


@payable
@external
@nonreentrant('lock')
def exchange(i: uint256, j: uint256, dx: uint256, min_dy: uint256,
             use_eth: bool = False, receiver: address = msg.sender) -> uint256:
    """
    Exchange using WETH by default
    """
    return self._exchange(msg.sender, msg.value, i, j, dx, min_dy, use_eth, receiver, ZERO_ADDRESS, EMPTY_BYTES32)


@payable
@external
@nonreentrant('lock')
def exchange_underlying(i: uint256, j: uint256, dx: uint256, min_dy: uint256,
                        receiver: address = msg.sender) -> uint256:
    """
    Exchange using ETH
    """
    return self._exchange(msg.sender, msg.value, i, j, dx, min_dy, True, receiver, ZERO_ADDRESS, EMPTY_BYTES32)


@payable
@external
@nonreentrant('lock')
def exchange_extended(i: uint256, j: uint256, dx: uint256, min_dy: uint256,
                      use_eth: bool, sender: address, receiver: address, cb: bytes32) -> uint256:
    assert cb != EMPTY_BYTES32  # dev: No callback specified
    return self._exchange(sender, msg.value, i, j, dx, min_dy, use_eth, receiver, msg.sender, cb)


@payable
@external
@nonreentrant('lock')
def add_liquidity(amounts: uint256[N_COINS], min_mint_amount: uint256,
                  use_eth: bool = False, receiver: address = msg.sender) -> uint256:
    assert amounts[0] > 0 or amounts[1] > 0  # dev: no coins to add

    A_gamma: uint256[2] = self._A_gamma()

    xp: uint256[N_COINS] = self.balances
    amountsp: uint256[N_COINS] = empty(uint256[N_COINS])
    xx: uint256[N_COINS] = empty(uint256[N_COINS])
    d_token: uint256 = 0
    d_token_fee: uint256 = 0
    old_D: uint256 = 0

    xp_old: uint256[N_COINS] = xp

    for i in range(N_COINS):
        bal: uint256 = xp[i] + amounts[i]
        xp[i] = bal
        self.balances[i] = bal
    xx = xp

    precisions: uint256[2] = self._get_precisions()

    price_scale: uint256 = self.price_scale * precisions[1]
    xp = [xp[0] * precisions[0], xp[1] * price_scale / PRECISION]
    xp_old = [xp_old[0] * precisions[0], xp_old[1] * price_scale / PRECISION]

    if not use_eth:
        assert msg.value == 0  # dev: nonzero eth amount

    for i in range(N_COINS):
        coin: address = self.coins[i]
        if use_eth and coin == WETH20:
            assert msg.value == amounts[i]  # dev: incorrect eth amount
        if amounts[i] > 0:
            if (not use_eth) or (coin != WETH20):
                response: Bytes[32] = raw_call(
                    coin,
                    _abi_encode(
                        msg.sender,
                        self,
                        amounts[i],
                        method_id=method_id("transferFrom(address,address,uint256)"),
                    ),
                    max_outsize=32,
                )
                if len(response) != 0:
                    assert convert(response, bool)  # dev: failed transfer
                if coin == WETH20:
                    WETH(WETH20).withdraw(amounts[i])
            amountsp[i] = xp[i] - xp_old[i]

    t: uint256 = self.future_A_gamma_time
    if t > 0:
        old_D = self.newton_D(A_gamma[0], A_gamma[1], xp_old)
        if block.timestamp >= t:
            self.future_A_gamma_time = 1
    else:
        old_D = self.D

    D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)

    lp_token: address = self.token
    token_supply: uint256 = CurveToken(lp_token).totalSupply()
    if old_D > 0:
        d_token = token_supply * D / old_D - token_supply
    else:
        d_token = self.get_xcp(D)  # making initial virtual price equal to 1
    assert d_token > 0  # dev: nothing minted

    if old_D > 0:
        d_token_fee = self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
        d_token -= d_token_fee
        token_supply += d_token
        CurveToken(lp_token).mint(receiver, d_token)

        # Calculate price
        # p_i * (dx_i - dtoken / token_supply * xx_i) = sum{k!=i}(p_k * (dtoken / token_supply * xx_k - dx_k))
        # Simplified for 2 coins
        p: uint256 = 0
        if d_token > 10**5:
            if amounts[0] == 0 or amounts[1] == 0:
                S: uint256 = 0
                precision: uint256 = 0
                ix: uint256 = 0
                if amounts[0] == 0:
                    S = xx[0] * precisions[0]
                    precision = precisions[1]
                    ix = 1
                else:
                    S = xx[1] * precisions[1]
                    precision = precisions[0]
                S = S * d_token / token_supply
                p = S * PRECISION / (amounts[ix] * precision - d_token * xx[ix] * precision / token_supply)
                if ix == 0:
                    p = (10**18)**2 / p

        self.tweak_price(A_gamma, xp, p, D)

    else:
        self.D = D
        self.virtual_price = 10**18
        self.xcp_profit = 10**18
        CurveToken(lp_token).mint(receiver, d_token)

    assert d_token >= min_mint_amount, "Slippage"

    log AddLiquidity(receiver, amounts, d_token_fee, token_supply)

    return d_token


@external
@nonreentrant('lock')
def remove_liquidity(_amount: uint256, min_amounts: uint256[N_COINS],
                     use_eth: bool = False, receiver: address = msg.sender):
    """
    This withdrawal method is very safe, does no complex math
    """
    lp_token: address = self.token
    total_supply: uint256 = CurveToken(lp_token).totalSupply()
    CurveToken(lp_token).burnFrom(msg.sender, _amount)
    balances: uint256[N_COINS] = self.balances
    amount: uint256 = _amount - 1  # Make rounding errors favoring other LPs a tiny bit

    for i in range(N_COINS):
        d_balance: uint256 = balances[i] * amount / total_supply
        assert d_balance >= min_amounts[i]
        self.balances[i] = balances[i] - d_balance
        balances[i] = d_balance  # now it's the amounts going out
        coin: address = self.coins[i]
        if use_eth and coin == WETH20:
            raw_call(receiver, b"", value=d_balance)
        else:
            if coin == WETH20:
                WETH(WETH20).deposit(value=d_balance)
            response: Bytes[32] = raw_call(
                coin,
                _abi_encode(receiver, d_balance, method_id=method_id("transfer(address,uint256)")),
                max_outsize=32,
            )
            if len(response) != 0:
                assert convert(response, bool)

    D: uint256 = self.D
    self.D = D - D * amount / total_supply

    log RemoveLiquidity(msg.sender, balances, total_supply - _amount)


@external
@nonreentrant('lock')
def remove_liquidity_one_coin(token_amount: uint256, i: uint256, min_amount: uint256,
                              use_eth: bool = False, receiver: address = msg.sender) -> uint256:
    A_gamma: uint256[2] = self._A_gamma()

    dy: uint256 = 0
    D: uint256 = 0
    p: uint256 = 0
    xp: uint256[N_COINS] = empty(uint256[N_COINS])
    future_A_gamma_time: uint256 = self.future_A_gamma_time
    dy, p, D, xp = self._calc_withdraw_one_coin(A_gamma, token_amount, i, (future_A_gamma_time > 0), True)
    assert dy >= min_amount, "Slippage"

    if block.timestamp >= future_A_gamma_time:
        self.future_A_gamma_time = 1

    self.balances[i] -= dy
    CurveToken(self.token).burnFrom(msg.sender, token_amount)

    coin: address = self.coins[i]
    if use_eth and coin == WETH20:
        raw_call(receiver, b"", value=dy)
    else:
        if coin == WETH20:
            WETH(WETH20).deposit(value=dy)
        response: Bytes[32] = raw_call(
            coin,
            _abi_encode(receiver, dy, method_id=method_id("transfer(address,uint256)")),
            max_outsize=32,
        )
        if len(response) != 0:
            assert convert(response, bool)

    self.tweak_price(A_gamma, xp, p, D)

    log RemoveLiquidityOne(msg.sender, token_amount, i, dy)

    return dy


@external
@nonreentrant('lock')
def claim_admin_fees():
    self._claim_admin_fees()


# Admin parameters
@external
def ramp_A_gamma(future_A: uint256, future_gamma: uint256, future_time: uint256):
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner
    assert block.timestamp > self.initial_A_gamma_time + (MIN_RAMP_TIME-1)
    assert future_time > block.timestamp + (MIN_RAMP_TIME-1)  # dev: insufficient time

    A_gamma: uint256[2] = self._A_gamma()
    initial_A_gamma: uint256 = shift(A_gamma[0], 128)
    initial_A_gamma = bitwise_or(initial_A_gamma, A_gamma[1])

    assert future_A > MIN_A-1
    assert future_A < MAX_A+1
    assert future_gamma > MIN_GAMMA-1
    assert future_gamma < MAX_GAMMA+1

    ratio: uint256 = 10**18 * future_A / A_gamma[0]
    assert ratio < 10**18 * MAX_A_CHANGE + 1
    assert ratio > 10**18 / MAX_A_CHANGE - 1

    ratio = 10**18 * future_gamma / A_gamma[1]
    assert ratio < 10**18 * MAX_A_CHANGE + 1
    assert ratio > 10**18 / MAX_A_CHANGE - 1

    self.initial_A_gamma = initial_A_gamma
    self.initial_A_gamma_time = block.timestamp

    future_A_gamma: uint256 = shift(future_A, 128)
    future_A_gamma = bitwise_or(future_A_gamma, future_gamma)
    self.future_A_gamma_time = future_time
    self.future_A_gamma = future_A_gamma

    log RampAgamma(A_gamma[0], future_A, A_gamma[1], future_gamma, block.timestamp, future_time)


@external
def stop_ramp_A_gamma():
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner

    A_gamma: uint256[2] = self._A_gamma()
    current_A_gamma: uint256 = shift(A_gamma[0], 128)
    current_A_gamma = bitwise_or(current_A_gamma, A_gamma[1])
    self.initial_A_gamma = current_A_gamma
    self.future_A_gamma = current_A_gamma
    self.initial_A_gamma_time = block.timestamp
    self.future_A_gamma_time = block.timestamp
    # now (block.timestamp < t1) is always False, so we return saved A

    log StopRampA(A_gamma[0], A_gamma[1], block.timestamp)


@external
def commit_new_parameters(
    _new_mid_fee: uint256,
    _new_out_fee: uint256,
    _new_admin_fee: uint256,
    _new_fee_gamma: uint256,
    _new_allowed_extra_profit: uint256,
    _new_adjustment_step: uint256,
    _new_ma_half_time: uint256,
    ):
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner
    assert self.admin_actions_deadline == 0  # dev: active action

    new_mid_fee: uint256 = _new_mid_fee
    new_out_fee: uint256 = _new_out_fee
    new_admin_fee: uint256 = _new_admin_fee
    new_fee_gamma: uint256 = _new_fee_gamma
    new_allowed_extra_profit: uint256 = _new_allowed_extra_profit
    new_adjustment_step: uint256 = _new_adjustment_step
    new_ma_half_time: uint256 = _new_ma_half_time

    # Fees
    if new_out_fee < MAX_FEE+1:
        assert new_out_fee > MIN_FEE-1  # dev: fee is out of range
    else:
        new_out_fee = self.out_fee
    if new_mid_fee > MAX_FEE:
        new_mid_fee = self.mid_fee
    assert new_mid_fee <= new_out_fee  # dev: mid-fee is too high
    if new_admin_fee > MAX_ADMIN_FEE:
        new_admin_fee = self.admin_fee

    # AMM parameters
    if new_fee_gamma < 10**18:
        assert new_fee_gamma > 0  # dev: fee_gamma out of range [1 .. 10**18]
    else:
        new_fee_gamma = self.fee_gamma
    if new_allowed_extra_profit > 10**18:
        new_allowed_extra_profit = self.allowed_extra_profit
    if new_adjustment_step > 10**18:
        new_adjustment_step = self.adjustment_step

    # MA
    if new_ma_half_time < 7*86400:
        assert new_ma_half_time > 0  # dev: MA time should be longer than 1 second
    else:
        new_ma_half_time = self.ma_half_time

    _deadline: uint256 = block.timestamp + ADMIN_ACTIONS_DELAY
    self.admin_actions_deadline = _deadline

    self.future_admin_fee = new_admin_fee
    self.future_mid_fee = new_mid_fee
    self.future_out_fee = new_out_fee
    self.future_fee_gamma = new_fee_gamma
    self.future_allowed_extra_profit = new_allowed_extra_profit
    self.future_adjustment_step = new_adjustment_step
    self.future_ma_half_time = new_ma_half_time

    log CommitNewParameters(_deadline, new_admin_fee, new_mid_fee, new_out_fee,
                            new_fee_gamma,
                            new_allowed_extra_profit, new_adjustment_step,
                            new_ma_half_time)


@external
@nonreentrant('lock')
def apply_new_parameters():
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner
    assert block.timestamp >= self.admin_actions_deadline  # dev: insufficient time
    assert self.admin_actions_deadline != 0  # dev: no active action

    self.admin_actions_deadline = 0

    admin_fee: uint256 = self.future_admin_fee
    if self.admin_fee != admin_fee:
        self._claim_admin_fees()
        self.admin_fee = admin_fee

    mid_fee: uint256 = self.future_mid_fee
    self.mid_fee = mid_fee
    out_fee: uint256 = self.future_out_fee
    self.out_fee = out_fee
    fee_gamma: uint256 = self.future_fee_gamma
    self.fee_gamma = fee_gamma
    allowed_extra_profit: uint256 = self.future_allowed_extra_profit
    self.allowed_extra_profit = allowed_extra_profit
    adjustment_step: uint256 = self.future_adjustment_step
    self.adjustment_step = adjustment_step
    ma_half_time: uint256 = self.future_ma_half_time
    self.ma_half_time = ma_half_time

    log NewParameters(admin_fee, mid_fee, out_fee,
                      fee_gamma,
                      allowed_extra_profit, adjustment_step,
                      ma_half_time)


@external
def revert_new_parameters():
    assert msg.sender == Factory(self.factory).admin()  # dev: only owner

    self.admin_actions_deadline = 0


# View Methods


@external
@view
def get_dy(i: uint256, j: uint256, dx: uint256) -> uint256:
    assert i != j  # dev: same input and output coin
    assert i < N_COINS  # dev: coin index out of range
    assert j < N_COINS  # dev: coin index out of range

    precisions: uint256[2] = self._get_precisions()

    price_scale: uint256 = self.price_scale * precisions[1]
    xp: uint256[N_COINS] = self.balances

    A_gamma: uint256[2] = self._A_gamma()
    D: uint256 = self.D
    if self.future_A_gamma_time > 0:
        D = self.newton_D(A_gamma[0], A_gamma[1], self.xp())

    xp[i] += dx
    xp = [xp[0] * precisions[0], xp[1] * price_scale / PRECISION]

    y: uint256 = self.newton_y(A_gamma[0], A_gamma[1], xp, D, j)
    dy: uint256 = xp[j] - y - 1
    xp[j] = y
    if j > 0:
        dy = dy * PRECISION / price_scale
    else:
        dy /= precisions[0]
    dy -= self._fee(xp) * dy / 10**10

    return dy


@view
@external
def calc_token_amount(amounts: uint256[N_COINS]) -> uint256:
    token_supply: uint256 = CurveToken(self.token).totalSupply()
    precisions: uint256[2] = self._get_precisions()
    price_scale: uint256 = self.price_scale * precisions[1]
    A_gamma: uint256[2] = self._A_gamma()
    xp: uint256[N_COINS] = self.xp()
    amountsp: uint256[N_COINS] = [
        amounts[0] * precisions[0],
        amounts[1] * price_scale / PRECISION]
    D0: uint256 = self.D
    if self.future_A_gamma_time > 0:
        D0 = self.newton_D(A_gamma[0], A_gamma[1], xp)
    xp[0] += amountsp[0]
    xp[1] += amountsp[1]
    D: uint256 = self.newton_D(A_gamma[0], A_gamma[1], xp)
    d_token: uint256 = token_supply * D / D0 - token_supply
    d_token -= self._calc_token_fee(amountsp, xp) * d_token / 10**10 + 1
    return d_token


@view
@external
def calc_withdraw_one_coin(token_amount: uint256, i: uint256) -> uint256:
    return self._calc_withdraw_one_coin(self._A_gamma(), token_amount, i, True, False)[0]


@external
@view
def lp_price() -> uint256:
    """
    Approximate LP token price
    """
    return 2 * self.virtual_price * self.sqrt_int(self.internal_price_oracle()) / 10**18


@view
@external
def A() -> uint256:
    return self._A_gamma()[0]


@view
@external
def gamma() -> uint256:
    return self._A_gamma()[1]


@external
@view
def fee() -> uint256:
    return self._fee(self.xp())


@external
@view
def get_virtual_price() -> uint256:
    return 10**18 * self.get_xcp(self.D) / CurveToken(self.token).totalSupply()


@external
@view
def price_oracle() -> uint256:
    return self.internal_price_oracle()


# Initializer


@external
def initialize(
    A: uint256,
    gamma: uint256,
    mid_fee: uint256,
    out_fee: uint256,
    allowed_extra_profit: uint256,
    fee_gamma: uint256,
    adjustment_step: uint256,
    admin_fee: uint256,
    ma_half_time: uint256,
    initial_price: uint256,
    _token: address,
    _coins: address[N_COINS],
    _precisions: uint256,
):
    assert self.mid_fee == 0  # dev: check that we call it from factory

    self.factory = msg.sender

    # Pack A and gamma:
    # shifted A + gamma
    A_gamma: uint256 = shift(A, 128)
    A_gamma = bitwise_or(A_gamma, gamma)
    self.initial_A_gamma = A_gamma
    self.future_A_gamma = A_gamma

    self.mid_fee = mid_fee
    self.out_fee = out_fee
    self.allowed_extra_profit = allowed_extra_profit
    self.fee_gamma = fee_gamma
    self.adjustment_step = adjustment_step
    self.admin_fee = admin_fee

    self.price_scale = initial_price
    self._price_oracle = initial_price
    self.last_prices = initial_price
    self.last_prices_timestamp = block.timestamp
    self.ma_half_time = ma_half_time

    self.xcp_profit_a = 10**18

    self.token = _token
    self.coins = _coins
    self.PRECISIONS = _precisions

Contract ABI

[{"name":"TokenExchange","inputs":[{"name":"buyer","type":"address","indexed":true},{"name":"sold_id","type":"uint256","indexed":false},{"name":"tokens_sold","type":"uint256","indexed":false},{"name":"bought_id","type":"uint256","indexed":false},{"name":"tokens_bought","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"AddLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"fee","type":"uint256","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidity","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amounts","type":"uint256[2]","indexed":false},{"name":"token_supply","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RemoveLiquidityOne","inputs":[{"name":"provider","type":"address","indexed":true},{"name":"token_amount","type":"uint256","indexed":false},{"name":"coin_index","type":"uint256","indexed":false},{"name":"coin_amount","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"CommitNewParameters","inputs":[{"name":"deadline","type":"uint256","indexed":true},{"name":"admin_fee","type":"uint256","indexed":false},{"name":"mid_fee","type":"uint256","indexed":false},{"name":"out_fee","type":"uint256","indexed":false},{"name":"fee_gamma","type":"uint256","indexed":false},{"name":"allowed_extra_profit","type":"uint256","indexed":false},{"name":"adjustment_step","type":"uint256","indexed":false},{"name":"ma_half_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"NewParameters","inputs":[{"name":"admin_fee","type":"uint256","indexed":false},{"name":"mid_fee","type":"uint256","indexed":false},{"name":"out_fee","type":"uint256","indexed":false},{"name":"fee_gamma","type":"uint256","indexed":false},{"name":"allowed_extra_profit","type":"uint256","indexed":false},{"name":"adjustment_step","type":"uint256","indexed":false},{"name":"ma_half_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"RampAgamma","inputs":[{"name":"initial_A","type":"uint256","indexed":false},{"name":"future_A","type":"uint256","indexed":false},{"name":"initial_gamma","type":"uint256","indexed":false},{"name":"future_gamma","type":"uint256","indexed":false},{"name":"initial_time","type":"uint256","indexed":false},{"name":"future_time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"StopRampA","inputs":[{"name":"current_A","type":"uint256","indexed":false},{"name":"current_gamma","type":"uint256","indexed":false},{"name":"time","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"name":"ClaimAdminFee","inputs":[{"name":"admin","type":"address","indexed":true},{"name":"tokens","type":"uint256","indexed":false}],"anonymous":false,"type":"event"},{"stateMutability":"nonpayable","type":"constructor","inputs":[{"name":"_weth","type":"address"}],"outputs":[]},{"stateMutability":"payable","type":"fallback"},{"stateMutability":"payable","type":"function","name":"exchange","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"},{"name":"use_eth","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange_underlying","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange_underlying","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"exchange_extended","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"},{"name":"min_dy","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"sender","type":"address"},{"name":"receiver","type":"address"},{"name":"cb","type":"bytes32"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"add_liquidity","inputs":[{"name":"amounts","type":"uint256[2]"},{"name":"min_mint_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"add_liquidity","inputs":[{"name":"amounts","type":"uint256[2]"},{"name":"min_mint_amount","type":"uint256"},{"name":"use_eth","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"payable","type":"function","name":"add_liquidity","inputs":[{"name":"amounts","type":"uint256[2]"},{"name":"min_mint_amount","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_amount","type":"uint256"},{"name":"min_amounts","type":"uint256[2]"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_amount","type":"uint256"},{"name":"min_amounts","type":"uint256[2]"},{"name":"use_eth","type":"bool"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity","inputs":[{"name":"_amount","type":"uint256"},{"name":"min_amounts","type":"uint256[2]"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"token_amount","type":"uint256"},{"name":"i","type":"uint256"},{"name":"min_amount","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"token_amount","type":"uint256"},{"name":"i","type":"uint256"},{"name":"min_amount","type":"uint256"},{"name":"use_eth","type":"bool"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"remove_liquidity_one_coin","inputs":[{"name":"token_amount","type":"uint256"},{"name":"i","type":"uint256"},{"name":"min_amount","type":"uint256"},{"name":"use_eth","type":"bool"},{"name":"receiver","type":"address"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"claim_admin_fees","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"ramp_A_gamma","inputs":[{"name":"future_A","type":"uint256"},{"name":"future_gamma","type":"uint256"},{"name":"future_time","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"stop_ramp_A_gamma","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"commit_new_parameters","inputs":[{"name":"_new_mid_fee","type":"uint256"},{"name":"_new_out_fee","type":"uint256"},{"name":"_new_admin_fee","type":"uint256"},{"name":"_new_fee_gamma","type":"uint256"},{"name":"_new_allowed_extra_profit","type":"uint256"},{"name":"_new_adjustment_step","type":"uint256"},{"name":"_new_ma_half_time","type":"uint256"}],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"apply_new_parameters","inputs":[],"outputs":[]},{"stateMutability":"nonpayable","type":"function","name":"revert_new_parameters","inputs":[],"outputs":[]},{"stateMutability":"view","type":"function","name":"get_dy","inputs":[{"name":"i","type":"uint256"},{"name":"j","type":"uint256"},{"name":"dx","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"calc_token_amount","inputs":[{"name":"amounts","type":"uint256[2]"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"calc_withdraw_one_coin","inputs":[{"name":"token_amount","type":"uint256"},{"name":"i","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"lp_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"A","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"get_virtual_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"price_oracle","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"nonpayable","type":"function","name":"initialize","inputs":[{"name":"A","type":"uint256"},{"name":"gamma","type":"uint256"},{"name":"mid_fee","type":"uint256"},{"name":"out_fee","type":"uint256"},{"name":"allowed_extra_profit","type":"uint256"},{"name":"fee_gamma","type":"uint256"},{"name":"adjustment_step","type":"uint256"},{"name":"admin_fee","type":"uint256"},{"name":"ma_half_time","type":"uint256"},{"name":"initial_price","type":"uint256"},{"name":"_token","type":"address"},{"name":"_coins","type":"address[2]"},{"name":"_precisions","type":"uint256"}],"outputs":[]},{"stateMutability":"view","type":"function","name":"token","inputs":[],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"coins","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"price_scale","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"last_prices","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"last_prices_timestamp","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"initial_A_gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_A_gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"initial_A_gamma_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_A_gamma_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"allowed_extra_profit","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_allowed_extra_profit","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"fee_gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_fee_gamma","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"adjustment_step","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_adjustment_step","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"ma_half_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_ma_half_time","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"mid_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"out_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"admin_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_mid_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_out_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"future_admin_fee","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"balances","inputs":[{"name":"arg0","type":"uint256"}],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"D","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"factory","inputs":[],"outputs":[{"name":"","type":"address"}]},{"stateMutability":"view","type":"function","name":"xcp_profit","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"xcp_profit_a","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"virtual_price","inputs":[],"outputs":[{"name":"","type":"uint256"}]},{"stateMutability":"view","type":"function","name":"admin_actions_deadline","inputs":[],"outputs":[{"name":"","type":"uint256"}]}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.