Overview
ETH Balance
0 ETH
Eth Value
$0.00Token Holdings
More Info
Private Name Tags
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Withdraw | 12372260 | 1336 days ago | IN | 0 ETH | 0.00322522 |
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
12372254 | 1336 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xd105b6b42206dfa6db00e6a4823bc88efac00476
Contract Name:
ChannelMastercopy
Compiler Version
v0.7.1+commit.f4a555be
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./interfaces/IVectorChannel.sol"; import "./CMCCore.sol"; import "./CMCAsset.sol"; import "./CMCDeposit.sol"; import "./CMCWithdraw.sol"; import "./CMCAdjudicator.sol"; /// @title ChannelMastercopy /// @author Connext <[email protected]> /// @notice Contains the logic used by all Vector multisigs. A proxy to this /// contract is deployed per-channel using the ChannelFactory.sol. /// Supports channel adjudication logic, deposit logic, and arbitrary /// calls when a commitment is double-signed. contract ChannelMastercopy is CMCCore, CMCAsset, CMCDeposit, CMCWithdraw, CMCAdjudicator, IVectorChannel { }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./ICMCCore.sol"; import "./ICMCAsset.sol"; import "./ICMCDeposit.sol"; import "./ICMCWithdraw.sol"; import "./ICMCAdjudicator.sol"; interface IVectorChannel is ICMCCore, ICMCAsset, ICMCDeposit, ICMCWithdraw, ICMCAdjudicator {}
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./LibERC20.sol"; import "./LibUtils.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /// @title LibAsset /// @author Connext <[email protected]> /// @notice This library contains helpers for dealing with onchain transfers /// of in-channel assets. It is designed to safely handle all asset /// transfers out of channel in the event of an onchain dispute. Also /// safely handles ERC20 transfers that may be non-compliant library LibAsset { address constant ETHER_ASSETID = address(0); function isEther(address assetId) internal pure returns (bool) { return assetId == ETHER_ASSETID; } function getOwnBalance(address assetId) internal view returns (uint256) { return isEther(assetId) ? address(this).balance : IERC20(assetId).balanceOf(address(this)); } function transferEther(address payable recipient, uint256 amount) internal returns (bool) { (bool success, bytes memory returnData) = recipient.call{value: amount}(""); LibUtils.revertIfCallFailed(success, returnData); return true; } function transferERC20( address assetId, address recipient, uint256 amount ) internal returns (bool) { return LibERC20.transfer(assetId, recipient, amount); } // This function is a wrapper for transfers of Ether or ERC20 tokens, // both standard-compliant ones as well as tokens that exhibit the // missing-return-value bug. // Although it behaves very much like Solidity's `transfer` function // or the ERC20 `transfer` and is, in fact, designed to replace direct // usage of those, it is deliberately named `unregisteredTransfer`, // because we need to register every transfer out of the channel. // Therefore, it should normally not be used directly, with the single // exception of the `transferAsset` function in `CMCAsset.sol`, // which combines the "naked" unregistered transfer given below // with a registration. // USING THIS FUNCTION SOMEWHERE ELSE IS PROBABLY WRONG! function unregisteredTransfer( address assetId, address payable recipient, uint256 amount ) internal returns (bool) { return isEther(assetId) ? transferEther(recipient, amount) : transferERC20(assetId, recipient, amount); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./LibUtils.sol"; import "@openzeppelin/contracts/utils/Address.sol"; /// @title LibERC20 /// @author Connext <[email protected]> /// @notice This library provides several functions to safely handle /// noncompliant tokens (i.e. does not return a boolean from /// the transfer function) library LibERC20 { function wrapCall(address assetId, bytes memory callData) internal returns (bool) { require(Address.isContract(assetId), "LibERC20: NO_CODE"); (bool success, bytes memory returnData) = assetId.call(callData); LibUtils.revertIfCallFailed(success, returnData); return returnData.length == 0 || abi.decode(returnData, (bool)); } function approve( address assetId, address spender, uint256 amount ) internal returns (bool) { return wrapCall( assetId, abi.encodeWithSignature( "approve(address,uint256)", spender, amount ) ); } function transferFrom( address assetId, address sender, address recipient, uint256 amount ) internal returns (bool) { return wrapCall( assetId, abi.encodeWithSignature( "transferFrom(address,address,uint256)", sender, recipient, amount ) ); } function transfer( address assetId, address recipient, uint256 amount ) internal returns (bool) { return wrapCall( assetId, abi.encodeWithSignature( "transfer(address,uint256)", recipient, amount ) ); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; interface ICMCCore { function setup(address _alice, address _bob) external; function getAlice() external view returns (address); function getBob() external view returns (address); }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; interface ICMCAsset { function getTotalTransferred(address assetId) external view returns (uint256); function getExitableAmount(address assetId, address owner) external view returns (uint256); function exit( address assetId, address owner, address payable recipient ) external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; interface ICMCDeposit { event AliceDeposited(address assetId, uint256 amount); function getTotalDepositsAlice(address assetId) external view returns (uint256); function getTotalDepositsBob(address assetId) external view returns (uint256); function depositAlice(address assetId, uint256 amount) external payable; }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; struct WithdrawData { address channelAddress; address assetId; address payable recipient; uint256 amount; uint256 nonce; address callTo; bytes callData; } interface ICMCWithdraw { function getWithdrawalTransactionRecord(WithdrawData calldata wd) external view returns (bool); function withdraw( WithdrawData calldata wd, bytes calldata aliceSignature, bytes calldata bobSignature ) external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./Types.sol"; interface ICMCAdjudicator { struct CoreChannelState { address channelAddress; address alice; address bob; address[] assetIds; Balance[] balances; uint256[] processedDepositsA; uint256[] processedDepositsB; uint256[] defundNonces; uint256 timeout; uint256 nonce; bytes32 merkleRoot; } struct CoreTransferState { address channelAddress; bytes32 transferId; address transferDefinition; address initiator; address responder; address assetId; Balance balance; uint256 transferTimeout; bytes32 initialStateHash; } struct ChannelDispute { bytes32 channelStateHash; uint256 nonce; bytes32 merkleRoot; uint256 consensusExpiry; uint256 defundExpiry; } struct TransferDispute { bytes32 transferStateHash; uint256 transferDisputeExpiry; bool isDefunded; } event ChannelDisputed( address disputer, CoreChannelState state, ChannelDispute dispute ); event ChannelDefunded( address defunder, CoreChannelState state, ChannelDispute dispute, address[] assetIds ); event TransferDisputed( address disputer, CoreTransferState state, TransferDispute dispute ); event TransferDefunded( address defunder, CoreTransferState state, TransferDispute dispute, bytes encodedInitialState, bytes encodedResolver, Balance balance ); function getChannelDispute() external view returns (ChannelDispute memory); function getDefundNonce(address assetId) external view returns (uint256); function getTransferDispute(bytes32 transferId) external view returns (TransferDispute memory); function disputeChannel( CoreChannelState calldata ccs, bytes calldata aliceSignature, bytes calldata bobSignature ) external; function defundChannel( CoreChannelState calldata ccs, address[] calldata assetIds, uint256[] calldata indices ) external; function disputeTransfer( CoreTransferState calldata cts, bytes32[] calldata merkleProofData ) external; function defundTransfer( CoreTransferState calldata cts, bytes calldata encodedInitialTransferState, bytes calldata encodedTransferResolver, bytes calldata responderSignature ) external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; struct Balance { uint256[2] amount; // [alice, bob] in channel, [initiator, responder] in transfer address payable[2] to; // [alice, bob] in channel, [initiator, responder] in transfer }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; /// @title LibUtils /// @author Connext <[email protected]> /// @notice Contains a helper to revert if a call was not successfully /// made library LibUtils { // If success is false, reverts and passes on the revert string. function revertIfCallFailed(bool success, bytes memory returnData) internal pure { if (!success) { assembly { revert(add(returnData, 0x20), mload(returnData)) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../../GSN/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol) { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./interfaces/ICMCDeposit.sol"; import "./CMCCore.sol"; import "./CMCAsset.sol"; import "./lib/LibAsset.sol"; import "./lib/LibERC20.sol"; /// @title CMCDeposit /// @author Connext <[email protected]> /// @notice Contains logic supporting channel multisig deposits. Channel /// funding is asymmetric, with `alice` having to call a deposit /// function which tracks the total amount she has deposited so far, /// and any other funds in the multisig being attributed to `bob`. contract CMCDeposit is CMCCore, CMCAsset, ICMCDeposit { mapping(address => uint256) private depositsAlice; receive() external payable onlyViaProxy nonReentrant {} function getTotalDepositsAlice(address assetId) external view override onlyViaProxy nonReentrantView returns (uint256) { return _getTotalDepositsAlice(assetId); } function _getTotalDepositsAlice(address assetId) internal view returns (uint256) { return depositsAlice[assetId]; } function getTotalDepositsBob(address assetId) external view override onlyViaProxy nonReentrantView returns (uint256) { return _getTotalDepositsBob(assetId); } // Calculated using invariant onchain properties. Note we DONT use safemath here function _getTotalDepositsBob(address assetId) internal view returns (uint256) { return LibAsset.getOwnBalance(assetId) + totalTransferred[assetId] - depositsAlice[assetId]; } function depositAlice(address assetId, uint256 amount) external payable override onlyViaProxy nonReentrant { if (LibAsset.isEther(assetId)) { require(msg.value == amount, "CMCDeposit: VALUE_MISMATCH"); } else { // If ETH is sent along, it will be attributed to bob require(msg.value == 0, "CMCDeposit: ETH_WITH_ERC_TRANSFER"); require( LibERC20.transferFrom( assetId, msg.sender, address(this), amount ), "CMCDeposit: ERC20_TRANSFER_FAILED" ); } // NOTE: explicitly do NOT use safemath here depositsAlice[assetId] += amount; emit AliceDeposited(assetId, amount); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./interfaces/ICMCCore.sol"; import "./ReentrancyGuard.sol"; /// @title CMCCore /// @author Connext <[email protected]> /// @notice Contains logic pertaining to the participants of a channel, /// including setting and retrieving the participants and the /// mastercopy. contract CMCCore is ReentrancyGuard, ICMCCore { address private immutable mastercopyAddress; address internal alice; address internal bob; /// @notice Set invalid participants to block the mastercopy from being used directly /// Nonzero address also prevents the mastercopy from being setup /// Only setting alice is sufficient, setting bob too wouldn't change anything constructor() { mastercopyAddress = address(this); } // Prevents us from calling methods directly from the mastercopy contract modifier onlyViaProxy { require( address(this) != mastercopyAddress, "Mastercopy: ONLY_VIA_PROXY" ); _; } /// @notice Contract constructor for Proxied copies /// @param _alice: Address representing user with function deposit /// @param _bob: Address representing user with multisig deposit function setup(address _alice, address _bob) external override onlyViaProxy { require(alice == address(0), "CMCCore: ALREADY_SETUP"); require( _alice != address(0) && _bob != address(0), "CMCCore: INVALID_PARTICIPANT" ); require(_alice != _bob, "CMCCore: IDENTICAL_PARTICIPANTS"); ReentrancyGuard.setup(); alice = _alice; bob = _bob; } /// @notice A getter function for the bob of the multisig /// @return Bob's signer address function getAlice() external view override onlyViaProxy nonReentrantView returns (address) { return alice; } /// @notice A getter function for the bob of the multisig /// @return Alice's signer address function getBob() external view override onlyViaProxy nonReentrantView returns (address) { return bob; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./interfaces/ICMCAsset.sol"; import "./interfaces/Types.sol"; import "./CMCCore.sol"; import "./lib/LibAsset.sol"; import "./lib/LibMath.sol"; import "@openzeppelin/contracts/math/Math.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; /// @title CMCAsset /// @author Connext <[email protected]> /// @notice Contains logic to safely transfer channel assets (even if they are /// noncompliant). During adjudication, balances from defunding the /// channel or defunding transfers are registered as withdrawable. Once /// they are registered, the owner (or a watchtower on behalf of the /// owner), may call `exit` to reclaim funds from the multisig. contract CMCAsset is CMCCore, ICMCAsset { using SafeMath for uint256; using LibMath for uint256; mapping(address => uint256) internal totalTransferred; mapping(address => mapping(address => uint256)) private exitableAmount; function registerTransfer(address assetId, uint256 amount) internal { totalTransferred[assetId] += amount; } function getTotalTransferred(address assetId) external view override onlyViaProxy nonReentrantView returns (uint256) { return totalTransferred[assetId]; } function makeExitable( address assetId, address recipient, uint256 amount ) internal { exitableAmount[assetId][ recipient ] = exitableAmount[assetId][recipient].satAdd(amount); } function makeBalanceExitable( address assetId, Balance memory balance ) internal { for (uint256 i = 0; i < 2; i++) { uint256 amount = balance.amount[i]; if (amount > 0) { makeExitable(assetId, balance.to[i], amount); } } } function getExitableAmount(address assetId, address owner) external view override onlyViaProxy nonReentrantView returns (uint256) { return exitableAmount[assetId][owner]; } function getAvailableAmount(address assetId, uint256 maxAmount) internal view returns (uint256) { // Taking the min protects against the case where the multisig // holds less than the amount that is trying to be withdrawn // while still allowing the total of the funds to be removed // without the transaction reverting. return Math.min(maxAmount, LibAsset.getOwnBalance(assetId)); } function transferAsset( address assetId, address payable recipient, uint256 amount ) internal { registerTransfer(assetId, amount); require( LibAsset.unregisteredTransfer(assetId, recipient, amount), "CMCAsset: TRANSFER_FAILED" ); } function exit( address assetId, address owner, address payable recipient ) external override onlyViaProxy nonReentrant { // Either the owner must be the recipient, or in control // of setting the recipient of the funds to whomever they // choose require( msg.sender == owner || owner == recipient, "CMCAsset: OWNER_MISMATCH" ); uint256 amount = getAvailableAmount( assetId, exitableAmount[assetId][owner] ); // Revert if amount is 0 require(amount > 0, "CMCAsset: NO_OP"); // Reduce the amount claimable from the multisig by the owner exitableAmount[assetId][ owner ] = exitableAmount[assetId][owner].sub(amount); // Perform transfer transferAsset(assetId, recipient, amount); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; /// @title CMCWithdraw /// @author Connext <[email protected]> /// @notice A "mutex" reentrancy guard, heavily influenced by OpenZeppelin. contract ReentrancyGuard { uint256 private constant OPEN = 1; uint256 private constant LOCKED = 2; uint256 public lock; function setup() internal { lock = OPEN; } modifier nonReentrant() { require(lock == OPEN, "ReentrancyGuard: REENTRANT_CALL"); lock = LOCKED; _; lock = OPEN; } modifier nonReentrantView() { require(lock == OPEN, "ReentrancyGuard: REENTRANT_CALL"); _; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; /// @title LibMath /// @author Connext <[email protected]> /// @notice This library allows functions that would otherwise overflow and /// revert if SafeMath was used to instead return the UINT_MAX. In the /// adjudicator, this is used to ensure you can get the majority of /// funds out in the event your balance > UINT_MAX and there is an /// onchain dispute. library LibMath { /// @dev Returns the maximum uint256 for an addition that would overflow /// (saturation arithmetic) function satAdd(uint256 x, uint256 y) internal pure returns (uint256) { uint256 sum = x + y; return sum >= x ? sum : type(uint256).max; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow, so we distribute return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./interfaces/Commitment.sol"; import "./interfaces/ICMCAdjudicator.sol"; import "./interfaces/ITransferDefinition.sol"; import "./interfaces/Types.sol"; import "./CMCCore.sol"; import "./CMCAsset.sol"; import "./CMCDeposit.sol"; import "./lib/LibChannelCrypto.sol"; import "./lib/LibMath.sol"; import "@openzeppelin/contracts/cryptography/MerkleProof.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; /// @title CMCAdjudicator /// @author Connext <[email protected]> /// @notice Contains logic for disputing a single channel and all active /// transfers associated with the channel. Contains two major phases: /// (1) consensus: settle on latest channel state /// (2) defund: remove assets and dispute active transfers contract CMCAdjudicator is CMCCore, CMCAsset, CMCDeposit, ICMCAdjudicator { using LibChannelCrypto for bytes32; using LibMath for uint256; using SafeMath for uint256; uint256 private constant INITIAL_DEFUND_NONCE = 1; ChannelDispute private channelDispute; mapping(address => uint256) private defundNonces; mapping(bytes32 => TransferDispute) private transferDisputes; modifier validateChannel(CoreChannelState calldata ccs) { require( ccs.channelAddress == address(this) && ccs.alice == alice && ccs.bob == bob, "CMCAdjudicator: INVALID_CHANNEL" ); _; } modifier validateTransfer(CoreTransferState calldata cts) { require( cts.channelAddress == address(this), "CMCAdjudicator: INVALID_TRANSFER" ); _; } function getChannelDispute() external view override onlyViaProxy nonReentrantView returns (ChannelDispute memory) { return channelDispute; } function getDefundNonce(address assetId) external view override onlyViaProxy nonReentrantView returns (uint256) { return defundNonces[assetId]; } function getTransferDispute(bytes32 transferId) external view override onlyViaProxy nonReentrantView returns (TransferDispute memory) { return transferDisputes[transferId]; } function disputeChannel( CoreChannelState calldata ccs, bytes calldata aliceSignature, bytes calldata bobSignature ) external override onlyViaProxy nonReentrant validateChannel(ccs) { // Generate hash bytes32 ccsHash = hashChannelState(ccs); // Verify Alice's and Bob's signature on the channel state verifySignaturesOnChannelStateHash(ccs, ccsHash, aliceSignature, bobSignature); // We cannot dispute a channel in its defund phase require(!inDefundPhase(), "CMCAdjudicator: INVALID_PHASE"); // New nonce must be strictly greater than the stored one require( channelDispute.nonce < ccs.nonce, "CMCAdjudicator: INVALID_NONCE" ); if (!inConsensusPhase()) { // We are not already in a dispute // Set expiries // TODO: offchain-ensure that there can't be an overflow channelDispute.consensusExpiry = block.timestamp.add(ccs.timeout); channelDispute.defundExpiry = block.timestamp.add( ccs.timeout.mul(2) ); } // Store newer state channelDispute.channelStateHash = ccsHash; channelDispute.nonce = ccs.nonce; channelDispute.merkleRoot = ccs.merkleRoot; // Emit event emit ChannelDisputed(msg.sender, ccs, channelDispute); } function defundChannel( CoreChannelState calldata ccs, address[] calldata assetIds, uint256[] calldata indices ) external override onlyViaProxy nonReentrant validateChannel(ccs) { // These checks are not strictly necessary, but it's a bit cleaner this way require(assetIds.length > 0, "CMCAdjudicator: NO_ASSETS_GIVEN"); require( indices.length <= assetIds.length, "CMCAdjudicator: WRONG_ARRAY_LENGTHS" ); // Verify that the given channel state matches the stored one require( hashChannelState(ccs) == channelDispute.channelStateHash, "CMCAdjudicator: INVALID_CHANNEL_HASH" ); // We need to be in defund phase for that require(inDefundPhase(), "CMCAdjudicator: INVALID_PHASE"); // TODO SECURITY: Beware of reentrancy // TODO: offchain-ensure that all arrays have the same length: // assetIds, balances, processedDepositsA, processedDepositsB, defundNonces // Make sure there are no duplicates in the assetIds -- duplicates are often a source of double-spends // Defund all assets given for (uint256 i = 0; i < assetIds.length; i++) { address assetId = assetIds[i]; // Verify or find the index of the assetId in the ccs.assetIds uint256 index; if (i < indices.length) { // The index was supposedly given -- we verify index = indices[i]; require( assetId == ccs.assetIds[index], "CMCAdjudicator: INDEX_MISMATCH" ); } else { // we search through the assets in ccs for (index = 0; index < ccs.assetIds.length; index++) { if (assetId == ccs.assetIds[index]) { break; } } } // Now, if `index` is equal to the number of assets in ccs, // then the current asset is not in ccs; // otherwise, `index` is the index in ccs for the current asset // Check the assets haven't already been defunded + update the // defundNonce for that asset { // Open a new block to avoid "stack too deep" error uint256 defundNonce = (index == ccs.assetIds.length) ? INITIAL_DEFUND_NONCE : ccs.defundNonces[index]; require( defundNonces[assetId] < defundNonce, "CMCAdjudicator: CHANNEL_ALREADY_DEFUNDED" ); defundNonces[assetId] = defundNonce; } // Get total deposits uint256 tdAlice = _getTotalDepositsAlice(assetId); uint256 tdBob = _getTotalDepositsBob(assetId); Balance memory balance; if (index == ccs.assetIds.length) { // The current asset is not a part of ccs; refund what has been deposited balance = Balance({ amount: [tdAlice, tdBob], to: [payable(ccs.alice), payable(ccs.bob)] }); } else { // Start with the final balances in ccs balance = ccs.balances[index]; // Add unprocessed deposits balance.amount[0] = balance.amount[0].satAdd( tdAlice - ccs.processedDepositsA[index] ); balance.amount[1] = balance.amount[1].satAdd( tdBob - ccs.processedDepositsB[index] ); } // Add result to exitable amounts makeBalanceExitable(assetId, balance); } emit ChannelDefunded( msg.sender, ccs, channelDispute, assetIds ); } function disputeTransfer( CoreTransferState calldata cts, bytes32[] calldata merkleProofData ) external override onlyViaProxy nonReentrant validateTransfer(cts) { // Verify that the given transfer state is included in the "finalized" channel state bytes32 transferStateHash = hashTransferState(cts); verifyMerkleProof( merkleProofData, channelDispute.merkleRoot, transferStateHash ); // The channel needs to be in defund phase for that, i.e. channel state is "finalized" require(inDefundPhase(), "CMCAdjudicator: INVALID_PHASE"); // Get stored dispute for this transfer TransferDispute storage transferDispute = transferDisputes[cts.transferId]; // Verify that this transfer has not been disputed before require( transferDispute.transferDisputeExpiry == 0, "CMCAdjudicator: TRANSFER_ALREADY_DISPUTED" ); // Store transfer state and set expiry transferDispute.transferStateHash = transferStateHash; // TODO: offchain-ensure that there can't be an overflow transferDispute.transferDisputeExpiry = block.timestamp.add( cts.transferTimeout ); emit TransferDisputed( msg.sender, cts, transferDispute ); } function defundTransfer( CoreTransferState calldata cts, bytes calldata encodedInitialTransferState, bytes calldata encodedTransferResolver, bytes calldata responderSignature ) external override onlyViaProxy nonReentrant validateTransfer(cts) { // Get stored dispute for this transfer TransferDispute storage transferDispute = transferDisputes[cts.transferId]; // Verify that a dispute for this transfer has already been started require( transferDispute.transferDisputeExpiry != 0, "CMCAdjudicator: TRANSFER_NOT_DISPUTED" ); // Verify that the given transfer state matches the stored one require( hashTransferState(cts) == transferDispute.transferStateHash, "CMCAdjudicator: INVALID_TRANSFER_HASH" ); // We can't defund twice require( !transferDispute.isDefunded, "CMCAdjudicator: TRANSFER_ALREADY_DEFUNDED" ); transferDispute.isDefunded = true; Balance memory balance; if (block.timestamp < transferDispute.transferDisputeExpiry) { // Ensure the correct hash is provided require( keccak256(encodedInitialTransferState) == cts.initialStateHash, "CMCAdjudicator: INVALID_TRANSFER_HASH" ); // Before dispute expiry, responder or responder-authorized // agent (i.e. watchtower) can resolve require( msg.sender == cts.responder || cts.initialStateHash.checkSignature(responderSignature, cts.responder), "CMCAdjudicator: INVALID_RESOLVER" ); ITransferDefinition transferDefinition = ITransferDefinition(cts.transferDefinition); balance = transferDefinition.resolve( abi.encode(cts.balance), encodedInitialTransferState, encodedTransferResolver ); // Verify that returned balances don't exceed initial balances require( balance.amount[0].add(balance.amount[1]) <= cts.balance.amount[0].add(cts.balance.amount[1]), "CMCAdjudicator: INVALID_BALANCES" ); } else { // After dispute expiry, if the responder hasn't resolved, we defund the initial balance balance = cts.balance; } // Depending on previous code path, defund either resolved or initial balance makeBalanceExitable(cts.assetId, balance); // Emit event emit TransferDefunded( msg.sender, cts, transferDispute, encodedInitialTransferState, encodedTransferResolver, balance ); } function verifySignaturesOnChannelStateHash( CoreChannelState calldata ccs, bytes32 ccsHash, bytes calldata aliceSignature, bytes calldata bobSignature ) internal pure { bytes32 commitment = keccak256(abi.encode(CommitmentType.ChannelState, ccsHash)); require( commitment.checkSignature(aliceSignature, ccs.alice), "CMCAdjudicator: INVALID_ALICE_SIG" ); require( commitment.checkSignature(bobSignature, ccs.bob), "CMCAdjudicator: INVALID_BOB_SIG" ); } function verifyMerkleProof( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure { require( MerkleProof.verify(proof, root, leaf), "CMCAdjudicator: INVALID_MERKLE_PROOF" ); } function inConsensusPhase() internal view returns (bool) { return block.timestamp < channelDispute.consensusExpiry; } function inDefundPhase() internal view returns (bool) { return channelDispute.consensusExpiry <= block.timestamp && block.timestamp < channelDispute.defundExpiry; } function hashChannelState(CoreChannelState calldata ccs) internal pure returns (bytes32) { return keccak256(abi.encode(ccs)); } function hashTransferState(CoreTransferState calldata cts) internal pure returns (bytes32) { return keccak256(abi.encode(cts)); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; enum CommitmentType {ChannelState, WithdrawData}
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./ITransferRegistry.sol"; import "./Types.sol"; interface ITransferDefinition { // Validates the initial state of the transfer. // Called by validator.ts during `create` updates. function create(bytes calldata encodedBalance, bytes calldata) external view returns (bool); // Performs a state transition to resolve a transfer and returns final balances. // Called by validator.ts during `resolve` updates. function resolve( bytes calldata encodedBalance, bytes calldata, bytes calldata ) external view returns (Balance memory); // Should also have the following properties: // string public constant override Name = "..."; // string public constant override StateEncoding = "..."; // string public constant override ResolverEncoding = "..."; // These properties are included on the transfer specifically // to make it easier for implementers to add new transfers by // only include a `.sol` file function Name() external view returns (string memory); function StateEncoding() external view returns (string memory); function ResolverEncoding() external view returns (string memory); function EncodedCancel() external view returns (bytes memory); function getRegistryInformation() external view returns (RegisteredTransfer memory); }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/cryptography/ECDSA.sol"; /// @author Connext <[email protected]> /// @notice This library contains helpers for recovering signatures from a /// Vector commitments. Channels do not allow for arbitrary signing of /// messages to prevent misuse of private keys by injected providers, /// and instead only sign messages with a Vector channel prefix. library LibChannelCrypto { function checkSignature( bytes32 hash, bytes memory signature, address allegedSigner ) internal pure returns (bool) { return recoverChannelMessageSigner(hash, signature) == allegedSigner; } function recoverChannelMessageSigner(bytes32 hash, bytes memory signature) internal pure returns (address) { bytes32 digest = toChannelSignedMessage(hash); return ECDSA.recover(digest, signature); } function toChannelSignedMessage(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x16Vector Signed Message:\n32", hash)); } function checkUtilitySignature( bytes32 hash, bytes memory signature, address allegedSigner ) internal pure returns (bool) { return recoverChannelMessageSigner(hash, signature) == allegedSigner; } function recoverUtilityMessageSigner(bytes32 hash, bytes memory signature) internal pure returns (address) { bytes32 digest = toUtilitySignedMessage(hash); return ECDSA.recover(digest, signature); } function toUtilitySignedMessage(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x17Utility Signed Message:\n32", hash)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev These functions deal with verification of Merkle trees (hash trees), */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { bytes32 proofElement = proof[i]; if (computedHash <= proofElement) { // Hash(current computed hash + current element of the proof) computedHash = keccak256(abi.encodePacked(computedHash, proofElement)); } else { // Hash(current element of the proof + current computed hash) computedHash = keccak256(abi.encodePacked(proofElement, computedHash)); } } // Check if the computed hash (root) is equal to the provided root return computedHash == root; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental "ABIEncoderV2"; struct RegisteredTransfer { string name; address definition; string stateEncoding; string resolverEncoding; bytes encodedCancel; } interface ITransferRegistry { event TransferAdded(RegisteredTransfer transfer); event TransferRemoved(RegisteredTransfer transfer); // Should add a transfer definition to the registry // onlyOwner function addTransferDefinition(RegisteredTransfer memory transfer) external; // Should remove a transfer definition to the registry // onlyOwner function removeTransferDefinition(string memory name) external; // Should return all transfer defintions in registry function getTransferDefinitions() external view returns (RegisteredTransfer[] memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { // Check the signature length if (signature.length != 65) { revert("ECDSA: invalid signature length"); } // Divide the signature in r, s and v variables bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. // solhint-disable-next-line no-inline-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (281): 0 < s < secp256k1n ÷ 2 + 1, and for v in (282): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { revert("ECDSA: invalid signature 's' value"); } if (v != 27 && v != 28) { revert("ECDSA: invalid signature 'v' value"); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); require(signer != address(0), "ECDSA: invalid signature"); return signer; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * replicates the behavior of the * https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`] * JSON-RPC method. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./interfaces/Commitment.sol"; import "./interfaces/ICMCWithdraw.sol"; import "./interfaces/WithdrawHelper.sol"; import "./CMCCore.sol"; import "./CMCAsset.sol"; import "./lib/LibAsset.sol"; import "./lib/LibChannelCrypto.sol"; import "./lib/LibUtils.sol"; /// @title CMCWithdraw /// @author Connext <[email protected]> /// @notice Contains logic for all cooperative channel multisig withdrawals. /// Cooperative withdrawal commitments must be signed by both channel /// participants. As part of the channel withdrawals, an arbitrary /// call can be made, which is extracted from the withdraw data. contract CMCWithdraw is CMCCore, CMCAsset, ICMCWithdraw { using LibChannelCrypto for bytes32; mapping(bytes32 => bool) private isExecuted; modifier validateWithdrawData(WithdrawData calldata wd) { require( wd.channelAddress == address(this), "CMCWithdraw: CHANNEL_MISMATCH" ); _; } function getWithdrawalTransactionRecord(WithdrawData calldata wd) external view override onlyViaProxy nonReentrantView returns (bool) { return isExecuted[hashWithdrawData(wd)]; } /// @param wd The withdraw data consisting of /// semantic withdraw information, i.e. assetId, recipient, and amount; /// information to make an optional call in addition to the actual transfer, /// i.e. target address for the call and call payload; /// additional information, i.e. channel address and nonce. /// @param aliceSignature Signature of owner a /// @param bobSignature Signature of owner b function withdraw( WithdrawData calldata wd, bytes calldata aliceSignature, bytes calldata bobSignature ) external override onlyViaProxy nonReentrant validateWithdrawData(wd) { // Generate hash bytes32 wdHash = hashWithdrawData(wd); // Verify Alice's and Bob's signature on the withdraw data verifySignaturesOnWithdrawDataHash(wdHash, aliceSignature, bobSignature); // Replay protection require(!isExecuted[wdHash], "CMCWithdraw: ALREADY_EXECUTED"); isExecuted[wdHash] = true; // Determine actually transferable amount uint256 actualAmount = getAvailableAmount(wd.assetId, wd.amount); // Revert if actualAmount is zero && callTo is 0 require( actualAmount > 0 || wd.callTo != address(0), "CMCWithdraw: NO_OP" ); // Register and execute the transfer transferAsset(wd.assetId, wd.recipient, actualAmount); // Do we have to make a call in addition to the actual transfer? if (wd.callTo != address(0)) { WithdrawHelper(wd.callTo).execute(wd, actualAmount); } } function verifySignaturesOnWithdrawDataHash( bytes32 wdHash, bytes calldata aliceSignature, bytes calldata bobSignature ) internal view { bytes32 commitment = keccak256(abi.encode(CommitmentType.WithdrawData, wdHash)); require( commitment.checkSignature(aliceSignature, alice), "CMCWithdraw: INVALID_ALICE_SIG" ); require( commitment.checkSignature(bobSignature, bob), "CMCWithdraw: INVALID_BOB_SIG" ); } function hashWithdrawData(WithdrawData calldata wd) internal pure returns (bytes32) { return keccak256(abi.encode(wd)); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.7.1; pragma experimental ABIEncoderV2; import "./ICMCWithdraw.sol"; interface WithdrawHelper { function execute(WithdrawData calldata wd, uint256 actualAmount) external; }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "metadata": { "useLiteralContent": true } }
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"assetId","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"AliceDeposited","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"defunder","type":"address"},{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"address","name":"alice","type":"address"},{"internalType":"address","name":"bob","type":"address"},{"internalType":"address[]","name":"assetIds","type":"address[]"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"internalType":"struct Balance[]","name":"balances","type":"tuple[]"},{"internalType":"uint256[]","name":"processedDepositsA","type":"uint256[]"},{"internalType":"uint256[]","name":"processedDepositsB","type":"uint256[]"},{"internalType":"uint256[]","name":"defundNonces","type":"uint256[]"},{"internalType":"uint256","name":"timeout","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"indexed":false,"internalType":"struct ICMCAdjudicator.CoreChannelState","name":"state","type":"tuple"},{"components":[{"internalType":"bytes32","name":"channelStateHash","type":"bytes32"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"consensusExpiry","type":"uint256"},{"internalType":"uint256","name":"defundExpiry","type":"uint256"}],"indexed":false,"internalType":"struct ICMCAdjudicator.ChannelDispute","name":"dispute","type":"tuple"},{"indexed":false,"internalType":"address[]","name":"assetIds","type":"address[]"}],"name":"ChannelDefunded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"disputer","type":"address"},{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"address","name":"alice","type":"address"},{"internalType":"address","name":"bob","type":"address"},{"internalType":"address[]","name":"assetIds","type":"address[]"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"internalType":"struct Balance[]","name":"balances","type":"tuple[]"},{"internalType":"uint256[]","name":"processedDepositsA","type":"uint256[]"},{"internalType":"uint256[]","name":"processedDepositsB","type":"uint256[]"},{"internalType":"uint256[]","name":"defundNonces","type":"uint256[]"},{"internalType":"uint256","name":"timeout","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"indexed":false,"internalType":"struct ICMCAdjudicator.CoreChannelState","name":"state","type":"tuple"},{"components":[{"internalType":"bytes32","name":"channelStateHash","type":"bytes32"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"consensusExpiry","type":"uint256"},{"internalType":"uint256","name":"defundExpiry","type":"uint256"}],"indexed":false,"internalType":"struct ICMCAdjudicator.ChannelDispute","name":"dispute","type":"tuple"}],"name":"ChannelDisputed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"defunder","type":"address"},{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"bytes32","name":"transferId","type":"bytes32"},{"internalType":"address","name":"transferDefinition","type":"address"},{"internalType":"address","name":"initiator","type":"address"},{"internalType":"address","name":"responder","type":"address"},{"internalType":"address","name":"assetId","type":"address"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"internalType":"struct Balance","name":"balance","type":"tuple"},{"internalType":"uint256","name":"transferTimeout","type":"uint256"},{"internalType":"bytes32","name":"initialStateHash","type":"bytes32"}],"indexed":false,"internalType":"struct ICMCAdjudicator.CoreTransferState","name":"state","type":"tuple"},{"components":[{"internalType":"bytes32","name":"transferStateHash","type":"bytes32"},{"internalType":"uint256","name":"transferDisputeExpiry","type":"uint256"},{"internalType":"bool","name":"isDefunded","type":"bool"}],"indexed":false,"internalType":"struct ICMCAdjudicator.TransferDispute","name":"dispute","type":"tuple"},{"indexed":false,"internalType":"bytes","name":"encodedInitialState","type":"bytes"},{"indexed":false,"internalType":"bytes","name":"encodedResolver","type":"bytes"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"indexed":false,"internalType":"struct Balance","name":"balance","type":"tuple"}],"name":"TransferDefunded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"disputer","type":"address"},{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"bytes32","name":"transferId","type":"bytes32"},{"internalType":"address","name":"transferDefinition","type":"address"},{"internalType":"address","name":"initiator","type":"address"},{"internalType":"address","name":"responder","type":"address"},{"internalType":"address","name":"assetId","type":"address"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"internalType":"struct Balance","name":"balance","type":"tuple"},{"internalType":"uint256","name":"transferTimeout","type":"uint256"},{"internalType":"bytes32","name":"initialStateHash","type":"bytes32"}],"indexed":false,"internalType":"struct ICMCAdjudicator.CoreTransferState","name":"state","type":"tuple"},{"components":[{"internalType":"bytes32","name":"transferStateHash","type":"bytes32"},{"internalType":"uint256","name":"transferDisputeExpiry","type":"uint256"},{"internalType":"bool","name":"isDefunded","type":"bool"}],"indexed":false,"internalType":"struct ICMCAdjudicator.TransferDispute","name":"dispute","type":"tuple"}],"name":"TransferDisputed","type":"event"},{"inputs":[{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"address","name":"alice","type":"address"},{"internalType":"address","name":"bob","type":"address"},{"internalType":"address[]","name":"assetIds","type":"address[]"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"internalType":"struct Balance[]","name":"balances","type":"tuple[]"},{"internalType":"uint256[]","name":"processedDepositsA","type":"uint256[]"},{"internalType":"uint256[]","name":"processedDepositsB","type":"uint256[]"},{"internalType":"uint256[]","name":"defundNonces","type":"uint256[]"},{"internalType":"uint256","name":"timeout","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"internalType":"struct ICMCAdjudicator.CoreChannelState","name":"ccs","type":"tuple"},{"internalType":"address[]","name":"assetIds","type":"address[]"},{"internalType":"uint256[]","name":"indices","type":"uint256[]"}],"name":"defundChannel","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"bytes32","name":"transferId","type":"bytes32"},{"internalType":"address","name":"transferDefinition","type":"address"},{"internalType":"address","name":"initiator","type":"address"},{"internalType":"address","name":"responder","type":"address"},{"internalType":"address","name":"assetId","type":"address"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"internalType":"struct Balance","name":"balance","type":"tuple"},{"internalType":"uint256","name":"transferTimeout","type":"uint256"},{"internalType":"bytes32","name":"initialStateHash","type":"bytes32"}],"internalType":"struct ICMCAdjudicator.CoreTransferState","name":"cts","type":"tuple"},{"internalType":"bytes","name":"encodedInitialTransferState","type":"bytes"},{"internalType":"bytes","name":"encodedTransferResolver","type":"bytes"},{"internalType":"bytes","name":"responderSignature","type":"bytes"}],"name":"defundTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"assetId","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"depositAlice","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"address","name":"alice","type":"address"},{"internalType":"address","name":"bob","type":"address"},{"internalType":"address[]","name":"assetIds","type":"address[]"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"internalType":"struct Balance[]","name":"balances","type":"tuple[]"},{"internalType":"uint256[]","name":"processedDepositsA","type":"uint256[]"},{"internalType":"uint256[]","name":"processedDepositsB","type":"uint256[]"},{"internalType":"uint256[]","name":"defundNonces","type":"uint256[]"},{"internalType":"uint256","name":"timeout","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"internalType":"struct ICMCAdjudicator.CoreChannelState","name":"ccs","type":"tuple"},{"internalType":"bytes","name":"aliceSignature","type":"bytes"},{"internalType":"bytes","name":"bobSignature","type":"bytes"}],"name":"disputeChannel","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"bytes32","name":"transferId","type":"bytes32"},{"internalType":"address","name":"transferDefinition","type":"address"},{"internalType":"address","name":"initiator","type":"address"},{"internalType":"address","name":"responder","type":"address"},{"internalType":"address","name":"assetId","type":"address"},{"components":[{"internalType":"uint256[2]","name":"amount","type":"uint256[2]"},{"internalType":"address payable[2]","name":"to","type":"address[2]"}],"internalType":"struct Balance","name":"balance","type":"tuple"},{"internalType":"uint256","name":"transferTimeout","type":"uint256"},{"internalType":"bytes32","name":"initialStateHash","type":"bytes32"}],"internalType":"struct ICMCAdjudicator.CoreTransferState","name":"cts","type":"tuple"},{"internalType":"bytes32[]","name":"merkleProofData","type":"bytes32[]"}],"name":"disputeTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"assetId","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"address payable","name":"recipient","type":"address"}],"name":"exit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getAlice","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBob","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getChannelDispute","outputs":[{"components":[{"internalType":"bytes32","name":"channelStateHash","type":"bytes32"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"uint256","name":"consensusExpiry","type":"uint256"},{"internalType":"uint256","name":"defundExpiry","type":"uint256"}],"internalType":"struct ICMCAdjudicator.ChannelDispute","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"assetId","type":"address"}],"name":"getDefundNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"assetId","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"getExitableAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"assetId","type":"address"}],"name":"getTotalDepositsAlice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"assetId","type":"address"}],"name":"getTotalDepositsBob","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"assetId","type":"address"}],"name":"getTotalTransferred","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"transferId","type":"bytes32"}],"name":"getTransferDispute","outputs":[{"components":[{"internalType":"bytes32","name":"transferStateHash","type":"bytes32"},{"internalType":"uint256","name":"transferDisputeExpiry","type":"uint256"},{"internalType":"bool","name":"isDefunded","type":"bool"}],"internalType":"struct ICMCAdjudicator.TransferDispute","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"address","name":"assetId","type":"address"},{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"address","name":"callTo","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"}],"internalType":"struct WithdrawData","name":"wd","type":"tuple"}],"name":"getWithdrawalTransactionRecord","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_alice","type":"address"},{"internalType":"address","name":"_bob","type":"address"}],"name":"setup","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"address","name":"channelAddress","type":"address"},{"internalType":"address","name":"assetId","type":"address"},{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"address","name":"callTo","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"}],"internalType":"struct WithdrawData","name":"wd","type":"tuple"},{"internalType":"bytes","name":"aliceSignature","type":"bytes"},{"internalType":"bytes","name":"bobSignature","type":"bytes"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | 100.00% | $0.467482 | 3,100 | $1,449.19 |
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.