More Info
Private Name Tags
ContractCreator
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Transfer Ownersh... | 11053203 | 1531 days ago | IN | 0 ETH | 0.00147864 |
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Contract Name:
CommunityVault
Compiler Version
v0.6.12+commit.27d51765
Optimization Enabled:
Yes with 1000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
pragma solidity ^0.6.0; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; contract CommunityVault is Ownable { IERC20 private _bond; constructor (address bond) public { _bond = IERC20(bond); } event SetAllowance(address indexed caller, address indexed spender, uint256 amount); function setAllowance(address spender, uint amount) public onlyOwner { _bond.approve(spender, amount); emit SetAllowance(msg.sender, spender, amount); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../GSN/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor () internal { address msgSender = _msgSender(); _owner = msgSender; emit OwnershipTransferred(address(0), msgSender); } /** * @dev Returns the address of the current owner. */ function owner() public view returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(_owner == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { emit OwnershipTransferred(_owner, address(0)); _owner = address(0); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); emit OwnershipTransferred(_owner, newOwner); _owner = newOwner; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.6.0; import "@openzeppelin/contracts/access/Ownable.sol"; interface IStaking { function getEpochId(uint timestamp) external view returns (uint); // get epoch id function getEpochUserBalance(address user, address token, uint128 epoch) external view returns(uint); function getEpochPoolSize(address token, uint128 epoch) external view returns (uint); function epoch1Start() external view returns (uint); function epochDuration() external view returns (uint); }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; contract ERC20Mock is ERC20("ERC20Mock", "MCK") { bool public transferFromCalled = false; bool public transferCalled = false; address public transferRecipient = address(0); uint256 public transferAmount = 0; function mint(address user, uint256 amount) public { _mint(user, amount); } function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { transferFromCalled = true; return super.transferFrom(sender, recipient, amount); } function transfer(address recipient, uint256 amount) public virtual override returns (bool) { transferCalled = true; transferRecipient = recipient; transferAmount = amount; return super.transfer(recipient, amount); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; import "../../GSN/Context.sol"; import "./IERC20.sol"; import "../../math/SafeMath.sol"; import "../../utils/Address.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; using Address for address; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name, string memory symbol) public { _name = name; _symbol = symbol; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } }
// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return _functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); return _functionCallWithValue(target, data, value, errorMessage); } function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) { require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: weiValue }(data); if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/ERC20.sol"; contract ERC20Mock6Decimals is ERC20("ERC20Mock6decimals", "MCK") { bool public transferFromCalled = false; bool public transferCalled = false; address public transferRecipient = address(0); uint256 public transferAmount = 0; uint8 private _decimals; constructor () public { _decimals = 6; } function mint(address user, uint256 amount) public { _mint(user, amount); } function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { transferFromCalled = true; return super.transferFrom(sender, recipient, amount); } function transfer(address recipient, uint256 amount) public virtual override returns (bool) { transferCalled = true; transferRecipient = recipient; transferAmount = amount; return super.transfer(recipient, amount); } }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.6.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; contract Staking is ReentrancyGuard { using SafeMath for uint256; uint128 constant private BASE_MULTIPLIER = uint128(1 * 10 ** 18); // timestamp for the epoch 1 // everything before that is considered epoch 0 which won't have a reward but allows for the initial stake uint256 public epoch1Start; // duration of each epoch uint256 public epochDuration; // holds the current balance of the user for each token mapping(address => mapping(address => uint256)) private balances; struct Pool { uint256 size; bool set; } // for each token, we store the total pool size mapping(address => mapping(uint256 => Pool)) private poolSize; // a checkpoint of the valid balance of a user for an epoch struct Checkpoint { uint128 epochId; uint128 multiplier; uint256 startBalance; uint256 newDeposits; } // balanceCheckpoints[user][token][] mapping(address => mapping(address => Checkpoint[])) private balanceCheckpoints; mapping(address => uint128) private lastWithdrawEpochId; event Deposit(address indexed user, address indexed tokenAddress, uint256 amount); event Withdraw(address indexed user, address indexed tokenAddress, uint256 amount); event ManualEpochInit(address indexed caller, uint128 indexed epochId, address[] tokens); event EmergencyWithdraw(address indexed user, address indexed tokenAddress, uint256 amount); constructor (uint256 _epoch1Start, uint256 _epochDuration) public { epoch1Start = _epoch1Start; epochDuration = _epochDuration; } /* * Stores `amount` of `tokenAddress` tokens for the `user` into the vault */ function deposit(address tokenAddress, uint256 amount) public nonReentrant { require(amount > 0, "Staking: Amount must be > 0"); IERC20 token = IERC20(tokenAddress); uint256 allowance = token.allowance(msg.sender, address(this)); require(allowance >= amount, "Staking: Token allowance too small"); balances[msg.sender][tokenAddress] = balances[msg.sender][tokenAddress].add(amount); token.transferFrom(msg.sender, address(this), amount); // epoch logic uint128 currentEpoch = getCurrentEpoch(); uint128 currentMultiplier = currentEpochMultiplier(); if (!epochIsInitialized(tokenAddress, currentEpoch)) { address[] memory tokens = new address[](1); tokens[0] = tokenAddress; manualEpochInit(tokens, currentEpoch); } // update the next epoch pool size Pool storage pNextEpoch = poolSize[tokenAddress][currentEpoch + 1]; pNextEpoch.size = token.balanceOf(address(this)); pNextEpoch.set = true; Checkpoint[] storage checkpoints = balanceCheckpoints[msg.sender][tokenAddress]; uint256 balanceBefore = getEpochUserBalance(msg.sender, tokenAddress, currentEpoch); // if there's no checkpoint yet, it means the user didn't have any activity // we want to store checkpoints both for the current epoch and next epoch because // if a user does a withdraw, the current epoch can also be modified and // we don't want to insert another checkpoint in the middle of the array as that could be expensive if (checkpoints.length == 0) { checkpoints.push(Checkpoint(currentEpoch, currentMultiplier, 0, amount)); // next epoch => multiplier is 1, epoch deposits is 0 checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, amount, 0)); } else { uint256 last = checkpoints.length - 1; // the last action happened in an older epoch (e.g. a deposit in epoch 3, current epoch is >=5) if (checkpoints[last].epochId < currentEpoch) { uint128 multiplier = computeNewMultiplier( getCheckpointBalance(checkpoints[last]), BASE_MULTIPLIER, amount, currentMultiplier ); checkpoints.push(Checkpoint(currentEpoch, multiplier, getCheckpointBalance(checkpoints[last]), amount)); checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, balances[msg.sender][tokenAddress], 0)); } // the last action happened in the previous epoch else if (checkpoints[last].epochId == currentEpoch) { checkpoints[last].multiplier = computeNewMultiplier( getCheckpointBalance(checkpoints[last]), checkpoints[last].multiplier, amount, currentMultiplier ); checkpoints[last].newDeposits = checkpoints[last].newDeposits.add(amount); checkpoints.push(Checkpoint(currentEpoch + 1, BASE_MULTIPLIER, balances[msg.sender][tokenAddress], 0)); } // the last action happened in the current epoch else { if (last >= 1 && checkpoints[last - 1].epochId == currentEpoch) { checkpoints[last - 1].multiplier = computeNewMultiplier( getCheckpointBalance(checkpoints[last - 1]), checkpoints[last - 1].multiplier, amount, currentMultiplier ); checkpoints[last - 1].newDeposits = checkpoints[last - 1].newDeposits.add(amount); } checkpoints[last].startBalance = balances[msg.sender][tokenAddress]; } } uint256 balanceAfter = getEpochUserBalance(msg.sender, tokenAddress, currentEpoch); poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.add(balanceAfter.sub(balanceBefore)); emit Deposit(msg.sender, tokenAddress, amount); } /* * Removes the deposit of the user and sends the amount of `tokenAddress` back to the `user` */ function withdraw(address tokenAddress, uint256 amount) public nonReentrant { require(balances[msg.sender][tokenAddress] >= amount, "Staking: balance too small"); balances[msg.sender][tokenAddress] = balances[msg.sender][tokenAddress].sub(amount); IERC20 token = IERC20(tokenAddress); token.transfer(msg.sender, amount); // epoch logic uint128 currentEpoch = getCurrentEpoch(); lastWithdrawEpochId[tokenAddress] = currentEpoch; if (!epochIsInitialized(tokenAddress, currentEpoch)) { address[] memory tokens = new address[](1); tokens[0] = tokenAddress; manualEpochInit(tokens, currentEpoch); } // update the pool size of the next epoch to its current balance Pool storage pNextEpoch = poolSize[tokenAddress][currentEpoch + 1]; pNextEpoch.size = token.balanceOf(address(this)); pNextEpoch.set = true; Checkpoint[] storage checkpoints = balanceCheckpoints[msg.sender][tokenAddress]; uint256 last = checkpoints.length - 1; // note: it's impossible to have a withdraw and no checkpoints because the balance would be 0 and revert // there was a deposit in an older epoch (more than 1 behind [eg: previous 0, now 5]) but no other action since then if (checkpoints[last].epochId < currentEpoch) { checkpoints.push(Checkpoint(currentEpoch, BASE_MULTIPLIER, balances[msg.sender][tokenAddress], 0)); poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(amount); } // there was a deposit in the `epochId - 1` epoch => we have a checkpoint for the current epoch else if (checkpoints[last].epochId == currentEpoch) { checkpoints[last].startBalance = balances[msg.sender][tokenAddress]; checkpoints[last].newDeposits = 0; checkpoints[last].multiplier = BASE_MULTIPLIER; poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(amount); } // there was a deposit in the current epoch else { Checkpoint storage currentEpochCheckpoint = checkpoints[last - 1]; uint256 balanceBefore = getCheckpointEffectiveBalance(currentEpochCheckpoint); // in case of withdraw, we have 2 branches: // 1. the user withdraws less than he added in the current epoch // 2. the user withdraws more than he added in the current epoch (including 0) if (amount < currentEpochCheckpoint.newDeposits) { uint128 avgDepositMultiplier = uint128( balanceBefore.sub(currentEpochCheckpoint.startBalance).mul(BASE_MULTIPLIER).div(currentEpochCheckpoint.newDeposits) ); currentEpochCheckpoint.newDeposits = currentEpochCheckpoint.newDeposits.sub(amount); currentEpochCheckpoint.multiplier = computeNewMultiplier( currentEpochCheckpoint.startBalance, BASE_MULTIPLIER, currentEpochCheckpoint.newDeposits, avgDepositMultiplier ); } else { currentEpochCheckpoint.startBalance = currentEpochCheckpoint.startBalance.sub( amount.sub(currentEpochCheckpoint.newDeposits) ); currentEpochCheckpoint.newDeposits = 0; currentEpochCheckpoint.multiplier = BASE_MULTIPLIER; } uint256 balanceAfter = getCheckpointEffectiveBalance(currentEpochCheckpoint); poolSize[tokenAddress][currentEpoch].size = poolSize[tokenAddress][currentEpoch].size.sub(balanceBefore.sub(balanceAfter)); checkpoints[last].startBalance = balances[msg.sender][tokenAddress]; } emit Withdraw(msg.sender, tokenAddress, amount); } /* * manualEpochInit can be used by anyone to initialize an epoch based on the previous one * This is only applicable if there was no action (deposit/withdraw) in the current epoch. * Any deposit and withdraw will automatically initialize the current and next epoch. */ function manualEpochInit(address[] memory tokens, uint128 epochId) public { require(epochId <= getCurrentEpoch(), "can't init a future epoch"); for (uint i = 0; i < tokens.length; i++) { Pool storage p = poolSize[tokens[i]][epochId]; if (epochId == 0) { p.size = uint256(0); p.set = true; } else { require(!epochIsInitialized(tokens[i], epochId), "Staking: epoch already initialized"); require(epochIsInitialized(tokens[i], epochId - 1), "Staking: previous epoch not initialized"); p.size = poolSize[tokens[i]][epochId - 1].size; p.set = true; } } emit ManualEpochInit(msg.sender, epochId, tokens); } function emergencyWithdraw(address tokenAddress) public { require((getCurrentEpoch() - lastWithdrawEpochId[tokenAddress]) >= 10, "At least 10 epochs must pass without success"); uint256 totalUserBalance = balances[msg.sender][tokenAddress]; require(totalUserBalance > 0, "Amount must be > 0"); balances[msg.sender][tokenAddress] = 0; IERC20 token = IERC20(tokenAddress); token.transfer(msg.sender, totalUserBalance); emit EmergencyWithdraw(msg.sender, tokenAddress, totalUserBalance); } /* * Returns the valid balance of a user that was taken into consideration in the total pool size for the epoch * A deposit will only change the next epoch balance. * A withdraw will decrease the current epoch (and subsequent) balance. */ function getEpochUserBalance(address user, address token, uint128 epochId) public view returns (uint256) { Checkpoint[] storage checkpoints = balanceCheckpoints[user][token]; // if there are no checkpoints, it means the user never deposited any tokens, so the balance is 0 if (checkpoints.length == 0 || epochId < checkpoints[0].epochId) { return 0; } uint min = 0; uint max = checkpoints.length - 1; // shortcut for blocks newer than the latest checkpoint == current balance if (epochId >= checkpoints[max].epochId) { return getCheckpointEffectiveBalance(checkpoints[max]); } // binary search of the value in the array while (max > min) { uint mid = (max + min + 1) / 2; if (checkpoints[mid].epochId <= epochId) { min = mid; } else { max = mid - 1; } } return getCheckpointEffectiveBalance(checkpoints[min]); } /* * Returns the amount of `token` that the `user` has currently staked */ function balanceOf(address user, address token) public view returns (uint256) { return balances[user][token]; } /* * Returns the id of the current epoch derived from block.timestamp */ function getCurrentEpoch() public view returns (uint128) { if (block.timestamp < epoch1Start) { return 0; } return uint128((block.timestamp - epoch1Start) / epochDuration + 1); } /* * Returns the total amount of `tokenAddress` that was locked from beginning to end of epoch identified by `epochId` */ function getEpochPoolSize(address tokenAddress, uint128 epochId) public view returns (uint256) { // Premises: // 1. it's impossible to have gaps of uninitialized epochs // - any deposit or withdraw initialize the current epoch which requires the previous one to be initialized if (epochIsInitialized(tokenAddress, epochId)) { return poolSize[tokenAddress][epochId].size; } // epochId not initialized and epoch 0 not initialized => there was never any action on this pool if (!epochIsInitialized(tokenAddress, 0)) { return 0; } // epoch 0 is initialized => there was an action at some point but none that initialized the epochId // which means the current pool size is equal to the current balance of token held by the staking contract IERC20 token = IERC20(tokenAddress); return token.balanceOf(address(this)); } /* * Returns the percentage of time left in the current epoch */ function currentEpochMultiplier() public view returns (uint128) { uint128 currentEpoch = getCurrentEpoch(); uint256 currentEpochEnd = epoch1Start + currentEpoch * epochDuration; uint256 timeLeft = currentEpochEnd - block.timestamp; uint128 multiplier = uint128(timeLeft * BASE_MULTIPLIER / epochDuration); return multiplier; } function computeNewMultiplier(uint256 prevBalance, uint128 prevMultiplier, uint256 amount, uint128 currentMultiplier) public pure returns (uint128) { uint256 prevAmount = prevBalance.mul(prevMultiplier).div(BASE_MULTIPLIER); uint256 addAmount = amount.mul(currentMultiplier).div(BASE_MULTIPLIER); uint128 newMultiplier = uint128(prevAmount.add(addAmount).mul(BASE_MULTIPLIER).div(prevBalance.add(amount))); return newMultiplier; } /* * Checks if an epoch is initialized, meaning we have a pool size set for it */ function epochIsInitialized(address token, uint128 epochId) public view returns (bool) { return poolSize[token][epochId].set; } function getCheckpointBalance(Checkpoint memory c) internal pure returns (uint256) { return c.startBalance.add(c.newDeposits); } function getCheckpointEffectiveBalance(Checkpoint memory c) internal pure returns (uint256) { return getCheckpointBalance(c).mul(c.multiplier).div(BASE_MULTIPLIER); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.6.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor () internal { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.6.0; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./interfaces/IStaking.sol"; contract YieldFarm { // lib using SafeMath for uint; using SafeMath for uint128; // constants uint public constant TOTAL_DISTRIBUTED_AMOUNT = 800000; uint public constant NR_OF_EPOCHS = 25; // state variables // addreses address private _usdc; address private _susd; address private _dai; address private _communityVault; // contracts IERC20 private _bond; IStaking private _staking; // fixed size array holdings total number of epochs + 1 (epoch 0 doesn't count) uint[] private epochs = new uint[](NR_OF_EPOCHS + 1); // pre-computed variable for optimization. total amount of bond tokens to be distributed on each epoch uint private _totalAmountPerEpoch; // id of last init epoch, for optimization purposes moved from struct to a single id. uint128 public lastInitializedEpoch; // state of user harvest epoch mapping(address => uint128) private lastEpochIdHarvested; uint public epochDuration; // init from staking contract uint public epochStart; // init from staking contract // events event MassHarvest(address indexed user, uint256 epochsHarvested, uint256 totalValue); event Harvest(address indexed user, uint128 indexed epochId, uint256 amount); // constructor constructor(address bondTokenAddress, address usdc, address susd, address dai, address stakeContract, address communityVault) public { _bond = IERC20(bondTokenAddress); _usdc = usdc; _susd = susd; _dai = dai; _staking = IStaking(stakeContract); _communityVault = communityVault; epochStart = _staking.epoch1Start(); epochDuration = _staking.epochDuration(); _totalAmountPerEpoch = TOTAL_DISTRIBUTED_AMOUNT.mul(10**18).div(NR_OF_EPOCHS); } // public methods // public method to harvest all the unharvested epochs until current epoch - 1 function massHarvest() external returns (uint){ uint totalDistributedValue; uint epochId = _getEpochId().sub(1); // fails in epoch 0 // force max number of epochs if (epochId > NR_OF_EPOCHS) { epochId = NR_OF_EPOCHS; } for (uint128 i = lastEpochIdHarvested[msg.sender] + 1; i <= epochId; i++) { // i = epochId // compute distributed Value and do one single transfer at the end totalDistributedValue += _harvest(i); } emit MassHarvest(msg.sender, epochId.sub(lastEpochIdHarvested[msg.sender]), totalDistributedValue); if (totalDistributedValue > 0) { _bond.transferFrom(_communityVault, msg.sender, totalDistributedValue); } return totalDistributedValue; } function harvest (uint128 epochId) external returns (uint){ // checks for requested epoch require (_getEpochId() > epochId, "This epoch is in the future"); require(epochId <= NR_OF_EPOCHS, "Maximum number of epochs is 25"); require (lastEpochIdHarvested[msg.sender].add(1) == epochId, "Harvest in order"); uint userReward = _harvest(epochId); if (userReward > 0) { _bond.transferFrom(_communityVault, msg.sender, userReward); } emit Harvest(msg.sender, epochId, userReward); return userReward; } // views // calls to the staking smart contract to retrieve the epoch total pool size function getPoolSize(uint128 epochId) external view returns (uint) { return _getPoolSize(epochId); } function getCurrentEpoch() external view returns (uint) { return _getEpochId(); } // calls to the staking smart contract to retrieve user balance for an epoch function getEpochStake(address userAddress, uint128 epochId) external view returns (uint) { return _getUserBalancePerEpoch(userAddress, epochId); } function userLastEpochIdHarvested() external view returns (uint){ return lastEpochIdHarvested[msg.sender]; } // internal methods function _initEpoch(uint128 epochId) internal { require(lastInitializedEpoch.add(1) == epochId, "Epoch can be init only in order"); lastInitializedEpoch = epochId; // call the staking smart contract to init the epoch epochs[epochId] = _getPoolSize(epochId); } function _harvest (uint128 epochId) internal returns (uint) { // try to initialize an epoch. if it can't it fails // if it fails either user either a BarnBridge account will init not init epochs if (lastInitializedEpoch < epochId) { _initEpoch(epochId); } // Set user last harvested epoch lastEpochIdHarvested[msg.sender] = epochId; // compute and return user total reward. For optimization reasons the transfer have been moved to an upper layer (i.e. massHarvest needs to do a single transfer) // exit if there is no stake on the epoch if (epochs[epochId] == 0) { return 0; } return _totalAmountPerEpoch .mul(_getUserBalancePerEpoch(msg.sender, epochId)) .div(epochs[epochId]); } function _getPoolSize(uint128 epochId) internal view returns (uint) { // retrieve stable coins total staked in epoch uint valueUsdc = _staking.getEpochPoolSize(_usdc, epochId).mul(10 ** 12); // for usdc which has 6 decimals add a 10**12 to get to a common ground uint valueSusd = _staking.getEpochPoolSize(_susd, epochId); uint valueDai = _staking.getEpochPoolSize(_dai, epochId); return valueUsdc.add(valueSusd).add(valueDai); } function _getUserBalancePerEpoch(address userAddress, uint128 epochId) internal view returns (uint){ // retrieve stable coins total staked per user in epoch uint valueUsdc = _staking.getEpochUserBalance(userAddress, _usdc, epochId).mul(10 ** 12); // for usdc which has 6 decimals add a 10**12 to get to a common ground uint valueSusd = _staking.getEpochUserBalance(userAddress, _susd, epochId); uint valueDai = _staking.getEpochUserBalance(userAddress, _dai, epochId); return valueUsdc.add(valueSusd).add(valueDai); } // compute epoch id from blocktimestamp and epochstart date function _getEpochId() internal view returns (uint128 epochId) { if (block.timestamp < epochStart) { return 0; } epochId = uint128(block.timestamp.sub(epochStart).div(epochDuration).add(1)); } }
pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.6.0; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import "./interfaces/IStaking.sol"; contract YieldFarmLP { // lib using SafeMath for uint; using SafeMath for uint128; // constants uint public constant TOTAL_DISTRIBUTED_AMOUNT = 2000000; uint public constant NR_OF_EPOCHS = 100; // state variables // addreses address private _uniLP; address private _communityVault; // contracts IERC20 private _bond; IStaking private _staking; uint[] private epochs = new uint[](NR_OF_EPOCHS + 1); uint private _totalAmountPerEpoch; uint128 public lastInitializedEpoch; mapping(address => uint128) private lastEpochIdHarvested; uint public epochDuration; // init from staking contract uint public epochStart; // init from staking contract // events event MassHarvest(address indexed user, uint256 epochsHarvested, uint256 totalValue); event Harvest(address indexed user, uint128 indexed epochId, uint256 amount); // constructor constructor(address bondTokenAddress, address uniLP, address stakeContract, address communityVault) public { _bond = IERC20(bondTokenAddress); _uniLP = uniLP; _staking = IStaking(stakeContract); _communityVault = communityVault; epochDuration = _staking.epochDuration(); epochStart = _staking.epoch1Start() + epochDuration; _totalAmountPerEpoch = TOTAL_DISTRIBUTED_AMOUNT.mul(10**18).div(NR_OF_EPOCHS); } // public methods // public method to harvest all the unharvested epochs until current epoch - 1 function massHarvest() external returns (uint){ uint totalDistributedValue; uint epochId = _getEpochId().sub(1); // fails in epoch 0 // force max number of epochs if (epochId > NR_OF_EPOCHS) { epochId = NR_OF_EPOCHS; } for (uint128 i = lastEpochIdHarvested[msg.sender] + 1; i <= epochId; i++) { // i = epochId // compute distributed Value and do one single transfer at the end totalDistributedValue += _harvest(i); } emit MassHarvest(msg.sender, epochId - lastEpochIdHarvested[msg.sender], totalDistributedValue); if (totalDistributedValue > 0) { _bond.transferFrom(_communityVault, msg.sender, totalDistributedValue); } return totalDistributedValue; } function harvest (uint128 epochId) external returns (uint){ // checks for requested epoch require (_getEpochId() > epochId, "This epoch is in the future"); require(epochId <= NR_OF_EPOCHS, "Maximum number of epochs is 100"); require (lastEpochIdHarvested[msg.sender].add(1) == epochId, "Harvest in order"); uint userReward = _harvest(epochId); if (userReward > 0) { _bond.transferFrom(_communityVault, msg.sender, userReward); } emit Harvest(msg.sender, epochId, userReward); return userReward; } // views // calls to the staking smart contract to retrieve the epoch total pool size function getPoolSize(uint128 epochId) external view returns (uint) { return _getPoolSize(epochId); } function getCurrentEpoch() external view returns (uint) { return _getEpochId(); } // calls to the staking smart contract to retrieve user balance for an epoch function getEpochStake(address userAddress, uint128 epochId) external view returns (uint) { return _getUserBalancePerEpoch(userAddress, epochId); } function userLastEpochIdHarvested() external view returns (uint){ return lastEpochIdHarvested[msg.sender]; } // internal methods function _initEpoch(uint128 epochId) internal { require(lastInitializedEpoch.add(1) == epochId, "Epoch can be init only in order"); lastInitializedEpoch = epochId; // call the staking smart contract to init the epoch epochs[epochId] = _getPoolSize(epochId); } function _harvest (uint128 epochId) internal returns (uint) { // try to initialize an epoch. if it can't it fails // if it fails either user either a BarnBridge account will init not init epochs if (lastInitializedEpoch < epochId) { _initEpoch(epochId); } // Set user state for last harvested lastEpochIdHarvested[msg.sender] = epochId; // compute and return user total reward. For optimization reasons the transfer have been moved to an upper layer (i.e. massHarvest needs to do a single transfer) // exit if there is no stake on the epoch if (epochs[epochId] == 0) { return 0; } return _totalAmountPerEpoch .mul(_getUserBalancePerEpoch(msg.sender, epochId)) .div(epochs[epochId]); } function _getPoolSize(uint128 epochId) internal view returns (uint) { // retrieve unilp token balance return _staking.getEpochPoolSize(_uniLP, _stakingEpochId(epochId)); } function _getUserBalancePerEpoch(address userAddress, uint128 epochId) internal view returns (uint){ // retrieve unilp token balance per user per epoch return _staking.getEpochUserBalance(userAddress, _uniLP, _stakingEpochId(epochId)); } // compute epoch id from blocktimestamp and epochstart date function _getEpochId() internal view returns (uint128 epochId) { if (block.timestamp < epochStart) { return 0; } epochId = uint128(block.timestamp.sub(epochStart).div(epochDuration).add(1)); } // get the staking epoch which is 1 epoch more function _stakingEpochId(uint128 epochId) pure internal returns (uint128) { return epochId + 1; } }
{ "metadata": { "useLiteralContent": false }, "optimizer": { "enabled": true, "runs": 1000 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"bond","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"SetAllowance","type":"event"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"setAllowance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405234801561001057600080fd5b506040516105223803806105228339818101604052602081101561003357600080fd5b5051600061003f6100ae565b600080546001600160a01b0319166001600160a01b0383169081178255604051929350917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908290a350600180546001600160a01b0319166001600160a01b03929092169190911790556100b2565b3390565b610461806100c16000396000f3fe608060405234801561001057600080fd5b506004361061004c5760003560e01c8063310ec4a714610051578063715018a61461007f5780638da5cb5b14610087578063f2fde38b146100ab575b600080fd5b61007d6004803603604081101561006757600080fd5b506001600160a01b0381351690602001356100d1565b005b61007d61021a565b61008f6102db565b604080516001600160a01b039092168252519081900360200190f35b61007d600480360360208110156100c157600080fd5b50356001600160a01b03166102ea565b6100d9610401565b6000546001600160a01b0390811691161461013b576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b600154604080517f095ea7b30000000000000000000000000000000000000000000000000000000081526001600160a01b038581166004830152602482018590529151919092169163095ea7b39160448083019260209291908290030181600087803b1580156101aa57600080fd5b505af11580156101be573d6000803e3d6000fd5b505050506040513d60208110156101d457600080fd5b50506040805182815290516001600160a01b0384169133917f3c07380f6fcae3bac39771c60e5c680334073911f2176b65f1d6925ba0badcdf9181900360200190a35050565b610222610401565b6000546001600160a01b03908116911614610284576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b600080546040516001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a36000805473ffffffffffffffffffffffffffffffffffffffff19169055565b6000546001600160a01b031690565b6102f2610401565b6000546001600160a01b03908116911614610354576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b6001600160a01b0381166103995760405162461bcd60e51b81526004018080602001828103825260268152602001806104066026913960400191505060405180910390fd5b600080546040516001600160a01b03808516939216917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e091a36000805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b0392909216919091179055565b339056fe4f776e61626c653a206e6577206f776e657220697320746865207a65726f2061646472657373a264697066735822122079c27789307fd9ed95db05b8403cb2ee131fd6c737995a4075a2289e3467e1f264736f6c634300060c00330000000000000000000000000391d2021f89dc339f60fff84546ea23e337750f
Deployed Bytecode
0x608060405234801561001057600080fd5b506004361061004c5760003560e01c8063310ec4a714610051578063715018a61461007f5780638da5cb5b14610087578063f2fde38b146100ab575b600080fd5b61007d6004803603604081101561006757600080fd5b506001600160a01b0381351690602001356100d1565b005b61007d61021a565b61008f6102db565b604080516001600160a01b039092168252519081900360200190f35b61007d600480360360208110156100c157600080fd5b50356001600160a01b03166102ea565b6100d9610401565b6000546001600160a01b0390811691161461013b576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b600154604080517f095ea7b30000000000000000000000000000000000000000000000000000000081526001600160a01b038581166004830152602482018590529151919092169163095ea7b39160448083019260209291908290030181600087803b1580156101aa57600080fd5b505af11580156101be573d6000803e3d6000fd5b505050506040513d60208110156101d457600080fd5b50506040805182815290516001600160a01b0384169133917f3c07380f6fcae3bac39771c60e5c680334073911f2176b65f1d6925ba0badcdf9181900360200190a35050565b610222610401565b6000546001600160a01b03908116911614610284576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b600080546040516001600160a01b03909116907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908390a36000805473ffffffffffffffffffffffffffffffffffffffff19169055565b6000546001600160a01b031690565b6102f2610401565b6000546001600160a01b03908116911614610354576040805162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015290519081900360640190fd5b6001600160a01b0381166103995760405162461bcd60e51b81526004018080602001828103825260268152602001806104066026913960400191505060405180910390fd5b600080546040516001600160a01b03808516939216917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e091a36000805473ffffffffffffffffffffffffffffffffffffffff19166001600160a01b0392909216919091179055565b339056fe4f776e61626c653a206e6577206f776e657220697320746865207a65726f2061646472657373a264697066735822122079c27789307fd9ed95db05b8403cb2ee131fd6c737995a4075a2289e3467e1f264736f6c634300060c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000391d2021f89dc339f60fff84546ea23e337750f
-----Decoded View---------------
Arg [0] : bond (address): 0x0391D2021f89DC339F60Fff84546EA23E337750f
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000000391d2021f89dc339f60fff84546ea23e337750f
Loading...
Loading
Loading...
Loading
OVERVIEW
The vault for all the BOND tokens that will be allocated to the community. Owned by the BarnBridgeDAO.Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | 100.00% | $0.336145 | 18,562.2639 | $6,239.61 |
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.