ETH Price: $2,720.73 (+12.32%)
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
146503142022-04-24 23:14:15927 days ago1650842055  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x034d775615d50d870d742caa1e539fc8d97955c2

Contract Name:
Strategy

Compiler Version
v0.6.12+commit.27d51765

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, GNU AGPLv3 license

Contract Source Code (Solidity)

Decompile Bytecode Similar Contracts
/**
 *Submitted for verification at Etherscan.io on 2022-04-24
*/

pragma experimental ABIEncoderV2;

// File: Address.sol

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
        // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
        // for accounts without code, i.e. `keccak256('')`
        bytes32 codehash;
        bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
        // solhint-disable-next-line no-inline-assembly
        assembly { codehash := extcodehash(account) }
        return (codehash != accountHash && codehash != 0x0);
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return _functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        return _functionCallWithValue(target, data, value, errorMessage);
    }

    function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

// File: Context.sol

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

// File: IERC20.sol

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

// File: ILiquidityGauge.sol

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

// For compatibility, we're keeping the same function names as in the original Curve code, including the mixed-case
// naming convention.
// solhint-disable func-name-mixedcase

interface ILiquidityGauge {
    function integrate_fraction(address user) external view returns (uint256);

    function user_checkpoint(address user) external returns (bool);

    function is_killed() external view returns (bool);

    function killGauge() external;

    function unkillGauge() external;
}

// File: Math.sol

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow, so we distribute
        return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
    }
}

// File: SafeMath.sol

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

// File: ERC20.sol

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;
    using Address for address;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name, string memory symbol) public {
        _name = name;
        _symbol = symbol;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20};
     *
     * Requirements:
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
     *
     * This is internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}

// File: IStakingLiquidityGauge.sol

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

// For compatibility, we're keeping the same function names as in the original Curve code, including the mixed-case
// naming convention.
// solhint-disable func-name-mixedcase

interface IStakingLiquidityGauge is ILiquidityGauge, IERC20 {
    function initialize(address lpToken) external;

    function lp_token() external view returns (IERC20);

    function deposit(uint256 value, address recipient) external;

    function withdraw(uint256 value) external;

    function claimable_rewards(address user, address rewardToken) external view returns (uint256);

    function claim_rewards(address user) external;

    function add_reward(address rewardToken, address distributor) external;

    function set_reward_distributor(address rewardToken, address distributor) external;
}

// File: SafeERC20.sol

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

// File: BalancerMinter.sol

interface IBalancerMinter {
    event Minted(address indexed recipient, address gauge, uint256 minted);

    /**
     * @notice Returns the address of the Balancer Governance Token
     */
    function getBalancerToken() external view returns (IERC20);

    /**
     * @notice Returns the address of the Balancer Token Admin contract
     */
    function getBalancerTokenAdmin() external view returns (address);

    /**
     * @notice Returns the address of the Gauge Controller
     */
    function getGaugeController() external view returns (address);

    /**
     * @notice Mint everything which belongs to `msg.sender` and send to them
     * @param gauge `LiquidityGauge` address to get mintable amount from
     */
    function mint(address gauge) external returns (uint256);

    /**
     * @notice Mint everything which belongs to `msg.sender` across multiple gauges
     * @param gauges List of `LiquidityGauge` addresses
     */
    function mintMany(address[] calldata gauges) external returns (uint256);

    /**
     * @notice Mint tokens for `user`
     * @dev Only possible when `msg.sender` has been approved by `user` to mint on their behalf
     * @param gauge `LiquidityGauge` address to get mintable amount from
     * @param user Address to mint to
     */
    function mintFor(address gauge, address user) external returns (uint256);

    /**
     * @notice Mint tokens for `user` across multiple gauges
     * @dev Only possible when `msg.sender` has been approved by `user` to mint on their behalf
     * @param gauges List of `LiquidityGauge` addresses
     * @param user Address to mint to
     */
    function mintManyFor(address[] calldata gauges, address user) external returns (uint256);

    /**
     * @notice The total number of tokens minted for `user` from `gauge`
     */
    function minted(address user, address gauge) external view returns (uint256);

    /**
     * @notice Whether `minter` is approved to mint tokens for `user`
     */
    function getMinterApproval(address minter, address user) external view returns (bool);

    /**
     * @notice Set whether `minter` is approved to mint tokens on your behalf
     */
    function setMinterApproval(address minter, bool approval) external;

    /**
     * @notice Set whether `minter` is approved to mint tokens on behalf of `user`, who has signed a message authorizing
     * them.
     */
    function setMinterApprovalWithSignature(
        address minter,
        bool approval,
        address user,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    // The below functions are near-duplicates of functions available above.
    // They are included for ABI compatibility with snake_casing as used in vyper contracts.
    // solhint-disable func-name-mixedcase

    /**
     * @notice Whether `minter` is approved to mint tokens for `user`
     */
    function allowed_to_mint_for(address minter, address user) external view returns (bool);

    /**
     * @notice Mint everything which belongs to `msg.sender` across multiple gauges
     * @dev This function is not recommended as `mintMany()` is more flexible and gas efficient
     * @param gauges List of `LiquidityGauge` addresses
     */
    function mint_many(address[8] calldata gauges) external;

    /**
     * @notice Mint tokens for `user`
     * @dev Only possible when `msg.sender` has been approved by `user` to mint on their behalf
     * @param gauge `LiquidityGauge` address to get mintable amount from
     * @param user Address to mint to
     */
    function mint_for(address gauge, address user) external;

    /**
     * @notice Toggle whether `minter` is approved to mint tokens for `user`
     */
    function toggle_approve_mint(address minter) external;
}
// File: BalancerV2.sol

interface IBalancerPool is IERC20 {
    enum SwapKind {GIVEN_IN, GIVEN_OUT}

    struct SwapRequest {
        SwapKind kind;
        IERC20 tokenIn;
        IERC20 tokenOut;
        uint256 amount;
        // Misc data
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }

    // virtual price of bpt
    function getRate() external view returns (uint);

    function getPoolId() external view returns (bytes32 poolId);

    function symbol() external view returns (string memory s);

    function onSwap(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) external view returns (uint256 amount);
}

interface IBalancerVault {
    enum PoolSpecialization {GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN}
    enum JoinKind {INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT}
    enum ExitKind {EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT}
    enum SwapKind {GIVEN_IN, GIVEN_OUT}

    /**
     * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
     * `assets` array passed to that function, and ETH assets are converted to WETH.
     *
     * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
     * from the previous swap, depending on the swap kind.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct BatchSwapStep {
        bytes32 poolId;
        uint256 assetInIndex;
        uint256 assetOutIndex;
        uint256 amount;
        bytes userData;
    }
    /**
     * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
     * `recipient` account.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
     * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
     * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
     * `joinPool`.
     *
     * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
     * transferred. This matches the behavior of `exitPool`.
     *
     * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
     * revert.
     */
    struct FundManagement {
        address sender;
        bool fromInternalBalance;
        address payable recipient;
        bool toInternalBalance;
    }

    /**
     * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
     * the `kind` value.
     *
     * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
     * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct SingleSwap {
        bytes32 poolId;
        SwapKind kind;
        IAsset assetIn;
        IAsset assetOut;
        uint256 amount;
        bytes userData;
    }

    // enconding formats https://github.com/balancer-labs/balancer-v2-monorepo/blob/master/pkg/balancer-js/src/pool-weighted/encoder.ts
    struct JoinPoolRequest {
        IAsset[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    struct ExitPoolRequest {
        IAsset[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    function joinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        JoinPoolRequest memory request
    ) external payable;

    function exitPool(
        bytes32 poolId,
        address sender,
        address payable recipient,
        ExitPoolRequest calldata request
    ) external;

    function getPool(bytes32 poolId) external view returns (address poolAddress, PoolSpecialization);

    function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns (
        uint256 cash,
        uint256 managed,
        uint256 lastChangeBlock,
        address assetManager
    );

    function getPoolTokens(bytes32 poolId) external view returns (
        IERC20[] calldata tokens,
        uint256[] calldata balances,
        uint256 lastChangeBlock
    );
    /**
     * @dev Performs a swap with a single Pool.
     *
     * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
     * taken from the Pool, which must be greater than or equal to `limit`.
     *
     * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
     * sent to the Pool, which must be less than or equal to `limit`.
     *
     * Internal Balance usage and the recipient are determined by the `funds` struct.
     *
     * Emits a `Swap` event.
     */
    function swap(
        SingleSwap memory singleSwap,
        FundManagement memory funds,
        uint256 limit,
        uint256 deadline
    ) external returns (uint256 amountCalculated);

    /**
     * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
     * the amount of tokens sent to or received from the Pool, depending on the `kind` value.
     *
     * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
     * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
     * the same index in the `assets` array.
     *
     * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
     * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
     * `amountOut` depending on the swap kind.
     *
     * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
     * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
     * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
     *
     * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
     * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
     * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
     * or unwrapped from WETH by the Vault.
     *
     * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
     * the minimum or maximum amount of each token the vault is allowed to transfer.
     *
     * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
     * equivalent `swap` call.
     *
     * Emits `Swap` events.
     */
    function batchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds,
        int256[] memory limits,
        uint256 deadline
    ) external payable returns (int256[] memory);
}

interface IAsset {
    // solhint-disable-previous-line no-empty-blocks
}

interface IBalancerVaultHelper {
    struct JoinPoolRequest {
        IAsset[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    struct ExitPoolRequest {
        IAsset[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        IBalancerVault.JoinPoolRequest memory request
    ) external view returns (uint256 bptOut, uint256[] memory amountsIn);

    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        IBalancerVault.ExitPoolRequest memory request
    ) external view returns (uint256 bptIn, uint256[] memory amountsOut);
}
// File: BaseStrategy.sol

struct StrategyParams {
    uint256 performanceFee;
    uint256 activation;
    uint256 debtRatio;
    uint256 minDebtPerHarvest;
    uint256 maxDebtPerHarvest;
    uint256 lastReport;
    uint256 totalDebt;
    uint256 totalGain;
    uint256 totalLoss;
}

interface VaultAPI is IERC20 {
    function name() external view returns (string calldata);

    function symbol() external view returns (string calldata);

    function decimals() external view returns (uint256);

    function apiVersion() external pure returns (string memory);

    function permit(
        address owner,
        address spender,
        uint256 amount,
        uint256 expiry,
        bytes calldata signature
    ) external returns (bool);

    // NOTE: Vyper produces multiple signatures for a given function with "default" args
    function deposit() external returns (uint256);

    function deposit(uint256 amount) external returns (uint256);

    function deposit(uint256 amount, address recipient) external returns (uint256);

    // NOTE: Vyper produces multiple signatures for a given function with "default" args
    function withdraw() external returns (uint256);

    function withdraw(uint256 maxShares) external returns (uint256);

    function withdraw(uint256 maxShares, address recipient) external returns (uint256);

    function token() external view returns (address);

    function strategies(address _strategy) external view returns (StrategyParams memory);

    function pricePerShare() external view returns (uint256);

    function totalAssets() external view returns (uint256);

    function depositLimit() external view returns (uint256);

    function maxAvailableShares() external view returns (uint256);

    /**
     * View how much the Vault would increase this Strategy's borrow limit,
     * based on its present performance (since its last report). Can be used to
     * determine expectedReturn in your Strategy.
     */
    function creditAvailable() external view returns (uint256);

    /**
     * View how much the Vault would like to pull back from the Strategy,
     * based on its present performance (since its last report). Can be used to
     * determine expectedReturn in your Strategy.
     */
    function debtOutstanding() external view returns (uint256);

    /**
     * View how much the Vault expect this Strategy to return at the current
     * block, based on its present performance (since its last report). Can be
     * used to determine expectedReturn in your Strategy.
     */
    function expectedReturn() external view returns (uint256);

    /**
     * This is the main contact point where the Strategy interacts with the
     * Vault. It is critical that this call is handled as intended by the
     * Strategy. Therefore, this function will be called by BaseStrategy to
     * make sure the integration is correct.
     */
    function report(
        uint256 _gain,
        uint256 _loss,
        uint256 _debtPayment
    ) external returns (uint256);

    /**
     * This function should only be used in the scenario where the Strategy is
     * being retired but no migration of the positions are possible, or in the
     * extreme scenario that the Strategy needs to be put into "Emergency Exit"
     * mode in order for it to exit as quickly as possible. The latter scenario
     * could be for any reason that is considered "critical" that the Strategy
     * exits its position as fast as possible, such as a sudden change in
     * market conditions leading to losses, or an imminent failure in an
     * external dependency.
     */
    function revokeStrategy() external;

    /**
     * View the governance address of the Vault to assert privileged functions
     * can only be called by governance. The Strategy serves the Vault, so it
     * is subject to governance defined by the Vault.
     */
    function governance() external view returns (address);

    /**
     * View the management address of the Vault to assert privileged functions
     * can only be called by management. The Strategy serves the Vault, so it
     * is subject to management defined by the Vault.
     */
    function management() external view returns (address);

    /**
     * View the guardian address of the Vault to assert privileged functions
     * can only be called by guardian. The Strategy serves the Vault, so it
     * is subject to guardian defined by the Vault.
     */
    function guardian() external view returns (address);
}

/**
 * This interface is here for the keeper bot to use.
 */
interface StrategyAPI {
    function name() external view returns (string memory);

    function vault() external view returns (address);

    function want() external view returns (address);

    function apiVersion() external pure returns (string memory);

    function keeper() external view returns (address);

    function isActive() external view returns (bool);

    function delegatedAssets() external view returns (uint256);

    function estimatedTotalAssets() external view returns (uint256);

    function tendTrigger(uint256 callCost) external view returns (bool);

    function tend() external;

    function harvestTrigger(uint256 callCost) external view returns (bool);

    function harvest() external;

    event Harvested(uint256 profit, uint256 loss, uint256 debtPayment, uint256 debtOutstanding);
}

interface HealthCheck {
    function check(
        uint256 profit,
        uint256 loss,
        uint256 debtPayment,
        uint256 debtOutstanding,
        uint256 totalDebt
    ) external view returns (bool);
}

/**
 * @title Yearn Base Strategy
 * @author yearn.finance
 * @notice
 *  BaseStrategy implements all of the required functionality to interoperate
 *  closely with the Vault contract. This contract should be inherited and the
 *  abstract methods implemented to adapt the Strategy to the particular needs
 *  it has to create a return.
 *
 *  Of special interest is the relationship between `harvest()` and
 *  `vault.report()'. `harvest()` may be called simply because enough time has
 *  elapsed since the last report, and not because any funds need to be moved
 *  or positions adjusted. This is critical so that the Vault may maintain an
 *  accurate picture of the Strategy's performance. See  `vault.report()`,
 *  `harvest()`, and `harvestTrigger()` for further details.
 */

abstract contract BaseStrategy {
    using SafeMath for uint256;
    using SafeERC20 for IERC20;
    string public metadataURI;

    // health checks
    bool public doHealthCheck;
    address public healthCheck;

    /**
     * @notice
     *  Used to track which version of `StrategyAPI` this Strategy
     *  implements.
     * @dev The Strategy's version must match the Vault's `API_VERSION`.
     * @return A string which holds the current API version of this contract.
     */
    function apiVersion() public pure returns (string memory) {
        return "0.4.3";
    }

    /**
     * @notice This Strategy's name.
     * @dev
     *  You can use this field to manage the "version" of this Strategy, e.g.
     *  `StrategySomethingOrOtherV1`. However, "API Version" is managed by
     *  `apiVersion()` function above.
     * @return This Strategy's name.
     */
    function name() external view virtual returns (string memory);

    /**
     * @notice
     *  The amount (priced in want) of the total assets managed by this strategy should not count
     *  towards Yearn's TVL calculations.
     * @dev
     *  You can override this field to set it to a non-zero value if some of the assets of this
     *  Strategy is somehow delegated inside another part of of Yearn's ecosystem e.g. another Vault.
     *  Note that this value must be strictly less than or equal to the amount provided by
     *  `estimatedTotalAssets()` below, as the TVL calc will be total assets minus delegated assets.
     *  Also note that this value is used to determine the total assets under management by this
     *  strategy, for the purposes of computing the management fee in `Vault`
     * @return
     *  The amount of assets this strategy manages that should not be included in Yearn's Total Value
     *  Locked (TVL) calculation across it's ecosystem.
     */
    function delegatedAssets() external view virtual returns (uint256) {
        return 0;
    }

    VaultAPI public vault;
    address public strategist;
    address public rewards;
    address public keeper;

    IERC20 public want;

    // So indexers can keep track of this
    event Harvested(uint256 profit, uint256 loss, uint256 debtPayment, uint256 debtOutstanding);

    event UpdatedStrategist(address newStrategist);

    event UpdatedKeeper(address newKeeper);

    event UpdatedRewards(address rewards);

    event UpdatedMinReportDelay(uint256 delay);

    event UpdatedMaxReportDelay(uint256 delay);

    event UpdatedProfitFactor(uint256 profitFactor);

    event UpdatedDebtThreshold(uint256 debtThreshold);

    event EmergencyExitEnabled();

    event UpdatedMetadataURI(string metadataURI);

    // The minimum number of seconds between harvest calls. See
    // `setMinReportDelay()` for more details.
    uint256 public minReportDelay;

    // The maximum number of seconds between harvest calls. See
    // `setMaxReportDelay()` for more details.
    uint256 public maxReportDelay;

    // The minimum multiple that `callCost` must be above the credit/profit to
    // be "justifiable". See `setProfitFactor()` for more details.
    uint256 public profitFactor;

    // Use this to adjust the threshold at which running a debt causes a
    // harvest trigger. See `setDebtThreshold()` for more details.
    uint256 public debtThreshold;

    // See note on `setEmergencyExit()`.
    bool public emergencyExit;

    // modifiers
    modifier onlyAuthorized() {
        require(msg.sender == strategist || msg.sender == governance(), "!authorized");
        _;
    }

    modifier onlyEmergencyAuthorized() {
        require(
            msg.sender == strategist || msg.sender == governance() || msg.sender == vault.guardian() || msg.sender == vault.management(),
            "!authorized"
        );
        _;
    }

    modifier onlyStrategist() {
        require(msg.sender == strategist, "!strategist");
        _;
    }

    modifier onlyGovernance() {
        require(msg.sender == governance(), "!authorized");
        _;
    }

    modifier onlyKeepers() {
        require(
            msg.sender == keeper ||
                msg.sender == strategist ||
                msg.sender == governance() ||
                msg.sender == vault.guardian() ||
                msg.sender == vault.management(),
            "!authorized"
        );
        _;
    }

    modifier onlyVaultManagers() {
        require(msg.sender == vault.management() || msg.sender == governance(), "!authorized");
        _;
    }

    constructor(address _vault) public {
        _initialize(_vault, msg.sender, msg.sender, msg.sender);
    }

    /**
     * @notice
     *  Initializes the Strategy, this is called only once, when the
     *  contract is deployed.
     * @dev `_vault` should implement `VaultAPI`.
     * @param _vault The address of the Vault responsible for this Strategy.
     * @param _strategist The address to assign as `strategist`.
     * The strategist is able to change the reward address
     * @param _rewards  The address to use for pulling rewards.
     * @param _keeper The adddress of the _keeper. _keeper
     * can harvest and tend a strategy.
     */
    function _initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) internal {
        require(address(want) == address(0), "Strategy already initialized");

        vault = VaultAPI(_vault);
        want = IERC20(vault.token());
        want.safeApprove(_vault, uint256(-1)); // Give Vault unlimited access (might save gas)
        strategist = _strategist;
        rewards = _rewards;
        keeper = _keeper;

        // initialize variables
        minReportDelay = 0;
        maxReportDelay = 86400;
        profitFactor = 100;
        debtThreshold = 0;

        vault.approve(rewards, uint256(-1)); // Allow rewards to be pulled
    }

    function setHealthCheck(address _healthCheck) external onlyVaultManagers {
        healthCheck = _healthCheck;
    }

    function setDoHealthCheck(bool _doHealthCheck) external onlyVaultManagers {
        doHealthCheck = _doHealthCheck;
    }

    /**
     * @notice
     *  Used to change `strategist`.
     *
     *  This may only be called by governance or the existing strategist.
     * @param _strategist The new address to assign as `strategist`.
     */
    function setStrategist(address _strategist) external onlyAuthorized {
        require(_strategist != address(0));
        strategist = _strategist;
        emit UpdatedStrategist(_strategist);
    }

    /**
     * @notice
     *  Used to change `keeper`.
     *
     *  `keeper` is the only address that may call `tend()` or `harvest()`,
     *  other than `governance()` or `strategist`. However, unlike
     *  `governance()` or `strategist`, `keeper` may *only* call `tend()`
     *  and `harvest()`, and no other authorized functions, following the
     *  principle of least privilege.
     *
     *  This may only be called by governance or the strategist.
     * @param _keeper The new address to assign as `keeper`.
     */
    function setKeeper(address _keeper) external onlyAuthorized {
        require(_keeper != address(0));
        keeper = _keeper;
        emit UpdatedKeeper(_keeper);
    }

    /**
     * @notice
     *  Used to change `rewards`. EOA or smart contract which has the permission
     *  to pull rewards from the vault.
     *
     *  This may only be called by the strategist.
     * @param _rewards The address to use for pulling rewards.
     */
    function setRewards(address _rewards) external onlyStrategist {
        require(_rewards != address(0));
        vault.approve(rewards, 0);
        rewards = _rewards;
        vault.approve(rewards, uint256(-1));
        emit UpdatedRewards(_rewards);
    }

    /**
     * @notice
     *  Used to change `minReportDelay`. `minReportDelay` is the minimum number
     *  of blocks that should pass for `harvest()` to be called.
     *
     *  For external keepers (such as the Keep3r network), this is the minimum
     *  time between jobs to wait. (see `harvestTrigger()`
     *  for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _delay The minimum number of seconds to wait between harvests.
     */
    function setMinReportDelay(uint256 _delay) external onlyAuthorized {
        minReportDelay = _delay;
        emit UpdatedMinReportDelay(_delay);
    }

    /**
     * @notice
     *  Used to change `maxReportDelay`. `maxReportDelay` is the maximum number
     *  of blocks that should pass for `harvest()` to be called.
     *
     *  For external keepers (such as the Keep3r network), this is the maximum
     *  time between jobs to wait. (see `harvestTrigger()`
     *  for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _delay The maximum number of seconds to wait between harvests.
     */
    function setMaxReportDelay(uint256 _delay) external onlyAuthorized {
        maxReportDelay = _delay;
        emit UpdatedMaxReportDelay(_delay);
    }

    /**
     * @notice
     *  Used to change `profitFactor`. `profitFactor` is used to determine
     *  if it's worthwhile to harvest, given gas costs. (See `harvestTrigger()`
     *  for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _profitFactor A ratio to multiply anticipated
     * `harvest()` gas cost against.
     */
    function setProfitFactor(uint256 _profitFactor) external onlyAuthorized {
        profitFactor = _profitFactor;
        emit UpdatedProfitFactor(_profitFactor);
    }

    /**
     * @notice
     *  Sets how far the Strategy can go into loss without a harvest and report
     *  being required.
     *
     *  By default this is 0, meaning any losses would cause a harvest which
     *  will subsequently report the loss to the Vault for tracking. (See
     *  `harvestTrigger()` for more details.)
     *
     *  This may only be called by governance or the strategist.
     * @param _debtThreshold How big of a loss this Strategy may carry without
     * being required to report to the Vault.
     */
    function setDebtThreshold(uint256 _debtThreshold) external onlyAuthorized {
        debtThreshold = _debtThreshold;
        emit UpdatedDebtThreshold(_debtThreshold);
    }

    /**
     * @notice
     *  Used to change `metadataURI`. `metadataURI` is used to store the URI
     * of the file describing the strategy.
     *
     *  This may only be called by governance or the strategist.
     * @param _metadataURI The URI that describe the strategy.
     */
    function setMetadataURI(string calldata _metadataURI) external onlyAuthorized {
        metadataURI = _metadataURI;
        emit UpdatedMetadataURI(_metadataURI);
    }

    /**
     * Resolve governance address from Vault contract, used to make assertions
     * on protected functions in the Strategy.
     */
    function governance() internal view returns (address) {
        return vault.governance();
    }

    /**
     * @notice
     *  Provide an accurate conversion from `_amtInWei` (denominated in wei)
     *  to `want` (using the native decimal characteristics of `want`).
     * @dev
     *  Care must be taken when working with decimals to assure that the conversion
     *  is compatible. As an example:
     *
     *      given 1e17 wei (0.1 ETH) as input, and want is USDC (6 decimals),
     *      with USDC/ETH = 1800, this should give back 1800000000 (180 USDC)
     *
     * @param _amtInWei The amount (in wei/1e-18 ETH) to convert to `want`
     * @return The amount in `want` of `_amtInEth` converted to `want`
     **/
    function ethToWant(uint256 _amtInWei) public view virtual returns (uint256);

    /**
     * @notice
     *  Provide an accurate estimate for the total amount of assets
     *  (principle + return) that this Strategy is currently managing,
     *  denominated in terms of `want` tokens.
     *
     *  This total should be "realizable" e.g. the total value that could
     *  *actually* be obtained from this Strategy if it were to divest its
     *  entire position based on current on-chain conditions.
     * @dev
     *  Care must be taken in using this function, since it relies on external
     *  systems, which could be manipulated by the attacker to give an inflated
     *  (or reduced) value produced by this function, based on current on-chain
     *  conditions (e.g. this function is possible to influence through
     *  flashloan attacks, oracle manipulations, or other DeFi attack
     *  mechanisms).
     *
     *  It is up to governance to use this function to correctly order this
     *  Strategy relative to its peers in the withdrawal queue to minimize
     *  losses for the Vault based on sudden withdrawals. This value should be
     *  higher than the total debt of the Strategy and higher than its expected
     *  value to be "safe".
     * @return The estimated total assets in this Strategy.
     */
    function estimatedTotalAssets() public view virtual returns (uint256);

    /*
     * @notice
     *  Provide an indication of whether this strategy is currently "active"
     *  in that it is managing an active position, or will manage a position in
     *  the future. This should correlate to `harvest()` activity, so that Harvest
     *  events can be tracked externally by indexing agents.
     * @return True if the strategy is actively managing a position.
     */
    function isActive() public view returns (bool) {
        return vault.strategies(address(this)).debtRatio > 0 || estimatedTotalAssets() > 0;
    }

    /**
     * Perform any Strategy unwinding or other calls necessary to capture the
     * "free return" this Strategy has generated since the last time its core
     * position(s) were adjusted. Examples include unwrapping extra rewards.
     * This call is only used during "normal operation" of a Strategy, and
     * should be optimized to minimize losses as much as possible.
     *
     * This method returns any realized profits and/or realized losses
     * incurred, and should return the total amounts of profits/losses/debt
     * payments (in `want` tokens) for the Vault's accounting (e.g.
     * `want.balanceOf(this) >= _debtPayment + _profit`).
     *
     * `_debtOutstanding` will be 0 if the Strategy is not past the configured
     * debt limit, otherwise its value will be how far past the debt limit
     * the Strategy is. The Strategy's debt limit is configured in the Vault.
     *
     * NOTE: `_debtPayment` should be less than or equal to `_debtOutstanding`.
     *       It is okay for it to be less than `_debtOutstanding`, as that
     *       should only used as a guide for how much is left to pay back.
     *       Payments should be made to minimize loss from slippage, debt,
     *       withdrawal fees, etc.
     *
     * See `vault.debtOutstanding()`.
     */
    function prepareReturn(uint256 _debtOutstanding)
        internal
        virtual
        returns (
            uint256 _profit,
            uint256 _loss,
            uint256 _debtPayment
        );

    /**
     * Perform any adjustments to the core position(s) of this Strategy given
     * what change the Vault made in the "investable capital" available to the
     * Strategy. Note that all "free capital" in the Strategy after the report
     * was made is available for reinvestment. Also note that this number
     * could be 0, and you should handle that scenario accordingly.
     *
     * See comments regarding `_debtOutstanding` on `prepareReturn()`.
     */
    function adjustPosition(uint256 _debtOutstanding) internal virtual;

    /**
     * Liquidate up to `_amountNeeded` of `want` of this strategy's positions,
     * irregardless of slippage. Any excess will be re-invested with `adjustPosition()`.
     * This function should return the amount of `want` tokens made available by the
     * liquidation. If there is a difference between them, `_loss` indicates whether the
     * difference is due to a realized loss, or if there is some other sitution at play
     * (e.g. locked funds) where the amount made available is less than what is needed.
     *
     * NOTE: The invariant `_liquidatedAmount + _loss <= _amountNeeded` should always be maintained
     */
    function liquidatePosition(uint256 _amountNeeded) internal virtual returns (uint256 _liquidatedAmount, uint256 _loss);

    /**
     * Liquidate everything and returns the amount that got freed.
     * This function is used during emergency exit instead of `prepareReturn()` to
     * liquidate all of the Strategy's positions back to the Vault.
     */

    function liquidateAllPositions() internal virtual returns (uint256 _amountFreed);

    /**
     * @notice
     *  Provide a signal to the keeper that `tend()` should be called. The
     *  keeper will provide the estimated gas cost that they would pay to call
     *  `tend()`, and this function should use that estimate to make a
     *  determination if calling it is "worth it" for the keeper. This is not
     *  the only consideration into issuing this trigger, for example if the
     *  position would be negatively affected if `tend()` is not called
     *  shortly, then this can return `true` even if the keeper might be
     *  "at a loss" (keepers are always reimbursed by Yearn).
     * @dev
     *  `callCostInWei` must be priced in terms of `wei` (1e-18 ETH).
     *
     *  This call and `harvestTrigger()` should never return `true` at the same
     *  time.
     * @param callCostInWei The keeper's estimated gas cost to call `tend()` (in wei).
     * @return `true` if `tend()` should be called, `false` otherwise.
     */
    function tendTrigger(uint256 callCostInWei) public view virtual returns (bool) {
        // We usually don't need tend, but if there are positions that need
        // active maintainence, overriding this function is how you would
        // signal for that.
        // If your implementation uses the cost of the call in want, you can
        // use uint256 callCost = ethToWant(callCostInWei);

        return false;
    }

    /**
     * @notice
     *  Adjust the Strategy's position. The purpose of tending isn't to
     *  realize gains, but to maximize yield by reinvesting any returns.
     *
     *  See comments on `adjustPosition()`.
     *
     *  This may only be called by governance, the strategist, or the keeper.
     */
    function tend() external onlyKeepers {
        // Don't take profits with this call, but adjust for better gains
        adjustPosition(vault.debtOutstanding());
    }

    /**
     * @notice
     *  Provide a signal to the keeper that `harvest()` should be called. The
     *  keeper will provide the estimated gas cost that they would pay to call
     *  `harvest()`, and this function should use that estimate to make a
     *  determination if calling it is "worth it" for the keeper. This is not
     *  the only consideration into issuing this trigger, for example if the
     *  position would be negatively affected if `harvest()` is not called
     *  shortly, then this can return `true` even if the keeper might be "at a
     *  loss" (keepers are always reimbursed by Yearn).
     * @dev
     *  `callCostInWei` must be priced in terms of `wei` (1e-18 ETH).
     *
     *  This call and `tendTrigger` should never return `true` at the
     *  same time.
     *
     *  See `min/maxReportDelay`, `profitFactor`, `debtThreshold` to adjust the
     *  strategist-controlled parameters that will influence whether this call
     *  returns `true` or not. These parameters will be used in conjunction
     *  with the parameters reported to the Vault (see `params`) to determine
     *  if calling `harvest()` is merited.
     *
     *  It is expected that an external system will check `harvestTrigger()`.
     *  This could be a script run off a desktop or cloud bot (e.g.
     *  https://github.com/iearn-finance/yearn-vaults/blob/main/scripts/keep.py),
     *  or via an integration with the Keep3r network (e.g.
     *  https://github.com/Macarse/GenericKeep3rV2/blob/master/contracts/keep3r/GenericKeep3rV2.sol).
     * @param callCostInWei The keeper's estimated gas cost to call `harvest()` (in wei).
     * @return `true` if `harvest()` should be called, `false` otherwise.
     */
    function harvestTrigger(uint256 callCostInWei) public view virtual returns (bool) {
        uint256 callCost = ethToWant(callCostInWei);
        StrategyParams memory params = vault.strategies(address(this));

        // Should not trigger if Strategy is not activated
        if (params.activation == 0) return false;

        // Should not trigger if we haven't waited long enough since previous harvest
        if (block.timestamp.sub(params.lastReport) < minReportDelay) return false;

        // Should trigger if hasn't been called in a while
        if (block.timestamp.sub(params.lastReport) >= maxReportDelay) return true;

        // If some amount is owed, pay it back
        // NOTE: Since debt is based on deposits, it makes sense to guard against large
        //       changes to the value from triggering a harvest directly through user
        //       behavior. This should ensure reasonable resistance to manipulation
        //       from user-initiated withdrawals as the outstanding debt fluctuates.
        uint256 outstanding = vault.debtOutstanding();
        if (outstanding > debtThreshold) return true;

        // Check for profits and losses
        uint256 total = estimatedTotalAssets();
        // Trigger if we have a loss to report
        if (total.add(debtThreshold) < params.totalDebt) return true;

        uint256 profit = 0;
        if (total > params.totalDebt) profit = total.sub(params.totalDebt); // We've earned a profit!

        // Otherwise, only trigger if it "makes sense" economically (gas cost
        // is <N% of value moved)
        uint256 credit = vault.creditAvailable();
        return (profitFactor.mul(callCost) < credit.add(profit));
    }

    /**
     * @notice
     *  Harvests the Strategy, recognizing any profits or losses and adjusting
     *  the Strategy's position.
     *
     *  In the rare case the Strategy is in emergency shutdown, this will exit
     *  the Strategy's position.
     *
     *  This may only be called by governance, the strategist, or the keeper.
     * @dev
     *  When `harvest()` is called, the Strategy reports to the Vault (via
     *  `vault.report()`), so in some cases `harvest()` must be called in order
     *  to take in profits, to borrow newly available funds from the Vault, or
     *  otherwise adjust its position. In other cases `harvest()` must be
     *  called to report to the Vault on the Strategy's position, especially if
     *  any losses have occurred.
     */
    function harvest() external onlyKeepers {
        uint256 profit = 0;
        uint256 loss = 0;
        uint256 debtOutstanding = vault.debtOutstanding();
        uint256 debtPayment = 0;
        if (emergencyExit) {
            // Free up as much capital as possible
            uint256 amountFreed = liquidateAllPositions();
            if (amountFreed < debtOutstanding) {
                loss = debtOutstanding.sub(amountFreed);
            } else if (amountFreed > debtOutstanding) {
                profit = amountFreed.sub(debtOutstanding);
            }
            debtPayment = debtOutstanding.sub(loss);
        } else {
            // Free up returns for Vault to pull
            (profit, loss, debtPayment) = prepareReturn(debtOutstanding);
        }

        // Allow Vault to take up to the "harvested" balance of this contract,
        // which is the amount it has earned since the last time it reported to
        // the Vault.
        uint256 totalDebt = vault.strategies(address(this)).totalDebt;
        debtOutstanding = vault.report(profit, loss, debtPayment);

        // Check if free returns are left, and re-invest them
        adjustPosition(debtOutstanding);

        // call healthCheck contract
        if (doHealthCheck && healthCheck != address(0)) {
            require(HealthCheck(healthCheck).check(profit, loss, debtPayment, debtOutstanding, totalDebt), "!healthcheck");
        } else {
            doHealthCheck = true;
        }

        emit Harvested(profit, loss, debtPayment, debtOutstanding);
    }

    /**
     * @notice
     *  Withdraws `_amountNeeded` to `vault`.
     *
     *  This may only be called by the Vault.
     * @param _amountNeeded How much `want` to withdraw.
     * @return _loss Any realized losses
     */
    function withdraw(uint256 _amountNeeded) external returns (uint256 _loss) {
        require(msg.sender == address(vault), "!vault");
        // Liquidate as much as possible to `want`, up to `_amountNeeded`
        uint256 amountFreed;
        (amountFreed, _loss) = liquidatePosition(_amountNeeded);
        // Send it directly back (NOTE: Using `msg.sender` saves some gas here)
        want.safeTransfer(msg.sender, amountFreed);
        // NOTE: Reinvest anything leftover on next `tend`/`harvest`
    }

    /**
     * Do anything necessary to prepare this Strategy for migration, such as
     * transferring any reserve or LP tokens, CDPs, or other tokens or stores of
     * value.
     */
    function prepareMigration(address _newStrategy) internal virtual;

    /**
     * @notice
     *  Transfers all `want` from this Strategy to `_newStrategy`.
     *
     *  This may only be called by the Vault.
     * @dev
     * The new Strategy's Vault must be the same as this Strategy's Vault.
     *  The migration process should be carefully performed to make sure all
     * the assets are migrated to the new address, which should have never
     * interacted with the vault before.
     * @param _newStrategy The Strategy to migrate to.
     */
    function migrate(address _newStrategy) external {
        require(msg.sender == address(vault));
        require(BaseStrategy(_newStrategy).vault() == vault);
        prepareMigration(_newStrategy);
        want.safeTransfer(_newStrategy, want.balanceOf(address(this)));
    }

    /**
     * @notice
     *  Activates emergency exit. Once activated, the Strategy will exit its
     *  position upon the next harvest, depositing all funds into the Vault as
     *  quickly as is reasonable given on-chain conditions.
     *
     *  This may only be called by governance or the strategist.
     * @dev
     *  See `vault.setEmergencyShutdown()` and `harvest()` for further details.
     */
    function setEmergencyExit() external onlyEmergencyAuthorized {
        emergencyExit = true;
        vault.revokeStrategy();

        emit EmergencyExitEnabled();
    }

    /**
     * Override this to add all tokens/tokenized positions this contract
     * manages on a *persistent* basis (e.g. not just for swapping back to
     * want ephemerally).
     *
     * NOTE: Do *not* include `want`, already included in `sweep` below.
     *
     * Example:
     * ```
     *    function protectedTokens() internal override view returns (address[] memory) {
     *      address[] memory protected = new address[](3);
     *      protected[0] = tokenA;
     *      protected[1] = tokenB;
     *      protected[2] = tokenC;
     *      return protected;
     *    }
     * ```
     */
    function protectedTokens() internal view virtual returns (address[] memory);

    /**
     * @notice
     *  Removes tokens from this Strategy that are not the type of tokens
     *  managed by this Strategy. This may be used in case of accidentally
     *  sending the wrong kind of token to this Strategy.
     *
     *  Tokens will be sent to `governance()`.
     *
     *  This will fail if an attempt is made to sweep `want`, or any tokens
     *  that are protected by this Strategy.
     *
     *  This may only be called by governance.
     * @dev
     *  Implement `protectedTokens()` to specify any additional tokens that
     *  should be protected from sweeping in addition to `want`.
     * @param _token The token to transfer out of this vault.
     */
    function sweep(address _token) external onlyGovernance {
        require(_token != address(want), "!want");
        require(_token != address(vault), "!shares");

        address[] memory _protectedTokens = protectedTokens();
        for (uint256 i; i < _protectedTokens.length; i++) require(_token != _protectedTokens[i], "!protected");

        IERC20(_token).safeTransfer(governance(), IERC20(_token).balanceOf(address(this)));
    }
}

abstract contract BaseStrategyInitializable is BaseStrategy {
    bool public isOriginal = true;
    event Cloned(address indexed clone);

    constructor(address _vault) public BaseStrategy(_vault) {}

    function initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) external virtual {
        _initialize(_vault, _strategist, _rewards, _keeper);
    }

    function clone(address _vault) external returns (address) {
        require(isOriginal, "!clone");
        return this.clone(_vault, msg.sender, msg.sender, msg.sender);
    }

    function clone(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper
    ) external returns (address newStrategy) {
        // Copied from https://github.com/optionality/clone-factory/blob/master/contracts/CloneFactory.sol
        bytes20 addressBytes = bytes20(address(this));

        assembly {
            // EIP-1167 bytecode
            let clone_code := mload(0x40)
            mstore(clone_code, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(clone_code, 0x14), addressBytes)
            mstore(add(clone_code, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            newStrategy := create(0, clone_code, 0x37)
        }

        BaseStrategyInitializable(newStrategy).initialize(_vault, _strategist, _rewards, _keeper);

        emit Cloned(newStrategy);
    }
}

// File: ILiquidityGaugeFactory.sol

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

interface ILiquidityGaugeFactory {
    /**
     * @notice Returns true if `gauge` was created by this factory.
     */
    function isGaugeFromFactory(address gauge) external view returns (bool);

    /**
     * @notice Returns the address of the gauge belonging to `pool`.
     */
    function getPoolGauge(address pool) external view returns (IStakingLiquidityGauge);
}

// File: Strategy.sol

// Feel free to change the license, but this is what we use

// Feel free to change this version of Solidity. We support >=0.6.0 <0.7.0;

// These are the core Yearn libraries

interface IName {
    function name() external view returns (string memory);
}

contract Strategy is BaseStrategy {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;

    modifier isVaultManager {
        checkVaultManagers();
        _;
    }

    function checkVaultManagers() internal {
        require(msg.sender == vault.governance() || msg.sender == vault.management());
    }

    IBalancerVault public balancerVault;
    IBalancerPool public bpt;
    ILiquidityGaugeFactory public gaugeFactory;
    IStakingLiquidityGauge public gauge;
    IBalancerMinter public minter;
    IERC20[] public rewardTokens;
    IAsset[] internal assets;
    SwapSteps[] internal swapSteps;
    bytes32 public balancerPoolId;
    uint8 public numTokens;
    uint8 public tokenIndex;
    Toggles public toggles;
    address public keep;
    uint256 public keepBips;

    struct Toggles {
        bool doSellRewards;
        bool doClaimRewards;
        bool doCollectTradingFees;
    }

    struct SwapSteps {
        bytes32[] poolIds;
        IAsset[] assets;
    }

    uint256 internal constant max = type(uint256).max;

    //1	    0.01%
    //5	    0.05%
    //10	0.1%
    //50	0.5%
    //100	1%
    //1000	10%
    //10000	100%
    uint256 public maxSlippageIn; // bips
    uint256 public maxSlippageOut; // bips
    uint256 public maxSingleDeposit;
    uint256 public minDepositPeriod; // seconds
    uint256 public lastDepositTime;
    uint256 internal constant basisOne = 10000;
    IERC20 internal constant BAL = IERC20(0xba100000625a3754423978a60c9317c58a424e3D);

    constructor(
        address _vault,
        address _balancerVault,
        address _balancerPool,
        address _gaugeFactory,
        address _minter,
        uint256 _maxSlippageIn,
        uint256 _maxSlippageOut,
        uint256 _maxSingleDeposit,
        uint256 _minDepositPeriod)
    public BaseStrategy(_vault){
        _initializeStrat(_vault, _balancerVault, _balancerPool, _gaugeFactory, _minter, _maxSlippageIn, _maxSlippageOut, _maxSingleDeposit, _minDepositPeriod);
    }

    function initialize(
        address _vault,
        address _strategist,
        address _rewards,
        address _keeper,
        address _balancerVault,
        address _balancerPool,
        address _gaugeFactory,
        address _minter,
        uint256 _maxSlippageIn,
        uint256 _maxSlippageOut,
        uint256 _maxSingleDeposit,
        uint256 _minDepositPeriod
    ) external {
        _initialize(_vault, _strategist, _rewards, _keeper);
        _initializeStrat(_vault, _balancerVault, _balancerPool, _gaugeFactory, _minter, _maxSlippageIn, _maxSlippageOut, _maxSingleDeposit, _minDepositPeriod);
    }

    function _initializeStrat(
        address _vault,
        address _balancerVault,
        address _balancerPool,
        address _gaugeFactory,
        address _minter,
        uint256 _maxSlippageIn,
        uint256 _maxSlippageOut,
        uint256 _maxSingleDeposit,
        uint256 _minDepositPeriod)
    internal {
        // health.ychad.eth
        healthCheck = address(0xDDCea799fF1699e98EDF118e0629A974Df7DF012);
        bpt = IBalancerPool(_balancerPool);
        balancerPoolId = bpt.getPoolId();
        balancerVault = IBalancerVault(_balancerVault);
        (IERC20[] memory tokens,,) = balancerVault.getPoolTokens(balancerPoolId);
        require(tokens.length > 0, "Empty Pool");
        numTokens = uint8(tokens.length);
        assets = new IAsset[](numTokens);
        tokenIndex = type(uint8).max;
        for (uint8 i = 0; i < numTokens; i++) {
            if (tokens[i] == want) {
                tokenIndex = i;
            }
            assets[i] = IAsset(address(tokens[i]));
        }
        require(tokenIndex != type(uint8).max, "token not supported in pool!");

        maxSlippageIn = _maxSlippageIn;
        maxSlippageOut = _maxSlippageOut;
        maxSingleDeposit = _maxSingleDeposit.mul(10 ** uint256(ERC20(address(want)).decimals()));
        minDepositPeriod = _minDepositPeriod;

        require(_gaugeFactory != address(0));
        gaugeFactory = ILiquidityGaugeFactory(_gaugeFactory);
        gauge = IStakingLiquidityGauge(gaugeFactory.getPoolGauge(address(bpt)));
        minter = IBalancerMinter(_minter);

        require(address(gauge) != address(0));
        require(address(gauge.lp_token()) == address(bpt));
        want.safeApprove(address(balancerVault), max);
        IERC20(bpt).safeApprove(address(gauge), max);

        toggles = Toggles({doSellRewards : true, doClaimRewards : true, doCollectTradingFees : true});

        keepBips = 1000;
        keep = governance();
    }

    // ******** OVERRIDE THESE METHODS FROM BASE CONTRACT ************

    function name() external view override returns (string memory) {
        return string(abi.encodePacked("SSBv3 ", ERC20(address(want)).symbol(), " ", bpt.symbol()));
    }

    function estimatedTotalAssets() public view override returns (uint256) {
        return balanceOfWant().add(balanceOfPooled());
    }

    function prepareReturn(uint256 _debtOutstanding) internal override returns (uint256 _profit, uint256 _loss, uint256 _debtPayment){
        if (_debtOutstanding > 0) {
            (_debtPayment, _loss) = liquidatePosition(_debtOutstanding);
        }

        uint256 beforeWant = balanceOfWant();

        // 2 forms of profit. Incentivized rewards (BAL+other) and pool fees (want)
        if (toggles.doCollectTradingFees) {
            _collectTradingFees();
        }
        // this would allow finer control over harvesting to get credits in without selling
        if (toggles.doClaimRewards) {
            _claimRewards();
        }
        if (toggles.doSellRewards) {
            _sellRewards();
        }

        uint256 afterWant = balanceOfWant();

        _profit = afterWant.sub(beforeWant);
        if (_profit > _loss) {
            _profit = _profit.sub(_loss);
            _debtPayment = _debtPayment.add(_loss);
            _loss = 0;
        } else {
            _loss = _loss.sub(_profit);
            _debtPayment = _debtPayment.add(_profit);
            _profit = 0;
        }
    }

    function adjustPosition(uint256 _debtOutstanding) internal override {
        if (now.sub(lastDepositTime) < minDepositPeriod) {
            return;
        }

        uint256 amountIn = Math.min(maxSingleDeposit, balanceOfWant());
        uint256 expectedBptOut = tokensToBpts(amountIn).mul(basisOne.sub(maxSlippageIn)).div(basisOne);
        uint256[] memory maxAmountsIn = new uint256[](numTokens);
        maxAmountsIn[tokenIndex] = amountIn;

        if (amountIn > 0) {
            bytes memory userData = abi.encode(IBalancerVault.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT, maxAmountsIn, expectedBptOut);
            IBalancerVault.JoinPoolRequest memory request = IBalancerVault.JoinPoolRequest(assets, maxAmountsIn, userData, false);
            balancerVault.joinPool(balancerPoolId, address(this), address(this), request);
            lastDepositTime = now;
        }

        uint256 _unstakedBpt = balanceOfUnstakedBpt();
        if (_unstakedBpt > 0) {
            _stakeBpt(_unstakedBpt);
        }
    }

    // withdraws will realize losses if the pool is in bad conditions. This will heavily rely on _enforceSlippage to revert
    // and make sure we don't have to realize losses when not necessary
    function liquidatePosition(uint256 _amountNeeded) internal override returns (uint256 _liquidatedAmount, uint256 _loss){
        uint256 looseAmount = balanceOfWant();
        if (_amountNeeded > looseAmount) {
            uint256 toExitAmount = tokensToBpts(_amountNeeded.sub(looseAmount));

            uint256 _unstakedBpt = balanceOfUnstakedBpt();

            if (toExitAmount > _unstakedBpt) {
                _unstakeBpt(toExitAmount.sub(_unstakedBpt));
            }
            _sellBpt(toExitAmount);

            _liquidatedAmount = Math.min(balanceOfWant(), _amountNeeded);
            _loss = _amountNeeded.sub(_liquidatedAmount);
        } else {
            _liquidatedAmount = _amountNeeded;
        }
        require(_amountNeeded == _liquidatedAmount.add(_loss), "!sanitycheck");
    }

    function liquidateAllPositions() internal override returns (uint256 liquidated) {
        _unstakeBpt(balanceOfStakedBpt());
        _sellBpt(balanceOfUnstakedBpt());
        liquidated = balanceOfWant();
        return liquidated;
    }

    function prepareMigration(address _newStrategy) internal override {
        _unstakeBpt(balanceOfStakedBpt());
        bpt.transfer(_newStrategy, balanceOfUnstakedBpt());
        for (uint i = 0; i < rewardTokens.length; i++) {
            IERC20 token = rewardTokens[i];
            uint256 balance = token.balanceOf(address(this));
            if (balance > 0) {
                token.safeTransfer(_newStrategy, balance);
            }
        }
    }

    function protectedTokens() internal view override returns (address[] memory){}

    function ethToWant(uint256 _amtInWei) public view override returns (uint256){}

    function tendTrigger(uint256 callCostInWei) public view override returns (bool) {
        return now.sub(lastDepositTime) > minDepositPeriod && (balanceOfWant() > 0 || balanceOfUnstakedBpt() > 0);
    }

    // HELPERS //
    function claimAndSellRewards(bool _doSellRewards) external isVaultManager {
        _claimRewards();
        if (_doSellRewards) {
            _sellRewards();
        }
    }

    function _sellRewards() internal {
        for (uint8 i = 0; i < rewardTokens.length; i++) {
            uint256 amount = balanceOfReward(i);
            if (amount > 0) {
                uint length = swapSteps[i].poolIds.length;
                IBalancerVault.BatchSwapStep[] memory steps = new IBalancerVault.BatchSwapStep[](length);
                int[] memory limits = new int[](length + 1);
                limits[0] = int(amount);
                for (uint j = 0; j < length; j++) {
                    steps[j] = IBalancerVault.BatchSwapStep(swapSteps[i].poolIds[j],
                        j,
                        j + 1,
                        j == 0 ? amount : 0,
                        abi.encode(0)
                    );
                }
                balancerVault.batchSwap(IBalancerVault.SwapKind.GIVEN_IN,
                    steps,
                    swapSteps[i].assets,
                    IBalancerVault.FundManagement(address(this), false, address(this), false),
                    limits,
                    now + 10);
            }
        }
    }

    // this assumes that BAL is always index 0. If not, we can delist then whitelist again to make it at 0
    function _claimRewards() internal {
        for (uint i = 0; i < rewardTokens.length; i++) {
            IERC20 token = rewardTokens[i];
            if (token == BAL) {
                uint256 balanceBefore = balanceOfReward(i);
                minter.mint(address(gauge));
                uint256 keepAmount = balanceOfReward(i).sub(balanceBefore).mul(keepBips).div(basisOne);
                if (keepAmount > 0) {
                    token.safeTransfer(keep, keepAmount);
                }
            } else {
                gauge.claim_rewards(address(this));
            }
        }
    }

    function collectTradingFees() external isVaultManager {
        _collectTradingFees();
    }

    function _collectTradingFees() internal {
        uint256 total = estimatedTotalAssets();
        uint256 debt = vault.strategies(address(this)).totalDebt;
        if (total > debt) {
            uint256 profit = tokensToBpts(total.sub(debt));
            uint256 _unstakedBpt = balanceOfUnstakedBpt();
            if (profit > _unstakedBpt) {
                _unstakeBpt(profit.sub(_unstakedBpt));
                _sellBpt(balanceOfUnstakedBpt());
            }
            _sellBpt(Math.min(profit, balanceOfUnstakedBpt()));
        }
    }

    function balanceOfWant() public view returns (uint256 _amount){
        return want.balanceOf(address(this));
    }

    function balanceOfUnstakedBpt() public view returns (uint256 _amount){
        return bpt.balanceOf(address(this));
    }

    function balanceOfStakedBpt() public view returns (uint256 _amount){
        return gauge.balanceOf(address(this));
    }

    function balanceOfReward(uint256 index) public view returns (uint256 _amount){
        return rewardTokens[index].balanceOf(address(this));
    }

    // returns an estimate of want tokens based on bpt balance
    function balanceOfPooled() public view returns (uint256 _amount){
        return bptsToTokens(balanceOfStakedBpt().add(balanceOfUnstakedBpt()));
    }

    /// use bpt rate to estimate equivalent amount of want.
    function bptsToTokens(uint _amountBpt) public view returns (uint _amount){
        uint unscaled = _amountBpt.mul(bpt.getRate()).div(1e18);
        return _scaleDecimals(unscaled, ERC20(address(bpt)), ERC20(address(want)));
    }

    function tokensToBpts(uint _amountTokens) public view returns (uint _amount){
        uint unscaled = _amountTokens.mul(1e18).div(bpt.getRate());
        return _scaleDecimals(unscaled, ERC20(address(want)), ERC20(address(bpt)));
    }

    function _scaleDecimals(uint _amount, ERC20 _fromToken, ERC20 _toToken) internal view returns (uint _scaled){
        uint decFrom = _fromToken.decimals();
        uint decTo = _toToken.decimals();
        return decTo > decFrom ? _amount.mul(10 ** (decTo.sub(decFrom))) : _amount.div(10 ** (decFrom.sub(decTo)));
    }

    function _getSwapRequest(IERC20 token, uint256 amount, uint256 lastChangeBlock) internal view returns (IBalancerPool.SwapRequest memory request){
        return IBalancerPool.SwapRequest(IBalancerPool.SwapKind.GIVEN_IN,
            token,
            want,
            amount,
            balancerPoolId,
            lastChangeBlock,
            address(this),
            address(this),
            abi.encode(0)
        );
    }

    function sellBpt(uint256 _amountBpts) external isVaultManager {
        _sellBpt(_amountBpts);
    }

    // sell bpt for want at current bpt rate
    function _sellBpt(uint256 _amountBpts) internal {
        _amountBpts = Math.min(_amountBpts, balanceOfUnstakedBpt());
        if (_amountBpts > 0) {
            uint256[] memory minAmountsOut = new uint256[](numTokens);
            minAmountsOut[tokenIndex] = bptsToTokens(_amountBpts).mul(basisOne.sub(maxSlippageOut)).div(basisOne);
            bytes memory userData = abi.encode(IBalancerVault.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, _amountBpts, tokenIndex);
            IBalancerVault.ExitPoolRequest memory request = IBalancerVault.ExitPoolRequest(assets, minAmountsOut, userData, false);
            balancerVault.exitPool(balancerPoolId, address(this), address(this), request);
        }
    }

    // for partnership rewards like Lido or airdrops
    function whitelistRewards(address _rewardToken, SwapSteps memory _steps) public isVaultManager {
        IERC20 token = IERC20(_rewardToken);
        token.approve(address(balancerVault), max);
        rewardTokens.push(token);
        swapSteps.push(_steps);
    }

    function delistAllRewards() public isVaultManager {
        for (uint i = 0; i < rewardTokens.length; i++) {
            rewardTokens[i].approve(address(balancerVault), 0);
        }
        IERC20[] memory noRewardTokens;
        rewardTokens = noRewardTokens;
        delete swapSteps;
    }

    function numRewards() public view returns (uint256 _num){
        return rewardTokens.length;
    }

    function setParams(uint256 _maxSlippageIn, uint256 _maxSlippageOut, uint256 _maxSingleDeposit, uint256 _minDepositPeriod) public isVaultManager {
        require(_maxSlippageIn <= basisOne, "maxSlippageIn too high");
        maxSlippageIn = _maxSlippageIn;

        require(_maxSlippageOut <= basisOne, "maxSlippageOut too high");
        maxSlippageOut = _maxSlippageOut;

        maxSingleDeposit = _maxSingleDeposit;
        minDepositPeriod = _minDepositPeriod;
    }

    function setToggles(bool _doSellRewards, bool _doClaimRewards, bool _doCollectTradingFees) external isVaultManager {
        toggles.doSellRewards = _doSellRewards;
        toggles.doClaimRewards = _doClaimRewards;
        toggles.doCollectTradingFees = _doCollectTradingFees;
    }

    function getSwapSteps() public view returns (SwapSteps[] memory){
        return swapSteps;
    }

    function stakeBpt(uint256 _amount) external isVaultManager {
        _stakeBpt(_amount);
    }

    function _stakeBpt(uint256 _amount) internal {
        gauge.deposit(Math.min(balanceOfUnstakedBpt(), _amount), address(this));
    }

    function unstakeBpt(uint256 _amount) external isVaultManager {
        _unstakeBpt(_amount);
    }

    function _unstakeBpt(uint256 _amount) internal {
        gauge.withdraw(Math.min(balanceOfStakedBpt(), _amount));
    }

    function setKeepParams(address _keep, uint256 _keepBips) external onlyGovernance {
        require(keepBips <= basisOne);
        keep = _keep;
        keepBips = _keepBips;
    }

    // Balancer requires this contract to be payable, so we add ability to sweep stuck ETH
    function sweepETH() public onlyGovernance {
        (bool success,) = governance().call{value : address(this).balance}("");
        require(success, "!FailedETHSweep");
    }

    receive() external payable {}
}

Contract ABI

[{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_balancerVault","type":"address"},{"internalType":"address","name":"_balancerPool","type":"address"},{"internalType":"address","name":"_gaugeFactory","type":"address"},{"internalType":"address","name":"_minter","type":"address"},{"internalType":"uint256","name":"_maxSlippageIn","type":"uint256"},{"internalType":"uint256","name":"_maxSlippageOut","type":"uint256"},{"internalType":"uint256","name":"_maxSingleDeposit","type":"uint256"},{"internalType":"uint256","name":"_minDepositPeriod","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[],"name":"EmergencyExitEnabled","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"profit","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"loss","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"debtPayment","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"debtOutstanding","type":"uint256"}],"name":"Harvested","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"debtThreshold","type":"uint256"}],"name":"UpdatedDebtThreshold","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newKeeper","type":"address"}],"name":"UpdatedKeeper","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"delay","type":"uint256"}],"name":"UpdatedMaxReportDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"metadataURI","type":"string"}],"name":"UpdatedMetadataURI","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"delay","type":"uint256"}],"name":"UpdatedMinReportDelay","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"profitFactor","type":"uint256"}],"name":"UpdatedProfitFactor","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"rewards","type":"address"}],"name":"UpdatedRewards","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newStrategist","type":"address"}],"name":"UpdatedStrategist","type":"event"},{"inputs":[],"name":"apiVersion","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"balanceOfPooled","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"balanceOfReward","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfStakedBpt","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfUnstakedBpt","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfWant","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balancerPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balancerVault","outputs":[{"internalType":"contract IBalancerVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"bpt","outputs":[{"internalType":"contract IBalancerPool","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountBpt","type":"uint256"}],"name":"bptsToTokens","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"_doSellRewards","type":"bool"}],"name":"claimAndSellRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"collectTradingFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"debtThreshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"delegatedAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"delistAllRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"doHealthCheck","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergencyExit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"estimatedTotalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amtInWei","type":"uint256"}],"name":"ethToWant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gauge","outputs":[{"internalType":"contract IStakingLiquidityGauge","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gaugeFactory","outputs":[{"internalType":"contract ILiquidityGaugeFactory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapSteps","outputs":[{"components":[{"internalType":"bytes32[]","name":"poolIds","type":"bytes32[]"},{"internalType":"contract IAsset[]","name":"assets","type":"address[]"}],"internalType":"struct Strategy.SwapSteps[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"callCostInWei","type":"uint256"}],"name":"harvestTrigger","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"healthCheck","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"},{"internalType":"address","name":"_strategist","type":"address"},{"internalType":"address","name":"_rewards","type":"address"},{"internalType":"address","name":"_keeper","type":"address"},{"internalType":"address","name":"_balancerVault","type":"address"},{"internalType":"address","name":"_balancerPool","type":"address"},{"internalType":"address","name":"_gaugeFactory","type":"address"},{"internalType":"address","name":"_minter","type":"address"},{"internalType":"uint256","name":"_maxSlippageIn","type":"uint256"},{"internalType":"uint256","name":"_maxSlippageOut","type":"uint256"},{"internalType":"uint256","name":"_maxSingleDeposit","type":"uint256"},{"internalType":"uint256","name":"_minDepositPeriod","type":"uint256"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keep","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keepBips","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"keeper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastDepositTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxReportDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSingleDeposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSlippageIn","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSlippageOut","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadataURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newStrategy","type":"address"}],"name":"migrate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minDepositPeriod","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minReportDelay","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"minter","outputs":[{"internalType":"contract IBalancerMinter","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"numRewards","outputs":[{"internalType":"uint256","name":"_num","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"numTokens","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"profitFactor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"rewardTokens","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewards","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountBpts","type":"uint256"}],"name":"sellBpt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_debtThreshold","type":"uint256"}],"name":"setDebtThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_doHealthCheck","type":"bool"}],"name":"setDoHealthCheck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setEmergencyExit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_healthCheck","type":"address"}],"name":"setHealthCheck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keep","type":"address"},{"internalType":"uint256","name":"_keepBips","type":"uint256"}],"name":"setKeepParams","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keeper","type":"address"}],"name":"setKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_delay","type":"uint256"}],"name":"setMaxReportDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_metadataURI","type":"string"}],"name":"setMetadataURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_delay","type":"uint256"}],"name":"setMinReportDelay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_maxSlippageIn","type":"uint256"},{"internalType":"uint256","name":"_maxSlippageOut","type":"uint256"},{"internalType":"uint256","name":"_maxSingleDeposit","type":"uint256"},{"internalType":"uint256","name":"_minDepositPeriod","type":"uint256"}],"name":"setParams","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_profitFactor","type":"uint256"}],"name":"setProfitFactor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewards","type":"address"}],"name":"setRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_strategist","type":"address"}],"name":"setStrategist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_doSellRewards","type":"bool"},{"internalType":"bool","name":"_doClaimRewards","type":"bool"},{"internalType":"bool","name":"_doCollectTradingFees","type":"bool"}],"name":"setToggles","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"stakeBpt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"strategist","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_token","type":"address"}],"name":"sweep","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sweepETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tend","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"callCostInWei","type":"uint256"}],"name":"tendTrigger","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"toggles","outputs":[{"internalType":"bool","name":"doSellRewards","type":"bool"},{"internalType":"bool","name":"doClaimRewards","type":"bool"},{"internalType":"bool","name":"doCollectTradingFees","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenIndex","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountTokens","type":"uint256"}],"name":"tokensToBpts","outputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"unstakeBpt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"contract VaultAPI","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"want","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardToken","type":"address"},{"components":[{"internalType":"bytes32[]","name":"poolIds","type":"bytes32[]"},{"internalType":"contract IAsset[]","name":"assets","type":"address[]"}],"internalType":"struct Strategy.SwapSteps","name":"_steps","type":"tuple"}],"name":"whitelistRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amountNeeded","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"_loss","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.