ETH Price: $3,418.83 (+1.10%)
Gas: 4 Gwei

Contract

0xD8619769fed318714d362BfF01CA98ac938Bdf9b
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Value
0x60a06040200458852024-06-08 8:21:5922 days ago1717834919IN
 Create: DefaultBondModule
0 ETH0.00429657.70540245

View more zero value Internal Transactions in Advanced View mode

Advanced mode:
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
DefaultBondModule

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
File 1 of 11 : DefaultBondModule.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.25;

import "../../interfaces/modules/symbiotic/IDefaultBondModule.sol";
import "../DefaultModule.sol";

contract DefaultBondModule is IDefaultBondModule, DefaultModule {
    using SafeERC20 for IERC20;

    /// @inheritdoc IDefaultBondModule
    function deposit(
        address bond,
        uint256 amount
    ) external onlyDelegateCall returns (uint256) {
        if (amount == 0) return 0;
        amount = Math.min(
            amount,
            IDefaultBond(bond).limit() - IBond(bond).totalSupply()
        );
        if (amount == 0) return 0;
        IERC20(IBond(bond).asset()).safeIncreaseAllowance(bond, amount);
        emit DefaultBondModuleDeposit(bond, amount, block.timestamp);
        return IDefaultBond(bond).deposit(address(this), amount);
    }

    /// @inheritdoc IDefaultBondModule
    function withdraw(
        address bond,
        uint256 amount
    ) external onlyDelegateCall returns (uint256) {
        uint256 balance = IDefaultBond(bond).balanceOf(address(this));
        if (balance < amount) amount = balance;
        if (amount == 0) return 0;
        IDefaultBond(bond).withdraw(address(this), amount);
        emit DefaultBondModuleWithdraw(bond, amount);
        return amount;
    }
}

File 2 of 11 : IDefaultBondModule.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.25;

import "@openzeppelin/contracts/utils/math/Math.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../../external/symbiotic/IDefaultBond.sol";

// Interface declaration for Default Bond Module
interface IDefaultBondModule {
    /**
     * @notice Deposits a specified amount of tokens into a bond contract.
     * @param bond Address of the bond contract.
     * @param amount Amount of tokens to deposit.
     * @return The amount of tokens deposited.
     */
    function deposit(address bond, uint256 amount) external returns (uint256);

    /**
     * @notice Withdraws a specified amount of tokens from a bond contract.
     * @param bond Address of the bond contract.
     * @param amount Amount of tokens to withdraw.
     * @return The amount of tokens withdrawn.
     */
    function withdraw(address bond, uint256 amount) external returns (uint256);

    /**
     * @notice Emitted when tokens are deposited into a bond.
     * @param bond The address of the bond contract.
     * @param amount The amount of tokens deposited.
     * @param timestamp Timestamp of the deposit.
     */
    event DefaultBondModuleDeposit(
        address indexed bond,
        uint256 amount,
        uint256 timestamp
    );

    /**
     * @notice Emitted when tokens are withdrawn from a bond.
     * @param bond The address of the bond contract.
     * @param amount The amount of tokens withdrawn.
     */
    event DefaultBondModuleWithdraw(address indexed bond, uint256 amount);
}

File 3 of 11 : DefaultModule.sol
// SPDX-License-Identifier: BSL-1.1
pragma solidity 0.8.25;

import "../interfaces/modules/IDefaultModule.sol";

abstract contract DefaultModule is IDefaultModule {
    address private immutable _this = address(this);

    modifier onlyDelegateCall() {
        if (address(this) == _this) revert Forbidden();
        _;
    }

    modifier noDelegateCall() {
        if (address(this) != _this) revert Forbidden();
        _;
    }
}

File 4 of 11 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 5 of 11 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 6 of 11 : IDefaultBond.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import {IBond} from "./IBond.sol";

interface IDefaultBond is IBond {
    error InsufficientDeposit();
    error InsufficientWithdraw();
    error InsufficientIssueDebt();

    /**
     * @notice Deposit a given amount of the underlying asset, and mint the bond to a particular recipient.
     * @param recipient address of the bond's recipient
     * @param amount amount of the underlying asset
     * @return amount of the bond minted
     */
    function deposit(
        address recipient,
        uint256 amount
    ) external returns (uint256);

    /**
     * @notice Deposit a given amount of the underlying asset using a permit functionality, and mint the bond to a particular recipient.
     * @param recipient address of the bond's recipient
     * @param amount amount of the underlying asset
     * @param deadline timestamp of the signature's deadline
     * @param v v component of the signature
     * @param r r component of the signature
     * @param s s component of the signature
     * @return amount of the bond minted
     */
    function deposit(
        address recipient,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (uint256);

    /**
     * @notice Withdraw a given amount of the underlying asset, and transfer it to a particular recipient.
     * @param recipient address of the underlying asset's recipient
     * @param amount amount of the underlying asset
     */
    function withdraw(address recipient, uint256 amount) external;

    function limit() external view returns (uint256);
}

File 7 of 11 : IDefaultModule.sol
// SPDX-License-Identifier: BSL-1.1

// Solidity version pragma
pragma solidity 0.8.25;

/**
 * @title IDefaultModule
 * @notice Interface defining methods and errors for the DefaultModule contract.
 */
interface IDefaultModule {
    /// @dev Error indicating that an operation is not allowed
    error Forbidden();
}

File 8 of 11 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 9 of 11 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 10 of 11 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 11 of 11 : IBond.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IBond is IERC20 {
    /**
     * @notice Emitted when debt is issued.
     * @param issuer address of the debt's issuer
     * @param recipient address that should receive the underlying asset
     * @param debtIssued amount of the debt issued
     */
    event IssueDebt(
        address indexed issuer,
        address indexed recipient,
        uint256 debtIssued
    );

    /**
     * @notice Emitted when debt is repaid.
     * @param issuer address of the debt's issuer
     * @param recipient address that received the underlying asset
     * @param debtRepaid amount of the debt repaid
     */
    event RepayDebt(
        address indexed issuer,
        address indexed recipient,
        uint256 debtRepaid
    );

    /**
     * @notice Get the bond's underlying asset.
     * @return asset address of the underlying asset
     */
    function asset() external view returns (address);

    /**
     * @notice Get a total amount of repaid debt.
     * @return total repaid debt
     */
    function totalRepaidDebt() external view returns (uint256);

    /**
     * @notice Get an amount of repaid debt created by a particular issuer.
     * @param issuer address of the debt's issuer
     * @return particular issuer's repaid debt
     */
    function issuerRepaidDebt(address issuer) external view returns (uint256);

    /**
     * @notice Get an amount of repaid debt to a particular recipient.
     * @param recipient address that received the underlying asset
     * @return particular recipient's repaid debt
     */
    function recipientRepaidDebt(
        address recipient
    ) external view returns (uint256);

    /**
     * @notice Get an amount of repaid debt for a particular issuer-recipient pair.
     * @param issuer address of the debt's issuer
     * @param recipient address that received the underlying asset
     * @return particular pair's repaid debt
     */
    function repaidDebt(
        address issuer,
        address recipient
    ) external view returns (uint256);

    /**
     * @notice Get a total amount of debt.
     * @return total debt
     */
    function totalDebt() external view returns (uint256);

    /**
     * @notice Get a current debt created by a particular issuer.
     * @param issuer address of the debt's issuer
     * @return particular issuer's debt
     */
    function issuerDebt(address issuer) external view returns (uint256);

    /**
     * @notice Get a current debt to a particular recipient.
     * @param recipient address that should receive the underlying asset
     * @return particular recipient's debt
     */
    function recipientDebt(address recipient) external view returns (uint256);

    /**
     * @notice Get a current debt for a particular issuer-recipient pair.
     * @param issuer address of the debt's issuer
     * @param recipient address that should receive the underlying asset
     * @return particular pair's debt
     */
    function debt(
        address issuer,
        address recipient
    ) external view returns (uint256);

    /**
     * @notice Burn a given amount of the bond, and increase a debt of the underlying asset for the caller.
     * @param recipient address that should receive the underlying asset
     * @param amount amount of the bond
     */
    function issueDebt(address recipient, uint256 amount) external;
}

Settings
{
  "remappings": [
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200,
    "details": {
      "yul": true,
      "yulDetails": {
        "stackAllocation": true
      }
    }
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": false,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"Forbidden","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"bond","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"DefaultBondModuleDeposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"bond","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DefaultBondModuleWithdraw","type":"event"},{"inputs":[{"internalType":"address","name":"bond","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"bond","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]

60a060405230608052348015601357600080fd5b5060805161092161003560003960008181607f01526102f701526109216000f3fe608060405234801561001057600080fd5b50600436106100365760003560e01c806347e7ef241461003b578063f3fef3a314610060575b600080fd5b61004e6100493660046107fc565b610073565b60405190815260200160405180910390f35b61004e61006e3660046107fc565b6102eb565b60006001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001630036100be57604051631dd2188d60e31b815260040160405180910390fd5b816000036100ce575060006102e5565b6101a582846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610110573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101349190610828565b856001600160a01b031663a4d66daf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610172573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101969190610828565b6101a09190610857565b61046c565b9150816000036101b7575060006102e5565b61022e8383856001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156101fa573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061021e919061086a565b6001600160a01b03169190610482565b604080518381524260208201526001600160a01b038516917fb62792ae0345b0aba2a68a6d08b8c24194601cf6da51ae5f5c1b6a97dff426ac910160405180910390a26040516311f9fbc960e21b8152306004820152602481018390526001600160a01b038416906347e7ef24906044016020604051808303816000875af11580156102be573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102e29190610828565b90505b92915050565b60006001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016300361033657604051631dd2188d60e31b815260040160405180910390fd5b6040516370a0823160e01b81523060048201526000906001600160a01b038516906370a0823190602401602060405180830381865afa15801561037d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103a19190610828565b9050828110156103af578092505b826000036103c15760009150506102e5565b60405163f3fef3a360e01b8152306004820152602481018490526001600160a01b0385169063f3fef3a390604401600060405180830381600087803b15801561040957600080fd5b505af115801561041d573d6000803e3d6000fd5b50505050836001600160a01b03167f90a4498c39c4848188b656050d88559be246f8fb36258bca151060cba84b7e0f8460405161045c91815260200190565b60405180910390a2509092915050565b600081831061047b57816102e2565b5090919050565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301526000919085169063dd62ed3e90604401602060405180830381865afa1580156104d2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104f69190610828565b905061050c84846105078585610887565b610512565b50505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b17905261056384826105c6565b61050c57604080516001600160a01b038516602482015260006044808301919091528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b1790526105bc90859061066e565b61050c848261066e565b6000806000846001600160a01b0316846040516105e3919061089a565b6000604051808303816000865af19150503d8060008114610620576040519150601f19603f3d011682016040523d82523d6000602084013e610625565b606091505b509150915081801561064f57508051158061064f57508080602001905181019061064f91906108c9565b801561066557506000856001600160a01b03163b115b95945050505050565b60006106836001600160a01b038416836106db565b905080516000141580156106a85750808060200190518101906106a691906108c9565b155b156106d657604051635274afe760e01b81526001600160a01b03841660048201526024015b60405180910390fd5b505050565b60606102e28383600084600080856001600160a01b03168486604051610701919061089a565b60006040518083038185875af1925050503d806000811461073e576040519150601f19603f3d011682016040523d82523d6000602084013e610743565b606091505b509150915061075386838361075f565b925050505b9392505050565b6060826107745761076f826107bb565b610758565b815115801561078b57506001600160a01b0384163b155b156107b457604051639996b31560e01b81526001600160a01b03851660048201526024016106cd565b5080610758565b8051156107cb5780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b50565b6001600160a01b03811681146107e457600080fd5b6000806040838503121561080f57600080fd5b823561081a816107e7565b946020939093013593505050565b60006020828403121561083a57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b818103818111156102e5576102e5610841565b60006020828403121561087c57600080fd5b8151610758816107e7565b808201808211156102e5576102e5610841565b6000825160005b818110156108bb57602081860181015185830152016108a1565b506000920191825250919050565b6000602082840312156108db57600080fd5b8151801515811461075857600080fdfea2646970667358221220c04a9348d87f007e5c3be73bbad05d9eb3680b874d3f647e68e926e4b121322b64736f6c63430008190033

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106100365760003560e01c806347e7ef241461003b578063f3fef3a314610060575b600080fd5b61004e6100493660046107fc565b610073565b60405190815260200160405180910390f35b61004e61006e3660046107fc565b6102eb565b60006001600160a01b037f000000000000000000000000d8619769fed318714d362bff01ca98ac938bdf9b1630036100be57604051631dd2188d60e31b815260040160405180910390fd5b816000036100ce575060006102e5565b6101a582846001600160a01b03166318160ddd6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610110573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101349190610828565b856001600160a01b031663a4d66daf6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610172573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101969190610828565b6101a09190610857565b61046c565b9150816000036101b7575060006102e5565b61022e8383856001600160a01b03166338d52e0f6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156101fa573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061021e919061086a565b6001600160a01b03169190610482565b604080518381524260208201526001600160a01b038516917fb62792ae0345b0aba2a68a6d08b8c24194601cf6da51ae5f5c1b6a97dff426ac910160405180910390a26040516311f9fbc960e21b8152306004820152602481018390526001600160a01b038416906347e7ef24906044016020604051808303816000875af11580156102be573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906102e29190610828565b90505b92915050565b60006001600160a01b037f000000000000000000000000d8619769fed318714d362bff01ca98ac938bdf9b16300361033657604051631dd2188d60e31b815260040160405180910390fd5b6040516370a0823160e01b81523060048201526000906001600160a01b038516906370a0823190602401602060405180830381865afa15801561037d573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906103a19190610828565b9050828110156103af578092505b826000036103c15760009150506102e5565b60405163f3fef3a360e01b8152306004820152602481018490526001600160a01b0385169063f3fef3a390604401600060405180830381600087803b15801561040957600080fd5b505af115801561041d573d6000803e3d6000fd5b50505050836001600160a01b03167f90a4498c39c4848188b656050d88559be246f8fb36258bca151060cba84b7e0f8460405161045c91815260200190565b60405180910390a2509092915050565b600081831061047b57816102e2565b5090919050565b604051636eb1769f60e11b81523060048201526001600160a01b0383811660248301526000919085169063dd62ed3e90604401602060405180830381865afa1580156104d2573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104f69190610828565b905061050c84846105078585610887565b610512565b50505050565b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b17905261056384826105c6565b61050c57604080516001600160a01b038516602482015260006044808301919091528251808303909101815260649091019091526020810180516001600160e01b031663095ea7b360e01b1790526105bc90859061066e565b61050c848261066e565b6000806000846001600160a01b0316846040516105e3919061089a565b6000604051808303816000865af19150503d8060008114610620576040519150601f19603f3d011682016040523d82523d6000602084013e610625565b606091505b509150915081801561064f57508051158061064f57508080602001905181019061064f91906108c9565b801561066557506000856001600160a01b03163b115b95945050505050565b60006106836001600160a01b038416836106db565b905080516000141580156106a85750808060200190518101906106a691906108c9565b155b156106d657604051635274afe760e01b81526001600160a01b03841660048201526024015b60405180910390fd5b505050565b60606102e28383600084600080856001600160a01b03168486604051610701919061089a565b60006040518083038185875af1925050503d806000811461073e576040519150601f19603f3d011682016040523d82523d6000602084013e610743565b606091505b509150915061075386838361075f565b925050505b9392505050565b6060826107745761076f826107bb565b610758565b815115801561078b57506001600160a01b0384163b155b156107b457604051639996b31560e01b81526001600160a01b03851660048201526024016106cd565b5080610758565b8051156107cb5780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b50565b6001600160a01b03811681146107e457600080fd5b6000806040838503121561080f57600080fd5b823561081a816107e7565b946020939093013593505050565b60006020828403121561083a57600080fd5b5051919050565b634e487b7160e01b600052601160045260246000fd5b818103818111156102e5576102e5610841565b60006020828403121561087c57600080fd5b8151610758816107e7565b808201808211156102e5576102e5610841565b6000825160005b818110156108bb57602081860181015185830152016108a1565b506000920191825250919050565b6000602082840312156108db57600080fd5b8151801515811461075857600080fdfea2646970667358221220c04a9348d87f007e5c3be73bbad05d9eb3680b874d3f647e68e926e4b121322b64736f6c63430008190033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.