Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
View more zero value Internal Transactions in Advanced View mode
Advanced mode:
Loading...
Loading
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0xF4e87685...06002E456 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
PolygonDataCommittee
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 999999 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: AGPL-3.0 pragma solidity 0.8.20; import "../../interfaces/IPolygonDataCommitteeErrors.sol"; import "../../interfaces/IDataAvailabilityProtocol.sol"; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; /* * Contract responsible managing the data committee that will verify that the data sent for a validium is singed by a committee * It is advised to give the owner of the contract to a timelock contract once the data committee is set */ contract PolygonDataCommittee is IDataAvailabilityProtocol, IPolygonDataCommitteeErrors, OwnableUpgradeable { /** * @notice Struct which will store all the data of the committee members * @param url string that represents the URL of the member to be used to access the data * @param addr address of the member that will be used to sign */ struct Member { string url; address addr; } // Name of the data availability protocol string internal constant _PROTOCOL_NAME = "DataAvailabilityCommittee"; // Size of a signature in bytes uint256 internal constant _SIGNATURE_SIZE = 65; // Size of an address in bytes uint256 internal constant _ADDR_SIZE = 20; // Specifies the required amount of signatures from members in the data availability committee uint256 public requiredAmountOfSignatures; // Hash of the addresses of the committee bytes32 public committeeHash; // Register of the members of the committee Member[] public members; /** * @dev Emitted when the committee is updated * @param committeeHash hash of the addresses of the committee members */ event CommitteeUpdated(bytes32 committeeHash); /** * Disable initalizers on the implementation following the best practices */ constructor() { _disableInitializers(); } function initialize() external initializer { // Initialize OZ contracts __Ownable_init_unchained(); } /** * @notice Allows the admin to setup the members of the committee. Note that: * The system will require N / M signatures where N => _requiredAmountOfSignatures and M => urls.length * There must be the same amount of urls than addressess encoded in the addrsBytes * A member is represented by the url and the address contained in urls[i] and addrsBytes[i*_ADDR_SIZE : i*_ADDR_SIZE + _ADDR_SIZE] * @param _requiredAmountOfSignatures Required amount of signatures * @param urls List of urls of the members of the committee * @param addrsBytes Byte array that contains the addressess of the members of the committee */ function setupCommittee( uint256 _requiredAmountOfSignatures, string[] calldata urls, bytes calldata addrsBytes ) external onlyOwner { uint256 membersLength = urls.length; if (membersLength < _requiredAmountOfSignatures) { revert TooManyRequiredSignatures(); } if (addrsBytes.length != membersLength * _ADDR_SIZE) { revert UnexpectedAddrsBytesLength(); } // delete previous member array delete members; address lastAddr; for (uint256 i = 0; i < membersLength; i++) { uint256 currentAddresStartingByte = i * _ADDR_SIZE; address currentMemberAddr = address( bytes20( addrsBytes[currentAddresStartingByte:currentAddresStartingByte + _ADDR_SIZE] ) ); // Check url is not empty if (bytes(urls[i]).length == 0) { revert EmptyURLNotAllowed(); } // Addresses must be setup in incremental order, in order to easily check duplicated address if (lastAddr >= currentMemberAddr) { revert WrongAddrOrder(); } members.push(Member({url: urls[i], addr: currentMemberAddr})); lastAddr = currentMemberAddr; } committeeHash = keccak256(addrsBytes); requiredAmountOfSignatures = _requiredAmountOfSignatures; emit CommitteeUpdated(committeeHash); } /** * @notice Verifies that the given signedHash has been signed by requiredAmountOfSignatures committee members * @param signedHash Hash that must have been signed by requiredAmountOfSignatures of committee members * @param signaturesAndAddrs Byte array containing the signatures and all the addresses of the committee in ascending order * [signature 0, ..., signature requiredAmountOfSignatures -1, address 0, ... address N] * note that each ECDSA signatures are used, therefore each one must be 65 bytes */ function verifyMessage( bytes32 signedHash, bytes calldata signaturesAndAddrs ) external view { // Save storage variable on cache since will be used multiple times uint256 cacheRequiredAmountOfSignatures = requiredAmountOfSignatures; // pre-check: byte array size uint256 splitByte = _SIGNATURE_SIZE * cacheRequiredAmountOfSignatures; if ( signaturesAndAddrs.length < splitByte || (signaturesAndAddrs.length - splitByte) % _ADDR_SIZE != 0 ) { revert UnexpectedAddrsAndSignaturesSize(); } // hash the addresses part of the byte array and check that it's equal to committe hash if (keccak256(signaturesAndAddrs[splitByte:]) != committeeHash) { revert UnexpectedCommitteeHash(); } // recover addresses from signatures and check that are part of the committee uint256 lastAddrIndexUsed; uint256 addrsLen = (signaturesAndAddrs.length - splitByte) / _ADDR_SIZE; for (uint256 i = 0; i < cacheRequiredAmountOfSignatures; i++) { uint256 currentSignatureStartingByte = i * _SIGNATURE_SIZE; // Recover currnet signer from the signature address currentSigner = ECDSA.recover( signedHash, signaturesAndAddrs[currentSignatureStartingByte:currentSignatureStartingByte + _SIGNATURE_SIZE] ); // Search the recovered signer inside the address array bool currentSignerIsPartOfCommittee = false; for (uint256 j = lastAddrIndexUsed; j < addrsLen; j++) { uint256 currentAddresStartingByte = splitByte + j * _ADDR_SIZE; address committeeAddr = address( bytes20( signaturesAndAddrs[currentAddresStartingByte:currentAddresStartingByte + _ADDR_SIZE] ) ); if (committeeAddr == currentSigner) { lastAddrIndexUsed = j + 1; currentSignerIsPartOfCommittee = true; break; } } // If an address is not on the comittee, or not enough required signatures are provided // This verification reverts if (!currentSignerIsPartOfCommittee) { revert CommitteeAddressDoesNotExist(); } } } /** * @notice Return the amount of committee members */ function getAmountOfMembers() public view returns (uint256) { return members.length; } /** * @notice Return the protocol name */ function getProcotolName() external pure override returns (string memory) { return _PROTOCOL_NAME; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.20; interface IDataAvailabilityProtocol { function getProcotolName() external view returns (string memory); function verifyMessage( bytes32 hash, bytes calldata dataAvailabilityMessage ) external view; }
// SPDX-License-Identifier: AGPL-3.0 pragma solidity ^0.8.20; interface IPolygonDataCommitteeErrors { /** * @dev Thrown when the addres bytes doesn't have the expected length */ error UnexpectedAddrsBytesLength(); /** * @dev Thrown when the setup attempts to register a member with empty URL */ error EmptyURLNotAllowed(); /** * @dev Thrown when the setup register doesn't order the members correctly */ error WrongAddrOrder(); /** * @dev Thrown when the required amount of signatures is greater than the amount of members */ error TooManyRequiredSignatures(); /** * @dev Thrown when the hash of the committee doesn't match with the provided addresses */ error UnexpectedCommitteeHash(); /** * @dev Thrown when the signature of a DA hash doesn't belong to any member of the committee */ error CommitteeAddressDoesNotExist(); /** * @dev Thrown when the addresses and signatures byte array length has an unexpected size */ error UnexpectedAddrsAndSignaturesSize(); }
{ "optimizer": { "enabled": true, "runs": 999999 }, "evmVersion": "shanghai", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CommitteeAddressDoesNotExist","type":"error"},{"inputs":[],"name":"EmptyURLNotAllowed","type":"error"},{"inputs":[],"name":"TooManyRequiredSignatures","type":"error"},{"inputs":[],"name":"UnexpectedAddrsAndSignaturesSize","type":"error"},{"inputs":[],"name":"UnexpectedAddrsBytesLength","type":"error"},{"inputs":[],"name":"UnexpectedCommitteeHash","type":"error"},{"inputs":[],"name":"WrongAddrOrder","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"committeeHash","type":"bytes32"}],"name":"CommitteeUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"committeeHash","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmountOfMembers","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getProcotolName","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"members","outputs":[{"internalType":"string","name":"url","type":"string"},{"internalType":"address","name":"addr","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"requiredAmountOfSignatures","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_requiredAmountOfSignatures","type":"uint256"},{"internalType":"string[]","name":"urls","type":"string[]"},{"internalType":"bytes","name":"addrsBytes","type":"bytes"}],"name":"setupCommittee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"signedHash","type":"bytes32"},{"internalType":"bytes","name":"signaturesAndAddrs","type":"bytes"}],"name":"verifyMessage","outputs":[],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x608060405234801561000f575f80fd5b50600436106100c4575f3560e01c8063715018a61161007d578063dce1e2b611610058578063dce1e2b614610172578063e4f171201461017a578063f2fde38b146101b9575f80fd5b8063715018a61461013a5780638129fc1c146101425780638da5cb5b1461014a575f80fd5b80635daf08ca116100ad5780635daf08ca146100f0578063609d45441461011a5780636beedd3914610131575f80fd5b8063078fba2a146100c85780633b51be4b146100dd575b5f80fd5b6100db6100d6366004610fab565b6101cc565b005b6100db6100eb36600461104d565b6104c8565b6101036100fe366004611095565b61070a565b60405161011192919061110d565b60405180910390f35b61012360665481565b604051908152602001610111565b61012360655481565b6100db6107d5565b6100db6107e8565b60335460405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610111565b606754610123565b604080518082018252601981527f44617461417661696c6162696c697479436f6d6d697474656500000000000000602082015290516101119190611144565b6100db6101c736600461115d565b610979565b6101d4610a2d565b828581101561020f576040517f2e7dcd6e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61021a6014826111bd565b8214610252576040517f2ab6a12900000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b61025d60675f610ec3565b5f805b8281101561046c575f6102746014836111bd565b90505f8682876102856014836111d4565b92610292939291906111e7565b61029b9161120e565b60601c90508888848181106102b2576102b2611256565b90506020028101906102c49190611283565b90505f036102fe576040517fb54b70e400000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8073ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff1610610363576040517fd53cfbe000000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b606760405180604001604052808b8b8781811061038257610382611256565b90506020028101906103949190611283565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92018290525093855250505073ffffffffffffffffffffffffffffffffffffffff8516602092830152835460018101855593815220815191926002020190819061040790826113b0565b5060209190910151600190910180547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff9092169190911790559250819050610464816114c8565b915050610260565b50838360405161047d9291906114ff565b6040519081900381206066819055606589905581527f831403fd381b3e6ac875d912ec2eee0e0203d0d29f7b3e0c96fc8f582d6db6579060200160405180910390a150505050505050565b6065545f6104d78260416111bd565b9050808310806104fb575060146104ee828561150e565b6104f8919061154e565b15155b15610532576040517f6b8eec4600000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b606654610541848381886111e7565b60405161054f9291906114ff565b60405180910390201461058e576040517f6b156b2800000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b5f80601461059c848761150e565b6105a69190611561565b90505f5b84811015610700575f6105be6041836111bd565b90505f6106198a8a848b6105d36041836111d4565b926105e0939291906111e7565b8080601f0160208091040260200160405190810160405280939291908181526020018383808284375f92019190915250610aae92505050565b90505f855b858110156106b2575f6106326014836111bd565b61063c908a6111d4565b90505f8c828d61064d6014836111d4565b9261065a939291906111e7565b6106639161120e565b60601c905073ffffffffffffffffffffffffffffffffffffffff8516810361069d576106908360016111d4565b98506001935050506106b2565b505080806106aa906114c8565b91505061061e565b50806106ea576040517fe12afaf500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b50505080806106f8906114c8565b9150506105aa565b5050505050505050565b60678181548110610719575f80fd5b905f5260205f2090600202015f91509050805f01805461073890611311565b80601f016020809104026020016040519081016040528092919081815260200182805461076490611311565b80156107af5780601f10610786576101008083540402835291602001916107af565b820191905f5260205f20905b81548152906001019060200180831161079257829003601f168201915b5050506001909301549192505073ffffffffffffffffffffffffffffffffffffffff1682565b6107dd610a2d565b6107e65f610ad2565b565b5f54610100900460ff161580801561080657505f54600160ff909116105b8061081f5750303b15801561081f57505f5460ff166001145b6108b0576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084015b60405180910390fd5b5f80547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001179055801561090c575f80547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff166101001790555b610914610b48565b8015610976575f80547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00ff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50565b610981610a2d565b73ffffffffffffffffffffffffffffffffffffffff8116610a24576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201527f646472657373000000000000000000000000000000000000000000000000000060648201526084016108a7565b61097681610ad2565b60335473ffffffffffffffffffffffffffffffffffffffff1633146107e6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016108a7565b5f805f610abb8585610be7565b91509150610ac881610c29565b5090505b92915050565b6033805473ffffffffffffffffffffffffffffffffffffffff8381167fffffffffffffffffffffffff0000000000000000000000000000000000000000831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f54610100900460ff16610bde576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e6700000000000000000000000000000000000000000060648201526084016108a7565b6107e633610ad2565b5f808251604103610c1b576020830151604084015160608501515f1a610c0f87828585610ddb565b94509450505050610c22565b505f905060025b9250929050565b5f816004811115610c3c57610c3c611574565b03610c445750565b6001816004811115610c5857610c58611574565b03610cbf576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f45434453413a20696e76616c6964207369676e6174757265000000000000000060448201526064016108a7565b6002816004811115610cd357610cd3611574565b03610d3a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e6774680060448201526064016108a7565b6003816004811115610d4e57610d4e611574565b03610976576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c60448201527f756500000000000000000000000000000000000000000000000000000000000060648201526084016108a7565b5f807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0831115610e1057505f90506003610eba565b604080515f8082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa158015610e61573d5f803e3d5ffd5b50506040517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0015191505073ffffffffffffffffffffffffffffffffffffffff8116610eb4575f60019250925050610eba565b91505f90505b94509492505050565b5080545f8255600202905f5260205f209081019061097691905b80821115610f23575f610ef08282610f27565b506001810180547fffffffffffffffffffffffff0000000000000000000000000000000000000000169055600201610edd565b5090565b508054610f3390611311565b5f825580601f10610f42575050565b601f0160209004905f5260205f209081019061097691905b80821115610f23575f8155600101610f5a565b5f8083601f840112610f7d575f80fd5b50813567ffffffffffffffff811115610f94575f80fd5b602083019150836020828501011115610c22575f80fd5b5f805f805f60608688031215610fbf575f80fd5b85359450602086013567ffffffffffffffff80821115610fdd575f80fd5b818801915088601f830112610ff0575f80fd5b813581811115610ffe575f80fd5b8960208260051b8501011115611012575f80fd5b60208301965080955050604088013591508082111561102f575f80fd5b5061103c88828901610f6d565b969995985093965092949392505050565b5f805f6040848603121561105f575f80fd5b83359250602084013567ffffffffffffffff81111561107c575f80fd5b61108886828701610f6d565b9497909650939450505050565b5f602082840312156110a5575f80fd5b5035919050565b5f81518084525f5b818110156110d0576020818501810151868301820152016110b4565b505f6020828601015260207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f83011685010191505092915050565b604081525f61111f60408301856110ac565b905073ffffffffffffffffffffffffffffffffffffffff831660208301529392505050565b602081525f61115660208301846110ac565b9392505050565b5f6020828403121561116d575f80fd5b813573ffffffffffffffffffffffffffffffffffffffff81168114611156575f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b8082028115828204841417610acc57610acc611190565b80820180821115610acc57610acc611190565b5f80858511156111f5575f80fd5b83861115611201575f80fd5b5050820193919092039150565b7fffffffffffffffffffffffffffffffffffffffff000000000000000000000000813581811691601485101561124e5780818660140360031b1b83161692505b505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f8083357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18436030181126112b6575f80fd5b83018035915067ffffffffffffffff8211156112d0575f80fd5b602001915036819003821315610c22575f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b600181811c9082168061132557607f821691505b60208210810361135c577f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b50919050565b601f8211156113ab575f81815260208120601f850160051c810160208610156113885750805b601f850160051c820191505b818110156113a757828155600101611394565b5050505b505050565b815167ffffffffffffffff8111156113ca576113ca6112e4565b6113de816113d88454611311565b84611362565b602080601f831160018114611430575f84156113fa5750858301515b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600386901b1c1916600185901b1785556113a7565b5f858152602081207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08616915b8281101561147c5788860151825594840194600190910190840161145d565b50858210156114b857878501517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600388901b60f8161c191681555b5050505050600190811b01905550565b5f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036114f8576114f8611190565b5060010190565b818382375f9101908152919050565b81810381811115610acc57610acc611190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f8261155c5761155c611521565b500690565b5f8261156f5761156f611521565b500490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602160045260245ffdfea2646970667358221220c5a31942a7d3cb96f5b9df10b4a4ec6779e0daf93e3bcdcf92b7684fbc5585cf64736f6c63430008140033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.