Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
Latest 1 from a total of 1 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Distribute | 15521404 | 859 days ago | IN | 0 ETH | 0.00751196 |
Latest 9 internal transactions
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
15521404 | 859 days ago | 0.0025 ETH | ||||
15521404 | 859 days ago | 0.00125 ETH | ||||
15521404 | 859 days ago | 0.0025 ETH | ||||
15521404 | 859 days ago | 0.0025 ETH | ||||
15521404 | 859 days ago | 0.0125 ETH | ||||
15521404 | 859 days ago | 0.0125 ETH | ||||
15521404 | 859 days ago | 0.01625 ETH | ||||
14899193 | 960 days ago | 0.05 ETH | ||||
14898755 | 960 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xf8417dbe2e01a46dc52192cf0512f3737b596bcf
Contract Name:
Split
Compiler Version
v0.8.12+commit.f00d7308
Optimization Enabled:
Yes with 800 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.11; // Thirdweb top-level import "./interfaces/ITWFee.sol"; // Base import "./openzeppelin-presets/finance/PaymentSplitterUpgradeable.sol"; import "./interfaces/IThirdwebContract.sol"; // Meta-tx import "./openzeppelin-presets/metatx/ERC2771ContextUpgradeable.sol"; // Access import "@openzeppelin/contracts-upgradeable/access/AccessControlEnumerableUpgradeable.sol"; // Utils import "@openzeppelin/contracts-upgradeable/utils/MulticallUpgradeable.sol"; import "./lib/FeeType.sol"; contract Split is IThirdwebContract, Initializable, MulticallUpgradeable, ERC2771ContextUpgradeable, AccessControlEnumerableUpgradeable, PaymentSplitterUpgradeable { bytes32 private constant MODULE_TYPE = bytes32("Split"); uint128 private constant VERSION = 1; /// @dev Max bps in the thirdweb system uint128 private constant MAX_BPS = 10_000; /// @dev The thirdweb contract with fee related information. ITWFee public immutable thirdwebFee; /// @dev Contract level metadata. string public contractURI; constructor(address _thirdwebFee) initializer { thirdwebFee = ITWFee(_thirdwebFee); } /// @dev Performs the job of the constructor. /// @dev shares_ are scaled by 10,000 to prevent precision loss when including fees function initialize( address _defaultAdmin, string memory _contractURI, address[] memory _trustedForwarders, address[] memory _payees, uint256[] memory _shares ) external initializer { // Initialize inherited contracts: most base -> most derived __ERC2771Context_init(_trustedForwarders); __PaymentSplitter_init(_payees, _shares); contractURI = _contractURI; _setupRole(DEFAULT_ADMIN_ROLE, _defaultAdmin); } /// @dev Returns the module type of the contract. function contractType() external pure returns (bytes32) { return MODULE_TYPE; } /// @dev Returns the version of the contract. function contractVersion() external pure returns (uint8) { return uint8(VERSION); } /** * @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the * total shares and their previous withdrawals. */ function release(address payable account) public virtual override { uint256 payment = _release(account); require(payment != 0, "PaymentSplitter: account is not due payment"); } /** * @dev Triggers a transfer to `account` of the amount of `token` tokens they are owed, according to their * percentage of the total shares and their previous withdrawals. `token` must be the address of an IERC20 * contract. */ function release(IERC20Upgradeable token, address account) public virtual override { uint256 payment = _release(token, account); require(payment != 0, "PaymentSplitter: account is not due payment"); } /// @dev Returns the amount of Ether that `account` is owed, according to their percentage of the total shares and returns the payment function _release(address payable account) internal returns (uint256) { require(shares(account) > 0, "PaymentSplitter: account has no shares"); uint256 totalReceived = address(this).balance + totalReleased(); uint256 payment = _pendingPayment(account, totalReceived, released(account)); if (payment == 0) { return 0; } _released[account] += payment; _totalReleased += payment; // fees uint256 fee = 0; (address feeRecipient, uint256 feeBps) = thirdwebFee.getFeeInfo(address(this), FeeType.SPLIT); if (feeRecipient != address(0) && feeBps > 0) { fee = (payment * feeBps) / MAX_BPS; AddressUpgradeable.sendValue(payable(feeRecipient), fee); } AddressUpgradeable.sendValue(account, payment - fee); emit PaymentReleased(account, payment); return payment; } /// @dev Returns the amount of `token` that `account` is owed, according to their percentage of the total shares and returns the payment function _release(IERC20Upgradeable token, address account) internal returns (uint256) { require(shares(account) > 0, "PaymentSplitter: account has no shares"); uint256 totalReceived = token.balanceOf(address(this)) + totalReleased(token); uint256 payment = _pendingPayment(account, totalReceived, released(token, account)); if (payment == 0) { return 0; } _erc20Released[token][account] += payment; _erc20TotalReleased[token] += payment; // fees uint256 fee = 0; (address feeRecipient, uint256 feeBps) = thirdwebFee.getFeeInfo(address(this), FeeType.SPLIT); if (feeRecipient != address(0) && feeBps > 0) { fee = (payment * feeBps) / MAX_BPS; SafeERC20Upgradeable.safeTransfer(token, feeRecipient, fee); } SafeERC20Upgradeable.safeTransfer(token, account, payment - fee); emit ERC20PaymentReleased(token, account, payment); return payment; } /** * @dev Release the owed amount of token to all of the payees. */ function distribute() public virtual { uint256 count = payeeCount(); for (uint256 i = 0; i < count; i++) { // note: `_release` should not fail because payee always has shares, protected by `_appPay` _release(payable(payee(i))); } } /** * @dev Release owed amount of the `token` to all of the payees. */ function distribute(IERC20Upgradeable token) public virtual { uint256 count = payeeCount(); for (uint256 i = 0; i < count; i++) { // note: `_release` should not fail because payee always has shares, protected by `_appPay` _release(token, payee(i)); } } /// @dev See ERC2771 function _msgSender() internal view virtual override(ContextUpgradeable, ERC2771ContextUpgradeable) returns (address sender) { return ERC2771ContextUpgradeable._msgSender(); } /// @dev See ERC2771 function _msgData() internal view virtual override(ContextUpgradeable, ERC2771ContextUpgradeable) returns (bytes calldata) { return ERC2771ContextUpgradeable._msgData(); } /// @dev Sets contract URI for the contract-level metadata of the contract. function setContractURI(string calldata _uri) external onlyRole(DEFAULT_ADMIN_ROLE) { contractURI = _uri; } }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.11; interface ITWFee { function getFeeInfo(address _proxy, uint256 _type) external view returns (address recipient, uint256 bps); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (finance/PaymentSplitter.sol) pragma solidity ^0.8.11; import "@openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; /** * Changelog: * - Change state variable visibility to internal: * - `_totalReleased`, `_released`, `_erc20TotalReleased`, `_erc20Released`, `_pendingPayment` * * - Add `payeeCount`: returns the length of `_payees` */ /** * @title PaymentSplitter * @dev This contract allows to split Ether payments among a group of accounts. The sender does not need to be aware * that the Ether will be split in this way, since it is handled transparently by the contract. * * The split can be in equal parts or in any other arbitrary proportion. The way this is specified is by assigning each * account to a number of shares. Of all the Ether that this contract receives, each account will then be able to claim * an amount proportional to the percentage of total shares they were assigned. * * `PaymentSplitter` follows a _pull payment_ model. This means that payments are not automatically forwarded to the * accounts but kept in this contract, and the actual transfer is triggered as a separate step by calling the {release} * function. * * NOTE: This contract assumes that ERC20 tokens will behave similarly to native tokens (Ether). Rebasing tokens, and * tokens that apply fees during transfers, are likely to not be supported as expected. If in doubt, we encourage you * to run tests before sending real value to this contract. */ contract PaymentSplitterUpgradeable is Initializable, ContextUpgradeable { event PayeeAdded(address account, uint256 shares); event PaymentReleased(address to, uint256 amount); event ERC20PaymentReleased(IERC20Upgradeable indexed token, address to, uint256 amount); event PaymentReceived(address from, uint256 amount); uint256 private _totalShares; uint256 internal _totalReleased; mapping(address => uint256) internal _shares; mapping(address => uint256) internal _released; address[] private _payees; mapping(IERC20Upgradeable => uint256) internal _erc20TotalReleased; mapping(IERC20Upgradeable => mapping(address => uint256)) internal _erc20Released; /** * @dev Creates an instance of `PaymentSplitter` where each account in `payees` is assigned the number of shares at * the matching position in the `shares` array. * * All addresses in `payees` must be non-zero. Both arrays must have the same non-zero length, and there must be no * duplicates in `payees`. */ function __PaymentSplitter_init(address[] memory payees, uint256[] memory shares_) internal onlyInitializing { __Context_init_unchained(); __PaymentSplitter_init_unchained(payees, shares_); } function __PaymentSplitter_init_unchained(address[] memory payees, uint256[] memory shares_) internal onlyInitializing { require(payees.length == shares_.length, "PaymentSplitter: payees and shares length mismatch"); require(payees.length > 0, "PaymentSplitter: no payees"); for (uint256 i = 0; i < payees.length; i++) { _addPayee(payees[i], shares_[i]); } } /** * @dev The Ether received will be logged with {PaymentReceived} events. Note that these events are not fully * reliable: it's possible for a contract to receive Ether without triggering this function. This only affects the * reliability of the events, and not the actual splitting of Ether. * * To learn more about this see the Solidity documentation for * https://solidity.readthedocs.io/en/latest/contracts.html#fallback-function[fallback * functions]. */ receive() external payable virtual { emit PaymentReceived(_msgSender(), msg.value); } /** * @dev Getter for the total shares held by payees. */ function totalShares() public view returns (uint256) { return _totalShares; } /** * @dev Getter for the total amount of Ether already released. */ function totalReleased() public view returns (uint256) { return _totalReleased; } /** * @dev Getter for the total amount of `token` already released. `token` should be the address of an IERC20 * contract. */ function totalReleased(IERC20Upgradeable token) public view returns (uint256) { return _erc20TotalReleased[token]; } /** * @dev Getter for the amount of shares held by an account. */ function shares(address account) public view returns (uint256) { return _shares[account]; } /** * @dev Getter for the amount of Ether already released to a payee. */ function released(address account) public view returns (uint256) { return _released[account]; } /** * @dev Getter for the amount of `token` tokens already released to a payee. `token` should be the address of an * IERC20 contract. */ function released(IERC20Upgradeable token, address account) public view returns (uint256) { return _erc20Released[token][account]; } /** * @dev Getter for the address of the payee number `index`. */ function payee(uint256 index) public view returns (address) { return _payees[index]; } /** * @dev Get the number of payees */ function payeeCount() public view returns (uint256) { return _payees.length; } /** * @dev Triggers a transfer to `account` of the amount of Ether they are owed, according to their percentage of the * total shares and their previous withdrawals. */ function release(address payable account) public virtual { require(_shares[account] > 0, "PaymentSplitter: account has no shares"); uint256 totalReceived = address(this).balance + totalReleased(); uint256 payment = _pendingPayment(account, totalReceived, released(account)); require(payment != 0, "PaymentSplitter: account is not due payment"); _released[account] += payment; _totalReleased += payment; AddressUpgradeable.sendValue(account, payment); emit PaymentReleased(account, payment); } /** * @dev Triggers a transfer to `account` of the amount of `token` tokens they are owed, according to their * percentage of the total shares and their previous withdrawals. `token` must be the address of an IERC20 * contract. */ function release(IERC20Upgradeable token, address account) public virtual { require(_shares[account] > 0, "PaymentSplitter: account has no shares"); uint256 totalReceived = token.balanceOf(address(this)) + totalReleased(token); uint256 payment = _pendingPayment(account, totalReceived, released(token, account)); require(payment != 0, "PaymentSplitter: account is not due payment"); _erc20Released[token][account] += payment; _erc20TotalReleased[token] += payment; SafeERC20Upgradeable.safeTransfer(token, account, payment); emit ERC20PaymentReleased(token, account, payment); } /** * @dev internal logic for computing the pending payment of an `account` given the token historical balances and * already released amounts. */ function _pendingPayment( address account, uint256 totalReceived, uint256 alreadyReleased ) internal view returns (uint256) { return (totalReceived * _shares[account]) / _totalShares - alreadyReleased; } /** * @dev Add a new payee to the contract. * @param account The address of the payee to add. * @param shares_ The number of shares owned by the payee. */ function _addPayee(address account, uint256 shares_) private { require(account != address(0), "PaymentSplitter: account is the zero address"); require(shares_ > 0, "PaymentSplitter: shares are 0"); require(_shares[account] == 0, "PaymentSplitter: account already has shares"); _payees.push(account); _shares[account] = shares_; _totalShares = _totalShares + shares_; emit PayeeAdded(account, shares_); } uint256[43] private __gap; }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.11; interface IThirdwebContract { /// @dev Returns the module type of the contract. function contractType() external pure returns (bytes32); /// @dev Returns the version of the contract. function contractVersion() external pure returns (uint8); /// @dev Returns the metadata URI of the contract. function contractURI() external view returns (string memory); /** * @dev Sets contract URI for the storefront-level metadata of the contract. * Only module admin can call this function. */ function setContractURI(string calldata _uri) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.0 (metatx/ERC2771Context.sol) pragma solidity ^0.8.11; import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; /** * @dev Context variant with ERC2771 support. */ abstract contract ERC2771ContextUpgradeable is Initializable, ContextUpgradeable { mapping(address => bool) private _trustedForwarder; function __ERC2771Context_init(address[] memory trustedForwarder) internal onlyInitializing { __Context_init_unchained(); __ERC2771Context_init_unchained(trustedForwarder); } function __ERC2771Context_init_unchained(address[] memory trustedForwarder) internal onlyInitializing { for (uint256 i = 0; i < trustedForwarder.length; i++) { _trustedForwarder[trustedForwarder[i]] = true; } } function isTrustedForwarder(address forwarder) public view virtual returns (bool) { return _trustedForwarder[forwarder]; } function _msgSender() internal view virtual override returns (address sender) { if (isTrustedForwarder(msg.sender)) { // The assembly code is more direct than the Solidity version using `abi.decode`. assembly { sender := shr(96, calldataload(sub(calldatasize(), 20))) } } else { return super._msgSender(); } } function _msgData() internal view virtual override returns (bytes calldata) { if (isTrustedForwarder(msg.sender)) { return msg.data[:msg.data.length - 20]; } else { return super._msgData(); } } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol) pragma solidity ^0.8.0; import "./IAccessControlEnumerableUpgradeable.sol"; import "./AccessControlUpgradeable.sol"; import "../utils/structs/EnumerableSetUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Extension of {AccessControl} that allows enumerating the members of each role. */ abstract contract AccessControlEnumerableUpgradeable is Initializable, IAccessControlEnumerableUpgradeable, AccessControlUpgradeable { function __AccessControlEnumerable_init() internal onlyInitializing { } function __AccessControlEnumerable_init_unchained() internal onlyInitializing { } using EnumerableSetUpgradeable for EnumerableSetUpgradeable.AddressSet; mapping(bytes32 => EnumerableSetUpgradeable.AddressSet) private _roleMembers; /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControlEnumerableUpgradeable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) { return _roleMembers[role].at(index); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) { return _roleMembers[role].length(); } /** * @dev Overload {_grantRole} to track enumerable memberships */ function _grantRole(bytes32 role, address account) internal virtual override { super._grantRole(role, account); _roleMembers[role].add(account); } /** * @dev Overload {_revokeRole} to track enumerable memberships */ function _revokeRole(bytes32 role, address account) internal virtual override { super._revokeRole(role, account); _roleMembers[role].remove(account); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Multicall.sol) pragma solidity ^0.8.0; import "./AddressUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Provides a function to batch together multiple calls in a single external call. * * _Available since v4.1._ */ abstract contract MulticallUpgradeable is Initializable { function __Multicall_init() internal onlyInitializing { } function __Multicall_init_unchained() internal onlyInitializing { } /** * @dev Receives and executes a batch of function calls on this contract. */ function multicall(bytes[] calldata data) external virtual returns (bytes[] memory results) { results = new bytes[](data.length); for (uint256 i = 0; i < data.length; i++) { results[i] = _functionDelegateCall(address(this), data[i]); } return results; } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function _functionDelegateCall(address target, bytes memory data) private returns (bytes memory) { require(AddressUpgradeable.isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return AddressUpgradeable.verifyCallResult(success, returndata, "Address: low-level delegate call failed"); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: Apache-2.0 pragma solidity ^0.8.11; library FeeType { uint256 internal constant PRIMARY_SALE = 0; uint256 internal constant MARKET_SALE = 1; uint256 internal constant SPLIT = 2; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20Upgradeable.sol"; import "../../../utils/AddressUpgradeable.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20Upgradeable { using AddressUpgradeable for address; function safeTransfer( IERC20Upgradeable token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20Upgradeable token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20Upgradeable token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.0; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() initializer {} * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializer() { // If the contract is initializing we ignore whether _initialized is set in order to support multiple // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the // contract may have been reentered. require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized"); bool isTopLevelCall = !_initializing; if (isTopLevelCall) { _initializing = true; _initialized = true; } _; if (isTopLevelCall) { _initializing = false; } } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} modifier, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } function _isConstructor() private view returns (bool) { return !AddressUpgradeable.isContract(address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol) pragma solidity ^0.8.0; import "./IAccessControlUpgradeable.sol"; /** * @dev External interface of AccessControlEnumerable declared to support ERC165 detection. */ interface IAccessControlEnumerableUpgradeable is IAccessControlUpgradeable { /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) external view returns (address); /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControl.sol) pragma solidity ^0.8.0; import "./IAccessControlUpgradeable.sol"; import "../utils/ContextUpgradeable.sol"; import "../utils/StringsUpgradeable.sol"; import "../utils/introspection/ERC165Upgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable { function __AccessControl_init() internal onlyInitializing { } function __AccessControl_init_unchained() internal onlyInitializing { } struct RoleData { mapping(address => bool) members; bytes32 adminRole; } mapping(bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with a standardized message including the required role. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ * * _Available since v4.1._ */ modifier onlyRole(bytes32 role) { _checkRole(role, _msgSender()); _; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual override returns (bool) { return _roles[role].members[account]; } /** * @dev Revert with a standard message if `account` is missing `role`. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert( string( abi.encodePacked( "AccessControl: account ", StringsUpgradeable.toHexString(uint160(account), 20), " is missing role ", StringsUpgradeable.toHexString(uint256(role), 32) ) ) ); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual override { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== * * NOTE: This function is deprecated in favor of {_grantRole}. */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Grants `role` to `account`. * * Internal function without access restriction. */ function _grantRole(bytes32 role, address account) internal virtual { if (!hasRole(role, account)) { _roles[role].members[account] = true; emit RoleGranted(role, account, _msgSender()); } } /** * @dev Revokes `role` from `account`. * * Internal function without access restriction. */ function _revokeRole(bytes32 role, address account) internal virtual { if (hasRole(role, account)) { _roles[role].members[account] = false; emit RoleRevoked(role, account, _msgSender()); } } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/structs/EnumerableSet.sol) pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. */ library EnumerableSetUpgradeable { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = valueIndex; // Replace lastvalue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { return _values(set._inner); } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControlUpgradeable { /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library StringsUpgradeable { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165Upgradeable.sol"; import "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable { function __ERC165_init() internal onlyInitializing { } function __ERC165_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165Upgradeable).interfaceId; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165Upgradeable { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "metadata": { "bytecodeHash": "none" }, "optimizer": { "enabled": true, "runs": 800 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"_thirdwebFee","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ERC20PaymentReleased","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"shares","type":"uint256"}],"name":"PayeeAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PaymentReceived","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"PaymentReleased","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractType","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractVersion","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"}],"name":"distribute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"distribute","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_defaultAdmin","type":"address"},{"internalType":"string","name":"_contractURI","type":"string"},{"internalType":"address[]","name":"_trustedForwarders","type":"address[]"},{"internalType":"address[]","name":"_payees","type":"address[]"},{"internalType":"uint256[]","name":"_shares","type":"uint256[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"forwarder","type":"address"}],"name":"isTrustedForwarder","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"payee","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"payeeCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address payable","name":"account","type":"address"}],"name":"release","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"release","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"},{"internalType":"address","name":"account","type":"address"}],"name":"released","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"released","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_uri","type":"string"}],"name":"setContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"shares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"thirdwebFee","outputs":[{"internalType":"contract ITWFee","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20Upgradeable","name":"token","type":"address"}],"name":"totalReleased","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalReleased","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.