ETH Price: $3,377.11 (-7.95%)

Contract

0xa7bCb4EAc8964306F9e3764f67Db6A7af6DdF99A
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

> 10 Internal Transactions found.

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Block
From
To
214416732024-12-20 5:33:599 mins ago1734672839
0xa7bCb4EA...af6DdF99A
 Contract Creation7.288173 ETH
214416732024-12-20 5:33:599 mins ago1734672839
0xa7bCb4EA...af6DdF99A
7.288173 ETH
214416152024-12-20 5:22:2321 mins ago1734672143
0xa7bCb4EA...af6DdF99A
 Contract Creation1.66580695 ETH
214416152024-12-20 5:22:2321 mins ago1734672143
0xa7bCb4EA...af6DdF99A
1.66580695 ETH
214415392024-12-20 5:07:1136 mins ago1734671231
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
214413442024-12-20 4:27:591 hr ago1734668879
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
214412002024-12-20 3:59:111 hr ago1734667151
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
214411992024-12-20 3:58:591 hr ago1734667139
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
214411842024-12-20 3:55:591 hr ago1734666959
0xa7bCb4EA...af6DdF99A
 Contract Creation0.98167002 ETH
214411842024-12-20 3:55:591 hr ago1734666959
0xa7bCb4EA...af6DdF99A
0.98167002 ETH
214411292024-12-20 3:44:591 hr ago1734666299
0xa7bCb4EA...af6DdF99A
 Contract Creation0.91899348 ETH
214411292024-12-20 3:44:591 hr ago1734666299
0xa7bCb4EA...af6DdF99A
0.91899348 ETH
214410632024-12-20 3:31:472 hrs ago1734665507
0xa7bCb4EA...af6DdF99A
 Contract Creation0.39079526 ETH
214410632024-12-20 3:31:472 hrs ago1734665507
0xa7bCb4EA...af6DdF99A
0.39079526 ETH
214410372024-12-20 3:26:352 hrs ago1734665195
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
214407442024-12-20 2:27:353 hrs ago1734661655
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
214406082024-12-20 2:00:113 hrs ago1734660011
0xa7bCb4EA...af6DdF99A
 Contract Creation0.90701873 ETH
214406082024-12-20 2:00:113 hrs ago1734660011
0xa7bCb4EA...af6DdF99A
0.90701873 ETH
214406002024-12-20 1:58:353 hrs ago1734659915
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
214405092024-12-20 1:40:234 hrs ago1734658823
0xa7bCb4EA...af6DdF99A
 Contract Creation0.90167462 ETH
214405092024-12-20 1:40:234 hrs ago1734658823
0xa7bCb4EA...af6DdF99A
0.90167462 ETH
214404502024-12-20 1:28:354 hrs ago1734658115
0xa7bCb4EA...af6DdF99A
 Contract Creation0.88657573 ETH
214404502024-12-20 1:28:354 hrs ago1734658115
0xa7bCb4EA...af6DdF99A
0.88657573 ETH
214403952024-12-20 1:17:234 hrs ago1734657443
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
214403512024-12-20 1:08:354 hrs ago1734656915
0xa7bCb4EA...af6DdF99A
 Contract Creation0 ETH
View All Internal Transactions
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
EscrowFactory

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
shanghai EvmVersion
File 1 of 56 : EscrowFactory.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { IERC20 } from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";

import { BaseExtension } from "limit-order-settlement/contracts/extensions/BaseExtension.sol";
import { ResolverValidationExtension } from "limit-order-settlement/contracts/extensions/ResolverValidationExtension.sol";

import { ProxyHashLib } from "./libraries/ProxyHashLib.sol";

import { BaseEscrowFactory } from "./BaseEscrowFactory.sol";
import { EscrowDst } from "./EscrowDst.sol";
import { EscrowSrc } from "./EscrowSrc.sol";
import { MerkleStorageInvalidator } from "./MerkleStorageInvalidator.sol";


/**
 * @title Escrow Factory contract
 * @notice Contract to create escrow contracts for cross-chain atomic swap.
 * @custom:security-contact [email protected]
 */
contract EscrowFactory is BaseEscrowFactory {
    constructor(
        address limitOrderProtocol,
        IERC20 feeToken,
        IERC20 accessToken,
        address owner,
        uint32 rescueDelaySrc,
        uint32 rescueDelayDst
    )
    BaseExtension(limitOrderProtocol)
    ResolverValidationExtension(feeToken, accessToken, owner)
    MerkleStorageInvalidator(limitOrderProtocol) {
        ESCROW_SRC_IMPLEMENTATION = address(new EscrowSrc(rescueDelaySrc, accessToken));
        ESCROW_DST_IMPLEMENTATION = address(new EscrowDst(rescueDelayDst, accessToken));
        _PROXY_SRC_BYTECODE_HASH = ProxyHashLib.computeProxyBytecodeHash(ESCROW_SRC_IMPLEMENTATION);
        _PROXY_DST_BYTECODE_HASH = ProxyHashLib.computeProxyBytecodeHash(ESCROW_DST_IMPLEMENTATION);
    }
}

File 2 of 56 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 3 of 56 : BaseExtension.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { IOrderMixin } from "@1inch/limit-order-protocol-contract/contracts/interfaces/IOrderMixin.sol";
import { IPostInteraction } from "@1inch/limit-order-protocol-contract/contracts/interfaces/IPostInteraction.sol";
import { IPreInteraction } from "@1inch/limit-order-protocol-contract/contracts/interfaces/IPreInteraction.sol";
import { IAmountGetter } from "@1inch/limit-order-protocol-contract/contracts/interfaces/IAmountGetter.sol";

/**
 * @title Base Extension contract
 * @notice Contract to define the basic functionality for the limit orders settlement.
 */
contract BaseExtension is IPreInteraction, IPostInteraction, IAmountGetter {
    error OnlyLimitOrderProtocol();

    uint256 private constant _BASE_POINTS = 10_000_000; // 100%
    uint256 private constant _GAS_PRICE_BASE = 1_000_000; // 1000 means 1 Gwei

    address private immutable _LIMIT_ORDER_PROTOCOL;

    /// @dev Modifier to check if the caller is the limit order protocol contract.
    modifier onlyLimitOrderProtocol {
        if (msg.sender != _LIMIT_ORDER_PROTOCOL) revert OnlyLimitOrderProtocol();
        _;
    }

    /**
     * @notice Initializes the contract.
     * @param limitOrderProtocol The limit order protocol contract.
     */
    constructor(address limitOrderProtocol) {
        _LIMIT_ORDER_PROTOCOL = limitOrderProtocol;
    }

    /**
     * See {IAmountGetter-getMakingAmount}
     */
    function getMakingAmount(
        IOrderMixin.Order calldata order,
        bytes calldata /* extension */,
        bytes32 /* orderHash */,
        address /* taker */,
        uint256 takingAmount,
        uint256 /* remainingMakingAmount */,
        bytes calldata extraData
    ) external view returns (uint256) {
        uint256 rateBump = _getRateBump(extraData);
        return Math.mulDiv(order.makingAmount, takingAmount * _BASE_POINTS, order.takingAmount * (_BASE_POINTS + rateBump));
    }

    /**
     * See {IAmountGetter-getTakingAmount}
     */
    function getTakingAmount(
        IOrderMixin.Order calldata order,
        bytes calldata /* extension */,
        bytes32 /* orderHash */,
        address /* taker */,
        uint256 makingAmount,
        uint256 /* remainingMakingAmount */,
        bytes calldata extraData
    ) external view returns (uint256) {
        uint256 rateBump = _getRateBump(extraData);
        return Math.mulDiv(order.takingAmount, makingAmount * (_BASE_POINTS + rateBump), order.makingAmount * _BASE_POINTS, Math.Rounding.Ceil);
    }

    /**
     * See {IPreInteraction-preInteraction}
     */
    function preInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external onlyLimitOrderProtocol {
        _preInteraction(order, extension, orderHash, taker, makingAmount, takingAmount, remainingMakingAmount, extraData);
    }

    /**
     * See {IPostInteraction-postInteraction}
     */
    function postInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external onlyLimitOrderProtocol {
        _postInteraction(order, extension, orderHash, taker, makingAmount, takingAmount, remainingMakingAmount, extraData);
    }

    function _preInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) internal virtual {}

    function _postInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) internal virtual {
        // Allows to add custom postInteractions
        if (extraData.length > 20) {
            IPostInteraction(address(bytes20(extraData))).postInteraction(order, extension, orderHash, taker, makingAmount, takingAmount, remainingMakingAmount, extraData[20 : extraData.length - 1]);
        }
    }

    /**
     * @dev Parses auction rate bump data from the `auctionDetails` field.
     * `gasBumpEstimate` and `gasPriceEstimate` are used to estimate the transaction costs
     * which are then offset from the auction rate bump.
     * @param auctionDetails AuctionDetails is a tightly packed struct of the following format:
     * ```
     * struct AuctionDetails {
     *     bytes3 gasBumpEstimate;
     *     bytes4 gasPriceEstimate;
     *     bytes4 auctionStartTime;
     *     bytes3 auctionDuration;
     *     bytes3 initialRateBump;
     *     (bytes3,bytes2)[N] pointsAndTimeDeltas;
     * }
     * ```
     * @return rateBump The rate bump.
     */
    function _getRateBump(bytes calldata auctionDetails) private view returns (uint256) {
        unchecked {
            uint256 gasBumpEstimate = uint24(bytes3(auctionDetails[0:3]));
            uint256 gasPriceEstimate = uint32(bytes4(auctionDetails[3:7]));
            uint256 gasBump = gasBumpEstimate == 0 || gasPriceEstimate == 0 ? 0 : gasBumpEstimate * block.basefee / gasPriceEstimate / _GAS_PRICE_BASE;
            uint256 auctionStartTime = uint32(bytes4(auctionDetails[7:11]));
            uint256 auctionFinishTime = auctionStartTime + uint24(bytes3(auctionDetails[11:14]));
            uint256 initialRateBump = uint24(bytes3(auctionDetails[14:17]));
            uint256 auctionBump = _getAuctionBump(auctionStartTime, auctionFinishTime, initialRateBump, auctionDetails[17:]);
            return auctionBump > gasBump ? auctionBump - gasBump : 0;
        }
    }

    /**
     * @dev Calculates auction price bump. Auction is represented as a piecewise linear function with `N` points.
     * Each point is represented as a pair of `(rateBump, timeDelta)`, where `rateBump` is the
     * rate bump in basis points and `timeDelta` is the time delta in seconds.
     * The rate bump is interpolated linearly between the points.
     * The last point is assumed to be `(0, auctionDuration)`.
     * @param auctionStartTime The time when the auction starts.
     * @param auctionFinishTime The time when the auction finishes.
     * @param initialRateBump The initial rate bump.
     * @param pointsAndTimeDeltas The points and time deltas structure.
     * @return The rate bump at the current time.
     */
    function _getAuctionBump(uint256 auctionStartTime, uint256 auctionFinishTime, uint256 initialRateBump, bytes calldata pointsAndTimeDeltas) private view returns (uint256) {
        unchecked {
            if (block.timestamp <= auctionStartTime) {
                return initialRateBump;
            } else if (block.timestamp >= auctionFinishTime) {
                return 0;
            }

            uint256 currentPointTime = auctionStartTime;
            uint256 currentRateBump = initialRateBump;

            while (pointsAndTimeDeltas.length > 0) {
                uint256 nextRateBump = uint24(bytes3(pointsAndTimeDeltas[:3]));
                uint256 nextPointTime = currentPointTime + uint16(bytes2(pointsAndTimeDeltas[3:5]));
                if (block.timestamp <= nextPointTime) {
                    return ((block.timestamp - currentPointTime) * nextRateBump + (nextPointTime - block.timestamp) * currentRateBump) / (nextPointTime - currentPointTime);
                }
                currentRateBump = nextRateBump;
                currentPointTime = nextPointTime;
                pointsAndTimeDeltas = pointsAndTimeDeltas[5:];
            }
            return (auctionFinishTime - block.timestamp) * currentRateBump / (auctionFinishTime - currentPointTime);
        }
    }
}

File 4 of 56 : ResolverValidationExtension.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IOrderMixin } from "@1inch/limit-order-protocol-contract/contracts/interfaces/IOrderMixin.sol";
import { FeeBankCharger } from "../FeeBankCharger.sol";
import { BaseExtension } from "./BaseExtension.sol";
import { ExtensionLib } from "./ExtensionLib.sol";

/**
 * @title Resolver Validation Extension
 * @notice This abstract contract combines functionalities to enhance security and compliance in the order execution process.
 * Ensures that only transactions from whitelisted resolvers or resolvers who own specific accessToken are processed within the post-interaction phase of order execution.
 * Additionally, it allows charging a fee to resolvers in the `postInteraction` method, providing a mechanism for resolver fee management.
 */
abstract contract ResolverValidationExtension is BaseExtension, FeeBankCharger {
    using ExtensionLib for bytes;

    error ResolverCanNotFillOrder();

    uint256 private constant _ORDER_FEE_BASE_POINTS = 1e15;
    /// @notice Contract address whose tokens allow filling limit orders with a fee for resolvers that are outside the whitelist
    IERC20 private immutable _ACCESS_TOKEN;

    constructor(IERC20 feeToken, IERC20 accessToken, address owner) FeeBankCharger(feeToken, owner) {
        _ACCESS_TOKEN = accessToken;
    }

    /**
     * @dev Validates whether the resolver is whitelisted.
     * @param allowedTime The time after which interaction with the order is allowed.
     * @param whitelist Whitelist is tightly packed struct of the following format:
     * ```
     * (bytes10,bytes2)[N] resolversAddressesAndTimeDeltas;
     * ```
     * Resolvers in the list are sorted in ascending order by the time when they are allowed to interact with the order.
     * Time deltas represent the time in seconds between the adjacent resolvers.
     * Only 10 lowest bytes of the resolver address are used for comparison.
     * @param whitelistSize The amount of resolvers in the whitelist.
     * @param resolver The resolver to check.
     * @return Whether the resolver is whitelisted.
     */
    function _isWhitelisted(uint256 allowedTime, bytes calldata whitelist, uint256 whitelistSize, address resolver) internal view virtual returns (bool) {
        unchecked {
            uint80 maskedResolverAddress = uint80(uint160(resolver));
            for (uint256 i = 0; i < whitelistSize; i++) {
                uint80 whitelistedAddress = uint80(bytes10(whitelist[:10]));
                allowedTime += uint16(bytes2(whitelist[10:12])); // add next time delta
                if (maskedResolverAddress == whitelistedAddress) {
                    return allowedTime <= block.timestamp;
                } else if (allowedTime > block.timestamp) {
                    return false;
                }
                whitelist = whitelist[12:];
            }
            return false;
        }
    }

    /**
     * @dev Calculates the resolver fee.
     * @param fee Scaled resolver fee.
     * @param orderMakingAmount Making amount from the order.
     * @param actualMakingAmount Making amount that was actually filled.
     * @return resolverFee Calculated resolver fee.
     */
    function _getResolverFee(
        uint256 fee,
        uint256 orderMakingAmount,
        uint256 actualMakingAmount
    ) internal pure virtual returns(uint256) {
        return fee * _ORDER_FEE_BASE_POINTS * actualMakingAmount / orderMakingAmount;
    }

    /**
     * @param extraData Structured data of length n bytes, segmented as follows:
     * [0:4] - Resolver fee information.
     * [4:8] - The time after which interaction with the order is allowed.
     * [8:k] - Data as defined by the `whitelist` parameter for the `_isWhitelisted` method,
     *         where k depends on the amount of resolvers in the whitelist, as indicated by the bitmap in the last byte.
     * [k:n] - ExtraData for other extensions, not utilized by this validation extension.
     * [n] - Bitmap indicating various usage flags and values.
     *       The bitmask xxxx xxx1 signifies resolver fee usage.
     *       The bitmask VVVV Vxxx represents the number of resolvers in the whitelist, where the V bits denote the count of resolvers.
     *       The remaining bits in this bitmap are not used by this extension.
     */
    function _postInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) internal virtual override {
        bool feeEnabled = extraData.resolverFeeEnabled();
        uint256 resolversCount = extraData.resolversCount();
        unchecked {
            uint256 resolverFee;
            if (feeEnabled) {
                resolverFee = _getResolverFee(uint256(uint32(bytes4(extraData[:4]))), order.makingAmount, makingAmount);
                extraData = extraData[4:];
            }

            uint256 allowedTime = uint32(bytes4(extraData[0:4]));
            extraData = extraData[4:];
            uint256 whitelistSize = resolversCount * 12;
            if (!_isWhitelisted(allowedTime, extraData[:whitelistSize], resolversCount, taker)) { // resolversCount always > 0 on prod
                if (allowedTime > block.timestamp || _ACCESS_TOKEN.balanceOf(taker) == 0) revert ResolverCanNotFillOrder();
                if (feeEnabled) {
                    _chargeFee(taker, resolverFee);
                }
            }
            super._postInteraction(order, extension, orderHash, taker, makingAmount, takingAmount, remainingMakingAmount, extraData[whitelistSize:]);
        }
    }
}

File 5 of 56 : ProxyHashLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @title Library to compute the hash of the proxy bytecode.
 * @custom:security-contact [email protected]
 */
library ProxyHashLib {
    /**
     * @notice Returns the hash of the proxy bytecode concatenated with the implementation address.
     * @param implementation The address of the contract to clone.
     * @return bytecodeHash The hash of the resulting bytecode.
     */
    function computeProxyBytecodeHash(address implementation) internal pure returns (bytes32 bytecodeHash) {
        assembly ("memory-safe") {
            // Stores the bytecode after address
            mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3)
            // implementation address
            mstore(0x11, implementation)
            // Packs the first 3 bytes of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            bytecodeHash := keccak256(0x09, 0x37)
        }
    }
}

File 6 of 56 : BaseEscrowFactory.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { Clones } from "openzeppelin-contracts/contracts/proxy/Clones.sol";
import { IERC20 } from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import { Create2 } from "openzeppelin-contracts/contracts/utils/Create2.sol";
import { Address, AddressLib } from "solidity-utils/contracts/libraries/AddressLib.sol";
import { SafeERC20 } from "solidity-utils/contracts/libraries/SafeERC20.sol";

import { IOrderMixin } from "limit-order-protocol/contracts/interfaces/IOrderMixin.sol";
import { MakerTraitsLib } from "limit-order-protocol/contracts/libraries/MakerTraitsLib.sol";
import { ResolverValidationExtension } from "limit-order-settlement/contracts/extensions/ResolverValidationExtension.sol";

import { ImmutablesLib } from "./libraries/ImmutablesLib.sol";
import { Timelocks, TimelocksLib } from "./libraries/TimelocksLib.sol";

import { IEscrowFactory } from "./interfaces/IEscrowFactory.sol";
import { IBaseEscrow } from "./interfaces/IBaseEscrow.sol";
import { SRC_IMMUTABLES_LENGTH } from "./EscrowFactoryContext.sol";
import { MerkleStorageInvalidator } from "./MerkleStorageInvalidator.sol";

/**
 * @title Abstract contract for escrow factory
 * @notice Contract to create escrow contracts for cross-chain atomic swap.
 * @dev Immutable variables must be set in the constructor of the derived contracts.
 * @custom:security-contact [email protected]
 */
abstract contract BaseEscrowFactory is IEscrowFactory, ResolverValidationExtension, MerkleStorageInvalidator {
    using AddressLib for Address;
    using Clones for address;
    using ImmutablesLib for IBaseEscrow.Immutables;
    using SafeERC20 for IERC20;
    using TimelocksLib for Timelocks;

    /// @notice See {IEscrowFactory-ESCROW_SRC_IMPLEMENTATION}.
    address public immutable ESCROW_SRC_IMPLEMENTATION;
    /// @notice See {IEscrowFactory-ESCROW_DST_IMPLEMENTATION}.
    address public immutable ESCROW_DST_IMPLEMENTATION;
    bytes32 internal immutable _PROXY_SRC_BYTECODE_HASH;
    bytes32 internal immutable _PROXY_DST_BYTECODE_HASH;

    /**
     * @notice Creates a new escrow contract for maker on the source chain.
     * @dev The caller must be whitelisted and pre-send the safety deposit in a native token
     * to a pre-computed deterministic address of the created escrow.
     * The external postInteraction function call will be made from the Limit Order Protocol
     * after all funds have been transferred. See {IPostInteraction-postInteraction}.
     * `extraData` consists of:
     *   - ExtraDataArgs struct
     *   - whitelist
     *   - 0 / 4 bytes for the fee
     *   - 1 byte for the bitmap
     */
    function _postInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) internal override(ResolverValidationExtension) {
        uint256 superArgsLength = extraData.length - SRC_IMMUTABLES_LENGTH;
        super._postInteraction(
            order, extension, orderHash, taker, makingAmount, takingAmount, remainingMakingAmount, extraData[:superArgsLength]
        );

        ExtraDataArgs calldata extraDataArgs;
        assembly ("memory-safe") {
            extraDataArgs := add(extraData.offset, superArgsLength)
        }

        bytes32 hashlock;

        if (MakerTraitsLib.allowMultipleFills(order.makerTraits)) {
            uint256 partsAmount = uint256(extraDataArgs.hashlockInfo) >> 240;
            if (partsAmount < 2) revert InvalidSecretsAmount();
            bytes32 key = keccak256(abi.encodePacked(orderHash, uint240(uint256(extraDataArgs.hashlockInfo))));
            ValidationData memory validated = lastValidated[key];
            hashlock = validated.leaf;
            if (!_isValidPartialFill(makingAmount, remainingMakingAmount, order.makingAmount, partsAmount, validated.index)) {
                revert InvalidPartialFill();
            }
        } else {
            hashlock = extraDataArgs.hashlockInfo;
        }

        IBaseEscrow.Immutables memory immutables = IBaseEscrow.Immutables({
            orderHash: orderHash,
            hashlock: hashlock,
            maker: order.maker,
            taker: Address.wrap(uint160(taker)),
            token: order.makerAsset,
            amount: makingAmount,
            safetyDeposit: extraDataArgs.deposits >> 128,
            timelocks: extraDataArgs.timelocks.setDeployedAt(block.timestamp)
        });

        DstImmutablesComplement memory immutablesComplement = DstImmutablesComplement({
            maker: order.receiver.get() == address(0) ? order.maker : order.receiver,
            amount: takingAmount,
            token: extraDataArgs.dstToken,
            safetyDeposit: extraDataArgs.deposits & type(uint128).max,
            chainId: extraDataArgs.dstChainId
        });

        emit SrcEscrowCreated(immutables, immutablesComplement);

        bytes32 salt = immutables.hashMem();
        address escrow = _deployEscrow(salt, 0, ESCROW_SRC_IMPLEMENTATION);
        if (escrow.balance < immutables.safetyDeposit || IERC20(order.makerAsset.get()).safeBalanceOf(escrow) < makingAmount) {
            revert InsufficientEscrowBalance();
        }
    }

    /**
     * @notice See {IEscrowFactory-createDstEscrow}.
     */
    function createDstEscrow(IBaseEscrow.Immutables calldata dstImmutables, uint256 srcCancellationTimestamp) external payable {
        address token = dstImmutables.token.get();
        uint256 nativeAmount = dstImmutables.safetyDeposit;
        if (token == address(0)) {
            nativeAmount += dstImmutables.amount;
        }
        if (msg.value != nativeAmount) revert InsufficientEscrowBalance();

        IBaseEscrow.Immutables memory immutables = dstImmutables;
        immutables.timelocks = immutables.timelocks.setDeployedAt(block.timestamp);
        // Check that the escrow cancellation will start not later than the cancellation time on the source chain.
        if (immutables.timelocks.get(TimelocksLib.Stage.DstCancellation) > srcCancellationTimestamp) revert InvalidCreationTime();

        bytes32 salt = immutables.hashMem();
        address escrow = _deployEscrow(salt, msg.value, ESCROW_DST_IMPLEMENTATION);
        if (token != address(0)) {
            IERC20(token).safeTransferFrom(msg.sender, escrow, immutables.amount);
        }

        emit DstEscrowCreated(escrow, dstImmutables.hashlock, dstImmutables.taker);
    }

    /**
     * @notice See {IEscrowFactory-addressOfEscrowSrc}.
     */
    function addressOfEscrowSrc(IBaseEscrow.Immutables calldata immutables) external view virtual returns (address) {
        return Create2.computeAddress(immutables.hash(), _PROXY_SRC_BYTECODE_HASH);
    }

    /**
     * @notice See {IEscrowFactory-addressOfEscrowDst}.
     */
    function addressOfEscrowDst(IBaseEscrow.Immutables calldata immutables) external view virtual returns (address) {
        return Create2.computeAddress(immutables.hash(), _PROXY_DST_BYTECODE_HASH);
    }

    /**
     * @notice Deploys a new escrow contract.
     * @param salt The salt for the deterministic address computation.
     * @param value The value to be sent to the escrow contract.
     * @param implementation Address of the implementation.
     * @return escrow The address of the deployed escrow contract.
     */
    function _deployEscrow(bytes32 salt, uint256 value, address implementation) internal virtual returns (address escrow) {
        escrow = implementation.cloneDeterministic(salt, value);
    }

    function _isValidPartialFill(
        uint256 makingAmount,
        uint256 remainingMakingAmount,
        uint256 orderMakingAmount,
        uint256 partsAmount,
        uint256 validatedIndex
    ) internal pure returns (bool) {
        uint256 calculatedIndex = (orderMakingAmount - remainingMakingAmount + makingAmount - 1) * partsAmount / orderMakingAmount;

        if (remainingMakingAmount == makingAmount) {
            // If the order is filled to completion, a secret with index i + 1 must be used
            // where i is the index of the secret for the last part.
            return (calculatedIndex + 2 == validatedIndex);
        } else if (orderMakingAmount != remainingMakingAmount) {
            // Calculate the previous fill index only if this is not the first fill.
            uint256 prevCalculatedIndex = (orderMakingAmount - remainingMakingAmount - 1) * partsAmount / orderMakingAmount;
            if (calculatedIndex == prevCalculatedIndex) return false;
        }

        return calculatedIndex + 1 == validatedIndex;
    }
}

File 7 of 56 : EscrowDst.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { IERC20 } from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "solidity-utils/contracts/libraries/SafeERC20.sol";
import { AddressLib, Address } from "solidity-utils/contracts/libraries/AddressLib.sol";

import { Timelocks, TimelocksLib } from "./libraries/TimelocksLib.sol";

import { IEscrowDst } from "./interfaces/IEscrowDst.sol";
import { BaseEscrow } from "./BaseEscrow.sol";
import { Escrow } from "./Escrow.sol";

/**
 * @title Destination Escrow contract for cross-chain atomic swap.
 * @notice Contract to initially lock funds and then unlock them with verification of the secret presented.
 * @dev Funds are locked in at the time of contract deployment. For this taker calls the `EscrowFactory.createDstEscrow` function.
 * To perform any action, the caller must provide the same Immutables values used to deploy the clone contract.
 * @custom:security-contact [email protected]
 */
contract EscrowDst is Escrow, IEscrowDst {
    using SafeERC20 for IERC20;
    using AddressLib for Address;
    using TimelocksLib for Timelocks;

    constructor(uint32 rescueDelay, IERC20 accessToken) BaseEscrow(rescueDelay, accessToken) {}

    /**
     * @notice See {IBaseEscrow-withdraw}.
     * @dev The function works on the time intervals highlighted with capital letters:
     * ---- contract deployed --/-- finality --/-- PRIVATE WITHDRAWAL --/-- PUBLIC WITHDRAWAL --/-- private cancellation ----
     */
    function withdraw(bytes32 secret, Immutables calldata immutables)
        external
        onlyTaker(immutables)
        onlyAfter(immutables.timelocks.get(TimelocksLib.Stage.DstWithdrawal))
        onlyBefore(immutables.timelocks.get(TimelocksLib.Stage.DstCancellation))
    {
        _withdraw(secret, immutables);
    }

    /**
     * @notice See {IBaseEscrow-publicWithdraw}.
     * @dev The function works on the time intervals highlighted with capital letters:
     * ---- contract deployed --/-- finality --/-- private withdrawal --/-- PUBLIC WITHDRAWAL --/-- private cancellation ----
     */
    function publicWithdraw(bytes32 secret, Immutables calldata immutables)
        external
        onlyAccessTokenHolder()
        onlyAfter(immutables.timelocks.get(TimelocksLib.Stage.DstPublicWithdrawal))
        onlyBefore(immutables.timelocks.get(TimelocksLib.Stage.DstCancellation))
    {
        _withdraw(secret, immutables);
    }

    /**
     * @notice See {IBaseEscrow-cancel}.
     * @dev The function works on the time interval highlighted with capital letters:
     * ---- contract deployed --/-- finality --/-- private withdrawal --/-- public withdrawal --/-- PRIVATE CANCELLATION ----
     */
    function cancel(Immutables calldata immutables)
        external
        onlyTaker(immutables)
        onlyValidImmutables(immutables)
        onlyAfter(immutables.timelocks.get(TimelocksLib.Stage.DstCancellation))
    {
        _uniTransfer(immutables.token.get(), immutables.taker.get(), immutables.amount);
        _ethTransfer(msg.sender, immutables.safetyDeposit);
        emit EscrowCancelled();
    }

    /**
     * @dev Transfers ERC20 (or native) tokens to the maker and native tokens to the caller.
     * @param immutables The immutable values used to deploy the clone contract.
     */
    function _withdraw(bytes32 secret, Immutables calldata immutables)
        internal
        onlyValidImmutables(immutables)
        onlyValidSecret(secret, immutables)
    {
        _uniTransfer(immutables.token.get(), immutables.maker.get(), immutables.amount);
        _ethTransfer(msg.sender, immutables.safetyDeposit);
        emit EscrowWithdrawal(secret);
    }
}

File 8 of 56 : EscrowSrc.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { IERC20 } from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "solidity-utils/contracts/libraries/SafeERC20.sol";
import { AddressLib, Address } from "solidity-utils/contracts/libraries/AddressLib.sol";

import { Timelocks, TimelocksLib } from "./libraries/TimelocksLib.sol";
import { ImmutablesLib } from "./libraries/ImmutablesLib.sol";

import { IEscrowSrc } from "./interfaces/IEscrowSrc.sol";
import { BaseEscrow } from "./BaseEscrow.sol";
import { Escrow } from "./Escrow.sol";

/**
 * @title Source Escrow contract for cross-chain atomic swap.
 * @notice Contract to initially lock funds and then unlock them with verification of the secret presented.
 * @dev Funds are locked in at the time of contract deployment. For this Limit Order Protocol
 * calls the `EscrowFactory.postInteraction` function.
 * To perform any action, the caller must provide the same Immutables values used to deploy the clone contract.
 * @custom:security-contact [email protected]
 */
contract EscrowSrc is Escrow, IEscrowSrc {
    using AddressLib for Address;
    using ImmutablesLib for Immutables;
    using SafeERC20 for IERC20;
    using TimelocksLib for Timelocks;

    constructor(uint32 rescueDelay, IERC20 accessToken) BaseEscrow(rescueDelay, accessToken) {}

    /**
     * @notice See {IBaseEscrow-withdraw}.
     * @dev The function works on the time interval highlighted with capital letters:
     * ---- contract deployed --/-- finality --/-- PRIVATE WITHDRAWAL --/-- PUBLIC WITHDRAWAL --/--
     * --/-- private cancellation --/-- public cancellation ----
     */
    function withdraw(bytes32 secret, Immutables calldata immutables)
        external
        onlyTaker(immutables)
        onlyAfter(immutables.timelocks.get(TimelocksLib.Stage.SrcWithdrawal))
        onlyBefore(immutables.timelocks.get(TimelocksLib.Stage.SrcCancellation))
    {
        _withdrawTo(secret, msg.sender, immutables);
    }

    /**
     * @notice See {IEscrowSrc-withdrawTo}.
     * @dev The function works on the time interval highlighted with capital letters:
     * ---- contract deployed --/-- finality --/-- PRIVATE WITHDRAWAL --/-- PUBLIC WITHDRAWAL --/--
     * --/-- private cancellation --/-- public cancellation ----
     */
    function withdrawTo(bytes32 secret, address target, Immutables calldata immutables)
        external
        onlyTaker(immutables)
        onlyAfter(immutables.timelocks.get(TimelocksLib.Stage.SrcWithdrawal))
        onlyBefore(immutables.timelocks.get(TimelocksLib.Stage.SrcCancellation))
    {
        _withdrawTo(secret, target, immutables);
    }

    /**
     * @notice See {IEscrowSrc-publicWithdraw}.
     * @dev The function works on the time interval highlighted with capital letters:
     * ---- contract deployed --/-- finality --/-- private withdrawal --/-- PUBLIC WITHDRAWAL --/--
     * --/-- private cancellation --/-- public cancellation ----
     */
    function publicWithdraw(bytes32 secret, Immutables calldata immutables)
        external
        onlyAccessTokenHolder()
        onlyAfter(immutables.timelocks.get(TimelocksLib.Stage.SrcPublicWithdrawal))
        onlyBefore(immutables.timelocks.get(TimelocksLib.Stage.SrcCancellation))
    {
        _withdrawTo(secret, immutables.taker.get(), immutables);
    }

    /**
     * @notice See {IBaseEscrow-cancel}.
     * @dev The function works on the time intervals highlighted with capital letters:
     * ---- contract deployed --/-- finality --/-- private withdrawal --/-- public withdrawal --/--
     * --/-- PRIVATE CANCELLATION --/-- PUBLIC CANCELLATION ----
     */
    function cancel(Immutables calldata immutables)
        external
        onlyTaker(immutables)
        onlyAfter(immutables.timelocks.get(TimelocksLib.Stage.SrcCancellation))
    {
        _cancel(immutables);
    }

    /**
     * @notice See {IEscrowSrc-publicCancel}.
     * @dev The function works on the time intervals highlighted with capital letters:
     * ---- contract deployed --/-- finality --/-- private withdrawal --/-- public withdrawal --/--
     * --/-- private cancellation --/-- PUBLIC CANCELLATION ----
     */
    function publicCancel(Immutables calldata immutables)
        external
        onlyAccessTokenHolder()
        onlyAfter(immutables.timelocks.get(TimelocksLib.Stage.SrcPublicCancellation))
    {
        _cancel(immutables);
    }

    /**
     * @dev Transfers ERC20 tokens to the target and native tokens to the caller.
     * @param secret The secret that unlocks the escrow.
     * @param target The address to transfer ERC20 tokens to.
     * @param immutables The immutable values used to deploy the clone contract.
     */
    function _withdrawTo(bytes32 secret, address target, Immutables calldata immutables)
        internal
        onlyValidImmutables(immutables)
        onlyValidSecret(secret, immutables)
    {
        IERC20(immutables.token.get()).safeTransfer(target, immutables.amount);
        _ethTransfer(msg.sender, immutables.safetyDeposit);
        emit EscrowWithdrawal(secret);
    }

    /**
     * @dev Transfers ERC20 tokens to the maker and native tokens to the caller.
     * @param immutables The immutable values used to deploy the clone contract.
     */
    function _cancel(Immutables calldata immutables) internal onlyValidImmutables(immutables) {
        IERC20(immutables.token.get()).safeTransfer(immutables.maker.get(), immutables.amount);
        _ethTransfer(msg.sender, immutables.safetyDeposit);
        emit EscrowCancelled();
    }
}

File 9 of 56 : MerkleStorageInvalidator.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { IOrderMixin } from "limit-order-protocol/contracts/interfaces/IOrderMixin.sol";
import { ExtensionLib } from "limit-order-protocol/contracts/libraries/ExtensionLib.sol";
import { ITakerInteraction } from "limit-order-protocol/contracts/interfaces/ITakerInteraction.sol";
import { MerkleProof } from "openzeppelin-contracts/contracts/utils/cryptography/MerkleProof.sol";

import { IEscrowFactory } from "./interfaces/IEscrowFactory.sol";
import { IMerkleStorageInvalidator } from "./interfaces/IMerkleStorageInvalidator.sol";
import { SRC_IMMUTABLES_LENGTH } from "./EscrowFactoryContext.sol"; // solhint-disable-line no-unused-import

/**
 * @title Merkle Storage Invalidator contract
 * @notice Contract to invalidate hashed secrets from an order that supports multiple fills.
 * @custom:security-contact [email protected]
 */
contract MerkleStorageInvalidator is IMerkleStorageInvalidator, ITakerInteraction {
    using MerkleProof for bytes32[];
    using ExtensionLib for bytes;

    address private immutable _LIMIT_ORDER_PROTOCOL;

    /// @notice See {IMerkleStorageInvalidator-lastValidated}.
    mapping(bytes32 key => ValidationData) public lastValidated;

    /// @notice Only limit order protocol can call this contract.
    modifier onlyLOP() {
        if (msg.sender != _LIMIT_ORDER_PROTOCOL) {
            revert AccessDenied();
        }
        _;
    }

    constructor(address limitOrderProtocol) {
        _LIMIT_ORDER_PROTOCOL = limitOrderProtocol;
    }

    /**
     * @notice See {ITakerInteraction-takerInteraction}.
     * @dev Verifies the proof and stores the last validated index and hashed secret.
     * Only Limit Order Protocol can call this function.
     */
    function takerInteraction(
        IOrderMixin.Order calldata /* order */,
        bytes calldata extension,
        bytes32 orderHash,
        address /* taker */,
        uint256 /* makingAmount */,
        uint256 /* takingAmount */,
        uint256 /* remainingMakingAmount */,
        bytes calldata extraData
    ) external onlyLOP {
        bytes calldata postInteraction = extension.postInteractionTargetAndData();
        IEscrowFactory.ExtraDataArgs calldata extraDataArgs;
        TakerData calldata takerData;
        assembly ("memory-safe") {
            extraDataArgs := add(postInteraction.offset, sub(postInteraction.length, SRC_IMMUTABLES_LENGTH))
            takerData := extraData.offset
        }
        uint240 rootShortened = uint240(uint256(extraDataArgs.hashlockInfo));
        bytes32 key = keccak256(abi.encodePacked(orderHash, rootShortened));
        bytes32 rootCalculated = takerData.proof.processProofCalldata(
            keccak256(abi.encodePacked(uint64(takerData.idx), takerData.secretHash))
        );
        if (uint240(uint256(rootCalculated)) != rootShortened) revert InvalidProof();
        lastValidated[key] = ValidationData(takerData.idx + 1, takerData.secretHash);
    }
}

File 10 of 56 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        /// @solidity memory-safe-assembly
        assembly {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 11 of 56 : IOrderMixin.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@1inch/solidity-utils/contracts/libraries/AddressLib.sol";
import "../libraries/MakerTraitsLib.sol";
import "../libraries/TakerTraitsLib.sol";

interface IOrderMixin {
    struct Order {
        uint256 salt;
        Address maker;
        Address receiver;
        Address makerAsset;
        Address takerAsset;
        uint256 makingAmount;
        uint256 takingAmount;
        MakerTraits makerTraits;
    }

    error InvalidatedOrder();
    error TakingAmountExceeded();
    error PrivateOrder();
    error BadSignature();
    error OrderExpired();
    error WrongSeriesNonce();
    error SwapWithZeroAmount();
    error PartialFillNotAllowed();
    error OrderIsNotSuitableForMassInvalidation();
    error EpochManagerAndBitInvalidatorsAreIncompatible();
    error ReentrancyDetected();
    error PredicateIsNotTrue();
    error TakingAmountTooHigh();
    error MakingAmountTooLow();
    error TransferFromMakerToTakerFailed();
    error TransferFromTakerToMakerFailed();
    error MismatchArraysLengths();
    error InvalidPermit2Transfer();
    error SimulationResults(bool success, bytes res);

    /**
     * @notice Emitted when order gets filled
     * @param orderHash Hash of the order
     * @param remainingAmount Amount of the maker asset that remains to be filled
     */
    event OrderFilled(
        bytes32 orderHash,
        uint256 remainingAmount
    );

    /**
     * @notice Emitted when order without `useBitInvalidator` gets cancelled
     * @param orderHash Hash of the order
     */
    event OrderCancelled(
        bytes32 orderHash
    );

    /**
     * @notice Emitted when order with `useBitInvalidator` gets cancelled
     * @param maker Maker address
     * @param slotIndex Slot index that was updated
     * @param slotValue New slot value
     */
    event BitInvalidatorUpdated(
        address indexed maker,
        uint256 slotIndex,
        uint256 slotValue
    );

    /**
     * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
     * @param maker Maker address
     * @param slot Slot number to return bitmask for
     * @return result Each bit represents whether corresponding was already invalidated
     */
    function bitInvalidatorForOrder(address maker, uint256 slot) external view returns(uint256 result);

    /**
     * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
     * @param orderHash Hash of the order
     * @return remaining Remaining amount of the order
     */
    function remainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remaining);

    /**
     * @notice Returns bitmask for double-spend invalidators based on lowest byte of order.info and filled quotes
     * @param orderHash Hash of the order
     * @return remainingRaw Inverse of the remaining amount of the order if order was filled at least once, otherwise 0
     */
    function rawRemainingInvalidatorForOrder(address maker, bytes32 orderHash) external view returns(uint256 remainingRaw);

    /**
     * @notice Cancels order's quote
     * @param makerTraits Order makerTraits
     * @param orderHash Hash of the order to cancel
     */
    function cancelOrder(MakerTraits makerTraits, bytes32 orderHash) external;

    /**
     * @notice Cancels orders' quotes
     * @param makerTraits Orders makerTraits
     * @param orderHashes Hashes of the orders to cancel
     */
    function cancelOrders(MakerTraits[] calldata makerTraits, bytes32[] calldata orderHashes) external;

    /**
     * @notice Cancels all quotes of the maker (works for bit-invalidating orders only)
     * @param makerTraits Order makerTraits
     * @param additionalMask Additional bitmask to invalidate orders
     */
    function bitsInvalidateForOrder(MakerTraits makerTraits, uint256 additionalMask) external;

    /**
     * @notice Returns order hash, hashed with limit order protocol contract EIP712
     * @param order Order
     * @return orderHash Hash of the order
     */
    function hashOrder(IOrderMixin.Order calldata order) external view returns(bytes32 orderHash);

    /**
     * @notice Delegates execution to custom implementation. Could be used to validate if `transferFrom` works properly
     * @dev The function always reverts and returns the simulation results in revert data.
     * @param target Addresses that will be delegated
     * @param data Data that will be passed to delegatee
     */
    function simulate(address target, bytes calldata data) external;

    /**
     * @notice Fills order's quote, fully or partially (whichever is possible).
     * @param order Order quote to fill
     * @param r R component of signature
     * @param vs VS component of signature
     * @param amount Taker amount to fill
     * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
     * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
     * @return makingAmount Actual amount transferred from maker to taker
     * @return takingAmount Actual amount transferred from taker to maker
     * @return orderHash Hash of the filled order
     */
    function fillOrder(
        Order calldata order,
        bytes32 r,
        bytes32 vs,
        uint256 amount,
        TakerTraits takerTraits
    ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);

    /**
     * @notice Same as `fillOrder` but allows to specify arguments that are used by the taker.
     * @param order Order quote to fill
     * @param r R component of signature
     * @param vs VS component of signature
     * @param amount Taker amount to fill
     * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
     * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
     * @param args Arguments that are used by the taker (target, extension, interaction, permit)
     * @return makingAmount Actual amount transferred from maker to taker
     * @return takingAmount Actual amount transferred from taker to maker
     * @return orderHash Hash of the filled order
     */
    function fillOrderArgs(
        IOrderMixin.Order calldata order,
        bytes32 r,
        bytes32 vs,
        uint256 amount,
        TakerTraits takerTraits,
        bytes calldata args
    ) external payable returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);

    /**
     * @notice Same as `fillOrder` but uses contract-based signatures.
     * @param order Order quote to fill
     * @param signature Signature to confirm quote ownership
     * @param amount Taker amount to fill
     * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
     * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
     * @return makingAmount Actual amount transferred from maker to taker
     * @return takingAmount Actual amount transferred from taker to maker
     * @return orderHash Hash of the filled order
     * @dev See tests for examples
     */
    function fillContractOrder(
        Order calldata order,
        bytes calldata signature,
        uint256 amount,
        TakerTraits takerTraits
    ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);

    /**
     * @notice Same as `fillContractOrder` but allows to specify arguments that are used by the taker.
     * @param order Order quote to fill
     * @param signature Signature to confirm quote ownership
     * @param amount Taker amount to fill
     * @param takerTraits Specifies threshold as maximum allowed takingAmount when takingAmount is zero, otherwise specifies
     * minimum allowed makingAmount. The 2nd (0 based index) highest bit specifies whether taker wants to skip maker's permit.
     * @param args Arguments that are used by the taker (target, extension, interaction, permit)
     * @return makingAmount Actual amount transferred from maker to taker
     * @return takingAmount Actual amount transferred from taker to maker
     * @return orderHash Hash of the filled order
     * @dev See tests for examples
     */
    function fillContractOrderArgs(
        Order calldata order,
        bytes calldata signature,
        uint256 amount,
        TakerTraits takerTraits,
        bytes calldata args
    ) external returns(uint256 makingAmount, uint256 takingAmount, bytes32 orderHash);
}

File 12 of 56 : IPostInteraction.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./IOrderMixin.sol";

interface IPostInteraction {
    /**
     * @notice Callback method that gets called after all fund transfers
     * @param order Order being processed
     * @param extension Order extension data
     * @param orderHash Hash of the order being processed
     * @param taker Taker address
     * @param makingAmount Actual making amount
     * @param takingAmount Actual taking amount
     * @param remainingMakingAmount Order remaining making amount
     * @param extraData Extra data
     */
    function postInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external;
}

File 13 of 56 : IPreInteraction.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./IOrderMixin.sol";

interface IPreInteraction {
    /**
     * @notice Callback method that gets called before any funds transfers
     * @param order Order being processed
     * @param extension Order extension data
     * @param orderHash Hash of the order being processed
     * @param taker Taker address
     * @param makingAmount Actual making amount
     * @param takingAmount Actual taking amount
     * @param remainingMakingAmount Order remaining making amount
     * @param extraData Extra data
     */
    function preInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external;
}

File 14 of 56 : IAmountGetter.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./IOrderMixin.sol";

interface IAmountGetter {
    /**
     * @notice View method that gets called to determine the actual making amount
     * @param order Order being processed
     * @param extension Order extension data
     * @param orderHash Hash of the order being processed
     * @param taker Taker address
     * @param takingAmount Actual taking amount
     * @param remainingMakingAmount Order remaining making amount
     * @param extraData Extra data
     */
    function getMakingAmount(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external view returns (uint256);

    /**
     * @notice View method that gets called to determine the actual making amount
     * @param order Order being processed
     * @param extension Order extension data
     * @param orderHash Hash of the order being processed
     * @param taker Taker address
     * @param makingAmount Actual taking amount
     * @param remainingMakingAmount Order remaining making amount
     * @param extraData Extra data
     */
    function getTakingAmount(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external view returns (uint256);
}

File 15 of 56 : FeeBankCharger.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { IFeeBank } from "./interfaces/IFeeBank.sol";
import { IFeeBankCharger } from "./interfaces/IFeeBankCharger.sol";
import { FeeBank } from "./FeeBank.sol";

/**
 * @title FeeBankCharger
 * @notice FeeBankCharger contract implements logic to increase or decrease users' credits in FeeBank.
 */
contract FeeBankCharger is IFeeBankCharger {
    error OnlyFeeBankAccess();
    error NotEnoughCredit();

    /**
     * @notice See {IFeeBankCharger-feeBank}.
     */
    IFeeBank public immutable FEE_BANK;
    mapping(address => uint256) private _creditAllowance;

    /**
     * @dev Modifier to check if the sender is a FEE_BANK contract.
     */
    modifier onlyFeeBank() {
        if (msg.sender != address(FEE_BANK)) revert OnlyFeeBankAccess();
        _;
    }

    constructor(IERC20 feeToken, address owner) {
        FEE_BANK = new FeeBank(this, feeToken, owner);
    }

    /**
     * @notice See {IFeeBankCharger-availableCredit}.
     */
    function availableCredit(address account) external view returns (uint256) {
        return _creditAllowance[account];
    }

    /**
     * @notice See {IFeeBankCharger-increaseAvailableCredit}.
     */
    function increaseAvailableCredit(address account, uint256 amount) external onlyFeeBank returns (uint256 allowance) {
        allowance = _creditAllowance[account];
        unchecked {
            allowance += amount;  // overflow is impossible due to limited _token supply
        }
        _creditAllowance[account] = allowance;
    }

    /**
     * @notice See {IFeeBankCharger-decreaseAvailableCredit}.
     */
    function decreaseAvailableCredit(address account, uint256 amount) external onlyFeeBank returns (uint256 allowance) {
        return _creditAllowance[account] -= amount;  // checked math is needed to prevent underflow
    }

    /**
     * @notice Internal function that charges a specified fee from a given account's credit allowance.
     * @dev Reverts with 'NotEnoughCredit' if the account's credit allowance is insufficient to cover the fee.
     * @param account The address of the account from which the fee is being charged.
     * @param fee The amount of fee to be charged from the account.
     */
    function _chargeFee(address account, uint256 fee) internal virtual {
        if (fee > 0) {
            uint256 currentAllowance = _creditAllowance[account];
            if (currentAllowance < fee) revert NotEnoughCredit();
            unchecked {
                _creditAllowance[account] = currentAllowance - fee;
            }
        }
    }
}

File 16 of 56 : ExtensionLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title Extension Library
 * @notice Library to retrieve data from the bitmap.
 */
library ExtensionLib {
    bytes1 private constant _RESOLVER_FEE_FLAG = 0x01;
    bytes1 private constant _INTEGRATOR_FEE_FLAG = 0x02;
    bytes1 private constant _CUSTOM_RECEIVER_FLAG = 0x04;
    uint256 private constant _WHITELIST_SHIFT = 3;

    /**
     * @notice Checks if the resolver fee is enabled
     * @param extraData Data to be processed in the extension
     * @return True if the resolver fee is enabled
     */
    function resolverFeeEnabled(bytes calldata extraData) internal pure returns (bool) {
        return extraData[extraData.length - 1] & _RESOLVER_FEE_FLAG == _RESOLVER_FEE_FLAG;
    }

    /**
     * @notice Checks if the integrator fee is enabled
     * @param extraData Data to be processed in the extension
     * @return True if the integrator fee is enabled
     */
    function integratorFeeEnabled(bytes calldata extraData) internal pure returns (bool) {
        return extraData[extraData.length - 1] & _INTEGRATOR_FEE_FLAG == _INTEGRATOR_FEE_FLAG;
    }

    /**
     * @notice Checks if the custom receiver is enabled
     * @param extraData Data to be processed in the extension
     * @return True if the custom receiver is specified
     */
    function hasCustomReceiver(bytes calldata extraData) internal pure returns (bool) {
        return extraData[extraData.length - 1] & _CUSTOM_RECEIVER_FLAG == _CUSTOM_RECEIVER_FLAG;
    }

    /**
     * @notice Gets the number of resolvers in the whitelist
     * @param extraData Data to be processed in the extension
     * @return The number of resolvers in the whitelist
     */
    function resolversCount(bytes calldata extraData) internal pure returns (uint256) {
        return uint8(extraData[extraData.length - 1]) >> _WHITELIST_SHIFT;
    }
}

File 17 of 56 : Clones.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;

import {Errors} from "../utils/Errors.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Stores the bytecode after address
            mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3)
            // implementation address
            mstore(0x11, implementation)
            // Packs the first 3 bytes of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        /// @solidity memory-safe-assembly
        assembly {
            // Stores the bytecode after address
            mstore(0x20, 0x5af43d82803e903d91602b57fd5bf3)
            // implementation address
            mstore(0x11, implementation)
            // Packs the first 3 bytes of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0x88, implementation), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

File 18 of 56 : Create2.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Create2.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev There's no code to deploy.
     */
    error Create2EmptyBytecode();

    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }
        if (bytecode.length == 0) {
            revert Create2EmptyBytecode();
        }
        /// @solidity memory-safe-assembly
        assembly {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
        }
        if (addr == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}

File 19 of 56 : AddressLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

type Address is uint256;

/**
* @notice AddressLib
* @notice Library for working with addresses encoded as uint256 values, which can include flags in the highest bits.
*/
library AddressLib {
    uint256 private constant _LOW_160_BIT_MASK = (1 << 160) - 1;

    /**
    * @notice Returns the address representation of a uint256.
    * @param a The uint256 value to convert to an address.
    * @return The address representation of the provided uint256 value.
    */
    function get(Address a) internal pure returns (address) {
        return address(uint160(Address.unwrap(a) & _LOW_160_BIT_MASK));
    }

    /**
    * @notice Checks if a given flag is set for the provided address.
    * @param a The address to check for the flag.
    * @param flag The flag to check for in the provided address.
    * @return True if the provided flag is set in the address, false otherwise.
    */
    function getFlag(Address a, uint256 flag) internal pure returns (bool) {
        return (Address.unwrap(a) & flag) != 0;
    }

    /**
    * @notice Returns a uint32 value stored at a specific bit offset in the provided address.
    * @param a The address containing the uint32 value.
    * @param offset The bit offset at which the uint32 value is stored.
    * @return The uint32 value stored in the address at the specified bit offset.
    */
    function getUint32(Address a, uint256 offset) internal pure returns (uint32) {
        return uint32(Address.unwrap(a) >> offset);
    }

    /**
    * @notice Returns a uint64 value stored at a specific bit offset in the provided address.
    * @param a The address containing the uint64 value.
    * @param offset The bit offset at which the uint64 value is stored.
    * @return The uint64 value stored in the address at the specified bit offset.
    */
    function getUint64(Address a, uint256 offset) internal pure returns (uint64) {
        return uint64(Address.unwrap(a) >> offset);
    }
}

File 20 of 56 : SafeERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";
import "../interfaces/IDaiLikePermit.sol";
import "../interfaces/IPermit2.sol";
import "../interfaces/IERC7597Permit.sol";
import "../interfaces/IWETH.sol";
import "../libraries/RevertReasonForwarder.sol";

/**
 * @title Implements efficient safe methods for ERC20 interface.
 * @notice Compared to the standard ERC20, this implementation offers several enhancements:
 * 1. more gas-efficient, providing significant savings in transaction costs.
 * 2. support for different permit implementations
 * 3. forceApprove functionality
 * 4. support for WETH deposit and withdraw
 */
library SafeERC20 {
    error SafeTransferFailed();
    error SafeTransferFromFailed();
    error ForceApproveFailed();
    error SafeIncreaseAllowanceFailed();
    error SafeDecreaseAllowanceFailed();
    error SafePermitBadLength();
    error Permit2TransferAmountTooHigh();

    // Uniswap Permit2 address
    address private constant _PERMIT2 = 0x000000000022D473030F116dDEE9F6B43aC78BA3;
    bytes4 private constant _PERMIT_LENGTH_ERROR = 0x68275857;  // SafePermitBadLength.selector
    uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;

    /**
     * @notice Fetches the balance of a specific ERC20 token held by an account.
     * Consumes less gas then regular `ERC20.balanceOf`.
     * @dev Note that the implementation does not perform dirty bits cleaning, so it is the
     * responsibility of the caller to make sure that the higher 96 bits of the `account` parameter are clean.
     * @param token The IERC20 token contract for which the balance will be fetched.
     * @param account The address of the account whose token balance will be fetched.
     * @return tokenBalance The balance of the specified ERC20 token held by the account.
     */
    function safeBalanceOf(
        IERC20 token,
        address account
    ) internal view returns(uint256 tokenBalance) {
        bytes4 selector = IERC20.balanceOf.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            mstore(0x00, selector)
            mstore(0x04, account)
            let success := staticcall(gas(), token, 0x00, 0x24, 0x00, 0x20)
            tokenBalance := mload(0)

            if or(iszero(success), lt(returndatasize(), 0x20)) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another.
     * @dev If permit2 is true, uses the Permit2 standard; otherwise uses the standard ERC20 transferFrom.
     * Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     * @param permit2 If true, uses the Permit2 standard for the transfer; otherwise uses the standard ERC20 transferFrom.
     */
    function safeTransferFromUniversal(
        IERC20 token,
        address from,
        address to,
        uint256 amount,
        bool permit2
    ) internal {
        if (permit2) {
            safeTransferFromPermit2(token, from, to, amount);
        } else {
            safeTransferFrom(token, from, to, amount);
        }
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another using the ERC20 standard.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     */
    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        bytes4 selector = token.transferFrom.selector;
        bool success;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), from)
            mstore(add(data, 0x24), to)
            mstore(add(data, 0x44), amount)
            success := call(gas(), token, 0, data, 100, 0x0, 0x20)
            if success {
                switch returndatasize()
                case 0 {
                    success := gt(extcodesize(token), 0)
                }
                default {
                    success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                }
            }
        }
        if (!success) revert SafeTransferFromFailed();
    }

    /**
     * @notice Attempts to safely transfer tokens from one address to another using the Permit2 standard.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `from` and `to` parameters are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param from The address from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param amount The amount of tokens to transfer.
     */
    function safeTransferFromPermit2(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        if (amount > type(uint160).max) revert Permit2TransferAmountTooHigh();
        bytes4 selector = IPermit2.transferFrom.selector;
        bool success;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), from)
            mstore(add(data, 0x24), to)
            mstore(add(data, 0x44), amount)
            mstore(add(data, 0x64), token)
            success := call(gas(), _PERMIT2, 0, data, 0x84, 0x0, 0x0)
            if success {
                success := gt(extcodesize(_PERMIT2), 0)
            }
        }
        if (!success) revert SafeTransferFromFailed();
    }

    /**
     * @notice Attempts to safely transfer tokens to another address.
     * @dev Either requires `true` in return data, or requires target to be smart-contract and empty return data.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `to` parameter are clean.
     * @param token The IERC20 token contract from which the tokens will be transferred.
     * @param to The address to which the tokens will be transferred.
     * @param value The amount of tokens to transfer.
     */
    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        if (!_makeCall(token, token.transfer.selector, to, value)) {
            revert SafeTransferFailed();
        }
    }

    /**
     * @notice Attempts to approve a spender to spend a certain amount of tokens.
     * @dev If `approve(from, to, amount)` fails, it tries to set the allowance to zero, and retries the `approve` call.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     */
    function forceApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        if (!_makeCall(token, token.approve.selector, spender, value)) {
            if (
                !_makeCall(token, token.approve.selector, spender, 0) ||
                !_makeCall(token, token.approve.selector, spender, value)
            ) {
                revert ForceApproveFailed();
            }
        }
    }

    /**
     * @notice Safely increases the allowance of a spender.
     * @dev Increases with safe math check. Checks if the increased allowance will overflow, if yes, then it reverts the transaction.
     * Then uses `forceApprove` to increase the allowance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to increase the allowance by.
     */
    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 allowance = token.allowance(address(this), spender);
        if (value > type(uint256).max - allowance) revert SafeIncreaseAllowanceFailed();
        forceApprove(token, spender, allowance + value);
    }

    /**
     * @notice Safely decreases the allowance of a spender.
     * @dev Decreases with safe math check. Checks if the decreased allowance will underflow, if yes, then it reverts the transaction.
     * Then uses `forceApprove` to increase the allowance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `spender` parameter are clean.
     * @param token The IERC20 token contract on which the call will be made.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to decrease the allowance by.
     */
    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 allowance = token.allowance(address(this), spender);
        if (value > allowance) revert SafeDecreaseAllowanceFailed();
        forceApprove(token, spender, allowance - value);
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
     * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
     * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
     * @param token The IERC20 token to execute the permit function on.
     * @param permit The permit data to be used in the function call.
     */
    function safePermit(IERC20 token, bytes calldata permit) internal {
        if (!tryPermit(token, msg.sender, address(this), permit)) RevertReasonForwarder.reRevert();
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with custom owner and spender parameters.
     * Permit type is determined automatically based on permit calldata (IERC20Permit, IDaiLikePermit, and IPermit2).
     * @dev Wraps `tryPermit` function and forwards revert reason if permit fails.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
     * @param token The IERC20 token to execute the permit function on.
     * @param owner The owner of the tokens for which the permit is made.
     * @param spender The spender allowed to spend the tokens by the permit.
     * @param permit The permit data to be used in the function call.
     */
    function safePermit(IERC20 token, address owner, address spender, bytes calldata permit) internal {
        if (!tryPermit(token, owner, spender, permit)) RevertReasonForwarder.reRevert();
    }

    /**
     * @notice Attempts to execute the `permit` function on the provided token with the sender and contract as parameters.
     * @dev Invokes `tryPermit` with sender as owner and contract as spender.
     * @param token The IERC20 token to execute the permit function on.
     * @param permit The permit data to be used in the function call.
     * @return success Returns true if the permit function was successfully executed, false otherwise.
     */
    function tryPermit(IERC20 token, bytes calldata permit) internal returns(bool success) {
        return tryPermit(token, msg.sender, address(this), permit);
    }

    /**
     * @notice The function attempts to call the permit function on a given ERC20 token.
     * @dev The function is designed to support a variety of permit functions, namely: IERC20Permit, IDaiLikePermit, IERC7597Permit and IPermit2.
     * It accommodates both Compact and Full formats of these permit types.
     * Please note, it is expected that the `expiration` parameter for the compact Permit2 and the `deadline` parameter
     * for the compact Permit are to be incremented by one before invoking this function. This approach is motivated by
     * gas efficiency considerations; as the unlimited expiration period is likely to be the most common scenario, and
     * zeros are cheaper to pass in terms of gas cost. Thus, callers should increment the expiration or deadline by one
     * before invocation for optimized performance.
     * Note that the implementation does not perform dirty bits cleaning, so it is the responsibility of
     * the caller to make sure that the higher 96 bits of the `owner` and `spender` parameters are clean.
     * @param token The address of the ERC20 token on which to call the permit function.
     * @param owner The owner of the tokens. This address should have signed the off-chain permit.
     * @param spender The address which will be approved for transfer of tokens.
     * @param permit The off-chain permit data, containing different fields depending on the type of permit function.
     * @return success A boolean indicating whether the permit call was successful.
     */
    function tryPermit(IERC20 token, address owner, address spender, bytes calldata permit) internal returns(bool success) {
        // load function selectors for different permit standards
        bytes4 permitSelector = IERC20Permit.permit.selector;
        bytes4 daiPermitSelector = IDaiLikePermit.permit.selector;
        bytes4 permit2Selector = IPermit2.permit.selector;
        bytes4 erc7597PermitSelector = IERC7597Permit.permit.selector;
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)

            // Switch case for different permit lengths, indicating different permit standards
            switch permit.length
            // Compact IERC20Permit
            case 100 {
                mstore(ptr, permitSelector)     // store selector
                mstore(add(ptr, 0x04), owner)   // store owner
                mstore(add(ptr, 0x24), spender) // store spender

                // Compact IERC20Permit.permit(uint256 value, uint32 deadline, uint256 r, uint256 vs)
                {  // stack too deep
                    let deadline := shr(224, calldataload(add(permit.offset, 0x20))) // loads permit.offset 0x20..0x23
                    let vs := calldataload(add(permit.offset, 0x44))                 // loads permit.offset 0x44..0x63

                    calldatacopy(add(ptr, 0x44), permit.offset, 0x20)            // store value     = copy permit.offset 0x00..0x19
                    mstore(add(ptr, 0x64), sub(deadline, 1))                     // store deadline  = deadline - 1
                    mstore(add(ptr, 0x84), add(27, shr(255, vs)))                // store v         = most significant bit of vs + 27 (27 or 28)
                    calldatacopy(add(ptr, 0xa4), add(permit.offset, 0x24), 0x20) // store r         = copy permit.offset 0x24..0x43
                    mstore(add(ptr, 0xc4), shr(1, shl(1, vs)))                   // store s         = vs without most significant bit
                }
                // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
            }
            // Compact IDaiLikePermit
            case 72 {
                mstore(ptr, daiPermitSelector)  // store selector
                mstore(add(ptr, 0x04), owner)   // store owner
                mstore(add(ptr, 0x24), spender) // store spender

                // Compact IDaiLikePermit.permit(uint32 nonce, uint32 expiry, uint256 r, uint256 vs)
                {  // stack too deep
                    let expiry := shr(224, calldataload(add(permit.offset, 0x04))) // loads permit.offset 0x04..0x07
                    let vs := calldataload(add(permit.offset, 0x28))               // loads permit.offset 0x28..0x47

                    mstore(add(ptr, 0x44), shr(224, calldataload(permit.offset))) // store nonce   = copy permit.offset 0x00..0x03
                    mstore(add(ptr, 0x64), sub(expiry, 1))                        // store expiry  = expiry - 1
                    mstore(add(ptr, 0x84), true)                                  // store allowed = true
                    mstore(add(ptr, 0xa4), add(27, shr(255, vs)))                 // store v       = most significant bit of vs + 27 (27 or 28)
                    calldatacopy(add(ptr, 0xc4), add(permit.offset, 0x08), 0x20)  // store r       = copy permit.offset 0x08..0x27
                    mstore(add(ptr, 0xe4), shr(1, shl(1, vs)))                    // store s       = vs without most significant bit
                }
                // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0x104, 0, 0)
            }
            // IERC20Permit
            case 224 {
                mstore(ptr, permitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IERC20Permit.permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0xe4, 0, 0)
            }
            // IDaiLikePermit
            case 256 {
                mstore(ptr, daiPermitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IDaiLikePermit.permit(address holder, address spender, uint256 nonce, uint256 expiry, bool allowed, uint8 v, bytes32 r, bytes32 s)
                success := call(gas(), token, 0, ptr, 0x104, 0, 0)
            }
            // Compact IPermit2
            case 96 {
                // Compact IPermit2.permit(uint160 amount, uint32 expiration, uint32 nonce, uint32 sigDeadline, uint256 r, uint256 vs)
                mstore(ptr, permit2Selector)  // store selector
                mstore(add(ptr, 0x04), owner) // store owner
                mstore(add(ptr, 0x24), token) // store token

                calldatacopy(add(ptr, 0x50), permit.offset, 0x14)             // store amount = copy permit.offset 0x00..0x13
                // and(0xffffffffffff, ...) - conversion to uint48
                mstore(add(ptr, 0x64), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x14))), 1))) // store expiration = ((permit.offset 0x14..0x17 - 1) & 0xffffffffffff)
                mstore(add(ptr, 0x84), shr(224, calldataload(add(permit.offset, 0x18)))) // store nonce = copy permit.offset 0x18..0x1b
                mstore(add(ptr, 0xa4), spender)                               // store spender
                // and(0xffffffffffff, ...) - conversion to uint48
                mstore(add(ptr, 0xc4), and(0xffffffffffff, sub(shr(224, calldataload(add(permit.offset, 0x1c))), 1))) // store sigDeadline = ((permit.offset 0x1c..0x1f - 1) & 0xffffffffffff)
                mstore(add(ptr, 0xe4), 0x100)                                 // store offset = 256
                mstore(add(ptr, 0x104), 0x40)                                 // store length = 64
                calldatacopy(add(ptr, 0x124), add(permit.offset, 0x20), 0x20) // store r      = copy permit.offset 0x20..0x3f
                calldatacopy(add(ptr, 0x144), add(permit.offset, 0x40), 0x20) // store vs     = copy permit.offset 0x40..0x5f
                // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
            }
            // IPermit2
            case 352 {
                mstore(ptr, permit2Selector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IPermit2.permit(address owner, PermitSingle calldata permitSingle, bytes calldata signature)
                success := call(gas(), _PERMIT2, 0, ptr, 0x164, 0, 0)
            }
            // Dynamic length
            default {
                mstore(ptr, erc7597PermitSelector)
                calldatacopy(add(ptr, 0x04), permit.offset, permit.length) // copy permit calldata
                // IERC7597Permit.permit(address owner, address spender, uint256 value, uint256 deadline, bytes memory signature)
                success := call(gas(), token, 0, ptr, add(permit.length, 4), 0, 0)
            }
        }
    }

    /**
     * @dev Executes a low level call to a token contract, making it resistant to reversion and erroneous boolean returns.
     * @param token The IERC20 token contract on which the call will be made.
     * @param selector The function signature that is to be called on the token contract.
     * @param to The address to which the token amount will be transferred.
     * @param amount The token amount to be transferred.
     * @return success A boolean indicating if the call was successful. Returns 'true' on success and 'false' on failure.
     * In case of success but no returned data, validates that the contract code exists.
     * In case of returned data, ensures that it's a boolean `true`.
     */
    function _makeCall(
        IERC20 token,
        bytes4 selector,
        address to,
        uint256 amount
    ) private returns (bool success) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let data := mload(0x40)

            mstore(data, selector)
            mstore(add(data, 0x04), to)
            mstore(add(data, 0x24), amount)
            success := call(gas(), token, 0, data, 0x44, 0x0, 0x20)
            if success {
                switch returndatasize()
                case 0 {
                    success := gt(extcodesize(token), 0)
                }
                default {
                    success := and(gt(returndatasize(), 31), eq(mload(0), 1))
                }
            }
        }
    }

    /**
     * @notice Safely deposits a specified amount of Ether into the IWETH contract. Consumes less gas then regular `IWETH.deposit`.
     * @param weth The IWETH token contract.
     * @param amount The amount of Ether to deposit into the IWETH contract.
     */
    function safeDeposit(IWETH weth, uint256 amount) internal {
        if (amount > 0) {
            bytes4 selector = IWETH.deposit.selector;
            assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                mstore(0, selector)
                if iszero(call(gas(), weth, amount, 0, 4, 0, 0)) {
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, returndatasize())
                    revert(ptr, returndatasize())
                }
            }
        }
    }

    /**
     * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract. Consumes less gas then regular `IWETH.withdraw`.
     * @dev Uses inline assembly to interact with the IWETH contract.
     * @param weth The IWETH token contract.
     * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
     */
    function safeWithdraw(IWETH weth, uint256 amount) internal {
        bytes4 selector = IWETH.withdraw.selector;
        assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
            mstore(0, selector)
            mstore(4, amount)
            if iszero(call(gas(), weth, 0, 0, 0x24, 0, 0)) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
        }
    }

    /**
     * @notice Safely withdraws a specified amount of wrapped Ether from the IWETH contract to a specified recipient.
     * Consumes less gas then regular `IWETH.withdraw`.
     * @param weth The IWETH token contract.
     * @param amount The amount of wrapped Ether to withdraw from the IWETH contract.
     * @param to The recipient of the withdrawn Ether.
     */
    function safeWithdrawTo(IWETH weth, uint256 amount, address to) internal {
        safeWithdraw(weth, amount);
        if (to != address(this)) {
            assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
                if iszero(call(_RAW_CALL_GAS_LIMIT, to, amount, 0, 0, 0, 0)) {
                    let ptr := mload(0x40)
                    returndatacopy(ptr, 0, returndatasize())
                    revert(ptr, returndatasize())
                }
            }
        }
    }
}

File 21 of 56 : MakerTraitsLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

type MakerTraits is uint256;

/**
 * @title MakerTraitsLib
 * @notice A library to manage and check MakerTraits, which are used to encode the maker's preferences for an order in a single uint256.
 * @dev
 * The MakerTraits type is a uint256 and different parts of the number are used to encode different traits.
 * High bits are used for flags
 * 255 bit `NO_PARTIAL_FILLS_FLAG`          - if set, the order does not allow partial fills
 * 254 bit `ALLOW_MULTIPLE_FILLS_FLAG`      - if set, the order permits multiple fills
 * 253 bit                                  - unused
 * 252 bit `PRE_INTERACTION_CALL_FLAG`      - if set, the order requires pre-interaction call
 * 251 bit `POST_INTERACTION_CALL_FLAG`     - if set, the order requires post-interaction call
 * 250 bit `NEED_CHECK_EPOCH_MANAGER_FLAG`  - if set, the order requires to check the epoch manager
 * 249 bit `HAS_EXTENSION_FLAG`             - if set, the order has extension(s)
 * 248 bit `USE_PERMIT2_FLAG`               - if set, the order uses permit2
 * 247 bit `UNWRAP_WETH_FLAG`               - if set, the order requires to unwrap WETH

 * Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
 * uint80 last 10 bytes of allowed sender address (0 if any)
 * uint40 expiration timestamp (0 if none)
 * uint40 nonce or epoch
 * uint40 series
 */
library MakerTraitsLib {
    // Low 200 bits are used for allowed sender, expiration, nonceOrEpoch, and series
    uint256 private constant _ALLOWED_SENDER_MASK = type(uint80).max;
    uint256 private constant _EXPIRATION_OFFSET = 80;
    uint256 private constant _EXPIRATION_MASK = type(uint40).max;
    uint256 private constant _NONCE_OR_EPOCH_OFFSET = 120;
    uint256 private constant _NONCE_OR_EPOCH_MASK = type(uint40).max;
    uint256 private constant _SERIES_OFFSET = 160;
    uint256 private constant _SERIES_MASK = type(uint40).max;

    uint256 private constant _NO_PARTIAL_FILLS_FLAG = 1 << 255;
    uint256 private constant _ALLOW_MULTIPLE_FILLS_FLAG = 1 << 254;
    uint256 private constant _PRE_INTERACTION_CALL_FLAG = 1 << 252;
    uint256 private constant _POST_INTERACTION_CALL_FLAG = 1 << 251;
    uint256 private constant _NEED_CHECK_EPOCH_MANAGER_FLAG = 1 << 250;
    uint256 private constant _HAS_EXTENSION_FLAG = 1 << 249;
    uint256 private constant _USE_PERMIT2_FLAG = 1 << 248;
    uint256 private constant _UNWRAP_WETH_FLAG = 1 << 247;

    /**
     * @notice Checks if the order has the extension flag set.
     * @dev If the `HAS_EXTENSION_FLAG` is set in the makerTraits, then the protocol expects that the order has extension(s).
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the flag is set.
     */
    function hasExtension(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _HAS_EXTENSION_FLAG) != 0;
    }

    /**
     * @notice Checks if the maker allows a specific taker to fill the order.
     * @param makerTraits The traits of the maker.
     * @param sender The address of the taker to be checked.
     * @return result A boolean indicating whether the taker is allowed.
     */
    function isAllowedSender(MakerTraits makerTraits, address sender) internal pure returns (bool) {
        uint160 allowedSender = uint160(MakerTraits.unwrap(makerTraits) & _ALLOWED_SENDER_MASK);
        return allowedSender == 0 || allowedSender == uint160(sender) & _ALLOWED_SENDER_MASK;
    }

    /**
     * @notice Checks if the order has expired.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the order has expired.
     */
    function isExpired(MakerTraits makerTraits) internal view returns (bool) {
        uint256 expiration = (MakerTraits.unwrap(makerTraits) >> _EXPIRATION_OFFSET) & _EXPIRATION_MASK;
        return expiration != 0 && expiration < block.timestamp;  // solhint-disable-line not-rely-on-time
    }

    /**
     * @notice Returns the nonce or epoch of the order.
     * @param makerTraits The traits of the maker.
     * @return result The nonce or epoch of the order.
     */
    function nonceOrEpoch(MakerTraits makerTraits) internal pure returns (uint256) {
        return (MakerTraits.unwrap(makerTraits) >> _NONCE_OR_EPOCH_OFFSET) & _NONCE_OR_EPOCH_MASK;
    }

    /**
     * @notice Returns the series of the order.
     * @param makerTraits The traits of the maker.
     * @return result The series of the order.
     */
    function series(MakerTraits makerTraits) internal pure returns (uint256) {
        return (MakerTraits.unwrap(makerTraits) >> _SERIES_OFFSET) & _SERIES_MASK;
    }

    /**
      * @notice Determines if the order allows partial fills.
      * @dev If the _NO_PARTIAL_FILLS_FLAG is not set in the makerTraits, then the order allows partial fills.
      * @param makerTraits The traits of the maker, determining their preferences for the order.
      * @return result A boolean indicating whether the maker allows partial fills.
      */
    function allowPartialFills(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _NO_PARTIAL_FILLS_FLAG) == 0;
    }

    /**
     * @notice Checks if the maker needs pre-interaction call.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker needs a pre-interaction call.
     */
    function needPreInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _PRE_INTERACTION_CALL_FLAG) != 0;
    }

    /**
     * @notice Checks if the maker needs post-interaction call.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker needs a post-interaction call.
     */
    function needPostInteractionCall(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _POST_INTERACTION_CALL_FLAG) != 0;
    }

    /**
      * @notice Determines if the order allows multiple fills.
      * @dev If the _ALLOW_MULTIPLE_FILLS_FLAG is set in the makerTraits, then the maker allows multiple fills.
      * @param makerTraits The traits of the maker, determining their preferences for the order.
      * @return result A boolean indicating whether the maker allows multiple fills.
      */
    function allowMultipleFills(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _ALLOW_MULTIPLE_FILLS_FLAG) != 0;
    }

    /**
      * @notice Determines if an order should use the bit invalidator or remaining amount validator.
      * @dev The bit invalidator can be used if the order does not allow partial or multiple fills.
      * @param makerTraits The traits of the maker, determining their preferences for the order.
      * @return result A boolean indicating whether the bit invalidator should be used.
      * True if the order requires the use of the bit invalidator.
      */
    function useBitInvalidator(MakerTraits makerTraits) internal pure returns (bool) {
        return !allowPartialFills(makerTraits) || !allowMultipleFills(makerTraits);
    }

    /**
     * @notice Checks if the maker needs to check the epoch.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker needs to check the epoch manager.
     */
    function needCheckEpochManager(MakerTraits makerTraits) internal pure returns (bool) {
        return (MakerTraits.unwrap(makerTraits) & _NEED_CHECK_EPOCH_MANAGER_FLAG) != 0;
    }

    /**
     * @notice Checks if the maker uses permit2.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker uses permit2.
     */
    function usePermit2(MakerTraits makerTraits) internal pure returns (bool) {
        return MakerTraits.unwrap(makerTraits) & _USE_PERMIT2_FLAG != 0;
    }

    /**
     * @notice Checks if the maker needs to unwraps WETH.
     * @param makerTraits The traits of the maker.
     * @return result A boolean indicating whether the maker needs to unwrap WETH.
     */
    function unwrapWeth(MakerTraits makerTraits) internal pure returns (bool) {
        return MakerTraits.unwrap(makerTraits) & _UNWRAP_WETH_FLAG != 0;
    }
}

File 22 of 56 : ImmutablesLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import { IBaseEscrow } from "../interfaces/IBaseEscrow.sol";

/**
 * @title Library for escrow immutables.
 * @custom:security-contact [email protected]
 */
library ImmutablesLib {
    uint256 internal constant ESCROW_IMMUTABLES_SIZE = 0x100;

    /**
     * @notice Returns the hash of the immutables.
     * @param immutables The immutables to hash.
     * @return ret The computed hash.
     */
    function hash(IBaseEscrow.Immutables calldata immutables) internal pure returns(bytes32 ret) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            calldatacopy(ptr, immutables, ESCROW_IMMUTABLES_SIZE)
            ret := keccak256(ptr, ESCROW_IMMUTABLES_SIZE)
        }
    }

    /**
     * @notice Returns the hash of the immutables.
     * @param immutables The immutables to hash.
     * @return ret The computed hash.
     */
    function hashMem(IBaseEscrow.Immutables memory immutables) internal pure returns(bytes32 ret) {
        assembly ("memory-safe") {
            ret := keccak256(immutables, ESCROW_IMMUTABLES_SIZE)
        }
    }
}

File 23 of 56 : TimelocksLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Timelocks for the source and the destination chains plus the deployment timestamp.
 * Timelocks store the number of seconds from the time the contract is deployed to the start of a specific period.
 * For illustrative purposes, it is possible to describe timelocks by two structures:
 * struct SrcTimelocks {
 *     uint256 withdrawal;
 *     uint256 publicWithdrawal;
 *     uint256 cancellation;
 *     uint256 publicCancellation;
 * }
 *
 * struct DstTimelocks {
 *     uint256 withdrawal;
 *     uint256 publicWithdrawal;
 *     uint256 cancellation;
 * }
 *
 * withdrawal: Period when only the taker with a secret can withdraw tokens for taker (source chain) or maker (destination chain).
 * publicWithdrawal: Period when anyone with a secret can withdraw tokens for taker (source chain) or maker (destination chain).
 * cancellation: Period when escrow can only be cancelled by the taker.
 * publicCancellation: Period when escrow can be cancelled by anyone.
 *
 * @custom:security-contact [email protected]
 */
type Timelocks is uint256;

/**
 * @title Timelocks library for compact storage of timelocks in a uint256.
 */
library TimelocksLib {
    enum Stage {
        SrcWithdrawal,
        SrcPublicWithdrawal,
        SrcCancellation,
        SrcPublicCancellation,
        DstWithdrawal,
        DstPublicWithdrawal,
        DstCancellation
    }

    uint256 private constant _DEPLOYED_AT_MASK = 0xffffffff00000000000000000000000000000000000000000000000000000000;
    uint256 private constant _DEPLOYED_AT_OFFSET = 224;

    /**
     * @notice Sets the Escrow deployment timestamp.
     * @param timelocks The timelocks to set the deployment timestamp to.
     * @param value The new Escrow deployment timestamp.
     * @return The timelocks with the deployment timestamp set.
     */
    function setDeployedAt(Timelocks timelocks, uint256 value) internal pure returns (Timelocks) {
        return Timelocks.wrap((Timelocks.unwrap(timelocks) & ~uint256(_DEPLOYED_AT_MASK)) | value << _DEPLOYED_AT_OFFSET);
    }

    /**
     * @notice Returns the start of the rescue period.
     * @param timelocks The timelocks to get the rescue delay from.
     * @return The start of the rescue period.
     */
    function rescueStart(Timelocks timelocks, uint256 rescueDelay) internal pure returns (uint256) {
        unchecked {
            return rescueDelay + (Timelocks.unwrap(timelocks) >> _DEPLOYED_AT_OFFSET);
        }
    }

    /**
     * @notice Returns the timelock value for the given stage.
     * @param timelocks The timelocks to get the value from.
     * @param stage The stage to get the value for.
     * @return The timelock value for the given stage.
     */
    function get(Timelocks timelocks, Stage stage) internal pure returns (uint256) {
        uint256 data = Timelocks.unwrap(timelocks);
        uint256 bitShift = uint256(stage) * 32;
        // The maximum uint32 value will be reached in 2106.
        return (data >> _DEPLOYED_AT_OFFSET) + uint32(data >> bitShift);
    }
}

File 24 of 56 : IEscrowFactory.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { Address } from "solidity-utils/contracts/libraries/AddressLib.sol";

import { Timelocks } from "../libraries/TimelocksLib.sol";

import { IBaseEscrow } from "./IBaseEscrow.sol";

/**
 * @title Escrow Factory interface for cross-chain atomic swap.
 * @notice Interface to deploy escrow contracts for the destination chain and to get the deterministic address of escrow on both chains.
 * @custom:security-contact [email protected]
 */
interface IEscrowFactory {
    struct ExtraDataArgs {
        bytes32 hashlockInfo; // Hash of the secret or the Merkle tree root if multiple fills are allowed
        uint256 dstChainId;
        Address dstToken;
        uint256 deposits;
        Timelocks timelocks;
    }

    struct DstImmutablesComplement {
        Address maker;
        uint256 amount;
        Address token;
        uint256 safetyDeposit;
        uint256 chainId;
    }

    error InsufficientEscrowBalance();
    error InvalidCreationTime();
    error InvalidPartialFill();
    error InvalidSecretsAmount();

    /**
     * @notice Emitted on EscrowSrc deployment to recreate EscrowSrc and EscrowDst immutables off-chain.
     * @param srcImmutables The immutables of the escrow contract that are used in deployment on the source chain.
     * @param dstImmutablesComplement Additional immutables related to the escrow contract on the destination chain.
     */
    event SrcEscrowCreated(IBaseEscrow.Immutables srcImmutables, DstImmutablesComplement dstImmutablesComplement);
    /**
     * @notice Emitted on EscrowDst deployment.
     * @param escrow The address of the created escrow.
     * @param hashlock The hash of the secret.
     * @param taker The address of the taker.
     */
    event DstEscrowCreated(address escrow, bytes32 hashlock, Address taker);

    /* solhint-disable func-name-mixedcase */
    /// @notice Returns the address of implementation on the source chain.
    function ESCROW_SRC_IMPLEMENTATION() external view returns (address);
    /// @notice Returns the address of implementation on the destination chain.
    function ESCROW_DST_IMPLEMENTATION() external view returns (address);
    /* solhint-enable func-name-mixedcase */

    /**
     * @notice Creates a new escrow contract for taker on the destination chain.
     * @dev The caller must send the safety deposit in the native token along with the function call
     * and approve the destination token to be transferred to the created escrow.
     * @param dstImmutables The immutables of the escrow contract that are used in deployment.
     * @param srcCancellationTimestamp The start of the cancellation period for the source chain.
     */
    function createDstEscrow(IBaseEscrow.Immutables calldata dstImmutables, uint256 srcCancellationTimestamp) external payable;

    /**
     * @notice Returns the deterministic address of the source escrow based on the salt.
     * @param immutables The immutable arguments used to compute salt for escrow deployment.
     * @return The computed address of the escrow.
     */
    function addressOfEscrowSrc(IBaseEscrow.Immutables calldata immutables) external view returns (address);

    /**
     * @notice Returns the deterministic address of the destination escrow based on the salt.
     * @param immutables The immutable arguments used to compute salt for escrow deployment.
     * @return The computed address of the escrow.
     */
    function addressOfEscrowDst(IBaseEscrow.Immutables calldata immutables) external view returns (address);
}

File 25 of 56 : IBaseEscrow.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { Address } from "solidity-utils/contracts/libraries/AddressLib.sol";

import { Timelocks } from "../libraries/TimelocksLib.sol";

/**
 * @title Base Escrow interface for cross-chain atomic swap.
 * @notice Interface implies locking funds initially and then unlocking them with verification of the secret presented.
 * @custom:security-contact [email protected]
 */
interface IBaseEscrow {
    struct Immutables {
        bytes32 orderHash;
        bytes32 hashlock;  // Hash of the secret.
        Address maker;
        Address taker;
        Address token;
        uint256 amount;
        uint256 safetyDeposit;
        Timelocks timelocks;
    }

    /**
     * @notice Emitted on escrow cancellation.
     */
    event EscrowCancelled();

    /**
     * @notice Emitted when funds are rescued.
     * @param token The address of the token rescued. Zero address for native token.
     * @param amount The amount of tokens rescued.
     */
    event FundsRescued(address token, uint256 amount);

    /**
     * @notice Emitted on successful withdrawal.
     * @param secret The secret that unlocks the escrow.
     */
    event EscrowWithdrawal(bytes32 secret);

    error InvalidCaller();
    error InvalidImmutables();
    error InvalidSecret();
    error InvalidTime();
    error NativeTokenSendingFailure();

    /* solhint-disable func-name-mixedcase */
    /// @notice Returns the delay for rescuing funds from the escrow.
    function RESCUE_DELAY() external view returns (uint256);
    /// @notice Returns the address of the factory that created the escrow.
    function FACTORY() external view returns (address);
    /* solhint-enable func-name-mixedcase */

    /**
     * @notice Withdraws funds to a predetermined recipient.
     * @dev Withdrawal can only be made during the withdrawal period and with secret with hash matches the hashlock.
     * The safety deposit is sent to the caller.
     * @param secret The secret that unlocks the escrow.
     * @param immutables The immutables of the escrow contract.
     */
    function withdraw(bytes32 secret, Immutables calldata immutables) external;

    /**
     * @notice Cancels the escrow and returns tokens to a predetermined recipient.
     * @dev The escrow can only be cancelled during the cancellation period.
     * The safety deposit is sent to the caller.
     * @param immutables The immutables of the escrow contract.
     */
    function cancel(Immutables calldata immutables) external;

    /**
     * @notice Rescues funds from the escrow.
     * @dev Funds can only be rescued by the taker after the rescue delay.
     * @param token The address of the token to rescue. Zero address for native token.
     * @param amount The amount of tokens to rescue.
     * @param immutables The immutables of the escrow contract.
     */
    function rescueFunds(address token, uint256 amount, Immutables calldata immutables) external;
}

File 26 of 56 : EscrowFactoryContext.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

uint256 constant SRC_IMMUTABLES_LENGTH = 160;

File 27 of 56 : IEscrowDst.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IEscrow } from "./IEscrow.sol";

/**
 * @title Destination Escrow interface for cross-chain atomic swap.
 * @notice Interface implies withdrawing funds initially and then unlocking them with verification of the secret presented.
 * @custom:security-contact [email protected]
 */
interface IEscrowDst is IEscrow {
    /**
     * @notice Withdraws funds to maker
     * @dev Withdrawal can only be made during the withdrawal period and with secret with hash matches the hashlock.
     * @param secret The secret that unlocks the escrow.
     * @param immutables The immutables of the escrow contract.
     */
    function publicWithdraw(bytes32 secret, IEscrow.Immutables calldata immutables) external;
}

File 28 of 56 : BaseEscrow.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { IERC20 } from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import { AddressLib, Address } from "solidity-utils/contracts/libraries/AddressLib.sol";
import { SafeERC20 } from "solidity-utils/contracts/libraries/SafeERC20.sol";

import { ImmutablesLib } from "./libraries/ImmutablesLib.sol";
import { Timelocks, TimelocksLib } from "./libraries/TimelocksLib.sol";

import { IBaseEscrow } from "./interfaces/IBaseEscrow.sol";

/**
 * @title Base abstract Escrow contract for cross-chain atomic swap.
 * @dev {IBaseEscrow-withdraw}, {IBaseEscrow-cancel} and _validateImmutables functions must be implemented in the derived contracts.
 * @custom:security-contact [email protected]
 */
abstract contract BaseEscrow is IBaseEscrow {
    using AddressLib for Address;
    using SafeERC20 for IERC20;
    using TimelocksLib for Timelocks;
    using ImmutablesLib for Immutables;

    // Token that is used to access public withdraw or cancel functions.
    IERC20 private immutable _ACCESS_TOKEN;

    /// @notice See {IBaseEscrow-RESCUE_DELAY}.
    uint256 public immutable RESCUE_DELAY;
    /// @notice See {IBaseEscrow-FACTORY}.
    address public immutable FACTORY = msg.sender;

    constructor(uint32 rescueDelay, IERC20 accessToken) {
        RESCUE_DELAY = rescueDelay;
        _ACCESS_TOKEN = accessToken;
    }

    modifier onlyTaker(Immutables calldata immutables) {
        if (msg.sender != immutables.taker.get()) revert InvalidCaller();
        _;
    }

    modifier onlyValidImmutables(Immutables calldata immutables) virtual {
        _validateImmutables(immutables);
        _;
    }

    modifier onlyValidSecret(bytes32 secret, Immutables calldata immutables) {
        if (_keccakBytes32(secret) != immutables.hashlock) revert InvalidSecret();
        _;
    }

    modifier onlyAfter(uint256 start) {
        if (block.timestamp < start) revert InvalidTime();
        _;
    }

    modifier onlyBefore(uint256 stop) {
        if (block.timestamp >= stop) revert InvalidTime();
        _;
    }

    modifier onlyAccessTokenHolder() {
        if (_ACCESS_TOKEN.balanceOf(msg.sender) == 0) revert InvalidCaller();
        _;
    }

    /**
     * @notice See {IBaseEscrow-rescueFunds}.
     */
    function rescueFunds(address token, uint256 amount, Immutables calldata immutables)
        external
        onlyTaker(immutables)
        onlyValidImmutables(immutables)
        onlyAfter(immutables.timelocks.rescueStart(RESCUE_DELAY))
    {
        _uniTransfer(token, msg.sender, amount);
        emit FundsRescued(token, amount);
    }

    /**
     * @dev Transfers ERC20 or native tokens to the recipient.
     */
    function _uniTransfer(address token, address to, uint256 amount) internal {
        if (token == address(0)) {
            _ethTransfer(to, amount);
        } else {
            IERC20(token).safeTransfer(to, amount);
        }
    }

    /**
     * @dev Transfers native tokens to the recipient.
     */
    function _ethTransfer(address to, uint256 amount) internal {
        (bool success,) = to.call{ value: amount }("");
        if (!success) revert NativeTokenSendingFailure();
    }

    /**
     * @dev Should verify that the computed escrow address matches the address of this contract.
     */
    function _validateImmutables(Immutables calldata immutables) internal view virtual;

    /**
     * @dev Computes the Keccak-256 hash of the secret.
     * @param secret The secret that unlocks the escrow.
     * @return ret The computed hash.
     */
    function _keccakBytes32(bytes32 secret) private pure returns (bytes32 ret) {
        assembly ("memory-safe") {
            mstore(0, secret)
            ret := keccak256(0, 0x20)
        }
    }
}

File 29 of 56 : Escrow.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { Create2 } from "openzeppelin-contracts/contracts/utils/Create2.sol";

import { ImmutablesLib } from "./libraries/ImmutablesLib.sol";
import { ProxyHashLib } from "./libraries/ProxyHashLib.sol";

import { IEscrow } from "./interfaces/IEscrow.sol";
import { BaseEscrow } from "./BaseEscrow.sol";

/**
 * @title Abstract Escrow contract for cross-chain atomic swap.
 * @dev {IBaseEscrow-withdraw} and {IBaseEscrow-cancel} functions must be implemented in the derived contracts.
 * @custom:security-contact [email protected]
 */
abstract contract Escrow is BaseEscrow, IEscrow {
    using ImmutablesLib for Immutables;

    /// @notice See {IEscrow-PROXY_BYTECODE_HASH}.
    bytes32 public immutable PROXY_BYTECODE_HASH = ProxyHashLib.computeProxyBytecodeHash(address(this));


    /**
     * @dev Verifies that the computed escrow address matches the address of this contract.
     */
    function _validateImmutables(Immutables calldata immutables) internal view virtual override {
        bytes32 salt = immutables.hash();
        if (Create2.computeAddress(salt, PROXY_BYTECODE_HASH, FACTORY) != address(this)) {
            revert InvalidImmutables();
        }
    }
}

File 30 of 56 : IEscrowSrc.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IEscrow } from "./IEscrow.sol";

/**
 * @title Source Escrow interface for cross-chain atomic swap.
 * @notice Interface implies locking funds initially and then unlocking them with verification of the secret presented.
 * @custom:security-contact [email protected]
 */
interface IEscrowSrc is IEscrow {
    /**
     * @notice Withdraws funds to a specified target.
     * @dev Withdrawal can only be made during the withdrawal period and with secret with hash matches the hashlock.
     * The safety deposit is sent to the caller.
     * @param secret The secret that unlocks the escrow.
     * @param target The address to withdraw the funds to.
     * @param immutables The immutables of the escrow contract.
     */
    function withdrawTo(bytes32 secret, address target, IEscrow.Immutables calldata immutables) external;

    /**
     * @notice Withdraws funds to the taker.
     * @dev Withdrawal can only be made during the public withdrawal period and with secret with hash matches the hashlock.
     * @param secret The secret that unlocks the escrow.
     * @param immutables The immutables of the escrow contract.
     */
    function publicWithdraw(bytes32 secret, Immutables calldata immutables) external;

    /**
     * @notice Cancels the escrow and returns tokens to the maker.
     * @dev The escrow can only be cancelled during the public cancellation period.
     * The safety deposit is sent to the caller.
     * @param immutables The immutables of the escrow contract.
     */
    function publicCancel(IEscrow.Immutables calldata immutables) external;
}

File 31 of 56 : ExtensionLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "../interfaces/IOrderMixin.sol";
import "./OffsetsLib.sol";

/**
 * @title ExtensionLib
 * @notice Library for retrieving extensions information for the IOrderMixin Interface.
 */
library ExtensionLib {
    using AddressLib for Address;
    using OffsetsLib for Offsets;

    enum DynamicField {
        MakerAssetSuffix,
        TakerAssetSuffix,
        MakingAmountData,
        TakingAmountData,
        Predicate,
        MakerPermit,
        PreInteractionData,
        PostInteractionData,
        CustomData
    }

    /**
     * @notice Returns the MakerAssetSuffix from the provided extension calldata.
     * @param extension The calldata from which the MakerAssetSuffix is to be retrieved.
     * @return calldata Bytes representing the MakerAssetSuffix.
     */
    function makerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.MakerAssetSuffix);
    }

    /**
     * @notice Returns the TakerAssetSuffix from the provided extension calldata.
     * @param extension The calldata from which the TakerAssetSuffix is to be retrieved.
     * @return calldata Bytes representing the TakerAssetSuffix.
     */
    function takerAssetSuffix(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.TakerAssetSuffix);
    }

    /**
     * @notice Returns the MakingAmountData from the provided extension calldata.
     * @param extension The calldata from which the MakingAmountData is to be retrieved.
     * @return calldata Bytes representing the MakingAmountData.
     */
    function makingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.MakingAmountData);
    }

    /**
     * @notice Returns the TakingAmountData from the provided extension calldata.
     * @param extension The calldata from which the TakingAmountData is to be retrieved.
     * @return calldata Bytes representing the TakingAmountData.
     */
    function takingAmountData(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.TakingAmountData);
    }

    /**
     * @notice Returns the order's predicate from the provided extension calldata.
     * @param extension The calldata from which the predicate is to be retrieved.
     * @return calldata Bytes representing the predicate.
     */
    function predicate(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.Predicate);
    }

    /**
     * @notice Returns the maker's permit from the provided extension calldata.
     * @param extension The calldata from which the maker's permit is to be retrieved.
     * @return calldata Bytes representing the maker's permit.
     */
    function makerPermit(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.MakerPermit);
    }


    /**
     * @notice Returns the pre-interaction from the provided extension calldata.
     * @param extension The calldata from which the pre-interaction is to be retrieved.
     * @return calldata Bytes representing the pre-interaction.
     */
    function preInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.PreInteractionData);
    }

    /**
     * @notice Returns the post-interaction from the provided extension calldata.
     * @param extension The calldata from which the post-interaction is to be retrieved.
     * @return calldata Bytes representing the post-interaction.
     */
    function postInteractionTargetAndData(bytes calldata extension) internal pure returns(bytes calldata) {
        return _get(extension, DynamicField.PostInteractionData);
    }

    /**
     * @notice Returns extra suffix data from the provided extension calldata.
     * @param extension The calldata from which the extra suffix data is to be retrieved.
     * @return calldata Bytes representing the extra suffix data.
     */
    function customData(bytes calldata extension) internal pure returns(bytes calldata) {
        if (extension.length < 0x20) return msg.data[:0];
        uint256 offsets = uint256(bytes32(extension));
        unchecked {
            return extension[0x20 + (offsets >> 224):];
        }
    }

    /**
     * @notice Retrieves a specific field from the provided extension calldata.
     * @dev The first 32 bytes of an extension calldata contain offsets to the end of each field within the calldata.
     * @param extension The calldata from which the field is to be retrieved.
     * @param field The specific dynamic field to retrieve from the extension.
     * @return calldata Bytes representing the requested field.
     */
    function _get(bytes calldata extension, DynamicField field) private pure returns(bytes calldata) {
        if (extension.length < 0x20) return msg.data[:0];

        Offsets offsets;
        bytes calldata concat;
        assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
            offsets := calldataload(extension.offset)
            concat.offset := add(extension.offset, 0x20)
            concat.length := sub(extension.length, 0x20)
        }

        return offsets.get(concat, uint256(field));
    }
}

File 32 of 56 : ITakerInteraction.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "./IOrderMixin.sol";

/**
 * @title Interface for interactor which acts after `maker -> taker` transfer but before `taker -> maker` transfer.
 * @notice The order filling steps are `preInteraction` =>` Transfer "maker -> taker"` => **`Interaction`** => `Transfer "taker -> maker"` => `postInteraction`
 */
interface ITakerInteraction {
    /**
     * @dev This callback allows to interactively handle maker aseets to produce takers assets, doesn't supports ETH as taker assets
     * @notice Callback method that gets called after maker fund transfer but before taker fund transfer
     * @param order Order being processed
     * @param extension Order extension data
     * @param orderHash Hash of the order being processed
     * @param taker Taker address
     * @param makingAmount Actual making amount
     * @param takingAmount Actual taking amount
     * @param remainingMakingAmount Order remaining making amount
     * @param extraData Extra data
     */
    function takerInteraction(
        IOrderMixin.Order calldata order,
        bytes calldata extension,
        bytes32 orderHash,
        address taker,
        uint256 makingAmount,
        uint256 takingAmount,
        uint256 remainingMakingAmount,
        bytes calldata extraData
    ) external;
}

File 33 of 56 : MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}

File 34 of 56 : IMerkleStorageInvalidator.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

/**
 * @title Merkle Storage Invalidator interface
 * @notice Interface to invalidate hashed secrets from an order that supports multiple fills.
 * @custom:security-contact [email protected]
 */
interface IMerkleStorageInvalidator {
    struct ValidationData {
        uint256 index;
        bytes32 leaf;
    }

    struct TakerData {
        bytes32[] proof;
        uint256 idx;
        bytes32 secretHash;
    }

    error AccessDenied();
    error InvalidProof();

    /**
     * @notice Returns the index of the last validated hashed secret and the hashed secret itself.
     * @param key Hash of concatenated order hash and 30 bytes of root hash.
     * @return index Index of the last validated hashed secret.
     * @return secretHash Last validated hashed secret.
     */
    function lastValidated(bytes32 key) external view returns (uint256 index, bytes32 secretHash);
}

File 35 of 56 : Panic.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 36 of 56 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        /// @solidity memory-safe-assembly
        assembly {
            u := iszero(iszero(b))
        }
    }
}

File 37 of 56 : TakerTraitsLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

type TakerTraits is uint256;

/**
 * @title TakerTraitsLib
 * @notice This library to manage and check TakerTraits, which are used to encode the taker's preferences for an order in a single uint256.
 * @dev The TakerTraits are structured as follows:
 * High bits are used for flags
 * 255 bit `_MAKER_AMOUNT_FLAG`           - If set, the taking amount is calculated based on making amount, otherwise making amount is calculated based on taking amount.
 * 254 bit `_UNWRAP_WETH_FLAG`            - If set, the WETH will be unwrapped into ETH before sending to taker.
 * 253 bit `_SKIP_ORDER_PERMIT_FLAG`      - If set, the order skips maker's permit execution.
 * 252 bit `_USE_PERMIT2_FLAG`            - If set, the order uses the permit2 function for authorization.
 * 251 bit `_ARGS_HAS_TARGET`             - If set, then first 20 bytes of args are treated as target address for maker’s funds transfer.
 * 224-247 bits `ARGS_EXTENSION_LENGTH`   - The length of the extension calldata in the args.
 * 200-223 bits `ARGS_INTERACTION_LENGTH` - The length of the interaction calldata in the args.
 * 0-184 bits                             - The threshold amount (the maximum amount a taker agrees to give in exchange for a making amount).
 */
library TakerTraitsLib {
    uint256 private constant _MAKER_AMOUNT_FLAG = 1 << 255;
    uint256 private constant _UNWRAP_WETH_FLAG = 1 << 254;
    uint256 private constant _SKIP_ORDER_PERMIT_FLAG = 1 << 253;
    uint256 private constant _USE_PERMIT2_FLAG = 1 << 252;
    uint256 private constant _ARGS_HAS_TARGET = 1 << 251;

    uint256 private constant _ARGS_EXTENSION_LENGTH_OFFSET = 224;
    uint256 private constant _ARGS_EXTENSION_LENGTH_MASK = 0xffffff;
    uint256 private constant _ARGS_INTERACTION_LENGTH_OFFSET = 200;
    uint256 private constant _ARGS_INTERACTION_LENGTH_MASK = 0xffffff;

    uint256 private constant _AMOUNT_MASK = 0x000000000000000000ffffffffffffffffffffffffffffffffffffffffffffff;

    /**
     * @notice Checks if the args should contain target address.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the args should contain target address.
     */
    function argsHasTarget(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _ARGS_HAS_TARGET) != 0;
    }

    /**
     * @notice Retrieves the length of the extension calldata from the takerTraits.
     * @param takerTraits The traits of the taker.
     * @return result The length of the extension calldata encoded in the takerTraits.
     */
    function argsExtensionLength(TakerTraits takerTraits) internal pure returns (uint256) {
        return (TakerTraits.unwrap(takerTraits) >> _ARGS_EXTENSION_LENGTH_OFFSET) & _ARGS_EXTENSION_LENGTH_MASK;
    }

    /**
     * @notice Retrieves the length of the interaction calldata from the takerTraits.
     * @param takerTraits The traits of the taker.
     * @return result The length of the interaction calldata encoded in the takerTraits.
     */
    function argsInteractionLength(TakerTraits takerTraits) internal pure returns (uint256) {
        return (TakerTraits.unwrap(takerTraits) >> _ARGS_INTERACTION_LENGTH_OFFSET) & _ARGS_INTERACTION_LENGTH_MASK;
    }

    /**
     * @notice Checks if the taking amount should be calculated based on making amount.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the taking amount should be calculated based on making amount.
     */
    function isMakingAmount(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _MAKER_AMOUNT_FLAG) != 0;
    }

    /**
     * @notice Checks if the order should unwrap WETH and send ETH to taker.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the order should unwrap WETH.
     */
    function unwrapWeth(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _UNWRAP_WETH_FLAG) != 0;
    }

    /**
     * @notice Checks if the order should skip maker's permit execution.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the order don't apply permit.
     */
    function skipMakerPermit(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _SKIP_ORDER_PERMIT_FLAG) != 0;
    }

    /**
     * @notice Checks if the order uses the permit2 instead of permit.
     * @param takerTraits The traits of the taker.
     * @return result A boolean indicating whether the order uses the permit2.
     */
    function usePermit2(TakerTraits takerTraits) internal pure returns (bool) {
        return (TakerTraits.unwrap(takerTraits) & _USE_PERMIT2_FLAG) != 0;
    }

    /**
     * @notice Retrieves the threshold amount from the takerTraits.
     * The maximum amount a taker agrees to give in exchange for a making amount.
     * @param takerTraits The traits of the taker.
     * @return result The threshold amount encoded in the takerTraits.
     */
    function threshold(TakerTraits takerTraits) internal pure returns (uint256) {
        return TakerTraits.unwrap(takerTraits) & _AMOUNT_MASK;
    }
}

File 38 of 56 : IFeeBank.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

interface IFeeBank {
    /**
     * @notice Returns the available credit for a given account in the FeeBank contract.
     * @param account The address of the account for which the available credit is being queried.
     * @return availableCredit The available credit of the queried account.
     */
    function availableCredit(address account) external view returns (uint256 availableCredit);

    /**
     * @notice Increases the caller's available credit by the specified amount.
     * @param amount The amount of credit to be added to the caller's account.
     * @return totalAvailableCredit The updated available credit of the caller's account.
     */
    function deposit(uint256 amount) external returns (uint256 totalAvailableCredit);

    /**
     * @notice Increases the specified account's available credit by the specified amount.
     * @param account The address of the account for which the available credit is being increased.
     * @param amount The amount of credit to be added to the account.
     * @return totalAvailableCredit The updated available credit of the specified account.
     */
    function depositFor(address account, uint256 amount) external returns (uint256 totalAvailableCredit);

    /**
     * @notice Increases the caller's available credit by a specified amount with permit.
     * @param amount The amount of credit to be added to the caller's account.
     * @param permit The permit data authorizing the transaction.
     * @return totalAvailableCredit The updated available credit of the caller's account.
     */
    function depositWithPermit(uint256 amount, bytes calldata permit) external returns (uint256 totalAvailableCredit);

    /**
     * @notice Increases the specified account's available credit by a specified amount with permit.
     * @param account The address of the account for which the available credit is being increased.
     * @param amount The amount of credit to be added to the account.
     * @param permit The permit data authorizing the transaction.
     * @return totalAvailableCredit The updated available credit of the specified account.
     */
    function depositForWithPermit(address account, uint256 amount, bytes calldata permit) external returns (uint256 totalAvailableCredit);

    /**
     * @notice Withdraws a specified amount of credit from the caller's account.
     * @param amount The amount of credit to be withdrawn from the caller's account.
     * @return totalAvailableCredit The updated available credit of the caller's account.
     */
    function withdraw(uint256 amount) external returns (uint256 totalAvailableCredit);

    /**
     * @notice Withdraws a specified amount of credit to the specified account.
     * @param account The address of the account to which the credit is being withdrawn.
     * @param amount The amount of credit to be withdrawn.
     * @return totalAvailableCredit The updated available credit of the caller's account.
     */
    function withdrawTo(address account, uint256 amount) external returns (uint256 totalAvailableCredit);
}

File 39 of 56 : IFeeBankCharger.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IFeeBank } from "./IFeeBank.sol";

interface IFeeBankCharger {
    /**
     * @notice Returns the instance of the FeeBank contract.
     * @return The instance of the FeeBank contract.
     */
    function FEE_BANK() external view returns (IFeeBank); // solhint-disable-line func-name-mixedcase

    /**
     * @notice Returns the available credit for a given account.
     * @param account The address of the account for which the available credit is being queried.
     * @return The available credit of the queried account.
     */
    function availableCredit(address account) external view returns (uint256);

    /**
     * @notice Increases the available credit of a given account by a specified amount.
     * @param account The address of the account for which the available credit is being increased.
     * @param amount The amount by which the available credit will be increased.
     * @return allowance The updated available credit of the specified account.
     */
    function increaseAvailableCredit(address account, uint256 amount) external returns (uint256 allowance);

    /**
     * @notice Decreases the available credit of a given account by a specified amount.
     * @param account The address of the account for which the available credit is being decreased.
     * @param amount The amount by which the available credit will be decreased.
     * @return allowance The updated available credit of the specified account.
     */
    function decreaseAvailableCredit(address account, uint256 amount) external returns (uint256 allowance);
}

File 40 of 56 : FeeBank.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.8.23;

import { IERC20 } from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import { SafeERC20 } from "@1inch/solidity-utils/contracts/libraries/SafeERC20.sol";
import { UniERC20 } from "@1inch/solidity-utils/contracts/libraries/UniERC20.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { IFeeBankCharger } from "./interfaces/IFeeBankCharger.sol";
import { IFeeBank } from "./interfaces/IFeeBank.sol";

/**
 * @title FeeBank
 * @notice FeeBank contract introduces a credit system for paying fees.
 * A user can deposit tokens to the FeeBank contract, obtain credits and then use them to pay fees.
 * @dev FeeBank is coupled with FeeBankCharger to actually charge fees.
 */
contract FeeBank is IFeeBank, Ownable {
    using SafeERC20 for IERC20;
    using UniERC20 for IERC20;

    error ZeroAddress();

    IERC20 private immutable _FEE_TOKEN;
    IFeeBankCharger private immutable _CHARGER;

    mapping(address account => uint256 availableCredit) private _accountDeposits;

    constructor(IFeeBankCharger charger, IERC20 feeToken, address owner) Ownable(owner) {
        if (address(feeToken) == address(0)) revert ZeroAddress();
        _CHARGER = charger;
        _FEE_TOKEN = feeToken;
    }

    /**
     * @notice See {IFeeBank-availableCredit}.
     */
    function availableCredit(address account) external view returns (uint256) {
        return _CHARGER.availableCredit(account);
    }

    /**
     * @notice See {IFeeBank-deposit}.
     */
    function deposit(uint256 amount) external returns (uint256) {
        return _depositFor(msg.sender, amount);
    }

    /**
     * @notice See {IFeeBank-depositFor}.
     */
    function depositFor(address account, uint256 amount) external returns (uint256) {
        return _depositFor(account, amount);
    }

    /**
     * @notice See {IFeeBank-depositWithPermit}.
     */
    function depositWithPermit(uint256 amount, bytes calldata permit) external returns (uint256) {
        return depositForWithPermit(msg.sender, amount, permit);
    }

    /**
     * @notice See {IFeeBank-depositForWithPermit}.
     */
    function depositForWithPermit(
        address account,
        uint256 amount,
        bytes calldata permit
    ) public returns (uint256) {
        _FEE_TOKEN.safePermit(permit);
        return _depositFor(account, amount);
    }

    /**
     * @notice See {IFeeBank-withdraw}.
     */
    function withdraw(uint256 amount) external returns (uint256) {
        return _withdrawTo(msg.sender, amount);
    }

    /**
     * @notice See {IFeeBank-withdrawTo}.
     */
    function withdrawTo(address account, uint256 amount) external returns (uint256) {
        return _withdrawTo(account, amount);
    }

    /**
     * @notice Admin method returns commissions spent by users.
     * @param accounts Accounts whose commissions are being withdrawn.
     * @return totalAccountFees The total amount of accounts commissions.
     */
    function gatherFees(address[] calldata accounts) external onlyOwner returns (uint256 totalAccountFees) {
        uint256 accountsLength = accounts.length;
        unchecked {
            for (uint256 i = 0; i < accountsLength; ++i) {
                address account = accounts[i];
                uint256 accountDeposit = _accountDeposits[account];
                uint256 availableCredit_ = _CHARGER.availableCredit(account);
                _accountDeposits[account] = availableCredit_;
                totalAccountFees += accountDeposit - availableCredit_;  // overflow is impossible due to checks in FeeBankCharger
            }
        }
        _FEE_TOKEN.safeTransfer(msg.sender, totalAccountFees);
    }

    function _depositFor(address account, uint256 amount) internal returns (uint256 totalAvailableCredit) {
        if (account == address(0)) revert ZeroAddress();
        _FEE_TOKEN.safeTransferFrom(msg.sender, address(this), amount);
        unchecked {
            _accountDeposits[account] += amount;  // overflow is impossible due to limited _FEE_TOKEN supply
        }
        totalAvailableCredit = _CHARGER.increaseAvailableCredit(account, amount);
    }

    function _withdrawTo(address account, uint256 amount) internal returns (uint256 totalAvailableCredit) {
        totalAvailableCredit = _CHARGER.decreaseAvailableCredit(msg.sender, amount);
        unchecked {
            _accountDeposits[msg.sender] -= amount;  // underflow is impossible due to checks in FeeBankCharger
        }
        _FEE_TOKEN.safeTransfer(account, amount);
    }

    /**
     * @notice Retrieves funds accidently sent directly to the contract address
     * @param token ERC20 token to retrieve
     * @param amount amount to retrieve
     */
    function rescueFunds(IERC20 token, uint256 amount) external onlyOwner {
        token.uniTransfer(payable(msg.sender), amount);
    }
}

File 41 of 56 : Errors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();
}

File 42 of 56 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 43 of 56 : IDaiLikePermit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IDaiLikePermit
 * @dev Interface for Dai-like permit function allowing token spending via signatures.
 */
interface IDaiLikePermit {
    /**
     * @notice Approves spending of tokens via off-chain signatures.
     * @param holder Token holder's address.
     * @param spender Spender's address.
     * @param nonce Current nonce of the holder.
     * @param expiry Time when the permit expires.
     * @param allowed True to allow, false to disallow spending.
     * @param v, r, s Signature components.
     */
    function permit(
        address holder,
        address spender,
        uint256 nonce,
        uint256 expiry,
        bool allowed,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;
}

File 44 of 56 : IPermit2.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IPermit2
 * @dev Interface for a flexible permit system that extends ERC20 tokens to support permits in tokens lacking native permit functionality.
 */
interface IPermit2 {
    /**
     * @dev Struct for holding permit details.
     * @param token ERC20 token address for which the permit is issued.
     * @param amount The maximum amount allowed to spend.
     * @param expiration Timestamp until which the permit is valid.
     * @param nonce An incrementing value for each signature, unique per owner, token, and spender.
     */
    struct PermitDetails {
        address token;
        uint160 amount;
        uint48 expiration;
        uint48 nonce;
    }

    /**
     * @dev Struct for a single token allowance permit.
     * @param details Permit details including token, amount, expiration, and nonce.
     * @param spender Address authorized to spend the tokens.
     * @param sigDeadline Deadline for the permit signature, ensuring timeliness of the permit.
     */
    struct PermitSingle {
        PermitDetails details;
        address spender;
        uint256 sigDeadline;
    }

    /**
     * @dev Struct for packed allowance data to optimize storage.
     * @param amount Amount allowed.
     * @param expiration Permission expiry timestamp.
     * @param nonce Unique incrementing value for tracking allowances.
     */
    struct PackedAllowance {
        uint160 amount;
        uint48 expiration;
        uint48 nonce;
    }

    /**
     * @notice Executes a token transfer from one address to another.
     * @param user The token owner's address.
     * @param spender The address authorized to spend the tokens.
     * @param amount The amount of tokens to transfer.
     * @param token The address of the token being transferred.
     */
    function transferFrom(address user, address spender, uint160 amount, address token) external;

    /**
     * @notice Issues a permit for spending tokens via a signed authorization.
     * @param owner The token owner's address.
     * @param permitSingle Struct containing the permit details.
     * @param signature The signature proving the owner authorized the permit.
     */
    function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;

    /**
     * @notice Retrieves the allowance details between a token owner and spender.
     * @param user The token owner's address.
     * @param token The token address.
     * @param spender The spender's address.
     * @return The packed allowance details.
     */
    function allowance(address user, address token, address spender) external view returns (PackedAllowance memory);
}

File 45 of 56 : IERC7597Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IERC7597Permit
 * @dev A new extension for ERC-2612 permit, which has already been added to USDC v2.2.
 */
interface IERC7597Permit {
    /**
     * @notice Update allowance with a signed permit.
     * @dev Signature bytes can be used for both EOA wallets and contract wallets.
     * @param owner Token owner's address (Authorizer).
     * @param spender Spender's address.
     * @param value Amount of allowance.
     * @param deadline The time at which the signature expires (unixtime).
     * @param signature Unstructured bytes signature signed by an EOA wallet or a contract wallet.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        bytes memory signature
    ) external;
}

File 46 of 56 : IWETH.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/**
 * @title IWETH
 * @dev Interface for wrapper as WETH-like token.
 */
interface IWETH is IERC20 {
    /**
     * @notice Emitted when Ether is deposited to get wrapper tokens.
     */
    event Deposit(address indexed dst, uint256 wad);

    /**
     * @notice Emitted when wrapper tokens is withdrawn as Ether.
     */
    event Withdrawal(address indexed src, uint256 wad);

    /**
     * @notice Deposit Ether to get wrapper tokens.
     */
    function deposit() external payable;

    /**
     * @notice Withdraw wrapped tokens as Ether.
     * @param amount Amount of wrapped tokens to withdraw.
     */
    function withdraw(uint256 amount) external;
}

File 47 of 56 : RevertReasonForwarder.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title RevertReasonForwarder
 * @notice Provides utilities for forwarding and retrieving revert reasons from failed external calls.
 */
library RevertReasonForwarder {
    /**
     * @dev Forwards the revert reason from the latest external call.
     * This method allows propagating the revert reason of a failed external call to the caller.
     */
    function reRevert() internal pure {
        // bubble up revert reason from latest external call
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            let ptr := mload(0x40)
            returndatacopy(ptr, 0, returndatasize())
            revert(ptr, returndatasize())
        }
    }

    /**
     * @dev Retrieves the revert reason from the latest external call.
     * This method enables capturing the revert reason of a failed external call for inspection or processing.
     * @return reason The latest external call revert reason.
     */
    function reReason() internal pure returns (bytes memory reason) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            reason := mload(0x40)
            let length := returndatasize()
            mstore(reason, length)
            returndatacopy(add(reason, 0x20), 0, length)
            mstore(0x40, add(reason, add(0x20, length)))
        }
    }
}

File 48 of 56 : IEscrow.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IBaseEscrow } from "./IBaseEscrow.sol";

/**
 * @title Escrow interface for cross-chain atomic swap.
 * @notice Interface implies locking funds initially and then unlocking them with verification of the secret presented.
 * @custom:security-contact [email protected]
 */
interface IEscrow is IBaseEscrow {
    /// @notice Returns the bytecode hash of the proxy contract.
    function PROXY_BYTECODE_HASH() external view returns (bytes32); // solhint-disable-line func-name-mixedcase
}

File 49 of 56 : OffsetsLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

type Offsets is uint256;

/// @title OffsetsLib
/// @dev A library for retrieving values by offsets from a concatenated calldata.
library OffsetsLib {

    /// @dev Error to be thrown when the offset is out of bounds.
    error OffsetOutOfBounds();

    /**
     * @notice Retrieves the field value calldata corresponding to the provided field index from the concatenated calldata.
     * @dev 
     * The function performs the following steps:
     * 1. Retrieve the start and end of the segment corresponding to the provided index from the offsets array.
     * 2. Get the value from segment using offset and length calculated based on the start and end of the segment.
     * 3. Throw `OffsetOutOfBounds` error if the length of the segment is greater than the length of the concatenated data.
     * @param offsets The offsets encoding the start and end of each segment within the concatenated calldata.
     * @param concat The concatenated calldata.
     * @param index The index of the segment to retrieve. The field index 0 corresponds to the lowest bytes of the offsets array.
     * @return result The calldata from a segment of the concatenated calldata corresponding to the provided index.
     */
    function get(Offsets offsets, bytes calldata concat, uint256 index) internal pure returns(bytes calldata result) {
        bytes4 exception = OffsetOutOfBounds.selector;
        assembly ("memory-safe") {  // solhint-disable-line no-inline-assembly
            let bitShift := shl(5, index)                                   // bitShift = index * 32
            let begin := and(0xffffffff, shr(bitShift, shl(32, offsets)))   // begin = offsets[ bitShift : bitShift + 32 ]
            let end := and(0xffffffff, shr(bitShift, offsets))              // end   = offsets[ bitShift + 32 : bitShift + 64 ]
            result.offset := add(concat.offset, begin)
            result.length := sub(end, begin)
            if gt(end, concat.length) {
                mstore(0, exception)
                revert(0, 4)
            }
        }
    }
}

File 50 of 56 : Hashes.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev Library of standard hash functions.
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

File 51 of 56 : UniERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "../interfaces/IERC20MetadataUppercase.sol";
import "./SafeERC20.sol";
import "./StringUtil.sol";

/**
 * @title UniERC20
 * @dev Library to abstract the handling of ETH and ERC20 tokens, enabling unified interaction with both. It allows usage of ETH as ERC20.
 * Utilizes SafeERC20 for ERC20 interactions and provides additional utility functions.
 */
library UniERC20 {
    using SafeERC20 for IERC20;

    error InsufficientBalance();
    error ApproveCalledOnETH();
    error NotEnoughValue();
    error FromIsNotSender();
    error ToIsNotThis();
    error ETHTransferFailed();

    uint256 private constant _RAW_CALL_GAS_LIMIT = 5000;
    IERC20 private constant _ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE);
    IERC20 private constant _ZERO_ADDRESS = IERC20(address(0));

    /**
     * @dev Determines if the specified token is ETH.
     * @param token The token to check.
     * @return bool True if the token is ETH, false otherwise.
     */
    function isETH(IERC20 token) internal pure returns (bool) {
        return (token == _ZERO_ADDRESS || token == _ETH_ADDRESS);
    }

    /**
     * @dev Retrieves the balance of the specified token for an account.
     * @param token The token to query the balance of.
     * @param account The address of the account.
     * @return uint256 The balance of the token for the specified account.
     */
    function uniBalanceOf(IERC20 token, address account) internal view returns (uint256) {
        if (isETH(token)) {
            return account.balance;
        } else {
            return token.balanceOf(account);
        }
    }

    /**
     * @dev Transfers a specified amount of the token to a given address.
     * Note: Does nothing if the amount is zero.
     * @param token The token to transfer.
     * @param to The address to transfer the token to.
     * @param amount The amount of the token to transfer.
     */
    function uniTransfer(
        IERC20 token,
        address payable to,
        uint256 amount
    ) internal {
        if (amount > 0) {
            if (isETH(token)) {
                if (address(this).balance < amount) revert InsufficientBalance();
                // solhint-disable-next-line avoid-low-level-calls
                (bool success, ) = to.call{value: amount, gas: _RAW_CALL_GAS_LIMIT}("");
                if (!success) revert ETHTransferFailed();
            } else {
                token.safeTransfer(to, amount);
            }
        }
    }

    /**
     * @dev Transfers a specified amount of the token from one address to another.
     * Note: Does nothing if the amount is zero.
     * @param token The token to transfer.
     * @param from The address to transfer the token from.
     * @param to The address to transfer the token to.
     * @param amount The amount of the token to transfer.
     */
    function uniTransferFrom(
        IERC20 token,
        address payable from,
        address to,
        uint256 amount
    ) internal {
        if (amount > 0) {
            if (isETH(token)) {
                if (msg.value < amount) revert NotEnoughValue();
                if (from != msg.sender) revert FromIsNotSender();
                if (to != address(this)) revert ToIsNotThis();
                if (msg.value > amount) {
                    // Return remainder if exist
                    unchecked {
                        // solhint-disable-next-line avoid-low-level-calls
                        (bool success, ) = from.call{value: msg.value - amount, gas: _RAW_CALL_GAS_LIMIT}("");
                        if (!success) revert ETHTransferFailed();
                    }
                }
            } else {
                token.safeTransferFrom(from, to, amount);
            }
        }
    }

    /**
     * @dev Retrieves the symbol from ERC20 metadata of the specified token.
     * @param token The token to retrieve the symbol of.
     * @return string The symbol of the token.
     */
    function uniSymbol(IERC20 token) internal view returns (string memory) {
        return _uniDecode(token, IERC20Metadata.symbol.selector, IERC20MetadataUppercase.SYMBOL.selector);
    }

    /**
     * @dev Retrieves the name from ERC20 metadata of the specified token.
     * @param token The token to retrieve the name of.
     * @return string The name of the token.
     */
    function uniName(IERC20 token) internal view returns (string memory) {
        return _uniDecode(token, IERC20Metadata.name.selector, IERC20MetadataUppercase.NAME.selector);
    }

    /**
     * @dev forceApprove the specified amount of the token to a given address.
     * Reverts if the token is ETH.
     * @param token The token to approve.
     * @param to The address to approve the token to.
     * @param amount The amount of the token to approve.
     */
    function uniApprove(
        IERC20 token,
        address to,
        uint256 amount
    ) internal {
        if (isETH(token)) revert ApproveCalledOnETH();

        token.forceApprove(to, amount);
    }

    /**
     * @dev Internal function to decode token metadata (name or symbol).
     * 20K gas is provided to account for possible implementations of name/symbol
     * (token implementation might be behind proxy or store the value in storage)
     * @param token The token to decode metadata for.
     * @param lowerCaseSelector The selector for the lowercase metadata function.
     * @param upperCaseSelector The selector for the uppercase metadata function.
     * @return result The decoded metadata value.
     */
    function _uniDecode(
        IERC20 token,
        bytes4 lowerCaseSelector,
        bytes4 upperCaseSelector
    ) private view returns (string memory result) {
        if (isETH(token)) {
            return "ETH";
        }

        (bool success, bytes memory data) = address(token).staticcall{gas: 20000}(
            abi.encodeWithSelector(lowerCaseSelector)
        );
        if (!success) {
            (success, data) = address(token).staticcall{gas: 20000}(abi.encodeWithSelector(upperCaseSelector));
        }

        if (success && data.length >= 0x40) {
            (uint256 offset, uint256 len) = abi.decode(data, (uint256, uint256));
            /*
                return data is padded up to 32 bytes with ABI encoder also sometimes
                there is extra 32 bytes of zeros padded in the end:
                https://github.com/ethereum/solidity/issues/10170
                because of that we can't check for equality and instead check
                that overall data length is greater or equal than string length + extra 64 bytes
            */
            if (offset == 0x20 && data.length >= 0x40 + len) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    result := add(data, 0x40)
                }
                return result;
            }
        }
        if (success && data.length == 32) {
            uint256 len = 0;
            while (len < data.length && data[len] >= 0x20 && data[len] <= 0x7E) {
                unchecked {
                    len++;
                }
            }

            if (len > 0) {
                assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
                    mstore(data, len)
                }
                return string(data);
            }
        }

        return StringUtil.toHex(address(token));
    }
}

File 52 of 56 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 53 of 56 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 54 of 56 : IERC20MetadataUppercase.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IERC20MetadataUppercase
 * @dev Interface for ERC20 token metadata with uppercase naming convention.
 */
interface IERC20MetadataUppercase {
    /**
     * @notice Gets the token name.
     * @return Token name.
     */
    function NAME() external view returns (string memory); // solhint-disable-line func-name-mixedcase

    /**
     * @notice Gets the token symbol.
     * @return Token symbol.
     */
    function SYMBOL() external view returns (string memory); // solhint-disable-line func-name-mixedcase
}

File 55 of 56 : StringUtil.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title StringUtil
 * @dev Library with gas-efficient string operations.
 */
library StringUtil {
    /**
     * @notice Converts a uint256 value to its hexadecimal string representation.
     * @param value The uint256 value to convert.
     * @return The hexadecimal string representation of the input value.
     */
    function toHex(uint256 value) internal pure returns (string memory) {
        return toHex(abi.encodePacked(value));
    }

    /**
     * @notice Converts an address to its hexadecimal string representation.
     * @param value The address to convert.
     * @return The hexadecimal string representation of the input address.
     */
    function toHex(address value) internal pure returns (string memory) {
        return toHex(abi.encodePacked(value));
    }

    /**
     * @dev Converts arbitrary bytes to their hexadecimal string representation.
     * This is an assembly adaptation of highly optimized toHex16 code by Mikhail Vladimirov.
     * Reference: https://stackoverflow.com/a/69266989
     * @param data The bytes to be converted to hexadecimal string.
     * @return result The hexadecimal string representation of the input bytes.
     */
    function toHex(bytes memory data) internal pure returns (string memory result) {
        assembly ("memory-safe") { // solhint-disable-line no-inline-assembly
            function _toHex16(input) -> output {
                output := or(
                    and(input, 0xFFFFFFFFFFFFFFFF000000000000000000000000000000000000000000000000),
                    shr(64, and(input, 0x0000000000000000FFFFFFFFFFFFFFFF00000000000000000000000000000000))
                )
                output := or(
                    and(output, 0xFFFFFFFF000000000000000000000000FFFFFFFF000000000000000000000000),
                    shr(32, and(output, 0x00000000FFFFFFFF000000000000000000000000FFFFFFFF0000000000000000))
                )
                output := or(
                    and(output, 0xFFFF000000000000FFFF000000000000FFFF000000000000FFFF000000000000),
                    shr(16, and(output, 0x0000FFFF000000000000FFFF000000000000FFFF000000000000FFFF00000000))
                )
                output := or(
                    and(output, 0xFF000000FF000000FF000000FF000000FF000000FF000000FF000000FF000000),
                    shr(8, and(output, 0x00FF000000FF000000FF000000FF000000FF000000FF000000FF000000FF0000))
                )
                output := or(
                    shr(4, and(output, 0xF000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000)),
                    shr(8, and(output, 0x0F000F000F000F000F000F000F000F000F000F000F000F000F000F000F000F00))
                )
                output := add(
                    add(0x3030303030303030303030303030303030303030303030303030303030303030, output),
                    mul(
                        and(
                            shr(4, add(output, 0x0606060606060606060606060606060606060606060606060606060606060606)),
                            0x0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F0F
                        ),
                        7 // Change 7 to 39 for lower case output
                    )
                )
            }

            result := mload(0x40)
            let length := mload(data)
            let resultLength := shl(1, length)
            let toPtr := add(result, 0x22) // 32 bytes for length + 2 bytes for '0x'
            mstore(0x40, add(toPtr, resultLength)) // move free memory pointer
            mstore(add(result, 2), 0x3078) // 0x3078 is right aligned so we write to `result + 2`
            // to store the last 2 bytes in the beginning of the string
            mstore(result, add(resultLength, 2)) // extra 2 bytes for '0x'

            for {
                let fromPtr := add(data, 0x20)
                let endPtr := add(fromPtr, length)
            } lt(fromPtr, endPtr) {
                fromPtr := add(fromPtr, 0x20)
            } {
                let rawData := mload(fromPtr)
                let hexData := _toHex16(rawData)
                mstore(toPtr, hexData)
                toPtr := add(toPtr, 0x20)
                hexData := _toHex16(shl(128, rawData))
                mstore(toPtr, hexData)
                toPtr := add(toPtr, 0x20)
            }
        }
    }
}

File 56 of 56 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

Settings
{
  "remappings": [
    "@1inch/limit-order-protocol-contract/=lib/limit-order-protocol/",
    "@1inch/limit-order-settlement/=lib/limit-order-settlement/",
    "@1inch/solidity-utils/=lib/solidity-utils/",
    "solidity-utils/=lib/solidity-utils/",
    "limit-order-protocol/=lib/limit-order-protocol/",
    "limit-order-settlement/=lib/limit-order-settlement/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "murky/=lib/murky/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": true,
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"limitOrderProtocol","type":"address"},{"internalType":"contract IERC20","name":"feeToken","type":"address"},{"internalType":"contract IERC20","name":"accessToken","type":"address"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint32","name":"rescueDelaySrc","type":"uint32"},{"internalType":"uint32","name":"rescueDelayDst","type":"uint32"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccessDenied","type":"error"},{"inputs":[],"name":"FailedDeployment","type":"error"},{"inputs":[{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"InsufficientBalance","type":"error"},{"inputs":[],"name":"InsufficientEscrowBalance","type":"error"},{"inputs":[],"name":"InvalidCreationTime","type":"error"},{"inputs":[],"name":"InvalidPartialFill","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidSecretsAmount","type":"error"},{"inputs":[],"name":"NotEnoughCredit","type":"error"},{"inputs":[],"name":"OnlyFeeBankAccess","type":"error"},{"inputs":[],"name":"OnlyLimitOrderProtocol","type":"error"},{"inputs":[],"name":"ResolverCanNotFillOrder","type":"error"},{"inputs":[],"name":"SafeTransferFromFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"escrow","type":"address"},{"indexed":false,"internalType":"bytes32","name":"hashlock","type":"bytes32"},{"indexed":false,"internalType":"Address","name":"taker","type":"uint256"}],"name":"DstEscrowCreated","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"bytes32","name":"hashlock","type":"bytes32"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"taker","type":"uint256"},{"internalType":"Address","name":"token","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"safetyDeposit","type":"uint256"},{"internalType":"Timelocks","name":"timelocks","type":"uint256"}],"indexed":false,"internalType":"struct IBaseEscrow.Immutables","name":"srcImmutables","type":"tuple"},{"components":[{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"Address","name":"token","type":"uint256"},{"internalType":"uint256","name":"safetyDeposit","type":"uint256"},{"internalType":"uint256","name":"chainId","type":"uint256"}],"indexed":false,"internalType":"struct IEscrowFactory.DstImmutablesComplement","name":"dstImmutablesComplement","type":"tuple"}],"name":"SrcEscrowCreated","type":"event"},{"inputs":[],"name":"ESCROW_DST_IMPLEMENTATION","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ESCROW_SRC_IMPLEMENTATION","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FEE_BANK","outputs":[{"internalType":"contract IFeeBank","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"bytes32","name":"hashlock","type":"bytes32"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"taker","type":"uint256"},{"internalType":"Address","name":"token","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"safetyDeposit","type":"uint256"},{"internalType":"Timelocks","name":"timelocks","type":"uint256"}],"internalType":"struct IBaseEscrow.Immutables","name":"immutables","type":"tuple"}],"name":"addressOfEscrowDst","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"bytes32","name":"hashlock","type":"bytes32"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"taker","type":"uint256"},{"internalType":"Address","name":"token","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"safetyDeposit","type":"uint256"},{"internalType":"Timelocks","name":"timelocks","type":"uint256"}],"internalType":"struct IBaseEscrow.Immutables","name":"immutables","type":"tuple"}],"name":"addressOfEscrowSrc","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"availableCredit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"bytes32","name":"hashlock","type":"bytes32"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"taker","type":"uint256"},{"internalType":"Address","name":"token","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"safetyDeposit","type":"uint256"},{"internalType":"Timelocks","name":"timelocks","type":"uint256"}],"internalType":"struct IBaseEscrow.Immutables","name":"dstImmutables","type":"tuple"},{"internalType":"uint256","name":"srcCancellationTimestamp","type":"uint256"}],"name":"createDstEscrow","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAvailableCredit","outputs":[{"internalType":"uint256","name":"allowance","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"receiver","type":"uint256"},{"internalType":"Address","name":"makerAsset","type":"uint256"},{"internalType":"Address","name":"takerAsset","type":"uint256"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"MakerTraits","name":"makerTraits","type":"uint256"}],"internalType":"struct IOrderMixin.Order","name":"order","type":"tuple"},{"internalType":"bytes","name":"","type":"bytes"},{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"getMakingAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"receiver","type":"uint256"},{"internalType":"Address","name":"makerAsset","type":"uint256"},{"internalType":"Address","name":"takerAsset","type":"uint256"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"MakerTraits","name":"makerTraits","type":"uint256"}],"internalType":"struct IOrderMixin.Order","name":"order","type":"tuple"},{"internalType":"bytes","name":"","type":"bytes"},{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"getTakingAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"increaseAvailableCredit","outputs":[{"internalType":"uint256","name":"allowance","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"key","type":"bytes32"}],"name":"lastValidated","outputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"bytes32","name":"leaf","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"receiver","type":"uint256"},{"internalType":"Address","name":"makerAsset","type":"uint256"},{"internalType":"Address","name":"takerAsset","type":"uint256"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"MakerTraits","name":"makerTraits","type":"uint256"}],"internalType":"struct IOrderMixin.Order","name":"order","type":"tuple"},{"internalType":"bytes","name":"extension","type":"bytes"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"uint256","name":"remainingMakingAmount","type":"uint256"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"postInteraction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"receiver","type":"uint256"},{"internalType":"Address","name":"makerAsset","type":"uint256"},{"internalType":"Address","name":"takerAsset","type":"uint256"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"MakerTraits","name":"makerTraits","type":"uint256"}],"internalType":"struct IOrderMixin.Order","name":"order","type":"tuple"},{"internalType":"bytes","name":"extension","type":"bytes"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"address","name":"taker","type":"address"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"uint256","name":"remainingMakingAmount","type":"uint256"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"preInteraction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"salt","type":"uint256"},{"internalType":"Address","name":"maker","type":"uint256"},{"internalType":"Address","name":"receiver","type":"uint256"},{"internalType":"Address","name":"makerAsset","type":"uint256"},{"internalType":"Address","name":"takerAsset","type":"uint256"},{"internalType":"uint256","name":"makingAmount","type":"uint256"},{"internalType":"uint256","name":"takingAmount","type":"uint256"},{"internalType":"MakerTraits","name":"makerTraits","type":"uint256"}],"internalType":"struct IOrderMixin.Order","name":"","type":"tuple"},{"internalType":"bytes","name":"extension","type":"bytes"},{"internalType":"bytes32","name":"orderHash","type":"bytes32"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bytes","name":"extraData","type":"bytes"}],"name":"takerInteraction","outputs":[],"stateMutability":"nonpayable","type":"function"}]

61018034620002e1576001600160401b0390601f6200511e38819003918201601f19168301919084831184841017620002b9578160c09285926040958652833981010312620002e1576200005382620002e5565b916200006260208201620002e5565b9362000070838301620002e5565b916200007f60608201620002e5565b946200009c60a06200009460808501620002fa565b9301620002fa565b968160805285519061121f80830183811087821117620002b957606092849262003eff84393082526001600160a01b039081166020830152998a16898201520301905ff08015620002d757861660a0528360c05260e052835190610fa38083019083821085831117620002b95783926200013892879262002f5c863963ffffffff90911681526001600160a01b03909116602082015260400190565b03905ff0948515620002cd578461010096168652835192610bb9918285019385851090851117620002b95784936200019093620023a3863963ffffffff90911681526001600160a01b03909116602082015260400190565b03905ff0918215620002af57806101209316835262000236620001ee82865116763d602d80600a3d3981f3363d3d373d3d3d363d73000000906e5af43d82803e903d91602b57fd5bf36020528060115260881c175f52603760092090565b91610140928352845116763d602d80600a3d3981f3363d3d373d3d3d363d73000000906e5af43d82803e903d91602b57fd5bf36020528060115260881c175f52603760092090565b91610160928352519261209694856200030d8639608051858181610b7401526118c1015260a051858181610a0001528181611791015261181f015260c05185611619015260e0518561067a015251848181610ac001526110dd015251838181610247015261062701525182610108015251816105b70152f35b50513d5f823e3d90fd5b634e487b7160e01b5f52604160045260245ffd5b83513d5f823e3d90fd5b85513d5f823e3d90fd5b5f80fd5b51906001600160a01b0382168203620002e157565b519063ffffffff82168203620002e15756fe6080806040526004361015610012575f80fd5b5f905f3560e01c9081630986bdd514611892575080631d9671c3146118435780632ce26aeb146117d55780633ee5ef1f14611741578063462ebde214610b465780635886216f14610ae45780637040f17314610a7557806385eda2de146109af578063acf4ce5c1461095d578063adf38ba11461064b578063ba551177146105dc578063be58e91c14610571578063d7ff8a801461046a578063dea024e41461014e5763fb6bd47e146100c3575f80fd5b3461014b5761010090817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57602061012d8360405181600482372030907f000000000000000000000000000000000000000000000000000000000000000090611f11565b73ffffffffffffffffffffffffffffffffffffffff60405191168152f35b80fd5b507ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601610120811261046657610100809112610466576084359073ffffffffffffffffffffffffffffffffffffffff9081831660c435809382159182610454575b340361042a57604051936101c385611afe565b600435855260243594856020820152604435604082015260643597886060830152608082015260a081019660a435885260c08201524260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff60e43516178060e083015261023f610104359163ffffffff8160c01c169060e01c611ac8565b1161040057207f00000000000000000000000000000000000000000000000000000000000000003447106103c957763d602d80600a3d3981f3363d3d373d3d3d363d73000000906e5af43d82803e903d91602b57fd5bf36020528060115260881c175f526037600934f590811694851561039f578792156102f6575b827fc30e111dcc74fddc2c3a4d98ffb97adec4485c0a687946bf5b22c2a99c7ff96d6060888a8960405192835260208301526040820152a180f35b6020929160649196959651604051917f23b872dd0000000000000000000000000000000000000000000000000000000083523360048401526024830152604482015282855af1908161037d575b501561035357905f8481806102bb565b60046040517ff4059071000000000000000000000000000000000000000000000000000000008152fd5b90503d1561039757506001845114601f3d11165b5f610343565b3b1515610391565b60046040517fb06ebf3d000000000000000000000000000000000000000000000000000000008152fd5b604447604051907fcf4791810000000000000000000000000000000000000000000000000000000082526004820152346024820152fd5b60046040517ff4840e96000000000000000000000000000000000000000000000000000000008152fd5b60046040517f34f5151d000000000000000000000000000000000000000000000000000000008152fd5b6104619060a43590611ac8565b6101b0565b5080fd5b503461014b5761048a61047c36611a0f565b955093505095935050611b93565b629896809260c0830135918401908185116105445760a0916104ab91611ab5565b920135838102938185041490151715610517576104c9838383611c5a565b9383156104ea5760206104e28686868609151590611ac8565b604051908152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526012600452fd5b6024847f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b6024867f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b503461014b5761010090817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57602061012d8360405181600482372030907f000000000000000000000000000000000000000000000000000000000000000090611f11565b503461014b57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b503461014b5761065a36611962565b50975050505050919073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163303610933576106a991611e92565b91907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff607dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff93849201013516604051916020926107678161073b85878301958690603e927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000091835260101b1660208201520190565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282611b1b565b5190209084357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18636030181121561092f5767ffffffffffffffff94908601803586811161092b576005918160051b360387820113610927576040878a013599013597604051888101917fffffffffffffffff0000000000000000000000000000000000000000000000008c60c01b1683528a6028830152602882526060820190828210908211176108fa57604052519020928a9291905b8284106108bf575050505016036108955760018401809411610868576001929183916040519561084e87611ae2565b865281860193845286525260408420925183555191015580f35b6024857f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b60046040517f09bde339000000000000000000000000000000000000000000000000000000008152fd5b909192938885831b84010135908181105f146108ea578c528852600160408c205b940192919061081f565b908c528852600160408c206108e0565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b8980fd5b8880fd5b8680fd5b60046040517f4ca88867000000000000000000000000000000000000000000000000000000008152fd5b503461014b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b576040809160043581526001602052206001815491015482519182526020820152f35b503461014b5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b576109e761193f565b73ffffffffffffffffffffffffffffffffffffffff91827f0000000000000000000000000000000000000000000000000000000000000000163303610a4b5760209260409216815280835220610a406024358254611ad5565b809155604051908152f35b60046040517fa4544199000000000000000000000000000000000000000000000000000000008152fd5b503461014b57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b503461014b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57604060209173ffffffffffffffffffffffffffffffffffffffff610b3661193f565b1681528083522054604051908152f35b50346114a657610b5536611962565b949192939790959673ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016330361171757857fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff608101116114aa577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60860190877fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5f880183106114aa577f010000000000000000000000000000000000000000000000000000000000000080610c827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5f8b017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff608c018d611f47565b351614610cd47fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5f8a017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff608b018c611f47565b3560fb1c90805f91611682575b856004116114a657833560e01c7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8701600c8502116114a657610d2d8985600c81026004890185611f80565b156114f4575b50505060147ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc600c83028603011161123e575b505050508585017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6001905060e08901357f4000000000000000000000000000000000000000000000000000000000000000161561122157358060f01c600281106111f757610e6d91604051610e348161073b7dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6020830195168d8690603e927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000091835260101b1660208201520190565b5190208b52600160205260408b20906020604051610e5181611ae2565b6001845494858352015491829101529460a08c0135908b611ddc565b156111cd5773ffffffffffffffffffffffffffffffffffffffff915b60405196610e9688611afe565b8752602087015260208801356040870152166060850152606086013560808501528460a08501527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0828401013560801c60c08501524260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08486010135161760e0850152604086013573ffffffffffffffffffffffffffffffffffffffff8116155f146111c757506020860135905b604051938460a081011067ffffffffffffffff60a0870111176108fa577f0e534c62f0afd2fa0f0fa71198e8aa2d549f24daf2bb47de0d5486c7ce9288ca936101a09360a08701604052865260208601928352604086017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa0828401013581527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8060608801926fffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc082870101351684526080890194010135835260405193885185526020890151602086015260408901516040860152606089015160608601526080890151608086015260a089015160a086015260c089015160c086015260e089015160e086015261010097518886015251610120850152516101408401525161016083015251610180820152a18120763d602d80600a3d3981f3363d3d373d3d3d363d730000007f00000000000000000000000000000000000000000000000000000000000000006e5af43d82803e903d91602b57fd5bf36020528060115260881c175f52603760095ff59273ffffffffffffffffffffffffffffffffffffffff84161561039f57849160c0853191015111938415611159575b5050505061042a5780f35b602093945073ffffffffffffffffffffffffffffffffffffffff606060249385937f70a082310000000000000000000000000000000000000000000000000000000085526004520135165afa8251901560203d10176111bc57105f82818061114e565b6040513d84823e3d90fd5b90610f64565b60046040517feab3a174000000000000000000000000000000000000000000000000000000008152fd5b60046040517f10d629d3000000000000000000000000000000000000000000000000000000008152fd5b73ffffffffffffffffffffffffffffffffffffffff925035610e89565b6004600c820283010135937fffffffffffffffffffffffffffffffffffffffff0000000000000000000000008086169560147ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc600c8602850301106114d7575b5050600c820281037ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc81017ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb909101116114aa577ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb600c83028203016014116114a6578460601c3b156114a6578d928c918e60405198899788977f462ebde2000000000000000000000000000000000000000000000000000000008952803560048a0152602081013560248a0152604081013560448a0152606081013560648a0152608081013560848a015260a081013560a48a015260c081013560c48a015260e0013560e489015261010488016101e090526101e48801906113c092612022565b9361012487015273ffffffffffffffffffffffffffffffffffffffff8a166101448701526101648601528a610184860152896101a48601528483037ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc016101c4860152600c840290037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe70192600c02016018019161145d92612022565b039160601c91815a5f948591f1801561149b5761147e575b80808080610d66565b90985067ffffffffffffffff81116108fa576040525f975f611475565b6040513d5f823e3d90fd5b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b600c8402830360140360040160031b82901b161694505f8061129e565b421080156115b9575b61158f5761150d575b8080610d33565b80156115065773ffffffffffffffffffffffffffffffffffffffff87165f525f60205260405f20548181106115655773ffffffffffffffffffffffffffffffffffffffff88165f525f6020520360405f20555f611506565b60046040517fa7fd3792000000000000000000000000000000000000000000000000000000008152fd5b60046040517ff25114a6000000000000000000000000000000000000000000000000000000008152fd5b506040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8916600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa90811561149b575f91611650575b50156114fd565b90506020813d60201161167a575b8161166b60209383611b1b565b810103126114a657515f611649565b3d915061165e565b94505090507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6088016004116114a657883560e01c66038d7ea4c680009080828102048214811517156114aa576116e38d8f9360a06116e89501359302611ab5565b611b5c565b9060048a01917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5c8a0194610ce1565b60046040517fd25aa106000000000000000000000000000000000000000000000000000000008152fd5b346114a65760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126114a65761177861193f565b73ffffffffffffffffffffffffffffffffffffffff90817f0000000000000000000000000000000000000000000000000000000000000000163303610a4b57165f525f602052602060405f20602435815401809155604051908152f35b346114a6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126114a657602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b346114a65761185461047c36611a0f565b906298968091828402938085048414901517156114aa5782018092116114aa5760209260a061188a6104e29460c0850135611ab5565b920135611c5a565b346114a6576118a036611962565b5050505050505050505073ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001633036118e957005b807fd25aa1060000000000000000000000000000000000000000000000000000000060049252fd5b9181601f840112156114a65782359167ffffffffffffffff83116114a657602083818601950101116114a657565b6004359073ffffffffffffffffffffffffffffffffffffffff821682036114a657565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc81016101e081126114a657610100136114a65760049167ffffffffffffffff610104358181116114a657836119ba91600401611911565b9390939261012435926101443573ffffffffffffffffffffffffffffffffffffffff811681036114a65792610164359261018435926101a435926101c4359182116114a657611a0b91600401611911565b9091565b907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc82016101c081126114a657610100136114a65760049167ffffffffffffffff90610104358281116114a65781611a6991600401611911565b9390939261012435926101443573ffffffffffffffffffffffffffffffffffffffff811681036114a65792610164359261018435926101a4359182116114a657611a0b91600401611911565b818102929181159184041417156114aa57565b919082018092116114aa57565b919082039182116114aa57565b6040810190811067ffffffffffffffff8211176108fa57604052565b610100810190811067ffffffffffffffff8211176108fa57604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff8211176108fa57604052565b8115611b66570490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b90806003116114a657813560e81c816007116114a657600383013560e01c9080158015611c52575b15611c3b5750505f915b81600b116114a657600781013560e01c82600e116114a657826011116114a6577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef611c299301916011810191600b600e83013560e81c92013560e81c810190611d1b565b81811115611c35570390565b50505f90565b620f424091611c4b914802611b5c565b0491611bc5565b508115611bbb565b91818302917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81850993838086109503948086039514611d0b5784831115611cec5790829109815f038216809204600280826003021880830282030280830282030280830282030280830282030280830282030280920290030293600183805f03040190848311900302920304170290565b82611d045760125b634e487b715f526020526024601cfd5b6011611cf4565b505090611d189250611b5c565b90565b90919392814211155f14611d30575050505090565b8293949192421015611dd357849291925b611d575750611d18935082039142900302611b5c565b906003908582116114a657823560e81c906005928784116114a65784013560f01c81019485421115611db4575050907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb9193920194019384611d41565b925093611d189650809550849193500393429003029142030201611b5c565b50505050505f90565b929190611df284611ded8385611ad5565b611ac8565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff918281019081116114aa57836116e386611e2d93611ab5565b948103611e475750505050600281018091116114aa571490565b808303611e62575b50505050600181018091116114aa571490565b611e6c9083611ad5565b9081019081116114aa57611e83926116e391611ab5565b8114611c35575f808080611e4f565b91909160208310611f09578035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe063ffffffff8360c01c169260e01c94018411611ee1578101602001920390565b7f9605a010000000000000000000000000000000000000000000000000000000005f5260045ffd5b505f91508190565b60559173ffffffffffffffffffffffffffffffffffffffff93600b92604051926040840152602083015281520160ff8153201690565b90821015611f53570190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b9192909369ffffffffffffffffffff16925f925b828410611fa5575050505050505f90565b600a908282116114a657600c918383116114a65787013560f01c0195803560b01c8603611fd85750505050505042101590565b95929394954284116120175701949360010192917ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff49190910190611f94565b505050505050505f90565b601f82602094937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe093818652868601375f858286010152011601019056fea2646970667358221220479987f07c457517833088b4dd8e7b8c6372fcbe114d31660ff48e3c3cc08bd164736f6c634300081700336101003461010f57601f610bb938819003918201601f19168301916001600160401b0383118484101761011357808492604094855283398101031261010f5780519063ffffffff821680920361010f5760200151906001600160a01b038216820361010f573360c05260a0526080526e5af43d82803e903d91602b57fd5bf360205230601152763d602d80600a3d3981f3363d3d373d3d3d363d730000003060881c175f52603760092060e052604051610a9190816101288239608051816105d9015260a05181818160a30152610358015260c05181818161015b01528181610322015281816104d20152610798015260e051818181610131015281816102f801528181610465015261076e0152f35b5f80fd5b634e487b7160e01b5f52604160045260245ffdfe6080604090808252600480361015610015575f80fd5b60e05f35811c9283630af97558146105825750826323305703146104f65782632dd310001461048857826334862b6a146104305782634649088b146102555750816390d3252f146100ca575063f56cd69c1461006f575f80fd5b346100c6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c657602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b5f80fd5b82346100c657610100807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c65773ffffffffffffffffffffffffffffffffffffffff9182606435169182330361022d576055600b8592845181898237208451907f00000000000000000000000000000000000000000000000000000000000000008683015260208201527f000000000000000000000000000000000000000000000000000000000000000081520160ff8153201630036102055761019460e4356108c0565b42106101dd576101ab60a435836084358616610907565b6101b760c435336109c7565b7f6e3be9294e58d10b9c8053cfd5e09871b67e442fe394d6b0870d336b9df984a95f80a1005b8390517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b8390517fa269484a000000000000000000000000000000000000000000000000000000008152fd5b8482517f48f5c3ed000000000000000000000000000000000000000000000000000000008152fd5b8390346100c6576101407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c65782359273ffffffffffffffffffffffffffffffffffffffff90818516928386036100c65760243592610100807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbc3601126100c6578160a43516330361040857600b60559188518160448237208851907f00000000000000000000000000000000000000000000000000000000000000008a83015260208201527f000000000000000000000000000000000000000000000000000000000000000081520160ff8153201630036103e05761012435901c7f00000000000000000000000000000000000000000000000000000000000000000142106103b957506103ac817fc4474c2790e13695f6d2b6f1d8e164290b55370f87a542fd7711abe0a1bf40ac953390610907565b82519182526020820152a1005b83517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b5083517fa269484a000000000000000000000000000000000000000000000000000000008152fd5b8387517f48f5c3ed000000000000000000000000000000000000000000000000000000008152fd5b83346100c6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c657602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b83346100c6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100c6576020905173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b8390346100c65761050636610675565b92909173ffffffffffffffffffffffffffffffffffffffff606085013516330361022d5763ffffffff8185013580921c9160801c1681018091116105565742106101dd576105548383610742565b005b6011857f4e487b71000000000000000000000000000000000000000000000000000000005f525260245ffd5b84346100c65761059136610675565b9390927f70a08231000000000000000000000000000000000000000000000000000000008152338682015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa90811561066b575f91610639575b501561022d5763ffffffff8185013580921c9160a01c1681018091116105565742106101dd576105548383610742565b90506020813d602011610663575b81610654602093836106d4565b810103126100c6575186610609565b3d9150610647565b83513d5f823e3d90fd5b906101207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8301126100c6576101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc6004359301126100c657602490565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761071557604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b9061075060e08201356108c0565b421015610896576040906055600b83516101009081858237208451907f00000000000000000000000000000000000000000000000000000000000000008683015260208201527f000000000000000000000000000000000000000000000000000000000000000081520160ff81532073ffffffffffffffffffffffffffffffffffffffff908116300361086d57835f5260205f20602083013503610844579161083d60c08361083560209660a07fe346f5c97a360db5188bfa5d3ec5f0583abde420c6ba4d08b6cfe61addc17105999701359080878501351690608085013516610907565b0135336109c7565b51908152a1565b600483517fabab6bd7000000000000000000000000000000000000000000000000000000008152fd5b600483517fa269484a000000000000000000000000000000000000000000000000000000008152fd5b60046040517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b63ffffffff8160e01c9160c01c1681018091116108da5790565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b73ffffffffffffffffffffffffffffffffffffffff169190826109305761092e92506109c7565b565b60445f91602093604051917fa9059cbb0000000000000000000000000000000000000000000000000000000083526004830152602482015282855af190816109a5575b501561097b57565b60046040517ffb7f5079000000000000000000000000000000000000000000000000000000008152fd5b90503d156109bf575060015f5114601f3d11165b5f610973565b3b15156109b9565b5f80809381935af13d15610a56573d67ffffffffffffffff81116107155760405190610a1b60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f84011601836106d4565b81525f60203d92013e5b15610a2c57565b60046040517f8a0332d5000000000000000000000000000000000000000000000000000000008152fd5b610a2556fea264697066735822122038502ec28c48b5d139831db53617a652a79ce0b98c77fac51e40235245636eb464736f6c634300081700336101003461011657601f610fa338819003918201601f19168301916001600160401b0383118484101761011a5780849260409485528339810103126101165780519063ffffffff82168092036101165760200151906001600160a01b0382168203610116573360c05260a0526080526e5af43d82803e903d91602b57fd5bf360205230601152763d602d80600a3d3981f3363d3d373d3d3d363d730000003060881c175f52603760092060e052604051610e74908161012f823960805181818161015a0152610866015260a05181818160b9015261059c015260c05181818161070401528181610bab01528181610c5c0152610ce2015260e05181818161069701528181610b8001528181610c310152610cb70152f35b5f80fd5b634e487b7160e01b5f52604160045260245ffdfe6080604090808252600480361015610015575f80fd5b60e05f35811c9283630af975581461080a5750826323305703146107285782632dd31000146106ba57826334862b6a146106625782634649088b146104fe5782636c10c0c81461035057826390d3252f146102b8578263daff233e146100e057505063f56cd69c14610085575f80fd5b346100dc575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100dc57602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b5f80fd5b83346100dc576101007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100dc5773ffffffffffffffffffffffffffffffffffffffff9181517f70a082310000000000000000000000000000000000000000000000000000000081523385820152602081602481877f0000000000000000000000000000000000000000000000000000000000000000165afa9081156102ae575f9161027c575b50156102545763ffffffff60e43580921c9160601c168101809111610228574210610200576101ce826101bb610c05565b60a4359080604435169060843516610d12565b6101da60c43533610daa565b7f6e3be9294e58d10b9c8053cfd5e09871b67e442fe394d6b0870d336b9df984a95f80a1005b9050517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b6011847f4e487b71000000000000000000000000000000000000000000000000000000005f525260245ffd5b8382517f48f5c3ed000000000000000000000000000000000000000000000000000000008152fd5b90506020813d6020116102a6575b8161029760209383610a88565b810103126100dc57518561018a565b3d915061028a565b83513d5f823e3d90fd5b5082346100dc576101007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100dc5773ffffffffffffffffffffffffffffffffffffffff90816064351633036103285761031660e435610af6565b4210610200576101ce826101bb610c05565b9050517f48f5c3ed000000000000000000000000000000000000000000000000000000008152fd5b5082346100dc576101407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100dc5781359160243573ffffffffffffffffffffffffffffffffffffffff9182821682036100dc576101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbc3601126100dc578260a4351633036104d757610124356103ea81610b3d565b42106104af576103f990610af6565b42101561048857610408610b54565b845f5260205f2060643503610461577fe346f5c97a360db5188bfa5d3ec5f0583abde420c6ba4d08b6cfe61addc171056020868661044d60e4358760c4358a16610d12565b61045a6101043533610daa565b51908152a1005b83517fabab6bd7000000000000000000000000000000000000000000000000000000008152fd5b83517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b5083517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b83517f48f5c3ed000000000000000000000000000000000000000000000000000000008152fd5b8390346100dc576101407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100dc5782359073ffffffffffffffffffffffffffffffffffffffff908183168093036100dc57602435916101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffbc3601126100dc5760a43516330361063957610594610b54565b61012435901c7f0000000000000000000000000000000000000000000000000000000000000000014210610611577fc4474c2790e13695f6d2b6f1d8e164290b55370f87a542fd7711abe0a1bf40ac935081610601576105f48133610daa565b82519182526020820152a1005b61060c813384610d12565b6105f4565b5050517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b505050517f48f5c3ed000000000000000000000000000000000000000000000000000000008152fd5b83346100dc575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100dc57602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b83346100dc575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126100dc576020905173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b8390346100dc5761073836610a29565b91909373ffffffffffffffffffffffffffffffffffffffff918260608501351633036107e25783013561076a81610b3d565b42106104af5761077990610af6565b4210156104885761078983610c8c565b845f5260205f20602084013503610461577fe346f5c97a360db5188bfa5d3ec5f0583abde420c6ba4d08b6cfe61addc171056020868661045a60c0886107da60a08201353360808401358c16610d12565b013533610daa565b5083517f48f5c3ed000000000000000000000000000000000000000000000000000000008152fd5b8285346100dc5761081a36610a29565b94909273ffffffffffffffffffffffffffffffffffffffff917f70a0823100000000000000000000000000000000000000000000000000000000865233828701526020958681602481877f0000000000000000000000000000000000000000000000000000000000000000165afa908115610a1f575f916109f2575b50156109ca578087013580911c63ffffffff82881c16810180911161099e574210610976576108c490610af6565b42101561094f576108d486610c8c565b835f52845f208587013503610928575060c0856107da61045a9360a07fe346f5c97a360db5188bfa5d3ec5f0583abde420c6ba4d08b6cfe61addc17105990135908060608501351690608085013516610d12565b82517fabab6bd7000000000000000000000000000000000000000000000000000000008152fd5b82517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b5082517f6f7eac26000000000000000000000000000000000000000000000000000000008152fd5b6011837f4e487b71000000000000000000000000000000000000000000000000000000005f525260245ffd5b5082517f48f5c3ed000000000000000000000000000000000000000000000000000000008152fd5b90508681813d8311610a18575b610a098183610a88565b810103126100dc575188610896565b503d6109ff565b85513d5f823e3d90fd5b906101207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8301126100dc576101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc6004359301126100dc57602490565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610ac957604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b63ffffffff8160e01c9160401c168101809111610b105790565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b63ffffffff8160e01c91168101809111610b105790565b73ffffffffffffffffffffffffffffffffffffffff6055600b60405161010090816044823720604051907f0000000000000000000000000000000000000000000000000000000000000000604083015260208201527f000000000000000000000000000000000000000000000000000000000000000081520160ff815320163003610bdb57565b60046040517fa269484a000000000000000000000000000000000000000000000000000000008152fd5b73ffffffffffffffffffffffffffffffffffffffff6055600b60405161010090816004823720604051907f0000000000000000000000000000000000000000000000000000000000000000604083015260208201527f000000000000000000000000000000000000000000000000000000000000000081520160ff815320163003610bdb57565b6055600b73ffffffffffffffffffffffffffffffffffffffff926040516101008092823720604051907f0000000000000000000000000000000000000000000000000000000000000000604083015260208201527f000000000000000000000000000000000000000000000000000000000000000081520160ff815320163003610bdb57565b9160446020925f92604051917fa9059cbb0000000000000000000000000000000000000000000000000000000083526004830152602482015282855af19081610d88575b5015610d5e57565b60046040517ffb7f5079000000000000000000000000000000000000000000000000000000008152fd5b90503d15610da2575060015f5114601f3d11165b5f610d56565b3b1515610d9c565b5f80809381935af13d15610e39573d67ffffffffffffffff8111610ac95760405190610dfe60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8401160183610a88565b81525f60203d92013e5b15610e0f57565b60046040517f8a0332d5000000000000000000000000000000000000000000000000000000008152fd5b610e0856fea2646970667358221220bb5d52dbec55c7b7a127ac5f915b13280046df5b0baa23c1a8fb87a9d5c7f98a64736f6c6343000817003360c03461013057601f61121f38819003918201601f19168301916001600160401b03831184841017610134578084926060946040528339810103126101305780516001600160a01b03808216820361013057602083015192818416908185036101305760400151828116809103610130578015610118575f80546001600160a01b03198116831782556040519416907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09080a315610109575060a0526080526040516110d6908161014982396080518181816102eb015281816108d401528181610d8f0152610e0e015260a0518181816102b8015281816106d701528181610d310152610ee40152f35b63d92e233d60e01b8152600490fd5b604051631e4fbdf760e01b81525f6004820152602490fd5b5f80fd5b634e487b7160e01b5f52604160045260245ffdfe604060808152600480361015610013575f80fd5b5f3560e01c8063205c2878146108345780632e1a7d4d146107f65780632f4f21e2146107b057806332d323a5146107475780635886216f14610652578063715018a6146105b857806378e3214f146104295780638da5cb5b146103d857806397a2cb6414610225578063b6b55f25146101e7578063bfe91734146101835763f2fde38b1461009f575f80fd5b3461017f5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f576100d661087a565b906100df610fb8565b73ffffffffffffffffffffffffffffffffffffffff8092169283156101505750505f54827fffffffffffffffffffffffff00000000000000000000000000000000000000008216175f55167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b905f60249251917f1e4fbdf7000000000000000000000000000000000000000000000000000000008352820152fd5b5f80fd5b50903461017f57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f5760243567ffffffffffffffff811161017f576020926101d86101e0923690830161089d565b9135336108cb565b9051908152f35b50903461017f5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f576101e06020923533610de9565b503461017f57602091827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f57813567ffffffffffffffff80821161017f573660238301121561017f578184013590811161017f5760059360243683871b850182011161017f57949061029b610fb8565b5f955f9473ffffffffffffffffffffffffffffffffffffffff90817f000000000000000000000000000000000000000000000000000000000000000016945b868810610315578a8a8a61030f82337f0000000000000000000000000000000000000000000000000000000000000000611008565b51908152f35b9091929394959698848a831b840101359084821680920361017f575f8281526001808e52908b9020548b517f5886216f000000000000000000000000000000000000000000000000000000008152808a0185905293918e858a818e5afa9283156103ce578f905f9461039e575b600196505f5252818c5f205503019901969594939291906102da565b935085813d83116103c7575b6103b48183610c84565b8101031261017f578e6001955193610382565b503d6103aa565b8d513d5f823e3d90fd5b823461017f575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f5760209073ffffffffffffffffffffffffffffffffffffffff5f54169051908152f35b50903461017f57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f57813573ffffffffffffffffffffffffffffffffffffffff81169081810361017f5760243591610486610fb8565b8261048d57005b801590811561059a575b50156105895750804710610562575f8080809333611388f13d1561055d573d67ffffffffffffffff8111610531578251906104fa60207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8401160183610c84565b81525f60203d92013e5b1561050b57005b517fb12d13eb000000000000000000000000000000000000000000000000000000008152fd5b6041847f4e487b71000000000000000000000000000000000000000000000000000000005f525260245ffd5b610504565b50517ff4d678b8000000000000000000000000000000000000000000000000000000008152fd5b90915061059892503390611008565b005b73eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee9150145f610497565b3461017f575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f576105ee610fb8565b5f73ffffffffffffffffffffffffffffffffffffffff81547fffffffffffffffffffffffff000000000000000000000000000000000000000081168355167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b503461017f57602091827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f578261068d61087a565b602473ffffffffffffffffffffffffffffffffffffffff9182855196879485937f5886216f00000000000000000000000000000000000000000000000000000000855216908301527f0000000000000000000000000000000000000000000000000000000000000000165afa91821561073d575f9261070e575b5051908152f35b9091508281813d8311610736575b6107268183610c84565b8101031261017f5751905f610707565b503d61071c565b50513d5f823e3d90fd5b50903461017f5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f5761078061087a565b916044359267ffffffffffffffff841161017f576107a66101e09260209536910161089d565b91602435906108cb565b823461017f57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f576020906101e06107ed61087a565b60243590610de9565b50903461017f5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f576101e06020923533610cf2565b823461017f57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261017f576020906101e061087161087a565b60243590610cf2565b6004359073ffffffffffffffffffffffffffffffffffffffff8216820361017f57565b9181601f8401121561017f5782359167ffffffffffffffff831161017f576020838186019501011161017f57565b925f91929082917f000000000000000000000000000000000000000000000000000000000000000091604051918180606414610bce5780604814610b0c578060e014610ad3578061010014610a9857806060146109c25761016014610978578185926004927f9fd5a6cf0000000000000000000000000000000000000000000000000000000086528386013701925af15b1561096d5761096a91610de9565b90565b6040513d5f823e3d90fd5b610164935061016091507f2b67b5700000000000000000000000000000000000000000000000000000000083526004830137826e22d473030f116ddee9f6b43ac78ba35af161095c565b5060209150604090610164947f2b67b570000000000000000000000000000000000000000000000000000000008552336004860152602485015260148160508601377fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff65ffffffffffff9080601484013560e01c0182166064870152601883013560e01c60848701523060a4870152601c83013560e01c011660c485015261010060e4850152816101048501528280820161012486013701610144830137826e22d473030f116ddee9f6b43ac78ba35af161095c565b5084915092610100610104947f8fcbaf0c00000000000000000000000000000000000000000000000000000000855260048501375af161095c565b508491509260e060e4947fd505accf00000000000000000000000000000000000000000000000000000000855260048501375af161095c565b50849150927f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff610104947f8fcbaf0c00000000000000000000000000000000000000000000000000000000855233600486015230602486015260206008602883013592803560e01c60448901527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600482013560e01c016064890152600160848901528360ff1c601b0160a48901520160c48701371660e48401525af161095c565b50849150927f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60e4947fd505accf00000000000000000000000000000000000000000000000000000000855233600486015230602486015260206024604483013592828160448a01377fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8382013560e01c0160648901528360ff1c601b0160848901520160a48701371660c48401525af161095c565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117610cc557604052565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b6040517f85eda2de000000000000000000000000000000000000000000000000000000008152336004820152602481018390529092916020826044815f7f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff165af1801561096d575f90610db5575b610db3925093335f52600160205260405f208281540390557f0000000000000000000000000000000000000000000000000000000000000000611008565b565b506020823d602011610de1575b81610dcf60209383610c84565b8101031261017f57610db39151610d75565b3d9150610dc2565b73ffffffffffffffffffffffffffffffffffffffff91828216908115610f8e576064937f00000000000000000000000000000000000000000000000000000000000000006040517f23b872dd0000000000000000000000000000000000000000000000000000000081523360048201523060248201528360448201525f602097889282855af19081610f6c575b5015610f42575f928352600185526040808420805484019055517f3ee5ef1f00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff94909416600485015260248401919091528391839160449183917f0000000000000000000000000000000000000000000000000000000000000000165af191821561096d575f92610f1857505090565b90809250813d8311610f3b575b610f2f8183610c84565b8101031261017f575190565b503d610f25565b60046040517ff4059071000000000000000000000000000000000000000000000000000000008152fd5b90503d15610f86575060015f5114601f3d11165b5f610e76565b3b1515610f80565b60046040517fd92e233d000000000000000000000000000000000000000000000000000000008152fd5b73ffffffffffffffffffffffffffffffffffffffff5f54163303610fd857565b60246040517f118cdaa7000000000000000000000000000000000000000000000000000000008152336004820152fd5b9160446020925f92604051917fa9059cbb0000000000000000000000000000000000000000000000000000000083526004830152602482015282855af1908161107e575b501561105457565b60046040517ffb7f5079000000000000000000000000000000000000000000000000000000008152fd5b90503d15611098575060015f5114601f3d11165b5f61104c565b3b151561109256fea2646970667358221220e672704e5005f839ef156c691b6b1f69bd71f21fe6916aa9d5eb95b442169a9c64736f6c63430008170033000000000000000000000000111111125421ca6dc452d289314280a0f8842a650000000000000000000000006b175474e89094c44da98b954eedeac495271d0f000000000000000000000000acce550000159e70908c0499a1119d04e7039c280000000000000000000000009ceef06f7042d6ff7f7f0ee4bbca41e4b0989a0b00000000000000000000000000000000000000000000000000000000000a8c0000000000000000000000000000000000000000000000000000000000000a8c00

Deployed Bytecode

0x6080806040526004361015610012575f80fd5b5f905f3560e01c9081630986bdd514611892575080631d9671c3146118435780632ce26aeb146117d55780633ee5ef1f14611741578063462ebde214610b465780635886216f14610ae45780637040f17314610a7557806385eda2de146109af578063acf4ce5c1461095d578063adf38ba11461064b578063ba551177146105dc578063be58e91c14610571578063d7ff8a801461046a578063dea024e41461014e5763fb6bd47e146100c3575f80fd5b3461014b5761010090817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57602061012d8360405181600482372030907f94ceddb3ecb51b710deaccad4ebe7e21d64bc128c185721f55651bfa1e104e3a90611f11565b73ffffffffffffffffffffffffffffffffffffffff60405191168152f35b80fd5b507ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601610120811261046657610100809112610466576084359073ffffffffffffffffffffffffffffffffffffffff9081831660c435809382159182610454575b340361042a57604051936101c385611afe565b600435855260243594856020820152604435604082015260643597886060830152608082015260a081019660a435885260c08201524260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff60e43516178060e083015261023f610104359163ffffffff8160c01c169060e01c611ac8565b1161040057207f0000000000000000000000009c3e06659f1c34f930ce97fcbce6e04ae88e535b3447106103c957763d602d80600a3d3981f3363d3d373d3d3d363d73000000906e5af43d82803e903d91602b57fd5bf36020528060115260881c175f526037600934f590811694851561039f578792156102f6575b827fc30e111dcc74fddc2c3a4d98ffb97adec4485c0a687946bf5b22c2a99c7ff96d6060888a8960405192835260208301526040820152a180f35b6020929160649196959651604051917f23b872dd0000000000000000000000000000000000000000000000000000000083523360048401526024830152604482015282855af1908161037d575b501561035357905f8481806102bb565b60046040517ff4059071000000000000000000000000000000000000000000000000000000008152fd5b90503d1561039757506001845114601f3d11165b5f610343565b3b1515610391565b60046040517fb06ebf3d000000000000000000000000000000000000000000000000000000008152fd5b604447604051907fcf4791810000000000000000000000000000000000000000000000000000000082526004820152346024820152fd5b60046040517ff4840e96000000000000000000000000000000000000000000000000000000008152fd5b60046040517f34f5151d000000000000000000000000000000000000000000000000000000008152fd5b6104619060a43590611ac8565b6101b0565b5080fd5b503461014b5761048a61047c36611a0f565b955093505095935050611b93565b629896809260c0830135918401908185116105445760a0916104ab91611ab5565b920135838102938185041490151715610517576104c9838383611c5a565b9383156104ea5760206104e28686868609151590611ac8565b604051908152f35b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526012600452fd5b6024847f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b6024867f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b503461014b5761010090817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57602061012d8360405181600482372030907fecbf051d115fa5ccc1177d7a547bf60561f699139f67c74f72f5fd67efde915590611f11565b503461014b57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000009c3e06659f1c34f930ce97fcbce6e04ae88e535b168152f35b503461014b5761065a36611962565b50975050505050919073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000111111125421ca6dc452d289314280a0f8842a65163303610933576106a991611e92565b91907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff607dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff93849201013516604051916020926107678161073b85878301958690603e927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000091835260101b1660208201520190565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282611b1b565b5190209084357fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18636030181121561092f5767ffffffffffffffff94908601803586811161092b576005918160051b360387820113610927576040878a013599013597604051888101917fffffffffffffffff0000000000000000000000000000000000000000000000008c60c01b1683528a6028830152602882526060820190828210908211176108fa57604052519020928a9291905b8284106108bf575050505016036108955760018401809411610868576001929183916040519561084e87611ae2565b865281860193845286525260408420925183555191015580f35b6024857f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b60046040517f09bde339000000000000000000000000000000000000000000000000000000008152fd5b909192938885831b84010135908181105f146108ea578c528852600160408c205b940192919061081f565b908c528852600160408c206108e0565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b8980fd5b8880fd5b8680fd5b60046040517f4ca88867000000000000000000000000000000000000000000000000000000008152fd5b503461014b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b576040809160043581526001602052206001815491015482519182526020820152f35b503461014b5760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b576109e761193f565b73ffffffffffffffffffffffffffffffffffffffff91827f0000000000000000000000000aafa51a3f792e1fd2766c2e7cab1e6710e94b3b163303610a4b5760209260409216815280835220610a406024358254611ad5565b809155604051908152f35b60046040517fa4544199000000000000000000000000000000000000000000000000000000008152fd5b503461014b57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57602060405173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000cd70bf33cfe59759851db21c83ea47b6b83bef6a168152f35b503461014b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261014b57604060209173ffffffffffffffffffffffffffffffffffffffff610b3661193f565b1681528083522054604051908152f35b50346114a657610b5536611962565b949192939790959673ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000111111125421ca6dc452d289314280a0f8842a6516330361171757857fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff608101116114aa577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60860190877fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5f880183106114aa577f010000000000000000000000000000000000000000000000000000000000000080610c827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5f8b017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff608c018d611f47565b351614610cd47fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5f8a017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff608b018c611f47565b3560fb1c90805f91611682575b856004116114a657833560e01c7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc8701600c8502116114a657610d2d8985600c81026004890185611f80565b156114f4575b50505060147ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc600c83028603011161123e575b505050508585017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6001905060e08901357f4000000000000000000000000000000000000000000000000000000000000000161561122157358060f01c600281106111f757610e6d91604051610e348161073b7dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6020830195168d8690603e927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff000091835260101b1660208201520190565b5190208b52600160205260408b20906020604051610e5181611ae2565b6001845494858352015491829101529460a08c0135908b611ddc565b156111cd5773ffffffffffffffffffffffffffffffffffffffff915b60405196610e9688611afe565b8752602087015260208801356040870152166060850152606086013560808501528460a08501527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc0828401013560801c60c08501524260e01b7bffffffffffffffffffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08486010135161760e0850152604086013573ffffffffffffffffffffffffffffffffffffffff8116155f146111c757506020860135905b604051938460a081011067ffffffffffffffff60a0870111176108fa577f0e534c62f0afd2fa0f0fa71198e8aa2d549f24daf2bb47de0d5486c7ce9288ca936101a09360a08701604052865260208601928352604086017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffa0828401013581527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8060608801926fffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc082870101351684526080890194010135835260405193885185526020890151602086015260408901516040860152606089015160608601526080890151608086015260a089015160a086015260c089015160c086015260e089015160e086015261010097518886015251610120850152516101408401525161016083015251610180820152a18120763d602d80600a3d3981f3363d3d373d3d3d363d730000007f000000000000000000000000cd70bf33cfe59759851db21c83ea47b6b83bef6a6e5af43d82803e903d91602b57fd5bf36020528060115260881c175f52603760095ff59273ffffffffffffffffffffffffffffffffffffffff84161561039f57849160c0853191015111938415611159575b5050505061042a5780f35b602093945073ffffffffffffffffffffffffffffffffffffffff606060249385937f70a082310000000000000000000000000000000000000000000000000000000085526004520135165afa8251901560203d10176111bc57105f82818061114e565b6040513d84823e3d90fd5b90610f64565b60046040517feab3a174000000000000000000000000000000000000000000000000000000008152fd5b60046040517f10d629d3000000000000000000000000000000000000000000000000000000008152fd5b73ffffffffffffffffffffffffffffffffffffffff925035610e89565b6004600c820283010135937fffffffffffffffffffffffffffffffffffffffff0000000000000000000000008086169560147ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc600c8602850301106114d7575b5050600c820281037ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc81017ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb909101116114aa577ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb600c83028203016014116114a6578460601c3b156114a6578d928c918e60405198899788977f462ebde2000000000000000000000000000000000000000000000000000000008952803560048a0152602081013560248a0152604081013560448a0152606081013560648a0152608081013560848a015260a081013560a48a015260c081013560c48a015260e0013560e489015261010488016101e090526101e48801906113c092612022565b9361012487015273ffffffffffffffffffffffffffffffffffffffff8a166101448701526101648601528a610184860152896101a48601528483037ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc016101c4860152600c840290037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe70192600c02016018019161145d92612022565b039160601c91815a5f948591f1801561149b5761147e575b80808080610d66565b90985067ffffffffffffffff81116108fa576040525f975f611475565b6040513d5f823e3d90fd5b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b600c8402830360140360040160031b82901b161694505f8061129e565b421080156115b9575b61158f5761150d575b8080610d33565b80156115065773ffffffffffffffffffffffffffffffffffffffff87165f525f60205260405f20548181106115655773ffffffffffffffffffffffffffffffffffffffff88165f525f6020520360405f20555f611506565b60046040517fa7fd3792000000000000000000000000000000000000000000000000000000008152fd5b60046040517ff25114a6000000000000000000000000000000000000000000000000000000008152fd5b506040517f70a0823100000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff8916600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000acce550000159e70908c0499a1119d04e7039c28165afa90811561149b575f91611650575b50156114fd565b90506020813d60201161167a575b8161166b60209383611b1b565b810103126114a657515f611649565b3d915061165e565b94505090507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6088016004116114a657883560e01c66038d7ea4c680009080828102048214811517156114aa576116e38d8f9360a06116e89501359302611ab5565b611b5c565b9060048a01917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff5c8a0194610ce1565b60046040517fd25aa106000000000000000000000000000000000000000000000000000000008152fd5b346114a65760407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126114a65761177861193f565b73ffffffffffffffffffffffffffffffffffffffff90817f0000000000000000000000000aafa51a3f792e1fd2766c2e7cab1e6710e94b3b163303610a4b57165f525f602052602060405f20602435815401809155604051908152f35b346114a6575f7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126114a657602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000aafa51a3f792e1fd2766c2e7cab1e6710e94b3b168152f35b346114a65761185461047c36611a0f565b906298968091828402938085048414901517156114aa5782018092116114aa5760209260a061188a6104e29460c0850135611ab5565b920135611c5a565b346114a6576118a036611962565b5050505050505050505073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000111111125421ca6dc452d289314280a0f8842a651633036118e957005b807fd25aa1060000000000000000000000000000000000000000000000000000000060049252fd5b9181601f840112156114a65782359167ffffffffffffffff83116114a657602083818601950101116114a657565b6004359073ffffffffffffffffffffffffffffffffffffffff821682036114a657565b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc81016101e081126114a657610100136114a65760049167ffffffffffffffff610104358181116114a657836119ba91600401611911565b9390939261012435926101443573ffffffffffffffffffffffffffffffffffffffff811681036114a65792610164359261018435926101a435926101c4359182116114a657611a0b91600401611911565b9091565b907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc82016101c081126114a657610100136114a65760049167ffffffffffffffff90610104358281116114a65781611a6991600401611911565b9390939261012435926101443573ffffffffffffffffffffffffffffffffffffffff811681036114a65792610164359261018435926101a4359182116114a657611a0b91600401611911565b818102929181159184041417156114aa57565b919082018092116114aa57565b919082039182116114aa57565b6040810190811067ffffffffffffffff8211176108fa57604052565b610100810190811067ffffffffffffffff8211176108fa57604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff8211176108fa57604052565b8115611b66570490565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b90806003116114a657813560e81c816007116114a657600383013560e01c9080158015611c52575b15611c3b5750505f915b81600b116114a657600781013560e01c82600e116114a657826011116114a6577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffef611c299301916011810191600b600e83013560e81c92013560e81c810190611d1b565b81811115611c35570390565b50505f90565b620f424091611c4b914802611b5c565b0491611bc5565b508115611bbb565b91818302917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81850993838086109503948086039514611d0b5784831115611cec5790829109815f038216809204600280826003021880830282030280830282030280830282030280830282030280830282030280920290030293600183805f03040190848311900302920304170290565b82611d045760125b634e487b715f526020526024601cfd5b6011611cf4565b505090611d189250611b5c565b90565b90919392814211155f14611d30575050505090565b8293949192421015611dd357849291925b611d575750611d18935082039142900302611b5c565b906003908582116114a657823560e81c906005928784116114a65784013560f01c81019485421115611db4575050907ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffb9193920194019384611d41565b925093611d189650809550849193500393429003029142030201611b5c565b50505050505f90565b929190611df284611ded8385611ad5565b611ac8565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff918281019081116114aa57836116e386611e2d93611ab5565b948103611e475750505050600281018091116114aa571490565b808303611e62575b50505050600181018091116114aa571490565b611e6c9083611ad5565b9081019081116114aa57611e83926116e391611ab5565b8114611c35575f808080611e4f565b91909160208310611f09578035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe063ffffffff8360c01c169260e01c94018411611ee1578101602001920390565b7f9605a010000000000000000000000000000000000000000000000000000000005f5260045ffd5b505f91508190565b60559173ffffffffffffffffffffffffffffffffffffffff93600b92604051926040840152602083015281520160ff8153201690565b90821015611f53570190565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b9192909369ffffffffffffffffffff16925f925b828410611fa5575050505050505f90565b600a908282116114a657600c918383116114a65787013560f01c0195803560b01c8603611fd85750505050505042101590565b95929394954284116120175701949360010192917ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff49190910190611f94565b505050505050505f90565b601f82602094937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe093818652868601375f858286010152011601019056fea2646970667358221220479987f07c457517833088b4dd8e7b8c6372fcbe114d31660ff48e3c3cc08bd164736f6c63430008170033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000111111125421ca6dc452d289314280a0f8842a650000000000000000000000006b175474e89094c44da98b954eedeac495271d0f000000000000000000000000acce550000159e70908c0499a1119d04e7039c280000000000000000000000009ceef06f7042d6ff7f7f0ee4bbca41e4b0989a0b00000000000000000000000000000000000000000000000000000000000a8c0000000000000000000000000000000000000000000000000000000000000a8c00

-----Decoded View---------------
Arg [0] : limitOrderProtocol (address): 0x111111125421cA6dc452d289314280a0f8842A65
Arg [1] : feeToken (address): 0x6B175474E89094C44Da98b954EedeAC495271d0F
Arg [2] : accessToken (address): 0xACCe550000159e70908C0499a1119D04e7039C28
Arg [3] : owner (address): 0x9ceef06f7042D6FF7F7F0EE4BbCa41E4B0989A0b
Arg [4] : rescueDelaySrc (uint32): 691200
Arg [5] : rescueDelayDst (uint32): 691200

-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 000000000000000000000000111111125421ca6dc452d289314280a0f8842a65
Arg [1] : 0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f
Arg [2] : 000000000000000000000000acce550000159e70908c0499a1119d04e7039c28
Arg [3] : 0000000000000000000000009ceef06f7042d6ff7f7f0ee4bbca41e4b0989a0b
Arg [4] : 00000000000000000000000000000000000000000000000000000000000a8c00
Arg [5] : 00000000000000000000000000000000000000000000000000000000000a8c00


Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.