Feature Tip: Add private address tag to any address under My Name Tag !
Source Code
Overview
ETH Balance
0 ETH
Eth Value
$0.00Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| 0x60806040 | 23786826 | 10 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
GSE
Compiler Version
v0.8.30+commit.73712a01
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Bn254LibWrapper} from "@aztec/governance/Bn254LibWrapper.sol";
import {Governance} from "@aztec/governance/Governance.sol";
import {Proposal} from "@aztec/governance/interfaces/IGovernance.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {AddressSnapshotLib, SnapshottedAddressSet} from "@aztec/governance/libraries/AddressSnapshotLib.sol";
import {
DepositDelegationLib, DepositAndDelegationAccounting
} from "@aztec/governance/libraries/DepositDelegationLib.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {Ownable} from "@oz/access/Ownable.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Checkpoints} from "@oz/utils/structs/Checkpoints.sol";
// Struct to store configuration of an attester (block producer)
// Keep track of the actor who can initiate and control withdraws for the attester.
// Keep track of the public key in G1 of BN254 that has registered on the instance
struct AttesterConfig {
G1Point publicKey;
address withdrawer;
}
// Struct to track the attesters (block producers) on a particular rollup instance
// throughout time, along with each attester's current config.
// Finally a flag to track if the instance exists.
struct InstanceAttesterRegistry {
SnapshottedAddressSet attesters;
bool exists;
}
interface IGSECore {
event Deposit(address indexed instance, address indexed attester, address withdrawer);
function setGovernance(Governance _governance) external;
function setProofOfPossessionGasLimit(uint64 _proofOfPossessionGasLimit) external;
function addRollup(address _rollup) external;
function deposit(
address _attester,
address _withdrawer,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession,
bool _moveWithLatestRollup
) external;
function withdraw(address _attester, uint256 _amount) external returns (uint256, bool, uint256);
function delegate(address _instance, address _attester, address _delegatee) external;
function vote(uint256 _proposalId, uint256 _amount, bool _support) external;
function voteWithBonus(uint256 _proposalId, uint256 _amount, bool _support) external;
function finalizeWithdraw(uint256 _withdrawalId) external;
function proposeWithLock(IPayload _proposal, address _to) external returns (uint256);
function isRegistered(address _instance, address _attester) external view returns (bool);
function isRollupRegistered(address _instance) external view returns (bool);
function getLatestRollup() external view returns (address);
function getLatestRollupAt(Timestamp _timestamp) external view returns (address);
function getGovernance() external view returns (Governance);
}
interface IGSE is IGSECore {
function getRegistrationDigest(G1Point memory _publicKey) external view returns (G1Point memory);
function getDelegatee(address _instance, address _attester) external view returns (address);
function getVotingPower(address _attester) external view returns (uint256);
function getVotingPowerAt(address _attester, Timestamp _timestamp) external view returns (uint256);
function getWithdrawer(address _attester) external view returns (address);
function balanceOf(address _instance, address _attester) external view returns (uint256);
function effectiveBalanceOf(address _instance, address _attester) external view returns (uint256);
function supplyOf(address _instance) external view returns (uint256);
function totalSupply() external view returns (uint256);
function getConfig(address _attester) external view returns (AttesterConfig memory);
function getAttesterCountAtTime(address _instance, Timestamp _timestamp) external view returns (uint256);
function getAttestersFromIndicesAtTime(address _instance, Timestamp _timestamp, uint256[] memory _indices)
external
view
returns (address[] memory);
function getG1PublicKeysFromAddresses(address[] memory _attesters) external view returns (G1Point[] memory);
function getAttesterFromIndexAtTime(address _instance, uint256 _index, Timestamp _timestamp)
external
view
returns (address);
function getPowerUsed(address _delegatee, uint256 _proposalId) external view returns (uint256);
function getBonusInstanceAddress() external view returns (address);
}
/**
* @title GSECore
* @author Aztec Labs
* @notice The core Governance Staking Escrow contract that handles the deposits of attesters on rollup instances.
* It is responsible for:
* - depositing/withdrawing attesters on rollup instances
* - providing rollup instances with historical views of their attesters
* - allowing depositors to delegate their voting power
* - allowing delegatees to vote at governance
* - maintaining a set of "bonus" attesters which are always deposited on behalf of the latest rollup
*
* NB: The "bonus" attesters are thus automatically "moved along" whenever the latest rollup changes.
* That is, at the point of the rollup getting added, the bonus is immediately available.
* This allows the latest rollup to start with a set of attesters, rather than requiring them to exit
* the old rollup and deposit in the new one.
*
* NB: The "latest" rollup in this contract does not technically need to be the "canonical" rollup
* according to the Registry, but in practice, it will be unless the new rollup does not use the GSE.
* Proposals which add rollups that DO want to use the GSE MUST call addRollup to both the Registry and the GSE.
* See RegisterNewRollupVersionPayload.sol for an example.
*
* NB: The "owner" of the GSE is intended to be the Governance contract, but there is a circular
* dependency in that we also want the GSE to be registered as the first beneficiary of the governance
* contract so that we don't need to go through a governance proposal to add it. To that end,
* this contract's view of `governance` needs to be set. So the current flow is to deploy the GSE with the owner
* set to the deployer, then deploy Governance, passing the GSE as the initial/sole authorized beneficiary,
* then have the deployer `setGovernance`, and then `transferOwnership` to Governance.
*/
contract GSECore is IGSECore, Ownable {
using AddressSnapshotLib for SnapshottedAddressSet;
using SafeCast for uint256;
using SafeCast for uint224;
using Checkpoints for Checkpoints.Trace224;
using DepositDelegationLib for DepositAndDelegationAccounting;
using SafeERC20 for IERC20;
/**
* Create a special "bonus" address for use by the latest rollup.
* This is a convenience mechanism to allow attesters to always be staked on the latest rollup.
*
* As far as terminology, the GSE tracks deposits and voting/delegation data for "instances",
* and an "instance" is either the address of a "true" rollup contract which was added via `addRollup`,
* or (ONLY IN THIS CONTRACT) this special "bonus" address, which has its own accounting.
*
* NB: in every other context, "instance" refers broadly to a specific instance of an aztec rollup contract
* (possibly inclusive of its family of related contracts e.g. Inbox, Outbox, etc.)
*
* Thus, this bonus address appears in `delegation` and `instances`, and from the perspective of the GSE,
* it is an instance (though it can never be in the list of rollups).
*
* Lower in the code, we use "rollup" if we know we're talking about a rollup (often msg.sender),
* and "instance" if we are talking about about either a rollup instance or the bonus instance.
*
* The latest rollup according to `rollups` may use the attesters and voting power
* from the BONUS_INSTANCE_ADDRESS as a "bonus" to their own.
*
* One invariant of the GSE is that the attesters available to any rollup instance must form a set.
* i.e. there must be no duplicates.
*
* Thus, for the latest rollup, there are two "buckets" of attesters available:
* - the attesters that are associated with the rollup's address
* - the attesters that are associated with the BONUS_INSTANCE_ADDRESS
*
* The GSE ensures that:
* - each bucket individually is a set
* - when you add these two buckets together, it is a set.
*
* For a rollup that is no longer the latest, the attesters available to it are the attesters that are
* associated with the rollup's address. In effect, when a rollup goes from being the latest to not being
* the latest, it loses all attesters that were associated with the bonus instance.
*
* In this way, the "effective" attesters/balance/etc for a rollup (at a point in time) is:
* - the rollup's bucket and the bonus bucket if the rollup was the latest at that point in time
* - only the rollup's bucket if the rollup was not the latest at that point in time
*
* Note further, that operations like deposit and withdraw are initiated by a rollup,
* but the "affected instance" address will be either the rollup's address or the BONUS_INSTANCE_ADDRESS;
* we will typically need to look at both instances to know what to do.
*
* NB: in a large way, the BONUS_INSTANCE_ADDRESS is the entire point of the GSE,
* otherwise the rollups would've managed their own attesters/delegation/etc.
*/
address public constant BONUS_INSTANCE_ADDRESS = address(uint160(uint256(keccak256("bonus-instance"))));
// External wrapper of the BN254 library to more easily allow gas limits.
Bn254LibWrapper internal immutable BN254_LIB_WRAPPER = new Bn254LibWrapper();
// The amount of ASSET needed to add an attester to the set
uint256 public immutable ACTIVATION_THRESHOLD;
// The amount of ASSET needed to keep an attester in the set, if the attester balance fall below this threshold
// the attester will be ejected from the set.
uint256 public immutable EJECTION_THRESHOLD;
// The asset used for sybil resistance and power in governance. Must match the ASSET in `Governance` to work as
// intended.
IERC20 public immutable ASSET;
// The GSE's history of rollups.
Checkpoints.Trace224 internal rollups;
// Mapping from instance address to its historical attester information.
mapping(address instanceAddress => InstanceAttesterRegistry instance) internal instances;
// Global attester information
mapping(address attester => AttesterConfig config) internal configOf;
// Mapping from the hashed public key in G1 of BN254 to the keys are registered.
mapping(bytes32 hashedPK1 => bool isRegistered) public ownedPKs;
/**
* Contains state for:
* checkpointed total supply
* instance => {
* checkpointed supply
* attester => { balance, delegatee }
* }
* delegatee => {
* checkpointed voting power
* proposal ID => { power used }
* }
*/
DepositAndDelegationAccounting internal delegation;
Governance internal governance;
// Gas limit for proof of possession validation.
//
// Must exceed the happy path gas consumption to ensure deposits succeed.
// Acts as a cap on unhappy path gas usage to prevent excessive consumption.
//
// - Happy path average: 150K gas
// - Buffer for loop: 50K gas
// - Buffer for opcode cost changes: 50K gas
//
// WARNING: If set below happy path requirements, all deposits will fail.
// Governance can adjust this value via proposal.
uint64 public proofOfPossessionGasLimit = 250_000;
/**
* @dev enforces that the caller is a registered rollup.
*/
modifier onlyRollup() {
require(isRollupRegistered(msg.sender), Errors.GSE__NotRollup(msg.sender));
_;
}
/**
* @param __owner - The owner of the GSE.
* Initially a deployer to allow adding an initial rollup, then handed over to governance.
* @param _asset - The ERC20 token asset used in governance and for sybil resistance.
* This token is deposited by attesters to gain voting power in governance
* (ratio of voting power to staked amount is 1:1).
* @param _activationThreshold - The amount of asset required to deposit an attester on the rollup.
* @param _ejectionThreshold - The minimum amount of asset required to be in the set to be considered an attester.
* If the balance falls below this threshold, the attester is ejected from the set.
*/
constructor(address __owner, IERC20 _asset, uint256 _activationThreshold, uint256 _ejectionThreshold)
Ownable(__owner)
{
ASSET = _asset;
ACTIVATION_THRESHOLD = _activationThreshold;
EJECTION_THRESHOLD = _ejectionThreshold;
instances[BONUS_INSTANCE_ADDRESS].exists = true;
}
function setGovernance(Governance _governance) external override(IGSECore) onlyOwner {
require(address(governance) == address(0), Errors.GSE__GovernanceAlreadySet());
governance = _governance;
}
function setProofOfPossessionGasLimit(uint64 _proofOfPossessionGasLimit) external override(IGSECore) onlyOwner {
proofOfPossessionGasLimit = _proofOfPossessionGasLimit;
}
/**
* @notice Adds another rollup to the instances, which is the new latest rollup.
* Only callable by the owner (usually governance) and only when the rollup is not already in the set
*
* @dev rollups only have access to the "bonus instance" while they are the most recent rollup.
*
* @dev The GSE only supports adding rollups, not removing them. If a rollup becomes compromised, governance can
* simply add a new rollup and the bonus instance mechanism ensures a smooth transition by allowing the new rollup
* to immediately inherit attesters.
*
* @dev Beware that multiple calls to `addRollup` at the same `block.timestamp` will override each other and only
* the last will be in the `rollups`.
*
* @param _rollup - The address of the rollup to add
*/
function addRollup(address _rollup) external override(IGSECore) onlyOwner {
require(_rollup != address(0), Errors.GSE__InvalidRollupAddress(_rollup));
require(!instances[_rollup].exists, Errors.GSE__RollupAlreadyRegistered(_rollup));
instances[_rollup].exists = true;
rollups.push(block.timestamp.toUint32(), uint224(uint160(_rollup)));
}
/**
* @notice Deposits a new attester
*
* @dev msg.sender must be a registered rollup.
*
* @dev Transfers ASSET from msg.sender to the GSE, and then into Governance.
*
* @dev if _moveWithLatestRollup is true, then msg.sender must be the latest rollup.
*
* @dev An attester configuration is registered globally to avoid BLS troubles when moving stake.
*
* Suppose the registered rollups are A, then B, then C, so C's effective attesters are
* those associated with C and the bonus address.
*
* Alice may come along now and deposit on A or B, with _moveWithLatestRollup=false in either case.
*
* For depositing into C, she can deposit *either* with _moveWithLatestRollup = true OR false.
* If she deposits with _moveWithLatestRollup = false, then she is associated with C's address.
* If she deposits with _moveWithLatestRollup = true, then she is associated with the bonus address.
*
* Suppose she deposits with _moveWithLatestRollup = true, and a new rollup D is added to the rollups.
* Then her stake moves to D, and she is in the effective attesters of D.
*
* @param _attester - The attester address on behalf of which the deposit is made.
* @param _withdrawer - Address which the user wish to use to initiate a withdraw for the `_attester` and
* to update delegation with. The withdrawals are enforced by the rollup to which it is
* controlled, so it is practically a value for the rollup to use, meaning dishonest rollup
* can reject withdrawal attempts.
* @param _publicKeyInG1 - BLS public key for the attester in G1
* @param _publicKeyInG2 - BLS public key for the attester in G2
* @param _proofOfPossession - A proof of possessions for the private key corresponding _publicKey in G1 and G2
* @param _moveWithLatestRollup - Whether to deposit into the specific instance, or the bonus instance
*/
function deposit(
address _attester,
address _withdrawer,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession,
bool _moveWithLatestRollup
) external override(IGSECore) onlyRollup {
bool isMsgSenderLatestRollup = getLatestRollup() == msg.sender;
// If _moveWithLatestRollup is true, then msg.sender must be the latest rollup.
if (_moveWithLatestRollup) {
require(isMsgSenderLatestRollup, Errors.GSE__NotLatestRollup(msg.sender));
}
// Ensure that we are not already attesting on the rollup
require(!isRegistered(msg.sender, _attester), Errors.GSE__AlreadyRegistered(msg.sender, _attester));
// Ensure that if we are the latest rollup, we are not already attesting on the bonus instance.
if (isMsgSenderLatestRollup) {
require(
!isRegistered(BONUS_INSTANCE_ADDRESS, _attester),
Errors.GSE__AlreadyRegistered(BONUS_INSTANCE_ADDRESS, _attester)
);
}
// Set the recipient instance address, i.e. the one that will receive the attester.
// From above, we know that if we are here, and _moveWithLatestRollup is true,
// then msg.sender is the latest instance,
// but the user is targeting the bonus address.
// Otherwise, we use the msg.sender, which we know is a registered rollup
// thanks to the modifier.
address recipientInstance = _moveWithLatestRollup ? BONUS_INSTANCE_ADDRESS : msg.sender;
// Add the attester to the instance's checkpointed set of attesters.
require(
instances[recipientInstance].attesters.add(_attester), Errors.GSE__AlreadyRegistered(recipientInstance, _attester)
);
_checkProofOfPossession(_attester, _publicKeyInG1, _publicKeyInG2, _proofOfPossession);
// This is the ONLY place where we set the configuration for an attester.
// This means that their withdrawer and public keys are set once, globally.
// If they exit, they must re-deposit with a new key.
configOf[_attester] = AttesterConfig({withdrawer: _withdrawer, publicKey: _publicKeyInG1});
delegation.delegate(recipientInstance, _attester, recipientInstance);
delegation.increaseBalance(recipientInstance, _attester, ACTIVATION_THRESHOLD);
ASSET.safeTransferFrom(msg.sender, address(this), ACTIVATION_THRESHOLD);
Governance gov = getGovernance();
ASSET.approve(address(gov), ACTIVATION_THRESHOLD);
gov.deposit(address(this), ACTIVATION_THRESHOLD);
emit Deposit(recipientInstance, _attester, _withdrawer);
}
/**
* @notice Withdraws at least the amount specified.
* If the leftover balance is less than the minimum deposit, the entire balance is withdrawn.
*
* @dev To be used by a rollup to withdraw funds from the GSE. For example if slashing or
* just withdrawing events happen, a rollup can use this function to withdraw the funds.
* It looks in both the rollup instance and the bonus address for the attester.
*
* @dev Note that all funds are returned to the rollup, so for slashing the rollup itself must
* address the problem of "what to do" with the funds. And it must look at the returned amount
* withdrawn and the bool.
*
* @param _attester - The attester to withdraw from.
* @param _amount - The amount of staking asset to withdraw. Has 1:1 ratio with voting power.
*
* @return The actual amount withdrawn.
* @return True if attester is removed from set, false otherwise
* @return The id of the withdrawal at the governance
*/
function withdraw(address _attester, uint256 _amount)
external
override(IGSECore)
onlyRollup
returns (uint256, bool, uint256)
{
// We need to figure out where the attester is effectively located
// we start by looking at the instance that is withdrawing the attester
address withdrawingInstance = msg.sender;
InstanceAttesterRegistry storage attesterRegistry = instances[msg.sender];
bool foundAttester = attesterRegistry.attesters.contains(_attester);
// If we haven't found the attester in the rollup instance, and we are latest rollup, go look in the "bonus"
// instance.
if (
!foundAttester && getLatestRollup() == msg.sender
&& instances[BONUS_INSTANCE_ADDRESS].attesters.contains(_attester)
) {
withdrawingInstance = BONUS_INSTANCE_ADDRESS;
attesterRegistry = instances[BONUS_INSTANCE_ADDRESS];
foundAttester = true;
}
require(foundAttester, Errors.GSE__NothingToExit(_attester));
uint256 balance = delegation.getBalanceOf(withdrawingInstance, _attester);
require(balance >= _amount, Errors.GSE__InsufficientBalance(balance, _amount));
// First assume we are only withdrawing the amount specified.
uint256 amountWithdrawn = _amount;
// If the balance after withdrawal is less than the ejection threshold,
// we will remove the attester from the instance.
bool isRemoved = balance - _amount < EJECTION_THRESHOLD;
// Note that the current implementation of the rollup does not allow for partial withdrawals,
// via `initiateWithdraw`, so a "normal" withdrawal will always remove the attester from the instance.
// However, if the attester is slashed, we might just reduce the balance.
if (isRemoved) {
require(attesterRegistry.attesters.remove(_attester), Errors.GSE__FailedToRemove(_attester));
amountWithdrawn = balance;
// When removing the user, remove the delegating as well.
delegation.undelegate(withdrawingInstance, _attester);
// NOTE
// We intentionally did not remove the attester config.
// Attester config is set ONCE when the attester is first seen by the GSE,
// and is shared across all instances.
}
// Decrease the balance of the attester in the instance.
// Move voting power from the attester's delegatee to address(0) (unless the delegatee is already address(0))
// Reduce the supply of the instance and the total supply.
delegation.decreaseBalance(withdrawingInstance, _attester, amountWithdrawn);
// The withdrawal contains a pending amount that may be claimed using the withdrawal ID when a delay enforced by
// the Governance contract has passed.
// Note that the rollup is the one that receives the funds when the withdrawal is claimed.
uint256 withdrawalId = getGovernance().initiateWithdraw(msg.sender, amountWithdrawn);
return (amountWithdrawn, isRemoved, withdrawalId);
}
/**
* @notice A helper function to make it easy for users of the GSE to finalize
* a pending exit in the governance.
*
* Kept in here since it is already connected to Governance:
* we don't want the rollup to have to deal with links to gov etc.
*
* @dev Will be a no operation if the withdrawal is already collected.
*
* @param _withdrawalId - The id of the withdrawal
*/
function finalizeWithdraw(uint256 _withdrawalId) external override(IGSECore) {
Governance gov = getGovernance();
if (!gov.getWithdrawal(_withdrawalId).claimed) {
gov.finalizeWithdraw(_withdrawalId);
}
}
/**
* @notice Make a proposal to Governance via `Governance.proposeWithLock`
*
* @dev It is required to expose this on the GSE, since it is assumed that only the GSE can hold
* power in Governance (see the comment at the top of Governance.sol).
*
* @dev Transfers governance's configured `lockAmount` of ASSET from msg.sender to the GSE,
* and then into Governance.
*
* @dev Immediately creates a withdrawal from Governance for the `lockAmount`.
*
* @dev The delay until the withdrawal may be finalized is equal to the current `lockDelay` in Governance.
*
* @param _payload - The IPayload address, which is a contract that contains the proposed actions to be executed by
* the governance.
* @param _to - The address that will receive the withdrawn funds when the withdrawal is finalized (see
* `finalizeWithdraw`)
*
* @return The id of the proposal
*/
function proposeWithLock(IPayload _payload, address _to) external override(IGSECore) returns (uint256) {
Governance gov = getGovernance();
uint256 amount = gov.getConfiguration().proposeConfig.lockAmount;
ASSET.safeTransferFrom(msg.sender, address(this), amount);
ASSET.approve(address(gov), amount);
gov.deposit(address(this), amount);
return gov.proposeWithLock(_payload, _to);
}
/**
* @notice Delegates the voting power of `_attester` at `_instance` to `_delegatee`
*
* Only callable by the `withdrawer` for the given `_attester` at the given
* `_instance`. This is to ensure that the depositor in poor mans delegation;
* listing another entity as the `attester`, still controls his voting power,
* even if someone else is running the node. Separately, it makes it simpler
* to use cold-storage for more impactful actions.
*
* @dev The delegatee may use this voting power to vote on proposals in Governance.
*
* Note that voting power for a delegatee is timestamped. The delegatee must have this
* power before a proposal becomes "active" in order to use it.
* See `Governance.getProposalState` for more details.
*
* @param _instance - The address of the rollup instance (or bonus instance address)
* to which the `_attester` deposit is pledged.
* @param _attester - The address of the attester to delegate on behalf of
* @param _delegatee - The delegatee that should receive the power
*/
function delegate(address _instance, address _attester, address _delegatee) external override(IGSECore) {
require(isRollupRegistered(_instance), Errors.GSE__InstanceDoesNotExist(_instance));
address withdrawer = configOf[_attester].withdrawer;
require(msg.sender == withdrawer, Errors.GSE__NotWithdrawer(withdrawer, msg.sender));
delegation.delegate(_instance, _attester, _delegatee);
}
/**
* @notice Votes at the governance using the power delegated to `msg.sender`
*
* @param _proposalId - The id of the proposal in the governance to vote on
* @param _amount - The amount of voting power to use in the vote
* In the gov, it is possible to do a vote with partial power
* @param _support - True if supporting the proposal, false otherwise.
*/
function vote(uint256 _proposalId, uint256 _amount, bool _support) external override(IGSECore) {
_vote(msg.sender, _proposalId, _amount, _support);
}
/**
* @notice Votes at the governance using the power delegated to the bonus instance.
* Only callable by the rollup that was the latest rollup at the time of the proposal.
*
* @param _proposalId - The id of the proposal in the governance to vote on
* @param _amount - The amount of voting power to use in the vote
* In the gov, it is possible to do a vote with partial power
*/
function voteWithBonus(uint256 _proposalId, uint256 _amount, bool _support) external override(IGSECore) {
Timestamp ts = _pendingThrough(_proposalId);
require(msg.sender == getLatestRollupAt(ts), Errors.GSE__NotLatestRollup(msg.sender));
_vote(BONUS_INSTANCE_ADDRESS, _proposalId, _amount, _support);
}
function isRollupRegistered(address _instance) public view override(IGSECore) returns (bool) {
return instances[_instance].exists;
}
/**
* @notice Lookup if the `_attester` is in the `_instance` attester set
*
* @param _instance - The instance to look at
* @param _attester - The attester to lookup
*
* @return True if the `_attester` is in the set of `_instance`, false otherwise
*/
function isRegistered(address _instance, address _attester) public view override(IGSECore) returns (bool) {
return instances[_instance].attesters.contains(_attester);
}
/**
* @notice Get the address of latest instance
*
* @return The address of the latest instance
*/
function getLatestRollup() public view override(IGSECore) returns (address) {
return address(rollups.latest().toUint160());
}
/**
* @notice Get the address of the instance that was latest at time `_timestamp`
*
* @param _timestamp - The timestamp to lookup
*
* @return The address of the latest instance at the time of lookup
*/
function getLatestRollupAt(Timestamp _timestamp) public view override(IGSECore) returns (address) {
return address(rollups.upperLookup(Timestamp.unwrap(_timestamp).toUint32()).toUint160());
}
function getGovernance() public view override(IGSECore) returns (Governance) {
return governance;
}
/**
* @notice Inner logic for the vote
*
* @dev Fetches the timestamp where proposal becomes active, and use it for the voting power
* of the `_voter`
*
* @param _voter - The voter
* @param _proposalId - The proposal to vote on
* @param _amount - The amount of power to use
* @param _support - True to support the proposal, false otherwise
*/
function _vote(address _voter, uint256 _proposalId, uint256 _amount, bool _support) internal {
Timestamp ts = _pendingThrough(_proposalId);
// Mark the power as spent within our delegation accounting.
delegation.usePower(_voter, _proposalId, ts, _amount);
// Vote on the proposal
getGovernance().vote(_proposalId, _amount, _support);
}
function _checkProofOfPossession(
address _attester,
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession
) internal virtual {
// Make sure the attester has not registered before
G1Point memory previouslyRegisteredPoint = configOf[_attester].publicKey;
require(
(previouslyRegisteredPoint.x == 0 && previouslyRegisteredPoint.y == 0),
Errors.GSE__CannotChangePublicKeys(previouslyRegisteredPoint.x, previouslyRegisteredPoint.y)
);
// Make sure the incoming point has not been seen before
// NOTE: we only need to check for the existence of Pk1, and not also for Pk2,
// as the Pk2 will be constrained to have the same underlying secret key as part of the proofOfPossession,
// so existence/correctness of Pk2 is implied by existence/correctness of Pk1.
bytes32 hashedIncomingPoint = keccak256(abi.encodePacked(_publicKeyInG1.x, _publicKeyInG1.y));
require((!ownedPKs[hashedIncomingPoint]), Errors.GSE__ProofOfPossessionAlreadySeen(hashedIncomingPoint));
ownedPKs[hashedIncomingPoint] = true;
// We validate the proof of possession using an external contract to limit gas potentially "sacrificed"
// in case of failure.
require(
BN254_LIB_WRAPPER.proofOfPossession{gas: proofOfPossessionGasLimit}(
_publicKeyInG1, _publicKeyInG2, _proofOfPossession
),
Errors.GSE__InvalidProofOfPossession()
);
}
function _pendingThrough(uint256 _proposalId) internal view returns (Timestamp) {
// Directly compute pendingThrough for memory proposal
Proposal memory proposal = getGovernance().getProposal(_proposalId);
return proposal.creation + proposal.config.votingDelay;
}
}
contract GSE is IGSE, GSECore {
using AddressSnapshotLib for SnapshottedAddressSet;
using SafeCast for uint256;
using SafeCast for uint224;
using Checkpoints for Checkpoints.Trace224;
using DepositDelegationLib for DepositAndDelegationAccounting;
constructor(address __owner, IERC20 _asset, uint256 _activationThreshold, uint256 _ejectionThreshold)
GSECore(__owner, _asset, _activationThreshold, _ejectionThreshold)
{}
/**
* @notice Get the registration digest of a public key
* by hashing the the public key to a point on the curve which may subsequently
* be signed by the corresponding private key.
*
* @param _publicKey - The public key to get the registration digest of
*
* @return The registration digest of the public key. Sign and submit as a proof of possession.
*/
function getRegistrationDigest(G1Point memory _publicKey) external view override(IGSE) returns (G1Point memory) {
return BN254_LIB_WRAPPER.g1ToDigestPoint(_publicKey);
}
function getConfig(address _attester) external view override(IGSE) returns (AttesterConfig memory) {
return configOf[_attester];
}
function getWithdrawer(address _attester) external view override(IGSE) returns (address withdrawer) {
AttesterConfig memory config = configOf[_attester];
return config.withdrawer;
}
function balanceOf(address _instance, address _attester) external view override(IGSE) returns (uint256) {
return delegation.getBalanceOf(_instance, _attester);
}
/**
* @notice Get the effective balance of the attester at the instance.
*
* The effective balance is the balance of the attester at the specific instance or at the bonus if the
* instance is the latest rollup and he was not at the specific. We can do this as an `or` since the
* attester may only be active at one of them.
*
* @param _instance - The instance to look at
* @param _attester - The attester to look at
*
* @return The effective balance of the attester at the instance
*/
function effectiveBalanceOf(address _instance, address _attester) external view override(IGSE) returns (uint256) {
uint256 balance = delegation.getBalanceOf(_instance, _attester);
if (balance == 0 && getLatestRollup() == _instance) {
return delegation.getBalanceOf(BONUS_INSTANCE_ADDRESS, _attester);
}
return balance;
}
function supplyOf(address _instance) external view override(IGSE) returns (uint256) {
return delegation.getSupplyOf(_instance);
}
function totalSupply() external view override(IGSE) returns (uint256) {
return delegation.getSupply();
}
function getDelegatee(address _instance, address _attester) external view override(IGSE) returns (address) {
return delegation.getDelegatee(_instance, _attester);
}
function getVotingPower(address _delegatee) external view override(IGSE) returns (uint256) {
return delegation.getVotingPower(_delegatee);
}
function getAttestersFromIndicesAtTime(address _instance, Timestamp _timestamp, uint256[] memory _indices)
external
view
override(IGSE)
returns (address[] memory)
{
return _getAddressFromIndicesAtTimestamp(_instance, _indices, _timestamp);
}
/**
* @notice Get the G1 public keys of the attesters
*
* NOTE: this function does NOT check if the attesters are CURRENTLY ACTIVE.
*
* @param _attesters - The attesters to lookup
*
* @return The G1 public keys of the attesters
*/
function getG1PublicKeysFromAddresses(address[] memory _attesters)
external
view
override(IGSE)
returns (G1Point[] memory)
{
G1Point[] memory keys = new G1Point[](_attesters.length);
for (uint256 i = 0; i < _attesters.length; i++) {
keys[i] = configOf[_attesters[i]].publicKey;
}
return keys;
}
function getAttesterFromIndexAtTime(address _instance, uint256 _index, Timestamp _timestamp)
external
view
override(IGSE)
returns (address)
{
uint256[] memory indices = new uint256[](1);
indices[0] = _index;
return _getAddressFromIndicesAtTimestamp(_instance, indices, _timestamp)[0];
}
function getPowerUsed(address _delegatee, uint256 _proposalId) external view override(IGSE) returns (uint256) {
return delegation.getPowerUsed(_delegatee, _proposalId);
}
function getBonusInstanceAddress() external pure override(IGSE) returns (address) {
return BONUS_INSTANCE_ADDRESS;
}
function getVotingPowerAt(address _delegatee, Timestamp _timestamp) public view override(IGSE) returns (uint256) {
return delegation.getVotingPowerAt(_delegatee, _timestamp);
}
/**
* @notice Get the number of effective attesters at the instance at the time of `_timestamp`
* (including the bonus instance)
*
* @param _instance - The instance to look at
* @param _timestamp - The timestamp to lookup
*
* @return The number of effective attesters at the instance at the time of `_timestamp`
*/
function getAttesterCountAtTime(address _instance, Timestamp _timestamp) public view override(IGSE) returns (uint256) {
InstanceAttesterRegistry storage store = instances[_instance];
uint32 timestamp = Timestamp.unwrap(_timestamp).toUint32();
uint256 count = store.attesters.lengthAtTimestamp(timestamp);
if (getLatestRollupAt(_timestamp) == _instance) {
count += instances[BONUS_INSTANCE_ADDRESS].attesters.lengthAtTimestamp(timestamp);
}
return count;
}
/**
* @notice Get the addresses of the attesters at the instance at the time of `_timestamp`
*
* @dev
*
* @param _instance - The instance to look at
* @param _indices - The indices of the attesters to lookup
* @param _timestamp - The timestamp to lookup
*
* @return The addresses of the attesters at the instance at the time of `_timestamp`
*/
function _getAddressFromIndicesAtTimestamp(address _instance, uint256[] memory _indices, Timestamp _timestamp)
internal
view
returns (address[] memory)
{
address[] memory attesters = new address[](_indices.length);
// Note: This function could get called where _instance is the bonus instance.
// This is okay, because we know that in this case, `isLatestRollup` will be false.
// So we won't double count.
InstanceAttesterRegistry storage instanceStore = instances[_instance];
InstanceAttesterRegistry storage bonusStore = instances[BONUS_INSTANCE_ADDRESS];
bool isLatestRollup = getLatestRollupAt(_timestamp) == _instance;
uint32 ts = Timestamp.unwrap(_timestamp).toUint32();
// The effective size of the set will be the size of the instance attesters, plus the size of the bonus attesters
// if the instance is the latest rollup. This will effectively work as one long list with [...instance, ...bonus]
uint256 storeSize = instanceStore.attesters.lengthAtTimestamp(ts);
uint256 canonicalSize = isLatestRollup ? bonusStore.attesters.lengthAtTimestamp(ts) : 0;
uint256 totalSize = storeSize + canonicalSize;
// We loop through the indices, and for each index we get the attester from the instance or bonus instance
// depending on value in the collective list [...instance, ...bonus]
for (uint256 i = 0; i < _indices.length; i++) {
uint256 index = _indices[i];
require(index < totalSize, Errors.GSE__OutOfBounds(index, totalSize));
// since we have ensured that the index is not out of bounds, we can use the unsafe function in
// `AddressSnapshotLib` to fetch if. We use the `recent` variant as we expect the attesters to
// mainly be from recent history when fetched during tx execution.
if (index < storeSize) {
attesters[i] = instanceStore.attesters.unsafeGetRecentAddressFromIndexAtTimestamp(index, ts);
} else if (isLatestRollup) {
attesters[i] = bonusStore.attesters.unsafeGetRecentAddressFromIndexAtTimestamp(index - storeSize, ts);
} else {
revert Errors.GSE__FatalError("SHOULD NEVER HAPPEN");
}
}
return attesters;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {BN254Lib, G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
import {IBn254LibWrapper} from "./interfaces/IBn254LibWrapper.sol";
contract Bn254LibWrapper is IBn254LibWrapper {
function proofOfPossession(
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession
) external view override(IBn254LibWrapper) returns (bool) {
return BN254Lib.proofOfPossession(_publicKeyInG1, _publicKeyInG2, _proofOfPossession);
}
function g1ToDigestPoint(G1Point memory pk1) external view override(IBn254LibWrapper) returns (G1Point memory) {
return BN254Lib.g1ToDigestPoint(pk1);
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {
IGovernance,
Proposal,
ProposalState,
Configuration,
ProposeWithLockConfiguration,
Withdrawal
} from "@aztec/governance/interfaces/IGovernance.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {Checkpoints, CheckpointedUintLib} from "@aztec/governance/libraries/CheckpointedUintLib.sol";
import {Ballot, CompressedBallot, BallotLib} from "@aztec/governance/libraries/compressed-data/Ballot.sol";
import {
CompressedConfiguration,
CompressedConfigurationLib
} from "@aztec/governance/libraries/compressed-data/Configuration.sol";
import {CompressedProposal, CompressedProposalLib} from "@aztec/governance/libraries/compressed-data/Proposal.sol";
import {ConfigurationLib} from "@aztec/governance/libraries/ConfigurationLib.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {ProposalLib, VoteTabulationReturn} from "@aztec/governance/libraries/ProposalLib.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {IERC20} from "@oz/token/ERC20/IERC20.sol";
import {SafeERC20} from "@oz/token/ERC20/utils/SafeERC20.sol";
/**
* @dev a whitelist, controlling who may have power in the governance contract.
* That is, an address must be an approved beneficiary to receive power via `deposit`.
*
* The caveat is that the owner of the contract may open the floodgates, allowing all addresses to hold power.
* This is currently a "one-way-valve", since if it were reopened after being shut,
* the contract is in an odd state where entities are holding power, but not allowed to receive more;
* the whitelist is enabled, but does not reflect the functional entities in the system.
* As an aside, it is unlikely that in the event Governance were opened up to all addresses,
* those same addresses would subsequently vote to close it again.
*
* In practice, it is expected that the only authorized beneficiary will be the GSE.
* This is because all rollup instances deposit their stake into the GSE, which in turn deposits it into the governance
* contract. In turn, it is the GSE that votes on proposals.
*/
struct DepositControl {
mapping(address beneficiary => bool allowed) isAllowed;
bool allBeneficiariesAllowed;
}
/**
* @title Governance
* @author Aztec Labs
* @notice A contract that implements governance logic for proposal creation, voting, and execution.
* Uses a snapshot-based voting model with partial vote support to enable aggregated voting.
*
* Partial vote support: Allows voters to split their voting power across multiple proposals
* or options, rather than using all their votes on a single choice.
*
* Aggregated voting: The contract collects and sums votes from multiple sources or over time,
* combining them to determine the final outcome of each proposal.
*
* @dev KEY CONCEPTS:
*
* **Power**: Funds received via `deposit` are held by Governance and tracked 1:1 as "power" for the beneficiary.
*
* **Proposals**: Payloads containing actions to be executed by governance (excluding calls to the governance ASSET).
*
* **Deposit Control**: A whitelist system controlling who can hold power in governance.
* - Initially restricted to approved beneficiaries (expected to be only the GSE)
* - Can be opened to all addresses via `openFloodgates` (one-way valve)
* - The GSE aggregates stake from all rollup instances and votes on their behalf
*
* **Voting Power**: Based on checkpointed deposit history, calculated per proposal.
*
* @dev PROPOSAL LIFECYCLE: (see `getProposalState` for details)
*
* The current state of a proposal may be retrieved via `getProposalState`.
*
* 1. **Pending** (creation → creation + votingDelay)
* - Proposal exists but voting hasn't started
* - Power snapshot taken at end of this phase
*
* 2. **Active** (pendingThrough + 1 → pendingThrough + votingDuration)
* - Voting open using power from snapshot
* - Multiple partial votes allowed per user
*
* 3. **Vote Evaluation** → Rejected if criteria not met:
* - Minimum quorum (% of total power)
* - Required yea margin (yea votes minus nay votes)
*
* 4. **Queued** (activeThrough + 1 → activeThrough + executionDelay)
* - Timelock period before execution
*
* 5. **Executable** (queuedThrough + 1 → queuedThrough + gracePeriod)
* - Anyone can execute during this window
*
* 6. **Other States**:
* - Executed: Successfully completed
* - Expired: Execution window passed
* - Rejected: Failed voting criteria
* - Droppable: Proposer changed
* - Dropped: Proposal dropped via `dropProposal`
*
* @dev USER FLOW:
*
* 1. **Deposit**: Transfer ASSET to governance for voting power
* - Only whitelisted beneficiaries can hold power
* - Power is checkpointed for historical lookups
*
* 2. **Vote**: Use power from proposal's snapshot timestamp
* - Support partial voting (multiple votes allowed, both yea and nay)
* - A user's total votes may not exceed their power snapshot for the proposal
*
* 3. **Withdraw**: Two-step process with delay
* - Initiate: Reduce power
* - Finalize: Transfer funds after delay expires
* - Standard delay: votingDelay/5 + votingDuration + executionDelay
*
* @dev PROPOSAL CREATION:
*
* - **Standard**: `governanceProposer` calls `propose`
* - **Emergency**: Anyone with sufficient power calls `proposeWithLock`
* - Requires withdrawing `lockAmount` of power with a finalization delay of `lockDelay`
* - Proposal proposer becomes governance itself (cannot be dropped)
*
* @dev CONFIGURATION:
* All timing parameters are controlled by the governance configuration:
* - votingDelay: Buffer before voting opens
* - votingDuration: Voting period length
* - executionDelay: Timelock after voting before the proposal may be executed
* - gracePeriod: Execution window
* - minimumVotes: Absolute minimum voting power in system
* - quorum: Minimum acceptable participation as a percentage of total power
* - requiredYeaMargin: Required difference between yea and nay votes as a percentage of the votes cast
* - lockAmount: The amount of power to withdraw when `proposeWithLock` is called
* - lockDelay: The delay before a withdrawal created by `proposeWithLock` is finalized
*/
contract Governance is IGovernance {
using SafeERC20 for IERC20;
using ProposalLib for CompressedProposal;
using CheckpointedUintLib for Checkpoints.Trace224;
using ConfigurationLib for Configuration;
using ConfigurationLib for CompressedConfiguration;
using CompressedConfigurationLib for CompressedConfiguration;
using CompressedProposalLib for CompressedProposal;
using BallotLib for CompressedBallot;
IERC20 public immutable ASSET;
/**
* @dev The address that is allowed to `propose` new proposals.
*
* This address can only be updated by the governance itself through a proposal.
*/
address public governanceProposer;
/**
* @dev The whitelist of beneficiaries that are allowed to hold power via `deposit`,
* and the flag to allow all beneficiaries to hold power.
*/
DepositControl internal depositControl;
/**
* @dev The proposals that have been made.
*
* The proposal ID is the current count of proposals (see `proposalCount`).
* New proposals are created by calling `_propose`, via `propose` or `proposeWithLock`.
* The storage of a proposal may be modified by calling `vote`, `execute`, or `dropProposal`.
*/
mapping(uint256 proposalId => CompressedProposal proposal) internal proposals;
/**
* @dev The ballots that have been cast for each proposal.
*
* `CompressedBallot`s contain a compressed `yea` and `nay` count (uint128 each packed into uint256),
* which are the number of votes for and against the proposal.
* `ballots` is only updated during `vote`.
*/
mapping(uint256 proposalId => mapping(address user => CompressedBallot ballot)) internal ballots;
/**
* @dev Checkpointed deposit amounts for an address.
*
* `users` is only updated during `deposit`, `initiateWithdraw`, and `proposeWithLock`.
*/
mapping(address userAddress => Checkpoints.Trace224 user) internal users;
/**
* @dev Withdrawals that have been initiated.
*
* `withdrawals` is only updated during `initiateWithdraw`, `proposeWithLock`, and `finalizeWithdraw`.
*/
mapping(uint256 withdrawalId => Withdrawal withdrawal) internal withdrawals;
/**
* @dev The configuration of the governance contract.
*
* `configuration` is set in the constructor, and is only updated during `updateConfiguration`,
* which must be done via a proposal.
*/
CompressedConfiguration internal configuration;
/**
* @dev The total power of the governance contract.
*
* `total` is only updated during `deposit`, `initiateWithdraw`, and `proposeWithLock`.
*/
Checkpoints.Trace224 internal total;
/**
* @dev The count of proposals that have been made.
*
* `proposalCount` is only updated during `_propose`.
*/
uint256 public proposalCount;
/**
* @dev The count of withdrawals that have been initiated.
*
* `withdrawalCount` is only updated during `initiateWithdraw` and `proposeWithLock`.
*/
uint256 public withdrawalCount;
/**
* @dev Modifier to ensure that the caller is the governance contract itself.
*
* The caller will only be the governance itself if executed via a proposal.
*/
modifier onlySelf() {
require(msg.sender == address(this), Errors.Governance__CallerNotSelf(msg.sender, address(this)));
_;
}
/**
* @dev Modifier to ensure that the beneficiary is allowed to hold power in Governance.
*/
modifier isDepositAllowed(address _beneficiary) {
require(msg.sender != address(this), Errors.Governance__CallerCannotBeSelf());
require(
depositControl.allBeneficiariesAllowed || depositControl.isAllowed[_beneficiary],
Errors.Governance__DepositNotAllowed()
);
_;
}
/**
* @dev the initial _beneficiary is expected to be the GSE or address(0) for anyone
*/
constructor(IERC20 _asset, address _governanceProposer, address _beneficiary, Configuration memory _configuration) {
ASSET = _asset;
governanceProposer = _governanceProposer;
_configuration.assertValid();
configuration = CompressedConfigurationLib.compress(_configuration);
if (_beneficiary == address(0)) {
depositControl.allBeneficiariesAllowed = true;
emit FloodGatesOpened();
} else {
depositControl.allBeneficiariesAllowed = false;
depositControl.isAllowed[_beneficiary] = true;
emit BeneficiaryAdded(_beneficiary);
}
}
/**
* @notice Add a beneficiary to the whitelist.
* @dev The beneficiary may hold power in the governance contract after this call.
* only callable by the governance contract itself.
*
* @param _beneficiary The address to add to the whitelist.
*/
function addBeneficiary(address _beneficiary) external override(IGovernance) onlySelf {
depositControl.isAllowed[_beneficiary] = true;
emit BeneficiaryAdded(_beneficiary);
}
/**
* @notice Allow all addresses to hold power in the governance contract.
* @dev This is a one-way valve.
* only callable by the governance contract itself.
*/
function openFloodgates() external override(IGovernance) onlySelf {
depositControl.allBeneficiariesAllowed = true;
emit FloodGatesOpened();
}
/**
* @notice Update the governance proposer.
* @dev The governance proposer is the address that is allowed to use `propose`.
*
* @dev only callable by the governance contract itself.
*
* @dev causes all proposals proposed by the previous governance proposer to be `Droppable`.
*
* @dev prevents the governance proposer from being set to the governance contract itself.
*
* @param _governanceProposer The new governance proposer.
*/
function updateGovernanceProposer(address _governanceProposer) external override(IGovernance) onlySelf {
require(_governanceProposer != address(this), Errors.Governance__GovernanceProposerCannotBeSelf());
governanceProposer = _governanceProposer;
emit GovernanceProposerUpdated(_governanceProposer);
}
/**
* @notice Update the governance configuration.
* only callable by the governance contract itself.
*
* @dev all existing proposals will use the configuration they were created with.
*/
function updateConfiguration(Configuration memory _configuration) external override(IGovernance) onlySelf {
// This following MUST revert if the configuration is invalid
_configuration.assertValid();
configuration = CompressedConfigurationLib.compress(_configuration);
emit ConfigurationUpdated(Timestamp.wrap(block.timestamp));
}
/**
* @notice Deposit funds into the governance contract, transferring ASSET from msg.sender to the governance contract,
* increasing the power 1:1 of the beneficiary within the governance contract.
*
* @dev The beneficiary must be allowed to hold power in the governance contract,
* according to `depositControl`.
*
* Increments the checkpointed power of the specified beneficiary, and the total power of the governance contract.
*
* Note that anyone may deposit funds into the governance contract, and the only restriction is that
* the beneficiary must be allowed to hold power in the governance contract, according to `depositControl`.
*
* It is worth pointing out that someone could attempt to spam the deposit function, and increase the cost to vote
* as a result of creating many checkpoints. In reality though, as the checkpoints are using time as a key it would
* take ~36 years of continuous spamming to increase the cost to vote by ~66K gas with 12 second block times.
*
* @param _beneficiary The beneficiary to increase the power of.
* @param _amount The amount of funds to deposit, which is converted to power 1:1.
*/
function deposit(address _beneficiary, uint256 _amount) external override(IGovernance) isDepositAllowed(_beneficiary) {
ASSET.safeTransferFrom(msg.sender, address(this), _amount);
users[_beneficiary].add(_amount);
total.add(_amount);
emit Deposit(msg.sender, _beneficiary, _amount);
}
/**
* @notice Initiate a withdrawal of funds from the governance contract,
* decreasing the power of the beneficiary within the governance contract.
*
* @dev the withdraw may be finalized by anyone after configuration.getWithdrawalDelay() has passed.
*
* @param _to The address that will receive the funds when the withdrawal is finalized.
* @param _amount The amount of power to reduce, and thus funds to withdraw.
* @return The id of the withdrawal, passed to `finalizeWithdraw`.
*/
function initiateWithdraw(address _to, uint256 _amount) external override(IGovernance) returns (uint256) {
return _initiateWithdraw(msg.sender, _to, _amount, configuration.getWithdrawalDelay());
}
/**
* @notice Finalize a withdrawal of funds from the governance contract,
* transferring ASSET from the governance contract to the recipient specified in the withdrawal.
*
* @dev The withdrawal must not have been claimed, and the delay specified on the withdrawal must have passed.
*
* @param _withdrawalId The id of the withdrawal to finalize.
*/
function finalizeWithdraw(uint256 _withdrawalId) external override(IGovernance) {
Withdrawal storage withdrawal = withdrawals[_withdrawalId];
// This is a sanity check, the `recipient` will only be zero for a non-existent withdrawal, so this avoids
// `finalize`ing non-existent withdrawals. Note, that `_initiateWithdraw` will fail if `_to` is `address(0)`
require(withdrawal.recipient != address(0), Errors.Governance__WithdrawalNotInitiated());
require(!withdrawal.claimed, Errors.Governance__WithdrawalAlreadyClaimed());
require(
Timestamp.wrap(block.timestamp) >= withdrawal.unlocksAt,
Errors.Governance__WithdrawalNotUnlockedYet(Timestamp.wrap(block.timestamp), withdrawal.unlocksAt)
);
withdrawal.claimed = true;
emit WithdrawFinalized(_withdrawalId);
ASSET.safeTransfer(withdrawal.recipient, withdrawal.amount);
}
/**
* @notice Propose a new proposal as the governanceProposer
*
* @dev the state of the proposal may be retrieved via `getProposalState`.
*
* Note that the `proposer` of the proposal is the *current* governanceProposer; if the governanceProposer
* no longer matches the one stored in the proposal, the state of the proposal will be `Droppable`.
*
* @param _proposal The IPayload address, which is a contract that contains the proposed actions to be executed by the
* governance.
* @return The id of the proposal.
*/
function propose(IPayload _proposal) external override(IGovernance) returns (uint256) {
require(
msg.sender == governanceProposer, Errors.Governance__CallerNotGovernanceProposer(msg.sender, governanceProposer)
);
return _propose(_proposal, governanceProposer);
}
/**
* @notice Propose a new proposal by withdrawing an existing amount of power from Governance with a longer delay.
*
* @dev proposals made in this way are identical to those made by the governanceProposer, with the exception
* that the "proposer" stored in the proposal is the address of the governance contract itself,
* which means it will not transition to a "Droppable" state if the governanceProposer changes.
*
* @dev this is intended to only be used in an emergency, where the governanceProposer is compromised.
*
* @dev We don't actually need to check available power here, since if the msg.sender does not have
* sufficient balance, the `_initiateWithdraw` would revert with an underflow.
*
* @param _proposal The IPayload address, which is a contract that contains the proposed actions to be executed by
* the governance.
* @param _to The address that will receive the withdrawn funds when the withdrawal is finalized (see
* `finalizeWithdraw`)
* @return The id of the proposal
*/
function proposeWithLock(IPayload _proposal, address _to) external override(IGovernance) returns (uint256) {
ProposeWithLockConfiguration memory proposeConfig = configuration.getProposeConfig();
_initiateWithdraw(msg.sender, _to, proposeConfig.lockAmount, proposeConfig.lockDelay);
return _propose(_proposal, address(this));
}
/**
* @notice Vote on a proposal.
* @dev The proposal must be `Active` to vote on it.
*
* NOTE: The amount of power to vote is equal to the power of msg.sender at the time
* just before the proposal became active.
*
* The same caller (e.g. the GSE) may `vote` multiple times, voting different ways,
* so long as their total votes are less than or equal to their available power;
* each vote is tracked per proposal, per caller within the `ballots` mapping.
*
* We keep track of the total yea and nay votes as a `summedBallot` on the proposal in storage.
*
* @param _proposalId The id of the proposal to vote on.
* @param _amount The amount of power to vote with, which must be less than the available power.
* @param _support The support of the vote.
*/
function vote(uint256 _proposalId, uint256 _amount, bool _support) external override(IGovernance) {
ProposalState state = getProposalState(_proposalId);
require(state == ProposalState.Active, Errors.Governance__ProposalNotActive());
// Compute the power at the time the proposals goes from pending to active.
// This is the last second before active, and NOT the first second active, because it would then be possible to
// alter the power while the proposal is active since all txs in a block have the same timestamp.
uint256 userPower = users[msg.sender].valueAt(proposals[_proposalId].pendingThrough());
CompressedBallot userBallot = ballots[_proposalId][msg.sender];
uint256 availablePower = userPower - (userBallot.getNay() + userBallot.getYea());
require(_amount <= availablePower, Errors.Governance__InsufficientPower(msg.sender, availablePower, _amount));
CompressedProposal storage proposal = proposals[_proposalId];
if (_support) {
ballots[_proposalId][msg.sender] = userBallot.addYea(_amount);
proposal.addYea(_amount);
} else {
ballots[_proposalId][msg.sender] = userBallot.addNay(_amount);
proposal.addNay(_amount);
}
emit VoteCast(_proposalId, msg.sender, _support, _amount);
}
/**
* @notice Execute a proposal.
* @dev The proposal must be `Executable` to execute it.
* If it is, we mark the proposal as `Executed` and execute the actions,
* simply looping through and calling them.
*
* As far as the individual calls, there are 2 safety measures:
* - The call cannot target the ASSET which underlies the governance contract
* - The call must succeed
*
* @param _proposalId The id of the proposal to execute.
*/
function execute(uint256 _proposalId) external override(IGovernance) {
ProposalState state = getProposalState(_proposalId);
require(state == ProposalState.Executable, Errors.Governance__ProposalNotExecutable());
CompressedProposal storage proposal = proposals[_proposalId];
proposal.cachedState = ProposalState.Executed;
IPayload.Action[] memory actions = proposal.payload.getActions();
for (uint256 i = 0; i < actions.length; i++) {
require(actions[i].target != address(ASSET), Errors.Governance__CannotCallAsset());
// We allow calls to EOAs. If you really want be my guest.
// solhint-disable-next-line avoid-low-level-calls
(bool success,) = actions[i].target.call(actions[i].data);
require(success, Errors.Governance__CallFailed(actions[i].target));
}
emit ProposalExecuted(_proposalId);
}
/**
* @notice Update a proposal to be `Dropped`.
* @dev The proposal must be `Droppable` to mark it permanently as `Dropped`.
* See `getProposalState` for more details.
*
* @param _proposalId The id of the proposal to mark as `Dropped`.
*/
function dropProposal(uint256 _proposalId) external override(IGovernance) {
CompressedProposal storage self = proposals[_proposalId];
require(self.cachedState != ProposalState.Dropped, Errors.Governance__ProposalAlreadyDropped());
require(getProposalState(_proposalId) == ProposalState.Droppable, Errors.Governance__ProposalCannotBeDropped());
self.cachedState = ProposalState.Dropped;
emit ProposalDropped(_proposalId);
}
/**
* @notice Get the power of an address at a given timestamp.
*
* @param _owner The address to get the power of.
* @param _ts The timestamp to get the power at.
* @return The power of the address at the given timestamp.
*/
function powerAt(address _owner, Timestamp _ts) external view override(IGovernance) returns (uint256) {
return users[_owner].valueAt(_ts);
}
/**
* @notice Get the power of an address at the current block timestamp.
*
* Note that `powerNow` with the current block timestamp is NOT STABLE.
*
* For example, imagine a transaction that performs the following:
* 1. deposit
* 2. powerNow
* 3. deposit
* 4. powerNow
*
* The powerNow at 4 will be different from the powerNow at 2.
*
* @param _owner The address to get the power of.
* @return The power of the address at the current block timestamp.
*/
function powerNow(address _owner) external view override(IGovernance) returns (uint256) {
return users[_owner].valueNow();
}
/**
* @notice Get the total power in Governance at a given timestamp.
*
* @param _ts The timestamp to get the power at.
* @return The total power at the given timestamp.
*/
function totalPowerAt(Timestamp _ts) external view override(IGovernance) returns (uint256) {
return total.valueAt(_ts);
}
/**
* @notice Get the total power in Governance at the current block timestamp.
* Note that `powerNow` with the current block timestamp is NOT STABLE.
*
* @return The total power at the current block timestamp.
*/
function totalPowerNow() external view override(IGovernance) returns (uint256) {
return total.valueNow();
}
/**
* @notice Check if an address is permitted to hold power in Governance.
*
* @param _beneficiary The address to check.
* @return True if the address is permitted to hold power in Governance.
*/
function isPermittedInGovernance(address _beneficiary) external view override(IGovernance) returns (bool) {
return depositControl.isAllowed[_beneficiary];
}
/**
* @notice Check if everyone is permitted to hold power in Governance.
*
* @return True if everyone is permitted to hold power in Governance.
*/
function isAllBeneficiariesAllowed() external view override(IGovernance) returns (bool) {
return depositControl.allBeneficiariesAllowed;
}
function getConfiguration() external view override(IGovernance) returns (Configuration memory) {
return configuration.decompress();
}
/**
* @notice Get a proposal by its id.
*
* @dev Will return default values (0) for non-existing proposals
*
* @param _proposalId The id of the proposal to get.
* @return The proposal.
*/
function getProposal(uint256 _proposalId) external view override(IGovernance) returns (Proposal memory) {
return proposals[_proposalId].decompress();
}
/**
* @notice Get a withdrawal by its id.
*
* @dev Will return default values (0) for non-existing withdrawals
*
* @param _withdrawalId The id of the withdrawal to get.
* @return The withdrawal.
*/
function getWithdrawal(uint256 _withdrawalId) external view override(IGovernance) returns (Withdrawal memory) {
return withdrawals[_withdrawalId];
}
/**
* @notice Get a user's ballot for a specific proposal.
*
* @dev Returns the uncompressed Ballot struct for external callers.
*
* @param _proposalId The id of the proposal.
* @param _user The address of the user.
* @return The user's ballot with yea and nay votes.
*/
function getBallot(uint256 _proposalId, address _user) external view override(IGovernance) returns (Ballot memory) {
return ballots[_proposalId][_user].decompress();
}
/**
* @notice Get the state of a proposal in the governance system
*
* @dev Determine the current state of a proposal based on timestamps, vote results, and governance configuration.
*
* @dev NB: the state returned here is LOGICAL, and is the "true state" of the proposal:
* it need not match the state of the proposal in storage, which is effectively just a cache.
*
* Flow Logic:
* 1. Check if proposal exists (revert if not)
* 2. If the cached state of the proposal is "stable" (Executed/Dropped), return that state
* 3. Check if governance proposer changed (→ Droppable, unless proposed via lock)
* 4. Time-based state transitions:
* - currentTime ≤ pendingThrough() → Pending
* - currentTime ≤ activeThrough() → Active
* - Vote tabulation check → Rejected if not accepted
* - currentTime ≤ queuedThrough() → Queued
* - currentTime ≤ executableThrough() → Executable
* - Otherwise → Expired
*
* @dev State Descriptions:
* - Pending: Proposal created but voting hasn't started yet
* - Active: Voting is currently open
* - Rejected: Voting closed but proposal didn't meet acceptance criteria
* - Queued: Proposal accepted and waiting for execution window
* - Executable: Proposal can be executed
* - Expired: Execution window has passed
* - Droppable: Proposer changed
* - Dropped: Proposal dropped by calling `dropProposal`
* - Executed: Proposal has been successfully executed
*
* @dev edge case: it is possible that a proposal be "Droppable" according to the logic here,
* but no one called `dropProposal`, and then be in a different state later.
* This can happen if, for whatever reason, the governance proposer stored by this contract changes
* from the one the proposal is made via, (which would cause this function to return `Droppable`),
* but then a separate proposal is executed which restores the original governance proposer.
* So, `Dropped` is permanent, but `Droppable` is not.
*
* @param _proposalId The ID of the proposal to check
* @return The current state of the proposal
*/
function getProposalState(uint256 _proposalId) public view override(IGovernance) returns (ProposalState) {
require(_proposalId < proposalCount, Errors.Governance__ProposalDoesNotExists(_proposalId));
CompressedProposal storage self = proposals[_proposalId];
// A proposal's state is "stable" after `execute` or `dropProposal` has been called on it.
// In this case, the state of the proposal as returned by `getProposalState` is the same as the cached state,
// and the state will not change.
if (self.cachedState == ProposalState.Executed || self.cachedState == ProposalState.Dropped) {
return self.cachedState;
}
// If the governanceProposer has changed, and the proposal did not come through `proposeWithLock`,
// the state of the proposal is `Droppable`.
if (governanceProposer != self.proposer && address(this) != self.proposer) {
return ProposalState.Droppable;
}
Timestamp currentTime = Timestamp.wrap(block.timestamp);
if (currentTime <= self.pendingThrough()) {
return ProposalState.Pending;
}
if (currentTime <= self.activeThrough()) {
return ProposalState.Active;
}
uint256 totalPower = total.valueAt(self.pendingThrough());
(VoteTabulationReturn vtr,) = self.voteTabulation(totalPower);
if (vtr != VoteTabulationReturn.Accepted) {
return ProposalState.Rejected;
}
if (currentTime <= self.queuedThrough()) {
return ProposalState.Queued;
}
if (currentTime <= self.executableThrough()) {
return ProposalState.Executable;
}
return ProposalState.Expired;
}
/**
* @dev reduce the user's power, the total power, and insert a new withdrawal.
*
* The reason for a configurable delay is that `proposeWithLock` creates a withdrawal,
* which has a (presumably) very long delay, whereas `initiateWithdraw` has a much shorter delay.
*
* @param _from The address to reduce the power of.
* @param _to The address to send the funds to.
* @param _amount The amount of power to reduce, and thus funds to withdraw.
* @param _delay The delay before the funds can be withdrawn.
* @return The id of the withdrawal.
*/
function _initiateWithdraw(address _from, address _to, uint256 _amount, Timestamp _delay) internal returns (uint256) {
require(_to != address(0), Errors.Governance__CannotWithdrawToAddressZero());
users[_from].sub(_amount);
total.sub(_amount);
uint256 withdrawalId = withdrawalCount++;
withdrawals[withdrawalId] =
Withdrawal({amount: _amount, unlocksAt: Timestamp.wrap(block.timestamp) + _delay, recipient: _to, claimed: false});
emit WithdrawInitiated(withdrawalId, _to, _amount);
return withdrawalId;
}
/**
* @dev create a new proposal. In it we store:
*
* - a copy of the current governance configuration, effectively "freezing" the config for the proposal.
* This is done to ensure that in progress proposals that alter the delays etc won't take effect on existing
* proposals.
* - the summed ballots
* - the proposer, which can be:
* - the current governanceProposer (which can be updated on the Governance contract), if created via `propose`
* - the governance contract itself, if created via `proposeWithLock`
*
* @param _proposal The proposal to propose.
* @param _proposer The address that is proposing the proposal.
* @return The id of the proposal, which is one less than the current count of proposals.
*/
function _propose(IPayload _proposal, address _proposer) internal returns (uint256) {
uint256 proposalId = proposalCount++;
proposals[proposalId] =
CompressedProposalLib.create(_proposer, _proposal, Timestamp.wrap(block.timestamp), configuration);
emit Proposed(proposalId, address(_proposal));
return proposalId;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {Ballot} from "@aztec/governance/libraries/compressed-data/Ballot.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
// @notice if this changes, please update the enum in governance.ts
enum ProposalState {
Pending,
Active,
Queued,
Executable,
Rejected,
Executed,
Droppable,
Dropped,
Expired
}
struct ProposeWithLockConfiguration {
Timestamp lockDelay;
uint256 lockAmount;
}
struct Configuration {
ProposeWithLockConfiguration proposeConfig;
Timestamp votingDelay;
Timestamp votingDuration;
Timestamp executionDelay;
Timestamp gracePeriod;
uint256 quorum;
uint256 requiredYeaMargin;
uint256 minimumVotes;
}
// Configuration for proposals - same as Configuration but without proposeConfig
// since proposeConfig is only used for proposeWithLock, not for the proposal itself
struct ProposalConfiguration {
Timestamp votingDelay;
Timestamp votingDuration;
Timestamp executionDelay;
Timestamp gracePeriod;
uint256 quorum;
uint256 requiredYeaMargin;
uint256 minimumVotes;
}
struct Proposal {
ProposalConfiguration config;
ProposalState cachedState;
IPayload payload;
address proposer;
Timestamp creation;
Ballot summedBallot;
}
struct Withdrawal {
uint256 amount;
Timestamp unlocksAt;
address recipient;
bool claimed;
}
interface IGovernance {
event BeneficiaryAdded(address beneficiary);
event FloodGatesOpened();
event Proposed(uint256 indexed proposalId, address indexed proposal);
event VoteCast(uint256 indexed proposalId, address indexed voter, bool support, uint256 amount);
event ProposalExecuted(uint256 indexed proposalId);
event ProposalDropped(uint256 indexed proposalId);
event GovernanceProposerUpdated(address indexed governanceProposer);
event ConfigurationUpdated(Timestamp indexed time);
event Deposit(address indexed depositor, address indexed onBehalfOf, uint256 amount);
event WithdrawInitiated(uint256 indexed withdrawalId, address indexed recipient, uint256 amount);
event WithdrawFinalized(uint256 indexed withdrawalId);
function addBeneficiary(address _beneficiary) external;
function openFloodgates() external;
function updateGovernanceProposer(address _governanceProposer) external;
function updateConfiguration(Configuration memory _configuration) external;
function deposit(address _onBehalfOf, uint256 _amount) external;
function initiateWithdraw(address _to, uint256 _amount) external returns (uint256);
function finalizeWithdraw(uint256 _withdrawalId) external;
function propose(IPayload _proposal) external returns (uint256);
function proposeWithLock(IPayload _proposal, address _to) external returns (uint256);
function vote(uint256 _proposalId, uint256 _amount, bool _support) external;
function execute(uint256 _proposalId) external;
function dropProposal(uint256 _proposalId) external;
function isPermittedInGovernance(address _caller) external view returns (bool);
function isAllBeneficiariesAllowed() external view returns (bool);
function powerAt(address _owner, Timestamp _ts) external view returns (uint256);
function powerNow(address _owner) external view returns (uint256);
function totalPowerAt(Timestamp _ts) external view returns (uint256);
function totalPowerNow() external view returns (uint256);
function getProposalState(uint256 _proposalId) external view returns (ProposalState);
function getConfiguration() external view returns (Configuration memory);
function getProposal(uint256 _proposalId) external view returns (Proposal memory);
function getWithdrawal(uint256 _withdrawalId) external view returns (Withdrawal memory);
function getBallot(uint256 _proposalId, address _user) external view returns (Ballot memory);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
interface IPayload {
struct Action {
address target;
bytes data;
}
/**
* @notice A URI that can be used to refer to where a non-coder human readable description
* of the payload can be found.
*
* @dev Not used in the contracts, so could be any string really
*
* @return - Ideally a useful URI for the payload description
*/
function getURI() external view returns (string memory);
function getActions() external view returns (Action[] memory);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2025 Aztec Labs.
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Checkpoints} from "@oz/utils/structs/Checkpoints.sol";
/**
* @notice Structure to store a set of addresses with their historical snapshots
* @param size The timestamped history of the number of addresses in the set
* @param indexToAddressHistory Mapping of index to array of timestamped address history
* @param addressToCurrentIndex Mapping of address to its current index in the set
*/
struct SnapshottedAddressSet {
// This size must also be snapshotted
Checkpoints.Trace224 size;
// For each index, store the timestamped history of addresses
mapping(uint256 index => Checkpoints.Trace224) indexToAddressHistory;
// For each address, store its current index in the set
mapping(address addr => Index index) addressToCurrentIndex;
}
struct Index {
bool exists;
uint224 index;
}
// AddressSnapshotLib
error AddressSnapshotLib__IndexOutOfBounds(uint256 index, uint256 size); // 0xd789b71a
error AddressSnapshotLib__CannotAddAddressZero();
/**
* @title AddressSnapshotLib
* @notice A library for managing a set of addresses with historical snapshots
* @dev This library provides functionality similar to EnumerableSet but can track addresses across time
* and allows querying the state of addresses at any point in time. This is used to track the
* list of stakers on a particular rollup instance in the GSE throughout time.
*
* The SnapshottedAddressSet is maintained such that the you can take a timestamp, and from it:
* 1. Get the `size` of the set at that timestamp
* 2. Query the first `size` indices in `indexToAddressHistory` at that timestamp to get a set of addresses of size
* `size`
*/
library AddressSnapshotLib {
using SafeCast for *;
using Checkpoints for Checkpoints.Trace224;
/**
* @notice Adds a validator to the set
* @param _self The storage reference to the set
* @param _address The address to add
* @return bool True if the address was added, false if it was already present
*/
function add(SnapshottedAddressSet storage _self, address _address) internal returns (bool) {
require(_address != address(0), AddressSnapshotLib__CannotAddAddressZero());
// Prevent against double insertion
if (_self.addressToCurrentIndex[_address].exists) {
return false;
}
uint224 index = _self.size.latest();
_self.addressToCurrentIndex[_address] = Index({exists: true, index: index});
uint32 key = block.timestamp.toUint32();
_self.indexToAddressHistory[index].push(key, uint160(_address).toUint224());
_self.size.push(key, (index + 1).toUint224());
return true;
}
/**
* @notice Removes a address from the set by address
*
* @param _self The storage reference to the set
* @param _address The address of the address to remove
* @return bool True if the address was removed, false if it wasn't found
*/
function remove(SnapshottedAddressSet storage _self, address _address) internal returns (bool) {
Index memory index = _self.addressToCurrentIndex[_address];
if (!index.exists) {
return false;
}
return _remove(_self, index.index, _address);
}
/**
* @notice Removes a validator from the set by index
* @param _self The storage reference to the set
* @param _index The index of the validator to remove
* @return bool True if the validator was removed, reverts otherwise
*/
function remove(SnapshottedAddressSet storage _self, uint224 _index) internal returns (bool) {
address _address = address(_self.indexToAddressHistory[_index].latest().toUint160());
return _remove(_self, _index, _address);
}
/**
* @notice Removes a validator from the set
* @param _self The storage reference to the set
* @param _index The index of the validator to remove
* @param _address The address to remove
* @return bool True if the validator was removed, reverts otherwise
*/
function _remove(SnapshottedAddressSet storage _self, uint224 _index, address _address) internal returns (bool) {
uint224 currentSize = _self.size.latest();
if (_index >= currentSize) {
revert AddressSnapshotLib__IndexOutOfBounds(_index, currentSize);
}
// Mark the address to remove as not existing
_self.addressToCurrentIndex[_address] = Index({exists: false, index: 0});
// Now we need to update the indexToAddressHistory.
// Suppose the current size is 3, and we are removing Bob from index 1, and Charlie is at index 2.
// We effectively push Charlie into the snapshot at index 1,
// then update Charlie in addressToCurrentIndex to reflect the new index of 1.
uint224 lastIndex = currentSize - 1;
uint32 key = block.timestamp.toUint32();
// If not removing the last item, swap the value of the last item into the `_index` to remove
if (lastIndex != _index) {
address lastValidator = address(_self.indexToAddressHistory[lastIndex].latest().toUint160());
_self.addressToCurrentIndex[lastValidator] = Index({exists: true, index: _index.toUint224()});
_self.indexToAddressHistory[_index].push(key, uint160(lastValidator).toUint224());
}
// Then "pop" the last index by setting the value to `address(0)`
_self.indexToAddressHistory[lastIndex].push(key, uint224(0));
// Finally, we update the size to reflect the new size of the set.
_self.size.push(key, (lastIndex).toUint224());
return true;
}
/**
* @notice Gets the current address at a specific index at the time right now
* @param _self The storage reference to the set
* @param _index The index to query
* @return address The current address at the given index
*/
function at(SnapshottedAddressSet storage _self, uint256 _index) internal view returns (address) {
return getAddressFromIndexAtTimestamp(_self, _index, block.timestamp.toUint32());
}
/**
* @notice Gets the address at a specific index and timestamp
* @param _self The storage reference to the set
* @param _index The index to query
* @param _timestamp The timestamp to query
* @return address The address at the given index and timestamp
*/
function getAddressFromIndexAtTimestamp(SnapshottedAddressSet storage _self, uint256 _index, uint32 _timestamp)
internal
view
returns (address)
{
uint256 size = lengthAtTimestamp(_self, _timestamp);
require(_index < size, AddressSnapshotLib__IndexOutOfBounds(_index, size));
// Since the _index is less than the size, we know that the address at _index
// exists at/before _timestamp.
uint224 addr = _self.indexToAddressHistory[_index].upperLookup(_timestamp);
return address(addr.toUint160());
}
/**
* @notice Gets the address at a specific index and timestamp
*
* @dev The caller MUST have ensure that `_index` < `size`
* at the `_timestamp` provided.
* @dev Primed for recent checkpoints in the address history.
*
* @param _self The storage reference to the set
* @param _index The index to query
* @param _timestamp The timestamp to query
* @return address The address at the given index and timestamp
*/
function unsafeGetRecentAddressFromIndexAtTimestamp(
SnapshottedAddressSet storage _self,
uint256 _index,
uint32 _timestamp
) internal view returns (address) {
uint224 addr = _self.indexToAddressHistory[_index].upperLookupRecent(_timestamp);
return address(addr.toUint160());
}
/**
* @notice Gets the current size of the set
* @param _self The storage reference to the set
* @return uint256 The number of addresses in the set
*/
function length(SnapshottedAddressSet storage _self) internal view returns (uint256) {
return lengthAtTimestamp(_self, block.timestamp.toUint32());
}
/**
* @notice Gets the size of the set at a specific timestamp
* @param _self The storage reference to the set
* @param _timestamp The timestamp to query
* @return uint256 The number of addresses in the set at the given timestamp
*
* @dev Note, the values returned from this function are in flux if the timestamp is in the future.
*/
function lengthAtTimestamp(SnapshottedAddressSet storage _self, uint32 _timestamp) internal view returns (uint256) {
return _self.size.upperLookup(_timestamp);
}
/**
* @notice Gets all current addresses in the set
*
* @dev This function is only used in tests.
*
* @param _self The storage reference to the set
* @return address[] Array of all current addresses in the set
*/
function values(SnapshottedAddressSet storage _self) internal view returns (address[] memory) {
return valuesAtTimestamp(_self, block.timestamp.toUint32());
}
/**
* @notice Gets all addresses in the set at a specific timestamp
*
* @dev This function is only used in tests.
*
* @param _self The storage reference to the set
* @param _timestamp The timestamp to query
* @return address[] Array of all addresses in the set at the given timestamp
*
* @dev Note, the values returned from this function are in flux if the timestamp is in the future.
*
*/
function valuesAtTimestamp(SnapshottedAddressSet storage _self, uint32 _timestamp)
internal
view
returns (address[] memory)
{
uint256 size = lengthAtTimestamp(_self, _timestamp);
address[] memory vals = new address[](size);
for (uint256 i; i < size;) {
vals[i] = getAddressFromIndexAtTimestamp(_self, i, _timestamp);
unchecked {
++i;
}
}
return vals;
}
function contains(SnapshottedAddressSet storage _self, address _address) internal view returns (bool) {
return _self.addressToCurrentIndex[_address].exists;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Checkpoints, CheckpointedUintLib} from "@aztec/governance/libraries/CheckpointedUintLib.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
// A struct storing balance and delegatee for an attester
struct DepositPosition {
uint256 balance;
address delegatee;
}
// A struct storing all the positions for an instance along with a supply
struct DepositLedger {
mapping(address attester => DepositPosition position) positions;
Checkpoints.Trace224 supply;
}
// A struct storing the voting power used for each proposal for a delegatee
// as well as their checkpointed voting power
struct VotingAccount {
mapping(uint256 proposalId => uint256 powerUsed) powerUsed;
Checkpoints.Trace224 votingPower;
}
// A struct storing the ledgers for the individual rollup instances, the voting
// account for delegatees and the total supply.
struct DepositAndDelegationAccounting {
mapping(address instance => DepositLedger ledger) ledgers;
mapping(address delegatee => VotingAccount votingAccount) votingAccounts;
Checkpoints.Trace224 supply;
}
// This library have a lot of overlap with `Votes.sol` from Openzeppelin,
// It mainly differs as it is a library to allow us having many accountings in the same contract
// the unit of time and allowing multiple uses of power.
library DepositDelegationLib {
using CheckpointedUintLib for Checkpoints.Trace224;
event DelegateChanged(address indexed attester, address oldDelegatee, address newDelegatee);
event DelegateVotesChanged(address indexed delegatee, uint256 oldValue, uint256 newValue);
/**
* @notice Increase the balance of an `_attester` on `_instance` by `_amount`,
* increases the voting power of the delegatee equally.
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _instance The instance that the attester is on
* @param _attester The attester to increase the balance of
* @param _amount The amount to increase by
*/
function increaseBalance(
DepositAndDelegationAccounting storage _self,
address _instance,
address _attester,
uint256 _amount
) internal {
if (_amount == 0) {
return;
}
DepositLedger storage instance = _self.ledgers[_instance];
instance.positions[_attester].balance += _amount;
moveVotingPower(_self, address(0), instance.positions[_attester].delegatee, _amount);
instance.supply.add(_amount);
_self.supply.add(_amount);
}
/**
* @notice Decrease the balance of an `_attester` on `_instance` by `_amount`,
* decrease the voting power of the delegatee equally
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _instance The instance that the attester is on
* @param _attester The attester to decrease the balance of
* @param _amount The amount to decrease by
*/
function decreaseBalance(
DepositAndDelegationAccounting storage _self,
address _instance,
address _attester,
uint256 _amount
) internal {
if (_amount == 0) {
return;
}
DepositLedger storage instance = _self.ledgers[_instance];
instance.positions[_attester].balance -= _amount;
moveVotingPower(_self, instance.positions[_attester].delegatee, address(0), _amount);
instance.supply.sub(_amount);
_self.supply.sub(_amount);
}
/**
* @notice Use `_amount` of `_delegatee`'s voting power on `_proposalId`
* The `_delegatee`'s voting power based on the snapshot at `_timestamp`
*
* @dev If different timestamps are passed, it can cause mismatch in the amount of
* power that can be voted with, so it is very important that it is stable for
* a given `_proposalId`
*
* @param _self - The DelegationDate struct to modify in storage
* @param _delegatee - The delegatee using their power
* @param _proposalId - The id to use for accounting
* @param _timestamp - The timestamp for voting power of the specific `_proposalId`
* @param _amount - The amount of power to use
*/
function usePower(
DepositAndDelegationAccounting storage _self,
address _delegatee,
uint256 _proposalId,
Timestamp _timestamp,
uint256 _amount
) internal {
uint256 powerAt = getVotingPowerAt(_self, _delegatee, _timestamp);
uint256 powerUsed = getPowerUsed(_self, _delegatee, _proposalId);
require(
powerAt >= powerUsed + _amount, Errors.Delegation__InsufficientPower(_delegatee, powerAt, powerUsed + _amount)
);
_self.votingAccounts[_delegatee].powerUsed[_proposalId] += _amount;
}
/**
* @notice Delegate the voting power of an `_attester` on a specific `_instance` to a `_delegatee`
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _instance The instance the attester is on
* @param _attester The attester to delegate the voting power of
* @param _delegatee The delegatee to delegate the voting power to
*/
function delegate(
DepositAndDelegationAccounting storage _self,
address _instance,
address _attester,
address _delegatee
) internal {
address oldDelegate = getDelegatee(_self, _instance, _attester);
if (oldDelegate == _delegatee) {
return;
}
_self.ledgers[_instance].positions[_attester].delegatee = _delegatee;
emit DelegateChanged(_attester, oldDelegate, _delegatee);
moveVotingPower(_self, oldDelegate, _delegatee, getBalanceOf(_self, _instance, _attester));
}
/**
* @notice Convenience function to remove delegation from `_attester` at `_instance`
*
* @dev Similar as calling `delegate` with `_delegatee = address(0)`
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _instance The instance that the attester is on
* @param _attester The attester to undelegate the voting power of
*/
function undelegate(DepositAndDelegationAccounting storage _self, address _instance, address _attester) internal {
delegate(_self, _instance, _attester, address(0));
}
/**
* @notice Get the balance of an `_attester` on `_instance`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _instance The instance that the attester is on
* @param _attester The attester to get the balance of
*
* @return The balance of the attester
*/
function getBalanceOf(DepositAndDelegationAccounting storage _self, address _instance, address _attester)
internal
view
returns (uint256)
{
return _self.ledgers[_instance].positions[_attester].balance;
}
/**
* @notice Get the supply of an `_instance`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _instance The instance to get the supply of
*
* @return The supply of the instance
*/
function getSupplyOf(DepositAndDelegationAccounting storage _self, address _instance) internal view returns (uint256) {
return _self.ledgers[_instance].supply.valueNow();
}
/**
* @notice Get the total supply of all instances
*
* @param _self The DepositAndDelegationAccounting struct to read from
*
* @return The total supply of all instances
*/
function getSupply(DepositAndDelegationAccounting storage _self) internal view returns (uint256) {
return _self.supply.valueNow();
}
/**
* @notice Get the delegatee of an `_attester` on `_instance`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _instance The instance that the attester is on
* @param _attester The attester to get the delegatee of
*
* @return The delegatee of the attester
*/
function getDelegatee(DepositAndDelegationAccounting storage _self, address _instance, address _attester)
internal
view
returns (address)
{
return _self.ledgers[_instance].positions[_attester].delegatee;
}
/**
* @notice Get the voting power of a `_delegatee`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _delegatee The delegatee to get the voting power of
*
* @return The voting power of the delegatee
*/
function getVotingPower(DepositAndDelegationAccounting storage _self, address _delegatee)
internal
view
returns (uint256)
{
return _self.votingAccounts[_delegatee].votingPower.valueNow();
}
/**
* @notice Get the voting power of a `_delegatee` at a specific `_timestamp`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _delegatee The delegatee to get the voting power of
* @param _timestamp The timestamp to get the voting power at
*
* @return The voting power of the delegatee at the specific `_timestamp`
*/
function getVotingPowerAt(DepositAndDelegationAccounting storage _self, address _delegatee, Timestamp _timestamp)
internal
view
returns (uint256)
{
return _self.votingAccounts[_delegatee].votingPower.valueAt(_timestamp);
}
/**
* @notice Get the power used by a `_delegatee` on a specific `_proposalId`
*
* @param _self The DepositAndDelegationAccounting struct to read from
* @param _delegatee The delegatee to get the power used by
* @param _proposalId The proposal to get the power used on
*
* @return The voting power used by the `_delegatee` at `_proposalId`
*/
function getPowerUsed(DepositAndDelegationAccounting storage _self, address _delegatee, uint256 _proposalId)
internal
view
returns (uint256)
{
return _self.votingAccounts[_delegatee].powerUsed[_proposalId];
}
/**
* @notice Move `_amount` of voting power from the delegatee of `_from` to the delegatee of `_to`
*
* @dev If the `_from` is `address(0)` the decrease is skipped, and it is effectively a mint
* @dev If the `_to` is `address(0)` the increase is skipped, and it is effectively a burn
*
* @param _self The DepositAndDelegationAccounting struct to modify in storage
* @param _from The address to move the voting power from
* @param _to The address to move the voting power to
* @param _amount The amount of voting power to move
*/
function moveVotingPower(DepositAndDelegationAccounting storage _self, address _from, address _to, uint256 _amount)
private
{
if (_from == _to || _amount == 0) {
return;
}
if (_from != address(0)) {
(uint256 oldValue, uint256 newValue) = _self.votingAccounts[_from].votingPower.sub(_amount);
emit DelegateVotesChanged(_from, oldValue, newValue);
}
if (_to != address(0)) {
(uint256 oldValue, uint256 newValue) = _self.votingAccounts[_to].votingPower.add(_amount);
emit DelegateVotesChanged(_to, oldValue, newValue);
}
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {Slot, Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
/**
* @title Errors Library
* @author Aztec Labs
* @notice Library that contains errors used throughout the Aztec governance
* Errors are prefixed with the contract name to make it easy to identify where the error originated
* when there are multiple contracts that could have thrown the error.
*/
library Errors {
error Governance__CallerNotGovernanceProposer(address caller, address governanceProposer);
error Governance__GovernanceProposerCannotBeSelf();
error Governance__CallerNotSelf(address caller, address self);
error Governance__CallerCannotBeSelf();
error Governance__InsufficientPower(address voter, uint256 have, uint256 required);
error Governance__CannotWithdrawToAddressZero();
error Governance__WithdrawalNotInitiated();
error Governance__WithdrawalAlreadyClaimed();
error Governance__WithdrawalNotUnlockedYet(Timestamp currentTime, Timestamp unlocksAt);
error Governance__ProposalNotActive();
error Governance__ProposalNotExecutable();
error Governance__CannotCallAsset();
error Governance__CallFailed(address target);
error Governance__ProposalDoesNotExists(uint256 proposalId);
error Governance__ProposalAlreadyDropped();
error Governance__ProposalCannotBeDropped();
error Governance__DepositNotAllowed();
error Governance__CheckpointedUintLib__InsufficientValue(address owner, uint256 have, uint256 required);
error Governance__CheckpointedUintLib__NotInPast();
error Governance__ConfigurationLib__InvalidMinimumVotes();
error Governance__ConfigurationLib__LockAmountTooSmall();
error Governance__ConfigurationLib__LockAmountTooBig();
error Governance__ConfigurationLib__QuorumTooSmall();
error Governance__ConfigurationLib__QuorumTooBig();
error Governance__ConfigurationLib__RequiredYeaMarginTooBig();
error Governance__ConfigurationLib__TimeTooSmall(string name);
error Governance__ConfigurationLib__TimeTooBig(string name);
error EmpireBase__FailedToSubmitRoundWinner(IPayload payload);
error EmpireBase__InstanceHaveNoCode(address instance);
error EmpireBase__InsufficientSignals(uint256 signalsCast, uint256 signalsNeeded);
error EmpireBase__InvalidQuorumAndRoundSize(uint256 quorumSize, uint256 roundSize);
error EmpireBase__QuorumCannotBeLargerThanRoundSize(uint256 quorumSize, uint256 roundSize);
error EmpireBase__InvalidLifetimeAndExecutionDelay(uint256 lifetimeInRounds, uint256 executionDelayInRounds);
error EmpireBase__OnlyProposerCanSignal(address caller, address proposer);
error EmpireBase__PayloadAlreadySubmitted(uint256 roundNumber);
error EmpireBase__PayloadCannotBeAddressZero();
error EmpireBase__RoundTooOld(uint256 roundNumber, uint256 currentRoundNumber);
error EmpireBase__RoundTooNew(uint256 roundNumber, uint256 currentRoundNumber);
error EmpireBase__SignalAlreadyCastForSlot(Slot slot);
error GovernanceProposer__GSEPayloadInvalid();
error CoinIssuer__InsufficientMintAvailable(uint256 available, uint256 needed); // 0xa1cc8799
error CoinIssuer__InvalidConfiguration();
error Registry__RollupAlreadyRegistered(address rollup); // 0x3c34eabf
error Registry__RollupNotRegistered(uint256 version);
error Registry__NoRollupsRegistered();
error RewardDistributor__InvalidCaller(address caller, address canonical); // 0xb95e39f6
error GSE__NotRollup(address);
error GSE__GovernanceAlreadySet();
error GSE__InvalidRollupAddress(address);
error GSE__RollupAlreadyRegistered(address);
error GSE__NotLatestRollup(address);
error GSE__AlreadyRegistered(address, address);
error GSE__NothingToExit(address);
error GSE__InsufficientBalance(uint256, uint256);
error GSE__FailedToRemove(address);
error GSE__InstanceDoesNotExist(address);
error GSE__NotWithdrawer(address, address);
error GSE__OutOfBounds(uint256, uint256);
error GSE__FatalError(string);
error GSE__InvalidProofOfPossession();
error GSE__CannotChangePublicKeys(uint256 existingPk1x, uint256 existingPk1y);
error GSE__ProofOfPossessionAlreadySeen(bytes32 hashedPK1);
error Delegation__InsufficientPower(address, uint256, uint256);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
struct G1Point {
uint256 x;
uint256 y;
}
struct G2Point {
uint256 x0;
uint256 x1;
uint256 y0;
uint256 y1;
}
/**
* Credit:
* Primary inspiration from https://hackmd.io/7B4nfNShSY2Cjln-9ViQrA, which points out the
* optimization of linking/using a G1 and G2 key and provides an implementation for
* the hashToPoint and sqrt functions.
*/
/**
* Library for registering public keys and computing BLS signatures over the BN254 curve.
* The BN254 curve has been chosen over the BLS12-381 curve for gas efficiency, and
* because the Aztec rollup's security is already reliant on BN254.
*/
library BN254Lib {
/**
* We use uint256[2] for G1 points and uint256[4] for G2 points.
* For G1 points, the expected order is (x, y).
* For G2 points, the expected order is (x_imaginary, x_real, y_imaginary, y_real)
* Using structs would be more readable, but it would be more expensive to use them, particularly
* when aggregating the public keys, since we need to convert to uint256[2] and uint256[4] anyway.
*/
// See bn254_registration.test.ts and BLSKey.t.sol for tests which validate these constants.
uint256 public constant BASE_FIELD_ORDER =
21_888_242_871_839_275_222_246_405_745_257_275_088_696_311_157_297_823_662_689_037_894_645_226_208_583;
uint256 public constant GROUP_ORDER =
21_888_242_871_839_275_222_246_405_745_257_275_088_548_364_400_416_034_343_698_204_186_575_808_495_617;
bytes32 public constant STAKING_DOMAIN_SEPARATOR = bytes32("AZTEC_BLS_POP_BN254_V1");
error AddPointFail();
error MulPointFail();
error GammaZero();
error SqrtFail();
error PairingFail();
error NoPointFound();
error InfinityNotAllowed();
/**
* @notice Prove possession of a secret for a point in G1 and G2.
*
* Ultimately, we want to check:
* - That the caller knows the secret key of pk2 (to prevent rogue-key attacks)
* - That pk1 and pk2 have the same secret key (as an optimization)
*
* Registering two public keys is an optimization: It means we can do G1-only operations
* at the time of verifying a signature, which is much cheaper than G2 operations.
*
* In this function, we check:
* e(signature + gamma * pk1, -G2) * e(hashToPoint(pk1) + gamma * G1, pk2) == 1
*
* Which is effectively a check that:
* e(signature, G2) == e(hashToPoint(pk1), pk2) // a BLS signature over msg = pk1, to prove knowledge of the sk.
* e(pk1, G2) == e(G1, pk2) // a demonstration that pk1 and pk2 have the same sk.
*
* @param pk1 The G1 point of the BLS public key (x, y coordinates)
* @param pk2 The G2 point of the BLS public key (x_1, x_0, y_1, y_0 coordinates)
* @param signature The G1 point that acts as a proof of possession of the private keys corresponding to pk1 and pk2
*/
function proofOfPossession(G1Point memory pk1, G2Point memory pk2, G1Point memory signature)
internal
view
returns (bool)
{
// Ensure that provided points are not infinity
require(!isZero(pk1), InfinityNotAllowed());
require(!isZero(pk2), InfinityNotAllowed());
require(!isZero(signature), InfinityNotAllowed());
// Compute the point "digest" of the pk1 that sigma is a signature over
G1Point memory pk1DigestPoint = g1ToDigestPoint(pk1);
// Random challenge:
// gamma = keccak(pk1, pk2, signature) mod |Fr|
uint256 gamma = gammaOf(pk1, pk2, signature);
require(gamma != 0, GammaZero());
// Build G1 L = signature + gamma * pk1
G1Point memory left = g1Add(signature, g1Mul(pk1, gamma));
// Build G1 R = pk1DigestPoint + gamma * G1
G1Point memory right = g1Add(pk1DigestPoint, g1Mul(g1Generator(), gamma));
// Pairing: e(L, -G2) * e(R, pk2) == 1
return bn254Pairing(left, g2NegatedGenerator(), right, pk2);
}
/// @notice Convert a G1 point (public key) to the digest point that must be signed to prove possession.
/// @dev exposed as public to allow clients not to have implemented the hashToPoint function.
function g1ToDigestPoint(G1Point memory pk1) internal view returns (G1Point memory) {
bytes memory pk1Bytes = abi.encodePacked(pk1.x, pk1.y);
return hashToPoint(STAKING_DOMAIN_SEPARATOR, pk1Bytes);
}
/// @dev Add two points on BN254 G1 (affine coords).
/// Reverts if the inputs are not on‐curve.
function g1Add(G1Point memory p1, G1Point memory p2) internal view returns (G1Point memory output) {
uint256[4] memory input;
input[0] = p1.x;
input[1] = p1.y;
input[2] = p2.x;
input[3] = p2.y;
bool success;
assembly {
// call(gas, to, value, in, insize, out, outsize)
// STATICCALL is 40 gas vs 700 gas for CALL
success :=
staticcall(
sub(gas(), 2000),
0x06, // precompile address
input,
0x80, // input size = 4 × 32 bytes
output,
0x40 // output size = 2 × 32 bytes
)
}
if (!success) revert AddPointFail();
return output;
}
/// @dev Multiply a point by a scalar (little‑endian 256‑bit integer).
/// Reverts if the point is not on‐curve or the scalar ≥ p.
function g1Mul(G1Point memory p, uint256 s) internal view returns (G1Point memory output) {
uint256[3] memory input;
input[0] = p.x;
input[1] = p.y;
input[2] = s;
bool success;
assembly {
success :=
staticcall(
sub(gas(), 2000),
0x07, // precompile address
input,
0x60, // input size = 3 × 32 bytes
output,
0x40 // output size = 2 × 32 bytes
)
}
if (!success) revert MulPointFail();
return output;
}
function bn254Pairing(G1Point memory g1a, G2Point memory g2a, G1Point memory g1b, G2Point memory g2b)
internal
view
returns (bool)
{
uint256[12] memory input;
input[0] = g1a.x;
input[1] = g1a.y;
input[2] = g2a.x1;
input[3] = g2a.x0;
input[4] = g2a.y1;
input[5] = g2a.y0;
input[6] = g1b.x;
input[7] = g1b.y;
input[8] = g2b.x1;
input[9] = g2b.x0;
input[10] = g2b.y1;
input[11] = g2b.y0;
uint256[1] memory result;
bool didCallSucceed;
assembly {
didCallSucceed :=
staticcall(
sub(gas(), 2000),
8,
input,
0x180, // input size = 12 * 32 bytes
result,
0x20 // output size = 32 bytes
)
}
require(didCallSucceed, PairingFail());
return result[0] == 1;
}
// The hash to point is based on the "mapToPoint" function in https://www.iacr.org/archive/asiacrypt2001/22480516.pdf
function hashToPoint(bytes32 domain, bytes memory message) internal view returns (G1Point memory output) {
bool found = false;
uint256 attempts = 0;
while (true) {
uint256 x = uint256(keccak256(abi.encode(domain, message, attempts)));
attempts++;
if (x >= BASE_FIELD_ORDER) {
continue;
}
uint256 y = mulmod(x, x, BASE_FIELD_ORDER);
y = mulmod(y, x, BASE_FIELD_ORDER);
y = addmod(y, 3, BASE_FIELD_ORDER);
(y, found) = sqrt(y);
if (found) {
uint256 y0 = y;
uint256 y1 = BASE_FIELD_ORDER - y;
// Ensure that y1 > y0, flip em if necessary
if (y0 > y1) {
(y0, y1) = (y1, y0);
}
uint256 b = uint256(keccak256(abi.encode(domain, message, type(uint256).max)));
if (b & 1 == 0) {
output = G1Point({x: x, y: y0});
} else {
output = G1Point({x: x, y: y1});
}
break;
}
}
require(found, NoPointFound());
return output;
}
function sqrt(uint256 xx) internal view returns (uint256 x, bool hasRoot) {
bool callSuccess;
assembly {
let freeMem := mload(0x40)
mstore(freeMem, 0x20)
mstore(add(freeMem, 0x20), 0x20)
mstore(add(freeMem, 0x40), 0x20)
mstore(add(freeMem, 0x60), xx)
// (N + 1) / 4 = 0xc19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f52
mstore(add(freeMem, 0x80), 0xc19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f52)
// N = BASE_FIELD_ORDER
mstore(add(freeMem, 0xA0), BASE_FIELD_ORDER)
callSuccess := staticcall(sub(gas(), 2000), 5, freeMem, 0xC0, freeMem, 0x20)
x := mload(freeMem)
hasRoot := eq(xx, mulmod(x, x, BASE_FIELD_ORDER))
}
require(callSuccess, SqrtFail());
}
/// @notice γ = keccak(PK1, PK2, σ_init) mod Fr
function gammaOf(G1Point memory pk1, G2Point memory pk2, G1Point memory sigmaInit) internal pure returns (uint256) {
return uint256(keccak256(abi.encode(pk1.x, pk1.y, pk2.x0, pk2.x1, pk2.y0, pk2.y1, sigmaInit.x, sigmaInit.y)))
% GROUP_ORDER;
}
function g1Negate(G1Point memory p) internal pure returns (G1Point memory) {
if (p.x == 0 && p.y == 0) {
// Point at infinity remains unchanged
return p;
}
// For a point (x, y), its negation is (x, -y mod p)
// Since we're working in the field Fp, -y mod p = p - y
return G1Point({x: p.x, y: BASE_FIELD_ORDER - p.y});
}
function g1Zero() internal pure returns (G1Point memory) {
return G1Point({x: 0, y: 0});
}
function isZero(G1Point memory p) internal pure returns (bool) {
return p.x == 0 && p.y == 0;
}
function g1Generator() internal pure returns (G1Point memory) {
return G1Point({x: 1, y: 2});
}
function g2Zero() internal pure returns (G2Point memory) {
return G2Point({x0: 0, x1: 0, y0: 0, y1: 0});
}
function isZero(G2Point memory p) internal pure returns (bool) {
return p.x0 == 0 && p.x1 == 0 && p.y0 == 0 && p.y1 == 0;
}
function g2NegatedGenerator() internal pure returns (G2Point memory) {
return G2Point({
x0: 10_857_046_999_023_057_135_944_570_762_232_829_481_370_756_359_578_518_086_990_519_993_285_655_852_781,
x1: 11_559_732_032_986_387_107_991_004_021_392_285_783_925_812_861_821_192_530_917_403_151_452_391_805_634,
y0: 13_392_588_948_715_843_804_641_432_497_768_002_650_278_120_570_034_223_513_918_757_245_338_268_106_653,
y1: 17_805_874_995_975_841_540_914_202_342_111_839_520_379_459_829_704_422_454_583_296_818_431_106_115_052
});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
type Timestamp is uint256;
type Slot is uint256;
type Epoch is uint256;
function addTimestamp(Timestamp _a, Timestamp _b) pure returns (Timestamp) {
return Timestamp.wrap(Timestamp.unwrap(_a) + Timestamp.unwrap(_b));
}
function subTimestamp(Timestamp _a, Timestamp _b) pure returns (Timestamp) {
return Timestamp.wrap(Timestamp.unwrap(_a) - Timestamp.unwrap(_b));
}
function ltTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) < Timestamp.unwrap(_b);
}
function lteTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) <= Timestamp.unwrap(_b);
}
function gtTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) > Timestamp.unwrap(_b);
}
function gteTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) >= Timestamp.unwrap(_b);
}
function neqTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) != Timestamp.unwrap(_b);
}
function eqTimestamp(Timestamp _a, Timestamp _b) pure returns (bool) {
return Timestamp.unwrap(_a) == Timestamp.unwrap(_b);
}
// Slot
function addSlot(Slot _a, Slot _b) pure returns (Slot) {
return Slot.wrap(Slot.unwrap(_a) + Slot.unwrap(_b));
}
function subSlot(Slot _a, Slot _b) pure returns (Slot) {
return Slot.wrap(Slot.unwrap(_a) - Slot.unwrap(_b));
}
function eqSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) == Slot.unwrap(_b);
}
function neqSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) != Slot.unwrap(_b);
}
function ltSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) < Slot.unwrap(_b);
}
function lteSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) <= Slot.unwrap(_b);
}
function gtSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) > Slot.unwrap(_b);
}
function gteSlot(Slot _a, Slot _b) pure returns (bool) {
return Slot.unwrap(_a) >= Slot.unwrap(_b);
}
// Epoch
function eqEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) == Epoch.unwrap(_b);
}
function neqEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) != Epoch.unwrap(_b);
}
function subEpoch(Epoch _a, Epoch _b) pure returns (Epoch) {
return Epoch.wrap(Epoch.unwrap(_a) - Epoch.unwrap(_b));
}
function addEpoch(Epoch _a, Epoch _b) pure returns (Epoch) {
return Epoch.wrap(Epoch.unwrap(_a) + Epoch.unwrap(_b));
}
function gteEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) >= Epoch.unwrap(_b);
}
function gtEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) > Epoch.unwrap(_b);
}
function lteEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) <= Epoch.unwrap(_b);
}
function ltEpoch(Epoch _a, Epoch _b) pure returns (bool) {
return Epoch.unwrap(_a) < Epoch.unwrap(_b);
}
using {
addTimestamp as +,
subTimestamp as -,
ltTimestamp as <,
gtTimestamp as >,
lteTimestamp as <=,
gteTimestamp as >=,
neqTimestamp as !=,
eqTimestamp as ==
} for Timestamp global;
using {
addEpoch as +,
subEpoch as -,
eqEpoch as ==,
neqEpoch as !=,
gteEpoch as >=,
gtEpoch as >,
lteEpoch as <=,
ltEpoch as <
} for Epoch global;
using {
eqSlot as ==,
neqSlot as !=,
gteSlot as >=,
gtSlot as >,
lteSlot as <=,
ltSlot as <,
addSlot as +,
subSlot as -
} for Slot global;// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-20 standard as defined in the ERC.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the value of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the value of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 value) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the
* allowance mechanism. `value` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 value) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
/**
* @title SafeERC20
* @dev Wrappers around ERC-20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20 {
/**
* @dev An operation with an ERC-20 token failed.
*/
error SafeERC20FailedOperation(address token);
/**
* @dev Indicates a failed `decreaseAllowance` request.
*/
error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);
/**
* @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*/
function safeTransfer(IERC20 token, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
* calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
*/
function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
_callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
}
/**
* @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
*/
function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
}
/**
* @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
uint256 oldAllowance = token.allowance(address(this), spender);
forceApprove(token, spender, oldAllowance + value);
}
/**
* @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
* value, non-reverting calls are assumed to be successful.
*
* IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
* smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
* this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
* that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
*/
function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
unchecked {
uint256 currentAllowance = token.allowance(address(this), spender);
if (currentAllowance < requestedDecrease) {
revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
}
forceApprove(token, spender, currentAllowance - requestedDecrease);
}
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*
* NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
* only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
* set here.
*/
function forceApprove(IERC20 token, address spender, uint256 value) internal {
bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
safeTransfer(token, to, value);
} else if (!token.transferAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
* has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* Reverts if the returned value is other than `true`.
*/
function transferFromAndCallRelaxed(
IERC1363 token,
address from,
address to,
uint256 value,
bytes memory data
) internal {
if (to.code.length == 0) {
safeTransferFrom(token, from, to, value);
} else if (!token.transferFromAndCall(from, to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
* code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
* targeting contracts.
*
* NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
* Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
* once without retrying, and relies on the returned value to be true.
*
* Reverts if the returned value is other than `true`.
*/
function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
if (to.code.length == 0) {
forceApprove(token, to, value);
} else if (!token.approveAndCall(to, value, data)) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
// bubble errors
if iszero(success) {
let ptr := mload(0x40)
returndatacopy(ptr, 0, returndatasize())
revert(ptr, returndatasize())
}
returnSize := returndatasize()
returnValue := mload(0)
}
if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
revert SafeERC20FailedOperation(address(token));
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
bool success;
uint256 returnSize;
uint256 returnValue;
assembly ("memory-safe") {
success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
returnSize := returndatasize()
returnValue := mload(0)
}
return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.
pragma solidity ^0.8.20;
import {Math} from "../math/Math.sol";
/**
* @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
* time, and later looking up past values by block number. See {Votes} as an example.
*
* To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
* checkpoint for the current transaction block using the {push} function.
*/
library Checkpoints {
/**
* @dev A value was attempted to be inserted on a past checkpoint.
*/
error CheckpointUnorderedInsertion();
struct Trace224 {
Checkpoint224[] _checkpoints;
}
struct Checkpoint224 {
uint32 _key;
uint224 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
* library.
*/
function push(
Trace224 storage self,
uint32 key,
uint224 value
) internal returns (uint224 oldValue, uint224 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace224 storage self) internal view returns (uint224) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint224 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace224 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint224[] storage self,
uint32 key,
uint224 value
) private returns (uint224 oldValue, uint224 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint224 storage last = _unsafeAccess(self, pos - 1);
uint32 lastKey = last._key;
uint224 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint224({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint224({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint224[] storage self,
uint32 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint224[] storage self,
uint256 pos
) private pure returns (Checkpoint224 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace208 {
Checkpoint208[] _checkpoints;
}
struct Checkpoint208 {
uint48 _key;
uint208 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
* library.
*/
function push(
Trace208 storage self,
uint48 key,
uint208 value
) internal returns (uint208 oldValue, uint208 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace208 storage self) internal view returns (uint208) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint208 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace208 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint208[] storage self,
uint48 key,
uint208 value
) private returns (uint208 oldValue, uint208 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint208 storage last = _unsafeAccess(self, pos - 1);
uint48 lastKey = last._key;
uint208 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint208({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint208({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint208[] storage self,
uint48 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint208[] storage self,
uint256 pos
) private pure returns (Checkpoint208 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
struct Trace160 {
Checkpoint160[] _checkpoints;
}
struct Checkpoint160 {
uint96 _key;
uint160 _value;
}
/**
* @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
*
* Returns previous value and new value.
*
* IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
* library.
*/
function push(
Trace160 storage self,
uint96 key,
uint160 value
) internal returns (uint160 oldValue, uint160 newValue) {
return _insert(self._checkpoints, key, value);
}
/**
* @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
* there is none.
*/
function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*/
function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
* if there is none.
*
* NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
* keys).
*/
function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
uint256 len = self._checkpoints.length;
uint256 low = 0;
uint256 high = len;
if (len > 5) {
uint256 mid = len - Math.sqrt(len);
if (key < _unsafeAccess(self._checkpoints, mid)._key) {
high = mid;
} else {
low = mid + 1;
}
}
uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
*/
function latest(Trace160 storage self) internal view returns (uint160) {
uint256 pos = self._checkpoints.length;
return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
}
/**
* @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
* in the most recent checkpoint.
*/
function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
uint256 pos = self._checkpoints.length;
if (pos == 0) {
return (false, 0, 0);
} else {
Checkpoint160 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1);
return (true, ckpt._key, ckpt._value);
}
}
/**
* @dev Returns the number of checkpoints.
*/
function length(Trace160 storage self) internal view returns (uint256) {
return self._checkpoints.length;
}
/**
* @dev Returns checkpoint at given position.
*/
function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
return self._checkpoints[pos];
}
/**
* @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
* or by updating the last one.
*/
function _insert(
Checkpoint160[] storage self,
uint96 key,
uint160 value
) private returns (uint160 oldValue, uint160 newValue) {
uint256 pos = self.length;
if (pos > 0) {
Checkpoint160 storage last = _unsafeAccess(self, pos - 1);
uint96 lastKey = last._key;
uint160 lastValue = last._value;
// Checkpoint keys must be non-decreasing.
if (lastKey > key) {
revert CheckpointUnorderedInsertion();
}
// Update or push new checkpoint
if (lastKey == key) {
last._value = value;
} else {
self.push(Checkpoint160({_key: key, _value: value}));
}
return (lastValue, value);
} else {
self.push(Checkpoint160({_key: key, _value: value}));
return (0, value);
}
}
/**
* @dev Return the index of the first (oldest) checkpoint with key strictly bigger than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _upperBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key > key) {
high = mid;
} else {
low = mid + 1;
}
}
return high;
}
/**
* @dev Return the index of the first (oldest) checkpoint with key greater or equal than the search key, or `high`
* if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
* `high`.
*
* WARNING: `high` should not be greater than the array's length.
*/
function _lowerBinaryLookup(
Checkpoint160[] storage self,
uint96 key,
uint256 low,
uint256 high
) private view returns (uint256) {
while (low < high) {
uint256 mid = Math.average(low, high);
if (_unsafeAccess(self, mid)._key < key) {
low = mid + 1;
} else {
high = mid;
}
}
return high;
}
/**
* @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
*/
function _unsafeAccess(
Checkpoint160[] storage self,
uint256 pos
) private pure returns (Checkpoint160 storage result) {
assembly {
mstore(0, self.slot)
result.slot := add(keccak256(0, 0x20), pos)
}
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {G1Point, G2Point} from "@aztec/shared/libraries/BN254Lib.sol";
interface IBn254LibWrapper {
function proofOfPossession(
G1Point memory _publicKeyInG1,
G2Point memory _publicKeyInG2,
G1Point memory _proofOfPossession
) external view returns (bool);
function g1ToDigestPoint(G1Point memory pk1) external view returns (G1Point memory);
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Checkpoints} from "@oz/utils/structs/Checkpoints.sol";
/**
* @title CheckpointedUintLib
* @notice Library for managing Trace224 using a timestamp as key,
* Provides helper functions to `add` to or `sub` from the current value.
*/
library CheckpointedUintLib {
using Checkpoints for Checkpoints.Trace224;
using SafeCast for uint256;
/**
* @notice Add `_amount` to the current value
*
* @dev The amounts are cast to uint224 before storing such that the (key: value) fits in a single slot
*
* @param _self - The Trace224 to add to
* @param _amount - The amount to add
*
* @return - The current value and the new value
*/
function add(Checkpoints.Trace224 storage _self, uint256 _amount) internal returns (uint256, uint256) {
uint224 current = _self.latest();
if (_amount == 0) {
return (current, current);
}
uint224 amount = _amount.toUint224();
_self.push(block.timestamp.toUint32(), current + amount);
return (current, current + amount);
}
/**
* @notice Subtract `_amount` from the current value
*
* @param _self - The Trace224 to subtract from
* @param _amount - The amount to subtract
* @return - The current value and the new value
*/
function sub(Checkpoints.Trace224 storage _self, uint256 _amount) internal returns (uint256, uint256) {
uint224 current = _self.latest();
if (_amount == 0) {
return (current, current);
}
uint224 amount = _amount.toUint224();
require(current >= amount, Errors.Governance__CheckpointedUintLib__InsufficientValue(msg.sender, current, amount));
_self.push(block.timestamp.toUint32(), current - amount);
return (current, current - amount);
}
/**
* @notice Get the current value
*
* @param _self - The Trace224 to get the value of
* @return - The current value
*/
function valueNow(Checkpoints.Trace224 storage _self) internal view returns (uint256) {
return _self.latest();
}
/**
* @notice Get the value at a given timestamp
* The timestamp MUST be in the past to guarantee it is stable
*
* @dev Uses `upperLookupRecent` instead of just `upperLookup` as it will most
* likely be a recent value when looked up as part of governance.
*
* @param _self - The Trace224 to get the value of
* @param _time - The timestamp to get the value at
* @return - The value at the given timestamp
*/
function valueAt(Checkpoints.Trace224 storage _self, Timestamp _time) internal view returns (uint256) {
require(_time < Timestamp.wrap(block.timestamp), Errors.Governance__CheckpointedUintLib__NotInPast());
return _self.upperLookupRecent(Timestamp.unwrap(_time).toUint32());
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
struct Ballot {
uint256 yea;
uint256 nay;
}
type CompressedBallot is uint256;
library BallotLib {
using SafeCast for uint256;
uint256 internal constant YEA_MASK = 0xffffffffffffffffffffffffffffffff00000000000000000000000000000000;
uint256 internal constant NAY_MASK = 0xffffffffffffffffffffffffffffffff;
function getYea(CompressedBallot _compressedBallot) internal pure returns (uint256) {
return CompressedBallot.unwrap(_compressedBallot) >> 128;
}
function getNay(CompressedBallot _compressedBallot) internal pure returns (uint256) {
return CompressedBallot.unwrap(_compressedBallot) & NAY_MASK;
}
function updateYea(CompressedBallot _compressedBallot, uint256 _yea) internal pure returns (CompressedBallot) {
uint256 value = CompressedBallot.unwrap(_compressedBallot) & ~YEA_MASK;
return CompressedBallot.wrap(value | (_yea << 128));
}
function updateNay(CompressedBallot _compressedBallot, uint256 _nay) internal pure returns (CompressedBallot) {
uint256 value = CompressedBallot.unwrap(_compressedBallot) & ~NAY_MASK;
return CompressedBallot.wrap(value | _nay);
}
function addYea(CompressedBallot _compressedBallot, uint256 _amount) internal pure returns (CompressedBallot) {
uint256 currentYea = getYea(_compressedBallot);
uint256 newYea = currentYea + _amount;
return updateYea(_compressedBallot, newYea.toUint128());
}
function addNay(CompressedBallot _compressedBallot, uint256 _amount) internal pure returns (CompressedBallot) {
uint256 currentNay = getNay(_compressedBallot);
uint256 newNay = currentNay + _amount;
return updateNay(_compressedBallot, newNay.toUint128());
}
function compress(Ballot memory _ballot) internal pure returns (CompressedBallot) {
// We are doing cast to uint128 but inside a uint256 to not wreck the shifting.
uint256 yea = _ballot.yea.toUint128();
uint256 nay = _ballot.nay.toUint128();
return CompressedBallot.wrap((yea << 128) | nay);
}
function decompress(CompressedBallot _compressedBallot) internal pure returns (Ballot memory) {
return Ballot({yea: getYea(_compressedBallot), nay: getNay(_compressedBallot)});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Configuration, ProposeWithLockConfiguration} from "@aztec/governance/interfaces/IGovernance.sol";
import {CompressedTimestamp, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
/**
* @title CompressedConfiguration
* @notice Compressed storage representation of governance configuration
* @dev Packs configuration into minimal storage slots:
* Slot 1: Timing & percentages - votingDelay (32), votingDuration (32), executionDelay (32), gracePeriod (32),
* quorum (64), requiredYeaMargin (64)
* Slot 2: Amounts & proposeConfig - minimumVotes (96), lockAmount (96), lockDelay (32), unused (32)
*
* This packing reduces storage from ~8 slots to 2 slots.
* All timestamps use CompressedTimestamp (uint32, valid until year 2106).
* Percentages (quorum, requiredYeaMargin) use uint64 (max 1e18).
* Amounts use uint96 for realistic token amounts.
* ProposeConfig fields are kept together in Slot 2.
*/
struct CompressedConfiguration {
// Slot 1: Timing and percentages - 32*4 + 64*2 = 256 bits
CompressedTimestamp votingDelay;
CompressedTimestamp votingDuration;
CompressedTimestamp executionDelay;
CompressedTimestamp gracePeriod;
uint64 quorum;
uint64 requiredYeaMargin;
// Slot 2: Amounts and proposeConfig - 96 + 96 + 32 = 224 bits (32 bits unused)
uint96 minimumVotes;
uint96 lockAmount;
CompressedTimestamp lockDelay;
}
library CompressedConfigurationLib {
using SafeCast for uint256;
using CompressedTimeMath for Timestamp;
using CompressedTimeMath for CompressedTimestamp;
/**
* @notice Get the propose configuration directly from storage
* @param _compressed Storage pointer to compressed configuration
* @return The propose configuration
*/
function getProposeConfig(CompressedConfiguration storage _compressed)
internal
view
returns (ProposeWithLockConfiguration memory)
{
return
ProposeWithLockConfiguration({lockDelay: _compressed.lockDelay.decompress(), lockAmount: _compressed.lockAmount});
}
/**
* @notice Compress a Configuration struct into CompressedConfiguration
* @param _config The uncompressed configuration
* @return The compressed configuration
* @dev Values that exceed the compressed type limits will cause a revert.
* This is intentional to prevent storing invalid configurations.
*/
function compress(Configuration memory _config) internal pure returns (CompressedConfiguration memory) {
// Validate that amounts fit in their compressed types
require(_config.proposeConfig.lockAmount <= type(uint96).max, "lockAmount exceeds uint96");
require(_config.minimumVotes <= type(uint96).max, "minimumVotes exceeds uint96");
require(_config.quorum <= type(uint64).max, "quorum exceeds uint64");
require(_config.requiredYeaMargin <= type(uint64).max, "requiredYeaMargin exceeds uint64");
return CompressedConfiguration({
votingDelay: _config.votingDelay.compress(),
votingDuration: _config.votingDuration.compress(),
executionDelay: _config.executionDelay.compress(),
gracePeriod: _config.gracePeriod.compress(),
quorum: _config.quorum.toUint64(),
requiredYeaMargin: _config.requiredYeaMargin.toUint64(),
minimumVotes: _config.minimumVotes.toUint96(),
lockAmount: _config.proposeConfig.lockAmount.toUint96(),
lockDelay: _config.proposeConfig.lockDelay.compress()
});
}
/**
* @notice Decompress a CompressedConfiguration into Configuration
* @param _compressed The compressed configuration
* @return The uncompressed configuration
*/
function decompress(CompressedConfiguration memory _compressed) internal pure returns (Configuration memory) {
return Configuration({
proposeConfig: ProposeWithLockConfiguration({
lockDelay: _compressed.lockDelay.decompress(),
lockAmount: _compressed.lockAmount
}),
votingDelay: _compressed.votingDelay.decompress(),
votingDuration: _compressed.votingDuration.decompress(),
executionDelay: _compressed.executionDelay.decompress(),
gracePeriod: _compressed.gracePeriod.decompress(),
quorum: _compressed.quorum,
requiredYeaMargin: _compressed.requiredYeaMargin,
minimumVotes: _compressed.minimumVotes
});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Proposal, ProposalState, ProposalConfiguration} from "@aztec/governance/interfaces/IGovernance.sol";
import {IPayload} from "@aztec/governance/interfaces/IPayload.sol";
import {CompressedBallot, BallotLib} from "@aztec/governance/libraries/compressed-data/Ballot.sol";
import {CompressedConfiguration} from "@aztec/governance/libraries/compressed-data/Configuration.sol";
import {CompressedTimestamp, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
/**
* @title CompressedProposal
* @notice Compressed storage representation of governance proposals
* @dev Packs proposal data with embedded config values into 4 storage slots:
* Slot 1: proposer (160) + minimumVotes (96) = 256 bits
* Slot 2: cachedState (8) + creation (32) + timing fields (32*4) + quorum (64) = 232 bits
* Slot 3: summedBallot (256 bits as CompressedBallot)
* Slot 4: payload (160) + requiredYeaMargin (64) = 224 bits
*
* This packing reduces storage from ~10 slots to 4 slots by embedding config values
* directly instead of storing the entire configuration struct.
*/
struct CompressedProposal {
// Slot 1: Core Identity (256 bits)
address proposer; // 160 bits
uint96 minimumVotes; // 96 bits - from config
// Slot 2: Timing (232 bits used, 24 bits padding)
ProposalState cachedState; // 8 bits
CompressedTimestamp creation; // 32 bits
CompressedTimestamp votingDelay; // 32 bits - from config
CompressedTimestamp votingDuration; // 32 bits - from config
CompressedTimestamp executionDelay; // 32 bits - from config
CompressedTimestamp gracePeriod; // 32 bits - from config
uint64 quorum; // 64 bits - from config
// Slot 3: Votes (256 bits)
CompressedBallot summedBallot; // 256 bits (128 yea + 128 nay)
// Slot 4: References (224 bits used, 32 bits padding)
IPayload payload; // 160 bits
uint64 requiredYeaMargin; // 64 bits - from config
}
library CompressedProposalLib {
using SafeCast for uint256;
using CompressedTimeMath for Timestamp;
using CompressedTimeMath for CompressedTimestamp;
using BallotLib for CompressedBallot;
/**
* @notice Add yea votes to the proposal
* @param _compressed Storage pointer to compressed proposal
* @param _amount The amount of yea votes to add
*/
function addYea(CompressedProposal storage _compressed, uint256 _amount) internal {
_compressed.summedBallot = _compressed.summedBallot.addYea(_amount);
}
/**
* @notice Add nay votes to the proposal
* @param _compressed Storage pointer to compressed proposal
* @param _amount The amount of nay votes to add
*/
function addNay(CompressedProposal storage _compressed, uint256 _amount) internal {
_compressed.summedBallot = _compressed.summedBallot.addNay(_amount);
}
/**
* @notice Get yea and nay votes
* @param _compressed Storage pointer to compressed proposal
* @return yea The yea votes
* @return nay The nay votes
*/
function getVotes(CompressedProposal storage _compressed) internal view returns (uint256 yea, uint256 nay) {
yea = _compressed.summedBallot.getYea();
nay = _compressed.summedBallot.getNay();
}
/**
* @notice Create a compressed proposal from uncompressed data and config
* @param _proposer The proposal creator
* @param _payload The payload to execute
* @param _creation The creation timestamp
* @param _config The compressed configuration to embed
* @return The compressed proposal
*/
function create(address _proposer, IPayload _payload, Timestamp _creation, CompressedConfiguration memory _config)
internal
pure
returns (CompressedProposal memory)
{
return CompressedProposal({
proposer: _proposer,
minimumVotes: _config.minimumVotes,
cachedState: ProposalState.Pending,
creation: _creation.compress(),
votingDelay: _config.votingDelay,
votingDuration: _config.votingDuration,
executionDelay: _config.executionDelay,
gracePeriod: _config.gracePeriod,
quorum: _config.quorum,
summedBallot: CompressedBallot.wrap(0),
payload: _payload,
requiredYeaMargin: _config.requiredYeaMargin
});
}
/**
* @notice Compress an uncompressed Proposal into a CompressedProposal
* @param _proposal The uncompressed proposal to compress
* @return The compressed proposal
*/
function compress(Proposal memory _proposal) internal pure returns (CompressedProposal memory) {
return CompressedProposal({
proposer: _proposal.proposer,
minimumVotes: _proposal.config.minimumVotes.toUint96(),
cachedState: _proposal.cachedState,
creation: _proposal.creation.compress(),
votingDelay: _proposal.config.votingDelay.compress(),
votingDuration: _proposal.config.votingDuration.compress(),
executionDelay: _proposal.config.executionDelay.compress(),
gracePeriod: _proposal.config.gracePeriod.compress(),
quorum: _proposal.config.quorum.toUint64(),
summedBallot: BallotLib.compress(_proposal.summedBallot),
payload: _proposal.payload,
requiredYeaMargin: _proposal.config.requiredYeaMargin.toUint64()
});
}
/**
* @notice Decompress a CompressedProposal into a standard Proposal
* @param _compressed The compressed proposal
* @return The uncompressed proposal
*/
function decompress(CompressedProposal memory _compressed) internal pure returns (Proposal memory) {
return Proposal({
config: ProposalConfiguration({
votingDelay: _compressed.votingDelay.decompress(),
votingDuration: _compressed.votingDuration.decompress(),
executionDelay: _compressed.executionDelay.decompress(),
gracePeriod: _compressed.gracePeriod.decompress(),
quorum: _compressed.quorum,
requiredYeaMargin: _compressed.requiredYeaMargin,
minimumVotes: _compressed.minimumVotes
}),
cachedState: _compressed.cachedState,
payload: _compressed.payload,
proposer: _compressed.proposer,
creation: _compressed.creation.decompress(),
summedBallot: _compressed.summedBallot.decompress()
});
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {Configuration} from "@aztec/governance/interfaces/IGovernance.sol";
import {CompressedConfiguration} from "@aztec/governance/libraries/compressed-data/Configuration.sol";
import {Errors} from "@aztec/governance/libraries/Errors.sol";
import {CompressedTimeMath, CompressedTimestamp} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
library ConfigurationLib {
using CompressedTimeMath for CompressedTimestamp;
uint256 internal constant QUORUM_LOWER = 1;
uint256 internal constant QUORUM_UPPER = 1e18;
uint256 internal constant REQUIRED_YEA_MARGIN_UPPER = 1e18;
uint256 internal constant VOTES_LOWER = 1;
uint256 internal constant VOTES_UPPER = type(uint96).max; // Maximum for compressed storage (uint96)
uint256 internal constant LOCK_AMOUNT_LOWER = 2;
uint256 internal constant LOCK_AMOUNT_UPPER = type(uint96).max; // Maximum for compressed storage (uint96)
Timestamp internal constant TIME_LOWER = Timestamp.wrap(60);
Timestamp internal constant TIME_UPPER = Timestamp.wrap(90 * 24 * 3600);
/**
* @notice The delay after which a withdrawal can be finalized.
* @dev This applies to the "normal" withdrawal, not one induced by proposeWithLock.
* @dev Making the delay equal to the voting duration + execution delay + a "small buffer"
* ensures that if you were able to vote on a proposal, someone may execute it before you can exit.
*
* The "small buffer" is somewhat arbitrarily set to the votingDelay / 5.
*/
function getWithdrawalDelay(CompressedConfiguration storage _self) internal view returns (Timestamp) {
Timestamp votingDelay = _self.votingDelay.decompress();
Timestamp votingDuration = _self.votingDuration.decompress();
Timestamp executionDelay = _self.executionDelay.decompress();
return Timestamp.wrap(Timestamp.unwrap(votingDelay) / 5) + votingDuration + executionDelay;
}
/**
* @notice
* @dev We specify `memory` here since it is called on outside import for validation
* before writing it to state.
*/
function assertValid(Configuration memory _self) internal pure {
require(_self.quorum >= QUORUM_LOWER, Errors.Governance__ConfigurationLib__QuorumTooSmall());
require(_self.quorum <= QUORUM_UPPER, Errors.Governance__ConfigurationLib__QuorumTooBig());
require(
_self.requiredYeaMargin <= REQUIRED_YEA_MARGIN_UPPER,
Errors.Governance__ConfigurationLib__RequiredYeaMarginTooBig()
);
require(_self.minimumVotes >= VOTES_LOWER, Errors.Governance__ConfigurationLib__InvalidMinimumVotes());
require(_self.minimumVotes <= VOTES_UPPER, Errors.Governance__ConfigurationLib__InvalidMinimumVotes());
require(
_self.proposeConfig.lockAmount >= LOCK_AMOUNT_LOWER, Errors.Governance__ConfigurationLib__LockAmountTooSmall()
);
require(
_self.proposeConfig.lockAmount <= LOCK_AMOUNT_UPPER, Errors.Governance__ConfigurationLib__LockAmountTooBig()
);
// Beyond checking the bounds like this, it might be useful to ensure that the value is larger than the withdrawal
// delay. this, can be useful if one want to ensure that the "locker" cannot himself vote in the proposal, but as
// it is unclear if this is a useful property, it is not enforced.
require(_self.proposeConfig.lockDelay >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("LockDelay"));
require(
_self.proposeConfig.lockDelay <= Timestamp.wrap(type(uint32).max),
Errors.Governance__ConfigurationLib__TimeTooBig("LockDelay")
);
require(_self.votingDelay >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("VotingDelay"));
require(_self.votingDelay <= TIME_UPPER, Errors.Governance__ConfigurationLib__TimeTooBig("VotingDelay"));
require(_self.votingDuration >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("VotingDuration"));
require(_self.votingDuration <= TIME_UPPER, Errors.Governance__ConfigurationLib__TimeTooBig("VotingDuration"));
require(_self.executionDelay >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("ExecutionDelay"));
require(_self.executionDelay <= TIME_UPPER, Errors.Governance__ConfigurationLib__TimeTooBig("ExecutionDelay"));
require(_self.gracePeriod >= TIME_LOWER, Errors.Governance__ConfigurationLib__TimeTooSmall("GracePeriod"));
require(_self.gracePeriod <= TIME_UPPER, Errors.Governance__ConfigurationLib__TimeTooBig("GracePeriod"));
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {CompressedProposal, CompressedProposalLib} from "@aztec/governance/libraries/compressed-data/Proposal.sol";
import {CompressedTimestamp, CompressedTimeMath} from "@aztec/shared/libraries/CompressedTimeMath.sol";
import {Timestamp} from "@aztec/shared/libraries/TimeMath.sol";
import {Math} from "@oz/utils/math/Math.sol";
enum VoteTabulationReturn {
Accepted,
Rejected,
Invalid
}
enum VoteTabulationInfo {
TotalPowerLtMinimum,
VotesNeededEqZero,
VotesNeededGtTotalPower,
VotesCastLtVotesNeeded,
YeaLimitEqZero,
YeaLimitGtVotesCast,
YeaLimitEqVotesCast,
YeaVotesEqVotesCast,
YeaVotesLeYeaLimit,
YeaVotesGtYeaLimit
}
/**
* @notice Library for governance proposal evaluation and lifecycle management
*
* This library implements the core vote tabulation logic, and has helpers for getting timestamps
* for the proposal lifecycle.
*
* @dev VOTING MECHANICS:
*
* The voting system uses three key parameters that interact to determine proposal outcomes:
*
* 1. **minimumVotes**: Absolute minimum voting power required in the system
* - Prevents proposals when total power is too low for meaningful governance
* - Must be > 0 and <= totalPower for valid proposals
*
* 2. **quorum**: Percentage of total power that must participate (in 1e18 precision)
* - votesNeeded = ceil(totalPower * quorum / 1e18)
* - Ensures sufficient community participation before decisions are made
* - Example: 30% quorum (0.3e18) with 1000 total power requires ≥300 votes
*
* 3. **requiredYeaMargin**: the required minimum difference between the percentage of yea votes,
* and the percentage of nay votes, in 1e18 precision
* - requiredYeaVotesFraction = ceil((1e18 + requiredYeaMargin) / 2)
* - requiredYeaVotes = ceil(votesCast * requiredYeaVotesFraction / 1e18)
* - Yea votes must be > requiredYeaVotes to pass (strict inequality to avoid ties)
* - Example: 20% requiredYeaMargin (0.2e18) means yea needs >60% of cast votes
* - Example: 0% requiredYeaMargin means yea needs >50% of cast votes
*
* To see why this is the case, let `y` be the percentage of yea votes,
* and `n` be the percentage of nay votes, and `m` be the requiredYeaMargin.
*
* The condition for the proposal to pass is `y - n > m`.
* Thus, `y > m + n`, which is equivalent to `y > m + (1 - y)` => `2y > m + 1` => `y > (m + 1) / 2`.
*
* These parameters are included on the proposal itself, which are copied from Governance at the
* time the proposal is created.
*
* @dev EXAMPLE SCENARIO:
* - Total power: 1000 tokens
* - Minimum votes: 100 tokens
* - Quorum: 40% (0.4e18)
* - Required yea margin: 10% (0.1e18)
*
* For a proposal to pass:
* 1. Total power (1000) must be ≥ minimum votes (100) ✓
* 2. Votes needed = ceil(1000 * 0.4) = 400 votes minimum
* 3. If 500 votes cast (300 yea, 200 nay):
* - Quorum met: 500 ≥ 400 ✓
* - Required yea votes = ceil(500 * ceil(1.1e18/2) / 1e18) = ceil(500 * 0.55) = 275
* - Proposal passes: 300 yea > 275 required yea votes ✓
*
* @dev ROUNDING STRATEGY:
* All calculations use ceiling rounding to ensure the protocol is never "underpaid"
* in terms of required votes. This prevents edge cases where fractional vote
* requirements could round down to zero or insufficient thresholds.
*
* @dev PROPOSAL LIFECYCLE:
* The library also manages proposal timing through four phases:
* 1. Pending: creation → creation + votingDelay
* 2. Active: pending end → pending end + votingDuration
* 3. Queued: active end → active end + executionDelay
* 4. Executable: queued end → queued end + gracePeriod
*/
library ProposalLib {
using CompressedTimeMath for CompressedTimestamp;
using CompressedProposalLib for CompressedProposal;
/**
* @notice Tabulate the votes for a proposal.
* @dev This function is used to determine if a proposal has met the acceptance criteria.
*
* @param _self The proposal to tabulate the votes for.
* @param _totalPower The total power (in Governance) at proposal.pendingThrough().
* @return The vote tabulation result, and additional information.
*/
function voteTabulation(CompressedProposal storage _self, uint256 _totalPower)
internal
view
returns (VoteTabulationReturn, VoteTabulationInfo)
{
if (_totalPower < _self.minimumVotes) {
return (VoteTabulationReturn.Rejected, VoteTabulationInfo.TotalPowerLtMinimum);
}
uint256 votesNeeded = Math.mulDiv(_totalPower, _self.quorum, 1e18, Math.Rounding.Ceil);
if (votesNeeded == 0) {
return (VoteTabulationReturn.Invalid, VoteTabulationInfo.VotesNeededEqZero);
}
if (votesNeeded > _totalPower) {
return (VoteTabulationReturn.Invalid, VoteTabulationInfo.VotesNeededGtTotalPower);
}
(uint256 yea, uint256 nay) = _self.getVotes();
uint256 votesCast = nay + yea;
if (votesCast < votesNeeded) {
return (VoteTabulationReturn.Rejected, VoteTabulationInfo.VotesCastLtVotesNeeded);
}
// Edge case where all the votes are yea, no need to compute requiredApprovalVotes.
// ConfigurationLib enforces that requiredYeaMargin is <= 1e18,
// i.e. we cannot require more votes to be yes than total votes.
if (yea == votesCast) {
return (VoteTabulationReturn.Accepted, VoteTabulationInfo.YeaVotesEqVotesCast);
}
uint256 requiredApprovalVotesFraction = Math.ceilDiv(1e18 + _self.requiredYeaMargin, 2);
uint256 requiredApprovalVotes = Math.mulDiv(votesCast, requiredApprovalVotesFraction, 1e18, Math.Rounding.Ceil);
/*if (requiredApprovalVotes == 0) {
// It should be impossible to hit this case as `requiredApprovalVotesFraction` cannot be 0,
// and due to rounding up, only way to hit this would be if `votesCast = 0`,
// which is already handled as `votesCast >= votesNeeded` and `votesNeeded > 0`.
return (VoteTabulationReturn.Invalid, VoteTabulationInfo.YeaLimitEqZero);
}*/
if (requiredApprovalVotes > votesCast) {
return (VoteTabulationReturn.Invalid, VoteTabulationInfo.YeaLimitGtVotesCast);
}
// We want to see that there are MORE votes on yea than needed
// We explicitly need MORE to ensure we don't "tie".
// If we need as many yea as there are votes, we know it is impossible already.
// due to the check earlier, that summedBallot.yea == votesCast.
if (yea <= requiredApprovalVotes) {
return (VoteTabulationReturn.Rejected, VoteTabulationInfo.YeaVotesLeYeaLimit);
}
return (VoteTabulationReturn.Accepted, VoteTabulationInfo.YeaVotesGtYeaLimit);
}
/**
* @notice Get when the pending phase ends
* @param _compressed Storage pointer to compressed proposal
* @return The timestamp when pending phase ends
*/
function pendingThrough(CompressedProposal storage _compressed) internal view returns (Timestamp) {
return _compressed.creation.decompress() + _compressed.votingDelay.decompress();
}
/**
* @notice Get when the active phase ends
* @param _compressed Storage pointer to compressed proposal
* @return The timestamp when active phase ends
*/
function activeThrough(CompressedProposal storage _compressed) internal view returns (Timestamp) {
return pendingThrough(_compressed) + _compressed.votingDuration.decompress();
}
/**
* @notice Get when the queued phase ends
* @param _compressed Storage pointer to compressed proposal
* @return The timestamp when queued phase ends
*/
function queuedThrough(CompressedProposal storage _compressed) internal view returns (Timestamp) {
return activeThrough(_compressed) + _compressed.executionDelay.decompress();
}
/**
* @notice Get when the executable phase ends
* @param _compressed Storage pointer to compressed proposal
* @return The timestamp when executable phase ends
*/
function executableThrough(CompressedProposal storage _compressed) internal view returns (Timestamp) {
return queuedThrough(_compressed) + _compressed.gracePeriod.decompress();
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)
pragma solidity ^0.8.20;
import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";
/**
* @title IERC1363
* @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
*
* Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
* after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
*/
interface IERC1363 is IERC20, IERC165 {
/*
* Note: the ERC-165 identifier for this interface is 0xb0202a11.
* 0xb0202a11 ===
* bytes4(keccak256('transferAndCall(address,uint256)')) ^
* bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
* bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
* bytes4(keccak256('approveAndCall(address,uint256)')) ^
* bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
*/
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from the caller's account to `to`
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value) external returns (bool);
/**
* @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
* and then calls {IERC1363Receiver-onTransferReceived} on `to`.
* @param from The address which you want to send tokens from.
* @param to The address which you want to transfer to.
* @param value The amount of tokens to be transferred.
* @param data Additional data with no specified format, sent in call to `to`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value) external returns (bool);
/**
* @dev Sets a `value` amount of tokens as the allowance of `spender` over the
* caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
* @param spender The address which will spend the funds.
* @param value The amount of tokens to be spent.
* @param data Additional data with no specified format, sent in call to `spender`.
* @return A boolean value indicating whether the operation succeeded unless throwing.
*/
function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: Apache-2.0
// Copyright 2024 Aztec Labs.
pragma solidity >=0.8.27;
import {SafeCast} from "@oz/utils/math/SafeCast.sol";
import {Timestamp, Slot, Epoch} from "./TimeMath.sol";
type CompressedTimestamp is uint32;
type CompressedSlot is uint32;
type CompressedEpoch is uint32;
library CompressedTimeMath {
function compress(Timestamp _timestamp) internal pure returns (CompressedTimestamp) {
return CompressedTimestamp.wrap(SafeCast.toUint32(Timestamp.unwrap(_timestamp)));
}
function compress(Slot _slot) internal pure returns (CompressedSlot) {
return CompressedSlot.wrap(SafeCast.toUint32(Slot.unwrap(_slot)));
}
function compress(Epoch _epoch) internal pure returns (CompressedEpoch) {
return CompressedEpoch.wrap(SafeCast.toUint32(Epoch.unwrap(_epoch)));
}
function decompress(CompressedTimestamp _ts) internal pure returns (Timestamp) {
return Timestamp.wrap(uint256(CompressedTimestamp.unwrap(_ts)));
}
function decompress(CompressedSlot _slot) internal pure returns (Slot) {
return Slot.wrap(uint256(CompressedSlot.unwrap(_slot)));
}
function decompress(CompressedEpoch _epoch) internal pure returns (Epoch) {
return Epoch.wrap(uint256(CompressedEpoch.unwrap(_epoch)));
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)
pragma solidity ^0.8.20;
import {IERC20} from "../token/ERC20/IERC20.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../utils/introspection/IERC165.sol";// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}{
"remappings": [
"src/=src/",
"test/=test/",
"@aztec/=lib/l1-contracts/src/",
"@aztec-test/=lib/l1-contracts/test/",
"@openzeppelin/=lib/openzeppelin-contracts/",
"@oz/=lib/openzeppelin-contracts/contracts/",
"forge-std/=lib/forge-std/src/",
"@atp/=lib/teegeeee/src/",
"@atp-mock/=lib/teegeeee/src/test/mocks/",
"@zkpassport/=lib/circuits/src/solidity/src/",
"@splits/=lib/splits-contracts-monorepo/packages/splits-v2/src/",
"@predicate/=lib/predicate-contracts/src/",
"@teegeeee/=lib/teegeeee/src/",
"@twap-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/src/",
"@twap-auction-test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/",
"@launcher/=lib/liquidity-launcher/src/",
"@v4c/=lib/liquidity-launcher/lib/v4-core/src/",
"@v4p/=lib/liquidity-launcher/lib/v4-periphery/src/",
"@aztec-blob-lib/=lib/l1-contracts/src/core/libraries/rollup/",
"@ensdomains/=lib/liquidity-launcher/lib/v4-core/node_modules/@ensdomains/",
"@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
"@openzeppelin-upgrades-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"@openzeppelin-upgrades/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable/",
"@openzeppelin-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
"@solady/=lib/liquidity-launcher/lib/solady/",
"@test/=lib/l1-contracts/test/",
"@uniswap/v4-core/=lib/liquidity-launcher/lib/v4-core/",
"@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"@zkpassport-test/=lib/l1-contracts/lib/circuits/src/solidity/test/",
"btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
"circuits/=lib/circuits/src/",
"continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
"ds-test/=lib/predicate-contracts/lib/forge-std/lib/ds-test/src/",
"eigenlayer-contracts/=lib/predicate-contracts/lib/eigenlayer-contracts/",
"eigenlayer-middleware/=lib/predicate-contracts/lib/eigenlayer-middleware/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-gas-snapshot/=lib/liquidity-launcher/lib/continuous-clearing-auction/lib/forge-gas-snapshot/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"hardhat/=lib/liquidity-launcher/lib/v4-core/node_modules/hardhat/",
"kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
"l1-contracts/=lib/l1-contracts/src/",
"lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
"liquidity-launcher/=lib/liquidity-launcher/",
"merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
"openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
"openzeppelin-contracts-upgradeable-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"openzeppelin-contracts-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/predicate-contracts/lib/openzeppelin-foundry-upgrades/src/",
"openzeppelin-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/contracts/",
"openzeppelin/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/",
"optimism/=lib/liquidity-launcher/lib/optimism/",
"permit2/=lib/liquidity-launcher/lib/permit2/",
"predicate-contracts/=lib/predicate-contracts/src/",
"safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
"solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
"solady/=lib/liquidity-launcher/lib/solady/src/",
"solmate/=lib/predicate-contracts/lib/solmate/src/",
"splits-contracts-monorepo/=lib/splits-contracts-monorepo/",
"teegeeee/=lib/teegeeee/src/",
"utils/=lib/predicate-contracts/lib/utils/",
"v4-core/=lib/liquidity-launcher/lib/v4-core/src/",
"v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"zkpassport-packages/=lib/zkpassport-packages/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"__owner","type":"address"},{"internalType":"contract IERC20","name":"_asset","type":"address"},{"internalType":"uint256","name":"_activationThreshold","type":"uint256"},{"internalType":"uint256","name":"_ejectionThreshold","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AddressSnapshotLib__CannotAddAddressZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"},{"internalType":"uint256","name":"size","type":"uint256"}],"name":"AddressSnapshotLib__IndexOutOfBounds","type":"error"},{"inputs":[],"name":"CheckpointUnorderedInsertion","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"Delegation__InsufficientPower","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"GSE__AlreadyRegistered","type":"error"},{"inputs":[{"internalType":"uint256","name":"existingPk1x","type":"uint256"},{"internalType":"uint256","name":"existingPk1y","type":"uint256"}],"name":"GSE__CannotChangePublicKeys","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"GSE__FailedToRemove","type":"error"},{"inputs":[{"internalType":"string","name":"","type":"string"}],"name":"GSE__FatalError","type":"error"},{"inputs":[],"name":"GSE__GovernanceAlreadySet","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"GSE__InstanceDoesNotExist","type":"error"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"GSE__InsufficientBalance","type":"error"},{"inputs":[],"name":"GSE__InvalidProofOfPossession","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"GSE__InvalidRollupAddress","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"GSE__NotLatestRollup","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"GSE__NotRollup","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"GSE__NotWithdrawer","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"GSE__NothingToExit","type":"error"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"GSE__OutOfBounds","type":"error"},{"inputs":[{"internalType":"bytes32","name":"hashedPK1","type":"bytes32"}],"name":"GSE__ProofOfPossessionAlreadySeen","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"GSE__RollupAlreadyRegistered","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"have","type":"uint256"},{"internalType":"uint256","name":"required","type":"uint256"}],"name":"Governance__CheckpointedUintLib__InsufficientValue","type":"error"},{"inputs":[],"name":"Governance__CheckpointedUintLib__NotInPast","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"attester","type":"address"},{"indexed":false,"internalType":"address","name":"oldDelegatee","type":"address"},{"indexed":false,"internalType":"address","name":"newDelegatee","type":"address"}],"name":"DelegateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"delegatee","type":"address"},{"indexed":false,"internalType":"uint256","name":"oldValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newValue","type":"uint256"}],"name":"DelegateVotesChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"instance","type":"address"},{"indexed":true,"internalType":"address","name":"attester","type":"address"},{"indexed":false,"internalType":"address","name":"withdrawer","type":"address"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"ACTIVATION_THRESHOLD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ASSET","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BONUS_INSTANCE_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"EJECTION_THRESHOLD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_rollup","type":"address"}],"name":"addRollup","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"},{"internalType":"address","name":"_attester","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"},{"internalType":"address","name":"_attester","type":"address"},{"internalType":"address","name":"_delegatee","type":"address"}],"name":"delegate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_attester","type":"address"},{"internalType":"address","name":"_withdrawer","type":"address"},{"components":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"internalType":"struct G1Point","name":"_publicKeyInG1","type":"tuple"},{"components":[{"internalType":"uint256","name":"x0","type":"uint256"},{"internalType":"uint256","name":"x1","type":"uint256"},{"internalType":"uint256","name":"y0","type":"uint256"},{"internalType":"uint256","name":"y1","type":"uint256"}],"internalType":"struct G2Point","name":"_publicKeyInG2","type":"tuple"},{"components":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"internalType":"struct G1Point","name":"_proofOfPossession","type":"tuple"},{"internalType":"bool","name":"_moveWithLatestRollup","type":"bool"}],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"},{"internalType":"address","name":"_attester","type":"address"}],"name":"effectiveBalanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_withdrawalId","type":"uint256"}],"name":"finalizeWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"},{"internalType":"Timestamp","name":"_timestamp","type":"uint256"}],"name":"getAttesterCountAtTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"},{"internalType":"uint256","name":"_index","type":"uint256"},{"internalType":"Timestamp","name":"_timestamp","type":"uint256"}],"name":"getAttesterFromIndexAtTime","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"},{"internalType":"Timestamp","name":"_timestamp","type":"uint256"},{"internalType":"uint256[]","name":"_indices","type":"uint256[]"}],"name":"getAttestersFromIndicesAtTime","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBonusInstanceAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_attester","type":"address"}],"name":"getConfig","outputs":[{"components":[{"components":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"internalType":"struct G1Point","name":"publicKey","type":"tuple"},{"internalType":"address","name":"withdrawer","type":"address"}],"internalType":"struct AttesterConfig","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"},{"internalType":"address","name":"_attester","type":"address"}],"name":"getDelegatee","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_attesters","type":"address[]"}],"name":"getG1PublicKeysFromAddresses","outputs":[{"components":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"internalType":"struct G1Point[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getGovernance","outputs":[{"internalType":"contract Governance","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLatestRollup","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"Timestamp","name":"_timestamp","type":"uint256"}],"name":"getLatestRollupAt","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_delegatee","type":"address"},{"internalType":"uint256","name":"_proposalId","type":"uint256"}],"name":"getPowerUsed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"internalType":"struct G1Point","name":"_publicKey","type":"tuple"}],"name":"getRegistrationDigest","outputs":[{"components":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"internalType":"struct G1Point","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_delegatee","type":"address"}],"name":"getVotingPower","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_delegatee","type":"address"},{"internalType":"Timestamp","name":"_timestamp","type":"uint256"}],"name":"getVotingPowerAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_attester","type":"address"}],"name":"getWithdrawer","outputs":[{"internalType":"address","name":"withdrawer","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"},{"internalType":"address","name":"_attester","type":"address"}],"name":"isRegistered","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"}],"name":"isRollupRegistered","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"hashedPK1","type":"bytes32"}],"name":"ownedPKs","outputs":[{"internalType":"bool","name":"isRegistered","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proofOfPossessionGasLimit","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IPayload","name":"_payload","type":"address"},{"internalType":"address","name":"_to","type":"address"}],"name":"proposeWithLock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract Governance","name":"_governance","type":"address"}],"name":"setGovernance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint64","name":"_proofOfPossessionGasLimit","type":"uint64"}],"name":"setProofOfPossessionGasLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_instance","type":"address"}],"name":"supplyOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_proposalId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bool","name":"_support","type":"bool"}],"name":"vote","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_proposalId","type":"uint256"},{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"bool","name":"_support","type":"bool"}],"name":"voteWithBonus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_attester","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"bool","name":"","type":"bool"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"}]Contract Creation Code
6101006040526040516100119061016c565b604051809103905ff08015801561002a573d5f5f3e3d5ffd5b506001600160a01b031660805260088054600160a01b600160e01b031916613d0960a41b17905534801561005c575f5ffd5b506040516142ea3803806142ea83398101604081905261007b91610190565b83838383836001600160a01b0381166100ad57604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100b68161011d565b506001600160a01b0390921660e05260a05260c0525050739064fb41156d300196d5eb95e0b3c1f08ebc39a85f5250506002602052507f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c51a805460ff191660011790556101d5565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b610a5c8061388e83390190565b6001600160a01b038116811461018d575f5ffd5b50565b5f5f5f5f608085870312156101a3575f5ffd5b84516101ae81610179565b60208601519094506101bf81610179565b6040860151606090960151949790965092505050565b60805160a05160c05160e05161364061024e5f395f818161038201528181610a2901528181610a77015281816110bb015261115e01525f818161057b015261168501525f818161052e0152818161108a015281816110df0152818161113501526111e001525f818161085b0152611d2401526136405ff3fe608060405234801561000f575f5ffd5b506004361061023e575f3560e01c80636a91551611610135578063bb4d4436116100b4578063ec6e69db11610079578063ec6e69db14610658578063f2fde38b1461066b578063f3fef3a31461067e578063f7888aec146106ac578063f852fef9146106bf575f5ffd5b8063bb4d443614610550578063d3da927f14610563578063dbc8575214610576578063e48a5f7b1461059d578063eaeded5f14610645575f5ffd5b80639f6bc70c116100fa5780639f6bc70c146104e8578063a9cd26c9146104fb578063ab033ea91461050e578063b35186a814610521578063b4ac453614610529575f5ffd5b80636a91551614610489578063710ca3541461049c578063715018a6146104b05780638da5cb5b146104b85780639796d977146104c8575f5ffd5b80634800d97f116101c157806359264f001161018657806359264f001461042a57806362400e4c1461043d578063671431c3146104505780636902c67b146104635780636a18ff7a14610476575f5ffd5b80634800d97f1461037d5780634bd96ece146103a457806352097e4e146103d657806352f44a14146103e95780635338c75814610417575f5ffd5b806318160ddd1161020757806318160ddd14610310578063289b3c0d146103265780632e341ce01461033757806330eb4bdd1461034a5780633fd20fe11461035d575f5ffd5b806215eaaa146102425780630928d152146102725780630e9f7e43146102875780630f9f54101461029a57806311d66fee146102f0575b5f5ffd5b610255610250366004612d01565b6106f1565b6040516001600160a01b0390911681526020015b60405180910390f35b610285610280366004612d38565b610727565b005b610285610295366004612d4f565b610806565b6102556102a8366004612d75565b6001600160a01b039081165f90815260036020908152604091829020825160808101845281549381019384526001820154606082015292835260020154909216910181905290565b6103036102fe366004612eb4565b61083b565b6040516102699190612ece565b6103186108d6565b604051908152602001610269565b6008546001600160a01b0316610255565b610285610345366004612ee5565b6108e6565b610318610358366004612d01565b61099d565b61037061036b366004612f4f565b610bb7565b6040516102699190612fe3565b6102557f000000000000000000000000000000000000000000000000000000000000000081565b6103c66103b2366004612d38565b60046020525f908152604090205460ff1681565b6040519015158152602001610269565b6102856103e4366004613057565b610cad565b6103c66103f7366004612d75565b6001600160a01b03165f9081526002602052604090206003015460ff1690565b610318610425366004612d01565b610d12565b610285610438366004612d75565b610d6e565b61031861044b366004612d75565b610e3d565b61031861045e366004613082565b610e49565b6102856104713660046130ac565b610e71565b610285610484366004613057565b611294565b610255610497366004612d38565b6112a0565b6102555f5160206135eb5f395f51905f5281565b6102856112c6565b5f546001600160a01b0316610255565b6104db6104d6366004613159565b6112d9565b6040516102699190613206565b5f5160206135eb5f395f51905f52610255565b610255610509366004613246565b6112ee565b61028561051c366004612d75565b61135f565b6102556113b2565b6103187f000000000000000000000000000000000000000000000000000000000000000081565b61031861055e366004612d75565b6113c0565b6103c6610571366004612d01565b6113cc565b6103187f000000000000000000000000000000000000000000000000000000000000000081565b6106186105ab366004612d75565b604080516080810182525f9181018281526060820183905281526020810191909152506001600160a01b039081165f908152600360209081526040918290208251608081018452815493810193845260018201546060820152928352600201549092169181019190915290565b6040805182518051825260209081015181830152909201516001600160a01b031690820152606001610269565b610318610653366004613082565b6113fe565b610318610666366004613082565b61140b565b610285610679366004612d75565b6114b6565b61069161068c366004613082565b6114f3565b60408051938452911515602084015290820152606001610269565b6103186106ba366004612d01565b61179f565b6008546106d990600160a01b90046001600160401b031681565b6040516001600160401b039091168152602001610269565b6001600160a01b038083165f90815260056020908152604080832084861684529091528120600101549091165b90505b92915050565b5f61073a6008546001600160a01b031690565b604051634527d8b560e11b8152600481018490529091506001600160a01b03821690638a4fb16a90602401608060405180830381865afa158015610780573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107a49190613283565b606001516108025760405163049468a960e11b8152600481018390526001600160a01b03821690630928d152906024015f604051808303815f87803b1580156107eb575f5ffd5b505af11580156107fd573d5f5f3e3d5ffd5b505050505b5050565b61080e6117ac565b600880546001600160401b03909216600160a01b0267ffffffffffffffff60a01b19909216919091179055565b6040805180820182525f80825260208201529051633a62f11160e21b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063e98bc44490610898908590600401612ece565b6040805180830381865afa1580156108b2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107219190613307565b5f6108e160056117d8565b905090565b6001600160a01b0383165f9081526002602052604090206003015460ff168390610934576040516330d32d8760e21b81526001600160a01b0390911660048201526024015b60405180910390fd5b506001600160a01b038083165f9081526003602052604090206002015416803380821461098757604051630257d8d760e41b81526001600160a01b0392831660048201529116602482015260440161092b565b50610997905060058585856117e5565b50505050565b5f5f6109b16008546001600160a01b031690565b90505f816001600160a01b0316636bd50cef6040518163ffffffff1660e01b815260040161012060405180830381865afa1580156109f1573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a159190613321565b51602001519050610a516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163330846118b3565b60405163095ea7b360e01b81526001600160a01b038381166004830152602482018390527f0000000000000000000000000000000000000000000000000000000000000000169063095ea7b3906044016020604051808303815f875af1158015610abd573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ae191906133c7565b506040516311f9fbc960e21b8152306004820152602481018290526001600160a01b038316906347e7ef24906044015f604051808303815f87803b158015610b27575f5ffd5b505af1158015610b39573d5f5f3e3d5ffd5b50506040516330eb4bdd60e01b81526001600160a01b0388811660048301528781166024830152851692506330eb4bdd91506044016020604051808303815f875af1158015610b8a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bae91906133e2565b95945050505050565b60605f82516001600160401b03811115610bd357610bd3612d90565b604051908082528060200260200182016040528015610c1757816020015b604080518082019091525f8082526020820152815260200190600190039081610bf15790505b5090505f5b8351811015610ca65760035f858381518110610c3a57610c3a6133f9565b60200260200101516001600160a01b03166001600160a01b031681526020019081526020015f205f016040518060400160405290815f8201548152602001600182015481525050828281518110610c9357610c936133f9565b6020908102919091010152600101610c1c565b5092915050565b5f610cb78461190d565b9050610cc2816112a0565b33906001600160a01b03168114610cf8576040516305df8ea560e31b81526001600160a01b03909116600482015260240161092b565b506109975f5160206135eb5f395f51905f528585856119a9565b5f80610d2060058585611a3c565b905080158015610d485750836001600160a01b0316610d3d6113b2565b6001600160a01b0316145b1561071e57610d6660055f5160206135eb5f395f51905f5285611a3c565b915050610721565b610d766117ac565b806001600160a01b038116610daa576040516327bac29760e21b81526001600160a01b03909116600482015260240161092b565b506001600160a01b0381165f90815260026020526040902060030154819060ff1615610df45760405162cea8b160e11b81526001600160a01b03909116600482015260240161092b565b506001600160a01b0381165f908152600260205260409020600301805460ff19166001179055610e38610e2642611a63565b6001906001600160a01b038416611a97565b505050565b5f610721600583611ab1565b6001600160a01b0382165f90815260066020908152604080832084845290915281205461071e565b335f8181526002602052604090206003015460ff16610eaf576040516319aaa75960e11b81526001600160a01b03909116600482015260240161092b565b505f33610eba6113b2565b6001600160a01b03161490508115610ef9573381610ef7576040516305df8ea560e31b81526001600160a01b03909116600482015260240161092b565b505b610f0333886113cc565b1533889091610f3857604051630d75cd7760e11b81526001600160a01b0392831660048201529116602482015260440161092b565b50508015610f9c57610f575f5160206135eb5f395f51905f52886113cc565b5f5160206135eb5f395f51905f5290889015610f9957604051630d75cd7760e11b81526001600160a01b0392831660048201529116602482015260440161092b565b50505b5f82610fa85733610fb7565b5f5160206135eb5f395f51905f525b6001600160a01b0381165f908152600260205260409020909150610fdb9089611ad4565b8189909161100f57604051630d75cd7760e11b81526001600160a01b0392831660048201529116602482015260440161092b565b505061101d88878787611c0e565b6040805180820182528781526001600160a01b0389811660208084019182528c83165f90815260038252949094209251805184559093015160018301559151600290910180546001600160a01b031916919092161790556110816005828a816117e5565b6110ae6005828a7f0000000000000000000000000000000000000000000000000000000000000000611dd2565b6111036001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001633307f00000000000000000000000000000000000000000000000000000000000000006118b3565b5f6111166008546001600160a01b031690565b60405163095ea7b360e01b81526001600160a01b0380831660048301527f000000000000000000000000000000000000000000000000000000000000000060248301529192507f00000000000000000000000000000000000000000000000000000000000000009091169063095ea7b3906044016020604051808303815f875af11580156111a6573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111ca91906133c7565b506040516311f9fbc960e21b81523060048201527f000000000000000000000000000000000000000000000000000000000000000060248201526001600160a01b038216906347e7ef24906044015f604051808303815f87803b15801561122f575f5ffd5b505af1158015611241573d5f5f3e3d5ffd5b50506040516001600160a01b038b81168252808d169350851691507f7986a8ff398d9a6be88df9dfc6e3c9a83e4da5544241aad420d1cf7c214e43459060200160405180910390a3505050505050505050565b610e38338484846119a9565b5f6107216112b86112b084611a63565b600190611e61565b6001600160e01b0316611eb6565b6112ce6117ac565b6112d75f611ee9565b565b60606112e6848385611f38565b949350505050565b6040805160018082528183019092525f918291906020808301908036833701905050905083815f81518110611325576113256133f9565b60200260200101818152505061133c858285611f38565b5f8151811061134d5761134d6133f9565b60200260200101519150509392505050565b6113676117ac565b6008546001600160a01b031615611390576040516296bb9f60e21b815260040160405180910390fd5b600880546001600160a01b0319166001600160a01b0392909216919091179055565b5f6108e16112b86001612139565b5f610721600583612170565b6001600160a01b038281165f90815260026020818152604080842094861684529390910190529081205460ff1661071e565b5f61071e60058484612194565b6001600160a01b0382165f9081526002602052604081208161142c84611a63565b90505f61143983836121b9565b9050856001600160a01b031661144e866112a0565b6001600160a01b031603610bae57739064fb41156d300196d5eb95e0b3c1f08ebc39a85f5260026020526114a27f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c517836121b9565b6114ac9082613421565b9695505050505050565b6114be6117ac565b6001600160a01b0381166114e757604051631e4fbdf760e01b81525f600482015260240161092b565b6114f081611ee9565b50565b335f908152600260205260408120600301548190819060ff163390611537576040516319aaa75960e11b81526001600160a01b03909116600482015260240161092b565b50335f8181526002602081815260408084206001600160a01b038b1685529283019091529091205460ff168015801561157f5750336115746113b2565b6001600160a01b0316145b80156115c157506001600160a01b0388165f9081527f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c519602052604090205460ff165b15611617575050739064fb41156d300196d5eb95e0b3c1f08ebc39a85f525060026020525f5160206135eb5f395f51905f527f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c51760015b87816116425760405163417f3a0560e01b81526001600160a01b03909116600482015260240161092b565b505f6116506005858b611a3c565b905080888082101561167e57604051635087517f60e11b81526004810192909252602482015260440161092b565b508890505f7f00000000000000000000000000000000000000000000000000000000000000006116ae8385613434565b10905080156116fc576116c1858c6121d4565b8b906116ec576040516304ca9e7360e31b81526001600160a01b03909116600482015260240161092b565b508291506116fc6005878d612235565b6117096005878d85612241565b5f61171c6008546001600160a01b031690565b60405163625f849b60e11b8152336004820152602481018590526001600160a01b03919091169063c4bf0936906044016020604051808303815f875af1158015611768573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061178c91906133e2565b929c919b50919950975050505050505050565b5f61071e60058484611a3c565b5f546001600160a01b031633146112d75760405163118cdaa760e01b815233600482015260240161092b565b5f610721826002016122c8565b6001600160a01b038381165f9081526020868152604080832086851684529091529020600101548116908216810361181d5750610997565b6001600160a01b038481165f908152602087815260408083208785168085529083529281902060010180546001600160a01b031916878616908117909155815194861685529184019190915290917f3134e8a2e6d97e929a7e54011ea5485d7d196dd5f0ba4d4ef95803e8e3fc257f910160405180910390a26118ac8582846118a7898989611a3c565b6122e1565b5050505050565b604080516001600160a01b0385811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180516001600160e01b03166323b872dd60e01b17905261099790859061241a565b5f5f6119216008546001600160a01b031690565b6001600160a01b031663c7f758a8846040518263ffffffff1660e01b815260040161194e91815260200190565b6101a060405180830381865afa15801561196a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061198e9190613455565b60808101518151519192506119a291612486565b9392505050565b5f6119b38461190d565b90506119c3600586868487612491565b6008546001600160a01b031660405163350c7fbd60e11b8152600481018690526024810185905283151560448201526001600160a01b039190911690636a18ff7a906064015f604051808303815f87803b158015611a1f575f5ffd5b505af1158015611a31573d5f5f3e3d5ffd5b505050505050505050565b6001600160a01b039182165f90815260209384526040808220929093168152925290205490565b5f63ffffffff821115611a93576040516306dfcc6560e41b8152602060048201526024810183905260440161092b565b5090565b5f80611aa485858561255c565b915091505b935093915050565b6001600160a01b0381165f90815260208390526040812061071e906001016122c8565b5f6001600160a01b038216611afb5760405162979f6d60e11b815260040160405180910390fd5b6001600160a01b0382165f90815260028401602052604090205460ff1615611b2457505f610721565b5f611b2e84612139565b604080518082018252600181526001600160e01b0383811660208084019182526001600160a01b0389165f90815260028b019091529384209251835491516001600160e81b0319909216901515610100600160e81b031916176101009190921602179055909150611b9e42611a63565b9050611bd681611bb6866001600160a01b03166126a0565b6001600160e01b0385165f90815260018901602052604090209190611a97565b50611c01905081611bf9611beb85600161352a565b6001600160e01b03166126a0565b879190611a97565b5060019695505050505050565b6001600160a01b0384165f908152600360209081526040918290208251808401909352805480845260019091015491830191909152158015611c5257506020810151155b815160208301519091611c81576040516312d6323b60e11b81526004810192909252602482015260440161092b565b50505f845f01518560200151604051602001611ca7929190918252602082015260400190565b60408051601f1981840301815291815281516020928301205f8181526004909352912054909150819060ff1615611cf457604051636ab4baeb60e11b815260040161092b91815260200190565b505f818152600460208190526040918290208054600160ff199091161790556008549151633f78271d60e01b81527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031692633f78271d92600160a01b9091046001600160401b031691611d75918a918a918a9101613549565b6020604051808303818786fa158015611d90573d5f5f3e3d5ffd5b50505050506040513d601f19601f82011682018060405250810190611db591906133c7565b6107fd5760405163df4ff27b60e01b815260040160405180910390fd5b8015610997576001600160a01b038084165f9081526020868152604080832093861683529083905281208054849290611e0c908490613421565b90915550506001600160a01b038084165f90815260208390526040812060010154611e3b9288929116856122e1565b611e4860018201836126d3565b50611e58905060028601836126d3565b50505050505050565b81545f9081611e728585838561274d565b90508015611eac57611e9685611e89600184613434565b5f91825260209091200190565b54600160201b90046001600160e01b0316610bae565b505f949350505050565b5f6001600160a01b03821115611a93576040516306dfcc6560e41b815260a060048201526024810183905260440161092b565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60605f83516001600160401b03811115611f5457611f54612d90565b604051908082528060200260200182016040528015611f7d578160200160208202803683370190505b506001600160a01b0386165f818152600260205260408120739064fb41156d300196d5eb95e0b3c1f08ebc39a882529293507f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c51791611fda876112a0565b6001600160a01b03161490505f611ff087611a63565b90505f611ffd85836121b9565b90505f8361200b575f612015565b61201585846121b9565b90505f6120228284613421565b90505f5b8b51811015612128575f8c8281518110612042576120426133f9565b602002602001015190508281108184909161207957604051635d4bf88360e01b81526004810192909252602482015260440161092b565b5050848110156120c55761208e8982886127a8565b8a83815181106120a0576120a06133f9565b60200260200101906001600160a01b031690816001600160a01b03168152505061211f565b86156120e05761208e6120d88683613434565b8990886127a8565b604051633d6a4a3b60e21b815260206004820152601360248201527229a427aaa622102722ab22a9102420a82822a760691b604482015260640161092b565b50600101612026565b50969b9a5050505050505050505050565b80545f9080156121685761215283611e89600184613434565b54600160201b90046001600160e01b03166119a2565b5f9392505050565b6001600160a01b0381165f90815260018084016020526040822061071e91016122c8565b6001600160a01b0382165f9081526001808501602052604082206112e69101836127d7565b5f6121c48383611e61565b6001600160e01b03169392505050565b6001600160a01b0381165f908152600283016020908152604080832081518083019092525460ff811615158083526101009091046001600160e01b03169282019290925290612226575f915050610721565b6112e684826020015185612811565b610e388383835f6117e5565b8015610997576001600160a01b038084165f908152602086815260408083209386168352908390528120805484929061227b908490613434565b90915550506001600160a01b038084165f908152602083905260408120600101546122ab928892911690856122e1565b6122b86001820183612a2e565b50611e5890506002860183612a2e565b5f6122d282612139565b6001600160e01b031692915050565b816001600160a01b0316836001600160a01b031614806122ff575080155b610997576001600160a01b0383161561238c576001600160a01b0383165f9081526001808601602052604082208291612339910184612a2e565b91509150846001600160a01b03167fdec2bacdd2f05b59de34da9b523dff8be42e5e38e818c82fdb0bae774387a7248383604051612381929190918252602082015260400190565b60405180910390a250505b6001600160a01b03821615610997576001600160a01b0382165f90815260018086016020526040822082916123c29101846126d3565b91509150836001600160a01b03167fdec2bacdd2f05b59de34da9b523dff8be42e5e38e818c82fdb0bae774387a724838360405161240a929190918252602082015260400190565b60405180910390a2505050505050565b5f5f60205f8451602086015f885af180612439576040513d5f823e3d81fd5b50505f513d9150811561245057806001141561245d565b6001600160a01b0384163b155b1561099757604051635274afe760e01b81526001600160a01b038516600482015260240161092b565b5f61071e8284613421565b5f61249d868685612194565b6001600160a01b0386165f90815260018801602090815260408083208884529091529020549091506124cf8382613421565b82101586836124de8685613421565b9091926125175760405163dd99c2ab60e01b81526001600160a01b0390931660048401526024830191909152604482015260640161092b565b5050506001600160a01b0386165f90815260018801602090815260408083208884529091528120805485929061254e908490613421565b909155505050505050505050565b82545f9081908015612648575f61257887611e89600185613434565b805490915063ffffffff80821691600160201b90046001600160e01b03169088168211156125b957604051632520601d60e01b815260040160405180910390fd5b8763ffffffff168263ffffffff16036125ec57825463ffffffff16600160201b6001600160e01b0389160217835561263a565b6040805180820190915263ffffffff808a1682526001600160e01b03808a1660208085019182528d54600181018f555f8f81529190912094519151909216600160201b029216919091179101555b9450859350611aa992505050565b50506040805180820190915263ffffffff80851682526001600160e01b0380851660208085019182528854600181018a555f8a815291822095519251909316600160201b029190931617920191909155905081611aa9565b5f6001600160e01b03821115611a93576040516306dfcc6560e41b815260e060048201526024810183905260440161092b565b5f5f5f6126df85612139565b9050835f036126fb576001600160e01b03169150819050612746565b5f612705856126a0565b905061272561271342611a63565b61271d838561352a565b889190611a97565b50829050612733828261352a565b6001600160e01b03918216955016925050505b9250929050565b5f5b818310156127a0575f6127628484612adb565b5f8781526020902090915063ffffffff86169082015463ffffffff16111561278c5780925061279a565b612797816001613421565b93505b5061274f565b509392505050565b5f828152600184016020526040812081906127c39084612af5565b9050610bae816001600160e01b0316611eb6565b5f6127e182421190565b6127fe576040516334dcb7d760e21b815260040160405180910390fd5b6121c461280a83611a63565b8490612af5565b5f8061281c85612139565b9050806001600160e01b0316846001600160e01b03161061286357604051636bc4db8d60e11b81526001600160e01b0380861660048301528216602482015260440161092b565b6040805180820182525f80825260208083018281526001600160a01b038816835260028a019091529281209151825493516001600160e81b0319909416901515610100600160e81b031916176101006001600160e01b03909416939093029290921790556128d2600183613598565b90505f6128de42611a63565b9050856001600160e01b0316826001600160e01b0316146129db576001600160e01b0382165f908152600188016020526040812061291f906112b890612139565b90506040518060400160405280600115158152602001612947896001600160e01b03166126a0565b6001600160e01b039081169091526001600160a01b0383165f81815260028c016020908152604090912084518154959092015190931661010002610100600160e81b0319911515919091166001600160e81b0319909416939093179290921790556129d79083906129b7906126a0565b6001600160e01b038a165f90815260018c01602052604090209190611a97565b5050505b6001600160e01b0382165f90815260018801602052604081206129ff918390611a97565b5050612a1f81612a17846001600160e01b03166126a0565b899190611a97565b50600198975050505050505050565b5f5f5f612a3a85612139565b9050835f03612a56576001600160e01b03169150819050612746565b5f612a60856126a0565b90503382826001600160e01b038082169083161015612ab45760405163b3d9568f60e01b81526001600160a01b0390931660048401526001600160e01b03918216602484015216604482015260640161092b565b505050612acd612ac342611a63565b61271d8385613598565b508290506127338282613598565b5f612ae960028484186135cb565b61071e90848416613421565b81545f9081816005811115612b4f575f612b0e84612b96565b612b189085613434565b5f8881526020902090915081015463ffffffff9081169087161015612b3f57809150612b4d565b612b4a816001613421565b92505b505b5f612b5c8787858561274d565b90508015612b8957612b7387611e89600184613434565b54600160201b90046001600160e01b0316612b8b565b5f5b979650505050505050565b5f60018211612ba3575090565b816001600160801b8210612bbc5760809190911c9060401b5b680100000000000000008210612bd75760409190911c9060201b5b600160201b8210612bed5760209190911c9060101b5b620100008210612c025760109190911c9060081b5b6101008210612c165760089190911c9060041b5b60108210612c295760049190911c9060021b5b60048210612c355760011b5b600302600190811c90818581612c4d57612c4d6135b7565b048201901c90506001818581612c6557612c656135b7565b048201901c90506001818581612c7d57612c7d6135b7565b048201901c90506001818581612c9557612c956135b7565b048201901c90506001818581612cad57612cad6135b7565b048201901c90506001818581612cc557612cc56135b7565b048201901c9050612ce4818581612cde57612cde6135b7565b04821190565b90039392505050565b6001600160a01b03811681146114f0575f5ffd5b5f5f60408385031215612d12575f5ffd5b8235612d1d81612ced565b91506020830135612d2d81612ced565b809150509250929050565b5f60208284031215612d48575f5ffd5b5035919050565b5f60208284031215612d5f575f5ffd5b81356001600160401b038116811461071e575f5ffd5b5f60208284031215612d85575f5ffd5b813561071e81612ced565b634e487b7160e01b5f52604160045260245ffd5b604080519081016001600160401b0381118282101715612dc657612dc6612d90565b60405290565b604051608081016001600160401b0381118282101715612dc657612dc6612d90565b60405161010081016001600160401b0381118282101715612dc657612dc6612d90565b60405160c081016001600160401b0381118282101715612dc657612dc6612d90565b60405160e081016001600160401b0381118282101715612dc657612dc6612d90565b604051601f8201601f191681016001600160401b0381118282101715612e7d57612e7d612d90565b604052919050565b5f60408284031215612e95575f5ffd5b612e9d612da4565b823581526020928301359281019290925250919050565b5f60408284031215612ec4575f5ffd5b61071e8383612e85565b815181526020808301519082015260408101610721565b5f5f5f60608486031215612ef7575f5ffd5b8335612f0281612ced565b92506020840135612f1281612ced565b91506040840135612f2281612ced565b809150509250925092565b5f6001600160401b03821115612f4557612f45612d90565b5060051b60200190565b5f60208284031215612f5f575f5ffd5b81356001600160401b03811115612f74575f5ffd5b8201601f81018413612f84575f5ffd5b8035612f97612f9282612f2d565b612e55565b8082825260208201915060208360051b850101925086831115612fb8575f5ffd5b6020840193505b828410156114ac578335612fd281612ced565b825260209384019390910190612fbf565b602080825282518282018190525f918401906040840190835b8181101561302f5761301983855180518252602090810151910152565b6020939093019260409290920191600101612ffc565b509095945050505050565b80151581146114f0575f5ffd5b80356130528161303a565b919050565b5f5f5f60608486031215613069575f5ffd5b83359250602084013591506040840135612f228161303a565b5f5f60408385031215613093575f5ffd5b823561309e81612ced565b946020939093013593505050565b5f5f5f5f5f5f8688036101608112156130c3575f5ffd5b87356130ce81612ced565b965060208801356130de81612ced565b95506130ed8960408a01612e85565b94506080607f1982011215613100575f5ffd5b50613109612dcc565b6080880135815260a0880135602082015260c0880135604082015260e08801356060820152925061313e886101008901612e85565b915061314d6101408801613047565b90509295509295509295565b5f5f5f6060848603121561316b575f5ffd5b833561317681612ced565b92506020840135915060408401356001600160401b03811115613197575f5ffd5b8401601f810186136131a7575f5ffd5b80356131b5612f9282612f2d565b8082825260208201915060208360051b8501019250888311156131d6575f5ffd5b6020840193505b828410156131f85783358252602093840193909101906131dd565b809450505050509250925092565b602080825282518282018190525f918401906040840190835b8181101561302f5783516001600160a01b031683526020938401939092019160010161321f565b5f5f5f60608486031215613258575f5ffd5b833561326381612ced565b95602085013595506040909401359392505050565b805161305281612ced565b5f6080828403128015613294575f5ffd5b5061329d612dcc565b825181526020808401519082015260408301516132b981612ced565b604082015260608301516132cc8161303a565b60608201529392505050565b5f604082840312156132e8575f5ffd5b6132f0612da4565b825181526020928301519281019290925250919050565b5f60408284031215613317575f5ffd5b61071e83836132d8565b5f81830361012081128015613334575f5ffd5b5061333d612dee565b604082121561334a575f5ffd5b613352612da4565b845181526020808601518183015290825260408086015191830191909152606080860151918301919091526080808601519183019190915260a0808601519183019190915260c0808601519183019190915260e080860151918301919091526101009094015193810193909352509092915050565b5f602082840312156133d7575f5ffd5b815161071e8161303a565b5f602082840312156133f2575f5ffd5b5051919050565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b808201808211156107215761072161340d565b818103818111156107215761072161340d565b805160098110613052575f5ffd5b5f8183036101a081128015613468575f5ffd5b50613471612e11565b60e082121561347e575f5ffd5b613486612e33565b845181526020808601519082015260408086015190820152606080860151908201526080808601519082015260a0808601519082015260c0808601519082015280825291506134d760e08501613447565b60208201526134e96101008501613278565b60408201526134fb6101208501613278565b606082015261014084015160808201819052915061351d8561016086016132d8565b60a0820152949350505050565b6001600160e01b0381811683821601908111156107215761072161340d565b83518152602080850151908201526101008101835160408301526020840151606083015260408401516080830152606084015160a08301526112e660c083018480518252602090810151910152565b6001600160e01b0382811682821603908111156107215761072161340d565b634e487b7160e01b5f52601260045260245ffd5b5f826135e557634e487b7160e01b5f52601260045260245ffd5b50049056fe213a5ea1b59775ba625834509064fb41156d300196d5eb95e0b3c1f08ebc39a8a2646970667358221220dedf8e50dbb5e76c009a9db7945946eb3c7bf704856499f9a4dbbce27804376a64736f6c634300081e00336080604052348015600e575f5ffd5b50610a408061001c5f395ff3fe608060405234801561000f575f5ffd5b5060043610610034575f3560e01c80633f78271d14610038578063e98bc44414610060575b5f5ffd5b61004b61004636600461088b565b61008e565b60405190151581526020015b60405180910390f35b61007361006e36600461092f565b6100a2565b60408051825181526020928301519281019290925201610057565b5f61009a8484846100c4565b949350505050565b604080518082019091525f80825260208201526100be826101e4565b92915050565b5f6100ce84610256565b156100ec5760405163204cab4d60e21b815260040160405180910390fd5b6100f58361026b565b156101135760405163204cab4d60e21b815260040160405180910390fd5b61011c82610256565b1561013a5760405163204cab4d60e21b815260040160405180910390fd5b5f610144856101e4565b90505f61015286868661029c565b9050805f0361017457604051631262b41360e01b815260040160405180910390fd5b5f61018885610183898561033c565b6103a3565b90505f6101c3846101836101bd6040805180820182525f80825260209182015281518083019092526001825260029082015290565b8661033c565b90506101d8826101d161040e565b838a6104db565b98975050505050505050565b604080518082019091525f80825260208201525f825f0151836020015160405160200161021b929190918252602082015260400190565b604051602081830303815290604052905061024f75415a5445435f424c535f504f505f424e3235345f563160501b82610598565b9392505050565b80515f901580156100be575050602001511590565b80515f9015801561027e57506020820151155b801561028c57506040820151155b80156100be575050606001511590565b82516020808501518451858301516040808801516060808a015189518a8901518551808b019b909b528a86019890985291890195909552608088019390935260a087015260c086019290925260e0850152610100808501929092528051808503909201825261012090930190925281519101205f9061009a907f30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f000000190610949565b604080518082019091525f80825260208201526103576107b9565b835181526020808501519082015260408082018490525f908360608460076107d05a03fa90508061039b57604051635d90883360e11b815260040160405180910390fd5b505092915050565b604080518082019091525f80825260208201526103be6107d7565b835181526020808501518183015283516040808401919091529084015160608301525f908360808460066107d05a03fa90508061039b57604051635d3761b560e11b815260040160405180910390fd5b61043560405180608001604052805f81526020015f81526020015f81526020015f81525090565b60405180608001604052807f1800deef121f1e76426a00665e5c4479674322d4f75edadd46debd5cd992f6ed81526020017f198e9393920d483a7260bfb731fb5d25f1aa493335a9e71297e485b7aef312c281526020017f1d9befcd05a5323e6da4d435f3b617cdb3af83285c2df711ef39c01571827f9d81526020017f275dc4a288d1afb3cbb1ac09187524c7db36395df7be3b99e673b13a075a65ec815250905090565b5f6104e46107f5565b85518152602080870151818301528581015160408084019190915286516060808501919091528088015160808501528188015160a0850152865160c08501528683015160e085015291850151610100840152845161012084015290840151610140830152830151610160820152610559610814565b5f6020826101808560086107d05a03fa9050806105895760405163a158f26960e01b815260040160405180910390fd5b50516001149695505050505050565b604080518082019091525f80825260208201525f805b5f8585836040516020016105c493929190610968565b60408051601f1981840301815291905280516020909101209050816105e8816109bf565b9250505f5160206109eb5f395f51905f52811061060557506105ae565b5f5f5160206109eb5f395f51905f5282830990505f5160206109eb5f395f51905f5282820990505f5160206109eb5f395f51905f5260038208905061064981610716565b9450905083156106f157805f61066c825f5160206109eb5f395f51905f526109d7565b90508082111561067857905b5f89895f1960405160200161068f93929190610968565b604051602081830303815290604052805190602001205f1c9050806001165f036106cf5760405180604001604052808681526020018481525097506106e7565b60405180604001604052808681526020018381525097505b50505050506106f8565b50506105ae565b8161039b57604051633d7f3d1d60e21b815260040160405180910390fd5b5f5f5f60405160208152602080820152602060408201528460608201527f0c19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f5260808201525f5160206109eb5f395f51905f5260a082015260208160c08360056107d05a03fa9051935090505f5160206109eb5f395f51905f5283800984149150806107b357604051634ccc085960e11b815260040160405180910390fd5b50915091565b60405180606001604052806003906020820280368337509192915050565b60405180608001604052806004906020820280368337509192915050565b604051806101800160405280600c906020820280368337509192915050565b60405180602001604052806001906020820280368337509192915050565b5f60408284031215610842575f5ffd5b6040805190810167ffffffffffffffff8111828210171561087157634e487b7160e01b5f52604160045260245ffd5b604052823581526020928301359281019290925250919050565b5f5f5f83850361010081121561089f575f5ffd5b6108a98686610832565b93506080603f19820112156108bc575f5ffd5b506040516080810167ffffffffffffffff811182821017156108ec57634e487b7160e01b5f52604160045260245ffd5b6040908152858101358252606080870135602084015260808701359183019190915260a08601359082015291506109268560c08601610832565b90509250925092565b5f6040828403121561093f575f5ffd5b61024f8383610832565b5f8261096357634e487b7160e01b5f52601260045260245ffd5b500690565b838152606060208201525f83518060608401528060208601608085015e5f608082850101526080601f19601f830116840101915050826040830152949350505050565b634e487b7160e01b5f52601160045260245ffd5b5f600182016109d0576109d06109ab565b5060010190565b818103818111156100be576100be6109ab56fe30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47a264697066735822122009ba88b0e88b3ac64d7b0c969be11b31fc2172f2f89bd422ce5cba406a4e153f64736f6c634300081e003300000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2000000000000000000000000000000000000000000002a5a058fc295ed00000000000000000000000000000000000000000000000000152d02c7e14af6800000
Deployed Bytecode
0x608060405234801561000f575f5ffd5b506004361061023e575f3560e01c80636a91551611610135578063bb4d4436116100b4578063ec6e69db11610079578063ec6e69db14610658578063f2fde38b1461066b578063f3fef3a31461067e578063f7888aec146106ac578063f852fef9146106bf575f5ffd5b8063bb4d443614610550578063d3da927f14610563578063dbc8575214610576578063e48a5f7b1461059d578063eaeded5f14610645575f5ffd5b80639f6bc70c116100fa5780639f6bc70c146104e8578063a9cd26c9146104fb578063ab033ea91461050e578063b35186a814610521578063b4ac453614610529575f5ffd5b80636a91551614610489578063710ca3541461049c578063715018a6146104b05780638da5cb5b146104b85780639796d977146104c8575f5ffd5b80634800d97f116101c157806359264f001161018657806359264f001461042a57806362400e4c1461043d578063671431c3146104505780636902c67b146104635780636a18ff7a14610476575f5ffd5b80634800d97f1461037d5780634bd96ece146103a457806352097e4e146103d657806352f44a14146103e95780635338c75814610417575f5ffd5b806318160ddd1161020757806318160ddd14610310578063289b3c0d146103265780632e341ce01461033757806330eb4bdd1461034a5780633fd20fe11461035d575f5ffd5b806215eaaa146102425780630928d152146102725780630e9f7e43146102875780630f9f54101461029a57806311d66fee146102f0575b5f5ffd5b610255610250366004612d01565b6106f1565b6040516001600160a01b0390911681526020015b60405180910390f35b610285610280366004612d38565b610727565b005b610285610295366004612d4f565b610806565b6102556102a8366004612d75565b6001600160a01b039081165f90815260036020908152604091829020825160808101845281549381019384526001820154606082015292835260020154909216910181905290565b6103036102fe366004612eb4565b61083b565b6040516102699190612ece565b6103186108d6565b604051908152602001610269565b6008546001600160a01b0316610255565b610285610345366004612ee5565b6108e6565b610318610358366004612d01565b61099d565b61037061036b366004612f4f565b610bb7565b6040516102699190612fe3565b6102557f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d281565b6103c66103b2366004612d38565b60046020525f908152604090205460ff1681565b6040519015158152602001610269565b6102856103e4366004613057565b610cad565b6103c66103f7366004612d75565b6001600160a01b03165f9081526002602052604090206003015460ff1690565b610318610425366004612d01565b610d12565b610285610438366004612d75565b610d6e565b61031861044b366004612d75565b610e3d565b61031861045e366004613082565b610e49565b6102856104713660046130ac565b610e71565b610285610484366004613057565b611294565b610255610497366004612d38565b6112a0565b6102555f5160206135eb5f395f51905f5281565b6102856112c6565b5f546001600160a01b0316610255565b6104db6104d6366004613159565b6112d9565b6040516102699190613206565b5f5160206135eb5f395f51905f52610255565b610255610509366004613246565b6112ee565b61028561051c366004612d75565b61135f565b6102556113b2565b6103187f000000000000000000000000000000000000000000002a5a058fc295ed00000081565b61031861055e366004612d75565b6113c0565b6103c6610571366004612d01565b6113cc565b6103187f00000000000000000000000000000000000000000000152d02c7e14af680000081565b6106186105ab366004612d75565b604080516080810182525f9181018281526060820183905281526020810191909152506001600160a01b039081165f908152600360209081526040918290208251608081018452815493810193845260018201546060820152928352600201549092169181019190915290565b6040805182518051825260209081015181830152909201516001600160a01b031690820152606001610269565b610318610653366004613082565b6113fe565b610318610666366004613082565b61140b565b610285610679366004612d75565b6114b6565b61069161068c366004613082565b6114f3565b60408051938452911515602084015290820152606001610269565b6103186106ba366004612d01565b61179f565b6008546106d990600160a01b90046001600160401b031681565b6040516001600160401b039091168152602001610269565b6001600160a01b038083165f90815260056020908152604080832084861684529091528120600101549091165b90505b92915050565b5f61073a6008546001600160a01b031690565b604051634527d8b560e11b8152600481018490529091506001600160a01b03821690638a4fb16a90602401608060405180830381865afa158015610780573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107a49190613283565b606001516108025760405163049468a960e11b8152600481018390526001600160a01b03821690630928d152906024015f604051808303815f87803b1580156107eb575f5ffd5b505af11580156107fd573d5f5f3e3d5ffd5b505050505b5050565b61080e6117ac565b600880546001600160401b03909216600160a01b0267ffffffffffffffff60a01b19909216919091179055565b6040805180820182525f80825260208201529051633a62f11160e21b81527f000000000000000000000000656f9140b9e2d3769d47b575512d46039dcab4d36001600160a01b03169063e98bc44490610898908590600401612ece565b6040805180830381865afa1580156108b2573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107219190613307565b5f6108e160056117d8565b905090565b6001600160a01b0383165f9081526002602052604090206003015460ff168390610934576040516330d32d8760e21b81526001600160a01b0390911660048201526024015b60405180910390fd5b506001600160a01b038083165f9081526003602052604090206002015416803380821461098757604051630257d8d760e41b81526001600160a01b0392831660048201529116602482015260440161092b565b50610997905060058585856117e5565b50505050565b5f5f6109b16008546001600160a01b031690565b90505f816001600160a01b0316636bd50cef6040518163ffffffff1660e01b815260040161012060405180830381865afa1580156109f1573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610a159190613321565b51602001519050610a516001600160a01b037f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2163330846118b3565b60405163095ea7b360e01b81526001600160a01b038381166004830152602482018390527f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2169063095ea7b3906044016020604051808303815f875af1158015610abd573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ae191906133c7565b506040516311f9fbc960e21b8152306004820152602481018290526001600160a01b038316906347e7ef24906044015f604051808303815f87803b158015610b27575f5ffd5b505af1158015610b39573d5f5f3e3d5ffd5b50506040516330eb4bdd60e01b81526001600160a01b0388811660048301528781166024830152851692506330eb4bdd91506044016020604051808303815f875af1158015610b8a573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bae91906133e2565b95945050505050565b60605f82516001600160401b03811115610bd357610bd3612d90565b604051908082528060200260200182016040528015610c1757816020015b604080518082019091525f8082526020820152815260200190600190039081610bf15790505b5090505f5b8351811015610ca65760035f858381518110610c3a57610c3a6133f9565b60200260200101516001600160a01b03166001600160a01b031681526020019081526020015f205f016040518060400160405290815f8201548152602001600182015481525050828281518110610c9357610c936133f9565b6020908102919091010152600101610c1c565b5092915050565b5f610cb78461190d565b9050610cc2816112a0565b33906001600160a01b03168114610cf8576040516305df8ea560e31b81526001600160a01b03909116600482015260240161092b565b506109975f5160206135eb5f395f51905f528585856119a9565b5f80610d2060058585611a3c565b905080158015610d485750836001600160a01b0316610d3d6113b2565b6001600160a01b0316145b1561071e57610d6660055f5160206135eb5f395f51905f5285611a3c565b915050610721565b610d766117ac565b806001600160a01b038116610daa576040516327bac29760e21b81526001600160a01b03909116600482015260240161092b565b506001600160a01b0381165f90815260026020526040902060030154819060ff1615610df45760405162cea8b160e11b81526001600160a01b03909116600482015260240161092b565b506001600160a01b0381165f908152600260205260409020600301805460ff19166001179055610e38610e2642611a63565b6001906001600160a01b038416611a97565b505050565b5f610721600583611ab1565b6001600160a01b0382165f90815260066020908152604080832084845290915281205461071e565b335f8181526002602052604090206003015460ff16610eaf576040516319aaa75960e11b81526001600160a01b03909116600482015260240161092b565b505f33610eba6113b2565b6001600160a01b03161490508115610ef9573381610ef7576040516305df8ea560e31b81526001600160a01b03909116600482015260240161092b565b505b610f0333886113cc565b1533889091610f3857604051630d75cd7760e11b81526001600160a01b0392831660048201529116602482015260440161092b565b50508015610f9c57610f575f5160206135eb5f395f51905f52886113cc565b5f5160206135eb5f395f51905f5290889015610f9957604051630d75cd7760e11b81526001600160a01b0392831660048201529116602482015260440161092b565b50505b5f82610fa85733610fb7565b5f5160206135eb5f395f51905f525b6001600160a01b0381165f908152600260205260409020909150610fdb9089611ad4565b8189909161100f57604051630d75cd7760e11b81526001600160a01b0392831660048201529116602482015260440161092b565b505061101d88878787611c0e565b6040805180820182528781526001600160a01b0389811660208084019182528c83165f90815260038252949094209251805184559093015160018301559151600290910180546001600160a01b031916919092161790556110816005828a816117e5565b6110ae6005828a7f000000000000000000000000000000000000000000002a5a058fc295ed000000611dd2565b6111036001600160a01b037f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d21633307f000000000000000000000000000000000000000000002a5a058fc295ed0000006118b3565b5f6111166008546001600160a01b031690565b60405163095ea7b360e01b81526001600160a01b0380831660048301527f000000000000000000000000000000000000000000002a5a058fc295ed00000060248301529192507f000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d29091169063095ea7b3906044016020604051808303815f875af11580156111a6573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111ca91906133c7565b506040516311f9fbc960e21b81523060048201527f000000000000000000000000000000000000000000002a5a058fc295ed00000060248201526001600160a01b038216906347e7ef24906044015f604051808303815f87803b15801561122f575f5ffd5b505af1158015611241573d5f5f3e3d5ffd5b50506040516001600160a01b038b81168252808d169350851691507f7986a8ff398d9a6be88df9dfc6e3c9a83e4da5544241aad420d1cf7c214e43459060200160405180910390a3505050505050505050565b610e38338484846119a9565b5f6107216112b86112b084611a63565b600190611e61565b6001600160e01b0316611eb6565b6112ce6117ac565b6112d75f611ee9565b565b60606112e6848385611f38565b949350505050565b6040805160018082528183019092525f918291906020808301908036833701905050905083815f81518110611325576113256133f9565b60200260200101818152505061133c858285611f38565b5f8151811061134d5761134d6133f9565b60200260200101519150509392505050565b6113676117ac565b6008546001600160a01b031615611390576040516296bb9f60e21b815260040160405180910390fd5b600880546001600160a01b0319166001600160a01b0392909216919091179055565b5f6108e16112b86001612139565b5f610721600583612170565b6001600160a01b038281165f90815260026020818152604080842094861684529390910190529081205460ff1661071e565b5f61071e60058484612194565b6001600160a01b0382165f9081526002602052604081208161142c84611a63565b90505f61143983836121b9565b9050856001600160a01b031661144e866112a0565b6001600160a01b031603610bae57739064fb41156d300196d5eb95e0b3c1f08ebc39a85f5260026020526114a27f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c517836121b9565b6114ac9082613421565b9695505050505050565b6114be6117ac565b6001600160a01b0381166114e757604051631e4fbdf760e01b81525f600482015260240161092b565b6114f081611ee9565b50565b335f908152600260205260408120600301548190819060ff163390611537576040516319aaa75960e11b81526001600160a01b03909116600482015260240161092b565b50335f8181526002602081815260408084206001600160a01b038b1685529283019091529091205460ff168015801561157f5750336115746113b2565b6001600160a01b0316145b80156115c157506001600160a01b0388165f9081527f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c519602052604090205460ff165b15611617575050739064fb41156d300196d5eb95e0b3c1f08ebc39a85f525060026020525f5160206135eb5f395f51905f527f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c51760015b87816116425760405163417f3a0560e01b81526001600160a01b03909116600482015260240161092b565b505f6116506005858b611a3c565b905080888082101561167e57604051635087517f60e11b81526004810192909252602482015260440161092b565b508890505f7f00000000000000000000000000000000000000000000152d02c7e14af68000006116ae8385613434565b10905080156116fc576116c1858c6121d4565b8b906116ec576040516304ca9e7360e31b81526001600160a01b03909116600482015260240161092b565b508291506116fc6005878d612235565b6117096005878d85612241565b5f61171c6008546001600160a01b031690565b60405163625f849b60e11b8152336004820152602481018590526001600160a01b03919091169063c4bf0936906044016020604051808303815f875af1158015611768573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061178c91906133e2565b929c919b50919950975050505050505050565b5f61071e60058484611a3c565b5f546001600160a01b031633146112d75760405163118cdaa760e01b815233600482015260240161092b565b5f610721826002016122c8565b6001600160a01b038381165f9081526020868152604080832086851684529091529020600101548116908216810361181d5750610997565b6001600160a01b038481165f908152602087815260408083208785168085529083529281902060010180546001600160a01b031916878616908117909155815194861685529184019190915290917f3134e8a2e6d97e929a7e54011ea5485d7d196dd5f0ba4d4ef95803e8e3fc257f910160405180910390a26118ac8582846118a7898989611a3c565b6122e1565b5050505050565b604080516001600160a01b0385811660248301528416604482015260648082018490528251808303909101815260849091019091526020810180516001600160e01b03166323b872dd60e01b17905261099790859061241a565b5f5f6119216008546001600160a01b031690565b6001600160a01b031663c7f758a8846040518263ffffffff1660e01b815260040161194e91815260200190565b6101a060405180830381865afa15801561196a573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061198e9190613455565b60808101518151519192506119a291612486565b9392505050565b5f6119b38461190d565b90506119c3600586868487612491565b6008546001600160a01b031660405163350c7fbd60e11b8152600481018690526024810185905283151560448201526001600160a01b039190911690636a18ff7a906064015f604051808303815f87803b158015611a1f575f5ffd5b505af1158015611a31573d5f5f3e3d5ffd5b505050505050505050565b6001600160a01b039182165f90815260209384526040808220929093168152925290205490565b5f63ffffffff821115611a93576040516306dfcc6560e41b8152602060048201526024810183905260440161092b565b5090565b5f80611aa485858561255c565b915091505b935093915050565b6001600160a01b0381165f90815260208390526040812061071e906001016122c8565b5f6001600160a01b038216611afb5760405162979f6d60e11b815260040160405180910390fd5b6001600160a01b0382165f90815260028401602052604090205460ff1615611b2457505f610721565b5f611b2e84612139565b604080518082018252600181526001600160e01b0383811660208084019182526001600160a01b0389165f90815260028b019091529384209251835491516001600160e81b0319909216901515610100600160e81b031916176101009190921602179055909150611b9e42611a63565b9050611bd681611bb6866001600160a01b03166126a0565b6001600160e01b0385165f90815260018901602052604090209190611a97565b50611c01905081611bf9611beb85600161352a565b6001600160e01b03166126a0565b879190611a97565b5060019695505050505050565b6001600160a01b0384165f908152600360209081526040918290208251808401909352805480845260019091015491830191909152158015611c5257506020810151155b815160208301519091611c81576040516312d6323b60e11b81526004810192909252602482015260440161092b565b50505f845f01518560200151604051602001611ca7929190918252602082015260400190565b60408051601f1981840301815291815281516020928301205f8181526004909352912054909150819060ff1615611cf457604051636ab4baeb60e11b815260040161092b91815260200190565b505f818152600460208190526040918290208054600160ff199091161790556008549151633f78271d60e01b81527f000000000000000000000000656f9140b9e2d3769d47b575512d46039dcab4d36001600160a01b031692633f78271d92600160a01b9091046001600160401b031691611d75918a918a918a9101613549565b6020604051808303818786fa158015611d90573d5f5f3e3d5ffd5b50505050506040513d601f19601f82011682018060405250810190611db591906133c7565b6107fd5760405163df4ff27b60e01b815260040160405180910390fd5b8015610997576001600160a01b038084165f9081526020868152604080832093861683529083905281208054849290611e0c908490613421565b90915550506001600160a01b038084165f90815260208390526040812060010154611e3b9288929116856122e1565b611e4860018201836126d3565b50611e58905060028601836126d3565b50505050505050565b81545f9081611e728585838561274d565b90508015611eac57611e9685611e89600184613434565b5f91825260209091200190565b54600160201b90046001600160e01b0316610bae565b505f949350505050565b5f6001600160a01b03821115611a93576040516306dfcc6560e41b815260a060048201526024810183905260440161092b565b5f80546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b60605f83516001600160401b03811115611f5457611f54612d90565b604051908082528060200260200182016040528015611f7d578160200160208202803683370190505b506001600160a01b0386165f818152600260205260408120739064fb41156d300196d5eb95e0b3c1f08ebc39a882529293507f45cd5d767d29724415e078f0a4044a337b39cef8f25b5496e43151dbca56c51791611fda876112a0565b6001600160a01b03161490505f611ff087611a63565b90505f611ffd85836121b9565b90505f8361200b575f612015565b61201585846121b9565b90505f6120228284613421565b90505f5b8b51811015612128575f8c8281518110612042576120426133f9565b602002602001015190508281108184909161207957604051635d4bf88360e01b81526004810192909252602482015260440161092b565b5050848110156120c55761208e8982886127a8565b8a83815181106120a0576120a06133f9565b60200260200101906001600160a01b031690816001600160a01b03168152505061211f565b86156120e05761208e6120d88683613434565b8990886127a8565b604051633d6a4a3b60e21b815260206004820152601360248201527229a427aaa622102722ab22a9102420a82822a760691b604482015260640161092b565b50600101612026565b50969b9a5050505050505050505050565b80545f9080156121685761215283611e89600184613434565b54600160201b90046001600160e01b03166119a2565b5f9392505050565b6001600160a01b0381165f90815260018084016020526040822061071e91016122c8565b6001600160a01b0382165f9081526001808501602052604082206112e69101836127d7565b5f6121c48383611e61565b6001600160e01b03169392505050565b6001600160a01b0381165f908152600283016020908152604080832081518083019092525460ff811615158083526101009091046001600160e01b03169282019290925290612226575f915050610721565b6112e684826020015185612811565b610e388383835f6117e5565b8015610997576001600160a01b038084165f908152602086815260408083209386168352908390528120805484929061227b908490613434565b90915550506001600160a01b038084165f908152602083905260408120600101546122ab928892911690856122e1565b6122b86001820183612a2e565b50611e5890506002860183612a2e565b5f6122d282612139565b6001600160e01b031692915050565b816001600160a01b0316836001600160a01b031614806122ff575080155b610997576001600160a01b0383161561238c576001600160a01b0383165f9081526001808601602052604082208291612339910184612a2e565b91509150846001600160a01b03167fdec2bacdd2f05b59de34da9b523dff8be42e5e38e818c82fdb0bae774387a7248383604051612381929190918252602082015260400190565b60405180910390a250505b6001600160a01b03821615610997576001600160a01b0382165f90815260018086016020526040822082916123c29101846126d3565b91509150836001600160a01b03167fdec2bacdd2f05b59de34da9b523dff8be42e5e38e818c82fdb0bae774387a724838360405161240a929190918252602082015260400190565b60405180910390a2505050505050565b5f5f60205f8451602086015f885af180612439576040513d5f823e3d81fd5b50505f513d9150811561245057806001141561245d565b6001600160a01b0384163b155b1561099757604051635274afe760e01b81526001600160a01b038516600482015260240161092b565b5f61071e8284613421565b5f61249d868685612194565b6001600160a01b0386165f90815260018801602090815260408083208884529091529020549091506124cf8382613421565b82101586836124de8685613421565b9091926125175760405163dd99c2ab60e01b81526001600160a01b0390931660048401526024830191909152604482015260640161092b565b5050506001600160a01b0386165f90815260018801602090815260408083208884529091528120805485929061254e908490613421565b909155505050505050505050565b82545f9081908015612648575f61257887611e89600185613434565b805490915063ffffffff80821691600160201b90046001600160e01b03169088168211156125b957604051632520601d60e01b815260040160405180910390fd5b8763ffffffff168263ffffffff16036125ec57825463ffffffff16600160201b6001600160e01b0389160217835561263a565b6040805180820190915263ffffffff808a1682526001600160e01b03808a1660208085019182528d54600181018f555f8f81529190912094519151909216600160201b029216919091179101555b9450859350611aa992505050565b50506040805180820190915263ffffffff80851682526001600160e01b0380851660208085019182528854600181018a555f8a815291822095519251909316600160201b029190931617920191909155905081611aa9565b5f6001600160e01b03821115611a93576040516306dfcc6560e41b815260e060048201526024810183905260440161092b565b5f5f5f6126df85612139565b9050835f036126fb576001600160e01b03169150819050612746565b5f612705856126a0565b905061272561271342611a63565b61271d838561352a565b889190611a97565b50829050612733828261352a565b6001600160e01b03918216955016925050505b9250929050565b5f5b818310156127a0575f6127628484612adb565b5f8781526020902090915063ffffffff86169082015463ffffffff16111561278c5780925061279a565b612797816001613421565b93505b5061274f565b509392505050565b5f828152600184016020526040812081906127c39084612af5565b9050610bae816001600160e01b0316611eb6565b5f6127e182421190565b6127fe576040516334dcb7d760e21b815260040160405180910390fd5b6121c461280a83611a63565b8490612af5565b5f8061281c85612139565b9050806001600160e01b0316846001600160e01b03161061286357604051636bc4db8d60e11b81526001600160e01b0380861660048301528216602482015260440161092b565b6040805180820182525f80825260208083018281526001600160a01b038816835260028a019091529281209151825493516001600160e81b0319909416901515610100600160e81b031916176101006001600160e01b03909416939093029290921790556128d2600183613598565b90505f6128de42611a63565b9050856001600160e01b0316826001600160e01b0316146129db576001600160e01b0382165f908152600188016020526040812061291f906112b890612139565b90506040518060400160405280600115158152602001612947896001600160e01b03166126a0565b6001600160e01b039081169091526001600160a01b0383165f81815260028c016020908152604090912084518154959092015190931661010002610100600160e81b0319911515919091166001600160e81b0319909416939093179290921790556129d79083906129b7906126a0565b6001600160e01b038a165f90815260018c01602052604090209190611a97565b5050505b6001600160e01b0382165f90815260018801602052604081206129ff918390611a97565b5050612a1f81612a17846001600160e01b03166126a0565b899190611a97565b50600198975050505050505050565b5f5f5f612a3a85612139565b9050835f03612a56576001600160e01b03169150819050612746565b5f612a60856126a0565b90503382826001600160e01b038082169083161015612ab45760405163b3d9568f60e01b81526001600160a01b0390931660048401526001600160e01b03918216602484015216604482015260640161092b565b505050612acd612ac342611a63565b61271d8385613598565b508290506127338282613598565b5f612ae960028484186135cb565b61071e90848416613421565b81545f9081816005811115612b4f575f612b0e84612b96565b612b189085613434565b5f8881526020902090915081015463ffffffff9081169087161015612b3f57809150612b4d565b612b4a816001613421565b92505b505b5f612b5c8787858561274d565b90508015612b8957612b7387611e89600184613434565b54600160201b90046001600160e01b0316612b8b565b5f5b979650505050505050565b5f60018211612ba3575090565b816001600160801b8210612bbc5760809190911c9060401b5b680100000000000000008210612bd75760409190911c9060201b5b600160201b8210612bed5760209190911c9060101b5b620100008210612c025760109190911c9060081b5b6101008210612c165760089190911c9060041b5b60108210612c295760049190911c9060021b5b60048210612c355760011b5b600302600190811c90818581612c4d57612c4d6135b7565b048201901c90506001818581612c6557612c656135b7565b048201901c90506001818581612c7d57612c7d6135b7565b048201901c90506001818581612c9557612c956135b7565b048201901c90506001818581612cad57612cad6135b7565b048201901c90506001818581612cc557612cc56135b7565b048201901c9050612ce4818581612cde57612cde6135b7565b04821190565b90039392505050565b6001600160a01b03811681146114f0575f5ffd5b5f5f60408385031215612d12575f5ffd5b8235612d1d81612ced565b91506020830135612d2d81612ced565b809150509250929050565b5f60208284031215612d48575f5ffd5b5035919050565b5f60208284031215612d5f575f5ffd5b81356001600160401b038116811461071e575f5ffd5b5f60208284031215612d85575f5ffd5b813561071e81612ced565b634e487b7160e01b5f52604160045260245ffd5b604080519081016001600160401b0381118282101715612dc657612dc6612d90565b60405290565b604051608081016001600160401b0381118282101715612dc657612dc6612d90565b60405161010081016001600160401b0381118282101715612dc657612dc6612d90565b60405160c081016001600160401b0381118282101715612dc657612dc6612d90565b60405160e081016001600160401b0381118282101715612dc657612dc6612d90565b604051601f8201601f191681016001600160401b0381118282101715612e7d57612e7d612d90565b604052919050565b5f60408284031215612e95575f5ffd5b612e9d612da4565b823581526020928301359281019290925250919050565b5f60408284031215612ec4575f5ffd5b61071e8383612e85565b815181526020808301519082015260408101610721565b5f5f5f60608486031215612ef7575f5ffd5b8335612f0281612ced565b92506020840135612f1281612ced565b91506040840135612f2281612ced565b809150509250925092565b5f6001600160401b03821115612f4557612f45612d90565b5060051b60200190565b5f60208284031215612f5f575f5ffd5b81356001600160401b03811115612f74575f5ffd5b8201601f81018413612f84575f5ffd5b8035612f97612f9282612f2d565b612e55565b8082825260208201915060208360051b850101925086831115612fb8575f5ffd5b6020840193505b828410156114ac578335612fd281612ced565b825260209384019390910190612fbf565b602080825282518282018190525f918401906040840190835b8181101561302f5761301983855180518252602090810151910152565b6020939093019260409290920191600101612ffc565b509095945050505050565b80151581146114f0575f5ffd5b80356130528161303a565b919050565b5f5f5f60608486031215613069575f5ffd5b83359250602084013591506040840135612f228161303a565b5f5f60408385031215613093575f5ffd5b823561309e81612ced565b946020939093013593505050565b5f5f5f5f5f5f8688036101608112156130c3575f5ffd5b87356130ce81612ced565b965060208801356130de81612ced565b95506130ed8960408a01612e85565b94506080607f1982011215613100575f5ffd5b50613109612dcc565b6080880135815260a0880135602082015260c0880135604082015260e08801356060820152925061313e886101008901612e85565b915061314d6101408801613047565b90509295509295509295565b5f5f5f6060848603121561316b575f5ffd5b833561317681612ced565b92506020840135915060408401356001600160401b03811115613197575f5ffd5b8401601f810186136131a7575f5ffd5b80356131b5612f9282612f2d565b8082825260208201915060208360051b8501019250888311156131d6575f5ffd5b6020840193505b828410156131f85783358252602093840193909101906131dd565b809450505050509250925092565b602080825282518282018190525f918401906040840190835b8181101561302f5783516001600160a01b031683526020938401939092019160010161321f565b5f5f5f60608486031215613258575f5ffd5b833561326381612ced565b95602085013595506040909401359392505050565b805161305281612ced565b5f6080828403128015613294575f5ffd5b5061329d612dcc565b825181526020808401519082015260408301516132b981612ced565b604082015260608301516132cc8161303a565b60608201529392505050565b5f604082840312156132e8575f5ffd5b6132f0612da4565b825181526020928301519281019290925250919050565b5f60408284031215613317575f5ffd5b61071e83836132d8565b5f81830361012081128015613334575f5ffd5b5061333d612dee565b604082121561334a575f5ffd5b613352612da4565b845181526020808601518183015290825260408086015191830191909152606080860151918301919091526080808601519183019190915260a0808601519183019190915260c0808601519183019190915260e080860151918301919091526101009094015193810193909352509092915050565b5f602082840312156133d7575f5ffd5b815161071e8161303a565b5f602082840312156133f2575f5ffd5b5051919050565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b808201808211156107215761072161340d565b818103818111156107215761072161340d565b805160098110613052575f5ffd5b5f8183036101a081128015613468575f5ffd5b50613471612e11565b60e082121561347e575f5ffd5b613486612e33565b845181526020808601519082015260408086015190820152606080860151908201526080808601519082015260a0808601519082015260c0808601519082015280825291506134d760e08501613447565b60208201526134e96101008501613278565b60408201526134fb6101208501613278565b606082015261014084015160808201819052915061351d8561016086016132d8565b60a0820152949350505050565b6001600160e01b0381811683821601908111156107215761072161340d565b83518152602080850151908201526101008101835160408301526020840151606083015260408401516080830152606084015160a08301526112e660c083018480518252602090810151910152565b6001600160e01b0382811682821603908111156107215761072161340d565b634e487b7160e01b5f52601260045260245ffd5b5f826135e557634e487b7160e01b5f52601260045260245ffd5b50049056fe213a5ea1b59775ba625834509064fb41156d300196d5eb95e0b3c1f08ebc39a8a2646970667358221220dedf8e50dbb5e76c009a9db7945946eb3c7bf704856499f9a4dbbce27804376a64736f6c634300081e0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2000000000000000000000000000000000000000000002a5a058fc295ed00000000000000000000000000000000000000000000000000152d02c7e14af6800000
-----Decoded View---------------
Arg [0] : __owner (address): 0x85e51a78FE8FE21d881894206A9adbf54e3Df8c3
Arg [1] : _asset (address): 0xA27EC0006e59f245217Ff08CD52A7E8b169E62D2
Arg [2] : _activationThreshold (uint256): 200000000000000000000000
Arg [3] : _ejectionThreshold (uint256): 100000000000000000000000
-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 00000000000000000000000085e51a78fe8fe21d881894206a9adbf54e3df8c3
Arg [1] : 000000000000000000000000a27ec0006e59f245217ff08cd52a7e8b169e62d2
Arg [2] : 000000000000000000000000000000000000000000002a5a058fc295ed000000
Arg [3] : 00000000000000000000000000000000000000000000152d02c7e14af6800000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 33 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.