Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 3 internal transactions
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
16119180 | 762 days ago | Contract Creation | 0 ETH | |||
16119180 | 762 days ago | Contract Creation | 0 ETH | |||
16119180 | 762 days ago | Contract Creation | 0 ETH |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Similar Match Source Code This contract matches the deployed Bytecode of the Source Code for Contract 0xA3BFE502...76C2154B7 The constructor portion of the code might be different and could alter the actual behaviour of the contract
Contract Name:
VaultRegistry
Compiler Version
v0.8.13+commit.abaa5c0e
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import {ClonesWithImmutableArgs} from "clones-with-immutable-args/src/ClonesWithImmutableArgs.sol"; import {Rae} from "./Rae.sol"; import {IVault, InitInfo} from "./interfaces/IVault.sol"; import {IVaultRegistry, VaultInfo} from "./interfaces/IVaultRegistry.sol"; import {VaultFactory} from "./VaultFactory.sol"; /// @title Vault Registry /// @author Tessera /// @notice Registry contract for tracking all Rae vaults contract VaultRegistry is IVaultRegistry { /// @dev Use clones library with address types using ClonesWithImmutableArgs for address; /// @notice Address of VaultFactory contract address public immutable factory; /// @notice Address of Rae token contract address public immutable rae; /// @notice Address of Implementation for Rae token contract address public immutable raeImplementation; /// @notice Mapping of collection address to next token ID type mapping(address => uint256) public nextId; /// @notice Mapping of vault address to vault information mapping(address => VaultInfo) public vaultToToken; /// @notice Initializes factory, implementation, and token contracts constructor() { factory = address(new VaultFactory()); raeImplementation = address(new Rae()); rae = raeImplementation.clone(abi.encodePacked(msg.sender, address(this))); } /// @notice Creates a new vault with permissions and initialization calls, and transfers ownership to a given owner /// @dev This should only be done in limited cases i.e. if you're okay with a trusted individual(s) /// having control over the vault. Ideally, execution would be locked behind a Multisig wallet. /// @param _merkleRoot Hash of merkle root for vault permissions /// @param _owner Address of the vault owner /// @param _calls List of initialization calls /// @return vault Address of Proxy contract function createFor( bytes32 _merkleRoot, address _owner, InitInfo[] calldata _calls ) public returns (address vault) { vault = _deployVault(_merkleRoot, _owner, rae, _calls); } /// @notice Creates a new vault with permissions /// @param _merkleRoot Hash of merkle root for vault permissions /// @return vault Address of Proxy contract function createFor(bytes32 _merkleRoot, address _owner) public returns (address vault) { vault = _deployVault(_merkleRoot, _owner, rae); } /// @notice Creates a new vault with permissions and initialization calls /// @param _merkleRoot Hash of merkle root for vault permissions /// @param _calls List of initialization calls /// @return vault Address of Proxy contract function create(bytes32 _merkleRoot, InitInfo[] calldata _calls) external returns (address vault) { vault = createFor(_merkleRoot, address(this), _calls); } /// @notice Creates a new vault with permissions and initialization calls /// @param _merkleRoot Hash of merkle root for vault permissions /// @return vault Address of Proxy contract function create(bytes32 _merkleRoot) external returns (address vault) { vault = createFor(_merkleRoot, address(this)); } /// @notice Creates a new vault with permissions and initialization calls for a given controller /// @param _merkleRoot Hash of merkle root for vault permissions /// @param _controller Address of token controller /// @param _calls List of initialization calls /// @return vault Address of Proxy contract /// @return token Address of Rae contract function createCollectionFor( bytes32 _merkleRoot, address _controller, InitInfo[] calldata _calls ) public returns (address vault, address token) { token = raeImplementation.clone(abi.encodePacked(_controller, address(this))); vault = _deployVault(_merkleRoot, address(this), token, _calls); } /// @notice Creates a new vault with permissions and intialization calls for the message sender /// @param _merkleRoot Hash of merkle root for vault permissions /// @param _calls List of initialization calls /// @return vault Address of Proxy contract /// @return token Address of Rae contract function createCollection(bytes32 _merkleRoot, InitInfo[] calldata _calls) external returns (address vault, address token) { (vault, token) = createCollectionFor(_merkleRoot, msg.sender, _calls); } /// @notice Creates a new vault with permissions and initialization calls for an existing collection /// @param _merkleRoot Hash of merkle root for vault permissions /// @param _token Address of Rae contract /// @param _calls List of initialization calls /// @return vault Address of Proxy contract function createInCollection( bytes32 _merkleRoot, address _token, InitInfo[] calldata _calls ) external returns (address vault) { address controller = Rae(_token).controller(); if (controller != msg.sender) revert InvalidController(controller, msg.sender); vault = _deployVault(_merkleRoot, address(this), _token, _calls); } /// @notice Burns vault tokens /// @param _from Source address /// @param _value Amount of tokens function burn(address _from, uint256 _value) external { VaultInfo memory info = vaultToToken[msg.sender]; uint256 id = info.id; if (id == 0) revert UnregisteredVault(msg.sender); Rae(info.token).burn(_from, id, _value); } /// @notice Mints vault tokens /// @param _to Target address /// @param _value Amount of tokens function mint(address _to, uint256 _value) external { VaultInfo memory info = vaultToToken[msg.sender]; uint256 id = info.id; if (id == 0) revert UnregisteredVault(msg.sender); Rae(info.token).mint(_to, id, _value, ""); } /// @notice Gets the total supply for a token and ID associated with a vault /// @param _vault Address of the vault /// @return Total supply function totalSupply(address _vault) external view returns (uint256) { VaultInfo memory info = vaultToToken[_vault]; return Rae(info.token).totalSupply(info.id); } /// @notice Gets the uri for a given token and ID associated with a vault /// @param _vault Address of the vault /// @return URI of token function uri(address _vault) external view returns (string memory) { VaultInfo memory info = vaultToToken[_vault]; return Rae(info.token).uri(info.id); } /// @dev Deploys new vault for specified token and sets the merkle root /// @param _merkleRoot Hash of merkle root for vault permissions /// @param _token Address of Rae contract /// @return vault Address of Proxy contract function _deployVault( bytes32 _merkleRoot, address _owner, address _token ) internal returns (address vault) { vault = VaultFactory(factory).deployFor(_merkleRoot, _owner); vaultToToken[vault] = VaultInfo(_token, ++nextId[_token]); emit VaultDeployed(vault, _token, nextId[_token]); } /// @dev Deploys new vault for specified token and sets the merkle root /// @param _merkleRoot Hash of merkle root for vault permissions /// @param _token Address of Rae contract /// @param _calls List of initialization calls /// @return vault Address of Proxy contract function _deployVault( bytes32 _merkleRoot, address _owner, address _token, InitInfo[] calldata _calls ) internal returns (address vault) { // pre-compute the next vault's address in order to register it before initialization calls vault = VaultFactory(factory).getNextAddress(tx.origin, _owner, _merkleRoot); vaultToToken[vault] = VaultInfo(_token, ++nextId[_token]); VaultFactory(factory).deployFor(_merkleRoot, _owner, _calls); emit VaultDeployed(vault, _token, nextId[_token]); } }
// SPDX-License-Identifier: BSD pragma solidity ^0.8.4; /// @title Clone /// @author zefram.eth /// @notice Provides helper functions for reading immutable args from calldata contract Clone { /// @notice Reads an immutable arg with type address /// @param argOffset The offset of the arg in the packed data /// @return arg The arg value function _getArgAddress(uint256 argOffset) internal pure returns (address arg) { uint256 offset = _getImmutableArgsOffset(); // solhint-disable-next-line no-inline-assembly assembly { arg := shr(0x60, calldataload(add(offset, argOffset))) } } /// @notice Reads an immutable arg with type uint256 /// @param argOffset The offset of the arg in the packed data /// @return arg The arg value function _getArgUint256(uint256 argOffset) internal pure returns (uint256 arg) { uint256 offset = _getImmutableArgsOffset(); // solhint-disable-next-line no-inline-assembly assembly { arg := calldataload(add(offset, argOffset)) } } /// @notice Reads an immutable arg with type bytes32 /// @param argOffset The offset of the arg in the packed data /// @return arg The arg value function _getArgBytes32(uint256 argOffset) internal pure returns (bytes32 arg) { uint256 offset = _getImmutableArgsOffset(); // solhint-disable-next-line no-inline-assembly assembly { arg := calldataload(add(offset, argOffset)) } } /// @notice Reads a uint256 array stored in the immutable args. /// @param argOffset The offset of the arg in the packed data /// @param arrLen Number of elements in the array /// @return arr The array function _getArgUint256Array(uint256 argOffset, uint64 arrLen) internal pure returns (uint256[] memory arr) { uint256 offset = _getImmutableArgsOffset(); uint256 el; arr = new uint256[](arrLen); for (uint64 i = 0; i < arrLen; i++) { assembly { // solhint-disable-next-line no-inline-assembly el := calldataload(add(add(offset, argOffset), mul(i, 32))) } arr[i] = el; } return arr; } /// @notice Reads a uint256 array stored in the immutable args. /// @param argOffset The offset of the arg in the packed data /// @param arrLen Number of elements in the array /// @return arr The array function _getArgBytes32Array(uint256 argOffset, uint64 arrLen) internal pure returns (bytes32[] memory arr) { uint256 offset = _getImmutableArgsOffset(); bytes32 el; arr = new bytes32[](arrLen); for (uint64 i = 0; i < arrLen; i++) { assembly { // solhint-disable-next-line no-inline-assembly el := calldataload(add(add(offset, argOffset), mul(i, 32))) } arr[i] = el; } return arr; } /// @notice Reads an immutable arg with type uint64 /// @param argOffset The offset of the arg in the packed data /// @return arg The arg value function _getArgUint64(uint256 argOffset) internal pure returns (uint64 arg) { uint256 offset = _getImmutableArgsOffset(); // solhint-disable-next-line no-inline-assembly assembly { arg := shr(0xc0, calldataload(add(offset, argOffset))) } } /// @notice Reads an immutable arg with type uint8 /// @param argOffset The offset of the arg in the packed data /// @return arg The arg value function _getArgUint8(uint256 argOffset) internal pure returns (uint8 arg) { uint256 offset = _getImmutableArgsOffset(); // solhint-disable-next-line no-inline-assembly assembly { arg := shr(0xf8, calldataload(add(offset, argOffset))) } } /// @return offset The offset of the packed immutable args in calldata function _getImmutableArgsOffset() internal pure returns (uint256 offset) { // solhint-disable-next-line no-inline-assembly assembly { offset := sub( calldatasize(), add(shr(240, calldataload(sub(calldatasize(), 2))), 2) ) } } }
// SPDX-License-Identifier: BSD pragma solidity ^0.8.4; /// @title ClonesWithImmutableArgs /// @author wighawag, zefram.eth /// @notice Enables creating clone contracts with immutable args library ClonesWithImmutableArgs { error CreateFail(); /// @notice Creates a clone proxy of the implementation contract, with immutable args /// @dev data cannot exceed 65535 bytes, since 2 bytes are used to store the data length /// @param implementation The implementation contract to clone /// @param data Encoded immutable args /// @return instance The address of the created clone function clone(address implementation, bytes memory data) internal returns (address payable instance) { // unrealistic for memory ptr or data length to exceed 256 bits unchecked { uint256 extraLength = data.length + 2; // +2 bytes for telling how much data there is appended to the call uint256 creationSize = 0x41 + extraLength; uint256 runSize = creationSize - 10; uint256 dataPtr; uint256 ptr; // solhint-disable-next-line no-inline-assembly assembly { ptr := mload(0x40) // ------------------------------------------------------------------------------------------------------------- // CREATION (10 bytes) // ------------------------------------------------------------------------------------------------------------- // 61 runtime | PUSH2 runtime (r) | r | – mstore( ptr, 0x6100000000000000000000000000000000000000000000000000000000000000 ) mstore(add(ptr, 0x01), shl(240, runSize)) // size of the contract running bytecode (16 bits) // creation size = 0a // 3d | RETURNDATASIZE | 0 r | – // 81 | DUP2 | r 0 r | – // 60 creation | PUSH1 creation (c) | c r 0 r | – // 3d | RETURNDATASIZE | 0 c r 0 r | – // 39 | CODECOPY | 0 r | [0-runSize): runtime code // f3 | RETURN | | [0-runSize): runtime code // ------------------------------------------------------------------------------------------------------------- // RUNTIME (55 bytes + extraLength) // ------------------------------------------------------------------------------------------------------------- // 3d | RETURNDATASIZE | 0 | – // 3d | RETURNDATASIZE | 0 0 | – // 3d | RETURNDATASIZE | 0 0 0 | – // 3d | RETURNDATASIZE | 0 0 0 0 | – // 36 | CALLDATASIZE | cds 0 0 0 0 | – // 3d | RETURNDATASIZE | 0 cds 0 0 0 0 | – // 3d | RETURNDATASIZE | 0 0 cds 0 0 0 0 | – // 37 | CALLDATACOPY | 0 0 0 0 | [0, cds) = calldata // 61 | PUSH2 extra | extra 0 0 0 0 | [0, cds) = calldata mstore( add(ptr, 0x03), 0x3d81600a3d39f33d3d3d3d363d3d376100000000000000000000000000000000 ) mstore(add(ptr, 0x13), shl(240, extraLength)) // 60 0x37 | PUSH1 0x37 | 0x37 extra 0 0 0 0 | [0, cds) = calldata // 0x37 (55) is runtime size - data // 36 | CALLDATASIZE | cds 0x37 extra 0 0 0 0 | [0, cds) = calldata // 39 | CODECOPY | 0 0 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData // 36 | CALLDATASIZE | cds 0 0 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData // 61 extra | PUSH2 extra | extra cds 0 0 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData mstore( add(ptr, 0x15), 0x6037363936610000000000000000000000000000000000000000000000000000 ) mstore(add(ptr, 0x1b), shl(240, extraLength)) // 01 | ADD | cds+extra 0 0 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData // 3d | RETURNDATASIZE | 0 cds 0 0 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData // 73 addr | PUSH20 0x123… | addr 0 cds 0 0 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData mstore( add(ptr, 0x1d), 0x013d730000000000000000000000000000000000000000000000000000000000 ) mstore(add(ptr, 0x20), shl(0x60, implementation)) // 5a | GAS | gas addr 0 cds 0 0 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData // f4 | DELEGATECALL | success 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData // 3d | RETURNDATASIZE | rds success 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData // 3d | RETURNDATASIZE | rds rds success 0 0 | [0, cds) = calldata, [cds, cds+0x37) = extraData // 93 | SWAP4 | 0 rds success 0 rds | [0, cds) = calldata, [cds, cds+0x37) = extraData // 80 | DUP1 | 0 0 rds success 0 rds | [0, cds) = calldata, [cds, cds+0x37) = extraData // 3e | RETURNDATACOPY | success 0 rds | [0, rds) = return data (there might be some irrelevant leftovers in memory [rds, cds+0x37) when rds < cds+0x37) // 60 0x35 | PUSH1 0x35 | 0x35 sucess 0 rds | [0, rds) = return data // 57 | JUMPI | 0 rds | [0, rds) = return data // fd | REVERT | – | [0, rds) = return data // 5b | JUMPDEST | 0 rds | [0, rds) = return data // f3 | RETURN | – | [0, rds) = return data mstore( add(ptr, 0x34), 0x5af43d3d93803e603557fd5bf300000000000000000000000000000000000000 ) } // ------------------------------------------------------------------------------------------------------------- // APPENDED DATA (Accessible from extcodecopy) // (but also send as appended data to the delegatecall) // ------------------------------------------------------------------------------------------------------------- extraLength -= 2; uint256 counter = extraLength; uint256 copyPtr = ptr + 0x41; // solhint-disable-next-line no-inline-assembly assembly { dataPtr := add(data, 32) } for (; counter >= 32; counter -= 32) { // solhint-disable-next-line no-inline-assembly assembly { mstore(copyPtr, mload(dataPtr)) } copyPtr += 32; dataPtr += 32; } uint256 mask = ~(256**(32 - counter) - 1); // solhint-disable-next-line no-inline-assembly assembly { mstore(copyPtr, and(mload(dataPtr), mask)) } copyPtr += counter; // solhint-disable-next-line no-inline-assembly assembly { mstore(copyPtr, shl(240, extraLength)) } // solhint-disable-next-line no-inline-assembly assembly { instance := create(0, ptr, creationSize) } if (instance == address(0)) { revert CreateFail(); } } } }
// SPDX-License-Identifier: BSD pragma solidity ^0.8.4; /// @title ClonesWithImmutableArgs /// @author wighawag, zefram.eth /// @notice Enables creating clone contracts with immutable args library Create2ClonesWithImmutableArgs { error CreateFail(); function cloneCreationCode(address implementation, bytes memory data) internal pure returns (uint256 ptr, uint256 creationSize) { // unchecked is safe because it is unrealistic for memory ptr or data length to exceed 256 bits unchecked { uint256 extraLength = data.length + 2; // +2 bytes for telling how much data there is appended to the call creationSize = 0x43 + extraLength; uint256 runSize = creationSize - 11; uint256 dataPtr; // solhint-disable-next-line no-inline-assembly assembly { ptr := mload(0x40) // ------------------------------------------------------------------------------------------------------------- // CREATION (11 bytes) // ------------------------------------------------------------------------------------------------------------- // 3d | RETURNDATASIZE | 0 | – // 61 runtime | PUSH2 runtime (r) | r 0 | – mstore( ptr, 0x3d61000000000000000000000000000000000000000000000000000000000000 ) mstore(add(ptr, 0x02), shl(240, runSize)) // size of the contract running bytecode (16 bits) // creation size = 0b // 80 | DUP1 | r r 0 | – // 60 creation | PUSH1 creation (c) | c r r 0 | – // 3d | RETURNDATASIZE | 0 c r r 0 | – // 39 | CODECOPY | r 0 | [0-2d]: runtime code // 81 | DUP2 | 0 c 0 | [0-2d]: runtime code // f3 | RETURN | 0 | [0-2d]: runtime code mstore( add(ptr, 0x04), 0x80600b3d3981f300000000000000000000000000000000000000000000000000 ) // ------------------------------------------------------------------------------------------------------------- // RUNTIME // ------------------------------------------------------------------------------------------------------------- // 36 | CALLDATASIZE | cds | – // 3d | RETURNDATASIZE | 0 cds | – // 3d | RETURNDATASIZE | 0 0 cds | – // 37 | CALLDATACOPY | – | [0, cds] = calldata // 61 | PUSH2 extra | extra | [0, cds] = calldata mstore( add(ptr, 0x0b), 0x363d3d3761000000000000000000000000000000000000000000000000000000 ) mstore(add(ptr, 0x10), shl(240, extraLength)) // 60 0x38 | PUSH1 0x38 | 0x38 extra | [0, cds] = calldata // 0x38 (56) is runtime size - data // 36 | CALLDATASIZE | cds 0x38 extra | [0, cds] = calldata // 39 | CODECOPY | _ | [0, cds] = calldata // 3d | RETURNDATASIZE | 0 | [0, cds] = calldata // 3d | RETURNDATASIZE | 0 0 | [0, cds] = calldata // 3d | RETURNDATASIZE | 0 0 0 | [0, cds] = calldata // 36 | CALLDATASIZE | cds 0 0 0 | [0, cds] = calldata // 61 extra | PUSH2 extra | extra cds 0 0 0 | [0, cds] = calldata mstore( add(ptr, 0x12), 0x603836393d3d3d36610000000000000000000000000000000000000000000000 ) mstore(add(ptr, 0x1b), shl(240, extraLength)) // 01 | ADD | cds+extra 0 0 0 | [0, cds] = calldata // 3d | RETURNDATASIZE | 0 cds 0 0 0 | [0, cds] = calldata // 73 addr | PUSH20 0x123… | addr 0 cds 0 0 0 | [0, cds] = calldata mstore( add(ptr, 0x1d), 0x013d730000000000000000000000000000000000000000000000000000000000 ) mstore(add(ptr, 0x20), shl(0x60, implementation)) // 5a | GAS | gas addr 0 cds 0 0 0 | [0, cds] = calldata // f4 | DELEGATECALL | success 0 | [0, cds] = calldata // 3d | RETURNDATASIZE | rds success 0 | [0, cds] = calldata // 82 | DUP3 | 0 rds success 0 | [0, cds] = calldata // 80 | DUP1 | 0 0 rds success 0 | [0, cds] = calldata // 3e | RETURNDATACOPY | success 0 | [0, rds] = return data (there might be some irrelevant leftovers in memory [rds, cds] when rds < cds) // 90 | SWAP1 | 0 success | [0, rds] = return data // 3d | RETURNDATASIZE | rds 0 success | [0, rds] = return data // 91 | SWAP2 | success 0 rds | [0, rds] = return data // 60 0x36 | PUSH1 0x36 | 0x36 sucess 0 rds | [0, rds] = return data // 57 | JUMPI | 0 rds | [0, rds] = return data // fd | REVERT | – | [0, rds] = return data // 5b | JUMPDEST | 0 rds | [0, rds] = return data // f3 | RETURN | – | [0, rds] = return data mstore( add(ptr, 0x34), 0x5af43d82803e903d91603657fd5bf30000000000000000000000000000000000 ) } // ------------------------------------------------------------------------------------------------------------- // APPENDED DATA (Accessible from extcodecopy) // (but also send as appended data to the delegatecall) // ------------------------------------------------------------------------------------------------------------- extraLength -= 2; uint256 counter = extraLength; uint256 copyPtr; assembly { copyPtr := add(ptr, 0x43) } // solhint-disable-next-line no-inline-assembly assembly { dataPtr := add(data, 32) } for (; counter >= 32; counter -= 32) { // solhint-disable-next-line no-inline-assembly assembly { mstore(copyPtr, mload(dataPtr)) } copyPtr += 32; dataPtr += 32; } uint256 mask = ~(256**(32 - counter) - 1); // solhint-disable-next-line no-inline-assembly assembly { mstore(copyPtr, and(mload(dataPtr), mask)) } copyPtr += counter; // solhint-disable-next-line no-inline-assembly assembly { mstore(copyPtr, shl(240, extraLength)) } } } /// @notice Creates a clone proxy of the implementation contract, with immutable args /// @dev data cannot exceed 65535 bytes, since 2 bytes are used to store the data length /// @param implementation The implementation contract to clone /// @param data Encoded immutable args /// @return instance The address of the created clone function clone( address implementation, bytes32 salt, bytes memory data ) internal returns (address payable instance) { (uint256 creationPtr, uint256 creationSize) = cloneCreationCode( implementation, data ); // solhint-disable-next-line no-inline-assembly assembly { instance := create2(0, creationPtr, creationSize, salt) } // if the create failed, the instance address won't be set if (instance == address(0)) { revert CreateFail(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The proofs can be generated using the JavaScript library * https://github.com/miguelmota/merkletreejs[merkletreejs]. * Note: the hashing algorithm should be keccak256 and pair sorting should be enabled. * * See `test/utils/cryptography/MerkleProof.test.js` for some examples. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof"); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Minimalist and gas efficient standard ERC1155 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) abstract contract ERC1155 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event TransferSingle( address indexed operator, address indexed from, address indexed to, uint256 id, uint256 amount ); event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] amounts ); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); event URI(string value, uint256 indexed id); /*////////////////////////////////////////////////////////////// ERC1155 STORAGE //////////////////////////////////////////////////////////////*/ mapping(address => mapping(uint256 => uint256)) public balanceOf; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// METADATA LOGIC //////////////////////////////////////////////////////////////*/ function uri(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC1155 LOGIC //////////////////////////////////////////////////////////////*/ function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) public virtual { require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED"); balanceOf[from][id] -= amount; balanceOf[to][id] += amount; emit TransferSingle(msg.sender, from, to, id, amount); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, from, id, amount, data) == ERC1155TokenReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) public virtual { require(ids.length == amounts.length, "LENGTH_MISMATCH"); require(msg.sender == from || isApprovedForAll[from][msg.sender], "NOT_AUTHORIZED"); // Storing these outside the loop saves ~15 gas per iteration. uint256 id; uint256 amount; for (uint256 i = 0; i < ids.length; ) { id = ids[i]; amount = amounts[i]; balanceOf[from][id] -= amount; balanceOf[to][id] += amount; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, from, to, ids, amounts); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, from, ids, amounts, data) == ERC1155TokenReceiver.onERC1155BatchReceived.selector, "UNSAFE_RECIPIENT" ); } function balanceOfBatch(address[] calldata owners, uint256[] calldata ids) public view virtual returns (uint256[] memory balances) { require(owners.length == ids.length, "LENGTH_MISMATCH"); balances = new uint256[](owners.length); // Unchecked because the only math done is incrementing // the array index counter which cannot possibly overflow. unchecked { for (uint256 i = 0; i < owners.length; ++i) { balances[i] = balanceOf[owners[i]][ids[i]]; } } } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0xd9b67a26 || // ERC165 Interface ID for ERC1155 interfaceId == 0x0e89341c; // ERC165 Interface ID for ERC1155MetadataURI } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint( address to, uint256 id, uint256 amount, bytes memory data ) internal virtual { balanceOf[to][id] += amount; emit TransferSingle(msg.sender, address(0), to, id, amount); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155Received(msg.sender, address(0), id, amount, data) == ERC1155TokenReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } function _batchMint( address to, uint256[] memory ids, uint256[] memory amounts, bytes memory data ) internal virtual { uint256 idsLength = ids.length; // Saves MLOADs. require(idsLength == amounts.length, "LENGTH_MISMATCH"); for (uint256 i = 0; i < idsLength; ) { balanceOf[to][ids[i]] += amounts[i]; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, address(0), to, ids, amounts); require( to.code.length == 0 ? to != address(0) : ERC1155TokenReceiver(to).onERC1155BatchReceived(msg.sender, address(0), ids, amounts, data) == ERC1155TokenReceiver.onERC1155BatchReceived.selector, "UNSAFE_RECIPIENT" ); } function _batchBurn( address from, uint256[] memory ids, uint256[] memory amounts ) internal virtual { uint256 idsLength = ids.length; // Saves MLOADs. require(idsLength == amounts.length, "LENGTH_MISMATCH"); for (uint256 i = 0; i < idsLength; ) { balanceOf[from][ids[i]] -= amounts[i]; // An array can't have a total length // larger than the max uint256 value. unchecked { ++i; } } emit TransferBatch(msg.sender, from, address(0), ids, amounts); } function _burn( address from, uint256 id, uint256 amount ) internal virtual { balanceOf[from][id] -= amount; emit TransferSingle(msg.sender, from, address(0), id, amount); } } /// @notice A generic interface for a contract which properly accepts ERC1155 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC1155.sol) abstract contract ERC1155TokenReceiver { function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC1155TokenReceiver.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external virtual returns (bytes4) { return ERC1155TokenReceiver.onERC1155BatchReceived.selector; } }
// SPDX-License-Identifier: AGPL-3.0-only pragma solidity >=0.8.0; /// @notice Modern, minimalist, and gas efficient ERC-721 implementation. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721 { /*////////////////////////////////////////////////////////////// EVENTS //////////////////////////////////////////////////////////////*/ event Transfer(address indexed from, address indexed to, uint256 indexed id); event Approval(address indexed owner, address indexed spender, uint256 indexed id); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /*////////////////////////////////////////////////////////////// METADATA STORAGE/LOGIC //////////////////////////////////////////////////////////////*/ string public name; string public symbol; function tokenURI(uint256 id) public view virtual returns (string memory); /*////////////////////////////////////////////////////////////// ERC721 BALANCE/OWNER STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) internal _ownerOf; mapping(address => uint256) internal _balanceOf; function ownerOf(uint256 id) public view virtual returns (address owner) { require((owner = _ownerOf[id]) != address(0), "NOT_MINTED"); } function balanceOf(address owner) public view virtual returns (uint256) { require(owner != address(0), "ZERO_ADDRESS"); return _balanceOf[owner]; } /*////////////////////////////////////////////////////////////// ERC721 APPROVAL STORAGE //////////////////////////////////////////////////////////////*/ mapping(uint256 => address) public getApproved; mapping(address => mapping(address => bool)) public isApprovedForAll; /*////////////////////////////////////////////////////////////// CONSTRUCTOR //////////////////////////////////////////////////////////////*/ constructor(string memory _name, string memory _symbol) { name = _name; symbol = _symbol; } /*////////////////////////////////////////////////////////////// ERC721 LOGIC //////////////////////////////////////////////////////////////*/ function approve(address spender, uint256 id) public virtual { address owner = _ownerOf[id]; require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED"); getApproved[id] = spender; emit Approval(owner, spender, id); } function setApprovalForAll(address operator, bool approved) public virtual { isApprovedForAll[msg.sender][operator] = approved; emit ApprovalForAll(msg.sender, operator, approved); } function transferFrom( address from, address to, uint256 id ) public virtual { require(from == _ownerOf[id], "WRONG_FROM"); require(to != address(0), "INVALID_RECIPIENT"); require( msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id], "NOT_AUTHORIZED" ); // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. unchecked { _balanceOf[from]--; _balanceOf[to]++; } _ownerOf[id] = to; delete getApproved[id]; emit Transfer(from, to, id); } function safeTransferFrom( address from, address to, uint256 id ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function safeTransferFrom( address from, address to, uint256 id, bytes calldata data ) public virtual { transferFrom(from, to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } /*////////////////////////////////////////////////////////////// ERC165 LOGIC //////////////////////////////////////////////////////////////*/ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165 interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721 interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata } /*////////////////////////////////////////////////////////////// INTERNAL MINT/BURN LOGIC //////////////////////////////////////////////////////////////*/ function _mint(address to, uint256 id) internal virtual { require(to != address(0), "INVALID_RECIPIENT"); require(_ownerOf[id] == address(0), "ALREADY_MINTED"); // Counter overflow is incredibly unrealistic. unchecked { _balanceOf[to]++; } _ownerOf[id] = to; emit Transfer(address(0), to, id); } function _burn(uint256 id) internal virtual { address owner = _ownerOf[id]; require(owner != address(0), "NOT_MINTED"); // Ownership check above ensures no underflow. unchecked { _balanceOf[owner]--; } delete _ownerOf[id]; delete getApproved[id]; emit Transfer(owner, address(0), id); } /*////////////////////////////////////////////////////////////// INTERNAL SAFE MINT LOGIC //////////////////////////////////////////////////////////////*/ function _safeMint(address to, uint256 id) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } function _safeMint( address to, uint256 id, bytes memory data ) internal virtual { _mint(to, id); require( to.code.length == 0 || ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) == ERC721TokenReceiver.onERC721Received.selector, "UNSAFE_RECIPIENT" ); } } /// @notice A generic interface for a contract which properly accepts ERC721 tokens. /// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) abstract contract ERC721TokenReceiver { function onERC721Received( address, address, uint256, bytes calldata ) external virtual returns (bytes4) { return ERC721TokenReceiver.onERC721Received.selector; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import {Clone} from "clones-with-immutable-args/src/Clone.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {ERC1155} from "@rari-capital/solmate/src/tokens/ERC1155.sol"; import {PermitBase} from "./utils/PermitBase.sol"; import {IRae} from "./interfaces/IRae.sol"; import {INFTReceiver} from "./interfaces/INFTReceiver.sol"; import {IMetadataDelegate} from "src/interfaces/IMetadataDelegate.sol"; /// @title Rae /// @author Tessera /// @notice An ERC-1155 implementation for Raes contract Rae is Clone, ERC1155, IRae, PermitBase { /// @notice Address of interface identifier for royalty standard bytes4 private constant _INTERFACE_ID_ERC2981 = 0x2a55205a; /// @notice Address that can deploy new vaults and manage metadata for this collection address internal _controller; /// @notice contract address for the metadata delegate address public metadataDelegate; /// @notice Mapping of token owner to token operator to token ID type to approval status mapping(address => mapping(address => mapping(uint256 => bool))) public isApproved; /// @notice Mapping of token ID type to total supply of tokens mapping(uint256 => uint256) public totalSupply; /// @notice Mapping of token ID type to royalty beneficiary mapping(uint256 => address) private royaltyAddress; /// @notice Mapping of token ID type to royalty percentage mapping(uint256 => uint256) private royaltyPercent; /// @notice Modifier for restricting function calls to the controller account modifier onlyController() { address controller_ = controller(); if (msg.sender != controller_) revert InvalidSender(controller_, msg.sender); _; } /// @notice Modifier for restricting function calls to the VaultRegistry modifier onlyRegistry() { address vaultRegistry = VAULT_REGISTRY(); if (msg.sender != vaultRegistry) revert InvalidSender(vaultRegistry, msg.sender); _; } /// @notice Burns raes for an ID /// @param _from Address to burn rae tokens from /// @param _id Token ID to burn /// @param _amount Number of tokens to burn function burn( address _from, uint256 _id, uint256 _amount ) external onlyRegistry { totalSupply[_id] -= _amount; _burn(_from, _id, _amount); emit BurnRaes(_from, _id, _amount); } /// @notice Mints new raes for an ID /// @param _to Address to mint rae tokens to /// @param _id Token ID to mint /// @param _amount Number of tokens to mint /// @param _data Extra calldata to include in the mint function mint( address _to, uint256 _id, uint256 _amount, bytes memory _data ) external onlyRegistry { totalSupply[_id] += _amount; emit MintRaes(_to, _id, _amount); _mint(_to, _id, _amount, _data); } /// @notice Permit function that approves an operator for token type with a valid signature /// @param _owner Address of the owner of the token type /// @param _operator Address of the spender of the token type /// @param _id ID of the token type /// @param _approved Approval status for the token type /// @param _deadline Expiration of the signature /// @param _v The recovery ID (129th byte and chain ID) of the signature used to recover the signer /// @param _r The first 64 bytes of the signature /// @param _s Bytes 64-128 of the signature function permit( address _owner, address _operator, uint256 _id, bool _approved, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) external { if (block.timestamp > _deadline) revert SignatureExpired(block.timestamp, _deadline); // cannot realistically overflow on human timescales unchecked { bytes32 structHash = _computePermitStructHash( _owner, _operator, _id, _approved, _deadline ); bytes32 digest = _computeDigest(_computeDomainSeparator(), structHash); address signer = ECDSA.recover(digest, _v, _r, _s); if (signer == address(0) || signer != _owner) revert InvalidSignature(signer, _owner); } isApproved[_owner][_operator][_id] = _approved; emit SingleApproval(_owner, _operator, _id, _approved); } /// @notice Permit function that approves an operator for all token types with a valid signature /// @param _owner Address of the owner of the token type /// @param _operator Address of the spender of the token type /// @param _approved Approval status for the token type /// @param _deadline Expiration of the signature /// @param _v The recovery ID (129th byte and chain ID) of the signature used to recover the signer /// @param _r The first 64 bytes of the signature /// @param _s Bytes 64-128 of the signature function permitAll( address _owner, address _operator, bool _approved, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) external { if (block.timestamp > _deadline) revert SignatureExpired(block.timestamp, _deadline); // cannot realistically overflow on human timescales unchecked { bytes32 structHash = _computePermitAllStructHash( _owner, _operator, _approved, _deadline ); bytes32 digest = _computeDigest(_computeDomainSeparator(), structHash); address signer = ECDSA.recover(digest, _v, _r, _s); if (signer == address(0) || signer != _owner) revert InvalidSignature(signer, _owner); } isApprovedForAll[_owner][_operator] = _approved; emit ApprovalForAll(_owner, _operator, _approved); } /// @notice Scoped approvals allow us to eliminate some of the risks associated with setting the approval for an entire collection /// @param _operator Address of spender account /// @param _id ID of the token type /// @param _approved Approval status for operator(spender) account function setApprovalFor( address _operator, uint256 _id, bool _approved ) external { isApproved[msg.sender][_operator][_id] = _approved; emit SingleApproval(msg.sender, _operator, _id, _approved); } /// @notice Sets the token metadata contract /// @param _metadata Address for metadata contract function setMetadataDelegate(address _metadata) external onlyController { metadataDelegate = _metadata; } /// @notice Sets the token royalties /// @param _id Token ID royalties are being updated for /// @param _receiver Address to receive royalties /// @param _percentage Percentage of royalties on secondary sales (2 decimals of precision) function setRoyalties( uint256 _id, address _receiver, uint256 _percentage ) external onlyController { if (_percentage > 10000) revert InvalidRoyalty(_percentage); royaltyAddress[_id] = _receiver; royaltyPercent[_id] = _percentage; emit SetRoyalty(_receiver, _id, _percentage); } /// @notice Updates the controller address for the Rae token contract /// @param _newController Address of new controlling entity function transferController(address _newController) external onlyController { if (_newController == address(0)) revert ZeroAddress(); _controller = _newController; emit ControllerTransferred(_newController); } function contractURI() external view returns (string memory) { return IMetadataDelegate(metadataDelegate).contractURI(); } /// @notice Sets the token royalties /// @param _id Token ID royalties are being updated for /// @param _salePrice Sale price to calculate the royalty for function royaltyInfo(uint256 _id, uint256 _salePrice) external view returns (address receiver, uint256 royaltyAmount) { receiver = royaltyAddress[_id]; royaltyAmount = (_salePrice * royaltyPercent[_id]) / 10000; } /// @notice ERC165 implementation /// @param interfaceId ERC165 Interface ID function supportsInterface(bytes4 interfaceId) public view override returns (bool) { return interfaceId == _INTERFACE_ID_ERC2981 || super.supportsInterface(interfaceId); // ERC165 Interface ID for ERC2981 } /// @notice Transfer an amount of a token type between two accounts /// @param _from Source address for an amount of tokens /// @param _to Destination address for an amount of tokens /// @param _id ID of the token type /// @param _amount The amount of tokens being transferred /// @param _data Additional calldata function safeTransferFrom( address _from, address _to, uint256 _id, uint256 _amount, bytes memory _data ) public override(ERC1155, IRae) { require( msg.sender == _from || isApprovedForAll[_from][msg.sender] || isApproved[_from][msg.sender][_id], "NOT_AUTHORIZED" ); balanceOf[_from][_id] -= _amount; balanceOf[_to][_id] += _amount; emit TransferSingle(msg.sender, _from, _to, _id, _amount); require( _to.code.length == 0 ? _to != address(0) : INFTReceiver(_to).onERC1155Received(msg.sender, _from, _id, _amount, _data) == INFTReceiver.onERC1155Received.selector, "UNSAFE_RECIPIENT" ); } /// @notice Getter for URI of a token type /// @param _id ID of the token type function uri(uint256 _id) public view override(ERC1155, IRae) returns (string memory) { return IMetadataDelegate(metadataDelegate).tokenURI(_id); } /// @notice Getter for controller account function controller() public view returns (address controllerAddress) { _controller == address(0) ? controllerAddress = INITIAL_CONTROLLER() : controllerAddress = _controller; } /// @notice Getter for initial controller account immutable argument stored in calldata function INITIAL_CONTROLLER() public pure returns (address) { return _getArgAddress(0); } /// @notice VaultRegistry address that is allowed to call mint() and burn() function VAULT_REGISTRY() public pure returns (address) { return _getArgAddress(20); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import {IVault, InitInfo} from "./interfaces/IVault.sol"; import {Clone} from "clones-with-immutable-args/src/Clone.sol"; import {MerkleProof} from "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import {NFTReceiver} from "./utils/NFTReceiver.sol"; /// @title Vault /// @author Tessera /// @notice Proxy contract for storing Assets contract Vault is Clone, IVault, NFTReceiver { address public immutable original; /// @dev Minimum reserve of gas units uint256 private constant MIN_GAS_RESERVE = 5_000; uint256 private constant MERKLE_ROOT_POSITION = 0; uint256 private constant OWNER_POSITION = 32; uint256 private constant FACTORY_POSITION = 52; constructor() { original = address(this); } /// @dev Callback for receiving Ether when the calldata is empty receive() external payable {} /// @dev Executed if none of the other functions match the function identifier fallback() external payable {} /// @notice Executes vault transactions through delegatecall /// @param _target Target address /// @param _data Transaction data /// @param _proof Merkle proof of permission hash /// @return success Result status of delegatecall /// @return response Return data of delegatecall function execute( address _target, bytes calldata _data, bytes32[] calldata _proof ) external payable returns (bool success, bytes memory response) { bytes4 selector; assembly { selector := calldataload(_data.offset) } // Generate leaf node by hashing module, target and function selector. bytes32 leaf = keccak256(abi.encode(msg.sender, _target, selector)); // Check that the caller is either a module with permission to call or the owner. if (!MerkleProof.verify(_proof, MERKLE_ROOT(), leaf)) { if (msg.sender != FACTORY() && msg.sender != OWNER()) revert NotAuthorized(msg.sender, _target, selector); } (success, response) = _execute(_target, _data); } /// @notice Getter for merkle root stored as an immutable argument function MERKLE_ROOT() public pure returns (bytes32) { return _getArgBytes32(MERKLE_ROOT_POSITION); } /// @notice Getter for owner of vault function OWNER() public pure returns (address) { return _getArgAddress(OWNER_POSITION); } /// @notice Getter for factory of vault function FACTORY() public pure returns (address) { return _getArgAddress(FACTORY_POSITION); } /// @notice Executes plugin transactions through delegatecall /// @param _target Target address /// @param _data Transaction data /// @return success Result status of delegatecall /// @return response Return data of delegatecall function _execute(address _target, bytes calldata _data) internal returns (bool success, bytes memory response) { require(original != address(this), "only delegate call"); if (_target.code.length == 0) revert TargetInvalid(_target); // Reserve some gas to ensure that the function has enough to finish the execution uint256 stipend = gasleft() - MIN_GAS_RESERVE; // Delegate call to the target contract (success, response) = _target.delegatecall{gas: stipend}(_data); // Revert if execution was unsuccessful if (!success) { if (response.length == 0) revert ExecutionReverted(); _revertedWithReason(response); } } /// @notice Reverts transaction with reason /// @param _response Unsucessful return response of the delegate call function _revertedWithReason(bytes memory _response) internal pure { assembly { let returndata_size := mload(_response) revert(add(32, _response), returndata_size) } } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import {Create2ClonesWithImmutableArgs} from "clones-with-immutable-args/src/Create2ClonesWithImmutableArgs.sol"; import {IVaultFactory} from "./interfaces/IVaultFactory.sol"; import {Vault, InitInfo} from "./Vault.sol"; /// @title Vault Factory /// @author Tessera /// @notice Factory contract for deploying Tessera vaults contract VaultFactory is IVaultFactory { /// @dev Use clones library for address types using Create2ClonesWithImmutableArgs for address; /// @notice Address of Vault proxy contract address public implementation; /// @dev Internal mapping to track the next seed to be used by an EOA mapping(address => bytes32) internal nextSeeds; /// @notice Initializes implementation contract constructor() { implementation = address(new Vault()); } /// @notice Deploys new vault for sender /// @param _merkleRoot Merkle root of deployed vault /// @return vault Address of deployed vault function deploy(bytes32 _merkleRoot) external returns (address payable vault) { vault = deployFor(_merkleRoot, msg.sender); } /// @notice Gets pre-computed address of vault deployed by given account /// @param _origin Address of vault originating account /// @param _owner Address of vault deployer /// @param _merkleRoot Merkle root of deployed vault /// @return vault Address of next vault function getNextAddress( address _origin, address _owner, bytes32 _merkleRoot ) external view returns (address vault) { bytes32 salt = keccak256(abi.encode(_origin, nextSeeds[_origin])); (uint256 creationPtr, uint256 creationSize) = implementation.cloneCreationCode( abi.encodePacked(_merkleRoot, _owner, address(this)) ); bytes32 creationHash; // solhint-disable-next-line no-inline-assembly assembly { creationHash := keccak256(creationPtr, creationSize) } bytes32 data = keccak256(abi.encodePacked(bytes1(0xff), address(this), salt, creationHash)); vault = address(uint160(uint256(data))); } /// @notice Gets next seed value of given account /// @param _deployer Address of vault deployer /// @return Value of next seed function getNextSeed(address _deployer) external view returns (bytes32) { return nextSeeds[_deployer]; } /// @notice Deploys new vault for given address /// @param _merkleRoot Merkle root of deployed vault /// @param _owner Address of vault owner /// @return vault Address of deployed vault function deployFor(bytes32 _merkleRoot, address _owner) public returns (address payable vault) { vault = _computeSalt(_merkleRoot, _owner); } /// @notice Deploys new vault for given address and executes calls /// @param _merkleRoot Merkle root of deployed vault /// @param _owner Address of vault owner /// @param _calls List of calls to execute upon deployment /// @return vault Address of deployed vault function deployFor( bytes32 _merkleRoot, address _owner, InitInfo[] calldata _calls ) public returns (address payable vault) { vault = _computeSalt(_merkleRoot, _owner); unchecked { for (uint256 i; i < _calls.length; ++i) { Vault(vault).execute(_calls[i].target, _calls[i].data, _calls[i].proof); } } } function _computeSalt(bytes32 _merkleRoot, address _owner) internal returns (address payable vault) { bytes32 seed = nextSeeds[tx.origin]; // Prevent front-running the salt by hashing the concatenation of tx.origin and the user-provided seed. bytes32 salt = keccak256(abi.encode(tx.origin, seed)); vault = _cloneVault(_merkleRoot, _owner, seed, salt); } function _cloneVault( bytes32 _merkleRoot, address _owner, bytes32 _seed, bytes32 _salt ) internal returns (address payable vault) { bytes memory data = abi.encodePacked(_merkleRoot, _owner, address(this)); vault = implementation.clone(_salt, data); // Increment the seed. unchecked { nextSeeds[tx.origin] = bytes32(uint256(_seed) + 1); } /// Log the vault via en event. emit DeployVault(tx.origin, msg.sender, _owner, _seed, _salt, vault, _merkleRoot); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; /// @dev Name of the Rae token contract string constant NAME = "Rae"; /// @dev Version number of the Rae token contract string constant VERSION = "1"; /// @dev The EIP-712 typehash for the contract's domain bytes32 constant DOMAIN_TYPEHASH = keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ); /// @dev The EIP-712 typehash for the permit struct used by the contract bytes32 constant PERMIT_TYPEHASH = keccak256( "Permit(address owner,address operator,uint256 tokenId,bool approved,uint256 nonce,uint256 deadline)" ); /// @dev The EIP-712 typehash for the permit all struct used by the contract bytes32 constant PERMIT_ALL_TYPEHASH = keccak256( "PermitAll(address owner,address operator,bool approved,uint256 nonce,uint256 deadline)" );
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; interface IMetadataDelegate { function tokenURI(uint256 tokenId) external view returns (string memory); function contractURI() external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; /// @dev Interface for NFT Receiver contract interface INFTReceiver { function onERC721Received( address, address, uint256, bytes calldata ) external returns (bytes4); function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external returns (bytes4); function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external returns (bytes4); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; /// @dev Interface of ERC-1155 token contract for raes interface IRae { /// @dev Emitted when caller is not required address error InvalidSender(address _required, address _provided); /// @dev Emitted when owner signature is invalid error InvalidSignature(address _signer, address _owner); /// @dev Emitted when deadline for signature has passed error SignatureExpired(uint256 _timestamp, uint256 _deadline); /// @dev Emitted when royalty is set to value greater than 100% error InvalidRoyalty(uint256 _percentage); /// @dev Emitted when new controller is zero address error ZeroAddress(); /// @dev Event log for updating the Controller of the token contract /// @param _newController Address of the controller event ControllerTransferred(address indexed _newController); /// @dev Event log for updating the metadata contract for a token type /// @param _metadata Address of the metadata contract that URI data is stored on /// @param _id ID of the token type event SetMetadata(address indexed _metadata, uint256 _id); /// @dev Event log for updating the royalty of a token type /// @param _receiver Address of the receiver of secondary sale royalties /// @param _id ID of the token type /// @param _percentage Royalty percent on secondary sales event SetRoyalty(address indexed _receiver, uint256 indexed _id, uint256 _percentage); /// @dev Event log for approving a spender of a token type /// @param _owner Address of the owner of the token type /// @param _operator Address of the spender of the token type /// @param _id ID of the token type /// @param _approved Approval status for the token type event SingleApproval( address indexed _owner, address indexed _operator, uint256 indexed _id, bool _approved ); /// @notice Event log for Minting Raes of ID to account _to /// @param _to Address to mint rae tokens to /// @param _id Token ID to mint /// @param _amount Number of tokens to mint event MintRaes(address indexed _to, uint256 indexed _id, uint256 _amount); /// @notice Event log for Burning raes of ID from account _from /// @param _from Address to burn rae tokens from /// @param _id Token ID to burn /// @param _amount Number of tokens to burn event BurnRaes(address indexed _from, uint256 indexed _id, uint256 _amount); function INITIAL_CONTROLLER() external pure returns (address); function VAULT_REGISTRY() external pure returns (address); function burn( address _from, uint256 _id, uint256 _amount ) external; function contractURI() external view returns (string memory); function controller() external view returns (address controllerAddress); function isApproved( address, address, uint256 ) external view returns (bool); function metadataDelegate() external view returns (address); function mint( address _to, uint256 _id, uint256 _amount, bytes memory _data ) external; function permit( address _owner, address _operator, uint256 _id, bool _approved, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) external; function permitAll( address _owner, address _operator, bool _approved, uint256 _deadline, uint8 _v, bytes32 _r, bytes32 _s ) external; function royaltyInfo(uint256 _id, uint256 _salePrice) external view returns (address receiver, uint256 royaltyAmount); function safeTransferFrom( address _from, address _to, uint256 _id, uint256 _amount, bytes memory _data ) external; function setApprovalFor( address _operator, uint256 _id, bool _approved ) external; function setMetadataDelegate(address _metadata) external; function setRoyalties( uint256 _id, address _receiver, uint256 _percentage ) external; function totalSupply(uint256) external view returns (uint256); function transferController(address _newController) external; function uri(uint256 _id) external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; /// @dev Initialization call information struct InitInfo { // Address of target contract address target; // Initialization data bytes data; // Merkle proof for call bytes32[] proof; } /// @dev Interface for Vault proxy contract interface IVault { /// @dev Emitted when execution reverted with no reason error ExecutionReverted(); /// @dev Emitted when the caller is not the owner error NotAuthorized(address _caller, address _target, bytes4 _selector); /// @dev Emitted when the caller is not the owner error NotOwner(address _owner, address _caller); /// @dev Emitted when the caller is not the factory error NotFactory(address _factory, address _caller); /// @dev Emitted when passing an EOA or an undeployed contract as the target error TargetInvalid(address _target); /// @dev Event log for executing transactions /// @param _target Address of target contract /// @param _data Transaction data being executed /// @param _response Return data of delegatecall event Execute(address indexed _target, bytes _data, bytes _response); function execute( address _target, bytes memory _data, bytes32[] memory _proof ) external payable returns (bool success, bytes memory response); function MERKLE_ROOT() external view returns (bytes32); function OWNER() external view returns (address); function FACTORY() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import {InitInfo} from "./IVault.sol"; /// @dev Interface for VaultFactory contract interface IVaultFactory { /// @dev Event log for deploying vault /// @param _origin Address of transaction origin /// @param _deployer Address of sender /// @param _owner Address of vault owner /// @param _seed Value of seed /// @param _salt Value of salt /// @param _vault Address of deployed vault event DeployVault( address indexed _origin, address indexed _deployer, address indexed _owner, bytes32 _seed, bytes32 _salt, address _vault, bytes32 _root ); function deploy(bytes32 _merkleRoot) external returns (address payable vault); function deployFor(bytes32 _merkleRoot, address _owner) external returns (address payable vault); function getNextAddress( address _origin, address _owner, bytes32 _merkleRoot ) external view returns (address vault); function getNextSeed(address _deployer) external view returns (bytes32); function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import {InitInfo} from "./IVault.sol"; /// @dev Vault permissions struct Permission { // Address of module contract address module; // Address of target contract address target; // Function selector from target contract bytes4 selector; } /// @dev Vault information struct VaultInfo { // Address of Rae token contract address token; // ID of the token type uint256 id; } /// @dev Interface for VaultRegistry contract interface IVaultRegistry { /// @dev Emitted when the caller is not the controller error InvalidController(address _controller, address _sender); /// @dev Emitted when the caller is not a registered vault error UnregisteredVault(address _sender); /// @dev Event log for deploying vault /// @param _vault Address of the vault /// @param _token Address of the token /// @param _id Id of the token event VaultDeployed(address indexed _vault, address indexed _token, uint256 indexed _id); function createFor( bytes32 _merkleRoot, address _owner, InitInfo[] calldata _calls ) external returns (address vault); function createFor(bytes32 _merkleRoot, address _owner) external returns (address vault); function create(bytes32 _merkleRoot, InitInfo[] calldata _calls) external returns (address vault); function create(bytes32 _merkleRoot) external returns (address vault); function createCollectionFor( bytes32 _merkleRoot, address _controller, InitInfo[] calldata _calls ) external returns (address vault, address token); function createCollection(bytes32 _merkleRoot, InitInfo[] calldata _calls) external returns (address vault, address token); function createInCollection( bytes32 _merkleRoot, address _token, InitInfo[] calldata _calls ) external returns (address vault); function factory() external view returns (address); function rae() external view returns (address); function raeImplementation() external view returns (address); function burn(address _from, uint256 _value) external; function mint(address _to, uint256 _value) external; function nextId(address) external view returns (uint256); function totalSupply(address _vault) external view returns (uint256); function uri(address _vault) external view returns (string memory); function vaultToToken(address) external view returns (address token, uint256 id); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import {ERC721TokenReceiver} from "@rari-capital/solmate/src/tokens/ERC721.sol"; import {ERC1155TokenReceiver} from "@rari-capital/solmate/src/tokens/ERC1155.sol"; /// @title NFT Receiver /// @author Tessera /// @notice Plugin contract for handling receipts of non-fungible tokens contract NFTReceiver is ERC721TokenReceiver, ERC1155TokenReceiver { /// @notice Handles the receipt of a single ERC721 token function onERC721Received( address, address, uint256, bytes calldata ) external virtual override returns (bytes4) { return ERC721TokenReceiver.onERC721Received.selector; } /// @notice Handles the receipt of a single ERC1155 token type function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external virtual override returns (bytes4) { return ERC1155TokenReceiver.onERC1155Received.selector; } /// @notice Handles the receipt of multiple ERC1155 token types function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external virtual override returns (bytes4) { return ERC1155TokenReceiver.onERC1155BatchReceived.selector; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.13; import "../constants/Permit.sol"; /// @title PermitBase /// @author Tessera /// @notice Utility contract for computing permit signature approvals for Rae tokens abstract contract PermitBase { /// @notice Mapping of token owner to nonce value mapping(address => uint256) public nonces; /// @dev Computes hash of permit struct /// @param _owner Address of the owner of the token type /// @param _operator Address of the spender of the token type /// @param _id ID of the token type /// @param _approved Approval status for the token type /// @param _deadline Expiration of the signature function _computePermitStructHash( address _owner, address _operator, uint256 _id, bool _approved, uint256 _deadline ) internal returns (bytes32) { return keccak256( abi.encode( PERMIT_TYPEHASH, _owner, _operator, _id, _approved, nonces[_owner]++, _deadline ) ); } /// @dev Computes hash of permit all struct /// @param _owner Address of the owner of the token type /// @param _operator Address of the spender of the token type /// @param _approved Approval status for the token type /// @param _deadline Expiration of the signature function _computePermitAllStructHash( address _owner, address _operator, bool _approved, uint256 _deadline ) internal returns (bytes32) { return keccak256( abi.encode( PERMIT_ALL_TYPEHASH, _owner, _operator, _approved, nonces[_owner]++, _deadline ) ); } /// @dev Computes domain separator to prevent signature collisions /// @return Hash of the contract-specific fields function _computeDomainSeparator() internal view returns (bytes32) { return keccak256( abi.encode( DOMAIN_TYPEHASH, keccak256(bytes(NAME)), keccak256(bytes(VERSION)), block.chainid, address(this) ) ); } /// @dev Computes digest of domain separator and struct hash /// @param _domainSeparator Hash of contract-specific fields /// @param _structHash Hash of signature fields struct /// @return Hash of the signature digest function _computeDigest(bytes32 _domainSeparator, bytes32 _structHash) internal pure returns (bytes32) { return keccak256(abi.encode("\x19\x01", _domainSeparator, _structHash)); } }
{ "remappings": [ "@ensdomains/buffer/=lib/buffer/", "@ensdomains/contracts/=lib/ens-contracts/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@rari-capital/solmate/src/=lib/solmate/src/", "buffer/=lib/buffer/contracts/", "clones-with-immutable-args/=lib/clones-with-immutable-args/", "ds-test/=lib/clones-with-immutable-args/lib/ds-test/src/", "ens-contracts/=lib/ens-contracts/contracts/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/contracts/", "solmate/=lib/solmate/src/", "vrgda/=src/modules/VRGDAs/", "weird-erc20/=lib/solmate/lib/weird-erc20/src/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "bytecodeHash": "ipfs" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"CreateFail","type":"error"},{"inputs":[{"internalType":"address","name":"_controller","type":"address"},{"internalType":"address","name":"_sender","type":"address"}],"name":"InvalidController","type":"error"},{"inputs":[{"internalType":"address","name":"_sender","type":"address"}],"name":"UnregisteredVault","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_vault","type":"address"},{"indexed":true,"internalType":"address","name":"_token","type":"address"},{"indexed":true,"internalType":"uint256","name":"_id","type":"uint256"}],"name":"VaultDeployed","type":"event"},{"inputs":[{"internalType":"address","name":"_from","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"internalType":"struct InitInfo[]","name":"_calls","type":"tuple[]"}],"name":"create","outputs":[{"internalType":"address","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"}],"name":"create","outputs":[{"internalType":"address","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"internalType":"struct InitInfo[]","name":"_calls","type":"tuple[]"}],"name":"createCollection","outputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"token","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"internalType":"address","name":"_controller","type":"address"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"internalType":"struct InitInfo[]","name":"_calls","type":"tuple[]"}],"name":"createCollectionFor","outputs":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"token","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"internalType":"address","name":"_owner","type":"address"}],"name":"createFor","outputs":[{"internalType":"address","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"internalType":"address","name":"_owner","type":"address"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"internalType":"struct InitInfo[]","name":"_calls","type":"tuple[]"}],"name":"createFor","outputs":[{"internalType":"address","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_merkleRoot","type":"bytes32"},{"internalType":"address","name":"_token","type":"address"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"internalType":"struct InitInfo[]","name":"_calls","type":"tuple[]"}],"name":"createInCollection","outputs":[{"internalType":"address","name":"vault","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nextId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rae","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"raeImplementation","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"}],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"vaultToToken","outputs":[{"internalType":"address","name":"token","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"stateMutability":"view","type":"function"}]
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106101005760003560e01c806374d486df11610097578063ca817ae611610066578063ca817ae6146102ab578063cd98d0b6146102be578063e4dc2aa4146102f1578063f6fbb6601461030457600080fd5b806374d486df14610237578063951dcbd91461024a5780639dc29fac14610271578063c45a01551461028457600080fd5b806346190ec4116100d357806346190ec4146101bc5780635254409a146101ea57806371621478146102115780637368a8ce1461022457600080fd5b806339ec49941461010557806340c10f1914610135578063426eb0171461014a57806342d19ef41461016a575b600080fd5b610118610113366004610c4c565b610317565b6040516001600160a01b0390911681526020015b60405180910390f35b610148610143366004610cb0565b61032d565b005b61015d610158366004610cdc565b610408565b60405161012c9190610d29565b61019d610178366004610cdc565b600160208190526000918252604090912080549101546001600160a01b039091169082565b604080516001600160a01b03909316835260208301919091520161012c565b6101dc6101ca366004610cdc565b60006020819052908152604090205481565b60405190815260200161012c565b6101187f000000000000000000000000c4cae54703050d69d3353341ee0b2a30b3f6d17281565b61011861021f366004610d5c565b6104aa565b610118610232366004610db8565b610562565b610118610245366004610dd1565b610574565b6101187f000000000000000000000000f307270da6aaa3657f336affe9a930671a3523f681565b61014861027f366004610cb0565b6105a1565b6101187f00000000000000000000000046bf35448e3bcc7d0f243b5bccda52f4bfb88cf681565b6101186102b9366004610d5c565b610635565b6102d16102cc366004610d5c565b61066d565b604080516001600160a01b0393841681529290911660208301520161012c565b6101dc6102ff366004610cdc565b6106f9565b6102d1610312366004610c4c565b610792565b600061032584308585610635565b949350505050565b336000908152600160208181526040808420815180830190925280546001600160a01b0316825290920154908201819052909181900361038757604051630601cb1560e11b81523360048201526024015b60405180910390fd5b815160405163731133e960e01b81526001600160a01b038681166004830152602482018490526044820186905260806064830152600060848301529091169063731133e99060a4015b600060405180830381600087803b1580156103ea57600080fd5b505af11580156103fe573d6000803e3d6000fd5b5050505050505050565b6001600160a01b0381811660009081526001602081815260409283902083518085018552815490951680865292015490840181905291516303a24d0760e21b8152600481019290925260609291630e89341c90602401600060405180830381865afa15801561047b573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526104a39190810190610e17565b9392505050565b600080846001600160a01b031663f77c47916040518163ffffffff1660e01b8152600401602060405180830381865afa1580156104eb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061050f9190610ec4565b90506001600160a01b038116331461054b5760405163975cb35f60e01b81526001600160a01b038216600482015233602482015260440161037e565b61055886308787876108bf565b9695505050505050565b600061056e8230610574565b92915050565b60006104a383837f000000000000000000000000f307270da6aaa3657f336affe9a930671a3523f6610ab0565b336000908152600160208181526040808420815180830190925280546001600160a01b031682529092015490820181905290918190036105f657604051630601cb1560e11b815233600482015260240161037e565b8151604051637a94c56560e11b81526001600160a01b03868116600483015260248201849052604482018690529091169063f5298aca906064016103d0565b600061066485857f000000000000000000000000f307270da6aaa3657f336affe9a930671a3523f686866108bf565b95945050505050565b6040516bffffffffffffffffffffffff19606085811b8216602084015230901b16603482015260009081906106df9060480160408051601f198184030181529190526001600160a01b037f000000000000000000000000c4cae54703050d69d3353341ee0b2a30b3f6d17216906107ad565b90506106ee86308387876108bf565b915094509492505050565b6001600160a01b0380821660009081526001602081815260408084208151808301835281549096168087529301549185018290525163bd85b03960e01b815292939263bd85b039916107519160040190815260200190565b602060405180830381865afa15801561076e573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906104a39190610ee1565b6000806107a18533868661066d565b90969095509350505050565b8051604051606160f81b81526039820160f081811b60018401526f3d81600a3d39f33d3d3d3d363d3d376160801b600384015260028401901b601383018190526560373639366160d01b6015840152601b83015262013d7360e81b601d830152606085901b6020808401919091526c5af43d3d93803e603557fd5bf360981b60348401526000939260438401929186019084604182015b602082106108635783518152602093840193601f199092019101610844565b835160001960208490036101000a0119908116825260f088901b91830191825286846000f098506001600160a01b0389166108b157604051631d7fde3160e31b815260040160405180910390fd5b505050505050505092915050565b604051632b89869960e21b81523260048201526001600160a01b038581166024830152604482018790526000917f00000000000000000000000046bf35448e3bcc7d0f243b5bccda52f4bfb88cf69091169063ae261a6490606401602060405180830381865afa158015610937573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061095b9190610ec4565b6040805180820182526001600160a01b03871680825260009081526020818152928120805494955091939284019261099290610efa565b918290555090526001600160a01b03828116600090815260016020818152604092839020855181546001600160a01b031916908616178155940151930192909255905163728a66eb60e01b81527f00000000000000000000000046bf35448e3bcc7d0f243b5bccda52f4bfb88cf69091169063728a66eb90610a1e908990899088908890600401610fc9565b6020604051808303816000875af1158015610a3d573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610a619190610ec4565b506001600160a01b0380851660008181526020819052604080822054905190938516917f85ad49ea2b74d60c1db1acac23d44f3fa0361896eead0f4b35b1ea46b1be59b591a495945050505050565b60405163f45d29d360e01b8152600481018490526001600160a01b0383811660248301526000917f00000000000000000000000046bf35448e3bcc7d0f243b5bccda52f4bfb88cf69091169063f45d29d3906044016020604051808303816000875af1158015610b24573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b489190610ec4565b6040805180820182526001600160a01b038516808252600090815260208181529281208054949550919392840192610b7f90610efa565b918290555090526001600160a01b038281166000818152600160208181526040808420875181546001600160a01b031916908816178155968201519690920195909555928616808252938190528281205492519293927f85ad49ea2b74d60c1db1acac23d44f3fa0361896eead0f4b35b1ea46b1be59b59190a49392505050565b60008083601f840112610c1257600080fd5b50813567ffffffffffffffff811115610c2a57600080fd5b6020830191508360208260051b8501011115610c4557600080fd5b9250929050565b600080600060408486031215610c6157600080fd5b83359250602084013567ffffffffffffffff811115610c7f57600080fd5b610c8b86828701610c00565b9497909650939450505050565b6001600160a01b0381168114610cad57600080fd5b50565b60008060408385031215610cc357600080fd5b8235610cce81610c98565b946020939093013593505050565b600060208284031215610cee57600080fd5b81356104a381610c98565b60005b83811015610d14578181015183820152602001610cfc565b83811115610d23576000848401525b50505050565b6020815260008251806020840152610d48816040850160208701610cf9565b601f01601f19169190910160400192915050565b60008060008060608587031215610d7257600080fd5b843593506020850135610d8481610c98565b9250604085013567ffffffffffffffff811115610da057600080fd5b610dac87828801610c00565b95989497509550505050565b600060208284031215610dca57600080fd5b5035919050565b60008060408385031215610de457600080fd5b823591506020830135610df681610c98565b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b600060208284031215610e2957600080fd5b815167ffffffffffffffff80821115610e4157600080fd5b818401915084601f830112610e5557600080fd5b815181811115610e6757610e67610e01565b604051601f8201601f19908116603f01168101908382118183101715610e8f57610e8f610e01565b81604052828152876020848701011115610ea857600080fd5b610eb9836020830160208801610cf9565b979650505050505050565b600060208284031215610ed657600080fd5b81516104a381610c98565b600060208284031215610ef357600080fd5b5051919050565b600060018201610f1a57634e487b7160e01b600052601160045260246000fd5b5060010190565b81835281816020850137506000828201602090810191909152601f909101601f19169091010190565b6000808335601e19843603018112610f6157600080fd5b830160208101925035905067ffffffffffffffff811115610f8157600080fd5b8060051b3603831315610c4557600080fd5b81835260006001600160fb1b03831115610fac57600080fd5b8260051b8083602087013760009401602001938452509192915050565b60006060808301878452602060018060a01b0380891682870152604084818801528388855260808801905060808960051b89010194508960005b8a8110156110c557898703607f190183528135368d9003605e1901811261102957600080fd5b8c01803561103681610c98565b861688528087013536829003601e1901811261105157600080fd5b8101803567ffffffffffffffff81111561106a57600080fd5b80360383131561107957600080fd5b8a898b015261108d8b8b01828b8501610f21565b91505061109c86830183610f4a565b9250898203878b01526110b0828483610f93565b99505050928601925090850190600101611003565b50949c9b50505050505050505050505056fea26469706673582212207a878ded536c5431d4ab3b7ac923884262f9f9e93a7394c4db59c19dd1bb81a764736f6c634300080d0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.