Feature Tip: Add private address tag to any address under My Name Tag !
More Info
Private Name Tags
ContractCreator
Latest 7 from a total of 7 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Set Strategist | 20491146 | 183 days ago | IN | 0 ETH | 0.00012473 | ||||
Transfer Ownersh... | 18541532 | 456 days ago | IN | 0 ETH | 0.00133371 | ||||
Unpause | 18541525 | 456 days ago | IN | 0 ETH | 0.0082015 | ||||
Panic | 18541519 | 456 days ago | IN | 0 ETH | 0.00772413 | ||||
Set Withdrawal F... | 18541519 | 456 days ago | IN | 0 ETH | 0.00124347 | ||||
Harvest | 18541511 | 456 days ago | IN | 0 ETH | 0.03291378 | ||||
Initialize | 18541331 | 456 days ago | IN | 0 ETH | 0.01322327 |
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block |
From
|
To
|
|||
---|---|---|---|---|---|---|
18541257 | 456 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0x56e06d018135b4bc3f5e26dad417666dc2901db3
Contract Name:
StrategyCompoundV3
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IERC20} from "@openzeppelin-4/contracts/token/ERC20/IERC20.sol"; import {SafeERC20} from "@openzeppelin-4/contracts/token/ERC20/utils/SafeERC20.sol"; import {IBeefySwapper} from "../../interfaces/beefy/IBeefySwapper.sol"; import "../Common/StratFeeManagerInitializable.sol"; interface IComet { function supply(address asset, uint amount) external; function withdraw(address asset, uint amount) external; function balanceOf(address user) external view returns (uint256); function baseToken() external view returns (address); } interface ICometRewards { function claim(address comet, address source, bool shouldAccrue) external; } contract StrategyCompoundV3 is StratFeeManagerInitializable { using SafeERC20 for IERC20; // Tokens used address public constant native = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address public constant output = 0xc00e94Cb662C3520282E6f5717214004A7f26888; address public want; address public cToken; // Third party contracts ICometRewards public constant rewards = ICometRewards(0x1B0e765F6224C21223AeA2af16c1C46E38885a40); bool public harvestOnDeposit; uint256 public lastHarvest; uint256 public totalLocked; uint256 public constant DURATION = 1 days; event StratHarvest(address indexed harvester, uint256 wantHarvested, uint256 tvl); event Deposit(uint256 tvl); event Withdraw(uint256 tvl); event ChargedFees(uint256 callFees, uint256 beefyFees, uint256 strategistFees); function initialize( address _cToken, CommonAddresses calldata _commonAddresses ) public initializer { __StratFeeManager_init(_commonAddresses); cToken = _cToken; want = IComet(cToken).baseToken(); _giveAllowances(); } // puts the funds to work function deposit() public whenNotPaused { uint256 bal = balanceOfWant(); if (bal > 0) { IComet(cToken).supply(want, bal); emit Deposit(balanceOf()); } } // Withdraws funds and sends them back to the vault function withdraw(uint256 _amount) external { require(msg.sender == vault, "!vault"); uint256 wantBal = balanceOfWant(); if (wantBal < _amount) { uint256 toWithdraw = _amount - wantBal; uint256 cTokenBal = IERC20(want).balanceOf(cToken); require(cTokenBal >= toWithdraw, "Not Enough Underlying"); IComet(cToken).withdraw(want, toWithdraw); wantBal = balanceOfWant(); } if (wantBal > _amount) { wantBal = _amount; } if (tx.origin != owner() && !paused()) { uint256 withdrawalFeeAmount = _amount * withdrawalFee / WITHDRAWAL_MAX; _amount = _amount - withdrawalFeeAmount; } IERC20(want).safeTransfer(vault, _amount); emit Withdraw(balanceOf()); } function beforeDeposit() external virtual override { if (harvestOnDeposit) { require(msg.sender == vault, "!vault"); _harvest(tx.origin); } } /** * Harvest farm tokens and convert to want tokens. */ function harvest() external virtual { _harvest(tx.origin); } function harvest(address callFeeRecipient) external virtual { _harvest(callFeeRecipient); } // compounds earnings and charges performance fee function _harvest(address callFeeRecipient) internal whenNotPaused { rewards.claim(cToken, address(this), true); uint256 bal = IERC20(output).balanceOf(address(this)); if (bal > 0) { swapRewardsToNative(); chargeFees(callFeeRecipient); swapToWant(); uint256 wantHarvested = balanceOfWant(); totalLocked = wantHarvested + lockedProfit(); deposit(); lastHarvest = block.timestamp; emit StratHarvest(msg.sender, wantHarvested, balanceOf()); } } function swapRewardsToNative() internal { uint bal = IERC20(output).balanceOf(address(this)); if (bal > 0) { IBeefySwapper(unirouter).swap(output, native, bal); } } // performance fees function chargeFees(address callFeeRecipient) internal { IFeeConfig.FeeCategory memory fees = getFees(); uint256 nativeBal = IERC20(native).balanceOf(address(this)) * fees.total / DIVISOR; uint256 callFeeAmount = nativeBal * fees.call / DIVISOR; IERC20(native).safeTransfer(callFeeRecipient, callFeeAmount); uint256 beefyFeeAmount = nativeBal * fees.beefy / DIVISOR; IERC20(native).safeTransfer(beefyFeeRecipient, beefyFeeAmount); uint256 strategistFeeAmount = nativeBal * fees.strategist / DIVISOR; IERC20(native).safeTransfer(strategist, strategistFeeAmount); emit ChargedFees(callFeeAmount, beefyFeeAmount, strategistFeeAmount); } // Adds liquidity to AMM and gets more LP tokens. function swapToWant() internal { uint256 bal = IERC20(native).balanceOf(address(this)); if (want != native) { IBeefySwapper(unirouter).swap(native, want, bal); } } function lockedProfit() public view returns (uint256) { uint256 elapsed = block.timestamp - lastHarvest; uint256 remaining = elapsed < DURATION ? DURATION - elapsed : 0; return totalLocked * remaining / DURATION; } // calculate the total underlaying 'want' held by the strat. function balanceOf() public view returns (uint256) { return (balanceOfWant() + balanceOfPool()) - lockedProfit(); } // it calculates how much 'want' this contract holds. function balanceOfWant() public view returns (uint256) { return IERC20(want).balanceOf(address(this)); } // it calculates how much 'want' the strategy has working in the farm. function balanceOfPool() public view returns (uint256) { return IComet(cToken).balanceOf(address(this)); } // returns rewards unharvested function rewardsAvailable() public pure returns (uint256) { return 0; } // native reward amount for calling harvest function callReward() public pure returns (uint256) { return 0; } function setHarvestOnDeposit(bool _harvestOnDeposit) external onlyManager { harvestOnDeposit = _harvestOnDeposit; if (harvestOnDeposit) { setWithdrawalFee(0); } else { setWithdrawalFee(10); } } // called as part of strat migration. Sends all the available funds back to the vault. function retireStrat() external { require(msg.sender == vault, "!vault"); uint256 amount = balanceOfPool(); if (amount > 0) { IComet(cToken).withdraw(want, balanceOfPool()); } uint256 wantBal = IERC20(want).balanceOf(address(this)); IERC20(want).transfer(vault, wantBal); } // pauses deposits and withdraws all funds from third party systems. function panic() public onlyManager { pause(); uint256 amount = balanceOfPool(); if (amount > 0) { IComet(cToken).withdraw(want, balanceOfPool()); } } function pause() public onlyManager { _pause(); _removeAllowances(); } function unpause() external onlyManager { _unpause(); _giveAllowances(); deposit(); } function _giveAllowances() internal { IERC20(output).approve(unirouter, type(uint).max); IERC20(native).approve(unirouter, type(uint).max); IERC20(want).approve(cToken, type(uint).max); } function _removeAllowances() internal { IERC20(output).approve(unirouter, 0); IERC20(native).approve(unirouter, 0); IERC20(want).approve(cToken, 0); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ function __Ownable_init() internal onlyInitializing { __Ownable_init_unchained(); } function __Ownable_init_unchained() internal onlyInitializing { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized != type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol) pragma solidity ^0.8.0; import "../utils/ContextUpgradeable.sol"; import "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { _paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { return _paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { require(!paused(), "Pausable: paused"); } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { require(paused(), "Pausable: not paused"); } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; import "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.19; interface IBeefySwapper { function swap( address fromToken, address toToken, uint256 amountIn ) external returns (uint256 amountOut); function swap( address fromToken, address toToken, uint256 amountIn, uint256 minAmountOut ) external returns (uint256 amountOut); function getAmountOut( address _fromToken, address _toToken, uint256 _amountIn ) external view returns (uint256 amountOut); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IFeeConfig { struct FeeCategory { uint256 total; uint256 beefy; uint256 call; uint256 strategist; string label; bool active; } struct AllFees { FeeCategory performance; uint256 deposit; uint256 withdraw; } function getFees(address strategy) external view returns (FeeCategory memory); function stratFeeId(address strategy) external view returns (uint256); function setStratFeeId(uint256 feeId) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol"; import "../../interfaces/common/IFeeConfig.sol"; contract StratFeeManagerInitializable is OwnableUpgradeable, PausableUpgradeable { struct CommonAddresses { address vault; address unirouter; address keeper; address strategist; address beefyFeeRecipient; address beefyFeeConfig; } // common addresses for the strategy address public vault; address public unirouter; address public keeper; address public strategist; address public beefyFeeRecipient; IFeeConfig public beefyFeeConfig; uint256 constant DIVISOR = 1 ether; uint256 constant public WITHDRAWAL_FEE_CAP = 50; uint256 constant public WITHDRAWAL_MAX = 10000; uint256 internal withdrawalFee; event SetStratFeeId(uint256 feeId); event SetWithdrawalFee(uint256 withdrawalFee); event SetVault(address vault); event SetUnirouter(address unirouter); event SetKeeper(address keeper); event SetStrategist(address strategist); event SetBeefyFeeRecipient(address beefyFeeRecipient); event SetBeefyFeeConfig(address beefyFeeConfig); function __StratFeeManager_init(CommonAddresses calldata _commonAddresses) internal onlyInitializing { __Ownable_init(); __Pausable_init(); vault = _commonAddresses.vault; unirouter = _commonAddresses.unirouter; keeper = _commonAddresses.keeper; strategist = _commonAddresses.strategist; beefyFeeRecipient = _commonAddresses.beefyFeeRecipient; beefyFeeConfig = IFeeConfig(_commonAddresses.beefyFeeConfig); withdrawalFee = 10; } // checks that caller is either owner or keeper. modifier onlyManager() { _checkManager(); _; } function _checkManager() internal view { require(msg.sender == owner() || msg.sender == keeper, "!manager"); } // fetch fees from config contract function getFees() internal view returns (IFeeConfig.FeeCategory memory) { return beefyFeeConfig.getFees(address(this)); } // fetch fees from config contract and dynamic deposit/withdraw fees function getAllFees() external view returns (IFeeConfig.AllFees memory) { return IFeeConfig.AllFees(getFees(), depositFee(), withdrawFee()); } function getStratFeeId() external view returns (uint256) { return beefyFeeConfig.stratFeeId(address(this)); } function setStratFeeId(uint256 _feeId) external onlyManager { beefyFeeConfig.setStratFeeId(_feeId); emit SetStratFeeId(_feeId); } // adjust withdrawal fee function setWithdrawalFee(uint256 _fee) public onlyManager { require(_fee <= WITHDRAWAL_FEE_CAP, "!cap"); withdrawalFee = _fee; emit SetWithdrawalFee(_fee); } // set new vault (only for strategy upgrades) function setVault(address _vault) external onlyOwner { vault = _vault; emit SetVault(_vault); } // set new unirouter function setUnirouter(address _unirouter) external onlyOwner { unirouter = _unirouter; emit SetUnirouter(_unirouter); } // set new keeper to manage strat function setKeeper(address _keeper) external onlyManager { keeper = _keeper; emit SetKeeper(_keeper); } // set new strategist address to receive strat fees function setStrategist(address _strategist) external { require(msg.sender == strategist, "!strategist"); strategist = _strategist; emit SetStrategist(_strategist); } // set new beefy fee address to receive beefy fees function setBeefyFeeRecipient(address _beefyFeeRecipient) external onlyOwner { beefyFeeRecipient = _beefyFeeRecipient; emit SetBeefyFeeRecipient(_beefyFeeRecipient); } // set new fee config address to fetch fees function setBeefyFeeConfig(address _beefyFeeConfig) external onlyOwner { beefyFeeConfig = IFeeConfig(_beefyFeeConfig); emit SetBeefyFeeConfig(_beefyFeeConfig); } function depositFee() public virtual view returns (uint256) { return 0; } function withdrawFee() public virtual view returns (uint256) { return paused() ? 0 : withdrawalFee; } function beforeDeposit() external virtual {} }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"callFees","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"beefyFees","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"strategistFees","type":"uint256"}],"name":"ChargedFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"tvl","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"beefyFeeConfig","type":"address"}],"name":"SetBeefyFeeConfig","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"beefyFeeRecipient","type":"address"}],"name":"SetBeefyFeeRecipient","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"keeper","type":"address"}],"name":"SetKeeper","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"feeId","type":"uint256"}],"name":"SetStratFeeId","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"strategist","type":"address"}],"name":"SetStrategist","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"unirouter","type":"address"}],"name":"SetUnirouter","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"vault","type":"address"}],"name":"SetVault","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"withdrawalFee","type":"uint256"}],"name":"SetWithdrawalFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"harvester","type":"address"},{"indexed":false,"internalType":"uint256","name":"wantHarvested","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tvl","type":"uint256"}],"name":"StratHarvest","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"tvl","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[],"name":"DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WITHDRAWAL_FEE_CAP","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"WITHDRAWAL_MAX","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfPool","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balanceOfWant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"beefyFeeConfig","outputs":[{"internalType":"contract IFeeConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"beefyFeeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"beforeDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"callReward","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"deposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"depositFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllFees","outputs":[{"components":[{"components":[{"internalType":"uint256","name":"total","type":"uint256"},{"internalType":"uint256","name":"beefy","type":"uint256"},{"internalType":"uint256","name":"call","type":"uint256"},{"internalType":"uint256","name":"strategist","type":"uint256"},{"internalType":"string","name":"label","type":"string"},{"internalType":"bool","name":"active","type":"bool"}],"internalType":"struct IFeeConfig.FeeCategory","name":"performance","type":"tuple"},{"internalType":"uint256","name":"deposit","type":"uint256"},{"internalType":"uint256","name":"withdraw","type":"uint256"}],"internalType":"struct IFeeConfig.AllFees","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getStratFeeId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"callFeeRecipient","type":"address"}],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"harvest","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"harvestOnDeposit","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_cToken","type":"address"},{"components":[{"internalType":"address","name":"vault","type":"address"},{"internalType":"address","name":"unirouter","type":"address"},{"internalType":"address","name":"keeper","type":"address"},{"internalType":"address","name":"strategist","type":"address"},{"internalType":"address","name":"beefyFeeRecipient","type":"address"},{"internalType":"address","name":"beefyFeeConfig","type":"address"}],"internalType":"struct StratFeeManagerInitializable.CommonAddresses","name":"_commonAddresses","type":"tuple"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"keeper","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastHarvest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockedProfit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"native","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"output","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"panic","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"retireStrat","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewards","outputs":[{"internalType":"contract ICometRewards","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardsAvailable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"_beefyFeeConfig","type":"address"}],"name":"setBeefyFeeConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_beefyFeeRecipient","type":"address"}],"name":"setBeefyFeeRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_harvestOnDeposit","type":"bool"}],"name":"setHarvestOnDeposit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_keeper","type":"address"}],"name":"setKeeper","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_feeId","type":"uint256"}],"name":"setStratFeeId","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_strategist","type":"address"}],"name":"setStrategist","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_unirouter","type":"address"}],"name":"setUnirouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_vault","type":"address"}],"name":"setVault","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"setWithdrawalFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"strategist","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalLocked","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unirouter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"vault","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"want","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.