Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 121 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Withdraw | 21012546 | 101 days ago | IN | 0 ETH | 0.00035528 | ||||
Buy | 20957693 | 109 days ago | IN | 0.005 ETH | 0.00090913 | ||||
Buy | 20956503 | 109 days ago | IN | 0.001 ETH | 0.00078447 | ||||
Buy | 20949554 | 110 days ago | IN | 0.001 ETH | 0.00062972 | ||||
Buy | 20948593 | 110 days ago | IN | 0.001 ETH | 0.00064168 | ||||
Buy | 20939940 | 112 days ago | IN | 0.001 ETH | 0.00074794 | ||||
Buy | 20926480 | 113 days ago | IN | 0.001 ETH | 0.00084088 | ||||
Buy | 20915934 | 115 days ago | IN | 0.001 ETH | 0.00136268 | ||||
Buy | 20913535 | 115 days ago | IN | 0.001 ETH | 0.0025728 | ||||
Buy | 20898688 | 117 days ago | IN | 0.005464 ETH | 0.0008052 | ||||
Buy | 20888342 | 119 days ago | IN | 0.001 ETH | 0.00021007 | ||||
Buy | 20829056 | 127 days ago | IN | 0.001 ETH | 0.00190917 | ||||
Buy | 20828463 | 127 days ago | IN | 0.01 ETH | 0.00178884 | ||||
Buy | 20769898 | 135 days ago | IN | 0.0023 ETH | 0.00019027 | ||||
Buy | 20755206 | 137 days ago | IN | 0.001 ETH | 0.00011255 | ||||
Buy | 20748104 | 138 days ago | IN | 0.001 ETH | 0.00010591 | ||||
Buy | 20698531 | 145 days ago | IN | 0.001 ETH | 0.00014784 | ||||
Buy | 20670257 | 149 days ago | IN | 0.001 ETH | 0.00015647 | ||||
Buy | 20659885 | 151 days ago | IN | 0.001 ETH | 0.00007156 | ||||
Buy | 20655836 | 151 days ago | IN | 0.01 ETH | 0.00004535 | ||||
Buy | 20646891 | 152 days ago | IN | 0.0019 ETH | 0.00007231 | ||||
Buy | 20636781 | 154 days ago | IN | 0.001 ETH | 0.00010454 | ||||
Buy | 20632077 | 154 days ago | IN | 0.001 ETH | 0.00008315 | ||||
Buy | 20595880 | 160 days ago | IN | 0.001 ETH | 0.00017874 | ||||
Buy | 20594637 | 160 days ago | IN | 0.006 ETH | 0.00007715 |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
TestETHSales
Compiler Version
v0.8.22+commit.4fc1097e
Optimization Enabled:
Yes with 200 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.9; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; contract TestETHSales is ReentrancyGuard, Ownable { address public signer; uint256 public min = 1000000000000000; uint256 public max = 100000000000000000; uint256 public exchangeRate = 5000; uint256 public totalVolume = 0; uint256 public totalWithdraw = 0; mapping(uint256 => bool) public idUsed; event Buy(uint256 id, uint256 price); event Withdraw(address sender, uint256 balance); constructor(address owner, address _signer) Ownable(owner) { signer = _signer; } function setSigner(address _signer) external onlyOwner { signer = _signer; } function setMin(uint256 _min) external onlyOwner { min = _min; } function setExchangeRate(uint256 _exchangeRate) external onlyOwner { exchangeRate = _exchangeRate; } function setMax(uint256 _max) external onlyOwner { max = _max; } function calculateOutputAmount(uint256 inputAmount) view public returns(uint256 outputAmount) { if (inputAmount < min || inputAmount > max) { outputAmount = 0; } outputAmount = inputAmount * exchangeRate; } function buy(bytes calldata signature, uint256 id, uint256 inputAmount) payable nonReentrant public { require(idUsed[id] != true, "id must not used"); require(inputAmount == msg.value, "inputAmount == msg.value"); require(inputAmount >= min, "inputAmount must >= min"); require(inputAmount <= max, "inputAmount must >= max"); bytes32 hash = MessageHashUtils.toEthSignedMessageHash(keccak256(abi.encode(id, inputAmount))); require(ECDSA.recover(hash, signature) == signer, "sign"); totalVolume = totalVolume + inputAmount; idUsed[id] = true; emit Buy(id, msg.value); } function withdraw() external onlyOwner { emit Withdraw(msg.sender, address(this).balance); totalWithdraw = totalWithdraw + address(this).balance; payable(msg.sender).transfer(address(this).balance); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
{ "optimizer": { "enabled": true, "runs": 200 }, "evmVersion": "paris", "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"_signer","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"price","type":"uint256"}],"name":"Buy","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"balance","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"inputAmount","type":"uint256"}],"name":"buy","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"inputAmount","type":"uint256"}],"name":"calculateOutputAmount","outputs":[{"internalType":"uint256","name":"outputAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"exchangeRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"idUsed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"max","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"min","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_exchangeRate","type":"uint256"}],"name":"setExchangeRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_max","type":"uint256"}],"name":"setMax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_min","type":"uint256"}],"name":"setMin","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_signer","type":"address"}],"name":"setSigner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"signer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalVolume","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalWithdraw","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
608060405266038d7ea4c6800060035567016345785d8a00006004556113886005556000600655600060075534801561003757600080fd5b50604051610ca1380380610ca183398101604081905261005691610128565b6001600055816001600160a01b03811661008a57604051631e4fbdf760e01b81526000600482015260240160405180910390fd5b610093816100ba565b50600280546001600160a01b0319166001600160a01b03929092169190911790555061015b565b600180546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b80516001600160a01b038116811461012357600080fd5b919050565b6000806040838503121561013b57600080fd5b6101448361010c565b91506101526020840161010c565b90509250929050565b610b378061016a6000396000f3fe6080604052600436106100fe5760003560e01c80635f81a57c11610095578063715018a611610064578063715018a6146102905780638da5cb5b146102a5578063db068e0e146102c3578063f2fde38b146102e3578063f88979451461030357600080fd5b80635f81a57c14610204578063693b02891461021a5780636ac5db191461025a5780636c19e7831461027057600080fd5b80633ba0b9a9116100d15780633ba0b9a9146101a35780633ccfd60b146101b9578063455fd623146101ce57806345dc3dd8146101e457600080fd5b806309dd8599146101035780631ae4229d146101365780631fe9eabc1461014b578063238ac9331461016b575b600080fd5b34801561010f57600080fd5b5061012361011e3660046109e3565b610319565b6040519081526020015b60405180910390f35b6101496101443660046109fc565b610348565b005b34801561015757600080fd5b506101496101663660046109e3565b610617565b34801561017757600080fd5b5060025461018b906001600160a01b031681565b6040516001600160a01b03909116815260200161012d565b3480156101af57600080fd5b5061012360055481565b3480156101c557600080fd5b50610149610624565b3480156101da57600080fd5b5061012360075481565b3480156101f057600080fd5b506101496101ff3660046109e3565b6106a4565b34801561021057600080fd5b5061012360065481565b34801561022657600080fd5b5061024a6102353660046109e3565b60086020526000908152604090205460ff1681565b604051901515815260200161012d565b34801561026657600080fd5b5061012360045481565b34801561027c57600080fd5b5061014961028b366004610a7b565b6106b1565b34801561029c57600080fd5b506101496106db565b3480156102b157600080fd5b506001546001600160a01b031661018b565b3480156102cf57600080fd5b506101496102de3660046109e3565b6106ef565b3480156102ef57600080fd5b506101496102fe366004610a7b565b6106fc565b34801561030f57600080fd5b5061012360035481565b600060035482108061032c575060045482115b15610335575060005b6005546103429083610ac1565b92915050565b610350610737565b60008281526008602052604090205460ff1615156001036103ab5760405162461bcd60e51b815260206004820152601060248201526f1a59081b5d5cdd081b9bdd081d5cd95960821b60448201526064015b60405180910390fd5b3481146103fa5760405162461bcd60e51b815260206004820152601860248201527f696e707574416d6f756e74203d3d206d73672e76616c7565000000000000000060448201526064016103a2565b60035481101561044c5760405162461bcd60e51b815260206004820152601760248201527f696e707574416d6f756e74206d757374203e3d206d696e00000000000000000060448201526064016103a2565b60045481111561049e5760405162461bcd60e51b815260206004820152601760248201527f696e707574416d6f756e74206d757374203e3d206d617800000000000000000060448201526064016103a2565b600061050883836040516020016104bf929190918252602082015260400190565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b600254604080516020601f89018190048102820181019092528781529293506001600160a01b039091169161055a91849190899089908190840183828082843760009201919091525061076192505050565b6001600160a01b0316146105995760405162461bcd60e51b81526004016103a29060208082526004908201526339b4b3b760e11b604082015260600190565b816006546105a79190610ad8565b60065560008381526008602052604090819020805460ff19166001179055517f76911b5d8081a7d290dd15cdb0e39e9513ac7e8d1cce3275a7cf1380889abacc906105fe9085903490918252602082015260400190565b60405180910390a1506106116001600055565b50505050565b61061f61078b565b600455565b61062c61078b565b604080513381524760208201527f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a9424364910160405180910390a1476007546106729190610ad8565b60075560405133904780156108fc02916000818181858888f193505050501580156106a1573d6000803e3d6000fd5b50565b6106ac61078b565b600355565b6106b961078b565b600280546001600160a01b0319166001600160a01b0392909216919091179055565b6106e361078b565b6106ed60006107b8565b565b6106f761078b565b600555565b61070461078b565b6001600160a01b03811661072e57604051631e4fbdf760e01b8152600060048201526024016103a2565b6106a1816107b8565b60026000540361075a57604051633ee5aeb560e01b815260040160405180910390fd5b6002600055565b600080600080610771868661080a565b9250925092506107818282610857565b5090949350505050565b6001546001600160a01b031633146106ed5760405163118cdaa760e01b81523360048201526024016103a2565b600180546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b600080600083516041036108445760208401516040850151606086015160001a61083688828585610914565b955095509550505050610850565b50508151600091506002905b9250925092565b600082600381111561086b5761086b610aeb565b03610874575050565b600182600381111561088857610888610aeb565b036108a65760405163f645eedf60e01b815260040160405180910390fd5b60028260038111156108ba576108ba610aeb565b036108db5760405163fce698f760e01b8152600481018290526024016103a2565b60038260038111156108ef576108ef610aeb565b03610910576040516335e2f38360e21b8152600481018290526024016103a2565b5050565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561094f57506000915060039050826109d9565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa1580156109a3573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166109cf575060009250600191508290506109d9565b9250600091508190505b9450945094915050565b6000602082840312156109f557600080fd5b5035919050565b60008060008060608587031215610a1257600080fd5b843567ffffffffffffffff80821115610a2a57600080fd5b818701915087601f830112610a3e57600080fd5b813581811115610a4d57600080fd5b886020828501011115610a5f57600080fd5b6020928301999098509187013596604001359550909350505050565b600060208284031215610a8d57600080fd5b81356001600160a01b0381168114610aa457600080fd5b9392505050565b634e487b7160e01b600052601160045260246000fd5b808202811582820484141761034257610342610aab565b8082018082111561034257610342610aab565b634e487b7160e01b600052602160045260246000fdfea264697066735822122095edcf28d8dfb50042284f7ae952a5485d5df981f5c9a598afca633312f0660b64736f6c6343000816003300000000000000000000000021e67243f5470af0147b8f407dbad429e2eaa58800000000000000000000000021e67243f5470af0147b8f407dbad429e2eaa588
Deployed Bytecode
0x6080604052600436106100fe5760003560e01c80635f81a57c11610095578063715018a611610064578063715018a6146102905780638da5cb5b146102a5578063db068e0e146102c3578063f2fde38b146102e3578063f88979451461030357600080fd5b80635f81a57c14610204578063693b02891461021a5780636ac5db191461025a5780636c19e7831461027057600080fd5b80633ba0b9a9116100d15780633ba0b9a9146101a35780633ccfd60b146101b9578063455fd623146101ce57806345dc3dd8146101e457600080fd5b806309dd8599146101035780631ae4229d146101365780631fe9eabc1461014b578063238ac9331461016b575b600080fd5b34801561010f57600080fd5b5061012361011e3660046109e3565b610319565b6040519081526020015b60405180910390f35b6101496101443660046109fc565b610348565b005b34801561015757600080fd5b506101496101663660046109e3565b610617565b34801561017757600080fd5b5060025461018b906001600160a01b031681565b6040516001600160a01b03909116815260200161012d565b3480156101af57600080fd5b5061012360055481565b3480156101c557600080fd5b50610149610624565b3480156101da57600080fd5b5061012360075481565b3480156101f057600080fd5b506101496101ff3660046109e3565b6106a4565b34801561021057600080fd5b5061012360065481565b34801561022657600080fd5b5061024a6102353660046109e3565b60086020526000908152604090205460ff1681565b604051901515815260200161012d565b34801561026657600080fd5b5061012360045481565b34801561027c57600080fd5b5061014961028b366004610a7b565b6106b1565b34801561029c57600080fd5b506101496106db565b3480156102b157600080fd5b506001546001600160a01b031661018b565b3480156102cf57600080fd5b506101496102de3660046109e3565b6106ef565b3480156102ef57600080fd5b506101496102fe366004610a7b565b6106fc565b34801561030f57600080fd5b5061012360035481565b600060035482108061032c575060045482115b15610335575060005b6005546103429083610ac1565b92915050565b610350610737565b60008281526008602052604090205460ff1615156001036103ab5760405162461bcd60e51b815260206004820152601060248201526f1a59081b5d5cdd081b9bdd081d5cd95960821b60448201526064015b60405180910390fd5b3481146103fa5760405162461bcd60e51b815260206004820152601860248201527f696e707574416d6f756e74203d3d206d73672e76616c7565000000000000000060448201526064016103a2565b60035481101561044c5760405162461bcd60e51b815260206004820152601760248201527f696e707574416d6f756e74206d757374203e3d206d696e00000000000000000060448201526064016103a2565b60045481111561049e5760405162461bcd60e51b815260206004820152601760248201527f696e707574416d6f756e74206d757374203e3d206d617800000000000000000060448201526064016103a2565b600061050883836040516020016104bf929190918252602082015260400190565b604051602081830303815290604052805190602001207f19457468657265756d205369676e6564204d6573736167653a0a3332000000006000908152601c91909152603c902090565b600254604080516020601f89018190048102820181019092528781529293506001600160a01b039091169161055a91849190899089908190840183828082843760009201919091525061076192505050565b6001600160a01b0316146105995760405162461bcd60e51b81526004016103a29060208082526004908201526339b4b3b760e11b604082015260600190565b816006546105a79190610ad8565b60065560008381526008602052604090819020805460ff19166001179055517f76911b5d8081a7d290dd15cdb0e39e9513ac7e8d1cce3275a7cf1380889abacc906105fe9085903490918252602082015260400190565b60405180910390a1506106116001600055565b50505050565b61061f61078b565b600455565b61062c61078b565b604080513381524760208201527f884edad9ce6fa2440d8a54cc123490eb96d2768479d49ff9c7366125a9424364910160405180910390a1476007546106729190610ad8565b60075560405133904780156108fc02916000818181858888f193505050501580156106a1573d6000803e3d6000fd5b50565b6106ac61078b565b600355565b6106b961078b565b600280546001600160a01b0319166001600160a01b0392909216919091179055565b6106e361078b565b6106ed60006107b8565b565b6106f761078b565b600555565b61070461078b565b6001600160a01b03811661072e57604051631e4fbdf760e01b8152600060048201526024016103a2565b6106a1816107b8565b60026000540361075a57604051633ee5aeb560e01b815260040160405180910390fd5b6002600055565b600080600080610771868661080a565b9250925092506107818282610857565b5090949350505050565b6001546001600160a01b031633146106ed5760405163118cdaa760e01b81523360048201526024016103a2565b600180546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b600080600083516041036108445760208401516040850151606086015160001a61083688828585610914565b955095509550505050610850565b50508151600091506002905b9250925092565b600082600381111561086b5761086b610aeb565b03610874575050565b600182600381111561088857610888610aeb565b036108a65760405163f645eedf60e01b815260040160405180910390fd5b60028260038111156108ba576108ba610aeb565b036108db5760405163fce698f760e01b8152600481018290526024016103a2565b60038260038111156108ef576108ef610aeb565b03610910576040516335e2f38360e21b8152600481018290526024016103a2565b5050565b600080807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a084111561094f57506000915060039050826109d9565b604080516000808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa1580156109a3573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166109cf575060009250600191508290506109d9565b9250600091508190505b9450945094915050565b6000602082840312156109f557600080fd5b5035919050565b60008060008060608587031215610a1257600080fd5b843567ffffffffffffffff80821115610a2a57600080fd5b818701915087601f830112610a3e57600080fd5b813581811115610a4d57600080fd5b886020828501011115610a5f57600080fd5b6020928301999098509187013596604001359550909350505050565b600060208284031215610a8d57600080fd5b81356001600160a01b0381168114610aa457600080fd5b9392505050565b634e487b7160e01b600052601160045260246000fd5b808202811582820484141761034257610342610aab565b8082018082111561034257610342610aab565b634e487b7160e01b600052602160045260246000fdfea264697066735822122095edcf28d8dfb50042284f7ae952a5485d5df981f5c9a598afca633312f0660b64736f6c63430008160033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000021e67243f5470af0147b8f407dbad429e2eaa58800000000000000000000000021e67243f5470af0147b8f407dbad429e2eaa588
-----Decoded View---------------
Arg [0] : owner (address): 0x21e67243F5470aF0147b8F407DBaD429E2eaA588
Arg [1] : _signer (address): 0x21e67243F5470aF0147b8F407DBaD429E2eaA588
-----Encoded View---------------
2 Constructor Arguments found :
Arg [0] : 00000000000000000000000021e67243f5470af0147b8f407dbad429e2eaa588
Arg [1] : 00000000000000000000000021e67243f5470af0147b8f407dbad429e2eaa588
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.