Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 162 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Burn | 22849297 | 125 days ago | IN | 0 ETH | 0.00001843 | ||||
| Burn | 22849294 | 125 days ago | IN | 0 ETH | 0.00002153 | ||||
| Burn | 22849292 | 125 days ago | IN | 0 ETH | 0.0000311 | ||||
| Burn | 22849290 | 125 days ago | IN | 0 ETH | 0.00002784 | ||||
| Burn | 22849287 | 125 days ago | IN | 0 ETH | 0.00002125 | ||||
| Burn | 22849285 | 125 days ago | IN | 0 ETH | 0.00001779 | ||||
| Burn | 22849274 | 125 days ago | IN | 0 ETH | 0.00008562 | ||||
| Emit Batch Metad... | 22541950 | 168 days ago | IN | 0 ETH | 0.00002682 | ||||
| Emit Batch Metad... | 22503769 | 173 days ago | IN | 0 ETH | 0.00003203 | ||||
| Emit Batch Metad... | 22502974 | 173 days ago | IN | 0 ETH | 0.00002258 | ||||
| Emit Batch Metad... | 22502665 | 173 days ago | IN | 0 ETH | 0.00002277 | ||||
| Emit Batch Metad... | 22501785 | 174 days ago | IN | 0 ETH | 0.00003102 | ||||
| Emit Batch Metad... | 22500454 | 174 days ago | IN | 0 ETH | 0.00001858 | ||||
| Emit Batch Metad... | 22499861 | 174 days ago | IN | 0 ETH | 0.0000458 | ||||
| Emit Batch Metad... | 22499570 | 174 days ago | IN | 0 ETH | 0.00002211 | ||||
| Emit Batch Metad... | 22499088 | 174 days ago | IN | 0 ETH | 0.00003391 | ||||
| Emit Batch Metad... | 22498904 | 174 days ago | IN | 0 ETH | 0.00002144 | ||||
| Push ETH To Paym... | 22436325 | 183 days ago | IN | 0 ETH | 0.00030298 | ||||
| Set Approval For... | 22431716 | 183 days ago | IN | 0 ETH | 0.00013205 | ||||
| Update Supply | 22428474 | 184 days ago | IN | 0 ETH | 0.00009125 | ||||
| Mint | 22428353 | 184 days ago | IN | 0.01 ETH | 0.00048315 | ||||
| Mint | 22428348 | 184 days ago | IN | 0.01 ETH | 0.00048409 | ||||
| Mint | 22428344 | 184 days ago | IN | 0.01 ETH | 0.00045761 | ||||
| Mint | 22428343 | 184 days ago | IN | 0.01 ETH | 0.00046902 | ||||
| Mint Discounted | 22428338 | 184 days ago | IN | 0.005 ETH | 0.00061486 |
Latest 8 internal transactions
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
||
|---|---|---|---|---|---|---|---|
| Transfer | 22436325 | 183 days ago | 0.096 ETH | ||||
| 0x6103a180 | 22428474 | 184 days ago | Contract Creation | 0 ETH | |||
| 0x6103a180 | 22425258 | 184 days ago | Contract Creation | 0 ETH | |||
| Transfer | 22423825 | 185 days ago | 0.0006 ETH | ||||
| Transfer | 22421571 | 185 days ago | 0.1585 ETH | ||||
| Set Refund | 22419093 | 185 days ago | 0.001 ETH | ||||
| 0x6103a180 | 22278070 | 205 days ago | Contract Creation | 0 ETH | |||
| 0x602c3d81 | 22278070 | 205 days ago | Contract Creation | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Minimal Proxy Contract for 0x8715d9332a4cf833a3583451a70760dba0cf49b2
Contract Name:
NFT
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE
pragma solidity 0.8.28;
/*
_ _ _ ___ ___
| | | | | | | _|_ |
__| |_ __ ___ __ _ _ __ ___ ___| |_ __ _ ___| | _| | | |_ ___ _ ____
/ _` | '__/ _ \/ _` | '_ ` _ \/ __| __/ _` |/ __| |/ / | | \ \/ / | | |_ /
| (_| | | | __/ (_| | | | | | \__ \ || (_| | (__| <| | _ | |> <| |_| |/ /
\__,_|_| \___|\__,_|_| |_| |_|___/\__\__,_|\___|_|\_\ |(_)| /_/\_\\__, /___|
|___|___| __/ |
|___/
**/
import "./modded/creator-token-standards/ERC721C.sol";
import "./modded/creator-token-standards/BasicRoyalties.sol";
import "./modded/openzeppelin/ReentrancyGuard.sol";
import "lib/solady/src/utils/Initializable.sol";
import "lib/solady/src/utils/SSTORE2.sol";
import "lib/solady/src/utils/LibBitmap.sol";
import "./Interfaces.sol";
import "./Structs.sol";
import "./Refunds.sol";
import "./Errors.sol";
import "./Allocate.sol";
contract NFT is INFT, ERC721C, BasicRoyalties, Refunds, Initializable, ReentrancyGuard {
IHub public immutable hub;
IRobustRenderer public immutable robustRenderer;
uint256 public curationTokenId;
string internal _name;
string internal _symbol;
string public description;
string public website;
uint256 public constant MINT_REVEAL_BLOCK_OFFSET = 75; // 50 is finality.. plus some padding to be sure
IPaymentFilterer public paymentFilterer;
Supply private _supply;
IERC721[] private _discountedCollections; // set getDiscountData
mapping(IERC721 => bool) public collectionIsDiscounted;
mapping(IERC721 => uint256) public discountedCollectionFactors;
uint256 public constant ONE = 1 ether;
mapping(uint256 => uint256) public paid;
mapping(uint256 => uint256) _mintedAtBlock;
mapping(IERC721 => LibBitmap.Bitmap) private _discountClaimed;
address internal _mintEconomicsPtr;
uint256 private MAX_MINTS_KEY = uint256(keccak256("_enforceMaxFreeMintsPerTx"));
event Refunded(uint256 tokenId);
event MintEndsUpdated(uint256 mintEndTime);
event MaxSupplyUpdated(uint256 newMaxSupply);
event BridgedTo(address sender, INFT nft, uint256[] tokenIds, uint256 l2Id);
event BridgedFrom(address sender, INFT nft, uint256[] tokenIds, uint256 l2Id);
event ContractURIUpdated();
event BatchMetadataUpdate(uint256 fromTokenId, uint256 toTokenId);
constructor(IHub hub_, IRobustRenderer robustRenderer_, IRefunder refunder_) BasicRoyalties(address(0xb00b5), 10) {
hub = hub_;
robustRenderer = robustRenderer_;
refunder = refunder_;
}
function initialize(
uint256 curationTokenId_,
IPaymentFilterer paymentFilterer_,
IRefunder refunder_,
CollectionNames calldata names,
MintEconomics calldata mintEconomics_,
DiscountData calldata dd,
bytes calldata // not used in this version
) external initializer {
if (msg.sender != address(hub)) revert NotHub_error();
curationTokenId = curationTokenId_;
setToDefaultSecurityPolicy(); // requires caller (hub) to be owner at this point
if (mintEconomics_.feeNumerator < hub.minFeeNumerator()) revert InvalidFeeNumerator_error();
if (mintEconomics_.feeNumerator > 100_00) revert InvalidFeeNumerator_error();
_setDefaultRoyalty(address(paymentFilterer_), mintEconomics_.feeNumerator);
paymentFilterer = paymentFilterer_;
refunder = refunder_;
_name = names.name;
_symbol = names.symbol;
description = names.description;
if (mintEconomics_.burnWindow > hub.maxBurnWindow()) revert InvalidBurnWindow_error();
if (mintEconomics_.maxFreeMintsPerTx == 0) revert InvalidMaxFreeMintsPerTx_error();
uint256 length = mintEconomics_.mintPrices.length;
if (length < 1) revert BadMintPrices_error();
uint256[] memory mcs = mintEconomics_.mintCheckpoints;
if (mcs.length != length) revert BadMintCheckpoints_error();
unchecked {
if (
mintEconomics_.mintPricingType == MintPricingType.BATCHED && mcs[length - 1] != mintEconomics_.maxSupply
) revert InvalidMintCheckpoints_error(); // idx safe from above checks
if (mintEconomics_.mintPricingType == MintPricingType.TIMED && mcs[length - 1] != mintEconomics_.mintEnds) {
revert InvalidMintCheckpoints_error();
} // idx safe from above checks
if (mintEconomics_.maxSupply < 1) revert TrivialMaxSupply_error();
--length;
for (uint256 i; i < length; ++i) {
if (!(mcs[i] < mcs[i + 1])) revert MintEconomicsOrderering_error();
}
} // uc
_mintEconomicsPtr = SSTORE2.write(abi.encode(mintEconomics_));
IERC721[] memory __discountedCollections = dd.discountedCollections;
_discountedCollections = __discountedCollections;
uint256[] memory _discountFactors = dd.discountFactors;
length = __discountedCollections.length;
if (_discountFactors.length != length) revert InvalidInput_error();
uint256 factor;
for (uint256 i; i < length; ++i) {
factor = _discountFactors[i];
//if (factor >= ONE) revert InvalidInput_error();
// we allow for it to be over, as it's pretty funny theatrics
// to claim to overcharge holders of bunk collections like mutant apes etc
// see hamburgers?.. they do it
collectionIsDiscounted[__discountedCollections[i]] = true;
discountedCollectionFactors[__discountedCollections[i]] = factor;
}
}
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC721C, ERC2981) returns (bool) {
return ERC721C.supportsInterface(interfaceId) || ERC2981.supportsInterface(interfaceId)
|| super.supportsInterface(interfaceId);
}
function name() public view override(INFT, ERC721) returns (string memory) {
return _name;
}
function symbol() public view override(INFT, ERC721) returns (string memory) {
return _symbol;
}
function maxSupply() public view returns (uint256) {
MintEconomics memory me = mintEconomics();
if (block.timestamp > me.mintEnds) return _supply.totalSupply;
return me.maxSupply;
}
function totalSupply() public view returns (uint256) {
return _supply.totalSupply;
}
function totalMinted() public view returns (uint256) {
return uint256(_supply.totalMinted);
}
function qtyAvailableToMint() public view returns (uint256) {
MintEconomics memory me = mintEconomics();
if (block.timestamp > me.mintEnds) return 0;
Supply memory s = _supply;
return me.maxSupply - uint256(s.totalMinted);
}
function mintStarts() external view returns (uint256) {
return mintEconomics().mintStarts;
}
function mintEnds() external view returns (uint256) {
return mintEconomics().mintEnds;
}
function maxFreeMintsPerTx() external view returns (uint256) {
return mintEconomics().maxFreeMintsPerTx;
}
function mintStarted() external view returns (bool) {
return block.timestamp > mintEconomics().mintStarts;
}
function mintEnded() external view returns (bool) {
return block.timestamp > mintEconomics().mintEnds || totalMinted() == maxSupply();
}
function mintPriceCurrent() external view returns (uint256) {
return mintPrice(_supply.totalMinted);
}
function mintPrice(uint256 nth) public view returns (uint256) {
MintEconomics memory me = mintEconomics();
uint256[] memory mintPricePerIdx = _getMintPricePerIdx(me, nth, 1);
return mintPricePerIdx[0];
}
function mintPrices() external view returns (uint256[] memory, uint256[] memory) {
MintEconomics memory me = mintEconomics();
return (me.mintCheckpoints, me.mintPrices);
}
function mintEconomics() public view returns (MintEconomics memory) {
return abi.decode(SSTORE2.read(_mintEconomicsPtr), (MintEconomics));
}
function getDiscountData() public view returns (IERC721[] memory collections, uint256[] memory factors) {
collections = _discountedCollections;
factors = new uint256[](collections.length);
for (uint256 i; i < collections.length; ++i) {
factors[i] = discountedCollectionFactors[collections[i]];
}
}
function exists(uint256 tokenId) public view returns (bool) {
return _exists(tokenId);
}
function contractURI() external view returns (string memory) {
uint256 _curationTokenId = curationTokenId;
if (
!(
msg.sender == tx.origin || hub.platformApprovedWrapper(msg.sender)
|| hub.ownerApprovedTokenOpen(_curationTokenId)
|| hub.ownerApprovedTokenWrapper(_curationTokenId, msg.sender)
)
) revert NoWrapping_error();
return hub.uriRenderer().collectionContractURI();
}
function emitContractURIUpdated() external {
emit ContractURIUpdated();
}
function emitBatchMetadataUpdate(uint256 fromTokenId, uint256 toTokenId) external {
emit BatchMetadataUpdate(fromTokenId, toTokenId);
}
function tokenURI(uint256 tokenId) public view override(ERC721, INFT) returns (string memory) {
uint256 _curationTokenId = curationTokenId;
if (
!(
msg.sender == tx.origin || hub.platformApprovedWrapper(msg.sender)
|| hub.ownerApprovedTokenOpen(_curationTokenId)
|| hub.ownerApprovedTokenWrapper(_curationTokenId, msg.sender)
)
) revert NoWrapping_error();
ownerOf(tokenId); // to throw if DNE
unchecked {
(RevealedStatus rs, uint256 entropy) = _isRevealed(tokenId);
return hub.uriRenderer().collectionTokenURI(tokenId, rs, entropy);
} // uc
}
function multiTokenURI(uint256[] calldata tokenIds) external view returns (string[] memory ret) {
ret = _allocateStringArr(tokenIds.length);
uint256 _curationTokenId = curationTokenId;
if (
!(
msg.sender == tx.origin || hub.platformApprovedWrapper(msg.sender)
|| hub.ownerApprovedTokenOpen(_curationTokenId)
|| hub.ownerApprovedTokenWrapper(_curationTokenId, msg.sender)
)
) revert NoWrapping_error();
uint256 tokenId;
RevealedStatus rs;
uint256 entropy;
unchecked {
for (uint256 i; i < tokenIds.length; ++i) {
if (_exists(tokenId)) {
(rs, entropy) = _isRevealed(tokenId);
ret[i] = hub.uriRenderer().collectionTokenURI(tokenId, rs, entropy);
}
}
} // uc
}
function _isRevealed(uint256 tokenId) private view returns (RevealedStatus revealStatus, uint256 entropy) {
uint256 revealBlock = _mintedAtBlock[tokenId] + MINT_REVEAL_BLOCK_OFFSET;
if (block.number > revealBlock) {
return (RevealedStatus.REVEALED, uint256(blockhash(revealBlock)));
}
return (RevealedStatus.PENDING, 0);
}
function _enforceMaxFreeMintsPerTx(uint256[] memory mintPricePerTx, uint256 maxFreeMintsPerTx_) private {
unchecked {
uint256 numFreeMints;
for (uint256 i; i < mintPricePerTx.length; ++i) {
if (mintPricePerTx[i] < 1) ++numFreeMints;
}
uint256 maxMintsKey = MAX_MINTS_KEY;
uint256 freeMintedThisTx;
assembly {
freeMintedThisTx := tload(maxMintsKey)
}
freeMintedThisTx += numFreeMints;
if (freeMintedThisTx > maxFreeMintsPerTx_) revert ExceedsMaxFreeMintsPerTx_error();
assembly {
tstore(maxMintsKey, freeMintedThisTx)
}
} // uc
}
function mint(address to, uint256 qty) external payable nonReentrant {
MintEconomics memory me = mintEconomics();
if (block.timestamp < me.mintStarts) revert MintNotStarted_error();
if (block.timestamp > me.mintEnds) revert MintEnded_error();
uint256 tokenId = _incrementSupply({qty: qty});
uint256 totalPrice;
uint256[] memory mintPricePerIdx = _getMintPricePerIdx(me, tokenId, qty);
_enforceMaxFreeMintsPerTx(mintPricePerIdx, me.maxFreeMintsPerTx);
for (uint256 i; i < qty; ++i) {
totalPrice += mintPricePerIdx[i]; // this NOT unchecked since curator may make sentinel values to prevent minting except by holders
unchecked {
_mintedAtBlock[tokenId + i] = block.number;
_safeMint(to, tokenId + i);
} // uc
}
if (!_finalized(me)) {
unchecked {
for (uint256 i; i < qty;) {
paid[tokenId + i] = mintPricePerIdx[i];
++i;
}
} // uc
}
unchecked {
tokenId += qty;
_doEthAccounting(totalPrice);
if (tokenId > me.maxSupply) revert ExceedsMaxSupply_error();
} // uc
}
function discountClaimed(IERC721 collection, uint256 tokenId) external view returns (bool) {
return LibBitmap.get(_discountClaimed[collection], tokenId);
}
function mintDiscounted(address to, IERC721[] calldata collections, uint256[] calldata tokenIds)
external
payable
nonReentrant
{
uint256 qty = collections.length;
if (tokenIds.length != qty) revert InvalidInput_error();
uint256 tokenId;
bool finalized_;
uint256[] memory mintPricePerIdx;
MintEconomics memory me;
unchecked {
// s2d
me = mintEconomics();
finalized_ = _finalized(me);
if (block.timestamp < me.mintStarts) revert MintNotStarted_error();
if (block.timestamp > me.mintEnds) revert MintEnded_error();
tokenId = _incrementSupply({qty: qty});
mintPricePerIdx = _getMintPricePerIdx(me, tokenId, qty);
_enforceMaxFreeMintsPerTx(mintPricePerIdx, me.maxFreeMintsPerTx);
} // s2d
uint256 totalPrice;
IERC721 collection;
uint256 claimedTokenId;
uint256 mintPrice_ = type(uint256).max; // to ensure it's set lol
for (uint256 i; i < qty; ++i) {
collection = collections[i];
claimedTokenId = tokenIds[i];
if (!collectionIsDiscounted[collection]) revert CollectionNotDiscounted_error();
if (LibBitmap.get(_discountClaimed[collection], claimedTokenId)) revert DiscountAlreadyClaimed_error();
if (msg.sender != collection.ownerOf(claimedTokenId)) revert NotOwner_error();
LibBitmap.set(_discountClaimed[collection], claimedTokenId);
mintPrice_ = discountedCollectionFactors[collection] * mintPricePerIdx[i] / ONE;
totalPrice += mintPrice_; // this NOT unchecked since curator may make sentinel values to prevent minting except by holders
mintPricePerIdx[i] = mintPrice_;
unchecked {
_mintedAtBlock[tokenId + i] = block.number;
_safeMint(to, tokenId + i);
} // uc
}
if (!_finalized(me)) {
unchecked {
for (uint256 i; i < qty; ++i) {
paid[tokenId + i] = mintPricePerIdx[i];
++i;
}
} // uc
}
// note: eth can be `pushETHToPaymentFilterer` once finalized
unchecked {
tokenId += qty;
_doEthAccounting(totalPrice);
if (tokenId > me.maxSupply) revert ExceedsMaxSupply_error();
} // uc
}
// convenient for drops, and promotion
function mintExecutive(address[] calldata tos) external nonReentrant {
_requireCallerIsContractOwner();
uint256 qty = tos.length;
uint256 tokenId = _incrementSupply({qty: qty});
unchecked {
MintEconomics memory me = mintEconomics();
if (block.timestamp > me.mintEnds) revert MintEnded_error();
if (tokenId + qty > me.maxSupply) {
// length validated when init'd
revert ExceedsMaxSupply_error();
}
for (uint256 i; i < qty; ++i) {
_mintedAtBlock[tokenId + i] = block.number;
_safeMint(tos[i], tokenId + i);
}
} // uc
}
function pushETHToPaymentFilterer() external {
if (!finalized()) revert NotReady_error();
(bool ok,) = address(paymentFilterer).call{value: address(this).balance}("");
if (!ok) revert Transfer_error();
}
function burn(uint256[] calldata tokenIds) external {
unchecked {
uint256 tokenId;
uint256 amount;
if (!finalized()) {
for (uint256 i; i < tokenIds.length; ++i) {
tokenId = tokenIds[i];
amount += paid[tokenId];
paid[tokenId] = 0;
}
}
for (uint256 i; i < tokenIds.length; ++i) {
tokenId = tokenIds[i];
if (msg.sender != ownerOf(tokenId)) revert InvalidInput_error();
_burn(tokenId);
}
_supply.totalSupply -= uint128(tokenIds.length);
if (amount > 0) {
(bool ok,) = msg.sender.call{value: amount}("");
if (!ok) revert RefundFailed_error();
emit Refunded(amount);
}
} // uc
}
function bridgeTo(uint256[] calldata tokenIds, uint256 l2Id) external {
IBridging _bridging = hub.bridging();
if (address(_bridging) == address(0) || address(hub.prover()) == address(0)) {
revert BridgingNotCurrentlySupported_error();
}
_setApprovalForAll(msg.sender, address(_bridging), true);
_bridging.bridgeTo(msg.sender, this, tokenIds, l2Id);
emit BridgedTo(msg.sender, this, tokenIds, l2Id);
}
function bridgeFrom(address to, uint256[] calldata tokenIds, uint256 l2Id, bytes calldata proof) external {
IProver _prover = hub.prover();
IBridging _bridging = hub.bridging();
if (address(_bridging) == address(0) || address(_prover) == address(0)) {
revert BridgingNotCurrentlySupported_error();
}
if (!_prover.validateProof(to, this, tokenIds, l2Id, proof)) revert InvalidProof_error();
_bridging.bridgeFrom(to, this, tokenIds, l2Id);
emit BridgedFrom(msg.sender, this, tokenIds, l2Id);
}
function _getMintPricePerIdx(MintEconomics memory me, uint256 tokenId, uint256 qty)
internal
view
returns (uint256[] memory mintPricePerIdx)
{
if (me.mintPricingType == MintPricingType.TIMED) {
return _getMintPricePerIdxTIMED(me, qty);
}
return _getMintPricePerIdxBATCHED(me, tokenId, qty);
}
function _getMintPricePerIdxTIMED(MintEconomics memory me, uint256 qty)
private
view
returns (uint256[] memory mintPricePerIdx)
{
mintPricePerIdx = _allocateUintArr(qty);
uint256[] memory mintCheckpoints = me.mintCheckpoints;
uint256[] memory mintPrices_ = me.mintPrices;
uint256 mintPrice_ = mintPrices_[0];
unchecked {
for (uint256 i = 1; i < mintCheckpoints.length; ++i) {
if (block.timestamp < mintCheckpoints[i - 1]) {
break;
} else {
mintPrice_ = mintPrices_[i];
}
}
for (uint256 i; i < qty; ++i) {
mintPricePerIdx[i] = mintPrice_;
}
} // unchecked
}
function _getMintPricePerIdxBATCHED(MintEconomics memory me, uint256 tokenId, uint256 qty)
private
pure
returns (uint256[] memory mintPricePerIdx)
{
mintPricePerIdx = _allocateUintArr(qty);
assembly {
let mintCheckpoints := mload(add(me, 0xe0))
let mintPrices_ := mload(add(me, 0x100))
let idx := 0
for { let i := 0 } 1 {} {
let mintPrice_ := mload(add(mintPrices_, add(0x20, mul(idx, 0x20))))
let length := mload(mintCheckpoints)
for { let j := add(idx, 1) } 1 {} {
switch lt(tokenId, mload(add(mintCheckpoints, add(0x20, mul(sub(j, 1), 0x20)))))
case 1 { break }
default { mintPrice_ := mload(add(mintPrices_, add(0x20, mul(j, 0x20)))) }
j := add(j, 1)
if iszero(lt(j, length)) { break }
}
mstore(add(mintPricePerIdx, add(0x20, mul(i, 0x20))), mintPrice_)
tokenId := add(tokenId, 1)
i := add(i, 1)
if iszero(lt(i, qty)) { break }
}
}
/*// does this..
mintPricePerIdx = new uint256[](qty);
uint256[] memory mintCheckpoints = me.mintCheckpoints;
uint256[] memory mintPrices_ = me.mintPrices;
uint256 idx;
uint256 mintPrice_;
for (uint256 i; i < qty; ++i) {
mintPrice_ = mintPrices_[idx];
for (uint256 j = idx + 1; j < mintCheckpoints.length; ++j) {
if (tokenId < mintCheckpoints[j - 1]) {
break;
} else {
mintPrice_ = mintPrices_[j];
++idx;
}
}
mintPricePerIdx[i] = mintPrice_;
++tokenId;
}
*/
}
function _doEthAccounting(uint256 totalPrice) private {
if (msg.value < totalPrice) revert InsufficientValue_error();
if (msg.value > totalPrice) {
unchecked {
_setRefund(msg.sender, msg.value - totalPrice);
} // uc
}
}
function _incrementSupply(uint256 qty) private returns (uint256 tokenId) {
Supply memory s = _supply;
assembly {
tokenId := mload(add(s, 0x20)) // = s.totalMinted
mstore(s, add(mload(s), qty)) //s.totalSupply += uint128(qty);
mstore(add(s, 0x20), add(tokenId, qty)) //s.totalMinted += uint128(qty);
}
_supply = s;
}
function setWebsite(string memory url) external {
_requireCallerIsContractOwner();
website = url;
}
// convenient to end puttering mints
function setMintEnds(uint256 mintEnds_) external {
_requireCallerIsContractOwner();
MintEconomics memory me = mintEconomics();
if (mintEnds_ > me.mintEnds) revert InvalidInput_error();
me.mintEnds = mintEnds_;
_mintEconomicsPtr = SSTORE2.write(abi.encode(me));
emit MintEndsUpdated(mintEnds_);
hub.emitUpdated(curationTokenId);
}
// as a housekeeping method if totalMinted != maxSupply after mint ends
// so that mintEconomics() will return consistent data
function updateSupply() external {
// anyone can call
MintEconomics memory me = mintEconomics();
if (block.timestamp <= me.mintEnds) revert NotReady_error();
Supply memory s = _supply;
uint256[] memory mqc = me.mintCheckpoints;
mqc[mqc.length - 1] = s.totalSupply; // length validated when init'd
me.maxSupply = s.totalSupply;
me.mintCheckpoints = mqc;
_mintEconomicsPtr = SSTORE2.write(abi.encode(me));
emit MaxSupplyUpdated(s.totalSupply);
}
function finalized() public view returns (bool) {
return block.timestamp > willBeFinalized();
}
function _finalized(MintEconomics memory me) internal view returns (bool) {
return block.timestamp > _willBeFinalized(me);
}
function willBeFinalized() public view returns (uint256) {
MintEconomics memory me = mintEconomics();
return _willBeFinalized(me);
}
function _willBeFinalized(MintEconomics memory me) internal view returns (uint256) {
uint256 pledgedRevealTimestamp =
hub.pledgedRevealTimestamps(robustRenderer.encryptionReference(curationTokenId));
uint256 burnWindow = me.burnWindow;
return _max(me.mintStarts + burnWindow, pledgedRevealTimestamp + burnWindow);
}
function ownerOf(uint256 tokenId) public view override(INFT, ERC721) returns (address) {
return super.ownerOf(tokenId);
}
// collection owner
function owner() external view returns (address) {
uint256 _curationTokenId = curationTokenId;
if (!hub.exists(_curationTokenId)) return address(0);
return hub.ownerOf(_curationTokenId);
}
function _requireCallerIsContractOwner() internal view override {
if (msg.sender != hub.ownerOf(curationTokenId)) revert NotOwner_error();
}
function _max(uint256 a, uint256 b) private pure returns (uint256) {
if (a > b) return a;
return b;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "lib/solady/src/tokens/ERC721.sol";
import "./CreatorTokenBase.sol";
// modified by no_side666 to favor the solady library
/**
* @title ERC721C
* @author Limit Break, Inc.
* @notice Extends OpenZeppelin's ERC721 implementation with Creator Token functionality, which
* allows the contract owner to update the transfer validation logic by managing a security policy in
* an external transfer validation security policy registry. See {CreatorTokenTransferValidator}.
*/
abstract contract ERC721C is ERC721, CreatorTokenBase {
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(ICreatorToken).interfaceId || super.supportsInterface(interfaceId);
}
/// @dev Ties the solady _beforeTokenTransfer hook to more granular transfer validation logic
function _beforeTokenTransfer(address from, address to, uint256 id) internal virtual override {
_validateBeforeTransfer(from, to, id);
}
/// @dev Ties the solady _afterTokenTransfer hook to more granular transfer validation logic
function _afterTokenTransfer(address from, address to, uint256 id) internal virtual override {
_validateAfterTransfer(from, to, id);
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "lib/openzeppelin-contracts/contracts/token/common/ERC2981.sol";
/**
* @title BasicRoyaltiesBase
* @author Limit Break, Inc.
* @dev Base functionality of an NFT mix-in contract implementing the most basic form of programmable royalties.
*/
abstract contract BasicRoyaltiesBase is ERC2981 {
event DefaultRoyaltySet(address indexed receiver, uint96 feeNumerator);
event TokenRoyaltySet(uint256 indexed tokenId, address indexed receiver, uint96 feeNumerator);
function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual override {
super._setDefaultRoyalty(receiver, feeNumerator);
emit DefaultRoyaltySet(receiver, feeNumerator);
}
function _setTokenRoyalty(uint256 tokenId, address receiver, uint96 feeNumerator) internal virtual override {
super._setTokenRoyalty(tokenId, receiver, feeNumerator);
emit TokenRoyaltySet(tokenId, receiver, feeNumerator);
}
}
/**
* @title BasicRoyalties
* @author Limit Break, Inc.
* @notice Constructable BasicRoyalties Contract implementation.
*/
abstract contract BasicRoyalties is BasicRoyaltiesBase {
constructor(address receiver, uint96 feeNumerator) {
_setDefaultRoyalty(receiver, feeNumerator);
}
}// SPDX-License-Identifier: MIT
// MODIFIED by no_side666, the change being using transient storage for gas saving$$$.
// adapted from: OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.25;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
uint256 private constant _NOT_ENTERED = 0; // using tstore so 0 is no problem and ideal
uint256 private constant _ENTERED = 1;
uint256 private immutable _tstoreKey = uint256(keccak256(abi.encode("ReentrancyGuard", address(this))));
constructor() {}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, status will be _NOT_ENTERED
uint256 status;
uint256 tstoreKey = _tstoreKey;
assembly {
status := tload(tstoreKey)
}
require(status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
assembly {
tstore(tstoreKey, _ENTERED)
}
}
function _nonReentrantAfter() private {
uint256 tstoreKey = _tstoreKey;
assembly {
tstore(tstoreKey, _NOT_ENTERED)
}
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
uint256 status;
uint256 tstoreKey = _tstoreKey;
assembly {
status := tload(tstoreKey)
}
return status == _ENTERED;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Initializable mixin for the upgradeable contracts.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Initializable.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/proxy/utils/Initializable.sol)
abstract contract Initializable {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The contract is already initialized.
error InvalidInitialization();
/// @dev The contract is not initializing.
error NotInitializing();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Triggered when the contract has been initialized.
event Initialized(uint64 version);
/// @dev `keccak256(bytes("Initialized(uint64)"))`.
bytes32 private constant _INTIALIZED_EVENT_SIGNATURE =
0xc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d2;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The default initializable slot is given by:
/// `bytes32(~uint256(uint32(bytes4(keccak256("_INITIALIZABLE_SLOT")))))`.
///
/// Bits Layout:
/// - [0] `initializing`
/// - [1..64] `initializedVersion`
bytes32 private constant _INITIALIZABLE_SLOT =
0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffbf601132;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Override to return a custom storage slot if required.
function _initializableSlot() internal pure virtual returns (bytes32) {
return _INITIALIZABLE_SLOT;
}
/// @dev Guards an initializer function so that it can be invoked at most once.
///
/// You can guard a function with `onlyInitializing` such that it can be called
/// through a function guarded with `initializer`.
///
/// This is similar to `reinitializer(1)`, except that in the context of a constructor,
/// an `initializer` guarded function can be invoked multiple times.
/// This can be useful during testing and is not expected to be used in production.
///
/// Emits an {Initialized} event.
modifier initializer() virtual {
bytes32 s = _initializableSlot();
/// @solidity memory-safe-assembly
assembly {
let i := sload(s)
// Set `initializing` to 1, `initializedVersion` to 1.
sstore(s, 3)
// If `!(initializing == 0 && initializedVersion == 0)`.
if i {
// If `!(address(this).code.length == 0 && initializedVersion == 1)`.
if iszero(lt(extcodesize(address()), eq(shr(1, i), 1))) {
mstore(0x00, 0xf92ee8a9) // `InvalidInitialization()`.
revert(0x1c, 0x04)
}
s := shl(shl(255, i), s) // Skip initializing if `initializing == 1`.
}
}
_;
/// @solidity memory-safe-assembly
assembly {
if s {
// Set `initializing` to 0, `initializedVersion` to 1.
sstore(s, 2)
// Emit the {Initialized} event.
mstore(0x20, 1)
log1(0x20, 0x20, _INTIALIZED_EVENT_SIGNATURE)
}
}
}
/// @dev Guards an reinitialzer function so that it can be invoked at most once.
///
/// You can guard a function with `onlyInitializing` such that it can be called
/// through a function guarded with `reinitializer`.
///
/// Emits an {Initialized} event.
modifier reinitializer(uint64 version) virtual {
bytes32 s = _initializableSlot();
/// @solidity memory-safe-assembly
assembly {
version := and(version, 0xffffffffffffffff) // Clean upper bits.
let i := sload(s)
// If `initializing == 1 || initializedVersion >= version`.
if iszero(lt(and(i, 1), lt(shr(1, i), version))) {
mstore(0x00, 0xf92ee8a9) // `InvalidInitialization()`.
revert(0x1c, 0x04)
}
// Set `initializing` to 1, `initializedVersion` to `version`.
sstore(s, or(1, shl(1, version)))
}
_;
/// @solidity memory-safe-assembly
assembly {
// Set `initializing` to 0, `initializedVersion` to `version`.
sstore(s, shl(1, version))
// Emit the {Initialized} event.
mstore(0x20, version)
log1(0x20, 0x20, _INTIALIZED_EVENT_SIGNATURE)
}
}
/// @dev Guards a function such that it can only be called in the scope
/// of a function guarded with `initializer` or `reinitializer`.
modifier onlyInitializing() virtual {
_checkInitializing();
_;
}
/// @dev Reverts if the contract is not initializing.
function _checkInitializing() internal view virtual {
bytes32 s = _initializableSlot();
/// @solidity memory-safe-assembly
assembly {
if iszero(and(1, sload(s))) {
mstore(0x00, 0xd7e6bcf8) // `NotInitializing()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Locks any future initializations by setting the initialized version to `2**64 - 1`.
///
/// Calling this in the constructor will prevent the contract from being initialized
/// or reinitialized. It is recommended to use this to lock implementation contracts
/// that are designed to be called through proxies.
///
/// Emits an {Initialized} event the first time it is successfully called.
function _disableInitializers() internal virtual {
bytes32 s = _initializableSlot();
/// @solidity memory-safe-assembly
assembly {
let i := sload(s)
if and(i, 1) {
mstore(0x00, 0xf92ee8a9) // `InvalidInitialization()`.
revert(0x1c, 0x04)
}
let uint64max := shr(192, s) // Computed to save bytecode.
if iszero(eq(shr(1, i), uint64max)) {
// Set `initializing` to 0, `initializedVersion` to `2**64 - 1`.
sstore(s, shl(1, uint64max))
// Emit the {Initialized} event.
mstore(0x20, uint64max)
log1(0x20, 0x20, _INTIALIZED_EVENT_SIGNATURE)
}
}
}
/// @dev Returns the highest version that has been initialized.
function _getInitializedVersion() internal view virtual returns (uint64 version) {
bytes32 s = _initializableSlot();
/// @solidity memory-safe-assembly
assembly {
version := shr(1, sload(s))
}
}
/// @dev Returns whether the contract is currently initializing.
function _isInitializing() internal view virtual returns (bool result) {
bytes32 s = _initializableSlot();
/// @solidity memory-safe-assembly
assembly {
result := and(1, sload(s))
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Read and write to persistent storage at a fraction of the cost.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SSTORE2.sol)
/// @author Saw-mon-and-Natalie (https://github.com/Saw-mon-and-Natalie)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SSTORE2.sol)
/// @author Modified from 0xSequence (https://github.com/0xSequence/sstore2/blob/master/contracts/SSTORE2.sol)
/// @author Modified from SSTORE3 (https://github.com/Philogy/sstore3)
library SSTORE2 {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The proxy initialization code.
uint256 private constant _CREATE3_PROXY_INITCODE = 0x67363d3d37363d34f03d5260086018f3;
/// @dev Hash of the `_CREATE3_PROXY_INITCODE`.
/// Equivalent to `keccak256(abi.encodePacked(hex"67363d3d37363d34f03d5260086018f3"))`.
bytes32 internal constant CREATE3_PROXY_INITCODE_HASH =
0x21c35dbe1b344a2488cf3321d6ce542f8e9f305544ff09e4993a62319a497c1f;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Unable to deploy the storage contract.
error DeploymentFailed();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* WRITE LOGIC */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Writes `data` into the bytecode of a storage contract and returns its address.
function write(bytes memory data) internal returns (address pointer) {
/// @solidity memory-safe-assembly
assembly {
let n := mload(data) // Let `l` be `n + 1`. +1 as we prefix a STOP opcode.
/**
* ---------------------------------------------------+
* Opcode | Mnemonic | Stack | Memory |
* ---------------------------------------------------|
* 61 l | PUSH2 l | l | |
* 80 | DUP1 | l l | |
* 60 0xa | PUSH1 0xa | 0xa l l | |
* 3D | RETURNDATASIZE | 0 0xa l l | |
* 39 | CODECOPY | l | [0..l): code |
* 3D | RETURNDATASIZE | 0 l | [0..l): code |
* F3 | RETURN | | [0..l): code |
* 00 | STOP | | |
* ---------------------------------------------------+
* @dev Prefix the bytecode with a STOP opcode to ensure it cannot be called.
* Also PUSH2 is used since max contract size cap is 24,576 bytes which is less than 2 ** 16.
*/
// Do a out-of-gas revert if `n + 1` is more than 2 bytes.
mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n)))
// Deploy a new contract with the generated creation code.
pointer := create(0, add(data, 0x15), add(n, 0xb))
if iszero(pointer) {
mstore(0x00, 0x30116425) // `DeploymentFailed()`.
revert(0x1c, 0x04)
}
mstore(data, n) // Restore the length of `data`.
}
}
/// @dev Writes `data` into the bytecode of a storage contract with `salt`
/// and returns its normal CREATE2 deterministic address.
function writeCounterfactual(bytes memory data, bytes32 salt)
internal
returns (address pointer)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(data)
// Do a out-of-gas revert if `n + 1` is more than 2 bytes.
mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n)))
// Deploy a new contract with the generated creation code.
pointer := create2(0, add(data, 0x15), add(n, 0xb), salt)
if iszero(pointer) {
mstore(0x00, 0x30116425) // `DeploymentFailed()`.
revert(0x1c, 0x04)
}
mstore(data, n) // Restore the length of `data`.
}
}
/// @dev Writes `data` into the bytecode of a storage contract and returns its address.
/// This uses the so-called "CREATE3" workflow,
/// which means that `pointer` is agnostic to `data, and only depends on `salt`.
function writeDeterministic(bytes memory data, bytes32 salt)
internal
returns (address pointer)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(data)
mstore(0x00, _CREATE3_PROXY_INITCODE) // Store the `_PROXY_INITCODE`.
let proxy := create2(0, 0x10, 0x10, salt)
if iszero(proxy) {
mstore(0x00, 0x30116425) // `DeploymentFailed()`.
revert(0x1c, 0x04)
}
mstore(0x14, proxy) // Store the proxy's address.
// 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01).
// 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex).
mstore(0x00, 0xd694)
mstore8(0x34, 0x01) // Nonce of the proxy contract (1).
pointer := keccak256(0x1e, 0x17)
// Do a out-of-gas revert if `n + 1` is more than 2 bytes.
mstore(add(data, gt(n, 0xfffe)), add(0xfe61000180600a3d393df300, shl(0x40, n)))
if iszero(
mul( // The arguments of `mul` are evaluated last to first.
extcodesize(pointer),
call(gas(), proxy, 0, add(data, 0x15), add(n, 0xb), codesize(), 0x00)
)
) {
mstore(0x00, 0x30116425) // `DeploymentFailed()`.
revert(0x1c, 0x04)
}
mstore(data, n) // Restore the length of `data`.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ADDRESS CALCULATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the initialization code hash of the storage contract for `data`.
/// Used for mining vanity addresses with create2crunch.
function initCodeHash(bytes memory data) internal pure returns (bytes32 hash) {
/// @solidity memory-safe-assembly
assembly {
let n := mload(data)
// Do a out-of-gas revert if `n + 1` is more than 2 bytes.
returndatacopy(returndatasize(), returndatasize(), gt(n, 0xfffe))
mstore(data, add(0x61000180600a3d393df300, shl(0x40, n)))
hash := keccak256(add(data, 0x15), add(n, 0xb))
mstore(data, n) // Restore the length of `data`.
}
}
/// @dev Equivalent to `predictCounterfactualAddress(data, salt, address(this))`
function predictCounterfactualAddress(bytes memory data, bytes32 salt)
internal
view
returns (address pointer)
{
pointer = predictCounterfactualAddress(data, salt, address(this));
}
/// @dev Returns the CREATE2 address of the storage contract for `data`
/// deployed with `salt` by `deployer`.
/// Note: The returned result has dirty upper 96 bits. Please clean if used in assembly.
function predictCounterfactualAddress(bytes memory data, bytes32 salt, address deployer)
internal
pure
returns (address predicted)
{
bytes32 hash = initCodeHash(data);
/// @solidity memory-safe-assembly
assembly {
// Compute and store the bytecode hash.
mstore8(0x00, 0xff) // Write the prefix.
mstore(0x35, hash)
mstore(0x01, shl(96, deployer))
mstore(0x15, salt)
predicted := keccak256(0x00, 0x55)
// Restore the part of the free memory pointer that has been overwritten.
mstore(0x35, 0)
}
}
/// @dev Equivalent to `predictDeterministicAddress(salt, address(this))`.
function predictDeterministicAddress(bytes32 salt) internal view returns (address pointer) {
pointer = predictDeterministicAddress(salt, address(this));
}
/// @dev Returns the "CREATE3" deterministic address for `salt` with `deployer`.
function predictDeterministicAddress(bytes32 salt, address deployer)
internal
pure
returns (address pointer)
{
/// @solidity memory-safe-assembly
assembly {
let m := mload(0x40) // Cache the free memory pointer.
mstore(0x00, deployer) // Store `deployer`.
mstore8(0x0b, 0xff) // Store the prefix.
mstore(0x20, salt) // Store the salt.
mstore(0x40, CREATE3_PROXY_INITCODE_HASH) // Store the bytecode hash.
mstore(0x14, keccak256(0x0b, 0x55)) // Store the proxy's address.
mstore(0x40, m) // Restore the free memory pointer.
// 0xd6 = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x01).
// 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex).
mstore(0x00, 0xd694)
mstore8(0x34, 0x01) // Nonce of the proxy contract (1).
pointer := keccak256(0x1e, 0x17)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* READ LOGIC */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `read(pointer, 0, 2 ** 256 - 1)`.
function read(address pointer) internal view returns (bytes memory data) {
/// @solidity memory-safe-assembly
assembly {
data := mload(0x40)
let n := and(0xffffffffff, sub(extcodesize(pointer), 0x01))
extcodecopy(pointer, add(data, 0x1f), 0x00, add(n, 0x21))
mstore(data, n) // Store the length.
mstore(0x40, add(n, add(data, 0x40))) // Allocate memory.
}
}
/// @dev Equivalent to `read(pointer, start, 2 ** 256 - 1)`.
function read(address pointer, uint256 start) internal view returns (bytes memory data) {
/// @solidity memory-safe-assembly
assembly {
data := mload(0x40)
let n := and(0xffffffffff, sub(extcodesize(pointer), 0x01))
extcodecopy(pointer, add(data, 0x1f), start, add(n, 0x21))
mstore(data, mul(sub(n, start), lt(start, n))) // Store the length.
mstore(0x40, add(data, add(0x40, mload(data)))) // Allocate memory.
}
}
/// @dev Returns a slice of the data on `pointer` from `start` to `end`.
/// `start` and `end` will be clamped to the range `[0, args.length]`.
/// The `pointer` MUST be deployed via the SSTORE2 write functions.
/// Otherwise, the behavior is undefined.
/// Out-of-gas reverts if `pointer` does not have any code.
function read(address pointer, uint256 start, uint256 end)
internal
view
returns (bytes memory data)
{
/// @solidity memory-safe-assembly
assembly {
data := mload(0x40)
if iszero(lt(end, 0xffff)) { end := 0xffff }
let d := mul(sub(end, start), lt(start, end))
extcodecopy(pointer, add(data, 0x1f), start, add(d, 0x01))
if iszero(and(0xff, mload(add(data, d)))) {
let n := sub(extcodesize(pointer), 0x01)
returndatacopy(returndatasize(), returndatasize(), shr(40, n))
d := mul(gt(n, start), sub(d, mul(gt(end, n), sub(end, n))))
}
mstore(data, d) // Store the length.
mstore(add(add(data, 0x20), d), 0) // Zeroize the slot after the bytes.
mstore(0x40, add(add(data, 0x40), d)) // Allocate memory.
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {LibBit} from "./LibBit.sol";
/// @notice Library for storage of packed unsigned booleans.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibBitmap.sol)
/// @author Modified from Solidity-Bits (https://github.com/estarriolvetch/solidity-bits/blob/main/contracts/BitMaps.sol)
library LibBitmap {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when a bitmap scan does not find a result.
uint256 internal constant NOT_FOUND = type(uint256).max;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRUCTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev A bitmap in storage.
struct Bitmap {
mapping(uint256 => uint256) map;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the boolean value of the bit at `index` in `bitmap`.
function get(Bitmap storage bitmap, uint256 index) internal view returns (bool isSet) {
// It is better to set `isSet` to either 0 or 1, than zero vs non-zero.
// Both cost the same amount of gas, but the former allows the returned value
// to be reused without cleaning the upper bits.
uint256 b = (bitmap.map[index >> 8] >> (index & 0xff)) & 1;
/// @solidity memory-safe-assembly
assembly {
isSet := b
}
}
/// @dev Updates the bit at `index` in `bitmap` to true.
function set(Bitmap storage bitmap, uint256 index) internal {
bitmap.map[index >> 8] |= (1 << (index & 0xff));
}
/// @dev Updates the bit at `index` in `bitmap` to false.
function unset(Bitmap storage bitmap, uint256 index) internal {
bitmap.map[index >> 8] &= ~(1 << (index & 0xff));
}
/// @dev Flips the bit at `index` in `bitmap`.
/// Returns the boolean result of the flipped bit.
function toggle(Bitmap storage bitmap, uint256 index) internal returns (bool newIsSet) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, index))
let storageSlot := keccak256(0x00, 0x40)
let shift := and(index, 0xff)
let storageValue := xor(sload(storageSlot), shl(shift, 1))
// It makes sense to return the `newIsSet`,
// as it allow us to skip an additional warm `sload`,
// and it costs minimal gas (about 15),
// which may be optimized away if the returned value is unused.
newIsSet := and(1, shr(shift, storageValue))
sstore(storageSlot, storageValue)
}
}
/// @dev Updates the bit at `index` in `bitmap` to `shouldSet`.
function setTo(Bitmap storage bitmap, uint256 index, bool shouldSet) internal {
/// @solidity memory-safe-assembly
assembly {
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, index))
let storageSlot := keccak256(0x00, 0x40)
let storageValue := sload(storageSlot)
let shift := and(index, 0xff)
sstore(
storageSlot,
// Unsets the bit at `shift` via `and`, then sets its new value via `or`.
or(and(storageValue, not(shl(shift, 1))), shl(shift, iszero(iszero(shouldSet))))
)
}
}
/// @dev Consecutively sets `amount` of bits starting from the bit at `start`.
function setBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let max := not(0)
let shift := and(start, 0xff)
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, start))
if iszero(lt(add(shift, amount), 257)) {
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, or(sload(storageSlot), shl(shift, max)))
let bucket := add(mload(0x00), 1)
let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
amount := and(add(amount, shift), 0xff)
shift := 0
for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
mstore(0x00, bucket)
sstore(keccak256(0x00, 0x40), max)
}
mstore(0x00, bucket)
}
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, or(sload(storageSlot), shl(shift, shr(sub(256, amount), max))))
}
}
/// @dev Consecutively unsets `amount` of bits starting from the bit at `start`.
function unsetBatch(Bitmap storage bitmap, uint256 start, uint256 amount) internal {
/// @solidity memory-safe-assembly
assembly {
let shift := and(start, 0xff)
mstore(0x20, bitmap.slot)
mstore(0x00, shr(8, start))
if iszero(lt(add(shift, amount), 257)) {
let storageSlot := keccak256(0x00, 0x40)
sstore(storageSlot, and(sload(storageSlot), not(shl(shift, not(0)))))
let bucket := add(mload(0x00), 1)
let bucketEnd := add(mload(0x00), shr(8, add(amount, shift)))
amount := and(add(amount, shift), 0xff)
shift := 0
for {} iszero(eq(bucket, bucketEnd)) { bucket := add(bucket, 1) } {
mstore(0x00, bucket)
sstore(keccak256(0x00, 0x40), 0)
}
mstore(0x00, bucket)
}
let storageSlot := keccak256(0x00, 0x40)
sstore(
storageSlot, and(sload(storageSlot), not(shl(shift, shr(sub(256, amount), not(0)))))
)
}
}
/// @dev Returns number of set bits within a range by
/// scanning `amount` of bits starting from the bit at `start`.
function popCount(Bitmap storage bitmap, uint256 start, uint256 amount)
internal
view
returns (uint256 count)
{
unchecked {
uint256 bucket = start >> 8;
uint256 shift = start & 0xff;
if (!(amount + shift < 257)) {
count = LibBit.popCount(bitmap.map[bucket] >> shift);
uint256 bucketEnd = bucket + ((amount + shift) >> 8);
amount = (amount + shift) & 0xff;
shift = 0;
for (++bucket; bucket != bucketEnd; ++bucket) {
count += LibBit.popCount(bitmap.map[bucket]);
}
}
count += LibBit.popCount((bitmap.map[bucket] >> shift) << (256 - amount));
}
}
/// @dev Returns the index of the most significant set bit in `[0..upTo]`.
/// If no set bit is found, returns `NOT_FOUND`.
function findLastSet(Bitmap storage bitmap, uint256 upTo)
internal
view
returns (uint256 setBitIndex)
{
setBitIndex = NOT_FOUND;
uint256 bucket = upTo >> 8;
uint256 bits;
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, bucket)
mstore(0x20, bitmap.slot)
let offset := and(0xff, not(upTo)) // `256 - (255 & upTo) - 1`.
bits := shr(offset, shl(offset, sload(keccak256(0x00, 0x40))))
if iszero(or(bits, iszero(bucket))) {
for {} 1 {} {
bucket := add(bucket, setBitIndex) // `sub(bucket, 1)`.
mstore(0x00, bucket)
bits := sload(keccak256(0x00, 0x40))
if or(bits, iszero(bucket)) { break }
}
}
}
if (bits != 0) {
setBitIndex = (bucket << 8) | LibBit.fls(bits);
/// @solidity memory-safe-assembly
assembly {
setBitIndex := or(setBitIndex, sub(0, gt(setBitIndex, upTo)))
}
}
}
/// @dev Returns the index of the least significant unset bit in `[begin..upTo]`.
/// If no unset bit is found, returns `NOT_FOUND`.
function findFirstUnset(Bitmap storage bitmap, uint256 begin, uint256 upTo)
internal
view
returns (uint256 unsetBitIndex)
{
unsetBitIndex = NOT_FOUND;
uint256 bucket = begin >> 8;
uint256 negBits;
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, bucket)
mstore(0x20, bitmap.slot)
let offset := and(0xff, begin)
negBits := shl(offset, shr(offset, not(sload(keccak256(0x00, 0x40)))))
if iszero(negBits) {
let lastBucket := shr(8, upTo)
for {} 1 {} {
bucket := add(bucket, 1)
mstore(0x00, bucket)
negBits := not(sload(keccak256(0x00, 0x40)))
if or(negBits, gt(bucket, lastBucket)) { break }
}
if gt(bucket, lastBucket) {
negBits := shl(and(0xff, not(upTo)), shr(and(0xff, not(upTo)), negBits))
}
}
}
if (negBits != 0) {
uint256 r = (bucket << 8) | LibBit.ffs(negBits);
/// @solidity memory-safe-assembly
assembly {
unsetBitIndex := or(r, sub(0, or(gt(r, upTo), lt(r, begin))))
}
}
}
}// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE
pragma solidity ^0.8.25;
import "lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol";
import "./modded/creator-token-standards/TransferPolicy.sol";
import "./Structs.sol";
import "./FixedPoint.sol";
interface IFS {
function flzCompressContents(bytes calldata contents) external pure returns (bytes memory);
function fileBundleFromContents(bytes calldata contents) external view returns (FileBundle memory);
function saveFileBundle(FileBundle calldata fb) external returns (address);
function readFile(address ptr) external view returns (bytes memory);
}
interface IHub {
function owner() external view returns (address);
function OWNER_TOKENID() external view returns (uint256);
function hubRoyalty() external view returns (uint256);
function hubPercentage() external view returns (uint256);
function HUB_DIVISOR() external view returns (uint256);
function paymentFiltererTemplate() external view returns (address);
function robustRenderer() external view returns (IRobustRenderer);
function uriRenderer() external view returns (IURI);
function nftTemplates(uint256 nftTemplateId) external view returns (address);
function nftTemplatesLength() external view returns (uint256);
function validityLens() external view returns (IValidityLens);
function totalSupply() external view returns (uint256);
function totalMinted() external view returns (uint256);
function ownerOf(uint256 tokenId) external view returns (address);
function exists(uint256 tokenId) external view returns (bool);
function burned(uint256 tokenId) external view returns (bool);
function emitUpdated(uint256 curationTokenId) external;
function beneficiariesOf(uint256 tokenId) external view returns (IPaymentFilterer beneficiary, address holder);
function accountOptedOut(address account) external view returns (bool);
function minFeeNumerator() external view returns (uint96);
function maxBurnWindow() external view returns (uint256);
function setMaxBurnWindow(uint256) external;
function addNewNFTTemplate(address) external;
function freelancerPercentage() external view returns (uint256);
function premierAccess() external view returns (IPremierAccessERC1155);
function platformApprovedWrapper(address account) external view returns (bool);
function ownerApprovedTokenWrapper(uint256 curationTokenId, address account) external view returns (bool);
function ownerApprovedTokenOpen(uint256 curationTokenId) external view returns (bool);
function bridging() external view returns (IBridging);
function prover() external view returns (IProver);
function updateContractURIImage(uint256 curationTokenId, FileBundle memory imageData, address customRenderer)
external;
function immortalizeCollection(ImmortalizeCollectionData calldata icd) external returns (uint256 curationTokenId);
function getCollection(uint256 curationTokenId) external view returns (INFT);
function pledgedRevealTimestamps(bytes32 encryptionReference) external view returns (uint256);
function pledgedRevealTimestamp(uint256 curationTokenId) external view returns (uint256);
function getDeclaredFingerprint(FileBundle memory compressedTab) external view returns (bytes32);
function tokenURI(uint256 tokenId) external view returns (string memory);
}
interface INFT {
function curationTokenId() external view returns (uint256);
function owner() external view returns (address);
function ownerOf(uint256 tokenId) external view returns (address);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function contractURI() external view returns (string memory);
function emitContractURIUpdated() external;
function emitBatchMetadataUpdate(uint256 fromTokenId, uint256 toTokenId) external;
function MINT_REVEAL_BLOCK_OFFSET() external view returns (uint256);
function tokenURI(uint256 tokenId) external view returns (string memory);
function description() external view returns (string memory);
function website() external view returns (string memory);
function maxSupply() external view returns (uint256);
function totalSupply() external view returns (uint256);
function totalMinted() external view returns (uint256);
function qtyAvailableToMint() external view returns (uint256);
function mintStarts() external view returns (uint256);
function mintEnds() external view returns (uint256);
function mintStarted() external view returns (bool);
function mintPriceCurrent() external view returns (uint256);
function mintPrice(uint256 nth) external view returns (uint256);
function mintPrices() external view returns (uint256[] memory mintQtyCheckpoints, uint256[] memory mintPrices);
function ONE() external view returns (uint256);
function mintEconomics() external view returns (MintEconomics memory);
function willBeFinalized() external view returns (uint256);
function initialize(
uint256 curationTokenId,
IPaymentFilterer paymentFilterer_,
IRefunder refunder_,
CollectionNames calldata names,
MintEconomics calldata mintEconomics,
DiscountData calldata dd,
bytes calldata auxData
) external;
function paymentFilterer() external view returns (IPaymentFilterer);
function pushETHToPaymentFilterer() external;
function setMintEnds(uint256 mintEndsTime) external;
function updateSupply() external;
function mint(address to, uint256 qty) external payable;
function mintDiscounted(address to, IERC721[] calldata collections, uint256[] calldata tokenIds) external payable;
function burn(uint256[] memory ids) external;
}
interface IERC1155 is IERC165 {
function balanceOf(address account, uint256 id) external view returns (uint256);
function setApprovalForAll(address operator, bool approved) external;
function isApprovedForAll(address account, address operator) external view returns (bool);
function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external;
}
interface IERC1155MetadataURI {
function uri(uint256 id) external view returns (string memory);
}
interface IPremierAccessERC1155 is IERC1155, IERC1155MetadataURI {
function ONE() external view returns (uint256);
function feePercentage() external view returns (uint256);
function setExclusivityData(uint256 curationTokenId, ExclusivityData calldata xclusivityData) external;
function exclusivityData(uint256 curationTokenId) external view returns (ExclusivityData memory);
function supply(uint256 curationTokenId) external view returns (Supply memory);
function processAccess(address account, uint256 curationTokenId) external returns (bool ok);
function mint(uint256 curationTokenId, uint256 qty, address to) external payable;
function emitMetadataUpdate(uint256 curationTokenId) external;
}
interface IImmortalizerCompressUtil {
function checkValidatePathsOrder(bytes[] calldata paths) external view returns (bool ok);
function compressCollectionData(bytes32 key, bytes32 nonce, CollectionData memory cd)
external
view
returns (FileBundle memory ret);
function compressFrame(bytes32 key, bytes32 nonce, Frame memory frame)
external
view
returns (FileBundle memory ret);
function compressTab(
bytes32 key,
bytes32 nonce,
bytes[] memory attributes,
bytes[][2] memory colorClasses,
uint256 dimension,
bytes[] memory paths
) external view returns (FileBundle memory ret);
}
interface IImmortalizerDecompressUtil {
function decompressCollectionData(bytes32 key, bytes memory compressed)
external
pure
returns (CollectionData memory ret);
function decompressFrame(bytes32 key, bytes memory packed) external pure returns (Frame memory frame);
function decompressTab(bytes32 key, bytes memory compressedTab)
external
view
returns (bytes[] memory attributes, bytes[][2] memory colorClasses, uint256 dimension, bytes[] memory paths);
}
interface IRobustRenderer {
function fs() external view returns (IFS);
function immortalize(uint256 id, bytes32 encrypted, bytes32 fingerprint, Type t, FileBundle calldata compressed)
external;
function updateContractURIImage(uint256 id, FileBundle calldata fb, address customRenderer) external;
function immortalized(bytes32 fingerprint) external view returns (uint256 id);
function encryptionReference(uint256 id) external view returns (bytes32);
function decrypted(uint256 id) external view returns (bool tf);
function key(uint256 id) external view returns (bytes32);
function keySafe(uint256 id) external view returns (bytes32);
function immortalizedType(uint256 id) external view returns (Type);
function isWalker(uint256 id) external view returns (bool);
function setCollection(uint256 id, bytes32 encrypted, bool walker, FileBundle calldata compressedCollectionData)
external;
function reveal(bytes32 encryptionReference, bytes32 key) external;
function decompressCollectionData(uint256 collectionCurationId) external view returns (CollectionData memory);
function decompressFrame(uint256 frameId) external view returns (Frame memory);
function renderTab(uint256 tabId, PointAndBounded calldata pb)
external
view
returns (
string[][2] memory attributes,
string[][2] memory colorClasses,
string memory svg,
FixedPoint.FP memory resolution
);
function getNumberOfFrameStates(uint256 frameId) external view returns (uint256);
function renderFrame(uint256 frameId, uint256 entropy, uint256 seed, PointAndBounded calldata pb)
external
view
returns (
string[][2] memory attributes,
string[][2] memory colorClasses,
string memory svg,
FixedPoint.FP memory resolution
);
function renderCollection(uint256 collectionId, uint256 entropy, uint256 seed, PointAndBounded calldata pb)
external
view
returns (RenderedCollectionData memory renderedCollectionData);
function renderContractURIImage(uint256 id) external view returns (string memory);
function formSVG(FixedPoint.FP memory resolution, PointAndBounded memory pb, bytes memory nestedData)
external
pure
returns (string memory);
}
interface IValidityLens {
function scanValidity(uint256 id, uint256 seed, uint256 runs)
external
view
returns (Validity validity, bytes memory error);
function checkEncrypted(uint256 pledgedRevealTimestamp, bytes32 key) external view returns (Validity);
}
interface IURI {
function svgFramed() external view returns (ISVGFramed);
function uriFinisher() external view returns (IURIFinisher);
function maxMsgLength() external view returns (uint256);
function setCollection(address target, uint256 collectionTokenId) external;
function hubContractURI() external view returns (string memory);
function hubTokenURI(uint256 curationTokenId) external view returns (string memory);
function hubURI(uint256 curationTokenId) external view returns (string memory);
function collectionContractURI() external view returns (string memory);
function collectionTokenURI(uint256 tokenId, RevealedStatus revealedStatus, uint256 entropy)
external
view
returns (string memory);
}
interface ISVGFramed {
function MAT_OFFSET() external view returns (uint256);
function MAT_INNER() external view returns (uint256);
function framed(string memory color, bytes memory _msg, string memory sSvg, bool truncate)
external
view
returns (string memory ret);
}
interface IURIFinisher {
function finishContractURI(
CollectionNames calldata names,
string calldata sSvg,
uint256 feeBasisPoints,
address feeRecipient
) external view returns (string memory ret);
function finishPending(Type t, Validity v, uint256 pledgedRevealTimestamp, uint256 curationTokenId)
external
view
returns (string memory ret);
function finishTokenURIAliased(
CollectionNames calldata names,
string[][2] calldata attributes,
JSON[][2] calldata additionalAttributes,
string[][2] calldata colorClasses,
string calldata sSvg
) external view returns (string memory ret);
function finishTokenURI(
CollectionNames calldata names,
string[][2] calldata attributes,
JSON[][2] calldata additionalAttributes,
bytes memory formattedColorClasses,
string calldata sSvg
) external view returns (string memory ret);
}
interface IPaymentFilterer {
function BASIS() external view returns (uint256);
function initialize(uint256[] memory payeeTokenIds, uint256[] memory shares_) external payable;
function payeesLength() external view returns (uint256);
function payee(uint256 idx) external view returns (uint256);
function shares(uint256 id) external view returns (uint256);
function isPayee(uint256 payeeTokenId) external view returns (bool);
function releasable(uint256 payeeTokenId) external view returns (uint256);
function releasable(IERC20 token, uint256 payeeTokenId) external view returns (uint256);
function release(uint256 payeeTokenId, address to) external;
function release(IERC20 token, uint256 payeeTokenId, address to) external;
function incentivizedRelease(uint256 payeeTokenId) external;
function incentivizedRelease(IERC20 token, uint256 payeeTokenId) external;
}
interface IRefunds {
function refundAvailable(address account) external view returns (uint256);
function claimRefund() external;
}
interface IRefunder {
function setCustomer(address customer) external;
function refundAvailable(address account) external view returns (uint256);
function claimRefund(address account) external;
function setRefund(address account) external payable;
}
interface IProver {
function validateProof(address to, INFT nft, uint256[] calldata tokenIds, uint256 l2Id, bytes calldata proof)
external
returns (bool);
}
interface IBridging {
function bridgeTo(address from, INFT nft, uint256[] calldata tokenIds, uint256 l2Id) external;
function bridgeFrom(address to, INFT nft, uint256[] calldata tokenIds, uint256 l2Id) external;
function isBridged(INFT nft, uint256 tokenId) external view returns (bool);
}
interface ISudoPoolValidator {
function validateAndAddSudoPoolsToWhitelist(address[] calldata sudoPools) external;
}// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE
pragma solidity ^0.8.25;
import "lib/openzeppelin-contracts/contracts/token/ERC721/IERC721.sol";
import "./FixedPoint.sol";
struct Supply {
uint128 totalSupply;
uint128 totalMinted;
}
struct ImmortalizeCollectionData {
CollectionNames names;
bytes32 encrypted; // if ANY frame has encrypted reference then this must be set
uint256[] featuredFrameIds;
FileBundle compressedCollectionData;
MintEconomics mintEconomics;
DiscountData dd;
address to;
uint256 nftVersionId;
bytes auxData;
}
struct CollectionNames {
string name;
string symbol;
string description;
bool walker;
}
enum MintPricingType {
TIMED,
BATCHED
}
struct MintEconomics {
uint256 curatorShare;
uint256 mintStarts;
uint256 mintEnds;
uint256 maxFreeMintsPerTx;
uint256 burnWindow;
MintPricingType mintPricingType;
uint256 maxSupply;
uint256[] mintCheckpoints;
uint256[] mintPrices;
uint96 feeNumerator;
}
struct ExclusivityData {
uint64 exclusivityWindow; // uint32 is too small
uint112 premiumAccessMax;
uint112 premiumAccessPrice;
}
struct DiscountData {
IERC721[] discountedCollections;
uint256[] discountFactors;
}
/////////////////////////
/*
// reference
struct Tab {
bytes[] attributes;
bytes[] colorClasses;
uint256 dimension;
bytes[] paths;
}
*/
struct RenderedCollectionData {
string[][2] attributes;
string[][2] colorClasses;
string sSvg;
FixedPoint.FP resolution;
}
struct Frame {
uint256 dimension; // validated so that all children tabs match dimension
bytes[] attributes; // {face: pretty, .. etc}
uint256[] tabProbabilities; // can be len=0 if a walker
uint256[] tabIds; // checked against payment splitter on render
bytes forkAttributeKey;
uint256[] forkProbabilities; // can be len=0 if a walker
Fork[] forks;
}
struct Fork {
bytes forkAttributeValue;
uint256[] frameIds; // checked against payment splitter on render
uint256[] footprints; // footprint & dimension gives scale
uint256[] positions; // array w len%2=0 for obvs reasons.. x,y..
}
struct CollectionData {
bytes32 idxBlinder;
uint256[] frameProbabilities; // can be len=0 if a walker
uint256[] frameIds; // checked against payment splitter on render, see _validatePayeeConficguration
ColorClassOverride[] colorClassOverrides;
}
struct ColorClassOverride {
bytes colorClass;
uint256[] probabilityKeys; // can be len=0 if a walker
bytes[] colorClassValues;
bytes[] colorClassAliases;
}
enum Type {
NONE,
TAB,
TAB_ENCRYPTED,
FRAME,
FRAME_ENCRYPTED,
COLLECTION,
COLLECTION_ENCRYPTED
}
enum Validity {
UNKNOWN,
PENDING_DECRYPTION,
VALID,
INVALID
}
struct Point {
uint256 x;
uint256 y;
}
struct PointAndBounded {
Point p;
Point b;
}
struct UIBasicData {
Type t;
uint256 tokenId;
bool burned;
bool encrypted;
uint256 pledgedRevealTimestamp;
CollectionNames names;
MintEconomics mintEconomics;
ExclusivityData exclusivityData;
Supply exclusivitySupply;
address owner; // obviously can change and should prompt updates
string website;
}
struct CounterPtr {
uint256 tally;
}
struct FileBundle {
bytes compressedFile;
bytes[] chunks;
}
enum JSONType {
STRING,
DATE,
NUMBER,
ARRAY,
OBJ
}
struct JSON {
JSONType t;
bytes data;
}
enum RevealedStatus {
PENDING,
REVEALED
}// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE
pragma solidity ^0.8.25;
import "./Interfaces.sol";
import "./Errors.sol";
abstract contract Refunds is IRefunds {
IRefunder public refunder;
function _setRefunder(IRefunder refunder_) internal {
if (address(refunder) != address(0)) revert AlreadySet_error();
refunder = refunder_;
}
function refundAvailable(address account) external view returns (uint256) {
return refunder.refundAvailable(account);
}
function claimRefund() external {
return refunder.claimRefund(msg.sender);
}
function _setRefund(address account, uint256 amount) internal {
return refunder.setRefund{value: amount}(account);
}
}// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE pragma solidity ^0.8.25; error AlreadyImmortalized_error(); error IDOrdering_error(); error MustRespectExclusivity_error(); error InvalidExclusivityParams_error(); error InvalidOptionsLength_error(); error RevealTimeNotSet_error(); error RevealOrdering_error(); error NotOwner_error(); error InsufficientImmortalizeFee_error(); error FailedCall_error(); error ExceedsMaxFreeMintsPerTx_error(); error MalformedInputs_error(); error ZeroInput_error(); error RepeatedEncryptionReference_error(); error InvalidCommitment_error(); error InvalidKey_error(); error InvalidFeeNumerator_error(); error BadMintPrices_error(); error BadMintCheckpoints_error(); error TrivialMaxSupply_error(); error MintEconomicsOrderering_error(); error NotHub_error(); error AlreadyRevealed_error(); error NotRevealed_error(); error InvalidInput_error(); error InvalidDimensions_error(); error InvalidResolution_error(); error InvalidData_error(); error InvalidColor_error(); error InvalidCaller_error(); error TrivialFrame_error(); error NoWrapping_error(); error NotReady_error(); error CollectionFinalized_error(); error NotCollection_error(); error Transfer_error(); error InvalidLengths_error(); error InvalidPath_error(); error PathsNotOrdered_error(); error InvalidFileBundle_error(); error InvalidTabFingerprint_error(); error InvalidFrameFingerprint_error(); error InvalidColorClassAliases_error(); error RefundFailed_error(); error InsufficientValue_error(); error ExceedsMaxSupply_error(); error MintNotStarted_error(); error MintEnded_error(); error DiscountAlreadyClaimed_error(); error CollectionNotDiscounted_error(); error BridgingNotCurrentlySupported_error(); error InvalidProof_error(); error NotDistinct_error(); error ReadFile_error(); error AlreadySet_error(); error InvalidCollection_error(); error InvalidBurnWindow_error(); error InvalidMintCheckpoints_error(); error InvalidNFTTemplateVersion_error(); error InvalidMaxFreeMintsPerTx_error(); error Overflow_error(); error IsFrozen_error(); error Unsupported_error(); // from ethfs error SliceOutOfBounds(address pointer, uint32 codeSize, uint32 sliceStart, uint32 sliceEnd);
// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE
pragma solidity ^0.8.25;
function _allocateBytes(uint256 len) pure returns (bytes memory ret) {
assembly {
ret := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(ret, and(add(add(len, 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
}
function _allocateString(uint256 len) pure returns (string memory ret) {
assembly {
ret := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(ret, and(add(add(len, 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
}
function _allocateArr(uint256 len) pure returns (bytes[] memory ret) {
assembly {
ret := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(ret, and(add(add(mul(len, 0x20), 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
}
function _allocateStringArr(uint256 len) pure returns (string[] memory ret) {
assembly {
ret := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(ret, and(add(add(mul(len, 0x20), 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
}
function _allocateUintArr(uint256 len) pure returns (uint256[] memory ret) {
assembly {
ret := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(ret, and(add(add(mul(len, 0x20), 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
}
function _allocateIntArr(uint256 len) pure returns (int256[] memory ret) {
assembly {
ret := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(ret, and(add(add(mul(len, 0x20), 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
}
function _allocateAddressArr(uint256 len) pure returns (address[] memory ret) {
assembly {
ret := mload(0x40)
// new "memory end" including padding
mstore(0x40, add(ret, and(add(add(mul(len, 0x20), 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Simple ERC721 implementation with storage hitchhiking.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC721.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC721/ERC721.sol)
///
/// @dev Note:
/// - The ERC721 standard allows for self-approvals.
/// For performance, this implementation WILL NOT revert for such actions.
/// Please add any checks with overrides if desired.
/// - For performance, methods are made payable where permitted by the ERC721 standard.
/// - The `safeTransfer` functions use the identity precompile (0x4)
/// to copy memory internally.
///
/// If you are overriding:
/// - NEVER violate the ERC721 invariant:
/// the balance of an owner MUST always be equal to their number of ownership slots.
/// The transfer functions do not have an underflow guard for user token balances.
/// - Make sure all variables written to storage are properly cleaned
// (e.g. the bool value for `isApprovedForAll` MUST be either 1 or 0 under the hood).
/// - Check that the overridden function is actually used in the function you want to
/// change the behavior of. Much of the code has been manually inlined for performance.
abstract contract ERC721 {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev An account can hold up to 4294967295 tokens.
uint256 internal constant _MAX_ACCOUNT_BALANCE = 0xffffffff;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Only the token owner or an approved account can manage the token.
error NotOwnerNorApproved();
/// @dev The token does not exist.
error TokenDoesNotExist();
/// @dev The token already exists.
error TokenAlreadyExists();
/// @dev Cannot query the balance for the zero address.
error BalanceQueryForZeroAddress();
/// @dev Cannot mint or transfer to the zero address.
error TransferToZeroAddress();
/// @dev The token must be owned by `from`.
error TransferFromIncorrectOwner();
/// @dev The recipient's balance has overflowed.
error AccountBalanceOverflow();
/// @dev Cannot safely transfer to a contract that does not implement
/// the ERC721Receiver interface.
error TransferToNonERC721ReceiverImplementer();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* EVENTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Emitted when token `id` is transferred from `from` to `to`.
event Transfer(address indexed from, address indexed to, uint256 indexed id);
/// @dev Emitted when `owner` enables `account` to manage the `id` token.
event Approval(address indexed owner, address indexed account, uint256 indexed id);
/// @dev Emitted when `owner` enables or disables `operator` to manage all of their tokens.
event ApprovalForAll(address indexed owner, address indexed operator, bool isApproved);
/// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`.
uint256 private constant _TRANSFER_EVENT_SIGNATURE =
0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;
/// @dev `keccak256(bytes("Approval(address,address,uint256)"))`.
uint256 private constant _APPROVAL_EVENT_SIGNATURE =
0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925;
/// @dev `keccak256(bytes("ApprovalForAll(address,address,bool)"))`.
uint256 private constant _APPROVAL_FOR_ALL_EVENT_SIGNATURE =
0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STORAGE */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The ownership data slot of `id` is given by:
/// ```
/// mstore(0x00, id)
/// mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
/// let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
/// ```
/// Bits Layout:
/// - [0..159] `addr`
/// - [160..255] `extraData`
///
/// The approved address slot is given by: `add(1, ownershipSlot)`.
///
/// See: https://notes.ethereum.org/%40vbuterin/verkle_tree_eip
///
/// The balance slot of `owner` is given by:
/// ```
/// mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
/// mstore(0x00, owner)
/// let balanceSlot := keccak256(0x0c, 0x1c)
/// ```
/// Bits Layout:
/// - [0..31] `balance`
/// - [32..255] `aux`
///
/// The `operator` approval slot of `owner` is given by:
/// ```
/// mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator))
/// mstore(0x00, owner)
/// let operatorApprovalSlot := keccak256(0x0c, 0x30)
/// ```
uint256 private constant _ERC721_MASTER_SLOT_SEED = 0x7d8825530a5a2e7a << 192;
/// @dev Pre-shifted and pre-masked constant.
uint256 private constant _ERC721_MASTER_SLOT_SEED_MASKED = 0x0a5a2e7a00000000;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC721 METADATA */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the token collection name.
function name() public view virtual returns (string memory);
/// @dev Returns the token collection symbol.
function symbol() public view virtual returns (string memory);
/// @dev Returns the Uniform Resource Identifier (URI) for token `id`.
function tokenURI(uint256 id) public view virtual returns (string memory);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC721 */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the owner of token `id`.
///
/// Requirements:
/// - Token `id` must exist.
function ownerOf(uint256 id) public view virtual returns (address result) {
result = _ownerOf(id);
/// @solidity memory-safe-assembly
assembly {
if iszero(result) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
}
}
/// @dev Returns the number of tokens owned by `owner`.
///
/// Requirements:
/// - `owner` must not be the zero address.
function balanceOf(address owner) public view virtual returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
// Revert if the `owner` is the zero address.
if iszero(owner) {
mstore(0x00, 0x8f4eb604) // `BalanceQueryForZeroAddress()`.
revert(0x1c, 0x04)
}
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
result := and(sload(keccak256(0x0c, 0x1c)), _MAX_ACCOUNT_BALANCE)
}
}
/// @dev Returns the account approved to manage token `id`.
///
/// Requirements:
/// - Token `id` must exist.
function getApproved(uint256 id) public view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
if iszero(shl(96, sload(ownershipSlot))) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
result := sload(add(1, ownershipSlot))
}
}
/// @dev Sets `account` as the approved account to manage token `id`.
///
/// Requirements:
/// - Token `id` must exist.
/// - The caller must be the owner of the token,
/// or an approved operator for the token owner.
///
/// Emits an {Approval} event.
function approve(address account, uint256 id) public payable virtual {
_approve(msg.sender, account, id);
}
/// @dev Returns whether `operator` is approved to manage the tokens of `owner`.
function isApprovedForAll(address owner, address operator)
public
view
virtual
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, operator)
mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED)
mstore(0x00, owner)
result := sload(keccak256(0x0c, 0x30))
}
}
/// @dev Sets whether `operator` is approved to manage the tokens of the caller.
///
/// Emits an {ApprovalForAll} event.
function setApprovalForAll(address operator, bool isApproved) public virtual {
/// @solidity memory-safe-assembly
assembly {
// Convert to 0 or 1.
isApproved := iszero(iszero(isApproved))
// Update the `isApproved` for (`msg.sender`, `operator`).
mstore(0x1c, operator)
mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED)
mstore(0x00, caller())
sstore(keccak256(0x0c, 0x30), isApproved)
// Emit the {ApprovalForAll} event.
mstore(0x00, isApproved)
// forgefmt: disable-next-item
log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, caller(), shr(96, shl(96, operator)))
}
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function transferFrom(address from, address to, uint256 id) public payable virtual {
_beforeTokenTransfer(from, to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
from := and(bitmaskAddress, from)
to := and(bitmaskAddress, to)
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, caller()))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
let owner := and(bitmaskAddress, ownershipPacked)
// Revert if the token does not exist, or if `from` is not the owner.
if iszero(mul(owner, eq(owner, from))) {
// `TokenDoesNotExist()`, `TransferFromIncorrectOwner()`.
mstore(shl(2, iszero(owner)), 0xceea21b6a1148100)
revert(0x1c, 0x04)
}
// Load, check, and update the token approval.
{
mstore(0x00, from)
let approvedAddress := sload(add(1, ownershipSlot))
// Revert if the caller is not the owner, nor approved.
if iszero(or(eq(caller(), from), eq(caller(), approvedAddress))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Update with the new owner.
sstore(ownershipSlot, xor(ownershipPacked, xor(from, to)))
// Decrement the balance of `from`.
{
let fromBalanceSlot := keccak256(0x0c, 0x1c)
sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1))
}
// Increment the balance of `to`.
{
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x1c)
let toBalanceSlotPacked := add(sload(toBalanceSlot), 1)
// Revert if `to` is the zero address, or if the account balance overflows.
if iszero(mul(to, and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE))) {
// `TransferToZeroAddress()`, `AccountBalanceOverflow()`.
mstore(shl(2, iszero(to)), 0xea553b3401336cea)
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceSlotPacked)
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id)
}
_afterTokenTransfer(from, to, id);
}
/// @dev Equivalent to `safeTransferFrom(from, to, id, "")`.
function safeTransferFrom(address from, address to, uint256 id) public payable virtual {
transferFrom(from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function safeTransferFrom(address from, address to, uint256 id, bytes calldata data)
public
payable
virtual
{
transferFrom(from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/// @dev Returns true if this contract implements the interface defined by `interfaceId`.
/// See: https://eips.ethereum.org/EIPS/eip-165
/// This function call must use less than 30000 gas.
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
let s := shr(224, interfaceId)
// ERC165: 0x01ffc9a7, ERC721: 0x80ac58cd, ERC721Metadata: 0x5b5e139f.
result := or(or(eq(s, 0x01ffc9a7), eq(s, 0x80ac58cd)), eq(s, 0x5b5e139f))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL QUERY FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns if token `id` exists.
function _exists(uint256 id) internal view virtual returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := iszero(iszero(shl(96, sload(add(id, add(id, keccak256(0x00, 0x20)))))))
}
}
/// @dev Returns the owner of token `id`.
/// Returns the zero address instead of reverting if the token does not exist.
function _ownerOf(uint256 id) internal view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := shr(96, shl(96, sload(add(id, add(id, keccak256(0x00, 0x20))))))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL DATA HITCHHIKING FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance, no events are emitted for the hitchhiking setters.
// Please emit your own events if required.
/// @dev Returns the auxiliary data for `owner`.
/// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
/// Auxiliary data can be set for any address, even if it does not have any tokens.
function _getAux(address owner) internal view virtual returns (uint224 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
result := shr(32, sload(keccak256(0x0c, 0x1c)))
}
}
/// @dev Set the auxiliary data for `owner` to `value`.
/// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data.
/// Auxiliary data can be set for any address, even if it does not have any tokens.
function _setAux(address owner, uint224 value) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
mstore(0x00, owner)
let balanceSlot := keccak256(0x0c, 0x1c)
let packed := sload(balanceSlot)
sstore(balanceSlot, xor(packed, shl(32, xor(value, shr(32, packed)))))
}
}
/// @dev Returns the extra data for token `id`.
/// Minting, transferring, burning a token will not change the extra data.
/// The extra data can be set on a non-existent token.
function _getExtraData(uint256 id) internal view virtual returns (uint96 result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := shr(160, sload(add(id, add(id, keccak256(0x00, 0x20)))))
}
}
/// @dev Sets the extra data for token `id` to `value`.
/// Minting, transferring, burning a token will not change the extra data.
/// The extra data can be set on a non-existent token.
function _setExtraData(uint256 id, uint96 value) internal virtual {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let packed := sload(ownershipSlot)
sstore(ownershipSlot, xor(packed, shl(160, xor(value, shr(160, packed)))))
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL MINT FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Mints token `id` to `to`.
///
/// Requirements:
///
/// - Token `id` must not exist.
/// - `to` cannot be the zero address.
///
/// Emits a {Transfer} event.
function _mint(address to, uint256 id) internal virtual {
_beforeTokenTransfer(address(0), to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
to := shr(96, shl(96, to))
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
// Revert if the token already exists.
if shl(96, ownershipPacked) {
mstore(0x00, 0xc991cbb1) // `TokenAlreadyExists()`.
revert(0x1c, 0x04)
}
// Update with the owner.
sstore(ownershipSlot, or(ownershipPacked, to))
// Increment the balance of the owner.
{
mstore(0x00, to)
let balanceSlot := keccak256(0x0c, 0x1c)
let balanceSlotPacked := add(sload(balanceSlot), 1)
// Revert if `to` is the zero address, or if the account balance overflows.
if iszero(mul(to, and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE))) {
// `TransferToZeroAddress()`, `AccountBalanceOverflow()`.
mstore(shl(2, iszero(to)), 0xea553b3401336cea)
revert(0x1c, 0x04)
}
sstore(balanceSlot, balanceSlotPacked)
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id)
}
_afterTokenTransfer(address(0), to, id);
}
/// @dev Mints token `id` to `to`, and updates the extra data for token `id` to `value`.
/// Does NOT check if token `id` already exists (assumes `id` is auto-incrementing).
///
/// Requirements:
///
/// - `to` cannot be the zero address.
///
/// Emits a {Transfer} event.
function _mintAndSetExtraDataUnchecked(address to, uint256 id, uint96 value) internal virtual {
_beforeTokenTransfer(address(0), to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
to := shr(96, shl(96, to))
// Update with the owner and extra data.
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
sstore(add(id, add(id, keccak256(0x00, 0x20))), or(shl(160, value), to))
// Increment the balance of the owner.
{
mstore(0x00, to)
let balanceSlot := keccak256(0x0c, 0x1c)
let balanceSlotPacked := add(sload(balanceSlot), 1)
// Revert if `to` is the zero address, or if the account balance overflows.
if iszero(mul(to, and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE))) {
// `TransferToZeroAddress()`, `AccountBalanceOverflow()`.
mstore(shl(2, iszero(to)), 0xea553b3401336cea)
revert(0x1c, 0x04)
}
sstore(balanceSlot, balanceSlotPacked)
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id)
}
_afterTokenTransfer(address(0), to, id);
}
/// @dev Equivalent to `_safeMint(to, id, "")`.
function _safeMint(address to, uint256 id) internal virtual {
_safeMint(to, id, "");
}
/// @dev Mints token `id` to `to`.
///
/// Requirements:
///
/// - Token `id` must not exist.
/// - `to` cannot be the zero address.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeMint(address to, uint256 id, bytes memory data) internal virtual {
_mint(to, id);
if (_hasCode(to)) _checkOnERC721Received(address(0), to, id, data);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL BURN FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `_burn(address(0), id)`.
function _burn(uint256 id) internal virtual {
_burn(address(0), id);
}
/// @dev Destroys token `id`, using `by`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function _burn(address by, uint256 id) internal virtual {
address owner = ownerOf(id);
_beforeTokenTransfer(owner, address(0), id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
by := shr(96, shl(96, by))
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
// Reload the owner in case it is changed in `_beforeTokenTransfer`.
owner := shr(96, shl(96, ownershipPacked))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// Load and check the token approval.
{
mstore(0x00, owner)
let approvedAddress := sload(add(1, ownershipSlot))
// If `by` is not the zero address, do the authorization check.
// Revert if the `by` is not the owner, nor approved.
if iszero(or(iszero(by), or(eq(by, owner), eq(by, approvedAddress)))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Clear the owner.
sstore(ownershipSlot, xor(ownershipPacked, owner))
// Decrement the balance of `owner`.
{
let balanceSlot := keccak256(0x0c, 0x1c)
sstore(balanceSlot, sub(sload(balanceSlot), 1))
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, owner, 0, id)
}
_afterTokenTransfer(owner, address(0), id);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL APPROVAL FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns whether `account` is the owner of token `id`, or is approved to manage it.
///
/// Requirements:
/// - Token `id` must exist.
function _isApprovedOrOwner(address account, uint256 id)
internal
view
virtual
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
result := 1
// Clear the upper 96 bits.
account := shr(96, shl(96, account))
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, account))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let owner := shr(96, shl(96, sload(ownershipSlot)))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// Check if `account` is the `owner`.
if iszero(eq(account, owner)) {
mstore(0x00, owner)
// Check if `account` is approved to manage the token.
if iszero(sload(keccak256(0x0c, 0x30))) {
result := eq(account, sload(add(1, ownershipSlot)))
}
}
}
}
/// @dev Returns the account approved to manage token `id`.
/// Returns the zero address instead of reverting if the token does not exist.
function _getApproved(uint256 id) internal view virtual returns (address result) {
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, id)
mstore(0x1c, _ERC721_MASTER_SLOT_SEED)
result := sload(add(1, add(id, add(id, keccak256(0x00, 0x20)))))
}
}
/// @dev Equivalent to `_approve(address(0), account, id)`.
function _approve(address account, uint256 id) internal virtual {
_approve(address(0), account, id);
}
/// @dev Sets `account` as the approved account to manage token `id`, using `by`.
///
/// Requirements:
/// - Token `id` must exist.
/// - If `by` is not the zero address, `by` must be the owner
/// or an approved operator for the token owner.
///
/// Emits a {Approval} event.
function _approve(address by, address account, uint256 id) internal virtual {
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
account := and(bitmaskAddress, account)
by := and(bitmaskAddress, by)
// Load the owner of the token.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let owner := and(bitmaskAddress, sload(ownershipSlot))
// Revert if the token does not exist.
if iszero(owner) {
mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`.
revert(0x1c, 0x04)
}
// If `by` is not the zero address, do the authorization check.
// Revert if `by` is not the owner, nor approved.
if iszero(or(iszero(by), eq(by, owner))) {
mstore(0x00, owner)
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Sets `account` as the approved account to manage `id`.
sstore(add(1, ownershipSlot), account)
// Emit the {Approval} event.
log4(codesize(), 0x00, _APPROVAL_EVENT_SIGNATURE, owner, account, id)
}
}
/// @dev Approve or remove the `operator` as an operator for `by`,
/// without authorization checks.
///
/// Emits an {ApprovalForAll} event.
function _setApprovalForAll(address by, address operator, bool isApproved) internal virtual {
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
by := shr(96, shl(96, by))
operator := shr(96, shl(96, operator))
// Convert to 0 or 1.
isApproved := iszero(iszero(isApproved))
// Update the `isApproved` for (`by`, `operator`).
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator))
mstore(0x00, by)
sstore(keccak256(0x0c, 0x30), isApproved)
// Emit the {ApprovalForAll} event.
mstore(0x00, isApproved)
log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, by, operator)
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* INTERNAL TRANSFER FUNCTIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `_transfer(address(0), from, to, id)`.
function _transfer(address from, address to, uint256 id) internal virtual {
_transfer(address(0), from, to, id);
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
///
/// Emits a {Transfer} event.
function _transfer(address by, address from, address to, uint256 id) internal virtual {
_beforeTokenTransfer(from, to, id);
/// @solidity memory-safe-assembly
assembly {
// Clear the upper 96 bits.
let bitmaskAddress := shr(96, not(0))
from := and(bitmaskAddress, from)
to := and(bitmaskAddress, to)
by := and(bitmaskAddress, by)
// Load the ownership data.
mstore(0x00, id)
mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by))
let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20)))
let ownershipPacked := sload(ownershipSlot)
let owner := and(bitmaskAddress, ownershipPacked)
// Revert if the token does not exist, or if `from` is not the owner.
if iszero(mul(owner, eq(owner, from))) {
// `TokenDoesNotExist()`, `TransferFromIncorrectOwner()`.
mstore(shl(2, iszero(owner)), 0xceea21b6a1148100)
revert(0x1c, 0x04)
}
// Load, check, and update the token approval.
{
mstore(0x00, from)
let approvedAddress := sload(add(1, ownershipSlot))
// If `by` is not the zero address, do the authorization check.
// Revert if the `by` is not the owner, nor approved.
if iszero(or(iszero(by), or(eq(by, from), eq(by, approvedAddress)))) {
if iszero(sload(keccak256(0x0c, 0x30))) {
mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`.
revert(0x1c, 0x04)
}
}
// Delete the approved address if any.
if approvedAddress { sstore(add(1, ownershipSlot), 0) }
}
// Update with the new owner.
sstore(ownershipSlot, xor(ownershipPacked, xor(from, to)))
// Decrement the balance of `from`.
{
let fromBalanceSlot := keccak256(0x0c, 0x1c)
sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1))
}
// Increment the balance of `to`.
{
mstore(0x00, to)
let toBalanceSlot := keccak256(0x0c, 0x1c)
let toBalanceSlotPacked := add(sload(toBalanceSlot), 1)
// Revert if `to` is the zero address, or if the account balance overflows.
if iszero(mul(to, and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE))) {
// `TransferToZeroAddress()`, `AccountBalanceOverflow()`.
mstore(shl(2, iszero(to)), 0xea553b3401336cea)
revert(0x1c, 0x04)
}
sstore(toBalanceSlot, toBalanceSlotPacked)
}
// Emit the {Transfer} event.
log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id)
}
_afterTokenTransfer(from, to, id);
}
/// @dev Equivalent to `_safeTransfer(from, to, id, "")`.
function _safeTransfer(address from, address to, uint256 id) internal virtual {
_safeTransfer(from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - The caller must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeTransfer(address from, address to, uint256 id, bytes memory data)
internal
virtual
{
_transfer(address(0), from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/// @dev Equivalent to `_safeTransfer(by, from, to, id, "")`.
function _safeTransfer(address by, address from, address to, uint256 id) internal virtual {
_safeTransfer(by, from, to, id, "");
}
/// @dev Transfers token `id` from `from` to `to`.
///
/// Requirements:
///
/// - Token `id` must exist.
/// - `from` must be the owner of the token.
/// - `to` cannot be the zero address.
/// - If `by` is not the zero address,
/// it must be the owner of the token, or be approved to manage the token.
/// - If `to` refers to a smart contract, it must implement
/// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
///
/// Emits a {Transfer} event.
function _safeTransfer(address by, address from, address to, uint256 id, bytes memory data)
internal
virtual
{
_transfer(by, from, to, id);
if (_hasCode(to)) _checkOnERC721Received(from, to, id, data);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HOOKS FOR OVERRIDING */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Hook that is called before any token transfers, including minting and burning.
function _beforeTokenTransfer(address from, address to, uint256 id) internal virtual {}
/// @dev Hook that is called after any token transfers, including minting and burning.
function _afterTokenTransfer(address from, address to, uint256 id) internal virtual {}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* PRIVATE HELPERS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns if `a` has bytecode of non-zero length.
function _hasCode(address a) private view returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := extcodesize(a) // Can handle dirty upper bits.
}
}
/// @dev Perform a call to invoke {IERC721Receiver-onERC721Received} on `to`.
/// Reverts if the target does not support the function correctly.
function _checkOnERC721Received(address from, address to, uint256 id, bytes memory data)
private
{
/// @solidity memory-safe-assembly
assembly {
// Prepare the calldata.
let m := mload(0x40)
let onERC721ReceivedSelector := 0x150b7a02
mstore(m, onERC721ReceivedSelector)
mstore(add(m, 0x20), caller()) // The `operator`, which is always `msg.sender`.
mstore(add(m, 0x40), shr(96, shl(96, from)))
mstore(add(m, 0x60), id)
mstore(add(m, 0x80), 0x80)
let n := mload(data)
mstore(add(m, 0xa0), n)
if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xc0), n)) }
// Revert if the call reverts.
if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m, 0x20)) {
if returndatasize() {
// Bubble up the revert if the call reverts.
returndatacopy(m, 0x00, returndatasize())
revert(m, returndatasize())
}
}
// Load the returndata and compare it.
if iszero(eq(mload(m), shl(224, onERC721ReceivedSelector))) {
mstore(0x00, 0xd1a57ed6) // `TransferToNonERC721ReceiverImplementer()`.
revert(0x1c, 0x04)
}
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "lib/openzeppelin-contracts/contracts/interfaces/IERC165.sol";
import "./OwnablePermissions.sol";
import "./ICreatorToken.sol";
import "./ICreatorTokenTransferValidator.sol";
import "./TransferValidation.sol";
/**
* @title CreatorTokenBase
* @author Limit Break, Inc.
* @notice CreatorTokenBase is an abstract contract that provides basic functionality for managing token
* transfer policies through an implementation of ICreatorTokenTransferValidator. This contract is intended to be used
* as a base for creator-specific token contracts, enabling customizable transfer restrictions and security policies.
*
* <h4>Features:</h4>
* <ul>Ownable: This contract can have an owner who can set and update the transfer validator.</ul>
* <ul>TransferValidation: Implements the basic token transfer validation interface.</ul>
* <ul>ICreatorToken: Implements the interface for creator tokens, providing view functions for token security policies.</ul>
*
* <h4>Benefits:</h4>
* <ul>Provides a flexible and modular way to implement custom token transfer restrictions and security policies.</ul>
* <ul>Allows creators to enforce policies such as whitelisted operators and permitted contract receivers.</ul>
* <ul>Can be easily integrated into other token contracts as a base contract.</ul>
*
* <h4>Intended Usage:</h4>
* <ul>Use as a base contract for creator token implementations that require advanced transfer restrictions and
* security policies.</ul>
* <ul>Set and update the ICreatorTokenTransferValidator implementation contract to enforce desired policies for the
* creator token.</ul>
*/
abstract contract CreatorTokenBase is OwnablePermissions, TransferValidation, ICreatorToken {
error CreatorTokenBase__InvalidTransferValidatorContract();
error CreatorTokenBase__SetTransferValidatorFirst();
address public constant DEFAULT_TRANSFER_VALIDATOR = address(0x0000721C310194CcfC01E523fc93C9cCcFa2A0Ac);
TransferSecurityLevels public constant DEFAULT_TRANSFER_SECURITY_LEVEL = TransferSecurityLevels.One;
uint120 public constant DEFAULT_OPERATOR_WHITELIST_ID = uint120(1);
ICreatorTokenTransferValidator private transferValidator;
/**
* @notice Allows the contract owner to set the transfer validator to the official validator contract
* and set the security policy to the recommended default settings.
* @dev May be overridden to change the default behavior of an individual collection.
*/
function setToDefaultSecurityPolicy() public virtual {
_requireCallerIsContractOwner();
setTransferValidator(DEFAULT_TRANSFER_VALIDATOR);
ICreatorTokenTransferValidator(DEFAULT_TRANSFER_VALIDATOR).setTransferSecurityLevelOfCollection(
address(this), DEFAULT_TRANSFER_SECURITY_LEVEL
);
ICreatorTokenTransferValidator(DEFAULT_TRANSFER_VALIDATOR).setOperatorWhitelistOfCollection(
address(this), DEFAULT_OPERATOR_WHITELIST_ID
);
}
/**
* @notice Allows the contract owner to set the transfer validator to a custom validator contract
* and set the security policy to their own custom settings.
*/
function setToCustomValidatorAndSecurityPolicy(
address validator,
TransferSecurityLevels level,
uint120 operatorWhitelistId,
uint120 permittedContractReceiversAllowlistId
) public virtual {
_requireCallerIsContractOwner();
setTransferValidator(validator);
ICreatorTokenTransferValidator(validator).setTransferSecurityLevelOfCollection(address(this), level);
ICreatorTokenTransferValidator(validator).setOperatorWhitelistOfCollection(address(this), operatorWhitelistId);
ICreatorTokenTransferValidator(validator).setPermittedContractReceiverAllowlistOfCollection(
address(this), permittedContractReceiversAllowlistId
);
}
/**
* @notice Allows the contract owner to set the security policy to their own custom settings.
* @dev Reverts if the transfer validator has not been set.
*/
function setToCustomSecurityPolicy(
TransferSecurityLevels level,
uint120 operatorWhitelistId,
uint120 permittedContractReceiversAllowlistId
) public virtual {
_requireCallerIsContractOwner();
ICreatorTokenTransferValidator validator = getTransferValidator();
if (address(validator) == address(0)) {
revert CreatorTokenBase__SetTransferValidatorFirst();
}
validator.setTransferSecurityLevelOfCollection(address(this), level);
validator.setOperatorWhitelistOfCollection(address(this), operatorWhitelistId);
validator.setPermittedContractReceiverAllowlistOfCollection(
address(this), permittedContractReceiversAllowlistId
);
}
/**
* @notice Sets the transfer validator for the token contract.
*
* @dev Throws when provided validator contract is not the zero address and doesn't support
* the ICreatorTokenTransferValidator interface.
* @dev Throws when the caller is not the contract owner.
*
* @dev <h4>Postconditions:</h4>
* 1. The transferValidator address is updated.
* 2. The `TransferValidatorUpdated` event is emitted.
*
* @param transferValidator_ The address of the transfer validator contract.
*/
function setTransferValidator(address transferValidator_) public virtual {
_requireCallerIsContractOwner();
bool isValidTransferValidator = false;
if (transferValidator_.code.length > 0) {
try IERC165(transferValidator_).supportsInterface(type(ICreatorTokenTransferValidator).interfaceId)
returns (bool supportsInterface) {
isValidTransferValidator = supportsInterface;
} catch {}
}
if (transferValidator_ != address(0) && !isValidTransferValidator) {
revert CreatorTokenBase__InvalidTransferValidatorContract();
}
emit TransferValidatorUpdated(address(transferValidator), transferValidator_);
transferValidator = ICreatorTokenTransferValidator(transferValidator_);
}
/**
* @notice Returns the transfer validator contract address for this token contract.
*/
function getTransferValidator() public view override returns (ICreatorTokenTransferValidator) {
return transferValidator;
}
/**
* @notice Returns the security policy for this token contract, which includes:
* Transfer security level, operator whitelist id, permitted contract receiver allowlist id.
*/
function getSecurityPolicy() public view override returns (CollectionSecurityPolicy memory) {
if (address(transferValidator) != address(0)) {
return transferValidator.getCollectionSecurityPolicy(address(this));
}
return CollectionSecurityPolicy({
transferSecurityLevel: TransferSecurityLevels.Zero,
operatorWhitelistId: 0,
permittedContractReceiversId: 0
});
}
/**
* @notice Returns the list of all whitelisted operators for this token contract.
* @dev This can be an expensive call and should only be used in view-only functions.
*/
function getWhitelistedOperators() public view override returns (address[] memory) {
if (address(transferValidator) != address(0)) {
return transferValidator.getWhitelistedOperators(
transferValidator.getCollectionSecurityPolicy(address(this)).operatorWhitelistId
);
}
return new address[](0);
}
/**
* @notice Returns the list of permitted contract receivers for this token contract.
* @dev This can be an expensive call and should only be used in view-only functions.
*/
function getPermittedContractReceivers() public view override returns (address[] memory) {
if (address(transferValidator) != address(0)) {
return transferValidator.getPermittedContractReceivers(
transferValidator.getCollectionSecurityPolicy(address(this)).permittedContractReceiversId
);
}
return new address[](0);
}
/**
* @notice Checks if an operator is whitelisted for this token contract.
* @param operator The address of the operator to check.
*/
function isOperatorWhitelisted(address operator) public view override returns (bool) {
if (address(transferValidator) != address(0)) {
return transferValidator.isOperatorWhitelisted(
transferValidator.getCollectionSecurityPolicy(address(this)).operatorWhitelistId, operator
);
}
return false;
}
/**
* @notice Checks if a contract receiver is permitted for this token contract.
* @param receiver The address of the receiver to check.
*/
function isContractReceiverPermitted(address receiver) public view override returns (bool) {
if (address(transferValidator) != address(0)) {
return transferValidator.isContractReceiverPermitted(
transferValidator.getCollectionSecurityPolicy(address(this)).permittedContractReceiversId, receiver
);
}
return false;
}
/**
* @notice Determines if a transfer is allowed based on the token contract's security policy. Use this function
* to simulate whether or not a transfer made by the specified `caller` from the `from` address to the `to`
* address would be allowed by this token's security policy.
*
* @notice This function only checks the security policy restrictions and does not check whether token ownership
* or approvals are in place.
*
* @param caller The address of the simulated caller.
* @param from The address of the sender.
* @param to The address of the receiver.
* @return True if the transfer is allowed, false otherwise.
*/
function isTransferAllowed(address caller, address from, address to) public view override returns (bool) {
if (address(transferValidator) != address(0)) {
try transferValidator.applyCollectionTransferPolicy(caller, from, to) {
return true;
} catch {
return false;
}
}
return true;
}
/**
* @dev Pre-validates a token transfer, reverting if the transfer is not allowed by this token's security policy.
* Inheriting contracts are responsible for overriding the _beforeTokenTransfer function, or its equivalent
* and calling _validateBeforeTransfer so that checks can be properly applied during token transfers.
*
* @dev Throws when the transfer doesn't comply with the collection's transfer policy, if the transferValidator is
* set to a non-zero address.
*
* @param caller The address of the caller.
* @param from The address of the sender.
* @param to The address of the receiver.
*/
function _preValidateTransfer(address caller, address from, address to, uint256, /*tokenId*/ uint256 /*value*/ )
internal
virtual
override
{
if (address(transferValidator) != address(0)) {
transferValidator.applyCollectionTransferPolicy(caller, from, to);
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/common/ERC2981.sol)
pragma solidity ^0.8.0;
import "../../interfaces/IERC2981.sol";
import "../../utils/introspection/ERC165.sol";
/**
* @dev Implementation of the NFT Royalty Standard, a standardized way to retrieve royalty payment information.
*
* Royalty information can be specified globally for all token ids via {_setDefaultRoyalty}, and/or individually for
* specific token ids via {_setTokenRoyalty}. The latter takes precedence over the first.
*
* Royalty is specified as a fraction of sale price. {_feeDenominator} is overridable but defaults to 10000, meaning the
* fee is specified in basis points by default.
*
* IMPORTANT: ERC-2981 only specifies a way to signal royalty information and does not enforce its payment. See
* https://eips.ethereum.org/EIPS/eip-2981#optional-royalty-payments[Rationale] in the EIP. Marketplaces are expected to
* voluntarily pay royalties together with sales, but note that this standard is not yet widely supported.
*
* _Available since v4.5._
*/
abstract contract ERC2981 is IERC2981, ERC165 {
struct RoyaltyInfo {
address receiver;
uint96 royaltyFraction;
}
RoyaltyInfo private _defaultRoyaltyInfo;
mapping(uint256 => RoyaltyInfo) private _tokenRoyaltyInfo;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC165) returns (bool) {
return interfaceId == type(IERC2981).interfaceId || super.supportsInterface(interfaceId);
}
/**
* @inheritdoc IERC2981
*/
function royaltyInfo(uint256 tokenId, uint256 salePrice) public view virtual override returns (address, uint256) {
RoyaltyInfo memory royalty = _tokenRoyaltyInfo[tokenId];
if (royalty.receiver == address(0)) {
royalty = _defaultRoyaltyInfo;
}
uint256 royaltyAmount = (salePrice * royalty.royaltyFraction) / _feeDenominator();
return (royalty.receiver, royaltyAmount);
}
/**
* @dev The denominator with which to interpret the fee set in {_setTokenRoyalty} and {_setDefaultRoyalty} as a
* fraction of the sale price. Defaults to 10000 so fees are expressed in basis points, but may be customized by an
* override.
*/
function _feeDenominator() internal pure virtual returns (uint96) {
return 10000;
}
/**
* @dev Sets the royalty information that all ids in this contract will default to.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setDefaultRoyalty(address receiver, uint96 feeNumerator) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: invalid receiver");
_defaultRoyaltyInfo = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Removes default royalty information.
*/
function _deleteDefaultRoyalty() internal virtual {
delete _defaultRoyaltyInfo;
}
/**
* @dev Sets the royalty information for a specific token id, overriding the global default.
*
* Requirements:
*
* - `receiver` cannot be the zero address.
* - `feeNumerator` cannot be greater than the fee denominator.
*/
function _setTokenRoyalty(uint256 tokenId, address receiver, uint96 feeNumerator) internal virtual {
require(feeNumerator <= _feeDenominator(), "ERC2981: royalty fee will exceed salePrice");
require(receiver != address(0), "ERC2981: Invalid parameters");
_tokenRoyaltyInfo[tokenId] = RoyaltyInfo(receiver, feeNumerator);
}
/**
* @dev Resets royalty information for the token id back to the global default.
*/
function _resetTokenRoyalty(uint256 tokenId) internal virtual {
delete _tokenRoyaltyInfo[tokenId];
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for bit twiddling and boolean operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBit.sol)
/// @author Inspired by (https://graphics.stanford.edu/~seander/bithacks.html)
library LibBit {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BIT TWIDDLING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Find last set.
/// Returns the index of the most significant bit of `x`,
/// counting from the least significant bit position.
/// If `x` is zero, returns 256.
function fls(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000))
}
}
/// @dev Count leading zeros.
/// Returns the number of zeros preceding the most significant one bit.
/// If `x` is zero, returns 256.
function clz(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := add(xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff)), iszero(x))
}
}
/// @dev Find first set.
/// Returns the index of the least significant bit of `x`,
/// counting from the least significant bit position.
/// If `x` is zero, returns 256.
/// Equivalent to `ctz` (count trailing zeros), which gives
/// the number of zeros following the least significant one bit.
function ffs(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
// Isolate the least significant bit.
x := and(x, add(not(x), 1))
// For the upper 3 bits of the result, use a De Bruijn-like lookup.
// Credit to adhusson: https://blog.adhusson.com/cheap-find-first-set-evm/
// forgefmt: disable-next-item
r := shl(5, shr(252, shl(shl(2, shr(250, mul(x,
0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff))),
0x8040405543005266443200005020610674053026020000107506200176117077)))
// For the lower 5 bits of the result, use a De Bruijn lookup.
// forgefmt: disable-next-item
r := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f),
0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405))
}
}
/// @dev Returns the number of set bits in `x`.
function popCount(uint256 x) internal pure returns (uint256 c) {
/// @solidity memory-safe-assembly
assembly {
let max := not(0)
let isMax := eq(x, max)
x := sub(x, and(shr(1, x), div(max, 3)))
x := add(and(x, div(max, 5)), and(shr(2, x), div(max, 5)))
x := and(add(x, shr(4, x)), div(max, 17))
c := or(shl(8, isMax), shr(248, mul(x, div(max, 255))))
}
}
/// @dev Returns whether `x` is a power of 2.
function isPo2(uint256 x) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `x && !(x & (x - 1))`.
result := iszero(add(and(x, sub(x, 1)), iszero(x)))
}
}
/// @dev Returns `x` reversed at the bit level.
function reverseBits(uint256 x) internal pure returns (uint256 r) {
uint256 m0 = 0x0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f0f;
uint256 m1 = m0 ^ (m0 << 2);
uint256 m2 = m1 ^ (m1 << 1);
r = reverseBytes(x);
r = (m2 & (r >> 1)) | ((m2 & r) << 1);
r = (m1 & (r >> 2)) | ((m1 & r) << 2);
r = (m0 & (r >> 4)) | ((m0 & r) << 4);
}
/// @dev Returns `x` reversed at the byte level.
function reverseBytes(uint256 x) internal pure returns (uint256 r) {
unchecked {
// Computing masks on-the-fly reduces bytecode size by about 200 bytes.
uint256 m0 = 0x100000000000000000000000000000001 * (~toUint(x == uint256(0)) >> 192);
uint256 m1 = m0 ^ (m0 << 32);
uint256 m2 = m1 ^ (m1 << 16);
uint256 m3 = m2 ^ (m2 << 8);
r = (m3 & (x >> 8)) | ((m3 & x) << 8);
r = (m2 & (r >> 16)) | ((m2 & r) << 16);
r = (m1 & (r >> 32)) | ((m1 & r) << 32);
r = (m0 & (r >> 64)) | ((m0 & r) << 64);
r = (r >> 128) | (r << 128);
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BOOLEAN OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// A Solidity bool on the stack or memory is represented as a 256-bit word.
// Non-zero values are true, zero is false.
// A clean bool is either 0 (false) or 1 (true) under the hood.
// Usually, if not always, the bool result of a regular Solidity expression,
// or the argument of a public/external function will be a clean bool.
// You can usually use the raw variants for more performance.
// If uncertain, test (best with exact compiler settings).
// Or use the non-raw variants (compiler can sometimes optimize out the double `iszero`s).
/// @dev Returns `x & y`. Inputs must be clean.
function rawAnd(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := and(x, y)
}
}
/// @dev Returns `x & y`.
function and(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := and(iszero(iszero(x)), iszero(iszero(y)))
}
}
/// @dev Returns `x | y`. Inputs must be clean.
function rawOr(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := or(x, y)
}
}
/// @dev Returns `x | y`.
function or(bool x, bool y) internal pure returns (bool z) {
/// @solidity memory-safe-assembly
assembly {
z := or(iszero(iszero(x)), iszero(iszero(y)))
}
}
/// @dev Returns 1 if `b` is true, else 0. Input must be clean.
function rawToUint(bool b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := b
}
}
/// @dev Returns 1 if `b` is true, else 0.
function toUint(bool b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := iszero(iszero(b))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20 {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 amount) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
enum AllowlistTypes {
Operators,
PermittedContractReceivers
}
enum ReceiverConstraints {
None,
NoCode,
EOA
}
enum CallerConstraints {
None,
OperatorWhitelistEnableOTC,
OperatorWhitelistDisableOTC
}
enum StakerConstraints {
None,
CallerIsTxOrigin,
EOA
}
enum TransferSecurityLevels {
Zero,
One,
Two,
Three,
Four,
Five,
Six
}
struct TransferSecurityPolicy {
CallerConstraints callerConstraints;
ReceiverConstraints receiverConstraints;
}
struct CollectionSecurityPolicy {
TransferSecurityLevels transferSecurityLevel;
uint120 operatorWhitelistId;
uint120 permittedContractReceiversId;
}// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE
pragma solidity ^0.8.25;
import "lib/solady/src/utils/FixedPointMathLib.sol";
import "lib/solady/src/utils/LibString.sol";
import {LibDynamicBuffer} from "./LibDynamicThing.sol";
import "./Append.sol";
library FixedPoint {
struct FP {
uint256 value;
}
function toFixedPointNumber(uint256 x) internal pure returns (FP memory fp) {
x *= 1 ether;
fp.value = x;
}
function toFixedPointNumberRaw(uint256 x) internal pure returns (FP memory fp) {
fp.value = x;
}
function toNaturalNumber(FixedPoint.FP memory fp) internal pure returns (uint256) {
unchecked {
return fp.value / 1 ether;
} // uc
}
function add(FP memory a, FP memory b) internal pure returns (FP memory res) {
res.value = a.value + b.value;
}
function sub(FP memory a, FP memory b) internal pure returns (FP memory res) {
res.value = a.value - b.value;
}
function mul(FP memory a, FP memory b) internal pure returns (FP memory res) {
res.value = a.value * b.value / 1 ether;
}
function div(FP memory a, FP memory b) internal pure returns (FP memory res) {
res.value = a.value * 1 ether / b.value;
}
function mulDiv(FP memory a, FP memory b, FP memory d) internal pure returns (FP memory res) {
return div(mul(a, b), d);
}
function eq(FP memory a, FP memory b) internal pure returns (bool) {
return a.value == b.value;
}
function toString(FP memory x) internal pure returns (string memory ret) {
unchecked {
uint256 value = x.value;
LibDynamicBuffer.DynamicBuffer memory db = LibDynamicBuffer.newDynamicBuffer();
LibDynamicBuffer.p(db, bytes(LibString.toString(value / 1 ether)));
uint256 decimals = value % 1 ether;
if (decimals > 0) {
LibDynamicBuffer.p(db, bytes("."));
uint256 numZeros = 17 - FixedPointMathLib.log10(decimals);
LibDynamicBuffer.p(db, bytes(sZeros(numZeros)));
while (decimals > 1 && decimals % 10 == 0) {
decimals /= 10;
}
LibDynamicBuffer.p(db, bytes(LibString.toString(decimals)));
}
ret = string(LibDynamicBuffer.getBuffer(db));
} // uc
}
function sZeros(uint256 numZeros) internal pure returns (string memory ret) {
ret = _allocateString(numZeros);
assembly {
for { let i := 0 } 1 {} {
mstore8(add(ret, add(0x20, i)), 48)
i := add(i, 1)
if iszero(lt(i, numZeros)) { break }
}
// 48 is utf8 for "0"
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
import "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
}// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol) pragma solidity ^0.8.0; import "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
abstract contract OwnablePermissions {
function _requireCallerIsContractOwner() internal view virtual;
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "./ICreatorTokenTransferValidator.sol";
interface ICreatorToken {
event TransferValidatorUpdated(address oldValidator, address newValidator);
function getTransferValidator() external view returns (ICreatorTokenTransferValidator);
function getSecurityPolicy() external view returns (CollectionSecurityPolicy memory);
function getWhitelistedOperators() external view returns (address[] memory);
function getPermittedContractReceivers() external view returns (address[] memory);
function isOperatorWhitelisted(address operator) external view returns (bool);
function isContractReceiverPermitted(address receiver) external view returns (bool);
function isTransferAllowed(address caller, address from, address to) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "./IEOARegistry.sol";
import "./ITransferSecurityRegistry.sol";
import "./ITransferValidator.sol";
interface ICreatorTokenTransferValidator is ITransferSecurityRegistry, ITransferValidator, IEOARegistry {}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "lib/openzeppelin-contracts/contracts/utils/Context.sol";
/**
* @title TransferValidation
* @author Limit Break, Inc.
* @notice A mix-in that can be combined with ERC-721 contracts to provide more granular hooks.
* Openzeppelin's ERC721 contract only provides hooks for before and after transfer. This allows
* developers to validate or customize transfers within the context of a mint, a burn, or a transfer.
*/
abstract contract TransferValidation is Context {
error ShouldNotMintToBurnAddress();
/// @dev Inheriting contracts should call this function in the _beforeTokenTransfer function to get more granular hooks.
function _validateBeforeTransfer(address from, address to, uint256 tokenId) internal virtual {
bool fromZeroAddress = from == address(0);
bool toZeroAddress = to == address(0);
if (fromZeroAddress && toZeroAddress) {
revert ShouldNotMintToBurnAddress();
} else if (fromZeroAddress) {
_preValidateMint(_msgSender(), to, tokenId, msg.value);
} else if (toZeroAddress) {
_preValidateBurn(_msgSender(), from, tokenId, msg.value);
} else {
_preValidateTransfer(_msgSender(), from, to, tokenId, msg.value);
}
}
/// @dev Inheriting contracts should call this function in the _afterTokenTransfer function to get more granular hooks.
function _validateAfterTransfer(address from, address to, uint256 tokenId) internal virtual {
bool fromZeroAddress = from == address(0);
bool toZeroAddress = to == address(0);
if (fromZeroAddress && toZeroAddress) {
revert ShouldNotMintToBurnAddress();
} else if (fromZeroAddress) {
_postValidateMint(_msgSender(), to, tokenId, msg.value);
} else if (toZeroAddress) {
_postValidateBurn(_msgSender(), from, tokenId, msg.value);
} else {
_postValidateTransfer(_msgSender(), from, to, tokenId, msg.value);
}
}
/// @dev Optional validation hook that fires before a mint
function _preValidateMint(address caller, address to, uint256 tokenId, uint256 value) internal virtual {}
/// @dev Optional validation hook that fires after a mint
function _postValidateMint(address caller, address to, uint256 tokenId, uint256 value) internal virtual {}
/// @dev Optional validation hook that fires before a burn
function _preValidateBurn(address caller, address from, uint256 tokenId, uint256 value) internal virtual {}
/// @dev Optional validation hook that fires after a burn
function _postValidateBurn(address caller, address from, uint256 tokenId, uint256 value) internal virtual {}
/// @dev Optional validation hook that fires before a transfer
function _preValidateTransfer(address caller, address from, address to, uint256 tokenId, uint256 value)
internal
virtual
{}
/// @dev Optional validation hook that fires after a transfer
function _postValidateTransfer(address caller, address from, address to, uint256 tokenId, uint256 value)
internal
virtual
{}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
import "../utils/introspection/IERC165.sol";
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981 is IERC165 {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(
uint256 tokenId,
uint256 salePrice
) external view returns (address receiver, uint256 royaltyAmount);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Arithmetic library with operations for fixed-point numbers.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol)
library FixedPointMathLib {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error ExpOverflow();
/// @dev The operation failed, as the output exceeds the maximum value of uint256.
error FactorialOverflow();
/// @dev The operation failed, due to an overflow.
error RPowOverflow();
/// @dev The mantissa is too big to fit.
error MantissaOverflow();
/// @dev The operation failed, due to an multiplication overflow.
error MulWadFailed();
/// @dev The operation failed, due to an multiplication overflow.
error SMulWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error DivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error SDivWadFailed();
/// @dev The operation failed, either due to a multiplication overflow, or a division by a zero.
error MulDivFailed();
/// @dev The division failed, as the denominator is zero.
error DivFailed();
/// @dev The full precision multiply-divide operation failed, either due
/// to the result being larger than 256 bits, or a division by a zero.
error FullMulDivFailed();
/// @dev The output is undefined, as the input is less-than-or-equal to zero.
error LnWadUndefined();
/// @dev The input outside the acceptable domain.
error OutOfDomain();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The scalar of ETH and most ERC20s.
uint256 internal constant WAD = 1e18;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* SIMPLIFIED FIXED POINT OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if gt(x, div(not(0), y)) {
if y {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
}
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down.
function sMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require((x == 0 || z / x == y) && !(x == -1 && y == type(int256).min))`.
if iszero(gt(or(iszero(x), eq(sdiv(z, x), y)), lt(not(x), eq(y, shl(255, 1))))) {
mstore(0x00, 0xedcd4dd4) // `SMulWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawMulWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded down, but without overflow checks.
function rawSMulWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, y), WAD)
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up.
function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
if iszero(eq(div(z, y), x)) {
if y {
mstore(0x00, 0xbac65e5b) // `MulWadFailed()`.
revert(0x1c, 0x04)
}
}
z := add(iszero(iszero(mod(z, WAD))), div(z, WAD))
}
}
/// @dev Equivalent to `(x * y) / WAD` rounded up, but without overflow checks.
function rawMulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down.
function sDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, WAD)
// Equivalent to `require(y != 0 && ((x * WAD) / WAD == x))`.
if iszero(mul(y, eq(sdiv(z, WAD), x))) {
mstore(0x00, 0x5c43740d) // `SDivWadFailed()`.
revert(0x1c, 0x04)
}
z := sdiv(z, y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawDivWad(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded down, but without overflow and divide by zero checks.
function rawSDivWad(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(mul(x, WAD), y)
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up.
function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Equivalent to `require(y != 0 && x <= type(uint256).max / WAD)`.
if iszero(mul(y, lt(x, add(1, div(not(0), WAD))))) {
mstore(0x00, 0x7c5f487d) // `DivWadFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `(x * WAD) / y` rounded up, but without overflow and divide by zero checks.
function rawDivWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
}
}
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
/// Note: This function is an approximation.
function powWad(int256 x, int256 y) internal pure returns (int256) {
// Using `ln(x)` means `x` must be greater than 0.
return expWad((lnWad(x) * y) / int256(WAD));
}
/// @dev Returns `exp(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function expWad(int256 x) internal pure returns (int256 r) {
unchecked {
// When the result is less than 0.5 we return zero.
// This happens when `x <= (log(1e-18) * 1e18) ~ -4.15e19`.
if (x <= -41446531673892822313) return r;
/// @solidity memory-safe-assembly
assembly {
// When the result is greater than `(2**255 - 1) / 1e18` we can not represent it as
// an int. This happens when `x >= floor(log((2**255 - 1) / 1e18) * 1e18) ≈ 135`.
if iszero(slt(x, 135305999368893231589)) {
mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
revert(0x1c, 0x04)
}
}
// `x` is now in the range `(-42, 136) * 1e18`. Convert to `(-42, 136) * 2**96`
// for more intermediate precision and a binary basis. This base conversion
// is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
x = (x << 78) / 5 ** 18;
// Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
// of two such that exp(x) = exp(x') * 2**k, where k is an integer.
// Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
x = x - k * 54916777467707473351141471128;
// `k` is in the range `[-61, 195]`.
// Evaluate using a (6, 7)-term rational approximation.
// `p` is made monic, we'll multiply by a scale factor later.
int256 y = x + 1346386616545796478920950773328;
y = ((y * x) >> 96) + 57155421227552351082224309758442;
int256 p = y + x - 94201549194550492254356042504812;
p = ((p * y) >> 96) + 28719021644029726153956944680412240;
p = p * x + (4385272521454847904659076985693276 << 96);
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
int256 q = x - 2855989394907223263936484059900;
q = ((q * x) >> 96) + 50020603652535783019961831881945;
q = ((q * x) >> 96) - 533845033583426703283633433725380;
q = ((q * x) >> 96) + 3604857256930695427073651918091429;
q = ((q * x) >> 96) - 14423608567350463180887372962807573;
q = ((q * x) >> 96) + 26449188498355588339934803723976023;
/// @solidity memory-safe-assembly
assembly {
// Div in assembly because solidity adds a zero check despite the unchecked.
// The q polynomial won't have zeros in the domain as all its roots are complex.
// No scaling is necessary because p is already `2**96` too large.
r := sdiv(p, q)
}
// r should be in the range `(0.09, 0.25) * 2**96`.
// We now need to multiply r by:
// - The scale factor `s ≈ 6.031367120`.
// - The `2**k` factor from the range reduction.
// - The `1e18 / 2**96` factor for base conversion.
// We do this all at once, with an intermediate result in `2**213`
// basis, so the final right shift is always by a positive amount.
r = int256(
(uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)
);
}
}
/// @dev Returns `ln(x)`, denominated in `WAD`.
/// Credit to Remco Bloemen under MIT license: https://2π.com/22/exp-ln
/// Note: This function is an approximation. Monotonically increasing.
function lnWad(int256 x) internal pure returns (int256 r) {
/// @solidity memory-safe-assembly
assembly {
// We want to convert `x` from `10**18` fixed point to `2**96` fixed point.
// We do this by multiplying by `2**96 / 10**18`. But since
// `ln(x * C) = ln(x) + ln(C)`, we can simply do nothing here
// and add `ln(2**96 / 10**18)` at the end.
// Compute `k = log2(x) - 96`, `r = 159 - k = 255 - log2(x) = 255 ^ log2(x)`.
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// We place the check here for more optimal stack operations.
if iszero(sgt(x, 0)) {
mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
revert(0x1c, 0x04)
}
// forgefmt: disable-next-item
r := xor(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff))
// Reduce range of x to (1, 2) * 2**96
// ln(2^k * x) = k * ln(2) + ln(x)
x := shr(159, shl(r, x))
// Evaluate using a (8, 8)-term rational approximation.
// `p` is made monic, we will multiply by a scale factor later.
// forgefmt: disable-next-item
let p := sub( // This heavily nested expression is to avoid stack-too-deep for via-ir.
sar(96, mul(add(43456485725739037958740375743393,
sar(96, mul(add(24828157081833163892658089445524,
sar(96, mul(add(3273285459638523848632254066296,
x), x))), x))), x)), 11111509109440967052023855526967)
p := sub(sar(96, mul(p, x)), 45023709667254063763336534515857)
p := sub(sar(96, mul(p, x)), 14706773417378608786704636184526)
p := sub(mul(p, x), shl(96, 795164235651350426258249787498))
// We leave `p` in `2**192` basis so we don't need to scale it back up for the division.
// `q` is monic by convention.
let q := add(5573035233440673466300451813936, x)
q := add(71694874799317883764090561454958, sar(96, mul(x, q)))
q := add(283447036172924575727196451306956, sar(96, mul(x, q)))
q := add(401686690394027663651624208769553, sar(96, mul(x, q)))
q := add(204048457590392012362485061816622, sar(96, mul(x, q)))
q := add(31853899698501571402653359427138, sar(96, mul(x, q)))
q := add(909429971244387300277376558375, sar(96, mul(x, q)))
// `p / q` is in the range `(0, 0.125) * 2**96`.
// Finalization, we need to:
// - Multiply by the scale factor `s = 5.549…`.
// - Add `ln(2**96 / 10**18)`.
// - Add `k * ln(2)`.
// - Multiply by `10**18 / 2**96 = 5**18 >> 78`.
// The q polynomial is known not to have zeros in the domain.
// No scaling required because p is already `2**96` too large.
p := sdiv(p, q)
// Multiply by the scaling factor: `s * 5**18 * 2**96`, base is now `5**18 * 2**192`.
p := mul(1677202110996718588342820967067443963516166, p)
// Add `ln(2) * k * 5**18 * 2**192`.
// forgefmt: disable-next-item
p := add(mul(16597577552685614221487285958193947469193820559219878177908093499208371, sub(159, r)), p)
// Add `ln(2**96 / 10**18) * 5**18 * 2**192`.
p := add(600920179829731861736702779321621459595472258049074101567377883020018308, p)
// Base conversion: mul `2**18 / 2**192`.
r := sar(174, p)
}
}
/// @dev Returns `W_0(x)`, denominated in `WAD`.
/// See: https://en.wikipedia.org/wiki/Lambert_W_function
/// a.k.a. Product log function. This is an approximation of the principal branch.
/// Note: This function is an approximation. Monotonically increasing.
function lambertW0Wad(int256 x) internal pure returns (int256 w) {
// forgefmt: disable-next-item
unchecked {
if ((w = x) <= -367879441171442322) revert OutOfDomain(); // `x` less than `-1/e`.
(int256 wad, int256 p) = (int256(WAD), x);
uint256 c; // Whether we need to avoid catastrophic cancellation.
uint256 i = 4; // Number of iterations.
if (w <= 0x1ffffffffffff) {
if (-0x4000000000000 <= w) {
i = 1; // Inputs near zero only take one step to converge.
} else if (w <= -0x3ffffffffffffff) {
i = 32; // Inputs near `-1/e` take very long to converge.
}
} else if (uint256(w >> 63) == uint256(0)) {
/// @solidity memory-safe-assembly
assembly {
// Inline log2 for more performance, since the range is small.
let v := shr(49, w)
let l := shl(3, lt(0xff, v))
l := add(or(l, byte(and(0x1f, shr(shr(l, v), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000)), 49)
w := sdiv(shl(l, 7), byte(sub(l, 31), 0x0303030303030303040506080c13))
c := gt(l, 60)
i := add(2, add(gt(l, 53), c))
}
} else {
int256 ll = lnWad(w = lnWad(w));
/// @solidity memory-safe-assembly
assembly {
// `w = ln(x) - ln(ln(x)) + b * ln(ln(x)) / ln(x)`.
w := add(sdiv(mul(ll, 1023715080943847266), w), sub(w, ll))
i := add(3, iszero(shr(68, x)))
c := iszero(shr(143, x))
}
if (c == uint256(0)) {
do { // If `x` is big, use Newton's so that intermediate values won't overflow.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := mul(w, div(e, wad))
w := sub(w, sdiv(sub(t, x), div(add(e, t), wad)))
}
if (p <= w) break;
p = w;
} while (--i != uint256(0));
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
return w;
}
}
do { // Otherwise, use Halley's for faster convergence.
int256 e = expWad(w);
/// @solidity memory-safe-assembly
assembly {
let t := add(w, wad)
let s := sub(mul(w, e), mul(x, wad))
w := sub(w, sdiv(mul(s, wad), sub(mul(e, t), sdiv(mul(add(t, wad), s), add(t, t)))))
}
if (p <= w) break;
p = w;
} while (--i != c);
/// @solidity memory-safe-assembly
assembly {
w := sub(w, sgt(w, 2))
}
// For certain ranges of `x`, we'll use the quadratic-rate recursive formula of
// R. Iacono and J.P. Boyd for the last iteration, to avoid catastrophic cancellation.
if (c == uint256(0)) return w;
int256 t = w | 1;
/// @solidity memory-safe-assembly
assembly {
x := sdiv(mul(x, wad), t)
}
x = (t * (wad + lnWad(x)));
/// @solidity memory-safe-assembly
assembly {
w := sdiv(x, add(wad, t))
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* GENERAL NUMBER UTILITIES */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `a * b == x * y`, with full precision.
function fullMulEq(uint256 a, uint256 b, uint256 x, uint256 y)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
result := and(eq(mul(a, b), mul(x, y)), eq(mulmod(x, y, not(0)), mulmod(a, b, not(0))))
}
}
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Remco Bloemen under MIT license: https://2π.com/21/muldiv
function fullMulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// 512-bit multiply `[p1 p0] = x * y`.
// Compute the product mod `2**256` and mod `2**256 - 1`
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that `product = p1 * 2**256 + p0`.
// Temporarily use `z` as `p0` to save gas.
z := mul(x, y) // Lower 256 bits of `x * y`.
for {} 1 {} {
// If overflows.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
/*------------------- 512 by 256 division --------------------*/
// Make division exact by subtracting the remainder from `[p1 p0]`.
let r := mulmod(x, y, d) // Compute remainder using mulmod.
let t := and(d, sub(0, d)) // The least significant bit of `d`. `t >= 1`.
// Make sure `z` is less than `2**256`. Also prevents `d == 0`.
// Placing the check here seems to give more optimal stack operations.
if iszero(gt(d, p1)) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
d := div(d, t) // Divide `d` by `t`, which is a power of two.
// Invert `d mod 2**256`
// Now that `d` is an odd number, it has an inverse
// modulo `2**256` such that `d * inv = 1 mod 2**256`.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, `d * inv = 1 mod 2**4`.
let inv := xor(2, mul(3, d))
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**8
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**16
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**32
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**64
inv := mul(inv, sub(2, mul(d, inv))) // inverse mod 2**128
z :=
mul(
// Divide [p1 p0] by the factors of two.
// Shift in bits from `p1` into `p0`. For this we need
// to flip `t` such that it is `2**256 / t`.
or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
mul(sub(2, mul(d, inv)), inv) // inverse mod 2**256
)
break
}
z := div(z, d)
break
}
}
}
/// @dev Calculates `floor(x * y / d)` with full precision.
/// Behavior is undefined if `d` is zero or the final result cannot fit in 256 bits.
/// Performs the full 512 bit calculation regardless.
function fullMulDivUnchecked(uint256 x, uint256 y, uint256 d)
internal
pure
returns (uint256 z)
{
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z)))
let t := and(d, sub(0, d))
let r := mulmod(x, y, d)
d := div(d, t)
let inv := xor(2, mul(3, d))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
inv := mul(inv, sub(2, mul(d, inv)))
z :=
mul(
or(mul(sub(p1, gt(r, z)), add(div(sub(0, t), t), 1)), div(sub(z, r), t)),
mul(sub(2, mul(d, inv)), inv)
)
}
}
/// @dev Calculates `floor(x * y / d)` with full precision, rounded up.
/// Throws if result overflows a uint256 or when `d` is zero.
/// Credit to Uniswap-v3-core under MIT license:
/// https://github.com/Uniswap/v3-core/blob/main/contracts/libraries/FullMath.sol
function fullMulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
z = fullMulDiv(x, y, d);
/// @solidity memory-safe-assembly
assembly {
if mulmod(x, y, d) {
z := add(z, 1)
if iszero(z) {
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
}
}
}
/// @dev Calculates `floor(x * y / 2 ** n)` with full precision.
/// Throws if result overflows a uint256.
/// Credit to Philogy under MIT license:
/// https://github.com/SorellaLabs/angstrom/blob/main/contracts/src/libraries/X128MathLib.sol
function fullMulDivN(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// Temporarily use `z` as `p0` to save gas.
z := mul(x, y) // Lower 256 bits of `x * y`. We'll call this `z`.
for {} 1 {} {
if iszero(or(iszero(x), eq(div(z, x), y))) {
let k := and(n, 0xff) // `n`, cleaned.
let mm := mulmod(x, y, not(0))
let p1 := sub(mm, add(z, lt(mm, z))) // Upper 256 bits of `x * y`.
// | p1 | z |
// Before: | p1_0 ¦ p1_1 | z_0 ¦ z_1 |
// Final: | 0 ¦ p1_0 | p1_1 ¦ z_0 |
// Check that final `z` doesn't overflow by checking that p1_0 = 0.
if iszero(shr(k, p1)) {
z := add(shl(sub(256, k), p1), shr(k, z))
break
}
mstore(0x00, 0xae47f702) // `FullMulDivFailed()`.
revert(0x1c, 0x04)
}
z := shr(and(n, 0xff), z)
break
}
}
}
/// @dev Returns `floor(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDiv(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := div(z, d)
}
}
/// @dev Returns `ceil(x * y / d)`.
/// Reverts if `x * y` overflows, or `d` is zero.
function mulDivUp(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(x, y)
// Equivalent to `require(d != 0 && (y == 0 || x <= type(uint256).max / y))`.
if iszero(mul(or(iszero(x), eq(div(z, x), y)), d)) {
mstore(0x00, 0xad251c27) // `MulDivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(z, d))), div(z, d))
}
}
/// @dev Returns `x`, the modular multiplicative inverse of `a`, such that `(a * x) % n == 1`.
function invMod(uint256 a, uint256 n) internal pure returns (uint256 x) {
/// @solidity memory-safe-assembly
assembly {
let g := n
let r := mod(a, n)
for { let y := 1 } 1 {} {
let q := div(g, r)
let t := g
g := r
r := sub(t, mul(r, q))
let u := x
x := y
y := sub(u, mul(y, q))
if iszero(r) { break }
}
x := mul(eq(g, 1), add(x, mul(slt(x, 0), n)))
}
}
/// @dev Returns `ceil(x / d)`.
/// Reverts if `d` is zero.
function divUp(uint256 x, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
if iszero(d) {
mstore(0x00, 0x65244e4e) // `DivFailed()`.
revert(0x1c, 0x04)
}
z := add(iszero(iszero(mod(x, d))), div(x, d))
}
}
/// @dev Returns `max(0, x - y)`.
function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(gt(x, y), sub(x, y))
}
}
/// @dev Returns `condition ? x : y`, without branching.
function ternary(bool condition, uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), iszero(condition)))
}
}
/// @dev Exponentiate `x` to `y` by squaring, denominated in base `b`.
/// Reverts if the computation overflows.
function rpow(uint256 x, uint256 y, uint256 b) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mul(b, iszero(y)) // `0 ** 0 = 1`. Otherwise, `0 ** n = 0`.
if x {
z := xor(b, mul(xor(b, x), and(y, 1))) // `z = isEven(y) ? scale : x`
let half := shr(1, b) // Divide `b` by 2.
// Divide `y` by 2 every iteration.
for { y := shr(1, y) } y { y := shr(1, y) } {
let xx := mul(x, x) // Store x squared.
let xxRound := add(xx, half) // Round to the nearest number.
// Revert if `xx + half` overflowed, or if `x ** 2` overflows.
if or(lt(xxRound, xx), shr(128, x)) {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
x := div(xxRound, b) // Set `x` to scaled `xxRound`.
// If `y` is odd:
if and(y, 1) {
let zx := mul(z, x) // Compute `z * x`.
let zxRound := add(zx, half) // Round to the nearest number.
// If `z * x` overflowed or `zx + half` overflowed:
if or(xor(div(zx, x), z), lt(zxRound, zx)) {
// Revert if `x` is non-zero.
if x {
mstore(0x00, 0x49f7642b) // `RPowOverflow()`.
revert(0x1c, 0x04)
}
}
z := div(zxRound, b) // Return properly scaled `zxRound`.
}
}
}
}
}
/// @dev Returns the square root of `x`, rounded down.
function sqrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
// `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
z := 181 // The "correct" value is 1, but this saves a multiplication later.
// This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
// start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.
// Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
// but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffffff, shr(r, x))))
z := shl(shr(1, r), z)
// Goal was to get `z*z*y` within a small factor of `x`. More iterations could
// get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
// We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
// That's not possible if `x < 256` but we can just verify those cases exhaustively.
// Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
// Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
// Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.
// For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
// is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
// with largest error when `s = 1` and when `s = 256` or `1/256`.
// Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
// Then we can estimate `sqrt(y)` using
// `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.
// There is no overflow risk here since `y < 2**136` after the first branch above.
z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.
// Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
z := shr(1, add(z, div(x, z)))
// If `x+1` is a perfect square, the Babylonian method cycles between
// `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
// See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
z := sub(z, lt(div(x, z), z))
}
}
/// @dev Returns the cube root of `x`, rounded down.
/// Credit to bout3fiddy and pcaversaccio under AGPLv3 license:
/// https://github.com/pcaversaccio/snekmate/blob/main/src/utils/Math.vy
/// Formally verified by xuwinnie:
/// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
function cbrt(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
let r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// Makeshift lookup table to nudge the approximate log2 result.
z := div(shl(div(r, 3), shl(lt(0xf, shr(r, x)), 0xf)), xor(7, mod(r, 3)))
// Newton-Raphson's.
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
z := div(add(add(div(x, mul(z, z)), z), z), 3)
// Round down.
z := sub(z, lt(div(x, mul(z, z)), z))
}
}
/// @dev Returns the square root of `x`, denominated in `WAD`, rounded down.
function sqrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
if (x <= type(uint256).max / 10 ** 18) return sqrt(x * 10 ** 18);
z = (1 + sqrt(x)) * 10 ** 9;
z = (fullMulDivUnchecked(x, 10 ** 18, z) + z) >> 1;
}
/// @solidity memory-safe-assembly
assembly {
z := sub(z, gt(999999999999999999, sub(mulmod(z, z, x), 1))) // Round down.
}
}
/// @dev Returns the cube root of `x`, denominated in `WAD`, rounded down.
/// Formally verified by xuwinnie:
/// https://github.com/vectorized/solady/blob/main/audits/xuwinnie-solady-cbrt-proof.pdf
function cbrtWad(uint256 x) internal pure returns (uint256 z) {
unchecked {
if (x <= type(uint256).max / 10 ** 36) return cbrt(x * 10 ** 36);
z = (1 + cbrt(x)) * 10 ** 12;
z = (fullMulDivUnchecked(x, 10 ** 36, z * z) + z + z) / 3;
}
/// @solidity memory-safe-assembly
assembly {
let p := x
for {} 1 {} {
if iszero(shr(229, p)) {
if iszero(shr(199, p)) {
p := mul(p, 100000000000000000) // 10 ** 17.
break
}
p := mul(p, 100000000) // 10 ** 8.
break
}
if iszero(shr(249, p)) { p := mul(p, 100) }
break
}
let t := mulmod(mul(z, z), z, p)
z := sub(z, gt(lt(t, shr(1, p)), iszero(t))) // Round down.
}
}
/// @dev Returns the factorial of `x`.
function factorial(uint256 x) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := 1
if iszero(lt(x, 58)) {
mstore(0x00, 0xaba0f2a2) // `FactorialOverflow()`.
revert(0x1c, 0x04)
}
for {} x { x := sub(x, 1) } { z := mul(z, x) }
}
}
/// @dev Returns the log2 of `x`.
/// Equivalent to computing the index of the most significant bit (MSB) of `x`.
/// Returns 0 if `x` is zero.
function log2(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),
0x0706060506020504060203020504030106050205030304010505030400000000))
}
}
/// @dev Returns the log2 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log2Up(uint256 x) internal pure returns (uint256 r) {
r = log2(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(r, 1), x))
}
}
/// @dev Returns the log10 of `x`.
/// Returns 0 if `x` is zero.
function log10(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
if iszero(lt(x, 100000000000000000000000000000000000000)) {
x := div(x, 100000000000000000000000000000000000000)
r := 38
}
if iszero(lt(x, 100000000000000000000)) {
x := div(x, 100000000000000000000)
r := add(r, 20)
}
if iszero(lt(x, 10000000000)) {
x := div(x, 10000000000)
r := add(r, 10)
}
if iszero(lt(x, 100000)) {
x := div(x, 100000)
r := add(r, 5)
}
r := add(r, add(gt(x, 9), add(gt(x, 99), add(gt(x, 999), gt(x, 9999)))))
}
}
/// @dev Returns the log10 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log10Up(uint256 x) internal pure returns (uint256 r) {
r = log10(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(exp(10, r), x))
}
}
/// @dev Returns the log256 of `x`.
/// Returns 0 if `x` is zero.
function log256(uint256 x) internal pure returns (uint256 r) {
/// @solidity memory-safe-assembly
assembly {
r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(shr(3, r), lt(0xff, shr(r, x)))
}
}
/// @dev Returns the log256 of `x`, rounded up.
/// Returns 0 if `x` is zero.
function log256Up(uint256 x) internal pure returns (uint256 r) {
r = log256(x);
/// @solidity memory-safe-assembly
assembly {
r := add(r, lt(shl(shl(3, r), 1), x))
}
}
/// @dev Returns the scientific notation format `mantissa * 10 ** exponent` of `x`.
/// Useful for compressing prices (e.g. using 25 bit mantissa and 7 bit exponent).
function sci(uint256 x) internal pure returns (uint256 mantissa, uint256 exponent) {
/// @solidity memory-safe-assembly
assembly {
mantissa := x
if mantissa {
if iszero(mod(mantissa, 1000000000000000000000000000000000)) {
mantissa := div(mantissa, 1000000000000000000000000000000000)
exponent := 33
}
if iszero(mod(mantissa, 10000000000000000000)) {
mantissa := div(mantissa, 10000000000000000000)
exponent := add(exponent, 19)
}
if iszero(mod(mantissa, 1000000000000)) {
mantissa := div(mantissa, 1000000000000)
exponent := add(exponent, 12)
}
if iszero(mod(mantissa, 1000000)) {
mantissa := div(mantissa, 1000000)
exponent := add(exponent, 6)
}
if iszero(mod(mantissa, 10000)) {
mantissa := div(mantissa, 10000)
exponent := add(exponent, 4)
}
if iszero(mod(mantissa, 100)) {
mantissa := div(mantissa, 100)
exponent := add(exponent, 2)
}
if iszero(mod(mantissa, 10)) {
mantissa := div(mantissa, 10)
exponent := add(exponent, 1)
}
}
}
}
/// @dev Convenience function for packing `x` into a smaller number using `sci`.
/// The `mantissa` will be in bits [7..255] (the upper 249 bits).
/// The `exponent` will be in bits [0..6] (the lower 7 bits).
/// Use `SafeCastLib` to safely ensure that the `packed` number is small
/// enough to fit in the desired unsigned integer type:
/// ```
/// uint32 packed = SafeCastLib.toUint32(FixedPointMathLib.packSci(777 ether));
/// ```
function packSci(uint256 x) internal pure returns (uint256 packed) {
(x, packed) = sci(x); // Reuse for `mantissa` and `exponent`.
/// @solidity memory-safe-assembly
assembly {
if shr(249, x) {
mstore(0x00, 0xce30380c) // `MantissaOverflow()`.
revert(0x1c, 0x04)
}
packed := or(shl(7, x), packed)
}
}
/// @dev Convenience function for unpacking a packed number from `packSci`.
function unpackSci(uint256 packed) internal pure returns (uint256 unpacked) {
unchecked {
unpacked = (packed >> 7) * 10 ** (packed & 0x7f);
}
}
/// @dev Returns the average of `x` and `y`. Rounds towards zero.
function avg(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = (x & y) + ((x ^ y) >> 1);
}
}
/// @dev Returns the average of `x` and `y`. Rounds towards negative infinity.
function avg(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = (x >> 1) + (y >> 1) + (x & y & 1);
}
}
/// @dev Returns the absolute value of `x`.
function abs(int256 x) internal pure returns (uint256 z) {
unchecked {
z = (uint256(x) + uint256(x >> 255)) ^ uint256(x >> 255);
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(xor(sub(0, gt(x, y)), sub(y, x)), gt(x, y))
}
}
/// @dev Returns the absolute distance between `x` and `y`.
function dist(int256 x, int256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := add(xor(sub(0, sgt(x, y)), sub(y, x)), sgt(x, y))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), lt(y, x)))
}
}
/// @dev Returns the minimum of `x` and `y`.
function min(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), slt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), gt(y, x)))
}
}
/// @dev Returns the maximum of `x` and `y`.
function max(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, y), sgt(y, x)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(uint256 x, uint256 minValue, uint256 maxValue)
internal
pure
returns (uint256 z)
{
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), gt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), lt(maxValue, z)))
}
}
/// @dev Returns `x`, bounded to `minValue` and `maxValue`.
function clamp(int256 x, int256 minValue, int256 maxValue) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := xor(x, mul(xor(x, minValue), sgt(minValue, x)))
z := xor(z, mul(xor(z, maxValue), slt(maxValue, z)))
}
}
/// @dev Returns greatest common divisor of `x` and `y`.
function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
for { z := x } y {} {
let t := y
y := mod(z, y)
z := t
}
}
}
/// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`,
/// with `t` clamped between `begin` and `end` (inclusive).
/// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
/// If `begins == end`, returns `t <= begin ? a : b`.
function lerp(uint256 a, uint256 b, uint256 t, uint256 begin, uint256 end)
internal
pure
returns (uint256)
{
if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
if (t <= begin) return a;
if (t >= end) return b;
unchecked {
if (b >= a) return a + fullMulDiv(b - a, t - begin, end - begin);
return a - fullMulDiv(a - b, t - begin, end - begin);
}
}
/// @dev Returns `a + (b - a) * (t - begin) / (end - begin)`.
/// with `t` clamped between `begin` and `end` (inclusive).
/// Agnostic to the order of (`a`, `b`) and (`end`, `begin`).
/// If `begins == end`, returns `t <= begin ? a : b`.
function lerp(int256 a, int256 b, int256 t, int256 begin, int256 end)
internal
pure
returns (int256)
{
if (begin > end) (t, begin, end) = (~t, ~begin, ~end);
if (t <= begin) return a;
if (t >= end) return b;
// forgefmt: disable-next-item
unchecked {
if (b >= a) return int256(uint256(a) + fullMulDiv(uint256(b - a),
uint256(t - begin), uint256(end - begin)));
return int256(uint256(a) - fullMulDiv(uint256(a - b),
uint256(t - begin), uint256(end - begin)));
}
}
/// @dev Returns if `x` is an even number. Some people may need this.
function isEven(uint256 x) internal pure returns (bool) {
return x & uint256(1) == uint256(0);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RAW NUMBER OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x + y`, without checking for overflow.
function rawAdd(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x + y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x - y`, without checking for underflow.
function rawSub(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x - y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(uint256 x, uint256 y) internal pure returns (uint256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x * y`, without checking for overflow.
function rawMul(int256 x, int256 y) internal pure returns (int256 z) {
unchecked {
z = x * y;
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawDiv(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := div(x, y)
}
}
/// @dev Returns `x / y`, returning 0 if `y` is zero.
function rawSDiv(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := sdiv(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawMod(uint256 x, uint256 y) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mod(x, y)
}
}
/// @dev Returns `x % y`, returning 0 if `y` is zero.
function rawSMod(int256 x, int256 y) internal pure returns (int256 z) {
/// @solidity memory-safe-assembly
assembly {
z := smod(x, y)
}
}
/// @dev Returns `(x + y) % d`, return 0 if `d` if zero.
function rawAddMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := addmod(x, y, d)
}
}
/// @dev Returns `(x * y) % d`, return 0 if `d` if zero.
function rawMulMod(uint256 x, uint256 y, uint256 d) internal pure returns (uint256 z) {
/// @solidity memory-safe-assembly
assembly {
z := mulmod(x, y, d)
}
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import {LibBytes} from "./LibBytes.sol";
/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
///
/// @dev Note:
/// For performance and bytecode compactness, most of the string operations are restricted to
/// byte strings (7-bit ASCII), except where otherwise specified.
/// Usage of byte string operations on charsets with runes spanning two or more bytes
/// can lead to undefined behavior.
library LibString {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRUCTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Goated string storage struct that totally MOGs, no cap, fr.
/// Uses less gas and bytecode than Solidity's native string storage. It's meta af.
/// Packs length with the first 31 bytes if <255 bytes, so it’s mad tight.
struct StringStorage {
bytes32 _spacer;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CUSTOM ERRORS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The length of the output is too small to contain all the hex digits.
error HexLengthInsufficient();
/// @dev The length of the string is more than 32 bytes.
error TooBigForSmallString();
/// @dev The input string must be a 7-bit ASCII.
error StringNot7BitASCII();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when the `search` is not found in the string.
uint256 internal constant NOT_FOUND = type(uint256).max;
/// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant ALPHANUMERIC_7_BIT_ASCII = 0x7fffffe07fffffe03ff000000000000;
/// @dev Lookup for 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant LETTERS_7_BIT_ASCII = 0x7fffffe07fffffe0000000000000000;
/// @dev Lookup for 'abcdefghijklmnopqrstuvwxyz'.
uint128 internal constant LOWERCASE_7_BIT_ASCII = 0x7fffffe000000000000000000000000;
/// @dev Lookup for 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.
uint128 internal constant UPPERCASE_7_BIT_ASCII = 0x7fffffe0000000000000000;
/// @dev Lookup for '0123456789'.
uint128 internal constant DIGITS_7_BIT_ASCII = 0x3ff000000000000;
/// @dev Lookup for '0123456789abcdefABCDEF'.
uint128 internal constant HEXDIGITS_7_BIT_ASCII = 0x7e0000007e03ff000000000000;
/// @dev Lookup for '01234567'.
uint128 internal constant OCTDIGITS_7_BIT_ASCII = 0xff000000000000;
/// @dev Lookup for '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~ \t\n\r\x0b\x0c'.
uint128 internal constant PRINTABLE_7_BIT_ASCII = 0x7fffffffffffffffffffffff00003e00;
/// @dev Lookup for '!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~'.
uint128 internal constant PUNCTUATION_7_BIT_ASCII = 0x78000001f8000001fc00fffe00000000;
/// @dev Lookup for ' \t\n\r\x0b\x0c'.
uint128 internal constant WHITESPACE_7_BIT_ASCII = 0x100003e00;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRING STORAGE OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Sets the value of the string storage `$` to `s`.
function set(StringStorage storage $, string memory s) internal {
LibBytes.set(bytesStorage($), bytes(s));
}
/// @dev Sets the value of the string storage `$` to `s`.
function setCalldata(StringStorage storage $, string calldata s) internal {
LibBytes.setCalldata(bytesStorage($), bytes(s));
}
/// @dev Sets the value of the string storage `$` to the empty string.
function clear(StringStorage storage $) internal {
delete $._spacer;
}
/// @dev Returns whether the value stored is `$` is the empty string "".
function isEmpty(StringStorage storage $) internal view returns (bool) {
return uint256($._spacer) & 0xff == uint256(0);
}
/// @dev Returns the length of the value stored in `$`.
function length(StringStorage storage $) internal view returns (uint256) {
return LibBytes.length(bytesStorage($));
}
/// @dev Returns the value stored in `$`.
function get(StringStorage storage $) internal view returns (string memory) {
return string(LibBytes.get(bytesStorage($)));
}
/// @dev Helper to cast `$` to a `BytesStorage`.
function bytesStorage(StringStorage storage $)
internal
pure
returns (LibBytes.BytesStorage storage casted)
{
/// @solidity memory-safe-assembly
assembly {
casted.slot := $.slot
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* DECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the base 10 decimal representation of `value`.
function toString(uint256 value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// The maximum value of a uint256 contains 78 digits (1 byte per digit), but
// we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
// We will need 1 word for the trailing zeros padding, 1 word for the length,
// and 3 words for a maximum of 78 digits.
result := add(mload(0x40), 0x80)
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end of the memory to calculate the length later.
let w := not(0) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
result := add(result, w) // `sub(result, 1)`.
// Store the character to the pointer.
// The ASCII index of the '0' character is 48.
mstore8(result, add(48, mod(temp, 10)))
temp := div(temp, 10) // Keep dividing `temp` until zero.
if iszero(temp) { break }
}
let n := sub(end, result)
result := sub(result, 0x20) // Move the pointer 32 bytes back to make room for the length.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the base 10 decimal representation of `value`.
function toString(int256 value) internal pure returns (string memory result) {
if (value >= 0) return toString(uint256(value));
unchecked {
result = toString(~uint256(value) + 1);
}
/// @solidity memory-safe-assembly
assembly {
// We still have some spare memory space on the left,
// as we have allocated 3 words (96 bytes) for up to 78 digits.
let n := mload(result) // Load the string length.
mstore(result, 0x2d) // Store the '-' character.
result := sub(result, 1) // Move back the string pointer by a byte.
mstore(result, add(n, 1)) // Update the string length.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* HEXADECIMAL OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `byteCount` bytes.
/// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
/// giving a total length of `byteCount * 2 + 2` bytes.
/// Reverts if `byteCount` is too small for the output to contain all the digits.
function toHexString(uint256 value, uint256 byteCount)
internal
pure
returns (string memory result)
{
result = toHexStringNoPrefix(value, byteCount);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`,
/// left-padded to an input length of `byteCount` bytes.
/// The output is not prefixed with "0x" and is encoded using 2 hexadecimal digits per byte,
/// giving a total length of `byteCount * 2` bytes.
/// Reverts if `byteCount` is too small for the output to contain all the digits.
function toHexStringNoPrefix(uint256 value, uint256 byteCount)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, `byteCount * 2` bytes
// for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
// We add 0x20 to the total and round down to a multiple of 0x20.
// (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
result := add(mload(0x40), and(add(shl(1, byteCount), 0x42), not(0x1f)))
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end to calculate the length later.
// Store "0123456789abcdef" in scratch space.
mstore(0x0f, 0x30313233343536373839616263646566)
let start := sub(result, add(byteCount, byteCount))
let w := not(1) // Tsk.
let temp := value
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for {} 1 {} {
result := add(result, w) // `sub(result, 2)`.
mstore8(add(result, 1), mload(and(temp, 15)))
mstore8(result, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(xor(result, start)) { break }
}
if temp {
mstore(0x00, 0x2194895a) // `HexLengthInsufficient()`.
revert(0x1c, 0x04)
}
let n := sub(end, result)
result := sub(result, 0x20)
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2 + 2` bytes.
function toHexString(uint256 value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x".
/// The output excludes leading "0" from the `toHexString` output.
/// `0x00: "0x0", 0x01: "0x1", 0x12: "0x12", 0x123: "0x123"`.
function toMinimalHexString(uint256 value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present.
let n := add(mload(result), 2) // Compute the length.
mstore(add(result, o), 0x3078) // Store the "0x" prefix, accounting for leading zero.
result := sub(add(result, o), 2) // Move the pointer, accounting for leading zero.
mstore(result, sub(n, o)) // Store the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output excludes leading "0" from the `toHexStringNoPrefix` output.
/// `0x00: "0", 0x01: "1", 0x12: "12", 0x123: "123"`.
function toMinimalHexStringNoPrefix(uint256 value)
internal
pure
returns (string memory result)
{
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let o := eq(byte(0, mload(add(result, 0x20))), 0x30) // Whether leading zero is present.
let n := mload(result) // Get the length.
result := add(result, o) // Move the pointer, accounting for leading zero.
mstore(result, sub(n, o)) // Store the length, accounting for leading zero.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
/// As address are 20 bytes long, the output will left-padded to have
/// a length of `20 * 2` bytes.
function toHexStringNoPrefix(uint256 value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x40 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
result := add(mload(0x40), 0x80)
mstore(0x40, add(result, 0x20)) // Allocate memory.
mstore(result, 0) // Zeroize the slot after the string.
let end := result // Cache the end to calculate the length later.
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
let w := not(1) // Tsk.
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let temp := value } 1 {} {
result := add(result, w) // `sub(result, 2)`.
mstore8(add(result, 1), mload(and(temp, 15)))
mstore8(result, mload(and(shr(4, temp), 15)))
temp := shr(8, temp)
if iszero(temp) { break }
}
let n := sub(end, result)
result := sub(result, 0x20)
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
/// and the alphabets are capitalized conditionally according to
/// https://eips.ethereum.org/EIPS/eip-55
function toHexStringChecksummed(address value) internal pure returns (string memory result) {
result = toHexString(value);
/// @solidity memory-safe-assembly
assembly {
let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
let o := add(result, 0x22)
let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
let t := shl(240, 136) // `0b10001000 << 240`
for { let i := 0 } 1 {} {
mstore(add(i, i), mul(t, byte(i, hashed)))
i := add(i, 1)
if eq(i, 20) { break }
}
mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
o := add(o, 0x20)
mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
function toHexString(address value) internal pure returns (string memory result) {
result = toHexStringNoPrefix(value);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hexadecimal representation of `value`.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(address value) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
// Allocate memory.
// We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
// 0x02 bytes for the prefix, and 0x28 bytes for the digits.
// The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
mstore(0x40, add(result, 0x80))
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
result := add(result, 2)
mstore(result, 40) // Store the length.
let o := add(result, 0x20)
mstore(add(o, 40), 0) // Zeroize the slot after the string.
value := shl(96, value)
// We write the string from rightmost digit to leftmost digit.
// The following is essentially a do-while loop that also handles the zero case.
for { let i := 0 } 1 {} {
let p := add(o, add(i, i))
let temp := byte(i, value)
mstore8(add(p, 1), mload(and(temp, 15)))
mstore8(p, mload(shr(4, temp)))
i := add(i, 1)
if eq(i, 20) { break }
}
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexString(bytes memory raw) internal pure returns (string memory result) {
result = toHexStringNoPrefix(raw);
/// @solidity memory-safe-assembly
assembly {
let n := add(mload(result), 2) // Compute the length.
mstore(result, 0x3078) // Store the "0x" prefix.
result := sub(result, 2) // Move the pointer.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the hex encoded string from the raw bytes.
/// The output is encoded using 2 hexadecimal digits per byte.
function toHexStringNoPrefix(bytes memory raw) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
let n := mload(raw)
result := add(mload(0x40), 2) // Skip 2 bytes for the optional prefix.
mstore(result, add(n, n)) // Store the length of the output.
mstore(0x0f, 0x30313233343536373839616263646566) // Store the "0123456789abcdef" lookup.
let o := add(result, 0x20)
let end := add(raw, n)
for {} iszero(eq(raw, end)) {} {
raw := add(raw, 1)
mstore8(add(o, 1), mload(and(mload(raw), 15)))
mstore8(o, mload(and(shr(4, mload(raw)), 15)))
o := add(o, 2)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* RUNE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns the number of UTF characters in the string.
function runeCount(string memory s) internal pure returns (uint256 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
mstore(0x00, div(not(0), 255))
mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
let o := add(s, 0x20)
let end := add(o, mload(s))
for { result := 1 } 1 { result := add(result, 1) } {
o := add(o, byte(0, mload(shr(250, mload(o)))))
if iszero(lt(o, end)) { break }
}
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string.
/// (i.e. all characters codes are in [0..127])
function is7BitASCII(string memory s) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
let mask := shl(7, div(not(0), 255))
let n := mload(s)
if n {
let o := add(s, 0x20)
let end := add(o, n)
let last := mload(end)
mstore(end, 0)
for {} 1 {} {
if and(mask, mload(o)) {
result := 0
break
}
o := add(o, 0x20)
if iszero(lt(o, end)) { break }
}
mstore(end, last)
}
}
}
/// @dev Returns if this string is a 7-bit ASCII string,
/// AND all characters are in the `allowed` lookup.
/// Note: If `s` is empty, returns true regardless of `allowed`.
function is7BitASCII(string memory s, uint128 allowed) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := 1
if mload(s) {
let allowed_ := shr(128, shl(128, allowed))
let o := add(s, 0x20)
for { let end := add(o, mload(s)) } 1 {} {
result := and(result, shr(byte(0, mload(o)), allowed_))
o := add(o, 1)
if iszero(and(result, lt(o, end))) { break }
}
}
}
}
/// @dev Converts the bytes in the 7-bit ASCII string `s` to
/// an allowed lookup for use in `is7BitASCII(s, allowed)`.
/// To save runtime gas, you can cache the result in an immutable variable.
function to7BitASCIIAllowedLookup(string memory s) internal pure returns (uint128 result) {
/// @solidity memory-safe-assembly
assembly {
if mload(s) {
let o := add(s, 0x20)
for { let end := add(o, mload(s)) } 1 {} {
result := or(result, shl(byte(0, mload(o)), 1))
o := add(o, 1)
if iszero(lt(o, end)) { break }
}
if shr(128, result) {
mstore(0x00, 0xc9807e0d) // `StringNot7BitASCII()`.
revert(0x1c, 0x04)
}
}
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE STRING OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
// For performance and bytecode compactness, byte string operations are restricted
// to 7-bit ASCII strings. All offsets are byte offsets, not UTF character offsets.
// Usage of byte string operations on charsets with runes spanning two or more bytes
// can lead to undefined behavior.
/// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`.
function replace(string memory subject, string memory needle, string memory replacement)
internal
pure
returns (string memory)
{
return string(LibBytes.replace(bytes(subject), bytes(needle), bytes(replacement)));
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from left to right, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function indexOf(string memory subject, string memory needle, uint256 from)
internal
pure
returns (uint256)
{
return LibBytes.indexOf(bytes(subject), bytes(needle), from);
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from left to right.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function indexOf(string memory subject, string memory needle) internal pure returns (uint256) {
return LibBytes.indexOf(bytes(subject), bytes(needle), 0);
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from right to left, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function lastIndexOf(string memory subject, string memory needle, uint256 from)
internal
pure
returns (uint256)
{
return LibBytes.lastIndexOf(bytes(subject), bytes(needle), from);
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from right to left.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function lastIndexOf(string memory subject, string memory needle)
internal
pure
returns (uint256)
{
return LibBytes.lastIndexOf(bytes(subject), bytes(needle), type(uint256).max);
}
/// @dev Returns true if `needle` is found in `subject`, false otherwise.
function contains(string memory subject, string memory needle) internal pure returns (bool) {
return LibBytes.contains(bytes(subject), bytes(needle));
}
/// @dev Returns whether `subject` starts with `needle`.
function startsWith(string memory subject, string memory needle) internal pure returns (bool) {
return LibBytes.startsWith(bytes(subject), bytes(needle));
}
/// @dev Returns whether `subject` ends with `needle`.
function endsWith(string memory subject, string memory needle) internal pure returns (bool) {
return LibBytes.endsWith(bytes(subject), bytes(needle));
}
/// @dev Returns `subject` repeated `times`.
function repeat(string memory subject, uint256 times) internal pure returns (string memory) {
return string(LibBytes.repeat(bytes(subject), times));
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function slice(string memory subject, uint256 start, uint256 end)
internal
pure
returns (string memory)
{
return string(LibBytes.slice(bytes(subject), start, end));
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
/// `start` is a byte offset.
function slice(string memory subject, uint256 start) internal pure returns (string memory) {
return string(LibBytes.slice(bytes(subject), start, type(uint256).max));
}
/// @dev Returns all the indices of `needle` in `subject`.
/// The indices are byte offsets.
function indicesOf(string memory subject, string memory needle)
internal
pure
returns (uint256[] memory)
{
return LibBytes.indicesOf(bytes(subject), bytes(needle));
}
/// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
function split(string memory subject, string memory delimiter)
internal
pure
returns (string[] memory result)
{
bytes[] memory a = LibBytes.split(bytes(subject), bytes(delimiter));
/// @solidity memory-safe-assembly
assembly {
result := a
}
}
/// @dev Returns a concatenated string of `a` and `b`.
/// Cheaper than `string.concat()` and does not de-align the free memory pointer.
function concat(string memory a, string memory b) internal pure returns (string memory) {
return string(LibBytes.concat(bytes(a), bytes(b)));
}
/// @dev Returns a copy of the string in either lowercase or UPPERCASE.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function toCase(string memory subject, bool toUpper)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(subject)
if n {
result := mload(0x40)
let o := add(result, 0x20)
let d := sub(subject, result)
let flags := shl(add(70, shl(5, toUpper)), 0x3ffffff)
for { let end := add(o, n) } 1 {} {
let b := byte(0, mload(add(d, o)))
mstore8(o, xor(and(shr(b, flags), 0x20), b))
o := add(o, 1)
if eq(o, end) { break }
}
mstore(result, n) // Store the length.
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
}
/// @dev Returns a string from a small bytes32 string.
/// `s` must be null-terminated, or behavior will be undefined.
function fromSmallString(bytes32 s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let n := 0
for {} byte(n, s) { n := add(n, 1) } {} // Scan for '\0'.
mstore(result, n) // Store the length.
let o := add(result, 0x20)
mstore(o, s) // Store the bytes of the string.
mstore(add(o, n), 0) // Zeroize the slot after the string.
mstore(0x40, add(result, 0x40)) // Allocate memory.
}
}
/// @dev Returns the small string, with all bytes after the first null byte zeroized.
function normalizeSmallString(bytes32 s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
for {} byte(result, s) { result := add(result, 1) } {} // Scan for '\0'.
mstore(0x00, s)
mstore(result, 0x00)
result := mload(0x00)
}
}
/// @dev Returns the string as a normalized null-terminated small string.
function toSmallString(string memory s) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(s)
if iszero(lt(result, 33)) {
mstore(0x00, 0xec92f9a3) // `TooBigForSmallString()`.
revert(0x1c, 0x04)
}
result := shl(shl(3, sub(32, result)), mload(add(s, result)))
}
}
/// @dev Returns a lowercased copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function lower(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, false);
}
/// @dev Returns an UPPERCASED copy of the string.
/// WARNING! This function is only compatible with 7-bit ASCII strings.
function upper(string memory subject) internal pure returns (string memory result) {
result = toCase(subject, true);
}
/// @dev Escapes the string to be used within HTML tags.
function escapeHTML(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let end := add(s, mload(s))
let o := add(result, 0x20)
// Store the bytes of the packed offsets and strides into the scratch space.
// `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
mstore(0x1f, 0x900094)
mstore(0x08, 0xc0000000a6ab)
// Store ""&'<>" into the scratch space.
mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
for {} iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// Not in `["\"","'","&","<",">"]`.
if iszero(and(shl(c, 1), 0x500000c400000000)) {
mstore8(o, c)
o := add(o, 1)
continue
}
let t := shr(248, mload(c))
mstore(o, mload(and(t, 0x1f)))
o := add(o, shr(5, t))
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
/// If `addDoubleQuotes` is true, the result will be enclosed in double-quotes.
function escapeJSON(string memory s, bool addDoubleQuotes)
internal
pure
returns (string memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let o := add(result, 0x20)
if addDoubleQuotes {
mstore8(o, 34)
o := add(1, o)
}
// Store "\\u0000" in scratch space.
// Store "0123456789abcdef" in scratch space.
// Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
// into the scratch space.
mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
// Bitmask for detecting `["\"","\\"]`.
let e := or(shl(0x22, 1), shl(0x5c, 1))
for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
if iszero(lt(c, 0x20)) {
if iszero(and(shl(c, 1), e)) {
// Not in `["\"","\\"]`.
mstore8(o, c)
o := add(o, 1)
continue
}
mstore8(o, 0x5c) // "\\".
mstore8(add(o, 1), c)
o := add(o, 2)
continue
}
if iszero(and(shl(c, 1), 0x3700)) {
// Not in `["\b","\t","\n","\f","\d"]`.
mstore8(0x1d, mload(shr(4, c))) // Hex value.
mstore8(0x1e, mload(and(c, 15))) // Hex value.
mstore(o, mload(0x19)) // "\\u00XX".
o := add(o, 6)
continue
}
mstore8(o, 0x5c) // "\\".
mstore8(add(o, 1), mload(add(c, 8)))
o := add(o, 2)
}
if addDoubleQuotes {
mstore8(o, 34)
o := add(1, o)
}
mstore(o, 0) // Zeroize the slot after the string.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Escapes the string to be used within double-quotes in a JSON.
function escapeJSON(string memory s) internal pure returns (string memory result) {
result = escapeJSON(s, false);
}
/// @dev Encodes `s` so that it can be safely used in a URI,
/// just like `encodeURIComponent` in JavaScript.
/// See: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/encodeURIComponent
/// See: https://datatracker.ietf.org/doc/html/rfc2396
/// See: https://datatracker.ietf.org/doc/html/rfc3986
function encodeURIComponent(string memory s) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
// Store "0123456789ABCDEF" in scratch space.
// Uppercased to be consistent with JavaScript's implementation.
mstore(0x0f, 0x30313233343536373839414243444546)
let o := add(result, 0x20)
for { let end := add(s, mload(s)) } iszero(eq(s, end)) {} {
s := add(s, 1)
let c := and(mload(s), 0xff)
// If not in `[0-9A-Z-a-z-_.!~*'()]`.
if iszero(and(1, shr(c, 0x47fffffe87fffffe03ff678200000000))) {
mstore8(o, 0x25) // '%'.
mstore8(add(o, 1), mload(and(shr(4, c), 15)))
mstore8(add(o, 2), mload(and(c, 15)))
o := add(o, 3)
continue
}
mstore8(o, c)
o := add(o, 1)
}
mstore(result, sub(o, add(result, 0x20))) // Store the length.
mstore(o, 0) // Zeroize the slot after the string.
mstore(0x40, add(o, 0x20)) // Allocate memory.
}
}
/// @dev Returns whether `a` equals `b`.
function eq(string memory a, string memory b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
}
}
/// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small string.
function eqs(string memory a, bytes32 b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// These should be evaluated on compile time, as far as possible.
let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
let x := not(or(m, or(b, add(m, and(b, m)))))
let r := shl(7, iszero(iszero(shr(128, x))))
r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
}
}
/// @dev Packs a single string with its length into a single word.
/// Returns `bytes32(0)` if the length is zero or greater than 31.
function packOne(string memory a) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
// We don't need to zero right pad the string,
// since this is our own custom non-standard packing scheme.
result :=
mul(
// Load the length and the bytes.
mload(add(a, 0x1f)),
// `length != 0 && length < 32`. Abuses underflow.
// Assumes that the length is valid and within the block gas limit.
lt(sub(mload(a), 1), 0x1f)
)
}
}
/// @dev Unpacks a string packed using {packOne}.
/// Returns the empty string if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packOne}, the output behavior is undefined.
function unpackOne(bytes32 packed) internal pure returns (string memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40) // Grab the free memory pointer.
mstore(0x40, add(result, 0x40)) // Allocate 2 words (1 for the length, 1 for the bytes).
mstore(result, 0) // Zeroize the length slot.
mstore(add(result, 0x1f), packed) // Store the length and bytes.
mstore(add(add(result, 0x20), mload(result)), 0) // Right pad with zeroes.
}
}
/// @dev Packs two strings with their lengths into a single word.
/// Returns `bytes32(0)` if combined length is zero or greater than 30.
function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
let aLen := mload(a)
// We don't need to zero right pad the strings,
// since this is our own custom non-standard packing scheme.
result :=
mul(
or( // Load the length and the bytes of `a` and `b`.
shl(shl(3, sub(0x1f, aLen)), mload(add(a, aLen))), mload(sub(add(b, 0x1e), aLen))),
// `totalLen != 0 && totalLen < 31`. Abuses underflow.
// Assumes that the lengths are valid and within the block gas limit.
lt(sub(add(aLen, mload(b)), 1), 0x1e)
)
}
}
/// @dev Unpacks strings packed using {packTwo}.
/// Returns the empty strings if `packed` is `bytes32(0)`.
/// If `packed` is not an output of {packTwo}, the output behavior is undefined.
function unpackTwo(bytes32 packed)
internal
pure
returns (string memory resultA, string memory resultB)
{
/// @solidity memory-safe-assembly
assembly {
resultA := mload(0x40) // Grab the free memory pointer.
resultB := add(resultA, 0x40)
// Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
mstore(0x40, add(resultB, 0x40))
// Zeroize the length slots.
mstore(resultA, 0)
mstore(resultB, 0)
// Store the lengths and bytes.
mstore(add(resultA, 0x1f), packed)
mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
// Right pad with zeroes.
mstore(add(add(resultA, 0x20), mload(resultA)), 0)
mstore(add(add(resultB, 0x20), mload(resultB)), 0)
}
}
/// @dev Directly returns `a` without copying.
function directReturn(string memory a) internal pure {
assembly {
// Assumes that the string does not start from the scratch space.
let retStart := sub(a, 0x20)
let retUnpaddedSize := add(mload(a), 0x40)
// Right pad with zeroes. Just in case the string is produced
// by a method that doesn't zero right pad.
mstore(add(retStart, retUnpaddedSize), 0)
mstore(retStart, 0x20) // Store the return offset.
// End the transaction, returning the string.
return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize)))
}
}
}// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE
pragma solidity ^0.8.25;
import "./Append.sol";
import "./Structs.sol";
library LibDynamicJSONKVArr {
struct LinkedKVs {
LibDynamicThing.LinkedThings lks;
LibDynamicThing.LinkedThings lvs;
}
function newDynamicKVArr() internal pure returns (LinkedKVs memory ret) {
ret = LinkedKVs(LibDynamicThing.newLinkedThings(), LibDynamicThing.newLinkedThings());
}
function p(LinkedKVs memory lkvs, bytes memory kData, bytes memory vData) internal pure {
p(lkvs, kData, vData, JSONType.STRING);
}
function p(LinkedKVs memory lkvs, bytes memory kData, bytes memory vData, JSONType valueType) internal pure {
if (vData.length < 1) return; // note: don't forget it ignores kvs with trivial value!!
JSON memory k = JSON(JSONType.STRING, kData);
JSON memory v = JSON(valueType, vData);
uint256 kPtr;
uint256 vPtr;
assembly {
kPtr := k
vPtr := v
}
LibDynamicThing.p(lkvs.lks, kPtr);
LibDynamicThing.p(lkvs.lvs, vPtr);
}
function dump(LinkedKVs memory lkvs) internal pure returns (JSON[][2] memory aakvs) {
uint256[] memory kPtrs = LibDynamicThing.dump(lkvs.lks);
uint256[] memory vPtrs = LibDynamicThing.dump(lkvs.lvs);
JSON[] memory ks;
JSON[] memory vs;
assembly {
ks := kPtrs
vs := vPtrs
}
aakvs[0] = ks;
aakvs[1] = vs;
}
}
library LibDynamicKVArr {
struct LinkedKVs {
LibDynamicThing.LinkedThings lks;
LibDynamicThing.LinkedThings lvs;
}
function newDynamicKVArr() internal pure returns (LinkedKVs memory ret) {
ret = LinkedKVs(LibDynamicThing.newLinkedThings(), LibDynamicThing.newLinkedThings());
}
function p(LinkedKVs memory lkvs, bytes memory kData, bytes memory vData) internal pure {
if (vData.length < 1) return; // note: don't forget it ignores kvs with trivial value!!
uint256 kPtr;
uint256 vPtr;
assembly {
kPtr := kData
vPtr := vData
}
LibDynamicThing.p(lkvs.lks, kPtr);
LibDynamicThing.p(lkvs.lvs, vPtr);
}
function dump(LinkedKVs memory lkvs) internal pure returns (bytes[][2] memory aakvs) {
uint256[] memory kPtrs = LibDynamicThing.dump(lkvs.lks);
uint256[] memory vPtrs = LibDynamicThing.dump(lkvs.lvs);
bytes[] memory ks;
bytes[] memory vs;
assembly {
ks := kPtrs
vs := vPtrs
}
aakvs[0] = ks;
aakvs[1] = vs;
}
}
library LibDynamicBytesArr {
struct LinkedBytes {
LibDynamicThing.LinkedThings ldt;
}
function newDynamicBytesArr() internal pure returns (LinkedBytes memory ret) {
return LinkedBytes(LibDynamicThing.newLinkedThings());
}
function p(LinkedBytes memory ls, bytes memory b) internal pure {
uint256 ptr;
assembly {
ptr := b
}
LibDynamicThing.p(ls.ldt, ptr);
}
function dump(LinkedBytes memory lb) internal pure returns (bytes[] memory ret) {
uint256[] memory ptrs = LibDynamicThing.dump(lb.ldt);
uint256 length = ptrs.length;
ret = _allocateArr(length);
assembly {
for { let i := 0 } 1 {} {
// hail solady
let ptr := mload(add(ptrs, add(0x20, mul(i, 0x20))))
mstore(add(ret, add(0x20, mul(i, 0x20))), ptr)
i := add(i, 1)
if iszero(lt(i, length)) { break }
}
}
/* // does this
uint256 length = ptrs.length;
ret = new string[](length);
uint256 ptr;
string memory str;
for (uint256 i; i < length; ++i) {
ptr = ptrs[i];
assembly {
str := ptr
}
ret[i] = str;
}
*/
}
}
library LibDynamicStringArr {
struct LinkedStrings {
LibDynamicThing.LinkedThings ldt;
}
function newDynamicStringArr() internal pure returns (LinkedStrings memory ret) {
return LinkedStrings(LibDynamicThing.newLinkedThings());
}
function p(LinkedStrings memory ls, string memory str) internal pure {
uint256 ptr;
assembly {
ptr := str
}
LibDynamicThing.p(ls.ldt, ptr);
}
function dump(LinkedStrings memory ls) internal pure returns (string[] memory ret) {
uint256[] memory ptrs = LibDynamicThing.dump(ls.ldt);
uint256 length = ptrs.length;
ret = _allocateStringArr(length);
assembly {
for { let i := 0 } 1 {} {
// hail solady
let ptr := mload(add(ptrs, add(0x20, mul(i, 0x20))))
mstore(add(ret, add(0x20, mul(i, 0x20))), ptr)
i := add(i, 1)
if iszero(lt(i, length)) { break }
}
}
/* // does this
uint256 length = ptrs.length;
ret = new string[](length);
uint256 ptr;
string memory str;
for (uint256 i; i < length; ++i) {
ptr = ptrs[i];
assembly {
str := ptr
}
ret[i] = str;
}
*/
}
}
library LibDynamicUint256Arr {
struct LinkedUint256s {
LibDynamicThing.LinkedThings ldt;
}
function newDynamicUint256Arr() internal pure returns (LinkedUint256s memory ret) {
return LinkedUint256s(LibDynamicThing.newLinkedThings());
}
function p(LinkedUint256s memory ls, uint256 n) internal pure {
LibDynamicThing.p(ls.ldt, n);
}
function dump(LinkedUint256s memory ls) internal pure returns (uint256[] memory ret) {
ret = LibDynamicThing.dump(ls.ldt);
}
}
library LibDynamicBuffer {
struct DynamicBuffer {
uint256 numThings; // not used. but for some reason having it as buffer reduces gas!?
uint256 first;
uint256 last;
}
struct Thing {
uint256 ptr;
uint256 next;
}
function newDynamicBuffer() internal pure returns (DynamicBuffer memory ret) {
Thing memory first;
assembly {
mstore(add(ret, 0x20), first)
mstore(add(ret, 0x40), first)
}
}
function p(DynamicBuffer memory ls, bytes memory data) internal pure {
LibDynamicThing.Thing memory t;
assembly {
mstore(t, data)
let newPtr := t
let lastPtr := mload(add(ls, 0x40))
mstore(add(lastPtr, 0x20), newPtr)
mstore(add(ls, 0x40), newPtr)
}
}
// will need concat but had issues w it so deprecated it
function getBuffer(DynamicBuffer memory lts) internal pure returns (bytes memory ret) {
assembly {
ret := mload(0x40)
let len := 0x20 // offset
let nextPtr := mload(add(lts, 0x20)) // lt.first
for {} 1 {} {
nextPtr := mload(add(nextPtr, 0x20)) // ptr to next LinkedThing
if iszero(nextPtr) { break }
let ptr := mload(nextPtr) // ptr to actual thing
mcopy(add(ret, len), add(ptr, 0x20), mload(ptr))
len := add(len, mload(ptr))
}
len := sub(len, 0x20) // undo offset
mstore(0x40, add(ret, and(add(add(len, 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
}
}
library LibDynamicThing {
struct LinkedThings {
uint256 numThings;
uint256 first;
uint256 last;
}
struct Thing {
uint256 ptr;
uint256 next;
}
// will need concat but had issues w it so deprecated it
function newLinkedThings() internal pure returns (LinkedThings memory ret) {
Thing memory first;
assembly {
mstore(add(ret, 0x20), first)
mstore(add(ret, 0x40), first)
}
/* // it does this ...
Thing memory first;
uint256 ptr;
assembly {
ptr := first
}
ret.first = ptr;
ret.last = ptr;
*/
}
function p(LinkedThings memory lts, uint256 ptr) internal pure {
Thing memory t;
assembly {
mstore(t, ptr)
let newPtr := t
let lastPtr := mload(add(lts, 0x40))
mstore(add(lastPtr, 0x20), newPtr)
mstore(add(lts, 0x40), newPtr)
//mstore(lts, add(mload(lts), 1)) // TODO deprecate numThings
}
/*// it does this ...
Thing memory t;
t.ptr = ptr;
uint256 newPtr;
assembly {
newPtr := t
}
uint256 lastPtr = lt.last;
Thing memory lastThing;
assembly {
lastThing := lastPtr
}
lastThing.next = newPtr;
lt.last = newPtr;
++lt.numThings;
*/
}
function dump(LinkedThings memory lts) internal pure returns (uint256[] memory ret) {
assembly {
ret := mload(0x40)
let len
let nextPtr := mload(add(lts, 0x20)) // lt.first
for {} 1 {} {
nextPtr := mload(add(nextPtr, 0x20))
if iszero(nextPtr) { break }
mstore(add(ret, add(0x20, mul(len, 0x20))), mload(nextPtr))
len := add(len, 1)
}
mstore(0x40, add(ret, and(add(add(mul(len, 0x20), 0x20), 0x1f), not(0x1f))))
mstore(ret, len)
}
/* // it does this ..
uint256 length = lts.numThings;
ret = new uint256[](length);
uint256 length = lt.numThings;
ret = new uint256[](length);
Thing memory t;
uint256 nextPtr = lt.first;
assembly {
t := nextPtr
}
for (uint256 i; i < length; ++i) {
nextPtr = t.next;
assembly {
t := nextPtr
}
ret[i] = t.ptr;
}
*/
}
}// SPDX-License-Identifier: VPL - VIRAL PUBLIC LICENSE
pragma solidity ^0.8.25;
import "./Allocate.sol";
// cheaper than bytes concat :)
function _append(bytes memory dst, bytes memory src) pure {
assembly {
// resize
let priorLength := mload(dst)
mstore(dst, add(priorLength, mload(src)))
// copy
mcopy(add(dst, add(0x20, priorLength)), add(src, 0x20), mload(src))
}
}
// assumes dev is not stupid and startIdx < endIdx
function _appendSubstring(bytes memory dst, bytes memory src, uint256 startIdx, uint256 endIdx) pure {
assembly {
// resize
let priorLength := mload(dst)
let substringLength := sub(endIdx, startIdx)
mstore(dst, add(priorLength, substringLength))
// copy
mcopy(add(dst, add(0x20, priorLength)), add(src, add(0x20, startIdx)), substringLength)
}
}
function _tail(bytes memory subject) pure returns (bytes memory ret) {
uint256 length = subject.length;
if (length < 1) return ret;
unchecked {
ret = _allocateBytes(length - 1);
} // uc
assembly {
mstore(ret, 0)
}
_appendSubstring(ret, subject, 1, length);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol";
interface IEOARegistry is IERC165 {
function isVerifiedEOA(address account) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "./TransferPolicy.sol";
interface ITransferSecurityRegistry {
event AddedToAllowlist(AllowlistTypes indexed kind, uint256 indexed id, address indexed account);
event CreatedAllowlist(AllowlistTypes indexed kind, uint256 indexed id, string indexed name);
event ReassignedAllowlistOwnership(AllowlistTypes indexed kind, uint256 indexed id, address indexed newOwner);
event RemovedFromAllowlist(AllowlistTypes indexed kind, uint256 indexed id, address indexed account);
event SetAllowlist(AllowlistTypes indexed kind, address indexed collection, uint120 indexed id);
event SetTransferSecurityLevel(address indexed collection, TransferSecurityLevels level);
function createOperatorWhitelist(string calldata name) external returns (uint120);
function createPermittedContractReceiverAllowlist(string calldata name) external returns (uint120);
function reassignOwnershipOfOperatorWhitelist(uint120 id, address newOwner) external;
function reassignOwnershipOfPermittedContractReceiverAllowlist(uint120 id, address newOwner) external;
function renounceOwnershipOfOperatorWhitelist(uint120 id) external;
function renounceOwnershipOfPermittedContractReceiverAllowlist(uint120 id) external;
function setTransferSecurityLevelOfCollection(address collection, TransferSecurityLevels level) external;
function setOperatorWhitelistOfCollection(address collection, uint120 id) external;
function setPermittedContractReceiverAllowlistOfCollection(address collection, uint120 id) external;
function addOperatorToWhitelist(uint120 id, address operator) external;
function addPermittedContractReceiverToAllowlist(uint120 id, address receiver) external;
function removeOperatorFromWhitelist(uint120 id, address operator) external;
function removePermittedContractReceiverFromAllowlist(uint120 id, address receiver) external;
function getCollectionSecurityPolicy(address collection) external view returns (CollectionSecurityPolicy memory);
function getWhitelistedOperators(uint120 id) external view returns (address[] memory);
function getPermittedContractReceivers(uint120 id) external view returns (address[] memory);
function isOperatorWhitelisted(uint120 id, address operator) external view returns (bool);
function isContractReceiverPermitted(uint120 id, address receiver) external view returns (bool);
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
import "./TransferPolicy.sol";
interface ITransferValidator {
function applyCollectionTransferPolicy(address caller, address from, address to) external view;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.4) (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;
/// @notice Library for byte related operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibBytes.sol)
library LibBytes {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* STRUCTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Goated bytes storage struct that totally MOGs, no cap, fr.
/// Uses less gas and bytecode than Solidity's native bytes storage. It's meta af.
/// Packs length with the first 31 bytes if <255 bytes, so it’s mad tight.
struct BytesStorage {
bytes32 _spacer;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* CONSTANTS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev The constant returned when the `search` is not found in the bytes.
uint256 internal constant NOT_FOUND = type(uint256).max;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTE STORAGE OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Sets the value of the bytes storage `$` to `s`.
function set(BytesStorage storage $, bytes memory s) internal {
/// @solidity memory-safe-assembly
assembly {
let n := mload(s)
let packed := or(0xff, shl(8, n))
for { let i := 0 } 1 {} {
if iszero(gt(n, 0xfe)) {
i := 0x1f
packed := or(n, shl(8, mload(add(s, i))))
if iszero(gt(n, i)) { break }
}
let o := add(s, 0x20)
mstore(0x00, $.slot)
for { let p := keccak256(0x00, 0x20) } 1 {} {
sstore(add(p, shr(5, i)), mload(add(o, i)))
i := add(i, 0x20)
if iszero(lt(i, n)) { break }
}
break
}
sstore($.slot, packed)
}
}
/// @dev Sets the value of the bytes storage `$` to `s`.
function setCalldata(BytesStorage storage $, bytes calldata s) internal {
/// @solidity memory-safe-assembly
assembly {
let packed := or(0xff, shl(8, s.length))
for { let i := 0 } 1 {} {
if iszero(gt(s.length, 0xfe)) {
i := 0x1f
packed := or(s.length, shl(8, shr(8, calldataload(s.offset))))
if iszero(gt(s.length, i)) { break }
}
mstore(0x00, $.slot)
for { let p := keccak256(0x00, 0x20) } 1 {} {
sstore(add(p, shr(5, i)), calldataload(add(s.offset, i)))
i := add(i, 0x20)
if iszero(lt(i, s.length)) { break }
}
break
}
sstore($.slot, packed)
}
}
/// @dev Sets the value of the bytes storage `$` to the empty bytes.
function clear(BytesStorage storage $) internal {
delete $._spacer;
}
/// @dev Returns whether the value stored is `$` is the empty bytes "".
function isEmpty(BytesStorage storage $) internal view returns (bool) {
return uint256($._spacer) & 0xff == uint256(0);
}
/// @dev Returns the length of the value stored in `$`.
function length(BytesStorage storage $) internal view returns (uint256 result) {
result = uint256($._spacer);
/// @solidity memory-safe-assembly
assembly {
let n := and(0xff, result)
result := or(mul(shr(8, result), eq(0xff, n)), mul(n, iszero(eq(0xff, n))))
}
}
/// @dev Returns the value stored in `$`.
function get(BytesStorage storage $) internal view returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let o := add(result, 0x20)
let packed := sload($.slot)
let n := shr(8, packed)
for { let i := 0 } 1 {} {
if iszero(eq(and(packed, 0xff), 0xff)) {
mstore(o, packed)
n := and(0xff, packed)
i := 0x1f
if iszero(gt(n, i)) { break }
}
mstore(0x00, $.slot)
for { let p := keccak256(0x00, 0x20) } 1 {} {
mstore(add(o, i), sload(add(p, shr(5, i))))
i := add(i, 0x20)
if iszero(lt(i, n)) { break }
}
break
}
mstore(result, n) // Store the length of the memory.
mstore(add(o, n), 0) // Zeroize the slot after the bytes.
mstore(0x40, add(add(o, n), 0x20)) // Allocate memory.
}
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* BYTES OPERATIONS */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
/// @dev Returns `subject` all occurrences of `needle` replaced with `replacement`.
function replace(bytes memory subject, bytes memory needle, bytes memory replacement)
internal
pure
returns (bytes memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let needleLen := mload(needle)
let replacementLen := mload(replacement)
let d := sub(result, subject) // Memory difference.
let i := add(subject, 0x20) // Subject bytes pointer.
mstore(0x00, add(i, mload(subject))) // End of subject.
if iszero(gt(needleLen, mload(subject))) {
let subjectSearchEnd := add(sub(mload(0x00), needleLen), 1)
let h := 0 // The hash of `needle`.
if iszero(lt(needleLen, 0x20)) { h := keccak256(add(needle, 0x20), needleLen) }
let s := mload(add(needle, 0x20))
for { let m := shl(3, sub(0x20, and(needleLen, 0x1f))) } 1 {} {
let t := mload(i)
// Whether the first `needleLen % 32` bytes of `subject` and `needle` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(i, needleLen), h)) {
mstore(add(i, d), t)
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
// Copy the `replacement` one word at a time.
for { let j := 0 } 1 {} {
mstore(add(add(i, d), j), mload(add(add(replacement, 0x20), j)))
j := add(j, 0x20)
if iszero(lt(j, replacementLen)) { break }
}
d := sub(add(d, replacementLen), needleLen)
if needleLen {
i := add(i, needleLen)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
mstore(add(i, d), t)
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
}
}
let end := mload(0x00)
let n := add(sub(d, add(result, 0x20)), end)
// Copy the rest of the bytes one word at a time.
for {} lt(i, end) { i := add(i, 0x20) } { mstore(add(i, d), mload(i)) }
let o := add(i, d)
mstore(o, 0) // Zeroize the slot after the bytes.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, n) // Store the length.
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from left to right, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function indexOf(bytes memory subject, bytes memory needle, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
result := not(0) // Initialize to `NOT_FOUND`.
for { let subjectLen := mload(subject) } 1 {} {
if iszero(mload(needle)) {
result := from
if iszero(gt(from, subjectLen)) { break }
result := subjectLen
break
}
let needleLen := mload(needle)
let subjectStart := add(subject, 0x20)
subject := add(subjectStart, from)
let end := add(sub(add(subjectStart, subjectLen), needleLen), 1)
let m := shl(3, sub(0x20, and(needleLen, 0x1f)))
let s := mload(add(needle, 0x20))
if iszero(and(lt(subject, end), lt(from, subjectLen))) { break }
if iszero(lt(needleLen, 0x20)) {
for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
if eq(keccak256(subject, needleLen), h) {
result := sub(subject, subjectStart)
break
}
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
for {} 1 {} {
if iszero(shr(m, xor(mload(subject), s))) {
result := sub(subject, subjectStart)
break
}
subject := add(subject, 1)
if iszero(lt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from left to right.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function indexOf(bytes memory subject, bytes memory needle) internal pure returns (uint256) {
return indexOf(subject, needle, 0);
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from right to left, starting from `from`.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function lastIndexOf(bytes memory subject, bytes memory needle, uint256 from)
internal
pure
returns (uint256 result)
{
/// @solidity memory-safe-assembly
assembly {
for {} 1 {} {
result := not(0) // Initialize to `NOT_FOUND`.
let needleLen := mload(needle)
if gt(needleLen, mload(subject)) { break }
let w := result
let fromMax := sub(mload(subject), needleLen)
if iszero(gt(fromMax, from)) { from := fromMax }
let end := add(add(subject, 0x20), w)
subject := add(add(subject, 0x20), from)
if iszero(gt(subject, end)) { break }
// As this function is not too often used,
// we shall simply use keccak256 for smaller bytecode size.
for { let h := keccak256(add(needle, 0x20), needleLen) } 1 {} {
if eq(keccak256(subject, needleLen), h) {
result := sub(subject, add(end, 1))
break
}
subject := add(subject, w) // `sub(subject, 1)`.
if iszero(gt(subject, end)) { break }
}
break
}
}
}
/// @dev Returns the byte index of the first location of `needle` in `subject`,
/// needleing from right to left.
/// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `needle` is not found.
function lastIndexOf(bytes memory subject, bytes memory needle)
internal
pure
returns (uint256)
{
return lastIndexOf(subject, needle, type(uint256).max);
}
/// @dev Returns true if `needle` is found in `subject`, false otherwise.
function contains(bytes memory subject, bytes memory needle) internal pure returns (bool) {
return indexOf(subject, needle) != NOT_FOUND;
}
/// @dev Returns whether `subject` starts with `needle`.
function startsWith(bytes memory subject, bytes memory needle)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(needle)
// Just using keccak256 directly is actually cheaper.
let t := eq(keccak256(add(subject, 0x20), n), keccak256(add(needle, 0x20), n))
result := lt(gt(n, mload(subject)), t)
}
}
/// @dev Returns whether `subject` ends with `needle`.
function endsWith(bytes memory subject, bytes memory needle)
internal
pure
returns (bool result)
{
/// @solidity memory-safe-assembly
assembly {
let n := mload(needle)
let notInRange := gt(n, mload(subject))
// `subject + 0x20 + max(subject.length - needle.length, 0)`.
let t := add(add(subject, 0x20), mul(iszero(notInRange), sub(mload(subject), n)))
// Just using keccak256 directly is actually cheaper.
result := gt(eq(keccak256(t, n), keccak256(add(needle, 0x20), n)), notInRange)
}
}
/// @dev Returns `subject` repeated `times`.
function repeat(bytes memory subject, uint256 times)
internal
pure
returns (bytes memory result)
{
/// @solidity memory-safe-assembly
assembly {
let l := mload(subject) // Subject length.
if iszero(or(iszero(times), iszero(l))) {
result := mload(0x40)
subject := add(subject, 0x20)
let o := add(result, 0x20)
for {} 1 {} {
// Copy the `subject` one word at a time.
for { let j := 0 } 1 {} {
mstore(add(o, j), mload(add(subject, j)))
j := add(j, 0x20)
if iszero(lt(j, l)) { break }
}
o := add(o, l)
times := sub(times, 1)
if iszero(times) { break }
}
mstore(o, 0) // Zeroize the slot after the bytes.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, sub(o, add(result, 0x20))) // Store the length.
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets.
function slice(bytes memory subject, uint256 start, uint256 end)
internal
pure
returns (bytes memory result)
{
/// @solidity memory-safe-assembly
assembly {
let l := mload(subject) // Subject length.
if iszero(gt(l, end)) { end := l }
if iszero(gt(l, start)) { start := l }
if lt(start, end) {
result := mload(0x40)
let n := sub(end, start)
let i := add(subject, start)
let w := not(0x1f)
// Copy the `subject` one word at a time, backwards.
for { let j := and(add(n, 0x1f), w) } 1 {} {
mstore(add(result, j), mload(add(i, j)))
j := add(j, w) // `sub(j, 0x20)`.
if iszero(j) { break }
}
let o := add(add(result, 0x20), n)
mstore(o, 0) // Zeroize the slot after the bytes.
mstore(0x40, add(o, 0x20)) // Allocate memory.
mstore(result, n) // Store the length.
}
}
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the bytes.
/// `start` is a byte offset.
function slice(bytes memory subject, uint256 start)
internal
pure
returns (bytes memory result)
{
result = slice(subject, start, type(uint256).max);
}
/// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
/// `start` and `end` are byte offsets. Faster than Solidity's native slicing.
function sliceCalldata(bytes calldata subject, uint256 start, uint256 end)
internal
pure
returns (bytes calldata result)
{
/// @solidity memory-safe-assembly
assembly {
end := xor(end, mul(xor(end, subject.length), lt(subject.length, end)))
start := xor(start, mul(xor(start, subject.length), lt(subject.length, start)))
result.offset := add(subject.offset, start)
result.length := mul(lt(start, end), sub(end, start))
}
}
/// @dev Returns a copy of `subject` sliced from `start` to the end of the bytes.
/// `start` is a byte offset. Faster than Solidity's native slicing.
function sliceCalldata(bytes calldata subject, uint256 start)
internal
pure
returns (bytes calldata result)
{
/// @solidity memory-safe-assembly
assembly {
start := xor(start, mul(xor(start, subject.length), lt(subject.length, start)))
result.offset := add(subject.offset, start)
result.length := mul(lt(start, subject.length), sub(subject.length, start))
}
}
/// @dev Reduces the size of `subject` to `n`.
/// If `n` is greater than the size of `subject`, this will be a no-op.
function truncate(bytes memory subject, uint256 n)
internal
pure
returns (bytes memory result)
{
/// @solidity memory-safe-assembly
assembly {
result := subject
mstore(mul(lt(n, mload(result)), result), n)
}
}
/// @dev Returns a copy of `subject`, with the length reduced to `n`.
/// If `n` is greater than the size of `subject`, this will be a no-op.
function truncatedCalldata(bytes calldata subject, uint256 n)
internal
pure
returns (bytes calldata result)
{
/// @solidity memory-safe-assembly
assembly {
result.offset := subject.offset
result.length := xor(n, mul(xor(n, subject.length), lt(subject.length, n)))
}
}
/// @dev Returns all the indices of `needle` in `subject`.
/// The indices are byte offsets.
function indicesOf(bytes memory subject, bytes memory needle)
internal
pure
returns (uint256[] memory result)
{
/// @solidity memory-safe-assembly
assembly {
let searchLen := mload(needle)
if iszero(gt(searchLen, mload(subject))) {
result := mload(0x40)
let i := add(subject, 0x20)
let o := add(result, 0x20)
let subjectSearchEnd := add(sub(add(i, mload(subject)), searchLen), 1)
let h := 0 // The hash of `needle`.
if iszero(lt(searchLen, 0x20)) { h := keccak256(add(needle, 0x20), searchLen) }
let s := mload(add(needle, 0x20))
for { let m := shl(3, sub(0x20, and(searchLen, 0x1f))) } 1 {} {
let t := mload(i)
// Whether the first `searchLen % 32` bytes of `subject` and `needle` matches.
if iszero(shr(m, xor(t, s))) {
if h {
if iszero(eq(keccak256(i, searchLen), h)) {
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
mstore(o, sub(i, add(subject, 0x20))) // Append to `result`.
o := add(o, 0x20)
i := add(i, searchLen) // Advance `i` by `searchLen`.
if searchLen {
if iszero(lt(i, subjectSearchEnd)) { break }
continue
}
}
i := add(i, 1)
if iszero(lt(i, subjectSearchEnd)) { break }
}
mstore(result, shr(5, sub(o, add(result, 0x20)))) // Store the length of `result`.
// Allocate memory for result.
// We allocate one more word, so this array can be recycled for {split}.
mstore(0x40, add(o, 0x20))
}
}
}
/// @dev Returns a arrays of bytess based on the `delimiter` inside of the `subject` bytes.
function split(bytes memory subject, bytes memory delimiter)
internal
pure
returns (bytes[] memory result)
{
uint256[] memory indices = indicesOf(subject, delimiter);
/// @solidity memory-safe-assembly
assembly {
let w := not(0x1f)
let indexPtr := add(indices, 0x20)
let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
mstore(add(indicesEnd, w), mload(subject))
mstore(indices, add(mload(indices), 1))
for { let prevIndex := 0 } 1 {} {
let index := mload(indexPtr)
mstore(indexPtr, 0x60)
if iszero(eq(index, prevIndex)) {
let element := mload(0x40)
let l := sub(index, prevIndex)
mstore(element, l) // Store the length of the element.
// Copy the `subject` one word at a time, backwards.
for { let o := and(add(l, 0x1f), w) } 1 {} {
mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
mstore(add(add(element, 0x20), l), 0) // Zeroize the slot after the bytes.
// Allocate memory for the length and the bytes, rounded up to a multiple of 32.
mstore(0x40, add(element, and(add(l, 0x3f), w)))
mstore(indexPtr, element) // Store the `element` into the array.
}
prevIndex := add(index, mload(delimiter))
indexPtr := add(indexPtr, 0x20)
if iszero(lt(indexPtr, indicesEnd)) { break }
}
result := indices
if iszero(mload(delimiter)) {
result := add(indices, 0x20)
mstore(result, sub(mload(indices), 2))
}
}
}
/// @dev Returns a concatenated bytes of `a` and `b`.
/// Cheaper than `bytes.concat()` and does not de-align the free memory pointer.
function concat(bytes memory a, bytes memory b) internal pure returns (bytes memory result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(0x40)
let w := not(0x1f)
let aLen := mload(a)
// Copy `a` one word at a time, backwards.
for { let o := and(add(aLen, 0x20), w) } 1 {} {
mstore(add(result, o), mload(add(a, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let bLen := mload(b)
let output := add(result, aLen)
// Copy `b` one word at a time, backwards.
for { let o := and(add(bLen, 0x20), w) } 1 {} {
mstore(add(output, o), mload(add(b, o)))
o := add(o, w) // `sub(o, 0x20)`.
if iszero(o) { break }
}
let totalLen := add(aLen, bLen)
let last := add(add(result, 0x20), totalLen)
mstore(last, 0) // Zeroize the slot after the bytes.
mstore(result, totalLen) // Store the length.
mstore(0x40, add(last, 0x20)) // Allocate memory.
}
}
/// @dev Returns whether `a` equals `b`.
function eq(bytes memory a, bytes memory b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
}
}
/// @dev Returns whether `a` equals `b`, where `b` is a null-terminated small bytes.
function eqs(bytes memory a, bytes32 b) internal pure returns (bool result) {
/// @solidity memory-safe-assembly
assembly {
// These should be evaluated on compile time, as far as possible.
let m := not(shl(7, div(not(iszero(b)), 255))) // `0x7f7f ...`.
let x := not(or(m, or(b, add(m, and(b, m)))))
let r := shl(7, iszero(iszero(shr(128, x))))
r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x))))))
r := or(r, shl(5, lt(0xffffffff, shr(r, x))))
r := or(r, shl(4, lt(0xffff, shr(r, x))))
r := or(r, shl(3, lt(0xff, shr(r, x))))
// forgefmt: disable-next-item
result := gt(eq(mload(a), add(iszero(x), xor(31, shr(3, r)))),
xor(shr(add(8, r), b), shr(add(8, r), mload(add(a, 0x20)))))
}
}
/// @dev Directly returns `a` without copying.
function directReturn(bytes memory a) internal pure {
assembly {
// Assumes that the bytes does not start from the scratch space.
let retStart := sub(a, 0x20)
let retUnpaddedSize := add(mload(a), 0x40)
// Right pad with zeroes. Just in case the bytes is produced
// by a method that doesn't zero right pad.
mstore(add(retStart, retUnpaddedSize), 0)
mstore(retStart, 0x20) // Store the return offset.
// End the transaction, returning the bytes.
return(retStart, and(not(0x1f), add(0x1f, retUnpaddedSize)))
}
}
/// @dev Directly returns `a` with minimal copying.
function directReturn(bytes[] memory a) internal pure {
assembly {
let n := mload(a) // `a.length`.
let o := add(a, 0x20) // Start of elements in `a`.
let u := a // Highest memory slot.
let w := not(0x1f)
for { let i := 0 } iszero(eq(i, n)) { i := add(i, 1) } {
let c := add(o, shl(5, i)) // Location of pointer to `a[i]`.
let s := mload(c) // `a[i]`.
let l := mload(s) // `a[i].length`.
let r := and(l, 0x1f) // `a[i].length % 32`.
let z := add(0x20, and(l, w)) // Offset of last word in `a[i]` from `s`.
// If `s` comes before `o`, or `s` is not zero right padded.
if iszero(lt(lt(s, o), or(iszero(r), iszero(shl(shl(3, r), mload(add(s, z))))))) {
let m := mload(0x40)
mstore(m, l) // Copy `a[i].length`.
for {} 1 {} {
mstore(add(m, z), mload(add(s, z))) // Copy `a[i]`, backwards.
z := add(z, w) // `sub(z, 0x20)`.
if iszero(z) { break }
}
let e := add(add(m, 0x20), l)
mstore(e, 0) // Zeroize the slot after the copied bytes.
mstore(0x40, add(e, 0x20)) // Allocate memory.
s := m
}
mstore(c, sub(s, o)) // Convert to calldata offset.
let t := add(l, add(s, 0x20))
if iszero(lt(t, u)) { u := t }
}
let retStart := add(a, w) // Assumes `a` doesn't start from scratch space.
mstore(retStart, 0x20) // Store the return offset.
return(retStart, add(0x40, sub(u, retStart))) // End the transaction.
}
}
/// @dev Returns the word at `offset`, without any bounds checks.
/// To load an address, you can use `address(bytes20(load(a, offset)))`.
function load(bytes memory a, uint256 offset) internal pure returns (bytes32 result) {
/// @solidity memory-safe-assembly
assembly {
result := mload(add(add(a, 0x20), offset))
}
}
/// @dev Returns the word at `offset`, without any bounds checks.
/// To load an address, you can use `address(bytes20(loadCalldata(a, offset)))`.
function loadCalldata(bytes calldata a, uint256 offset)
internal
pure
returns (bytes32 result)
{
/// @solidity memory-safe-assembly
assembly {
result := calldataload(add(a.offset, offset))
}
}
/// @dev Returns empty calldata bytes. For silencing the compiler.
function emptyCalldata() internal pure returns (bytes calldata result) {
/// @solidity memory-safe-assembly
assembly {
result.length := 0
}
}
}{
"remappings": [
"creator-token-standards/lib/openzeppelin-contracts/=lib/openzeppelin-contracts/",
"creator-token-standards/lib/PermitC/lib/openzeppelin-contracts/=lib/openzeppelin-contracts/",
"creator-token-standards/lib/murky/lib/openzeppelin-contracts/=lib/openzeppelin-contracts/",
"ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/=lib/forge-std/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin/=lib/openzeppelin-contracts/contracts/",
"solady/=lib/solady/src/",
"v2-periphery/=lib/v2-periphery/contracts/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract ABI
API[{"inputs":[{"internalType":"contract IHub","name":"hub_","type":"address"},{"internalType":"contract IRobustRenderer","name":"robustRenderer_","type":"address"},{"internalType":"contract IRefunder","name":"refunder_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccountBalanceOverflow","type":"error"},{"inputs":[],"name":"BadMintCheckpoints_error","type":"error"},{"inputs":[],"name":"BadMintPrices_error","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"BridgingNotCurrentlySupported_error","type":"error"},{"inputs":[],"name":"CollectionNotDiscounted_error","type":"error"},{"inputs":[],"name":"CreatorTokenBase__InvalidTransferValidatorContract","type":"error"},{"inputs":[],"name":"CreatorTokenBase__SetTransferValidatorFirst","type":"error"},{"inputs":[],"name":"DiscountAlreadyClaimed_error","type":"error"},{"inputs":[],"name":"ExceedsMaxFreeMintsPerTx_error","type":"error"},{"inputs":[],"name":"ExceedsMaxSupply_error","type":"error"},{"inputs":[],"name":"InsufficientValue_error","type":"error"},{"inputs":[],"name":"InvalidBurnWindow_error","type":"error"},{"inputs":[],"name":"InvalidFeeNumerator_error","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"InvalidInput_error","type":"error"},{"inputs":[],"name":"InvalidMaxFreeMintsPerTx_error","type":"error"},{"inputs":[],"name":"InvalidMintCheckpoints_error","type":"error"},{"inputs":[],"name":"InvalidProof_error","type":"error"},{"inputs":[],"name":"MintEconomicsOrderering_error","type":"error"},{"inputs":[],"name":"MintEnded_error","type":"error"},{"inputs":[],"name":"MintNotStarted_error","type":"error"},{"inputs":[],"name":"NoWrapping_error","type":"error"},{"inputs":[],"name":"NotHub_error","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"NotOwnerNorApproved","type":"error"},{"inputs":[],"name":"NotOwner_error","type":"error"},{"inputs":[],"name":"NotReady_error","type":"error"},{"inputs":[],"name":"RefundFailed_error","type":"error"},{"inputs":[],"name":"ShouldNotMintToBurnAddress","type":"error"},{"inputs":[],"name":"TokenAlreadyExists","type":"error"},{"inputs":[],"name":"TokenDoesNotExist","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"Transfer_error","type":"error"},{"inputs":[],"name":"TrivialMaxSupply_error","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"isApproved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"}],"name":"BatchMetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"contract INFT","name":"nft","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"l2Id","type":"uint256"}],"name":"BridgedFrom","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"contract INFT","name":"nft","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"l2Id","type":"uint256"}],"name":"BridgedTo","type":"event"},{"anonymous":false,"inputs":[],"name":"ContractURIUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint96","name":"feeNumerator","type":"uint96"}],"name":"DefaultRoyaltySet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newMaxSupply","type":"uint256"}],"name":"MaxSupplyUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"mintEndTime","type":"uint256"}],"name":"MintEndsUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Refunded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint96","name":"feeNumerator","type":"uint96"}],"name":"TokenRoyaltySet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"oldValidator","type":"address"},{"indexed":false,"internalType":"address","name":"newValidator","type":"address"}],"name":"TransferValidatorUpdated","type":"event"},{"inputs":[],"name":"DEFAULT_OPERATOR_WHITELIST_ID","outputs":[{"internalType":"uint120","name":"","type":"uint120"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_TRANSFER_SECURITY_LEVEL","outputs":[{"internalType":"enum TransferSecurityLevels","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEFAULT_TRANSFER_VALIDATOR","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_REVEAL_BLOCK_OFFSET","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ONE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"uint256","name":"l2Id","type":"uint256"},{"internalType":"bytes","name":"proof","type":"bytes"}],"name":"bridgeFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"uint256","name":"l2Id","type":"uint256"}],"name":"bridgeTo","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimRefund","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"name":"collectionIsDiscounted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"curationTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"description","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC721","name":"collection","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"discountClaimed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC721","name":"","type":"address"}],"name":"discountedCollectionFactors","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"internalType":"uint256","name":"toTokenId","type":"uint256"}],"name":"emitBatchMetadataUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emitContractURIUpdated","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"exists","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"finalized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDiscountData","outputs":[{"internalType":"contract IERC721[]","name":"collections","type":"address[]"},{"internalType":"uint256[]","name":"factors","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPermittedContractReceivers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSecurityPolicy","outputs":[{"components":[{"internalType":"enum TransferSecurityLevels","name":"transferSecurityLevel","type":"uint8"},{"internalType":"uint120","name":"operatorWhitelistId","type":"uint120"},{"internalType":"uint120","name":"permittedContractReceiversId","type":"uint120"}],"internalType":"struct CollectionSecurityPolicy","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTransferValidator","outputs":[{"internalType":"contract ICreatorTokenTransferValidator","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getWhitelistedOperators","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"hub","outputs":[{"internalType":"contract IHub","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"curationTokenId_","type":"uint256"},{"internalType":"contract IPaymentFilterer","name":"paymentFilterer_","type":"address"},{"internalType":"contract IRefunder","name":"refunder_","type":"address"},{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"string","name":"description","type":"string"},{"internalType":"bool","name":"walker","type":"bool"}],"internalType":"struct CollectionNames","name":"names","type":"tuple"},{"components":[{"internalType":"uint256","name":"curatorShare","type":"uint256"},{"internalType":"uint256","name":"mintStarts","type":"uint256"},{"internalType":"uint256","name":"mintEnds","type":"uint256"},{"internalType":"uint256","name":"maxFreeMintsPerTx","type":"uint256"},{"internalType":"uint256","name":"burnWindow","type":"uint256"},{"internalType":"enum MintPricingType","name":"mintPricingType","type":"uint8"},{"internalType":"uint256","name":"maxSupply","type":"uint256"},{"internalType":"uint256[]","name":"mintCheckpoints","type":"uint256[]"},{"internalType":"uint256[]","name":"mintPrices","type":"uint256[]"},{"internalType":"uint96","name":"feeNumerator","type":"uint96"}],"internalType":"struct MintEconomics","name":"mintEconomics_","type":"tuple"},{"components":[{"internalType":"contract IERC721[]","name":"discountedCollections","type":"address[]"},{"internalType":"uint256[]","name":"discountFactors","type":"uint256[]"}],"internalType":"struct DiscountData","name":"dd","type":"tuple"},{"internalType":"bytes","name":"","type":"bytes"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"isContractReceiverPermitted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"isOperatorWhitelisted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"caller","type":"address"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"}],"name":"isTransferAllowed","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxFreeMintsPerTx","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"qty","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"contract IERC721[]","name":"collections","type":"address[]"},{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"mintDiscounted","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mintEconomics","outputs":[{"components":[{"internalType":"uint256","name":"curatorShare","type":"uint256"},{"internalType":"uint256","name":"mintStarts","type":"uint256"},{"internalType":"uint256","name":"mintEnds","type":"uint256"},{"internalType":"uint256","name":"maxFreeMintsPerTx","type":"uint256"},{"internalType":"uint256","name":"burnWindow","type":"uint256"},{"internalType":"enum MintPricingType","name":"mintPricingType","type":"uint8"},{"internalType":"uint256","name":"maxSupply","type":"uint256"},{"internalType":"uint256[]","name":"mintCheckpoints","type":"uint256[]"},{"internalType":"uint256[]","name":"mintPrices","type":"uint256[]"},{"internalType":"uint96","name":"feeNumerator","type":"uint96"}],"internalType":"struct MintEconomics","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintEnded","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintEnds","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"tos","type":"address[]"}],"name":"mintExecutive","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"nth","type":"uint256"}],"name":"mintPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintPriceCurrent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintPrices","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintStarted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintStarts","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"multiTokenURI","outputs":[{"internalType":"string[]","name":"ret","type":"string[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"paid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paymentFilterer","outputs":[{"internalType":"contract IPaymentFilterer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pushETHToPaymentFilterer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"qtyAvailableToMint","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"refundAvailable","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"refunder","outputs":[{"internalType":"contract IRefunder","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"robustRenderer","outputs":[{"internalType":"contract IRobustRenderer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"isApproved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"mintEnds_","type":"uint256"}],"name":"setMintEnds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum TransferSecurityLevels","name":"level","type":"uint8"},{"internalType":"uint120","name":"operatorWhitelistId","type":"uint120"},{"internalType":"uint120","name":"permittedContractReceiversAllowlistId","type":"uint120"}],"name":"setToCustomSecurityPolicy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"validator","type":"address"},{"internalType":"enum TransferSecurityLevels","name":"level","type":"uint8"},{"internalType":"uint120","name":"operatorWhitelistId","type":"uint120"},{"internalType":"uint120","name":"permittedContractReceiversAllowlistId","type":"uint120"}],"name":"setToCustomValidatorAndSecurityPolicy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setToDefaultSecurityPolicy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"transferValidator_","type":"address"}],"name":"setTransferValidator","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"url","type":"string"}],"name":"setWebsite","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"updateSupply","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"website","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"willBeFinalized","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.