Overview
ETH Balance
0 ETH
Eth Value
$0.00Token Holdings
More Info
Private Name Tags
ContractCreator
Latest 25 from a total of 209 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Assess | 21130212 | 4 hrs ago | IN | 0 ETH | 0.00196159 | ||||
Assess | 21108716 | 3 days ago | IN | 0 ETH | 0.00070057 | ||||
Assess | 21087229 | 6 days ago | IN | 0 ETH | 0.00182148 | ||||
Assess | 21065739 | 9 days ago | IN | 0 ETH | 0.00210171 | ||||
Assess | 21044236 | 12 days ago | IN | 0 ETH | 0.00126102 | ||||
Assess | 21022729 | 15 days ago | IN | 0 ETH | 0.00196159 | ||||
Assess | 21001221 | 18 days ago | IN | 0 ETH | 0.00154125 | ||||
Assess | 20979728 | 21 days ago | IN | 0 ETH | 0.00224182 | ||||
Assess | 20958254 | 24 days ago | IN | 0 ETH | 0.00182148 | ||||
Assess | 20936819 | 27 days ago | IN | 0 ETH | 0.00182148 | ||||
Assess | 20915288 | 30 days ago | IN | 0 ETH | 0.00448364 | ||||
Assess | 20893767 | 33 days ago | IN | 0 ETH | 0.00112091 | ||||
Assess | 20872260 | 36 days ago | IN | 0 ETH | 0.00490399 | ||||
Assess | 20850738 | 39 days ago | IN | 0 ETH | 0.00084068 | ||||
Assess | 20829222 | 42 days ago | IN | 0 ETH | 0.00364296 | ||||
Assess | 20807723 | 45 days ago | IN | 0 ETH | 0.00518421 | ||||
Assess | 20786246 | 48 days ago | IN | 0 ETH | 0.00252205 | ||||
Assess | 20764786 | 51 days ago | IN | 0 ETH | 0.00140114 | ||||
Assess | 20743294 | 54 days ago | IN | 0 ETH | 0.00056045 | ||||
Assess | 20721812 | 57 days ago | IN | 0 ETH | 0.00042034 | ||||
Assess | 20700330 | 60 days ago | IN | 0 ETH | 0.00028022 | ||||
Assess | 20678823 | 63 days ago | IN | 0 ETH | 0.00056045 | ||||
Assess | 20657325 | 66 days ago | IN | 0 ETH | 0.00014011 | ||||
Assess | 20635841 | 69 days ago | IN | 0 ETH | 0.00028022 | ||||
Assess | 20614372 | 72 days ago | IN | 0 ETH | 0.00042034 |
Advanced mode: Intended for advanced users or developers and will display all Internal Transactions including zero value transfers. Name tag integration is not available in advanced view.
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block | From | To | ||||
---|---|---|---|---|---|---|---|
21130213 | 4 hrs ago | 0 ETH | |||||
21130213 | 4 hrs ago | 0 ETH | |||||
21130213 | 4 hrs ago | 0 ETH | |||||
21130213 | 4 hrs ago | 0 ETH | |||||
21130213 | 4 hrs ago | 0 ETH | |||||
21130213 | 4 hrs ago | 0 ETH | |||||
21130213 | 4 hrs ago | 0 ETH | |||||
21130213 | 4 hrs ago | 0 ETH | |||||
21130213 | 4 hrs ago | 0 ETH | |||||
21130212 | 4 hrs ago | 0 ETH | |||||
21130212 | 4 hrs ago | 0 ETH | |||||
21130212 | 4 hrs ago | 0 ETH | |||||
21130212 | 4 hrs ago | 0 ETH | |||||
21130212 | 4 hrs ago | 0 ETH | |||||
21130212 | 4 hrs ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108717 | 3 days ago | 0 ETH | |||||
21108716 | 3 days ago | 0 ETH |
Loading...
Loading
Minimal Proxy Contract for 0xdc694367a9b32768b6d3b5df34f062a7d29c9230
Contract Name:
TranchedPool
Compiler Version
v0.6.12+commit.27d51765
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts/drafts/IERC20Permit.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/Math.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "../../interfaces/ITranchedPool.sol"; import "../../interfaces/IERC20withDec.sol"; import "../../interfaces/IV2CreditLine.sol"; import "../../interfaces/IPoolTokens.sol"; import "./GoldfinchConfig.sol"; import "./BaseUpgradeablePausable.sol"; import "./ConfigHelper.sol"; import "../../library/SafeERC20Transfer.sol"; import "./TranchingLogic.sol"; contract TranchedPool is BaseUpgradeablePausable, ITranchedPool, SafeERC20Transfer { GoldfinchConfig public config; using ConfigHelper for GoldfinchConfig; using TranchingLogic for PoolSlice; using TranchingLogic for TrancheInfo; bytes32 public constant LOCKER_ROLE = keccak256("LOCKER_ROLE"); bytes32 public constant SENIOR_ROLE = keccak256("SENIOR_ROLE"); uint256 public constant FP_SCALING_FACTOR = 1e18; uint256 public constant SECONDS_PER_DAY = 60 * 60 * 24; uint256 public constant ONE_HUNDRED = 100; // Need this because we cannot call .div on a literal 100 uint256 public constant NUM_TRANCHES_PER_SLICE = 2; uint256 public juniorFeePercent; bool public drawdownsPaused; uint256[] public allowedUIDTypes; uint256 public totalDeployed; uint256 public fundableAt; PoolSlice[] public poolSlices; event DepositMade(address indexed owner, uint256 indexed tranche, uint256 indexed tokenId, uint256 amount); event WithdrawalMade( address indexed owner, uint256 indexed tranche, uint256 indexed tokenId, uint256 interestWithdrawn, uint256 principalWithdrawn ); event GoldfinchConfigUpdated(address indexed who, address configAddress); event TranchedPoolAssessed(address indexed pool); event PaymentApplied( address indexed payer, address indexed pool, uint256 interestAmount, uint256 principalAmount, uint256 remainingAmount, uint256 reserveAmount ); // Note: This has to exactly match the even in the TranchingLogic library for events to be emitted // correctly event SharePriceUpdated( address indexed pool, uint256 indexed tranche, uint256 principalSharePrice, int256 principalDelta, uint256 interestSharePrice, int256 interestDelta ); event ReserveFundsCollected(address indexed from, uint256 amount); event CreditLineMigrated(address indexed oldCreditLine, address indexed newCreditLine); event DrawdownMade(address indexed borrower, uint256 amount); event DrawdownsPaused(address indexed pool); event DrawdownsUnpaused(address indexed pool); event EmergencyShutdown(address indexed pool); event TrancheLocked(address indexed pool, uint256 trancheId, uint256 lockedUntil); event SliceCreated(address indexed pool, uint256 sliceId); function initialize( address _config, address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays, uint256 _fundableAt, uint256[] calldata _allowedUIDTypes ) public override initializer { require(address(_config) != address(0) && address(_borrower) != address(0), "Config/borrower invalid"); config = GoldfinchConfig(_config); address owner = config.protocolAdminAddress(); require(owner != address(0), "Owner invalid"); __BaseUpgradeablePausable__init(owner); _initializeNextSlice(_fundableAt); createAndSetCreditLine( _borrower, _limit, _interestApr, _paymentPeriodInDays, _termInDays, _lateFeeApr, _principalGracePeriodInDays ); createdAt = block.timestamp; juniorFeePercent = _juniorFeePercent; if (_allowedUIDTypes.length == 0) { uint256[1] memory defaultAllowedUIDTypes = [config.getGo().ID_TYPE_0()]; allowedUIDTypes = defaultAllowedUIDTypes; } else { allowedUIDTypes = _allowedUIDTypes; } _setupRole(LOCKER_ROLE, _borrower); _setupRole(LOCKER_ROLE, owner); _setRoleAdmin(LOCKER_ROLE, OWNER_ROLE); _setRoleAdmin(SENIOR_ROLE, OWNER_ROLE); // Give the senior pool the ability to deposit into the senior pool _setupRole(SENIOR_ROLE, address(config.getSeniorPool())); // Unlock self for infinite amount bool success = config.getUSDC().approve(address(this), uint256(-1)); require(success, "Failed to approve USDC"); } function setAllowedUIDTypes(uint256[] calldata ids) public onlyLocker { require( poolSlices[0].juniorTranche.principalDeposited == 0 && poolSlices[0].seniorTranche.principalDeposited == 0, "Must not have balance" ); allowedUIDTypes = ids; } /** * @notice Deposit a USDC amount into the pool for a tranche. Mints an NFT to the caller representing the position * @param tranche The number representing the tranche to deposit into * @param amount The USDC amount to tranfer from the caller to the pool * @return tokenId The tokenId of the NFT */ function deposit(uint256 tranche, uint256 amount) public override nonReentrant whenNotPaused returns (uint256 tokenId) { TrancheInfo storage trancheInfo = getTrancheInfo(tranche); require(trancheInfo.lockedUntil == 0, "Tranche locked"); require(amount > 0, "Must deposit > zero"); require(config.getGo().goOnlyIdTypes(msg.sender, allowedUIDTypes), "Address not go-listed"); require(block.timestamp > fundableAt, "Not open for funding"); // senior tranche ids are always odd numbered if (_isSeniorTrancheId(trancheInfo.id)) { require(hasRole(SENIOR_ROLE, _msgSender()), "Req SENIOR_ROLE"); } trancheInfo.principalDeposited = trancheInfo.principalDeposited.add(amount); IPoolTokens.MintParams memory params = IPoolTokens.MintParams({tranche: tranche, principalAmount: amount}); tokenId = config.getPoolTokens().mint(params, msg.sender); safeERC20TransferFrom(config.getUSDC(), msg.sender, address(this), amount); emit DepositMade(msg.sender, tranche, tokenId, amount); return tokenId; } function depositWithPermit( uint256 tranche, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public override returns (uint256 tokenId) { IERC20Permit(config.usdcAddress()).permit(msg.sender, address(this), amount, deadline, v, r, s); return deposit(tranche, amount); } /** * @notice Withdraw an already deposited amount if the funds are available * @param tokenId The NFT representing the position * @param amount The amount to withdraw (must be <= interest+principal currently available to withdraw) * @return interestWithdrawn The interest amount that was withdrawn * @return principalWithdrawn The principal amount that was withdrawn */ function withdraw(uint256 tokenId, uint256 amount) public override nonReentrant whenNotPaused returns (uint256 interestWithdrawn, uint256 principalWithdrawn) { IPoolTokens.TokenInfo memory tokenInfo = config.getPoolTokens().getTokenInfo(tokenId); TrancheInfo storage trancheInfo = getTrancheInfo(tokenInfo.tranche); return _withdraw(trancheInfo, tokenInfo, tokenId, amount); } /** * @notice Withdraw from many tokens (that the sender owns) in a single transaction * @param tokenIds An array of tokens ids representing the position * @param amounts An array of amounts to withdraw from the corresponding tokenIds */ function withdrawMultiple(uint256[] calldata tokenIds, uint256[] calldata amounts) public override { require(tokenIds.length == amounts.length, "TokensIds and Amounts mismatch"); for (uint256 i = 0; i < amounts.length; i++) { withdraw(tokenIds[i], amounts[i]); } } /** * @notice Similar to withdraw but will withdraw all available funds * @param tokenId The NFT representing the position * @return interestWithdrawn The interest amount that was withdrawn * @return principalWithdrawn The principal amount that was withdrawn */ function withdrawMax(uint256 tokenId) external override nonReentrant whenNotPaused returns (uint256 interestWithdrawn, uint256 principalWithdrawn) { IPoolTokens.TokenInfo memory tokenInfo = config.getPoolTokens().getTokenInfo(tokenId); TrancheInfo storage trancheInfo = getTrancheInfo(tokenInfo.tranche); (uint256 interestRedeemable, uint256 principalRedeemable) = redeemableInterestAndPrincipal(trancheInfo, tokenInfo); uint256 amount = interestRedeemable.add(principalRedeemable); return _withdraw(trancheInfo, tokenInfo, tokenId, amount); } /** * @notice Draws down the funds (and locks the pool) to the borrower address. Can only be called by the borrower * @param amount The amount to drawdown from the creditline (must be < limit) */ function drawdown(uint256 amount) external override onlyLocker whenNotPaused { require(!drawdownsPaused, "Drawdowns are paused"); if (!locked()) { // Assumes the senior pool has invested already (saves the borrower a separate transaction to lock the pool) _lockPool(); } // Drawdown only draws down from the current slice for simplicity. It's harder to account for how much // money is available from previous slices since depositors can redeem after unlock. PoolSlice storage currentSlice = poolSlices[poolSlices.length.sub(1)]; uint256 amountAvailable = sharePriceToUsdc( currentSlice.juniorTranche.principalSharePrice, currentSlice.juniorTranche.principalDeposited ); amountAvailable = amountAvailable.add( sharePriceToUsdc(currentSlice.seniorTranche.principalSharePrice, currentSlice.seniorTranche.principalDeposited) ); require(amount <= amountAvailable, "Insufficient funds in slice"); creditLine.drawdown(amount); // Update the share price to reflect the amount remaining in the pool uint256 amountRemaining = amountAvailable.sub(amount); uint256 oldJuniorPrincipalSharePrice = currentSlice.juniorTranche.principalSharePrice; uint256 oldSeniorPrincipalSharePrice = currentSlice.seniorTranche.principalSharePrice; currentSlice.juniorTranche.principalSharePrice = currentSlice.juniorTranche.calculateExpectedSharePrice( amountRemaining, currentSlice ); currentSlice.seniorTranche.principalSharePrice = currentSlice.seniorTranche.calculateExpectedSharePrice( amountRemaining, currentSlice ); currentSlice.principalDeployed = currentSlice.principalDeployed.add(amount); totalDeployed = totalDeployed.add(amount); address borrower = creditLine.borrower(); safeERC20TransferFrom(config.getUSDC(), address(this), borrower, amount); emit DrawdownMade(borrower, amount); emit SharePriceUpdated( address(this), currentSlice.juniorTranche.id, currentSlice.juniorTranche.principalSharePrice, int256(oldJuniorPrincipalSharePrice.sub(currentSlice.juniorTranche.principalSharePrice)) * -1, currentSlice.juniorTranche.interestSharePrice, 0 ); emit SharePriceUpdated( address(this), currentSlice.seniorTranche.id, currentSlice.seniorTranche.principalSharePrice, int256(oldSeniorPrincipalSharePrice.sub(currentSlice.seniorTranche.principalSharePrice)) * -1, currentSlice.seniorTranche.interestSharePrice, 0 ); } /** * @notice Locks the junior tranche, preventing more junior deposits. Gives time for the senior to determine how * much to invest (ensure leverage ratio cannot change for the period) */ function lockJuniorCapital() external override onlyLocker whenNotPaused { _lockJuniorCapital(poolSlices.length.sub(1)); } /** * @notice Locks the pool (locks both senior and junior tranches and starts the drawdown period). Beyond the drawdown * period, any unused capital is available to withdraw by all depositors */ function lockPool() external override onlyLocker whenNotPaused { _lockPool(); } function setFundableAt(uint256 newFundableAt) external override onlyLocker { fundableAt = newFundableAt; } function initializeNextSlice(uint256 _fundableAt) external override onlyLocker whenNotPaused { require(locked(), "Current slice still active"); require(!creditLine.isLate(), "Creditline is late"); require(creditLine.withinPrincipalGracePeriod(), "Beyond principal grace period"); _initializeNextSlice(_fundableAt); emit SliceCreated(address(this), poolSlices.length.sub(1)); } /** * @notice Triggers an assessment of the creditline and the applies the payments according the tranche waterfall */ function assess() external override whenNotPaused { _assess(); } /** * @notice Allows repaying the creditline. Collects the USDC amount from the sender and triggers an assess * @param amount The amount to repay */ function pay(uint256 amount) external override whenNotPaused { require(amount > 0, "Must pay more than zero"); collectPayment(amount); _assess(); } /** * @notice Migrates to a new goldfinch config address */ function updateGoldfinchConfig() external onlyAdmin { config = GoldfinchConfig(config.configAddress()); creditLine.updateGoldfinchConfig(); emit GoldfinchConfigUpdated(msg.sender, address(config)); } /** * @notice Pauses the pool and sweeps any remaining funds to the treasury reserve. */ function emergencyShutdown() public onlyAdmin { if (!paused()) { pause(); } IERC20withDec usdc = config.getUSDC(); address reserveAddress = config.reserveAddress(); // Sweep any funds to community reserve uint256 poolBalance = usdc.balanceOf(address(this)); if (poolBalance > 0) { safeERC20Transfer(usdc, reserveAddress, poolBalance); } uint256 clBalance = usdc.balanceOf(address(creditLine)); if (clBalance > 0) { safeERC20TransferFrom(usdc, address(creditLine), reserveAddress, clBalance); } emit EmergencyShutdown(address(this)); } /** * @notice Pauses all drawdowns (but not deposits/withdraws) */ function pauseDrawdowns() public onlyAdmin { drawdownsPaused = true; emit DrawdownsPaused(address(this)); } /** * @notice Unpause drawdowns */ function unpauseDrawdowns() public onlyAdmin { drawdownsPaused = false; emit DrawdownsUnpaused(address(this)); } /** * @notice Migrates the accounting variables from the current creditline to a brand new one * @param _borrower The borrower address * @param _maxLimit The new max limit * @param _interestApr The new interest APR * @param _paymentPeriodInDays The new payment period in days * @param _termInDays The new term in days * @param _lateFeeApr The new late fee APR */ function migrateCreditLine( address _borrower, uint256 _maxLimit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays ) public onlyAdmin { require(_borrower != address(0), "Borrower must not be empty"); require(_paymentPeriodInDays != 0, "Payment period invalid"); require(_termInDays != 0, "Term must not be empty"); address originalClAddr = address(creditLine); createAndSetCreditLine( _borrower, _maxLimit, _interestApr, _paymentPeriodInDays, _termInDays, _lateFeeApr, _principalGracePeriodInDays ); address newClAddr = address(creditLine); TranchingLogic.migrateAccountingVariables(originalClAddr, newClAddr); TranchingLogic.closeCreditLine(originalClAddr); address originalBorrower = IV2CreditLine(originalClAddr).borrower(); address newBorrower = IV2CreditLine(newClAddr).borrower(); // Ensure Roles if (originalBorrower != newBorrower) { revokeRole(LOCKER_ROLE, originalBorrower); grantRole(LOCKER_ROLE, newBorrower); } // Transfer any funds to new CL uint256 clBalance = config.getUSDC().balanceOf(originalClAddr); if (clBalance > 0) { safeERC20TransferFrom(config.getUSDC(), originalClAddr, newClAddr, clBalance); } emit CreditLineMigrated(originalClAddr, newClAddr); } /** * @notice Migrates to a new creditline without copying the accounting variables */ function migrateAndSetNewCreditLine(address newCl) public onlyAdmin { require(newCl != address(0), "Creditline cannot be empty"); address originalClAddr = address(creditLine); // Transfer any funds to new CL uint256 clBalance = config.getUSDC().balanceOf(originalClAddr); if (clBalance > 0) { safeERC20TransferFrom(config.getUSDC(), originalClAddr, newCl, clBalance); } TranchingLogic.closeCreditLine(originalClAddr); // set new CL creditLine = IV2CreditLine(newCl); // sanity check that the new address is in fact a creditline creditLine.limit(); emit CreditLineMigrated(originalClAddr, address(creditLine)); } // CreditLine proxy method function setLimit(uint256 newAmount) external onlyAdmin { return creditLine.setLimit(newAmount); } function setMaxLimit(uint256 newAmount) external onlyAdmin { return creditLine.setMaxLimit(newAmount); } function getTranche(uint256 tranche) public view override returns (TrancheInfo memory) { return getTrancheInfo(tranche); } function numSlices() public view returns (uint256) { return poolSlices.length; } /** * @notice Converts USDC amounts to share price * @param amount The USDC amount to convert * @param totalShares The total shares outstanding * @return The share price of the input amount */ function usdcToSharePrice(uint256 amount, uint256 totalShares) public pure returns (uint256) { return TranchingLogic.usdcToSharePrice(amount, totalShares); } /** * @notice Converts share price to USDC amounts * @param sharePrice The share price to convert * @param totalShares The total shares outstanding * @return The USDC amount of the input share price */ function sharePriceToUsdc(uint256 sharePrice, uint256 totalShares) public pure returns (uint256) { return TranchingLogic.sharePriceToUsdc(sharePrice, totalShares); } /** * @notice Returns the total junior capital deposited * @return The total USDC amount deposited into all junior tranches */ function totalJuniorDeposits() external view override returns (uint256) { uint256 total; for (uint256 i = 0; i < poolSlices.length; i++) { total = total.add(poolSlices[i].juniorTranche.principalDeposited); } return total; } /** * @notice Determines the amount of interest and principal redeemable by a particular tokenId * @param tokenId The token representing the position * @return interestRedeemable The interest available to redeem * @return principalRedeemable The principal available to redeem */ function availableToWithdraw(uint256 tokenId) public view override returns (uint256 interestRedeemable, uint256 principalRedeemable) { IPoolTokens.TokenInfo memory tokenInfo = config.getPoolTokens().getTokenInfo(tokenId); TrancheInfo storage trancheInfo = getTrancheInfo(tokenInfo.tranche); if (currentTime() > trancheInfo.lockedUntil) { return redeemableInterestAndPrincipal(trancheInfo, tokenInfo); } else { return (0, 0); } } /* Internal functions */ function _withdraw( TrancheInfo storage trancheInfo, IPoolTokens.TokenInfo memory tokenInfo, uint256 tokenId, uint256 amount ) internal returns (uint256 interestWithdrawn, uint256 principalWithdrawn) { require(config.getPoolTokens().isApprovedOrOwner(msg.sender, tokenId), "Not token owner"); require(config.getGo().goOnlyIdTypes(msg.sender, allowedUIDTypes), "Address not go-listed"); require(amount > 0, "Must withdraw more than zero"); (uint256 interestRedeemable, uint256 principalRedeemable) = redeemableInterestAndPrincipal(trancheInfo, tokenInfo); uint256 netRedeemable = interestRedeemable.add(principalRedeemable); require(amount <= netRedeemable, "Invalid redeem amount"); require(currentTime() > trancheInfo.lockedUntil, "Tranche is locked"); // If the tranche has not been locked, ensure the deposited amount is correct if (trancheInfo.lockedUntil == 0) { trancheInfo.principalDeposited = trancheInfo.principalDeposited.sub(amount); } uint256 interestToRedeem = Math.min(interestRedeemable, amount); uint256 principalToRedeem = Math.min(principalRedeemable, amount.sub(interestToRedeem)); config.getPoolTokens().redeem(tokenId, principalToRedeem, interestToRedeem); safeERC20TransferFrom(config.getUSDC(), address(this), msg.sender, principalToRedeem.add(interestToRedeem)); emit WithdrawalMade(msg.sender, tokenInfo.tranche, tokenId, interestToRedeem, principalToRedeem); return (interestToRedeem, principalToRedeem); } function _isSeniorTrancheId(uint256 trancheId) internal pure returns (bool) { return trancheId.mod(NUM_TRANCHES_PER_SLICE) == 1; } function redeemableInterestAndPrincipal(TrancheInfo storage trancheInfo, IPoolTokens.TokenInfo memory tokenInfo) internal view returns (uint256 interestRedeemable, uint256 principalRedeemable) { // This supports withdrawing before or after locking because principal share price starts at 1 // and is set to 0 on lock. Interest share price is always 0 until interest payments come back, when it increases uint256 maxPrincipalRedeemable = sharePriceToUsdc(trancheInfo.principalSharePrice, tokenInfo.principalAmount); // The principalAmount is used as the totalShares because we want the interestSharePrice to be expressed as a // percent of total loan value e.g. if the interest is 10% APR, the interestSharePrice should approach a max of 0.1. uint256 maxInterestRedeemable = sharePriceToUsdc(trancheInfo.interestSharePrice, tokenInfo.principalAmount); interestRedeemable = maxInterestRedeemable.sub(tokenInfo.interestRedeemed); principalRedeemable = maxPrincipalRedeemable.sub(tokenInfo.principalRedeemed); return (interestRedeemable, principalRedeemable); } function _lockJuniorCapital(uint256 sliceId) internal { require(!locked(), "Pool already locked"); require(poolSlices[sliceId].juniorTranche.lockedUntil == 0, "Junior tranche already locked"); uint256 lockedUntil = currentTime().add(config.getDrawdownPeriodInSeconds()); poolSlices[sliceId].juniorTranche.lockedUntil = lockedUntil; emit TrancheLocked(address(this), poolSlices[sliceId].juniorTranche.id, lockedUntil); } function _lockPool() internal { uint256 sliceId = poolSlices.length.sub(1); require(poolSlices[sliceId].juniorTranche.lockedUntil > 0, "Junior tranche must be locked"); // Allow locking the pool only once; do not allow extending the lock of an // already-locked pool. Otherwise the locker could keep the pool locked // indefinitely, preventing withdrawals. require(poolSlices[sliceId].seniorTranche.lockedUntil == 0, "Lock cannot be extended"); uint256 currentTotal = poolSlices[sliceId].juniorTranche.principalDeposited.add( poolSlices[sliceId].seniorTranche.principalDeposited ); creditLine.setLimit(Math.min(creditLine.limit().add(currentTotal), creditLine.maxLimit())); // We start the drawdown period, so backers can withdraw unused capital after borrower draws down uint256 lockPeriod = config.getDrawdownPeriodInSeconds(); poolSlices[sliceId].seniorTranche.lockedUntil = currentTime().add(lockPeriod); poolSlices[sliceId].juniorTranche.lockedUntil = currentTime().add(lockPeriod); emit TrancheLocked( address(this), poolSlices[sliceId].seniorTranche.id, poolSlices[sliceId].seniorTranche.lockedUntil ); emit TrancheLocked( address(this), poolSlices[sliceId].juniorTranche.id, poolSlices[sliceId].juniorTranche.lockedUntil ); } function _initializeNextSlice(uint256 newFundableAt) internal { uint256 numSlices = poolSlices.length; require(numSlices < 5, "Cannot exceed 5 slices"); poolSlices.push( PoolSlice({ seniorTranche: TrancheInfo({ id: numSlices.mul(NUM_TRANCHES_PER_SLICE).add(1), principalSharePrice: usdcToSharePrice(1, 1), interestSharePrice: 0, principalDeposited: 0, lockedUntil: 0 }), juniorTranche: TrancheInfo({ id: numSlices.mul(NUM_TRANCHES_PER_SLICE).add(2), principalSharePrice: usdcToSharePrice(1, 1), interestSharePrice: 0, principalDeposited: 0, lockedUntil: 0 }), totalInterestAccrued: 0, principalDeployed: 0 }) ); fundableAt = newFundableAt; } function collectInterestAndPrincipal( address from, uint256 interest, uint256 principal ) internal returns (uint256 totalReserveAmount) { safeERC20TransferFrom(config.getUSDC(), from, address(this), principal.add(interest), "Failed to collect payment"); uint256 reserveFeePercent = ONE_HUNDRED.div(config.getReserveDenominator()); // Convert the denonminator to percent ApplyResult memory result = TranchingLogic.applyToAllSeniorTranches( poolSlices, interest, principal, reserveFeePercent, totalDeployed, creditLine, juniorFeePercent ); totalReserveAmount = result.reserveDeduction.add( TranchingLogic.applyToAllJuniorTranches( poolSlices, result.interestRemaining, result.principalRemaining, reserveFeePercent, totalDeployed, creditLine ) ); sendToReserve(totalReserveAmount); return totalReserveAmount; } // If the senior tranche of the current slice is locked, then the pool is not open to any more deposits // (could throw off leverage ratio) function locked() internal view returns (bool) { return poolSlices[poolSlices.length.sub(1)].seniorTranche.lockedUntil > 0; } function createAndSetCreditLine( address _borrower, uint256 _maxLimit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays ) internal { address _creditLine = config.getGoldfinchFactory().createCreditLine(); creditLine = IV2CreditLine(_creditLine); creditLine.initialize( address(config), address(this), // Set self as the owner _borrower, _maxLimit, _interestApr, _paymentPeriodInDays, _termInDays, _lateFeeApr, _principalGracePeriodInDays ); } function getTrancheInfo(uint256 trancheId) internal view returns (TrancheInfo storage) { require(trancheId > 0 && trancheId <= poolSlices.length.mul(NUM_TRANCHES_PER_SLICE), "Unsupported tranche"); uint256 sliceId = ((trancheId.add(trancheId.mod(NUM_TRANCHES_PER_SLICE))).div(NUM_TRANCHES_PER_SLICE)).sub(1); PoolSlice storage slice = poolSlices[sliceId]; TrancheInfo storage trancheInfo = trancheId.mod(NUM_TRANCHES_PER_SLICE) == 1 ? slice.seniorTranche : slice.juniorTranche; return trancheInfo; } function currentTime() internal view virtual returns (uint256) { return block.timestamp; } function sendToReserve(uint256 amount) internal { emit ReserveFundsCollected(address(this), amount); safeERC20TransferFrom( config.getUSDC(), address(this), config.reserveAddress(), amount, "Failed to send to reserve" ); } function collectPayment(uint256 amount) internal { safeERC20TransferFrom(config.getUSDC(), msg.sender, address(creditLine), amount, "Failed to collect payment"); } function _assess() internal { // We need to make sure the pool is locked before we allocate rewards to ensure it's not // possible to game rewards by sandwiching an interest payment to an unlocked pool // It also causes issues trying to allocate payments to an empty slice (divide by zero) require(locked(), "Pool is not locked"); uint256 interestAccrued = creditLine.totalInterestAccrued(); (uint256 paymentRemaining, uint256 interestPayment, uint256 principalPayment) = creditLine.assess(); interestAccrued = creditLine.totalInterestAccrued().sub(interestAccrued); // Split the interest accrued proportionally across slices so we know how much interest goes to each slice // We need this because the slice start at different times, so we cannot retroactively allocate the interest // linearly uint256[] memory principalPaymentsPerSlice = new uint256[](poolSlices.length); for (uint256 i = 0; i < poolSlices.length; i++) { uint256 interestForSlice = TranchingLogic.scaleByFraction( interestAccrued, poolSlices[i].principalDeployed, totalDeployed ); principalPaymentsPerSlice[i] = TranchingLogic.scaleByFraction( principalPayment, poolSlices[i].principalDeployed, totalDeployed ); poolSlices[i].totalInterestAccrued = poolSlices[i].totalInterestAccrued.add(interestForSlice); } if (interestPayment > 0 || principalPayment > 0) { uint256 reserveAmount = collectInterestAndPrincipal( address(creditLine), interestPayment, principalPayment.add(paymentRemaining) ); for (uint256 i = 0; i < poolSlices.length; i++) { poolSlices[i].principalDeployed = poolSlices[i].principalDeployed.sub(principalPaymentsPerSlice[i]); totalDeployed = totalDeployed.sub(principalPaymentsPerSlice[i]); } config.getBackerRewards().allocateRewards(interestPayment); emit PaymentApplied( creditLine.borrower(), address(this), interestPayment, principalPayment, paymentRemaining, reserveAmount ); } emit TranchedPoolAssessed(address(this)); } modifier onlyLocker() { require(hasRole(LOCKER_ROLE, msg.sender), "Must have locker role"); _; } }
pragma solidity ^0.6.0; import "../Initializable.sol"; /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ contract ContextUpgradeSafe is Initializable { // Empty internal constructor, to prevent people from mistakenly deploying // an instance of this contract, which should be used via inheritance. function __Context_init() internal initializer { __Context_init_unchained(); } function __Context_init_unchained() internal initializer { } function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } uint256[50] private __gap; }
pragma solidity >=0.4.24 <0.7.0; /** * @title Initializable * * @dev Helper contract to support initializer functions. To use it, replace * the constructor with a function that has the `initializer` modifier. * WARNING: Unlike constructors, initializer functions must be manually * invoked. This applies both to deploying an Initializable contract, as well * as extending an Initializable contract via inheritance. * WARNING: When used with inheritance, manual care must be taken to not invoke * a parent initializer twice, or ensure that all initializers are idempotent, * because this is not dealt with automatically as with constructors. */ contract Initializable { /** * @dev Indicates that the contract has been initialized. */ bool private initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private initializing; /** * @dev Modifier to use in the initializer function of a contract. */ modifier initializer() { require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized"); bool isTopLevelCall = !initializing; if (isTopLevelCall) { initializing = true; initialized = true; } _; if (isTopLevelCall) { initializing = false; } } /// @dev Returns true if and only if the function is running in the constructor function isConstructor() private view returns (bool) { // extcodesize checks the size of the code stored in an address, and // address returns the current address. Since the code is still not // deployed when running a constructor, any checks on its code size will // yield zero, making it an effective way to detect if a contract is // under construction or not. address self = address(this); uint256 cs; assembly { cs := extcodesize(self) } return cs == 0; } // Reserved storage space to allow for layout changes in the future. uint256[50] private ______gap; }
pragma solidity ^0.6.0; import "../utils/EnumerableSet.sol"; import "../utils/Address.sol"; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, _msgSender())); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. */ abstract contract AccessControlUpgradeSafe is Initializable, ContextUpgradeSafe { function __AccessControl_init() internal initializer { __Context_init_unchained(); __AccessControl_init_unchained(); } function __AccessControl_init_unchained() internal initializer { } using EnumerableSet for EnumerableSet.AddressSet; using Address for address; struct RoleData { EnumerableSet.AddressSet members; bytes32 adminRole; } mapping (bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view returns (bool) { return _roles[role].members.contains(account); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view returns (uint256) { return _roles[role].members.length(); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view returns (address) { return _roles[role].members.at(index); } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to grant"); _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) public virtual { require(hasRole(_roles[role].adminRole, _msgSender()), "AccessControl: sender must be an admin to revoke"); _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) public virtual { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { _roles[role].adminRole = adminRole; } function _grantRole(bytes32 role, address account) private { if (_roles[role].members.add(account)) { emit RoleGranted(role, account, _msgSender()); } } function _revokeRole(bytes32 role, address account) private { if (_roles[role].members.remove(account)) { emit RoleRevoked(role, account, _msgSender()); } } uint256[49] private __gap; }
pragma solidity ^0.6.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
pragma solidity ^0.6.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow, so we distribute return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2); } }
pragma solidity ^0.6.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, "SafeMath: subtraction overflow"); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, "SafeMath: division by zero"); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, "SafeMath: modulo by zero"); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } }
pragma solidity ^0.6.0; /** * @title SignedSafeMath * @dev Signed math operations with safety checks that revert on error. */ library SignedSafeMath { int256 constant private _INT256_MIN = -2**255; /** * @dev Multiplies two signed integers, reverts on overflow. */ function mul(int256 a, int256 b) internal pure returns (int256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } require(!(a == -1 && b == _INT256_MIN), "SignedSafeMath: multiplication overflow"); int256 c = a * b; require(c / a == b, "SignedSafeMath: multiplication overflow"); return c; } /** * @dev Integer division of two signed integers truncating the quotient, reverts on division by zero. */ function div(int256 a, int256 b) internal pure returns (int256) { require(b != 0, "SignedSafeMath: division by zero"); require(!(b == -1 && a == _INT256_MIN), "SignedSafeMath: division overflow"); int256 c = a / b; return c; } /** * @dev Subtracts two signed integers, reverts on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; require((b >= 0 && c <= a) || (b < 0 && c > a), "SignedSafeMath: subtraction overflow"); return c; } /** * @dev Adds two signed integers, reverts on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; require((b >= 0 && c >= a) || (b < 0 && c < a), "SignedSafeMath: addition overflow"); return c; } }
pragma solidity ^0.6.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
pragma solidity ^0.6.2; import "../../introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of NFTs in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the NFT specified by `tokenId`. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * * * Requirements: * - `from`, `to` cannot be zero. * - `tokenId` must be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this * NFT by either {approve} or {setApprovalForAll}. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers a specific NFT (`tokenId`) from one account (`from`) to * another (`to`). * * Requirements: * - If the caller is not `from`, it must be approved to move this NFT by * either {approve} or {setApprovalForAll}. */ function transferFrom(address from, address to, uint256 tokenId) external; function approve(address to, uint256 tokenId) external; function getApproved(uint256 tokenId) external view returns (address operator); function setApprovalForAll(address operator, bool _approved) external; function isApprovedForAll(address owner, address operator) external view returns (bool); function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; }
pragma solidity ^0.6.2; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } }
pragma solidity ^0.6.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.0.0, only sets of type `address` (`AddressSet`) and `uint256` * (`UintSet`) are supported. */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping (bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; // When the value to delete is the last one, the swap operation is unnecessary. However, since this occurs // so rarely, we still do the swap anyway to avoid the gas cost of adding an 'if' statement. bytes32 lastvalue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastvalue; // Update the index for the moved value set._indexes[lastvalue] = toDeleteIndex + 1; // All indexes are 1-based // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { require(set._values.length > index, "EnumerableSet: index out of bounds"); return set._values[index]; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(value))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(value))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(value))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint256(_at(set._inner, index))); } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values on the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } }
pragma solidity ^0.6.0; import "../GSN/Context.sol"; import "../Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ contract PausableUpgradeSafe is Initializable, ContextUpgradeSafe { /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); bool private _paused; /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal initializer { __Context_init_unchained(); __Pausable_init_unchained(); } function __Pausable_init_unchained() internal initializer { _paused = false; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view returns (bool) { return _paused; } /** * @dev Modifier to make a function callable only when the contract is not paused. */ modifier whenNotPaused() { require(!_paused, "Pausable: paused"); _; } /** * @dev Modifier to make a function callable only when the contract is paused. */ modifier whenPaused() { require(_paused, "Pausable: not paused"); _; } /** * @dev Triggers stopped state. */ function _pause() internal virtual whenNotPaused { _paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. */ function _unpause() internal virtual whenPaused { _paused = false; emit Unpaused(_msgSender()); } uint256[49] private __gap; }
pragma solidity ^0.6.0; import "../Initializable.sol"; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ contract ReentrancyGuardUpgradeSafe is Initializable { bool private _notEntered; function __ReentrancyGuard_init() internal initializer { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal initializer { // Storing an initial non-zero value makes deployment a bit more // expensive, but in exchange the refund on every call to nonReentrant // will be lower in amount. Since refunds are capped to a percetange of // the total transaction's gas, it is best to keep them low in cases // like this one, to increase the likelihood of the full refund coming // into effect. _notEntered = true; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_notEntered, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _notEntered = false; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _notEntered = true; } uint256[49] private __gap; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit(address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: AGPL-3.0-only // solhint-disable // Imported from https://github.com/UMAprotocol/protocol/blob/4d1c8cc47a4df5e79f978cb05647a7432e111a3d/packages/core/contracts/common/implementation/FixedPoint.sol pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SignedSafeMath.sol"; /** * @title Library for fixed point arithmetic on uints */ library FixedPoint { using SafeMath for uint256; using SignedSafeMath for int256; // Supports 18 decimals. E.g., 1e18 represents "1", 5e17 represents "0.5". // For unsigned values: // This can represent a value up to (2^256 - 1)/10^18 = ~10^59. 10^59 will be stored internally as uint256 10^77. uint256 private constant FP_SCALING_FACTOR = 10**18; // --------------------------------------- UNSIGNED ----------------------------------------------------------------------------- struct Unsigned { uint256 rawValue; } /** * @notice Constructs an `Unsigned` from an unscaled uint, e.g., `b=5` gets stored internally as `5**18`. * @param a uint to convert into a FixedPoint. * @return the converted FixedPoint. */ function fromUnscaledUint(uint256 a) internal pure returns (Unsigned memory) { return Unsigned(a.mul(FP_SCALING_FACTOR)); } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if equal, or False. */ function isEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue == fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if equal, or False. */ function isEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue == b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a > b`, or False. */ function isGreaterThan(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue > b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a > b`, or False. */ function isGreaterThan(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue > fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a > b`, or False. */ function isGreaterThan(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue > b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue >= b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue >= fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue >= b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a < b`, or False. */ function isLessThan(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue < b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a < b`, or False. */ function isLessThan(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue < fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a < b`, or False. */ function isLessThan(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue < b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Unsigned memory a, Unsigned memory b) internal pure returns (bool) { return a.rawValue <= b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint. * @param b a uint256. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Unsigned memory a, uint256 b) internal pure returns (bool) { return a.rawValue <= fromUnscaledUint(b).rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a uint256. * @param b a FixedPoint. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(uint256 a, Unsigned memory b) internal pure returns (bool) { return fromUnscaledUint(a).rawValue <= b.rawValue; } /** * @notice The minimum of `a` and `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return the minimum of `a` and `b`. */ function min(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return a.rawValue < b.rawValue ? a : b; } /** * @notice The maximum of `a` and `b`. * @param a a FixedPoint. * @param b a FixedPoint. * @return the maximum of `a` and `b`. */ function max(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return a.rawValue > b.rawValue ? a : b; } /** * @notice Adds two `Unsigned`s, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the sum of `a` and `b`. */ function add(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.add(b.rawValue)); } /** * @notice Adds an `Unsigned` to an unscaled uint, reverting on overflow. * @param a a FixedPoint. * @param b a uint256. * @return the sum of `a` and `b`. */ function add(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return add(a, fromUnscaledUint(b)); } /** * @notice Subtracts two `Unsigned`s, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the difference of `a` and `b`. */ function sub(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.sub(b.rawValue)); } /** * @notice Subtracts an unscaled uint256 from an `Unsigned`, reverting on overflow. * @param a a FixedPoint. * @param b a uint256. * @return the difference of `a` and `b`. */ function sub(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return sub(a, fromUnscaledUint(b)); } /** * @notice Subtracts an `Unsigned` from an unscaled uint256, reverting on overflow. * @param a a uint256. * @param b a FixedPoint. * @return the difference of `a` and `b`. */ function sub(uint256 a, Unsigned memory b) internal pure returns (Unsigned memory) { return sub(fromUnscaledUint(a), b); } /** * @notice Multiplies two `Unsigned`s, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mul(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { // There are two caveats with this computation: // 1. Max output for the represented number is ~10^41, otherwise an intermediate value overflows. 10^41 is // stored internally as a uint256 ~10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 1.4 * 2e-18 = 2.8e-18, which // would round to 3, but this computation produces the result 2. // No need to use SafeMath because FP_SCALING_FACTOR != 0. return Unsigned(a.rawValue.mul(b.rawValue) / FP_SCALING_FACTOR); } /** * @notice Multiplies an `Unsigned` and an unscaled uint256, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint. * @param b a uint256. * @return the product of `a` and `b`. */ function mul(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.mul(b)); } /** * @notice Multiplies two `Unsigned`s and "ceil's" the product, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mulCeil(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { uint256 mulRaw = a.rawValue.mul(b.rawValue); uint256 mulFloor = mulRaw / FP_SCALING_FACTOR; uint256 mod = mulRaw.mod(FP_SCALING_FACTOR); if (mod != 0) { return Unsigned(mulFloor.add(1)); } else { return Unsigned(mulFloor); } } /** * @notice Multiplies an `Unsigned` and an unscaled uint256 and "ceil's" the product, reverting on overflow. * @param a a FixedPoint. * @param b a FixedPoint. * @return the product of `a` and `b`. */ function mulCeil(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { // Since b is an int, there is no risk of truncation and we can just mul it normally return Unsigned(a.rawValue.mul(b)); } /** * @notice Divides one `Unsigned` by an `Unsigned`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { // There are two caveats with this computation: // 1. Max value for the number dividend `a` represents is ~10^41, otherwise an intermediate value overflows. // 10^41 is stored internally as a uint256 10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 2 / 3 = 0.6 repeating, which // would round to 0.666666666666666667, but this computation produces the result 0.666666666666666666. return Unsigned(a.rawValue.mul(FP_SCALING_FACTOR).div(b.rawValue)); } /** * @notice Divides one `Unsigned` by an unscaled uint256, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return the quotient of `a` divided by `b`. */ function div(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { return Unsigned(a.rawValue.div(b)); } /** * @notice Divides one unscaled uint256 by an `Unsigned`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a uint256 numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(uint256 a, Unsigned memory b) internal pure returns (Unsigned memory) { return div(fromUnscaledUint(a), b); } /** * @notice Divides one `Unsigned` by an `Unsigned` and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function divCeil(Unsigned memory a, Unsigned memory b) internal pure returns (Unsigned memory) { uint256 aScaled = a.rawValue.mul(FP_SCALING_FACTOR); uint256 divFloor = aScaled.div(b.rawValue); uint256 mod = aScaled.mod(b.rawValue); if (mod != 0) { return Unsigned(divFloor.add(1)); } else { return Unsigned(divFloor); } } /** * @notice Divides one `Unsigned` by an unscaled uint256 and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return the quotient of `a` divided by `b`. */ function divCeil(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory) { // Because it is possible that a quotient gets truncated, we can't just call "Unsigned(a.rawValue.div(b))" // similarly to mulCeil with a uint256 as the second parameter. Therefore we need to convert b into an Unsigned. // This creates the possibility of overflow if b is very large. return divCeil(a, fromUnscaledUint(b)); } /** * @notice Raises an `Unsigned` to the power of an unscaled uint256, reverting on overflow. E.g., `b=2` squares `a`. * @dev This will "floor" the result. * @param a a FixedPoint numerator. * @param b a uint256 denominator. * @return output is `a` to the power of `b`. */ function pow(Unsigned memory a, uint256 b) internal pure returns (Unsigned memory output) { output = fromUnscaledUint(1); for (uint256 i = 0; i < b; i = i.add(1)) { output = mul(output, a); } } // ------------------------------------------------- SIGNED ------------------------------------------------------------- // Supports 18 decimals. E.g., 1e18 represents "1", 5e17 represents "0.5". // For signed values: // This can represent a value up (or down) to +-(2^255 - 1)/10^18 = ~10^58. 10^58 will be stored internally as int256 10^76. int256 private constant SFP_SCALING_FACTOR = 10**18; struct Signed { int256 rawValue; } function fromSigned(Signed memory a) internal pure returns (Unsigned memory) { require(a.rawValue >= 0, "Negative value provided"); return Unsigned(uint256(a.rawValue)); } function fromUnsigned(Unsigned memory a) internal pure returns (Signed memory) { require(a.rawValue <= uint256(type(int256).max), "Unsigned too large"); return Signed(int256(a.rawValue)); } /** * @notice Constructs a `Signed` from an unscaled int, e.g., `b=5` gets stored internally as `5**18`. * @param a int to convert into a FixedPoint.Signed. * @return the converted FixedPoint.Signed. */ function fromUnscaledInt(int256 a) internal pure returns (Signed memory) { return Signed(a.mul(SFP_SCALING_FACTOR)); } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint.Signed. * @param b a int256. * @return True if equal, or False. */ function isEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue == fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if equal, or False. */ function isEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue == b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a > b`, or False. */ function isGreaterThan(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue > b.rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a > b`, or False. */ function isGreaterThan(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue > fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is greater than `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a > b`, or False. */ function isGreaterThan(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue > b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue >= b.rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue >= fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is greater than or equal to `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a >= b`, or False. */ function isGreaterThanOrEqual(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue >= b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a < b`, or False. */ function isLessThan(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue < b.rawValue; } /** * @notice Whether `a` is less than `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a < b`, or False. */ function isLessThan(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue < fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is less than `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a < b`, or False. */ function isLessThan(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue < b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Signed memory a, Signed memory b) internal pure returns (bool) { return a.rawValue <= b.rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a a FixedPoint.Signed. * @param b an int256. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(Signed memory a, int256 b) internal pure returns (bool) { return a.rawValue <= fromUnscaledInt(b).rawValue; } /** * @notice Whether `a` is less than or equal to `b`. * @param a an int256. * @param b a FixedPoint.Signed. * @return True if `a <= b`, or False. */ function isLessThanOrEqual(int256 a, Signed memory b) internal pure returns (bool) { return fromUnscaledInt(a).rawValue <= b.rawValue; } /** * @notice The minimum of `a` and `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the minimum of `a` and `b`. */ function min(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return a.rawValue < b.rawValue ? a : b; } /** * @notice The maximum of `a` and `b`. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the maximum of `a` and `b`. */ function max(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return a.rawValue > b.rawValue ? a : b; } /** * @notice Adds two `Signed`s, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the sum of `a` and `b`. */ function add(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return Signed(a.rawValue.add(b.rawValue)); } /** * @notice Adds an `Signed` to an unscaled int, reverting on overflow. * @param a a FixedPoint.Signed. * @param b an int256. * @return the sum of `a` and `b`. */ function add(Signed memory a, int256 b) internal pure returns (Signed memory) { return add(a, fromUnscaledInt(b)); } /** * @notice Subtracts two `Signed`s, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the difference of `a` and `b`. */ function sub(Signed memory a, Signed memory b) internal pure returns (Signed memory) { return Signed(a.rawValue.sub(b.rawValue)); } /** * @notice Subtracts an unscaled int256 from an `Signed`, reverting on overflow. * @param a a FixedPoint.Signed. * @param b an int256. * @return the difference of `a` and `b`. */ function sub(Signed memory a, int256 b) internal pure returns (Signed memory) { return sub(a, fromUnscaledInt(b)); } /** * @notice Subtracts an `Signed` from an unscaled int256, reverting on overflow. * @param a an int256. * @param b a FixedPoint.Signed. * @return the difference of `a` and `b`. */ function sub(int256 a, Signed memory b) internal pure returns (Signed memory) { return sub(fromUnscaledInt(a), b); } /** * @notice Multiplies two `Signed`s, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mul(Signed memory a, Signed memory b) internal pure returns (Signed memory) { // There are two caveats with this computation: // 1. Max output for the represented number is ~10^41, otherwise an intermediate value overflows. 10^41 is // stored internally as an int256 ~10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 1.4 * 2e-18 = 2.8e-18, which // would round to 3, but this computation produces the result 2. // No need to use SafeMath because SFP_SCALING_FACTOR != 0. return Signed(a.rawValue.mul(b.rawValue) / SFP_SCALING_FACTOR); } /** * @notice Multiplies an `Signed` and an unscaled int256, reverting on overflow. * @dev This will "floor" the product. * @param a a FixedPoint.Signed. * @param b an int256. * @return the product of `a` and `b`. */ function mul(Signed memory a, int256 b) internal pure returns (Signed memory) { return Signed(a.rawValue.mul(b)); } /** * @notice Multiplies two `Signed`s and "ceil's" the product, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mulAwayFromZero(Signed memory a, Signed memory b) internal pure returns (Signed memory) { int256 mulRaw = a.rawValue.mul(b.rawValue); int256 mulTowardsZero = mulRaw / SFP_SCALING_FACTOR; // Manual mod because SignedSafeMath doesn't support it. int256 mod = mulRaw % SFP_SCALING_FACTOR; if (mod != 0) { bool isResultPositive = isLessThan(a, 0) == isLessThan(b, 0); int256 valueToAdd = isResultPositive ? int256(1) : int256(-1); return Signed(mulTowardsZero.add(valueToAdd)); } else { return Signed(mulTowardsZero); } } /** * @notice Multiplies an `Signed` and an unscaled int256 and "ceil's" the product, reverting on overflow. * @param a a FixedPoint.Signed. * @param b a FixedPoint.Signed. * @return the product of `a` and `b`. */ function mulAwayFromZero(Signed memory a, int256 b) internal pure returns (Signed memory) { // Since b is an int, there is no risk of truncation and we can just mul it normally return Signed(a.rawValue.mul(b)); } /** * @notice Divides one `Signed` by an `Signed`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(Signed memory a, Signed memory b) internal pure returns (Signed memory) { // There are two caveats with this computation: // 1. Max value for the number dividend `a` represents is ~10^41, otherwise an intermediate value overflows. // 10^41 is stored internally as an int256 10^59. // 2. Results that can't be represented exactly are truncated not rounded. E.g., 2 / 3 = 0.6 repeating, which // would round to 0.666666666666666667, but this computation produces the result 0.666666666666666666. return Signed(a.rawValue.mul(SFP_SCALING_FACTOR).div(b.rawValue)); } /** * @notice Divides one `Signed` by an unscaled int256, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a a FixedPoint numerator. * @param b an int256 denominator. * @return the quotient of `a` divided by `b`. */ function div(Signed memory a, int256 b) internal pure returns (Signed memory) { return Signed(a.rawValue.div(b)); } /** * @notice Divides one unscaled int256 by an `Signed`, reverting on overflow or division by 0. * @dev This will "floor" the quotient. * @param a an int256 numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function div(int256 a, Signed memory b) internal pure returns (Signed memory) { return div(fromUnscaledInt(a), b); } /** * @notice Divides one `Signed` by an `Signed` and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b a FixedPoint denominator. * @return the quotient of `a` divided by `b`. */ function divAwayFromZero(Signed memory a, Signed memory b) internal pure returns (Signed memory) { int256 aScaled = a.rawValue.mul(SFP_SCALING_FACTOR); int256 divTowardsZero = aScaled.div(b.rawValue); // Manual mod because SignedSafeMath doesn't support it. int256 mod = aScaled % b.rawValue; if (mod != 0) { bool isResultPositive = isLessThan(a, 0) == isLessThan(b, 0); int256 valueToAdd = isResultPositive ? int256(1) : int256(-1); return Signed(divTowardsZero.add(valueToAdd)); } else { return Signed(divTowardsZero); } } /** * @notice Divides one `Signed` by an unscaled int256 and "ceil's" the quotient, reverting on overflow or division by 0. * @param a a FixedPoint numerator. * @param b an int256 denominator. * @return the quotient of `a` divided by `b`. */ function divAwayFromZero(Signed memory a, int256 b) internal pure returns (Signed memory) { // Because it is possible that a quotient gets truncated, we can't just call "Signed(a.rawValue.div(b))" // similarly to mulCeil with an int256 as the second parameter. Therefore we need to convert b into an Signed. // This creates the possibility of overflow if b is very large. return divAwayFromZero(a, fromUnscaledInt(b)); } /** * @notice Raises an `Signed` to the power of an unscaled uint256, reverting on overflow. E.g., `b=2` squares `a`. * @dev This will "floor" the result. * @param a a FixedPoint.Signed. * @param b a uint256 (negative exponents are not allowed). * @return output is `a` to the power of `b`. */ function pow(Signed memory a, uint256 b) internal pure returns (Signed memory output) { output = fromUnscaledInt(1); for (uint256 i = 0; i < b; i = i.add(1)) { output = mul(output, a); } } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IBackerRewards { function allocateRewards(uint256 _interestPaymentAmount) external; function setPoolTokenAccRewardsPerPrincipalDollarAtMint(address poolAddress, uint256 tokenId) external; }
// SPDX-License-Identifier: MIT // Taken from https://github.com/compound-finance/compound-protocol/blob/master/contracts/CTokenInterfaces.sol pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IERC20withDec.sol"; interface ICUSDCContract is IERC20withDec { /*** User Interface ***/ function mint(uint256 mintAmount) external returns (uint256); function redeem(uint256 redeemTokens) external returns (uint256); function redeemUnderlying(uint256 redeemAmount) external returns (uint256); function borrow(uint256 borrowAmount) external returns (uint256); function repayBorrow(uint256 repayAmount) external returns (uint256); function repayBorrowBehalf(address borrower, uint256 repayAmount) external returns (uint256); function liquidateBorrow( address borrower, uint256 repayAmount, address cTokenCollateral ) external returns (uint256); function getAccountSnapshot(address account) external view returns ( uint256, uint256, uint256, uint256 ); function balanceOfUnderlying(address owner) external returns (uint256); function exchangeRateCurrent() external returns (uint256); /*** Admin Functions ***/ function _addReserves(uint256 addAmount) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; abstract contract ICreditDesk { uint256 public totalWritedowns; uint256 public totalLoansOutstanding; function setUnderwriterGovernanceLimit(address underwriterAddress, uint256 limit) external virtual; function drawdown(address creditLineAddress, uint256 amount) external virtual; function pay(address creditLineAddress, uint256 amount) external virtual; function assessCreditLine(address creditLineAddress) external virtual; function applyPayment(address creditLineAddress, uint256 amount) external virtual; function getNextPaymentAmount(address creditLineAddress, uint256 asOfBLock) external view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface ICreditLine { function borrower() external view returns (address); function limit() external view returns (uint256); function maxLimit() external view returns (uint256); function interestApr() external view returns (uint256); function paymentPeriodInDays() external view returns (uint256); function principalGracePeriodInDays() external view returns (uint256); function termInDays() external view returns (uint256); function lateFeeApr() external view returns (uint256); function isLate() external view returns (bool); function withinPrincipalGracePeriod() external view returns (bool); // Accounting variables function balance() external view returns (uint256); function interestOwed() external view returns (uint256); function principalOwed() external view returns (uint256); function termEndTime() external view returns (uint256); function nextDueTime() external view returns (uint256); function interestAccruedAsOf() external view returns (uint256); function lastFullPaymentTime() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/IERC20.sol"; /* Only addition is the `decimals` function, which we need, and which both our Fidu and USDC use, along with most ERC20's. */ /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20withDec is IERC20 { /** * @dev Returns the number of decimals used for the token */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IERC20withDec.sol"; interface IFidu is IERC20withDec { function mintTo(address to, uint256 amount) external; function burnFrom(address to, uint256 amount) external; function renounceRole(bytes32 role, address account) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; abstract contract IGo { uint256 public constant ID_TYPE_0 = 0; uint256 public constant ID_TYPE_1 = 1; uint256 public constant ID_TYPE_2 = 2; uint256 public constant ID_TYPE_3 = 3; uint256 public constant ID_TYPE_4 = 4; uint256 public constant ID_TYPE_5 = 5; uint256 public constant ID_TYPE_6 = 6; uint256 public constant ID_TYPE_7 = 7; uint256 public constant ID_TYPE_8 = 8; uint256 public constant ID_TYPE_9 = 9; uint256 public constant ID_TYPE_10 = 10; /// @notice Returns the address of the UniqueIdentity contract. function uniqueIdentity() external virtual returns (address); function go(address account) public view virtual returns (bool); function goOnlyIdTypes(address account, uint256[] calldata onlyIdTypes) public view virtual returns (bool); function goSeniorPool(address account) public view virtual returns (bool); function updateGoldfinchConfig() external virtual; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IGoldfinchConfig { function getNumber(uint256 index) external returns (uint256); function getAddress(uint256 index) external returns (address); function setAddress(uint256 index, address newAddress) external returns (address); function setNumber(uint256 index, uint256 newNumber) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; interface IGoldfinchFactory { function createCreditLine() external returns (address); function createBorrower(address owner) external returns (address); function createPool( address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256[] calldata _allowedUIDTypes ) external returns (address); function createMigratedPool( address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256[] calldata _allowedUIDTypes ) external returns (address); function updateGoldfinchConfig() external; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; abstract contract IPool { uint256 public sharePrice; function deposit(uint256 amount) external virtual; function withdraw(uint256 usdcAmount) external virtual; function withdrawInFidu(uint256 fiduAmount) external virtual; function collectInterestAndPrincipal( address from, uint256 interest, uint256 principal ) public virtual; function transferFrom( address from, address to, uint256 amount ) public virtual returns (bool); function drawdown(address to, uint256 amount) public virtual returns (bool); function sweepToCompound() public virtual; function sweepFromCompound() public virtual; function distributeLosses(address creditlineAddress, int256 writedownDelta) external virtual; function assets() public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC721/IERC721.sol"; interface IPoolTokens is IERC721 { event TokenMinted( address indexed owner, address indexed pool, uint256 indexed tokenId, uint256 amount, uint256 tranche ); event TokenRedeemed( address indexed owner, address indexed pool, uint256 indexed tokenId, uint256 principalRedeemed, uint256 interestRedeemed, uint256 tranche ); event TokenBurned(address indexed owner, address indexed pool, uint256 indexed tokenId); struct TokenInfo { address pool; uint256 tranche; uint256 principalAmount; uint256 principalRedeemed; uint256 interestRedeemed; } struct MintParams { uint256 principalAmount; uint256 tranche; } function mint(MintParams calldata params, address to) external returns (uint256); function redeem( uint256 tokenId, uint256 principalRedeemed, uint256 interestRedeemed ) external; function burn(uint256 tokenId) external; function onPoolCreated(address newPool) external; function getTokenInfo(uint256 tokenId) external view returns (TokenInfo memory); function validPool(address sender) external view returns (bool); function isApprovedOrOwner(address spender, uint256 tokenId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ITranchedPool.sol"; abstract contract ISeniorPool { uint256 public sharePrice; uint256 public totalLoansOutstanding; uint256 public totalWritedowns; function deposit(uint256 amount) external virtual returns (uint256 depositShares); function depositWithPermit( uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external virtual returns (uint256 depositShares); function withdraw(uint256 usdcAmount) external virtual returns (uint256 amount); function withdrawInFidu(uint256 fiduAmount) external virtual returns (uint256 amount); function sweepToCompound() public virtual; function sweepFromCompound() public virtual; function invest(ITranchedPool pool) public virtual; function estimateInvestment(ITranchedPool pool) public view virtual returns (uint256); function redeem(uint256 tokenId) public virtual; function writedown(uint256 tokenId) public virtual; function calculateWritedown(uint256 tokenId) public view virtual returns (uint256 writedownAmount); function assets() public view virtual returns (uint256); function getNumShares(uint256 amount) public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ISeniorPool.sol"; import "./ITranchedPool.sol"; abstract contract ISeniorPoolStrategy { function getLeverageRatio(ITranchedPool pool) public view virtual returns (uint256); function invest(ISeniorPool seniorPool, ITranchedPool pool) public view virtual returns (uint256 amount); function estimateInvestment(ISeniorPool seniorPool, ITranchedPool pool) public view virtual returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./IV2CreditLine.sol"; abstract contract ITranchedPool { IV2CreditLine public creditLine; uint256 public createdAt; enum Tranches { Reserved, Senior, Junior } struct TrancheInfo { uint256 id; uint256 principalDeposited; uint256 principalSharePrice; uint256 interestSharePrice; uint256 lockedUntil; } struct PoolSlice { TrancheInfo seniorTranche; TrancheInfo juniorTranche; uint256 totalInterestAccrued; uint256 principalDeployed; } struct SliceInfo { uint256 reserveFeePercent; uint256 interestAccrued; uint256 principalAccrued; } struct ApplyResult { uint256 interestRemaining; uint256 principalRemaining; uint256 reserveDeduction; uint256 oldInterestSharePrice; uint256 oldPrincipalSharePrice; } function initialize( address _config, address _borrower, uint256 _juniorFeePercent, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays, uint256 _fundableAt, uint256[] calldata _allowedUIDTypes ) public virtual; function getTranche(uint256 tranche) external view virtual returns (TrancheInfo memory); function pay(uint256 amount) external virtual; function lockJuniorCapital() external virtual; function lockPool() external virtual; function initializeNextSlice(uint256 _fundableAt) external virtual; function totalJuniorDeposits() external view virtual returns (uint256); function drawdown(uint256 amount) external virtual; function setFundableAt(uint256 timestamp) external virtual; function deposit(uint256 tranche, uint256 amount) external virtual returns (uint256 tokenId); function assess() external virtual; function depositWithPermit( uint256 tranche, uint256 amount, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external virtual returns (uint256 tokenId); function availableToWithdraw(uint256 tokenId) external view virtual returns (uint256 interestRedeemable, uint256 principalRedeemable); function withdraw(uint256 tokenId, uint256 amount) external virtual returns (uint256 interestWithdrawn, uint256 principalWithdrawn); function withdrawMax(uint256 tokenId) external virtual returns (uint256 interestWithdrawn, uint256 principalWithdrawn); function withdrawMultiple(uint256[] calldata tokenIds, uint256[] calldata amounts) external virtual; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./ICreditLine.sol"; abstract contract IV2CreditLine is ICreditLine { function principal() external view virtual returns (uint256); function totalInterestAccrued() external view virtual returns (uint256); function termStartTime() external view virtual returns (uint256); function setLimit(uint256 newAmount) external virtual; function setMaxLimit(uint256 newAmount) external virtual; function setBalance(uint256 newBalance) external virtual; function setPrincipal(uint256 _principal) external virtual; function setTotalInterestAccrued(uint256 _interestAccrued) external virtual; function drawdown(uint256 amount) external virtual; function assess() external virtual returns ( uint256, uint256, uint256 ); function initialize( address _config, address owner, address _borrower, uint256 _limit, uint256 _interestApr, uint256 _paymentPeriodInDays, uint256 _termInDays, uint256 _lateFeeApr, uint256 _principalGracePeriodInDays ) public virtual; function setTermEndTime(uint256 newTermEndTime) external virtual; function setNextDueTime(uint256 newNextDueTime) external virtual; function setInterestOwed(uint256 newInterestOwed) external virtual; function setPrincipalOwed(uint256 newPrincipalOwed) external virtual; function setInterestAccruedAsOf(uint256 newInterestAccruedAsOf) external virtual; function setWritedownAmount(uint256 newWritedownAmount) external virtual; function setLastFullPaymentTime(uint256 newLastFullPaymentTime) external virtual; function setLateFeeApr(uint256 newLateFeeApr) external virtual; function updateGoldfinchConfig() external virtual; }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/token/ERC20/IERC20.sol"; /** * @title Safe ERC20 Transfer * @notice Reverts when transfer is not successful * @author Goldfinch */ abstract contract SafeERC20Transfer { function safeERC20Transfer( IERC20 erc20, address to, uint256 amount, string memory message ) internal { require(to != address(0), "Can't send to zero address"); bool success = erc20.transfer(to, amount); require(success, message); } function safeERC20Transfer( IERC20 erc20, address to, uint256 amount ) internal { safeERC20Transfer(erc20, to, amount, "Failed to transfer ERC20"); } function safeERC20TransferFrom( IERC20 erc20, address from, address to, uint256 amount, string memory message ) internal { require(to != address(0), "Can't send to zero address"); bool success = erc20.transferFrom(from, to, amount); require(success, message); } function safeERC20TransferFrom( IERC20 erc20, address from, address to, uint256 amount ) internal { string memory message = "Failed to transfer ERC20"; safeERC20TransferFrom(erc20, from, to, amount, message); } function safeERC20Approve( IERC20 erc20, address spender, uint256 allowance, string memory message ) internal { bool success = erc20.approve(spender, allowance); require(success, message); } function safeERC20Approve( IERC20 erc20, address spender, uint256 allowance ) internal { string memory message = "Failed to approve ERC20"; safeERC20Approve(erc20, spender, allowance, message); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/Initializable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; import "./PauserPausable.sol"; /** * @title BaseUpgradeablePausable contract * @notice This is our Base contract that most other contracts inherit from. It includes many standard * useful abilities like ugpradeability, pausability, access control, and re-entrancy guards. * @author Goldfinch */ contract BaseUpgradeablePausable is Initializable, AccessControlUpgradeSafe, PauserPausable, ReentrancyGuardUpgradeSafe { bytes32 public constant OWNER_ROLE = keccak256("OWNER_ROLE"); using SafeMath for uint256; // Pre-reserving a few slots in the base contract in case we need to add things in the future. // This does not actually take up gas cost or storage cost, but it does reserve the storage slots. // See OpenZeppelin's use of this pattern here: // https://github.com/OpenZeppelin/openzeppelin-contracts-ethereum-package/blob/master/contracts/GSN/Context.sol#L37 uint256[50] private __gap1; uint256[50] private __gap2; uint256[50] private __gap3; uint256[50] private __gap4; // solhint-disable-next-line func-name-mixedcase function __BaseUpgradeablePausable__init(address owner) public initializer { require(owner != address(0), "Owner cannot be the zero address"); __AccessControl_init_unchained(); __Pausable_init_unchained(); __ReentrancyGuard_init_unchained(); _setupRole(OWNER_ROLE, owner); _setupRole(PAUSER_ROLE, owner); _setRoleAdmin(PAUSER_ROLE, OWNER_ROLE); _setRoleAdmin(OWNER_ROLE, OWNER_ROLE); } function isAdmin() public view returns (bool) { return hasRole(OWNER_ROLE, _msgSender()); } modifier onlyAdmin() { require(isAdmin(), "Must have admin role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./GoldfinchConfig.sol"; import "../../interfaces/IPool.sol"; import "../../interfaces/IFidu.sol"; import "../../interfaces/ISeniorPool.sol"; import "../../interfaces/ISeniorPoolStrategy.sol"; import "../../interfaces/ICreditDesk.sol"; import "../../interfaces/IERC20withDec.sol"; import "../../interfaces/ICUSDCContract.sol"; import "../../interfaces/IPoolTokens.sol"; import "../../interfaces/IBackerRewards.sol"; import "../../interfaces/IGoldfinchFactory.sol"; import "../../interfaces/IGo.sol"; /** * @title ConfigHelper * @notice A convenience library for getting easy access to other contracts and constants within the * protocol, through the use of the GoldfinchConfig contract * @author Goldfinch */ library ConfigHelper { function getPool(GoldfinchConfig config) internal view returns (IPool) { return IPool(poolAddress(config)); } function getSeniorPool(GoldfinchConfig config) internal view returns (ISeniorPool) { return ISeniorPool(seniorPoolAddress(config)); } function getSeniorPoolStrategy(GoldfinchConfig config) internal view returns (ISeniorPoolStrategy) { return ISeniorPoolStrategy(seniorPoolStrategyAddress(config)); } function getUSDC(GoldfinchConfig config) internal view returns (IERC20withDec) { return IERC20withDec(usdcAddress(config)); } function getCreditDesk(GoldfinchConfig config) internal view returns (ICreditDesk) { return ICreditDesk(creditDeskAddress(config)); } function getFidu(GoldfinchConfig config) internal view returns (IFidu) { return IFidu(fiduAddress(config)); } function getCUSDCContract(GoldfinchConfig config) internal view returns (ICUSDCContract) { return ICUSDCContract(cusdcContractAddress(config)); } function getPoolTokens(GoldfinchConfig config) internal view returns (IPoolTokens) { return IPoolTokens(poolTokensAddress(config)); } function getBackerRewards(GoldfinchConfig config) internal view returns (IBackerRewards) { return IBackerRewards(backerRewardsAddress(config)); } function getGoldfinchFactory(GoldfinchConfig config) internal view returns (IGoldfinchFactory) { return IGoldfinchFactory(goldfinchFactoryAddress(config)); } function getGFI(GoldfinchConfig config) internal view returns (IERC20withDec) { return IERC20withDec(gfiAddress(config)); } function getGo(GoldfinchConfig config) internal view returns (IGo) { return IGo(goAddress(config)); } function oneInchAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.OneInch)); } function creditLineImplementationAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CreditLineImplementation)); } function trustedForwarderAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TrustedForwarder)); } function configAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.GoldfinchConfig)); } function poolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.Pool)); } function poolTokensAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.PoolTokens)); } function backerRewardsAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.BackerRewards)); } function seniorPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.SeniorPool)); } function seniorPoolStrategyAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.SeniorPoolStrategy)); } function creditDeskAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CreditDesk)); } function goldfinchFactoryAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.GoldfinchFactory)); } function gfiAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.GFI)); } function fiduAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.Fidu)); } function cusdcContractAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.CUSDCContract)); } function usdcAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.USDC)); } function tranchedPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TranchedPoolImplementation)); } function migratedTranchedPoolAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.MigratedTranchedPoolImplementation)); } function reserveAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.TreasuryReserve)); } function protocolAdminAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.ProtocolAdmin)); } function borrowerImplementationAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.BorrowerImplementation)); } function goAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.Go)); } function stakingRewardsAddress(GoldfinchConfig config) internal view returns (address) { return config.getAddress(uint256(ConfigOptions.Addresses.StakingRewards)); } function getReserveDenominator(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.ReserveDenominator)); } function getWithdrawFeeDenominator(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.WithdrawFeeDenominator)); } function getLatenessGracePeriodInDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LatenessGracePeriodInDays)); } function getLatenessMaxDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LatenessMaxDays)); } function getDrawdownPeriodInSeconds(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.DrawdownPeriodInSeconds)); } function getTransferRestrictionPeriodInDays(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.TransferRestrictionPeriodInDays)); } function getLeverageRatio(GoldfinchConfig config) internal view returns (uint256) { return config.getNumber(uint256(ConfigOptions.Numbers.LeverageRatio)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; /** * @title ConfigOptions * @notice A central place for enumerating the configurable options of our GoldfinchConfig contract * @author Goldfinch */ library ConfigOptions { // NEVER EVER CHANGE THE ORDER OF THESE! // You can rename or append. But NEVER change the order. enum Numbers { TransactionLimit, TotalFundsLimit, MaxUnderwriterLimit, ReserveDenominator, WithdrawFeeDenominator, LatenessGracePeriodInDays, LatenessMaxDays, DrawdownPeriodInSeconds, TransferRestrictionPeriodInDays, LeverageRatio } enum Addresses { Pool, CreditLineImplementation, GoldfinchFactory, CreditDesk, Fidu, USDC, TreasuryReserve, ProtocolAdmin, OneInch, TrustedForwarder, CUSDCContract, GoldfinchConfig, PoolTokens, TranchedPoolImplementation, SeniorPool, SeniorPoolStrategy, MigratedTranchedPoolImplementation, BorrowerImplementation, GFI, Go, BackerRewards, StakingRewards } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "./BaseUpgradeablePausable.sol"; import "../../interfaces/IGoldfinchConfig.sol"; import "./ConfigOptions.sol"; /** * @title GoldfinchConfig * @notice This contract stores mappings of useful "protocol config state", giving a central place * for all other contracts to access it. For example, the TransactionLimit, or the PoolAddress. These config vars * are enumerated in the `ConfigOptions` library, and can only be changed by admins of the protocol. * Note: While this inherits from BaseUpgradeablePausable, it is not deployed as an upgradeable contract (this * is mostly to save gas costs of having each call go through a proxy) * @author Goldfinch */ contract GoldfinchConfig is BaseUpgradeablePausable { bytes32 public constant GO_LISTER_ROLE = keccak256("GO_LISTER_ROLE"); mapping(uint256 => address) public addresses; mapping(uint256 => uint256) public numbers; mapping(address => bool) public goList; event AddressUpdated(address owner, uint256 index, address oldValue, address newValue); event NumberUpdated(address owner, uint256 index, uint256 oldValue, uint256 newValue); event GoListed(address indexed member); event NoListed(address indexed member); bool public valuesInitialized; function initialize(address owner) public initializer { require(owner != address(0), "Owner address cannot be empty"); __BaseUpgradeablePausable__init(owner); _setupRole(GO_LISTER_ROLE, owner); _setRoleAdmin(GO_LISTER_ROLE, OWNER_ROLE); } function setAddress(uint256 addressIndex, address newAddress) public onlyAdmin { require(addresses[addressIndex] == address(0), "Address has already been initialized"); emit AddressUpdated(msg.sender, addressIndex, addresses[addressIndex], newAddress); addresses[addressIndex] = newAddress; } function setNumber(uint256 index, uint256 newNumber) public onlyAdmin { emit NumberUpdated(msg.sender, index, numbers[index], newNumber); numbers[index] = newNumber; } function setTreasuryReserve(address newTreasuryReserve) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.TreasuryReserve); emit AddressUpdated(msg.sender, key, addresses[key], newTreasuryReserve); addresses[key] = newTreasuryReserve; } function setSeniorPoolStrategy(address newStrategy) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.SeniorPoolStrategy); emit AddressUpdated(msg.sender, key, addresses[key], newStrategy); addresses[key] = newStrategy; } function setCreditLineImplementation(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.CreditLineImplementation); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function setTranchedPoolImplementation(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.TranchedPoolImplementation); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function setBorrowerImplementation(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.BorrowerImplementation); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function setGoldfinchConfig(address newAddress) public onlyAdmin { uint256 key = uint256(ConfigOptions.Addresses.GoldfinchConfig); emit AddressUpdated(msg.sender, key, addresses[key], newAddress); addresses[key] = newAddress; } function initializeFromOtherConfig( address _initialConfig, uint256 numbersLength, uint256 addressesLength ) public onlyAdmin { require(!valuesInitialized, "Already initialized values"); IGoldfinchConfig initialConfig = IGoldfinchConfig(_initialConfig); for (uint256 i = 0; i < numbersLength; i++) { setNumber(i, initialConfig.getNumber(i)); } for (uint256 i = 0; i < addressesLength; i++) { if (getAddress(i) == address(0)) { setAddress(i, initialConfig.getAddress(i)); } } valuesInitialized = true; } /** * @dev Adds a user to go-list * @param _member address to add to go-list */ function addToGoList(address _member) public onlyGoListerRole { goList[_member] = true; emit GoListed(_member); } /** * @dev removes a user from go-list * @param _member address to remove from go-list */ function removeFromGoList(address _member) public onlyGoListerRole { goList[_member] = false; emit NoListed(_member); } /** * @dev adds many users to go-list at once * @param _members addresses to ad to go-list */ function bulkAddToGoList(address[] calldata _members) external onlyGoListerRole { for (uint256 i = 0; i < _members.length; i++) { addToGoList(_members[i]); } } /** * @dev removes many users from go-list at once * @param _members addresses to remove from go-list */ function bulkRemoveFromGoList(address[] calldata _members) external onlyGoListerRole { for (uint256 i = 0; i < _members.length; i++) { removeFromGoList(_members[i]); } } /* Using custom getters in case we want to change underlying implementation later, or add checks or validations later on. */ function getAddress(uint256 index) public view returns (address) { return addresses[index]; } function getNumber(uint256 index) public view returns (uint256) { return numbers[index]; } modifier onlyGoListerRole() { require(hasRole(GO_LISTER_ROLE, _msgSender()), "Must have go-lister role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "@openzeppelin/contracts-ethereum-package/contracts/utils/Pausable.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/access/AccessControl.sol"; /** * @title PauserPausable * @notice Inheriting from OpenZeppelin's Pausable contract, this does small * augmentations to make it work with a PAUSER_ROLE, leveraging the AccessControl contract. * It is meant to be inherited. * @author Goldfinch */ contract PauserPausable is AccessControlUpgradeSafe, PausableUpgradeSafe { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); // solhint-disable-next-line func-name-mixedcase function __PauserPausable__init() public initializer { __Pausable_init_unchained(); } /** * @dev Pauses all functions guarded by Pause * * See {Pausable-_pause}. * * Requirements: * * - the caller must have the PAUSER_ROLE. */ function pause() public onlyPauserRole { _pause(); } /** * @dev Unpauses the contract * * See {Pausable-_unpause}. * * Requirements: * * - the caller must have the Pauser role */ function unpause() public onlyPauserRole { _unpause(); } modifier onlyPauserRole() { require(hasRole(PAUSER_ROLE, _msgSender()), "Must have pauser role to perform this action"); _; } }
// SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; import "../../interfaces/IV2CreditLine.sol"; import "../../interfaces/ITranchedPool.sol"; import "../../interfaces/IPoolTokens.sol"; import "../../external/FixedPoint.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/Math.sol"; import "@openzeppelin/contracts-ethereum-package/contracts/math/SafeMath.sol"; /** * @title TranchingLogic * @notice Library for handling the payments waterfall * @author Goldfinch */ library TranchingLogic { using SafeMath for uint256; using FixedPoint for FixedPoint.Unsigned; using FixedPoint for uint256; event SharePriceUpdated( address indexed pool, uint256 indexed tranche, uint256 principalSharePrice, int256 principalDelta, uint256 interestSharePrice, int256 interestDelta ); uint256 public constant FP_SCALING_FACTOR = 1e18; uint256 public constant ONE_HUNDRED = 100; // Need this because we cannot call .div on a literal 100 function usdcToSharePrice(uint256 amount, uint256 totalShares) public pure returns (uint256) { return totalShares == 0 ? 0 : amount.mul(FP_SCALING_FACTOR).div(totalShares); } function sharePriceToUsdc(uint256 sharePrice, uint256 totalShares) public pure returns (uint256) { return sharePrice.mul(totalShares).div(FP_SCALING_FACTOR); } function redeemableInterestAndPrincipal( ITranchedPool.TrancheInfo storage trancheInfo, IPoolTokens.TokenInfo memory tokenInfo ) public view returns (uint256 interestRedeemable, uint256 principalRedeemable) { // This supports withdrawing before or after locking because principal share price starts at 1 // and is set to 0 on lock. Interest share price is always 0 until interest payments come back, when it increases uint256 maxPrincipalRedeemable = sharePriceToUsdc(trancheInfo.principalSharePrice, tokenInfo.principalAmount); // The principalAmount is used as the totalShares because we want the interestSharePrice to be expressed as a // percent of total loan value e.g. if the interest is 10% APR, the interestSharePrice should approach a max of 0.1. uint256 maxInterestRedeemable = sharePriceToUsdc(trancheInfo.interestSharePrice, tokenInfo.principalAmount); interestRedeemable = maxInterestRedeemable.sub(tokenInfo.interestRedeemed); principalRedeemable = maxPrincipalRedeemable.sub(tokenInfo.principalRedeemed); return (interestRedeemable, principalRedeemable); } function calculateExpectedSharePrice( ITranchedPool.TrancheInfo memory tranche, uint256 amount, ITranchedPool.PoolSlice memory slice ) public pure returns (uint256) { uint256 sharePrice = usdcToSharePrice(amount, tranche.principalDeposited); return scaleByPercentOwnership(tranche, sharePrice, slice); } function scaleForSlice( ITranchedPool.PoolSlice memory slice, uint256 amount, uint256 totalDeployed ) public pure returns (uint256) { return scaleByFraction(amount, slice.principalDeployed, totalDeployed); } // We need to create this struct so we don't run into a stack too deep error due to too many variables function getSliceInfo( ITranchedPool.PoolSlice memory slice, IV2CreditLine creditLine, uint256 totalDeployed, uint256 reserveFeePercent ) public view returns (ITranchedPool.SliceInfo memory) { (uint256 interestAccrued, uint256 principalAccrued) = getTotalInterestAndPrincipal( slice, creditLine, totalDeployed ); return ITranchedPool.SliceInfo({ reserveFeePercent: reserveFeePercent, interestAccrued: interestAccrued, principalAccrued: principalAccrued }); } function getTotalInterestAndPrincipal( ITranchedPool.PoolSlice memory slice, IV2CreditLine creditLine, uint256 totalDeployed ) public view returns (uint256 interestAccrued, uint256 principalAccrued) { principalAccrued = creditLine.principalOwed(); // In addition to principal actually owed, we need to account for early principal payments // If the borrower pays back 5K early on a 10K loan, the actual principal accrued should be // 5K (balance- deployed) + 0 (principal owed) principalAccrued = totalDeployed.sub(creditLine.balance()).add(principalAccrued); // Now we need to scale that correctly for the slice we're interested in principalAccrued = scaleForSlice(slice, principalAccrued, totalDeployed); // Finally, we need to account for partial drawdowns. e.g. If 20K was deposited, and only 10K was drawn down, // Then principal accrued should start at 10K (total deposited - principal deployed), not 0. This is because // share price starts at 1, and is decremented by what was drawn down. uint256 totalDeposited = slice.seniorTranche.principalDeposited.add(slice.juniorTranche.principalDeposited); principalAccrued = totalDeposited.sub(slice.principalDeployed).add(principalAccrued); return (slice.totalInterestAccrued, principalAccrued); } function scaleByFraction( uint256 amount, uint256 fraction, uint256 total ) public pure returns (uint256) { FixedPoint.Unsigned memory totalAsFixedPoint = FixedPoint.fromUnscaledUint(total); FixedPoint.Unsigned memory fractionAsFixedPoint = FixedPoint.fromUnscaledUint(fraction); return fractionAsFixedPoint.div(totalAsFixedPoint).mul(amount).div(FP_SCALING_FACTOR).rawValue; } function applyToAllSeniorTranches( ITranchedPool.PoolSlice[] storage poolSlices, uint256 interest, uint256 principal, uint256 reserveFeePercent, uint256 totalDeployed, IV2CreditLine creditLine, uint256 juniorFeePercent ) public returns (ITranchedPool.ApplyResult memory) { ITranchedPool.ApplyResult memory seniorApplyResult; for (uint256 i = 0; i < poolSlices.length; i++) { ITranchedPool.SliceInfo memory sliceInfo = getSliceInfo( poolSlices[i], creditLine, totalDeployed, reserveFeePercent ); // Since slices cannot be created when the loan is late, all interest collected can be assumed to split // pro-rata across the slices. So we scale the interest and principal to the slice ITranchedPool.ApplyResult memory applyResult = applyToSeniorTranche( poolSlices[i], scaleForSlice(poolSlices[i], interest, totalDeployed), scaleForSlice(poolSlices[i], principal, totalDeployed), juniorFeePercent, sliceInfo ); emitSharePriceUpdatedEvent(poolSlices[i].seniorTranche, applyResult); seniorApplyResult.interestRemaining = seniorApplyResult.interestRemaining.add(applyResult.interestRemaining); seniorApplyResult.principalRemaining = seniorApplyResult.principalRemaining.add(applyResult.principalRemaining); seniorApplyResult.reserveDeduction = seniorApplyResult.reserveDeduction.add(applyResult.reserveDeduction); } return seniorApplyResult; } function applyToAllJuniorTranches( ITranchedPool.PoolSlice[] storage poolSlices, uint256 interest, uint256 principal, uint256 reserveFeePercent, uint256 totalDeployed, IV2CreditLine creditLine ) public returns (uint256 totalReserveAmount) { for (uint256 i = 0; i < poolSlices.length; i++) { ITranchedPool.SliceInfo memory sliceInfo = getSliceInfo( poolSlices[i], creditLine, totalDeployed, reserveFeePercent ); // Any remaining interest and principal is then shared pro-rata with the junior slices ITranchedPool.ApplyResult memory applyResult = applyToJuniorTranche( poolSlices[i], scaleForSlice(poolSlices[i], interest, totalDeployed), scaleForSlice(poolSlices[i], principal, totalDeployed), sliceInfo ); emitSharePriceUpdatedEvent(poolSlices[i].juniorTranche, applyResult); totalReserveAmount = totalReserveAmount.add(applyResult.reserveDeduction); } return totalReserveAmount; } function emitSharePriceUpdatedEvent( ITranchedPool.TrancheInfo memory tranche, ITranchedPool.ApplyResult memory applyResult ) internal { emit SharePriceUpdated( address(this), tranche.id, tranche.principalSharePrice, int256(tranche.principalSharePrice.sub(applyResult.oldPrincipalSharePrice)), tranche.interestSharePrice, int256(tranche.interestSharePrice.sub(applyResult.oldInterestSharePrice)) ); } function applyToSeniorTranche( ITranchedPool.PoolSlice storage slice, uint256 interestRemaining, uint256 principalRemaining, uint256 juniorFeePercent, ITranchedPool.SliceInfo memory sliceInfo ) public returns (ITranchedPool.ApplyResult memory) { // First determine the expected share price for the senior tranche. This is the gross amount the senior // tranche should receive. uint256 expectedInterestSharePrice = calculateExpectedSharePrice( slice.seniorTranche, sliceInfo.interestAccrued, slice ); uint256 expectedPrincipalSharePrice = calculateExpectedSharePrice( slice.seniorTranche, sliceInfo.principalAccrued, slice ); // Deduct the junior fee and the protocol reserve uint256 desiredNetInterestSharePrice = scaleByFraction( expectedInterestSharePrice, ONE_HUNDRED.sub(juniorFeePercent.add(sliceInfo.reserveFeePercent)), ONE_HUNDRED ); // Collect protocol fee interest received (we've subtracted this from the senior portion above) uint256 reserveDeduction = scaleByFraction(interestRemaining, sliceInfo.reserveFeePercent, ONE_HUNDRED); interestRemaining = interestRemaining.sub(reserveDeduction); uint256 oldInterestSharePrice = slice.seniorTranche.interestSharePrice; uint256 oldPrincipalSharePrice = slice.seniorTranche.principalSharePrice; // Apply the interest remaining so we get up to the netInterestSharePrice (interestRemaining, principalRemaining) = applyBySharePrice( slice.seniorTranche, interestRemaining, principalRemaining, desiredNetInterestSharePrice, expectedPrincipalSharePrice ); return ITranchedPool.ApplyResult({ interestRemaining: interestRemaining, principalRemaining: principalRemaining, reserveDeduction: reserveDeduction, oldInterestSharePrice: oldInterestSharePrice, oldPrincipalSharePrice: oldPrincipalSharePrice }); } function applyToJuniorTranche( ITranchedPool.PoolSlice storage slice, uint256 interestRemaining, uint256 principalRemaining, ITranchedPool.SliceInfo memory sliceInfo ) public returns (ITranchedPool.ApplyResult memory) { // Then fill up the junior tranche with all the interest remaining, upto the principal share price uint256 expectedInterestSharePrice = slice.juniorTranche.interestSharePrice.add( usdcToSharePrice(interestRemaining, slice.juniorTranche.principalDeposited) ); uint256 expectedPrincipalSharePrice = calculateExpectedSharePrice( slice.juniorTranche, sliceInfo.principalAccrued, slice ); uint256 oldInterestSharePrice = slice.juniorTranche.interestSharePrice; uint256 oldPrincipalSharePrice = slice.juniorTranche.principalSharePrice; (interestRemaining, principalRemaining) = applyBySharePrice( slice.juniorTranche, interestRemaining, principalRemaining, expectedInterestSharePrice, expectedPrincipalSharePrice ); // All remaining interest and principal is applied towards the junior tranche as interest interestRemaining = interestRemaining.add(principalRemaining); // Since any principal remaining is treated as interest (there is "extra" interest to be distributed) // we need to make sure to collect the protocol fee on the additional interest (we only deducted the // fee on the original interest portion) uint256 reserveDeduction = scaleByFraction(principalRemaining, sliceInfo.reserveFeePercent, ONE_HUNDRED); interestRemaining = interestRemaining.sub(reserveDeduction); principalRemaining = 0; (interestRemaining, principalRemaining) = applyByAmount( slice.juniorTranche, interestRemaining.add(principalRemaining), 0, interestRemaining.add(principalRemaining), 0 ); return ITranchedPool.ApplyResult({ interestRemaining: interestRemaining, principalRemaining: principalRemaining, reserveDeduction: reserveDeduction, oldInterestSharePrice: oldInterestSharePrice, oldPrincipalSharePrice: oldPrincipalSharePrice }); } function applyBySharePrice( ITranchedPool.TrancheInfo storage tranche, uint256 interestRemaining, uint256 principalRemaining, uint256 desiredInterestSharePrice, uint256 desiredPrincipalSharePrice ) public returns (uint256, uint256) { uint256 desiredInterestAmount = desiredAmountFromSharePrice( desiredInterestSharePrice, tranche.interestSharePrice, tranche.principalDeposited ); uint256 desiredPrincipalAmount = desiredAmountFromSharePrice( desiredPrincipalSharePrice, tranche.principalSharePrice, tranche.principalDeposited ); return applyByAmount(tranche, interestRemaining, principalRemaining, desiredInterestAmount, desiredPrincipalAmount); } function applyByAmount( ITranchedPool.TrancheInfo storage tranche, uint256 interestRemaining, uint256 principalRemaining, uint256 desiredInterestAmount, uint256 desiredPrincipalAmount ) public returns (uint256, uint256) { uint256 totalShares = tranche.principalDeposited; uint256 newSharePrice; (interestRemaining, newSharePrice) = applyToSharePrice( interestRemaining, tranche.interestSharePrice, desiredInterestAmount, totalShares ); tranche.interestSharePrice = newSharePrice; (principalRemaining, newSharePrice) = applyToSharePrice( principalRemaining, tranche.principalSharePrice, desiredPrincipalAmount, totalShares ); tranche.principalSharePrice = newSharePrice; return (interestRemaining, principalRemaining); } function migrateAccountingVariables(address originalClAddr, address newClAddr) public { IV2CreditLine originalCl = IV2CreditLine(originalClAddr); IV2CreditLine newCl = IV2CreditLine(newClAddr); // Copy over all accounting variables newCl.setBalance(originalCl.balance()); newCl.setLimit(originalCl.limit()); newCl.setInterestOwed(originalCl.interestOwed()); newCl.setPrincipalOwed(originalCl.principalOwed()); newCl.setTermEndTime(originalCl.termEndTime()); newCl.setNextDueTime(originalCl.nextDueTime()); newCl.setInterestAccruedAsOf(originalCl.interestAccruedAsOf()); newCl.setLastFullPaymentTime(originalCl.lastFullPaymentTime()); newCl.setTotalInterestAccrued(originalCl.totalInterestAccrued()); } function closeCreditLine(address originalCl) public { // Close out old CL IV2CreditLine oldCreditLine = IV2CreditLine(originalCl); oldCreditLine.setBalance(0); oldCreditLine.setLimit(0); oldCreditLine.setMaxLimit(0); } function desiredAmountFromSharePrice( uint256 desiredSharePrice, uint256 actualSharePrice, uint256 totalShares ) public pure returns (uint256) { // If the desired share price is lower, then ignore it, and leave it unchanged if (desiredSharePrice < actualSharePrice) { desiredSharePrice = actualSharePrice; } uint256 sharePriceDifference = desiredSharePrice.sub(actualSharePrice); return sharePriceToUsdc(sharePriceDifference, totalShares); } function applyToSharePrice( uint256 amountRemaining, uint256 currentSharePrice, uint256 desiredAmount, uint256 totalShares ) public pure returns (uint256, uint256) { // If no money left to apply, or don't need any changes, return the original amounts if (amountRemaining == 0 || desiredAmount == 0) { return (amountRemaining, currentSharePrice); } if (amountRemaining < desiredAmount) { // We don't have enough money to adjust share price to the desired level. So just use whatever amount is left desiredAmount = amountRemaining; } uint256 sharePriceDifference = usdcToSharePrice(desiredAmount, totalShares); return (amountRemaining.sub(desiredAmount), currentSharePrice.add(sharePriceDifference)); } function scaleByPercentOwnership( ITranchedPool.TrancheInfo memory tranche, uint256 amount, ITranchedPool.PoolSlice memory slice ) public pure returns (uint256) { uint256 totalDeposited = slice.juniorTranche.principalDeposited.add(slice.seniorTranche.principalDeposited); return scaleByFraction(amount, tranche.principalDeposited, totalDeposited); } }
{ "evmVersion": "istanbul", "libraries": { "contracts/protocol/core/TranchedPool.sol:TranchedPool": { "TranchingLogic": "0x01bfa2248a6c1aA65e7032951d368241FF70b649" } }, "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 100 }, "remappings": [], "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldCreditLine","type":"address"},{"indexed":true,"internalType":"address","name":"newCreditLine","type":"address"}],"name":"CreditLineMigrated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"uint256","name":"tranche","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DepositMade","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"borrower","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"DrawdownMade","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"DrawdownsPaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"DrawdownsUnpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"EmergencyShutdown","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"who","type":"address"},{"indexed":false,"internalType":"address","name":"configAddress","type":"address"}],"name":"GoldfinchConfigUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"payer","type":"address"},{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"interestAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"principalAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"remainingAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"reserveAmount","type":"uint256"}],"name":"PaymentApplied","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ReserveFundsCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":true,"internalType":"uint256","name":"tranche","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"principalSharePrice","type":"uint256"},{"indexed":false,"internalType":"int256","name":"principalDelta","type":"int256"},{"indexed":false,"internalType":"uint256","name":"interestSharePrice","type":"uint256"},{"indexed":false,"internalType":"int256","name":"interestDelta","type":"int256"}],"name":"SharePriceUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"sliceId","type":"uint256"}],"name":"SliceCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"},{"indexed":false,"internalType":"uint256","name":"trancheId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"name":"TrancheLocked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pool","type":"address"}],"name":"TranchedPoolAssessed","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"uint256","name":"tranche","type":"uint256"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"interestWithdrawn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"principalWithdrawn","type":"uint256"}],"name":"WithdrawalMade","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FP_SCALING_FACTOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"LOCKER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"NUM_TRANCHES_PER_SLICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ONE_HUNDRED","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OWNER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAUSER_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SECONDS_PER_DAY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SENIOR_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"__BaseUpgradeablePausable__init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"__PauserPausable__init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"allowedUIDTypes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"assess","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"availableToWithdraw","outputs":[{"internalType":"uint256","name":"interestRedeemable","type":"uint256"},{"internalType":"uint256","name":"principalRedeemable","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"config","outputs":[{"internalType":"contract GoldfinchConfig","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"createdAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"creditLine","outputs":[{"internalType":"contract IV2CreditLine","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tranche","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tranche","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"depositWithPermit","outputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"drawdown","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"drawdownsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"emergencyShutdown","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fundableAt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tranche","type":"uint256"}],"name":"getTranche","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"principalDeposited","type":"uint256"},{"internalType":"uint256","name":"principalSharePrice","type":"uint256"},{"internalType":"uint256","name":"interestSharePrice","type":"uint256"},{"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"internalType":"struct ITranchedPool.TrancheInfo","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_config","type":"address"},{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_juniorFeePercent","type":"uint256"},{"internalType":"uint256","name":"_limit","type":"uint256"},{"internalType":"uint256","name":"_interestApr","type":"uint256"},{"internalType":"uint256","name":"_paymentPeriodInDays","type":"uint256"},{"internalType":"uint256","name":"_termInDays","type":"uint256"},{"internalType":"uint256","name":"_lateFeeApr","type":"uint256"},{"internalType":"uint256","name":"_principalGracePeriodInDays","type":"uint256"},{"internalType":"uint256","name":"_fundableAt","type":"uint256"},{"internalType":"uint256[]","name":"_allowedUIDTypes","type":"uint256[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_fundableAt","type":"uint256"}],"name":"initializeNextSlice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isAdmin","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"juniorFeePercent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lockJuniorCapital","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"lockPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newCl","type":"address"}],"name":"migrateAndSetNewCreditLine","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_borrower","type":"address"},{"internalType":"uint256","name":"_maxLimit","type":"uint256"},{"internalType":"uint256","name":"_interestApr","type":"uint256"},{"internalType":"uint256","name":"_paymentPeriodInDays","type":"uint256"},{"internalType":"uint256","name":"_termInDays","type":"uint256"},{"internalType":"uint256","name":"_lateFeeApr","type":"uint256"},{"internalType":"uint256","name":"_principalGracePeriodInDays","type":"uint256"}],"name":"migrateCreditLine","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"numSlices","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pauseDrawdowns","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"pay","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"poolSlices","outputs":[{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"principalDeposited","type":"uint256"},{"internalType":"uint256","name":"principalSharePrice","type":"uint256"},{"internalType":"uint256","name":"interestSharePrice","type":"uint256"},{"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"internalType":"struct ITranchedPool.TrancheInfo","name":"seniorTranche","type":"tuple"},{"components":[{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"principalDeposited","type":"uint256"},{"internalType":"uint256","name":"principalSharePrice","type":"uint256"},{"internalType":"uint256","name":"interestSharePrice","type":"uint256"},{"internalType":"uint256","name":"lockedUntil","type":"uint256"}],"internalType":"struct ITranchedPool.TrancheInfo","name":"juniorTranche","type":"tuple"},{"internalType":"uint256","name":"totalInterestAccrued","type":"uint256"},{"internalType":"uint256","name":"principalDeployed","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"setAllowedUIDTypes","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newFundableAt","type":"uint256"}],"name":"setFundableAt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newAmount","type":"uint256"}],"name":"setLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newAmount","type":"uint256"}],"name":"setMaxLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"sharePrice","type":"uint256"},{"internalType":"uint256","name":"totalShares","type":"uint256"}],"name":"sharePriceToUsdc","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"totalDeployed","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalJuniorDeposits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpauseDrawdowns","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updateGoldfinchConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"totalShares","type":"uint256"}],"name":"usdcToSharePrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[{"internalType":"uint256","name":"interestWithdrawn","type":"uint256"},{"internalType":"uint256","name":"principalWithdrawn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"withdrawMax","outputs":[{"internalType":"uint256","name":"interestWithdrawn","type":"uint256"},{"internalType":"uint256","name":"principalWithdrawn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"name":"withdrawMultiple","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
ETH | 100.00% | $0.999953 | 363.6091 | $363.59 |
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.