ETH Price: $3,891.94 (-0.82%)

Contract

0xb803AaD2787dc26192fd6b11B8d0e9C68245e1dC
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

4 Internal Transactions found.

Latest 4 internal transactions

Advanced mode:
Parent Transaction Hash Block
From
To
191984522024-02-10 15:00:47306 days ago1707577247
0xb803AaD2...68245e1dC
0.087 ETH
191984522024-02-10 15:00:47306 days ago1707577247
0xb803AaD2...68245e1dC
0.087 ETH
191984522024-02-10 15:00:47306 days ago1707577247
0xb803AaD2...68245e1dC
0.174 ETH
157250742022-10-11 13:09:59793 days ago1665493799  Contract Creation0 ETH
Loading...
Loading

Minimal Proxy Contract for 0x00fc4bb5349f1104d3252c36c308688651e3eb1f

Contract Name:
PercentSplitETH

Compiler Version
v0.8.12+commit.f00d7308

Optimization Enabled:
Yes with 1337 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 9 : PercentSplitETH.sol
/*
  ・
   * ★
      ・ 。
         ・ ゚☆ 。
      * ★ ゚・。 *  。
            * ☆ 。・゚*.。
         ゚ *.。☆。★ ・
​
                      `                     .-:::::-.`              `-::---...```
                     `-:`               .:+ssssoooo++//:.`       .-/+shhhhhhhhhhhhhyyyssooo:
                    .--::.            .+ossso+/////++/:://-`   .////+shhhhhhhhhhhhhhhhhhhhhy
                  `-----::.         `/+////+++///+++/:--:/+/-  -////+shhhhhhhhhhhhhhhhhhhhhy
                 `------:::-`      `//-.``.-/+ooosso+:-.-/oso- -////+shhhhhhhhhhhhhhhhhhhhhy
                .--------:::-`     :+:.`  .-/osyyyyyyso++syhyo.-////+shhhhhhhhhhhhhhhhhhhhhy
              `-----------:::-.    +o+:-.-:/oyhhhhhhdhhhhhdddy:-////+shhhhhhhhhhhhhhhhhhhhhy
             .------------::::--  `oys+/::/+shhhhhhhdddddddddy/-////+shhhhhhhhhhhhhhhhhhhhhy
            .--------------:::::-` +ys+////+yhhhhhhhddddddddhy:-////+yhhhhhhhhhhhhhhhhhhhhhy
          `----------------::::::-`.ss+/:::+oyhhhhhhhhhhhhhhho`-////+shhhhhhhhhhhhhhhhhhhhhy
         .------------------:::::::.-so//::/+osyyyhhhhhhhhhys` -////+shhhhhhhhhhhhhhhhhhhhhy
       `.-------------------::/:::::..+o+////+oosssyyyyyyys+`  .////+shhhhhhhhhhhhhhhhhhhhhy
       .--------------------::/:::.`   -+o++++++oooosssss/.     `-//+shhhhhhhhhhhhhhhhhhhhyo
     .-------   ``````.......--`        `-/+ooooosso+/-`          `./++++///:::--...``hhhhyo
                                              `````
   * 
      ・ 。
    ・  ゚☆ 。
      * ★ ゚・。 *  。
            * ☆ 。・゚*.。
         ゚ *.。☆。★ ・
    *  ゚。·*・。 ゚*
     ☆゚・。°*. ゚
  ・ ゚*。・゚★。
  ・ *゚。   *
 ・゚*。★・
 ☆∴。 *
・ 。
*/

// SPDX-License-Identifier: MIT OR Apache-2.0

pragma solidity ^0.8.0;

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol";
import "@openzeppelin/contracts/utils/math/SafeMath.sol";
import "@openzeppelin/contracts/proxy/Clones.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./interfaces/IERC20Approve.sol";
import "./interfaces/IERC20IncreaseAllowance.sol";
import "./libraries/BytesLibrary.sol";

/**
 * @title Auto-forward ETH to a pre-determined list of addresses.
 * @notice Deploys contracts which auto-forwards any ETH sent to it to a list of recipients
 * considering their percent share of the payment received.
 * @dev Uses create2 counterfactual addresses so that the destination is known from the terms of the split.
 */
contract PercentSplitETH is Initializable {
  using AddressUpgradeable for address payable;
  using AddressUpgradeable for address;
  using BytesLibrary for bytes;
  using SafeMath for uint256;

  /// @notice A representation of shares using 16-bits for efficient storage.
  /// @dev This is only used internally.
  struct ShareCompressed {
    address payable recipient;
    uint16 percentInBasisPoints;
  }

  /// @notice A representation of shares using 256-bits to ease integration.
  struct Share {
    address payable recipient;
    uint256 percentInBasisPoints;
  }

  uint256 private constant BASIS_POINTS = 10000;

  ShareCompressed[] private _shares;

  /**
   * @notice Emitted when a new percent split contract is created from this factory.
   * @param contractAddress The address of the new percent split contract.
   */
  event PercentSplitCreated(address indexed contractAddress);
  /**
   * @notice Emitted for each share of the split being defined.
   * @param recipient The address of the recipient when payment to the split is received.
   * @param percentInBasisPoints The percent of the payment received by the recipient, in basis points.
   */
  event PercentSplitShare(address indexed recipient, uint256 percentInBasisPoints);
  /**
   * @notice Emitted when ETH is transferred to a recipient through this split contract.
   * @param account The account which received payment.
   * @param amount The amount of ETH payment sent to this recipient.
   */
  event ETHTransferred(address indexed account, uint256 amount);
  /**
   * @notice Emitted when an ERC20 token is transferred to a recipient through this split contract.
   * @param erc20Contract The address of the ERC20 token contract.
   * @param account The account which received payment.
   * @param amount The amount of ERC20 tokens sent to this recipient.
   */
  event ERC20Transferred(address indexed erc20Contract, address indexed account, uint256 amount);

  /**
   * @dev Requires that the msg.sender is one of the recipients in this split.
   */
  modifier onlyRecipient() {
    for (uint256 i = 0; i < _shares.length; ++i) {
      if (_shares[i].recipient == msg.sender) {
        _;
        return;
      }
    }
    revert("Split: Can only be called by one of the recipients");
  }

  /**
   * @notice Creates a new minimal proxy contract and initializes it with the given split terms.
   * If the contract had already been created, its address is returned.
   * This must be called on the original implementation and not a proxy created previously.
   */
  function createSplit(Share[] memory shares) external returns (PercentSplitETH splitInstance) {
    bytes32 salt = keccak256(abi.encode(shares));
    address clone = Clones.predictDeterministicAddress(address(this), salt);
    splitInstance = PercentSplitETH(payable(clone));
    if (!clone.isContract()) {
      emit PercentSplitCreated(clone);
      Clones.cloneDeterministic(address(this), salt);
      splitInstance.initialize(shares);
    }
  }

  /**
   * @notice Returns the address for the proxy contract which would represent the given split terms.
   * @dev The contract may or may not already be deployed at the address returned.
   * Ensure that it is deployed before sending funds to this address.
   */
  function getPredictedSplitAddress(Share[] memory shares) external view returns (address) {
    bytes32 salt = keccak256(abi.encode(shares));
    return Clones.predictDeterministicAddress(address(this), salt);
  }

  /**
   * @notice Called once to configure the contract after the initial deployment.
   * @dev This will be called by `createSplit` after deploying the proxy so it should never be called directly.
   */
  function initialize(Share[] memory shares) external initializer {
    require(shares.length >= 2, "Split: Too few recipients");
    require(shares.length <= 5, "Split: Too many recipients");
    uint256 total;
    unchecked {
      // The array length cannot overflow 256 bits.
      for (uint256 i = 0; i < shares.length; ++i) {
        require(shares[i].percentInBasisPoints < BASIS_POINTS, "Split: Share must be less than 100%");
        // Require above ensures total will not overlow.
        total += shares[i].percentInBasisPoints;
        _shares.push(
          ShareCompressed({
            recipient: shares[i].recipient,
            percentInBasisPoints: uint16(shares[i].percentInBasisPoints)
          })
        );
        emit PercentSplitShare(shares[i].recipient, shares[i].percentInBasisPoints);
      }
    }
    require(total == BASIS_POINTS, "Split: Total amount must equal 100%");
  }

  /**
   * @notice Returns a tuple with the terms of this split.
   */
  function getShares() external view returns (Share[] memory shares) {
    shares = new Share[](_shares.length);
    for (uint256 i = 0; i < shares.length; ++i) {
      shares[i] = Share({ recipient: _shares[i].recipient, percentInBasisPoints: _shares[i].percentInBasisPoints });
    }
  }

  /**
   * @notice Returns how many recipients are part of this split.
   */
  function getShareLength() external view returns (uint256) {
    return _shares.length;
  }

  /**
   * @notice Returns a recipient in this split.
   */
  function getShareRecipientByIndex(uint256 index) external view returns (address payable) {
    return _shares[index].recipient;
  }

  /**
   * @notice Returns a recipient's percent share in basis points.
   */
  function getPercentInBasisPointsByIndex(uint256 index) external view returns (uint256) {
    return _shares[index].percentInBasisPoints;
  }

  /**
   * @notice Forwards any ETH received to the recipients in this split.
   * @dev Each recipient increases the gas required to split
   * and contract recipients may significantly increase the gas required.
   */
  receive() external payable {
    _splitETH(msg.value);
  }

  /**
   * @notice Allows any ETH stored by the contract to be split among recipients.
   * @dev Normally ETH is forwarded as it comes in, but a balance in this contract
   * is possible if it was sent before the contract was created or if self destruct was used.
   */
  function splitETH() external {
    _splitETH(address(this).balance);
  }

  function _splitETH(uint256 value) private {
    if (value != 0) {
      uint256 totalSent;
      uint256 amountToSend;
      unchecked {
        for (uint256 i = _shares.length - 1; i != 0; i--) {
          ShareCompressed memory share = _shares[i];
          amountToSend = (value * share.percentInBasisPoints) / BASIS_POINTS;
          totalSent += amountToSend;
          share.recipient.sendValue(amountToSend);
          emit ETHTransferred(share.recipient, amountToSend);
        }
        // Favor the 1st recipient if there are any rounding issues
        amountToSend = value - totalSent;
      }
      _shares[0].recipient.sendValue(amountToSend);
      emit ETHTransferred(_shares[0].recipient, amountToSend);
    }
  }

  /**
   * @notice Anyone can call this function to split all available tokens at the provided address between the recipients.
   * @dev This contract is built to split ETH payments. The ability to attempt to split ERC20 tokens is here
   * just in case tokens were also sent so that they don't get locked forever in the contract.
   */
  function splitERC20Tokens(IERC20 erc20Contract) external {
    require(_splitERC20Tokens(erc20Contract), "Split: ERC20 split failed");
  }

  function _splitERC20Tokens(IERC20 erc20Contract) private returns (bool) {
    try erc20Contract.balanceOf(address(this)) returns (uint256 balance) {
      if (balance == 0) {
        return false;
      }
      uint256 amountToSend;
      uint256 totalSent;
      unchecked {
        for (uint256 i = _shares.length - 1; i != 0; i--) {
          ShareCompressed memory share = _shares[i];
          bool success;
          (success, amountToSend) = balance.tryMul(share.percentInBasisPoints);
          if (!success) {
            return false;
          }
          amountToSend /= BASIS_POINTS;
          totalSent += amountToSend;
          try erc20Contract.transfer(share.recipient, amountToSend) {
            emit ERC20Transferred(address(erc20Contract), share.recipient, amountToSend);
          } catch {
            return false;
          }
        }
        // Favor the 1st recipient if there are any rounding issues
        amountToSend = balance - totalSent;
      }
      try erc20Contract.transfer(_shares[0].recipient, amountToSend) {
        emit ERC20Transferred(address(erc20Contract), _shares[0].recipient, amountToSend);
      } catch {
        return false;
      }
      return true;
    } catch {
      return false;
    }
  }

  /**
   * @notice Allows the split recipients to make an arbitrary contract call.
   * @dev This is provided to allow recovering from unexpected scenarios,
   * such as receiving an NFT at this address.
   *
   * It will first attempt a fair split of ERC20 tokens before proceeding.
   *
   * This contract is built to split ETH payments. The ability to attempt to make other calls is here
   * just in case other assets were also sent so that they don't get locked forever in the contract.
   */
  function proxyCall(address payable target, bytes memory callData) external onlyRecipient {
    require(
      !callData.startsWith(type(IERC20Approve).interfaceId) &&
        !callData.startsWith(type(IERC20IncreaseAllowance).interfaceId),
      "Split: ERC20 tokens must be split"
    );
    _splitERC20Tokens(IERC20(target));
    target.functionCall(callData);
  }
}

File 2 of 9 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.0;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To initialize the implementation contract, you can either invoke the
 * initializer manually, or you can include a constructor to automatically mark it as initialized when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() initializer {}
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     */
    bool private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Modifier to protect an initializer function from being invoked twice.
     */
    modifier initializer() {
        // If the contract is initializing we ignore whether _initialized is set in order to support multiple
        // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the
        // contract may have been reentered.
        require(_initializing ? _isConstructor() : !_initialized, "Initializable: contract is already initialized");

        bool isTopLevelCall = !_initializing;
        if (isTopLevelCall) {
            _initializing = true;
            _initialized = true;
        }

        _;

        if (isTopLevelCall) {
            _initializing = false;
        }
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} modifier, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    function _isConstructor() private view returns (bool) {
        return !AddressUpgradeable.isContract(address(this));
    }
}

File 3 of 9 : AddressUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 4 of 9 : SafeMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/math/SafeMath.sol)

pragma solidity ^0.8.0;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

File 5 of 9 : Clones.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/Clones.sol)

pragma solidity ^0.8.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[EIP 1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 *
 * _Available since v3.4._
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, implementation))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            instance := create(0, ptr, 0x37)
        }
        require(instance != address(0), "ERC1167: create failed");
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, implementation))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf30000000000000000000000000000000000)
            instance := create2(0, ptr, 0x37, salt)
        }
        require(instance != address(0), "ERC1167: create2 failed");
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000000000000000000000)
            mstore(add(ptr, 0x14), shl(0x60, implementation))
            mstore(add(ptr, 0x28), 0x5af43d82803e903d91602b57fd5bf3ff00000000000000000000000000000000)
            mstore(add(ptr, 0x38), shl(0x60, deployer))
            mstore(add(ptr, 0x4c), salt)
            mstore(add(ptr, 0x6c), keccak256(ptr, 0x37))
            predicted := keccak256(add(ptr, 0x37), 0x55)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(address implementation, bytes32 salt)
        internal
        view
        returns (address predicted)
    {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

File 6 of 9 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 7 of 9 : IERC20Approve.sol
// SPDX-License-Identifier: MIT OR Apache-2.0

pragma solidity ^0.8.0;

interface IERC20Approve {
  function approve(address spender, uint256 amount) external returns (bool);
}

File 8 of 9 : IERC20IncreaseAllowance.sol
// SPDX-License-Identifier: MIT OR Apache-2.0

pragma solidity ^0.8.0;

interface IERC20IncreaseAllowance {
  function increaseAllowance(address spender, uint256 addedValue) external returns (bool);
}

File 9 of 9 : BytesLibrary.sol
// SPDX-License-Identifier: MIT OR Apache-2.0

pragma solidity ^0.8.0;

error BytesLibrary_Expected_Address_Not_Found();

/**
 * @title A library for manipulation of byte arrays.
 */
library BytesLibrary {
  /**
   * @dev Replace the address at the given location in a byte array if the contents at that location
   * match the expected address.
   */
  function replaceAtIf(
    bytes memory data,
    uint256 startLocation,
    address expectedAddress,
    address newAddress
  ) internal pure {
    bytes memory expectedData = abi.encodePacked(expectedAddress);
    bytes memory newData = abi.encodePacked(newAddress);
    unchecked {
      // An address is 20 bytes long
      for (uint256 i = 0; i < 20; ++i) {
        uint256 dataLocation = startLocation + i;
        if (data[dataLocation] != expectedData[i]) {
          revert BytesLibrary_Expected_Address_Not_Found();
        }
        data[dataLocation] = newData[i];
      }
    }
  }

  /**
   * @dev Checks if the call data starts with the given function signature.
   */
  function startsWith(bytes memory callData, bytes4 functionSig) internal pure returns (bool) {
    // A signature is 4 bytes long
    if (callData.length < 4) {
      return false;
    }
    unchecked {
      for (uint256 i = 0; i < 4; ++i) {
        if (callData[i] != functionSig[i]) {
          return false;
        }
      }
    }

    return true;
  }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 1337
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract ABI

[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"erc20Contract","type":"address"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ERC20Transferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"ETHTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"contractAddress","type":"address"}],"name":"PercentSplitCreated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"percentInBasisPoints","type":"uint256"}],"name":"PercentSplitShare","type":"event"},{"inputs":[{"components":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"uint256","name":"percentInBasisPoints","type":"uint256"}],"internalType":"struct PercentSplitETH.Share[]","name":"shares","type":"tuple[]"}],"name":"createSplit","outputs":[{"internalType":"contract PercentSplitETH","name":"splitInstance","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getPercentInBasisPointsByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"uint256","name":"percentInBasisPoints","type":"uint256"}],"internalType":"struct PercentSplitETH.Share[]","name":"shares","type":"tuple[]"}],"name":"getPredictedSplitAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getShareLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getShareRecipientByIndex","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getShares","outputs":[{"components":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"uint256","name":"percentInBasisPoints","type":"uint256"}],"internalType":"struct PercentSplitETH.Share[]","name":"shares","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"address payable","name":"recipient","type":"address"},{"internalType":"uint256","name":"percentInBasisPoints","type":"uint256"}],"internalType":"struct PercentSplitETH.Share[]","name":"shares","type":"tuple[]"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"target","type":"address"},{"internalType":"bytes","name":"callData","type":"bytes"}],"name":"proxyCall","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"erc20Contract","type":"address"}],"name":"splitERC20Tokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"splitETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.