ETH Price: $2,449.39 (+3.61%)

Contract

0xBE3091D53c585172Fc8695B00cDCd0a32ce16714
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

Token Holdings

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To
Claim173972362023-06-03 2:37:59459 days ago1685759879IN
0xBE3091D5...32ce16714
0 ETH0.0005183420
Claim173972152023-06-03 2:33:47459 days ago1685759627IN
0xBE3091D5...32ce16714
0 ETH0.0005183420
Claim173744282023-05-30 21:31:23463 days ago1685482283IN
0xBE3091D5...32ce16714
0 ETH0.0024901535.55534699
Claim173707342023-05-30 9:03:11463 days ago1685437391IN
0xBE3091D5...32ce16714
0 ETH0.0034926149.8688872
Claim173689532023-05-30 3:02:47463 days ago1685415767IN
0xBE3091D5...32ce16714
0 ETH0.002200931.42535512
Claim173689202023-05-30 2:55:59463 days ago1685415359IN
0xBE3091D5...32ce16714
0 ETH0.0019488227.82598561
Claim173688512023-05-30 2:42:11463 days ago1685414531IN
0xBE3091D5...32ce16714
0 ETH0.0016959424.21532364
Claim173688462023-05-30 2:41:11463 days ago1685414471IN
0xBE3091D5...32ce16714
0 ETH0.0015738822.47245421
Claim173688252023-05-30 2:36:59463 days ago1685414219IN
0xBE3091D5...32ce16714
0 ETH0.0006766326.10765017
Claim173687962023-05-30 2:30:59463 days ago1685413859IN
0xBE3091D5...32ce16714
0 ETH0.0016850924.06042094
Reserve Mikes Fo...173687712023-05-30 2:25:35463 days ago1685413535IN
0xBE3091D5...32ce16714
0.05 ETH0.000521621.95471291
Claim173687572023-05-30 2:22:47463 days ago1685413367IN
0xBE3091D5...32ce16714
0 ETH0.0016299823.2735222
Claim173687162023-05-30 2:14:35464 days ago1685412875IN
0xBE3091D5...32ce16714
0 ETH0.0020599529.41278837
Claim173686062023-05-30 1:52:23464 days ago1685411543IN
0xBE3091D5...32ce16714
0 ETH0.0015123521.59393149
Claim173685552023-05-30 1:42:11464 days ago1685410931IN
0xBE3091D5...32ce16714
0 ETH0.0006249824.11476089
Claim173685382023-05-30 1:38:23464 days ago1685410703IN
0xBE3091D5...32ce16714
0 ETH0.0016591923.69064075
Claim173685252023-05-30 1:35:23464 days ago1685410523IN
0xBE3091D5...32ce16714
0 ETH0.001641423.43655051
Claim173685082023-05-30 1:31:47464 days ago1685410307IN
0xBE3091D5...32ce16714
0 ETH0.001529421.83745882
Claim173685072023-05-30 1:31:35464 days ago1685410295IN
0xBE3091D5...32ce16714
0 ETH0.0015818922.58681429
Claim173685052023-05-30 1:31:11464 days ago1685410271IN
0xBE3091D5...32ce16714
0 ETH0.0016194523.12312805
Claim173685032023-05-30 1:30:47464 days ago1685410247IN
0xBE3091D5...32ce16714
0 ETH0.0016457823.49907727
Claim173685022023-05-30 1:30:35464 days ago1685410235IN
0xBE3091D5...32ce16714
0 ETH0.0006154523.74698338
Claim173684932023-05-30 1:28:47464 days ago1685410127IN
0xBE3091D5...32ce16714
0 ETH0.0016518723.5860447
Claim173684812023-05-30 1:26:23464 days ago1685409983IN
0xBE3091D5...32ce16714
0 ETH0.0017169924.51595615
Claim173684812023-05-30 1:26:23464 days ago1685409983IN
0xBE3091D5...32ce16714
0 ETH0.0017719125.3
View all transactions

Latest 2 internal transactions

Advanced mode:
Parent Transaction Hash Block From To
173684152023-05-30 1:12:59464 days ago1685409179
0xBE3091D5...32ce16714
39.5385 ETH
173684152023-05-30 1:12:59464 days ago1685409179
0xBE3091D5...32ce16714
13.1795 ETH
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
MikePresale

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
File 1 of 22 : Presale.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.20;

import "./Mike.sol";
import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router01.sol";

contract MikePresale is Ownable {
    uint256 private _totalContribution;

    uint256 public constant MAX_INDIVIDUAL_CONTRIBUTION = 1 ether;
    uint256 public constant LIQUIDITY_ALLOCATION = 2_000_000_000 ether; // 20% of total supply
    uint256 public constant PRESALE_ALLOCATION = 3_500_000_000 ether; // 35% of total supply
    uint256 public constant PUBLIC_SALE_DURATION = 10; // 10 blocks

    Mike public mike;

    uint256 public finalizedOnBlock;

    bytes32 public whitelistMerkleRoot;
    bool public whitelistEnabled;
    uint256 public publicSaleEndBlock;

    mapping(address => uint256) public contributions;

    function updateMerkleRoot(bytes32 whitelistMerkleRoot_) external onlyOwner {
        whitelistMerkleRoot = whitelistMerkleRoot_;
    }

    function setMike(address mike_) external onlyOwner {
        mike = Mike(mike_);
    }

    function finalize() external payable onlyOwner {
        _totalContribution = address(this).balance;
        finalizedOnBlock = block.number;

        mike.approve(
            0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D,
            type(uint256).max
        );

        (bool success, ) = owner().call{
            value: (_totalContribution * 250) / 1000
        }("");

        require(success, "Presale: failed to transfer funds");

        IUniswapV2Router01(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D)
            .addLiquidityETH{value: address(this).balance}(
            address(mike),
            LIQUIDITY_ALLOCATION,
            0,
            0,
            msg.sender,
            block.timestamp + 30 minutes
        );
    }

    function setPublicPresale() external onlyOwner {
        publicSaleEndBlock = block.number + PUBLIC_SALE_DURATION;
    }

    function setWhitelistEnabled(bool state) external onlyOwner {
        whitelistEnabled = state;
    }

    function reserveMikesForPublicPresale() external payable {
        require(
            publicSaleEndBlock > 0,
            "Presale: public presale has not started"
        );
        require(
            block.number <= publicSaleEndBlock,
            "Presale: presale has ended"
        );
        _contribute(msg.sender, msg.value);
    }

    function reserveMikesForWhitelistPresale(
        bytes32[] calldata proof
    ) external payable {
        require(whitelistEnabled, "Presale: whitelist presale has not started");

        bytes32 leaf = keccak256(abi.encodePacked(_msgSender()));

        require(
            MerkleProof.verify(proof, whitelistMerkleRoot, leaf),
            "Presale: Invalid proof"
        );

        _contribute(msg.sender, msg.value);
    }

    function claim() external {
        require(finalizedOnBlock > 0, "Presale: presale has not finalized");
        uint256 claimable = contributions[msg.sender];
        require(claimable > 0, "Presale: you have no shares to claim");
        delete contributions[msg.sender];

        mike.transfer(
            msg.sender,
            (claimable * PRESALE_ALLOCATION) / getTotalContribution()
        );
    }

    function getTotalContribution() public view returns (uint256) {
        return
            finalizedOnBlock > 0 ? _totalContribution : address(this).balance;
    }

    function _contribute(address account, uint256 amount) internal {
        require(
            contributions[account] + amount <= MAX_INDIVIDUAL_CONTRIBUTION,
            "Presale: max contribution exceeded"
        );

        contributions[account] += amount;
    }

    function withdraw() external onlyOwner {
        (bool success, ) = owner().call{value: address(this).balance}("");
        require(success, "Presale: failed to withdraw funds");
    }
}

File 2 of 22 : IUniswapV2Router01.sol
pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

File 3 of 22 : MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

File 4 of 22 : Mike.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.20;

import "@openzeppelin/contracts/access/Ownable.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@uniswap/v2-core/contracts/interfaces/IUniswapV2Factory.sol";
import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";

contract Mike is ERC20Permit, Ownable {
    uint256 constant NAUGHTY_TIMEOUT = 7200; // blocks
    address public immutable UNISWAP_V2_PAIR;

    mapping(address => uint256) public mikesNaughtyList;

    uint256 public maxWalletAmount;
    uint256 public deadblockExpiration;

    bool public limitsEnabled;
    bool public tradingActive;

    mapping(address => bool) private _exclusionList;

    constructor() ERC20Permit("Mike") ERC20("Mike", "MIKE") {
        _updateExclusionList(msg.sender, true);
        _mint(msg.sender, 10_000_000_000 ether);

        UNISWAP_V2_PAIR = IUniswapV2Factory(
            0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f
        ).createPair(address(this), 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal override {
        require(amount > 0, "amount must be greater than 0");

        if (!tradingActive) {
            require(
                isExcluded(from) || isExcluded(to),
                "transfers are not yet active"
            );
        }

        if (limitsEnabled) {
            if (from == UNISWAP_V2_PAIR && !isExcluded(to)) {
                if (block.number < deadblockExpiration) {
                    mikesNaughtyList[to] = block.number + NAUGHTY_TIMEOUT;
                }
            } else if (to == UNISWAP_V2_PAIR && !isExcluded(from)) {
                if (block.number < deadblockExpiration) {
                    mikesNaughtyList[from] = block.number + NAUGHTY_TIMEOUT;
                }
            }

            if (
                to != UNISWAP_V2_PAIR &&
                !isExcluded(to) &&
                !isExcluded(from) &&
                maxWalletAmount > 0
            ) {
                require(
                    balanceOf(to) + amount <= maxWalletAmount,
                    "amount exceeds wallet limit"
                );
            }
        }

        if (isNaughty(from)) {
            require(
                block.number > mikesNaughtyList[from],
                "MikesNFT has timed you out! Boop!"
            );
        }

        super._transfer(from, to, amount);
    }

    function updateTradingStatus(uint256 deadBlocks) external onlyOwner {
        updateLimitsEnabled(true);

        tradingActive = true;

        if (deadblockExpiration == 0) {
            deadblockExpiration = block.number + deadBlocks;
        }
    }

    function updateExclusionList(
        address[] calldata addresses,
        bool value
    ) public onlyOwner {
        for (uint256 i; i < addresses.length; ) {
            _updateExclusionList(addresses[i], value);
            unchecked {
                i++;
            }
        }
    }

    function _updateExclusionList(address account, bool value) private {
        _exclusionList[account] = value;
    }

    function isExcluded(address account) public view returns (bool) {
        return _exclusionList[account];
    }

    function updateMikesNaughtyList(
        address[] calldata addresses,
        uint256 blockNumber
    ) external onlyOwner {
        for (uint256 i; i < addresses.length; ) {
            mikesNaughtyList[addresses[i]] = blockNumber;
            unchecked {
                i++;
            }
        }
    }

    function isNaughty(address account) public view returns (bool) {
        return !isExcluded(account) && mikesNaughtyList[account] > 0;
    }

    function updateMaxWalletAmount(uint256 newAmount) external onlyOwner {
        maxWalletAmount = newAmount;
    }

    function updateLimitsEnabled(bool enabled) public onlyOwner {
        limitsEnabled = enabled;
    }
}

File 5 of 22 : IUniswapV2Router02.sol
pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

File 6 of 22 : IUniswapV2Factory.sol
pragma solidity >=0.5.0;

interface IUniswapV2Factory {
    event PairCreated(address indexed token0, address indexed token1, address pair, uint);

    function feeTo() external view returns (address);
    function feeToSetter() external view returns (address);

    function getPair(address tokenA, address tokenB) external view returns (address pair);
    function allPairs(uint) external view returns (address pair);
    function allPairsLength() external view returns (uint);

    function createPair(address tokenA, address tokenB) external returns (address pair);

    function setFeeTo(address) external;
    function setFeeToSetter(address) external;
}

File 7 of 22 : ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.0;

import "./IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/cryptography/EIP712.sol";
import "../../../utils/Counters.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        Counters.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }
}

File 8 of 22 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 9 of 22 : Counters.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

File 10 of 22 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSA.sol";
import "../ShortStrings.sol";
import "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _name.toStringWithFallback(_nameFallback),
            _version.toStringWithFallback(_versionFallback),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }
}

File 11 of 22 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 12 of 22 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}
}

File 13 of 22 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 14 of 22 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 15 of 22 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 16 of 22 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.8;

import "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant _FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(_FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != _FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 17 of 22 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";
import "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 18 of 22 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 19 of 22 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 20 of 22 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 21 of 22 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 22 of 22 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, `uint256`._
 * _Available since v4.9 for `string`, `bytes`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"inputs":[],"name":"LIQUIDITY_ALLOCATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_INDIVIDUAL_CONTRIBUTION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRESALE_ALLOCATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PUBLIC_SALE_DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"contributions","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"finalize","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"finalizedOnBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalContribution","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mike","outputs":[{"internalType":"contract Mike","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"publicSaleEndBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserveMikesForPublicPresale","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"reserveMikesForWhitelistPresale","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"mike_","type":"address"}],"name":"setMike","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setPublicPresale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"state","type":"bool"}],"name":"setWhitelistEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"whitelistMerkleRoot_","type":"bytes32"}],"name":"updateMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"whitelistEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"whitelistMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

608060405234801561000f575f80fd5b5061002c61002161003160201b60201c565b61003860201b60201c565b6100f9565b5f33905090565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b611c9e806101065f395ff3fe60806040526004361061013f575f3560e01c80637e6b7e23116100b5578063d84c6eb21161006e578063d84c6eb2146103af578063d859ed05146103d9578063e86bc6ea146103e3578063ea8c722f1461040d578063f2fde38b14610423578063f9428f381461044b5761013f565b80637e6b7e23146102b55780637ff3bf8e146102dd5780638da5cb5b146103075780639fc8e02214610331578063aa98e0c61461035b578063c7b5a48c146103855761013f565b80634783f0ef116101075780634783f0ef146102115780634bb278f3146102395780634e71d92d1461024357806351fb012d146102595780636117a34014610283578063715018a61461029f5761013f565b8063052d9e7e1461014357806308caa9101461016b5780633ccfd60b1461019557806342e94c90146101ab578063434b2f3c146101e7575b5f80fd5b34801561014e575f80fd5b506101696004803603810190610164919061104f565b610475565b005b348015610176575f80fd5b5061017f610499565b60405161018c9190611092565b60405180910390f35b3480156101a0575f80fd5b506101a96104b2565b005b3480156101b6575f80fd5b506101d160048036038101906101cc9190611105565b61056c565b6040516101de9190611092565b60405180910390f35b3480156101f2575f80fd5b506101fb610581565b6040516102089190611092565b60405180910390f35b34801561021c575f80fd5b5061023760048036038101906102329190611163565b61058d565b005b61024161059f565b005b34801561024e575f80fd5b50610257610829565b005b348015610264575f80fd5b5061026d6109f9565b60405161027a919061119d565b60405180910390f35b61029d60048036038101906102989190611217565b610a0b565b005b3480156102aa575f80fd5b506102b3610b25565b005b3480156102c0575f80fd5b506102db60048036038101906102d69190611105565b610b38565b005b3480156102e8575f80fd5b506102f1610b83565b6040516102fe9190611092565b60405180910390f35b348015610312575f80fd5b5061031b610b88565b6040516103289190611271565b60405180910390f35b34801561033c575f80fd5b50610345610baf565b6040516103529190611092565b60405180910390f35b348015610366575f80fd5b5061036f610bb5565b60405161037c9190611299565b60405180910390f35b348015610390575f80fd5b50610399610bbb565b6040516103a69190611092565b60405180910390f35b3480156103ba575f80fd5b506103c3610bcb565b6040516103d09190611092565b60405180910390f35b6103e1610bd1565b005b3480156103ee575f80fd5b506103f7610c66565b604051610404919061130d565b60405180910390f35b348015610418575f80fd5b50610421610c8b565b005b34801561042e575f80fd5b5061044960048036038101906104449190611105565b610ca8565b005b348015610456575f80fd5b5061045f610d2a565b60405161046c9190611092565b60405180910390f35b61047d610d3a565b8060055f6101000a81548160ff02191690831515021790555050565b5f80600354116104a957476104ad565b6001545b905090565b6104ba610d3a565b5f6104c3610b88565b73ffffffffffffffffffffffffffffffffffffffff16476040516104e690611353565b5f6040518083038185875af1925050503d805f8114610520576040519150601f19603f3d011682016040523d82523d5f602084013e610525565b606091505b5050905080610569576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610560906113e7565b60405180910390fd5b50565b6007602052805f5260405f205f915090505481565b670de0b6b3a764000081565b610595610d3a565b8060048190555050565b6105a7610d3a565b476001819055504360038190555060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663095ea7b3737a250d5630b4cf539739df2c5dacb4c659f2488d7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518363ffffffff1660e01b8152600401610645929190611405565b6020604051808303815f875af1158015610661573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106859190611440565b505f61068f610b88565b73ffffffffffffffffffffffffffffffffffffffff166103e860fa6001546106b79190611498565b6106c19190611506565b6040516106cd90611353565b5f6040518083038185875af1925050503d805f8114610707576040519150601f19603f3d011682016040523d82523d5f602084013e61070c565b606091505b5050905080610750576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610747906115a6565b60405180910390fd5b737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663f305d7194760025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166b06765c793fa10079d00000005f8033610708426107c191906115c4565b6040518863ffffffff1660e01b81526004016107e296959493929190611630565b60606040518083038185885af11580156107fe573d5f803e3d5ffd5b50505050506040513d601f19601f8201168201806040525081019061082391906116b9565b50505050565b5f6003541161086d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161086490611779565b60405180910390fd5b5f60075f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205490505f81116108f0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108e790611807565b60405180910390fd5b60075f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f905560025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a9059cbb33610976610499565b6b0b4f21d42f59c0d52c0000008561098e9190611498565b6109989190611506565b6040518363ffffffff1660e01b81526004016109b5929190611405565b6020604051808303815f875af11580156109d1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109f59190611440565b5050565b60055f9054906101000a900460ff1681565b60055f9054906101000a900460ff16610a59576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a5090611895565b60405180910390fd5b5f610a62610db8565b604051602001610a7291906118f8565b604051602081830303815290604052805190602001209050610ad78383808060200260200160405190810160405280939291908181526020018383602002808284375f81840152601f19601f8201169050808301925050505050505060045483610dbf565b610b16576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b0d9061195c565b60405180910390fd5b610b203334610dd5565b505050565b610b2d610d3a565b610b365f610ebf565b565b610b40610d3a565b8060025f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b600a81565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b60065481565b60045481565b6b0b4f21d42f59c0d52c00000081565b60035481565b5f60065411610c15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c0c906119ea565b60405180910390fd5b600654431115610c5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c5190611a52565b60405180910390fd5b610c643334610dd5565b565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610c93610d3a565b600a43610ca091906115c4565b600681905550565b610cb0610d3a565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610d1e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d1590611ae0565b60405180910390fd5b610d2781610ebf565b50565b6b06765c793fa10079d000000081565b610d42610db8565b73ffffffffffffffffffffffffffffffffffffffff16610d60610b88565b73ffffffffffffffffffffffffffffffffffffffff1614610db6576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610dad90611b48565b60405180910390fd5b565b5f33905090565b5f82610dcb8584610f80565b1490509392505050565b670de0b6b3a76400008160075f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054610e2791906115c4565b1115610e68576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e5f90611bd6565b60405180910390fd5b8060075f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f828254610eb491906115c4565b925050819055505050565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f808290505f5b8451811015610fc957610fb482868381518110610fa757610fa6611bf4565b5b6020026020010151610fd4565b91508080610fc190611c21565b915050610f87565b508091505092915050565b5f818310610feb57610fe68284610ffe565b610ff6565b610ff58383610ffe565b5b905092915050565b5f825f528160205260405f20905092915050565b5f80fd5b5f80fd5b5f8115159050919050565b61102e8161101a565b8114611038575f80fd5b50565b5f8135905061104981611025565b92915050565b5f6020828403121561106457611063611012565b5b5f6110718482850161103b565b91505092915050565b5f819050919050565b61108c8161107a565b82525050565b5f6020820190506110a55f830184611083565b92915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6110d4826110ab565b9050919050565b6110e4816110ca565b81146110ee575f80fd5b50565b5f813590506110ff816110db565b92915050565b5f6020828403121561111a57611119611012565b5b5f611127848285016110f1565b91505092915050565b5f819050919050565b61114281611130565b811461114c575f80fd5b50565b5f8135905061115d81611139565b92915050565b5f6020828403121561117857611177611012565b5b5f6111858482850161114f565b91505092915050565b6111978161101a565b82525050565b5f6020820190506111b05f83018461118e565b92915050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f8401126111d7576111d66111b6565b5b8235905067ffffffffffffffff8111156111f4576111f36111ba565b5b6020830191508360208202830111156112105761120f6111be565b5b9250929050565b5f806020838503121561122d5761122c611012565b5b5f83013567ffffffffffffffff81111561124a57611249611016565b5b611256858286016111c2565b92509250509250929050565b61126b816110ca565b82525050565b5f6020820190506112845f830184611262565b92915050565b61129381611130565b82525050565b5f6020820190506112ac5f83018461128a565b92915050565b5f819050919050565b5f6112d56112d06112cb846110ab565b6112b2565b6110ab565b9050919050565b5f6112e6826112bb565b9050919050565b5f6112f7826112dc565b9050919050565b611307816112ed565b82525050565b5f6020820190506113205f8301846112fe565b92915050565b5f81905092915050565b50565b5f61133e5f83611326565b915061134982611330565b5f82019050919050565b5f61135d82611333565b9150819050919050565b5f82825260208201905092915050565b7f50726573616c653a206661696c656420746f2077697468647261772066756e645f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f6113d1602183611367565b91506113dc82611377565b604082019050919050565b5f6020820190508181035f8301526113fe816113c5565b9050919050565b5f6040820190506114185f830185611262565b6114256020830184611083565b9392505050565b5f8151905061143a81611025565b92915050565b5f6020828403121561145557611454611012565b5b5f6114628482850161142c565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6114a28261107a565b91506114ad8361107a565b92508282026114bb8161107a565b915082820484148315176114d2576114d161146b565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f6115108261107a565b915061151b8361107a565b92508261152b5761152a6114d9565b5b828204905092915050565b7f50726573616c653a206661696c656420746f207472616e736665722066756e645f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f611590602183611367565b915061159b82611536565b604082019050919050565b5f6020820190508181035f8301526115bd81611584565b9050919050565b5f6115ce8261107a565b91506115d98361107a565b92508282019050808211156115f1576115f061146b565b5b92915050565b5f819050919050565b5f61161a611615611610846115f7565b6112b2565b61107a565b9050919050565b61162a81611600565b82525050565b5f60c0820190506116435f830189611262565b6116506020830188611083565b61165d6040830187611621565b61166a6060830186611621565b6116776080830185611262565b61168460a0830184611083565b979650505050505050565b6116988161107a565b81146116a2575f80fd5b50565b5f815190506116b38161168f565b92915050565b5f805f606084860312156116d0576116cf611012565b5b5f6116dd868287016116a5565b93505060206116ee868287016116a5565b92505060406116ff868287016116a5565b9150509250925092565b7f50726573616c653a2070726573616c6520686173206e6f742066696e616c697a5f8201527f6564000000000000000000000000000000000000000000000000000000000000602082015250565b5f611763602283611367565b915061176e82611709565b604082019050919050565b5f6020820190508181035f83015261179081611757565b9050919050565b7f50726573616c653a20796f752068617665206e6f2073686172657320746f20635f8201527f6c61696d00000000000000000000000000000000000000000000000000000000602082015250565b5f6117f1602483611367565b91506117fc82611797565b604082019050919050565b5f6020820190508181035f83015261181e816117e5565b9050919050565b7f50726573616c653a2077686974656c6973742070726573616c6520686173206e5f8201527f6f74207374617274656400000000000000000000000000000000000000000000602082015250565b5f61187f602a83611367565b915061188a82611825565b604082019050919050565b5f6020820190508181035f8301526118ac81611873565b9050919050565b5f8160601b9050919050565b5f6118c9826118b3565b9050919050565b5f6118da826118bf565b9050919050565b6118f26118ed826110ca565b6118d0565b82525050565b5f61190382846118e1565b60148201915081905092915050565b7f50726573616c653a20496e76616c69642070726f6f66000000000000000000005f82015250565b5f611946601683611367565b915061195182611912565b602082019050919050565b5f6020820190508181035f8301526119738161193a565b9050919050565b7f50726573616c653a207075626c69632070726573616c6520686173206e6f74205f8201527f7374617274656400000000000000000000000000000000000000000000000000602082015250565b5f6119d4602783611367565b91506119df8261197a565b604082019050919050565b5f6020820190508181035f830152611a01816119c8565b9050919050565b7f50726573616c653a2070726573616c652068617320656e6465640000000000005f82015250565b5f611a3c601a83611367565b9150611a4782611a08565b602082019050919050565b5f6020820190508181035f830152611a6981611a30565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f611aca602683611367565b9150611ad582611a70565b604082019050919050565b5f6020820190508181035f830152611af781611abe565b9050919050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f611b32602083611367565b9150611b3d82611afe565b602082019050919050565b5f6020820190508181035f830152611b5f81611b26565b9050919050565b7f50726573616c653a206d617820636f6e747269627574696f6e206578636565645f8201527f6564000000000000000000000000000000000000000000000000000000000000602082015250565b5f611bc0602283611367565b9150611bcb82611b66565b604082019050919050565b5f6020820190508181035f830152611bed81611bb4565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f611c2b8261107a565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611c5d57611c5c61146b565b5b60018201905091905056fea264697066735822122028cccba56ade4b869cce32fb246f334f1022601064449aaaadb9d4fab3a99ed264736f6c63430008140033

Deployed Bytecode

0x60806040526004361061013f575f3560e01c80637e6b7e23116100b5578063d84c6eb21161006e578063d84c6eb2146103af578063d859ed05146103d9578063e86bc6ea146103e3578063ea8c722f1461040d578063f2fde38b14610423578063f9428f381461044b5761013f565b80637e6b7e23146102b55780637ff3bf8e146102dd5780638da5cb5b146103075780639fc8e02214610331578063aa98e0c61461035b578063c7b5a48c146103855761013f565b80634783f0ef116101075780634783f0ef146102115780634bb278f3146102395780634e71d92d1461024357806351fb012d146102595780636117a34014610283578063715018a61461029f5761013f565b8063052d9e7e1461014357806308caa9101461016b5780633ccfd60b1461019557806342e94c90146101ab578063434b2f3c146101e7575b5f80fd5b34801561014e575f80fd5b506101696004803603810190610164919061104f565b610475565b005b348015610176575f80fd5b5061017f610499565b60405161018c9190611092565b60405180910390f35b3480156101a0575f80fd5b506101a96104b2565b005b3480156101b6575f80fd5b506101d160048036038101906101cc9190611105565b61056c565b6040516101de9190611092565b60405180910390f35b3480156101f2575f80fd5b506101fb610581565b6040516102089190611092565b60405180910390f35b34801561021c575f80fd5b5061023760048036038101906102329190611163565b61058d565b005b61024161059f565b005b34801561024e575f80fd5b50610257610829565b005b348015610264575f80fd5b5061026d6109f9565b60405161027a919061119d565b60405180910390f35b61029d60048036038101906102989190611217565b610a0b565b005b3480156102aa575f80fd5b506102b3610b25565b005b3480156102c0575f80fd5b506102db60048036038101906102d69190611105565b610b38565b005b3480156102e8575f80fd5b506102f1610b83565b6040516102fe9190611092565b60405180910390f35b348015610312575f80fd5b5061031b610b88565b6040516103289190611271565b60405180910390f35b34801561033c575f80fd5b50610345610baf565b6040516103529190611092565b60405180910390f35b348015610366575f80fd5b5061036f610bb5565b60405161037c9190611299565b60405180910390f35b348015610390575f80fd5b50610399610bbb565b6040516103a69190611092565b60405180910390f35b3480156103ba575f80fd5b506103c3610bcb565b6040516103d09190611092565b60405180910390f35b6103e1610bd1565b005b3480156103ee575f80fd5b506103f7610c66565b604051610404919061130d565b60405180910390f35b348015610418575f80fd5b50610421610c8b565b005b34801561042e575f80fd5b5061044960048036038101906104449190611105565b610ca8565b005b348015610456575f80fd5b5061045f610d2a565b60405161046c9190611092565b60405180910390f35b61047d610d3a565b8060055f6101000a81548160ff02191690831515021790555050565b5f80600354116104a957476104ad565b6001545b905090565b6104ba610d3a565b5f6104c3610b88565b73ffffffffffffffffffffffffffffffffffffffff16476040516104e690611353565b5f6040518083038185875af1925050503d805f8114610520576040519150601f19603f3d011682016040523d82523d5f602084013e610525565b606091505b5050905080610569576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610560906113e7565b60405180910390fd5b50565b6007602052805f5260405f205f915090505481565b670de0b6b3a764000081565b610595610d3a565b8060048190555050565b6105a7610d3a565b476001819055504360038190555060025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663095ea7b3737a250d5630b4cf539739df2c5dacb4c659f2488d7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6040518363ffffffff1660e01b8152600401610645929190611405565b6020604051808303815f875af1158015610661573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906106859190611440565b505f61068f610b88565b73ffffffffffffffffffffffffffffffffffffffff166103e860fa6001546106b79190611498565b6106c19190611506565b6040516106cd90611353565b5f6040518083038185875af1925050503d805f8114610707576040519150601f19603f3d011682016040523d82523d5f602084013e61070c565b606091505b5050905080610750576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610747906115a6565b60405180910390fd5b737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663f305d7194760025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166b06765c793fa10079d00000005f8033610708426107c191906115c4565b6040518863ffffffff1660e01b81526004016107e296959493929190611630565b60606040518083038185885af11580156107fe573d5f803e3d5ffd5b50505050506040513d601f19601f8201168201806040525081019061082391906116b9565b50505050565b5f6003541161086d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161086490611779565b60405180910390fd5b5f60075f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205490505f81116108f0576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108e790611807565b60405180910390fd5b60075f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f905560025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663a9059cbb33610976610499565b6b0b4f21d42f59c0d52c0000008561098e9190611498565b6109989190611506565b6040518363ffffffff1660e01b81526004016109b5929190611405565b6020604051808303815f875af11580156109d1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109f59190611440565b5050565b60055f9054906101000a900460ff1681565b60055f9054906101000a900460ff16610a59576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a5090611895565b60405180910390fd5b5f610a62610db8565b604051602001610a7291906118f8565b604051602081830303815290604052805190602001209050610ad78383808060200260200160405190810160405280939291908181526020018383602002808284375f81840152601f19601f8201169050808301925050505050505060045483610dbf565b610b16576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b0d9061195c565b60405180910390fd5b610b203334610dd5565b505050565b610b2d610d3a565b610b365f610ebf565b565b610b40610d3a565b8060025f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555050565b600a81565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b60065481565b60045481565b6b0b4f21d42f59c0d52c00000081565b60035481565b5f60065411610c15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c0c906119ea565b60405180910390fd5b600654431115610c5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c5190611a52565b60405180910390fd5b610c643334610dd5565b565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610c93610d3a565b600a43610ca091906115c4565b600681905550565b610cb0610d3a565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603610d1e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d1590611ae0565b60405180910390fd5b610d2781610ebf565b50565b6b06765c793fa10079d000000081565b610d42610db8565b73ffffffffffffffffffffffffffffffffffffffff16610d60610b88565b73ffffffffffffffffffffffffffffffffffffffff1614610db6576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610dad90611b48565b60405180910390fd5b565b5f33905090565b5f82610dcb8584610f80565b1490509392505050565b670de0b6b3a76400008160075f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054610e2791906115c4565b1115610e68576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e5f90611bd6565b60405180910390fd5b8060075f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f828254610eb491906115c4565b925050819055505050565b5f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff169050815f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f808290505f5b8451811015610fc957610fb482868381518110610fa757610fa6611bf4565b5b6020026020010151610fd4565b91508080610fc190611c21565b915050610f87565b508091505092915050565b5f818310610feb57610fe68284610ffe565b610ff6565b610ff58383610ffe565b5b905092915050565b5f825f528160205260405f20905092915050565b5f80fd5b5f80fd5b5f8115159050919050565b61102e8161101a565b8114611038575f80fd5b50565b5f8135905061104981611025565b92915050565b5f6020828403121561106457611063611012565b5b5f6110718482850161103b565b91505092915050565b5f819050919050565b61108c8161107a565b82525050565b5f6020820190506110a55f830184611083565b92915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6110d4826110ab565b9050919050565b6110e4816110ca565b81146110ee575f80fd5b50565b5f813590506110ff816110db565b92915050565b5f6020828403121561111a57611119611012565b5b5f611127848285016110f1565b91505092915050565b5f819050919050565b61114281611130565b811461114c575f80fd5b50565b5f8135905061115d81611139565b92915050565b5f6020828403121561117857611177611012565b5b5f6111858482850161114f565b91505092915050565b6111978161101a565b82525050565b5f6020820190506111b05f83018461118e565b92915050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f8401126111d7576111d66111b6565b5b8235905067ffffffffffffffff8111156111f4576111f36111ba565b5b6020830191508360208202830111156112105761120f6111be565b5b9250929050565b5f806020838503121561122d5761122c611012565b5b5f83013567ffffffffffffffff81111561124a57611249611016565b5b611256858286016111c2565b92509250509250929050565b61126b816110ca565b82525050565b5f6020820190506112845f830184611262565b92915050565b61129381611130565b82525050565b5f6020820190506112ac5f83018461128a565b92915050565b5f819050919050565b5f6112d56112d06112cb846110ab565b6112b2565b6110ab565b9050919050565b5f6112e6826112bb565b9050919050565b5f6112f7826112dc565b9050919050565b611307816112ed565b82525050565b5f6020820190506113205f8301846112fe565b92915050565b5f81905092915050565b50565b5f61133e5f83611326565b915061134982611330565b5f82019050919050565b5f61135d82611333565b9150819050919050565b5f82825260208201905092915050565b7f50726573616c653a206661696c656420746f2077697468647261772066756e645f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f6113d1602183611367565b91506113dc82611377565b604082019050919050565b5f6020820190508181035f8301526113fe816113c5565b9050919050565b5f6040820190506114185f830185611262565b6114256020830184611083565b9392505050565b5f8151905061143a81611025565b92915050565b5f6020828403121561145557611454611012565b5b5f6114628482850161142c565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6114a28261107a565b91506114ad8361107a565b92508282026114bb8161107a565b915082820484148315176114d2576114d161146b565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f6115108261107a565b915061151b8361107a565b92508261152b5761152a6114d9565b5b828204905092915050565b7f50726573616c653a206661696c656420746f207472616e736665722066756e645f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f611590602183611367565b915061159b82611536565b604082019050919050565b5f6020820190508181035f8301526115bd81611584565b9050919050565b5f6115ce8261107a565b91506115d98361107a565b92508282019050808211156115f1576115f061146b565b5b92915050565b5f819050919050565b5f61161a611615611610846115f7565b6112b2565b61107a565b9050919050565b61162a81611600565b82525050565b5f60c0820190506116435f830189611262565b6116506020830188611083565b61165d6040830187611621565b61166a6060830186611621565b6116776080830185611262565b61168460a0830184611083565b979650505050505050565b6116988161107a565b81146116a2575f80fd5b50565b5f815190506116b38161168f565b92915050565b5f805f606084860312156116d0576116cf611012565b5b5f6116dd868287016116a5565b93505060206116ee868287016116a5565b92505060406116ff868287016116a5565b9150509250925092565b7f50726573616c653a2070726573616c6520686173206e6f742066696e616c697a5f8201527f6564000000000000000000000000000000000000000000000000000000000000602082015250565b5f611763602283611367565b915061176e82611709565b604082019050919050565b5f6020820190508181035f83015261179081611757565b9050919050565b7f50726573616c653a20796f752068617665206e6f2073686172657320746f20635f8201527f6c61696d00000000000000000000000000000000000000000000000000000000602082015250565b5f6117f1602483611367565b91506117fc82611797565b604082019050919050565b5f6020820190508181035f83015261181e816117e5565b9050919050565b7f50726573616c653a2077686974656c6973742070726573616c6520686173206e5f8201527f6f74207374617274656400000000000000000000000000000000000000000000602082015250565b5f61187f602a83611367565b915061188a82611825565b604082019050919050565b5f6020820190508181035f8301526118ac81611873565b9050919050565b5f8160601b9050919050565b5f6118c9826118b3565b9050919050565b5f6118da826118bf565b9050919050565b6118f26118ed826110ca565b6118d0565b82525050565b5f61190382846118e1565b60148201915081905092915050565b7f50726573616c653a20496e76616c69642070726f6f66000000000000000000005f82015250565b5f611946601683611367565b915061195182611912565b602082019050919050565b5f6020820190508181035f8301526119738161193a565b9050919050565b7f50726573616c653a207075626c69632070726573616c6520686173206e6f74205f8201527f7374617274656400000000000000000000000000000000000000000000000000602082015250565b5f6119d4602783611367565b91506119df8261197a565b604082019050919050565b5f6020820190508181035f830152611a01816119c8565b9050919050565b7f50726573616c653a2070726573616c652068617320656e6465640000000000005f82015250565b5f611a3c601a83611367565b9150611a4782611a08565b602082019050919050565b5f6020820190508181035f830152611a6981611a30565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f611aca602683611367565b9150611ad582611a70565b604082019050919050565b5f6020820190508181035f830152611af781611abe565b9050919050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f611b32602083611367565b9150611b3d82611afe565b602082019050919050565b5f6020820190508181035f830152611b5f81611b26565b9050919050565b7f50726573616c653a206d617820636f6e747269627574696f6e206578636565645f8201527f6564000000000000000000000000000000000000000000000000000000000000602082015250565b5f611bc0602283611367565b9150611bcb82611b66565b604082019050919050565b5f6020820190508181035f830152611bed81611bb4565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f611c2b8261107a565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611c5d57611c5c61146b565b5b60018201905091905056fea264697066735822122028cccba56ade4b869cce32fb246f334f1022601064449aaaadb9d4fab3a99ed264736f6c63430008140033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.