ETH Price: $3,153.08 (+0.45%)
Gas: 0.03 Gwei
 

Overview

ETH Balance

0 ETH

Eth Value

$0.00

More Info

Private Name Tags

TokenTracker

Multichain Info

1 address found via
Transaction Hash
Method
Block
From
To
Mint240776812025-12-23 20:24:3512 days ago1766521475IN
Aztec: Access Pass Soulbound
0 ETH0.000559082.03230747
Mint240742692025-12-23 8:58:1112 days ago1766480291IN
Aztec: Access Pass Soulbound
0 ETH0.000560112.03604037
Mint240632872025-12-21 20:10:2314 days ago1766347823IN
Aztec: Access Pass Soulbound
0 ETH0.000144830.52646433
Mint240471512025-12-19 14:10:4716 days ago1766153447IN
Aztec: Access Pass Soulbound
0 ETH0.000129230.46972504
Mint240442452025-12-19 4:25:1117 days ago1766118311IN
Aztec: Access Pass Soulbound
0 ETH0.00000530.11984519
Mint240442262025-12-19 4:21:2317 days ago1766118083IN
Aztec: Access Pass Soulbound
0 ETH0.000001420.03206974
Mint240442252025-12-19 4:21:1117 days ago1766118071IN
Aztec: Access Pass Soulbound
0 ETH0.000032620.11857538
Mint240401832025-12-18 14:48:3517 days ago1766069315IN
Aztec: Access Pass Soulbound
0 ETH0.000599652.17966762
Mint240348742025-12-17 20:59:2318 days ago1766005163IN
Aztec: Access Pass Soulbound
0 ETH0.000146710.53327753
Mint240210872025-12-15 22:48:2320 days ago1765838903IN
Aztec: Access Pass Soulbound
0 ETH0.000010830.03939119
Mint240184232025-12-15 13:52:4720 days ago1765806767IN
Aztec: Access Pass Soulbound
0 ETH0.000148950.54140913
Mint239913712025-12-11 18:57:4724 days ago1765479467IN
Aztec: Access Pass Soulbound
0 ETH0.000034210.12438465
Mint239840472025-12-10 18:20:3525 days ago1765390835IN
Aztec: Access Pass Soulbound
0 ETH0.000205330.74639714
Mint239793912025-12-10 2:34:5926 days ago1765334099IN
Aztec: Access Pass Soulbound
0 ETH0.000179460.69557937
Mint239786942025-12-10 0:12:5926 days ago1765325579IN
Aztec: Access Pass Soulbound
0 ETH0.000603192.19242986
Mint239773772025-12-09 19:44:3526 days ago1765309475IN
Aztec: Access Pass Soulbound
0 ETH0.000088150.32042219
Mint239762622025-12-09 15:59:2326 days ago1765295963IN
Aztec: Access Pass Soulbound
0 ETH0.000204540.74345065
Mint239738492025-12-09 7:52:2326 days ago1765266743IN
Aztec: Access Pass Soulbound
0 ETH0.000622072.26116138
Mint239716952025-12-09 0:37:3527 days ago1765240655IN
Aztec: Access Pass Soulbound
0 ETH0.000100832.27674039
Mint239716942025-12-09 0:37:2327 days ago1765240643IN
Aztec: Access Pass Soulbound
0 ETH0.00009942.24599942
Mint239716932025-12-09 0:37:1127 days ago1765240631IN
Aztec: Access Pass Soulbound
0 ETH0.000100712.27393721
Mint239716922025-12-09 0:36:5927 days ago1765240619IN
Aztec: Access Pass Soulbound
0 ETH0.000102172.30694479
Mint239716912025-12-09 0:36:4727 days ago1765240607IN
Aztec: Access Pass Soulbound
0 ETH0.000627112.27939627
Mint239701142025-12-08 19:17:1127 days ago1765221431IN
Aztec: Access Pass Soulbound
0 ETH0.000639452.32422877
Mint239694972025-12-08 17:12:5927 days ago1765213979IN
Aztec: Access Pass Soulbound
0 ETH0.00011080.40274748
View all transactions

Latest 25 internal transactions (View All)

Advanced mode:
Parent Transaction Hash Method Block
From
To
Verify240776812025-12-23 20:24:3512 days ago1766521475
Aztec: Access Pass Soulbound
0 ETH
Verify240776812025-12-23 20:24:3512 days ago1766521475
Aztec: Access Pass Soulbound
0 ETH
Verify240742692025-12-23 8:58:1112 days ago1766480291
Aztec: Access Pass Soulbound
0 ETH
Verify240742692025-12-23 8:58:1112 days ago1766480291
Aztec: Access Pass Soulbound
0 ETH
Verify240632872025-12-21 20:10:2314 days ago1766347823
Aztec: Access Pass Soulbound
0 ETH
Verify240632872025-12-21 20:10:2314 days ago1766347823
Aztec: Access Pass Soulbound
0 ETH
Verify240471512025-12-19 14:10:4716 days ago1766153447
Aztec: Access Pass Soulbound
0 ETH
Verify240471512025-12-19 14:10:4716 days ago1766153447
Aztec: Access Pass Soulbound
0 ETH
Verify240442252025-12-19 4:21:1117 days ago1766118071
Aztec: Access Pass Soulbound
0 ETH
Verify240442252025-12-19 4:21:1117 days ago1766118071
Aztec: Access Pass Soulbound
0 ETH
Verify240401832025-12-18 14:48:3517 days ago1766069315
Aztec: Access Pass Soulbound
0 ETH
Verify240401832025-12-18 14:48:3517 days ago1766069315
Aztec: Access Pass Soulbound
0 ETH
Verify240348742025-12-17 20:59:2318 days ago1766005163
Aztec: Access Pass Soulbound
0 ETH
Verify240348742025-12-17 20:59:2318 days ago1766005163
Aztec: Access Pass Soulbound
0 ETH
Verify240210872025-12-15 22:48:2320 days ago1765838903
Aztec: Access Pass Soulbound
0 ETH
Verify240210872025-12-15 22:48:2320 days ago1765838903
Aztec: Access Pass Soulbound
0 ETH
Verify240184232025-12-15 13:52:4720 days ago1765806767
Aztec: Access Pass Soulbound
0 ETH
Verify240184232025-12-15 13:52:4720 days ago1765806767
Aztec: Access Pass Soulbound
0 ETH
Verify239913712025-12-11 18:57:4724 days ago1765479467
Aztec: Access Pass Soulbound
0 ETH
Verify239913712025-12-11 18:57:4724 days ago1765479467
Aztec: Access Pass Soulbound
0 ETH
Verify239840472025-12-10 18:20:3525 days ago1765390835
Aztec: Access Pass Soulbound
0 ETH
Verify239840472025-12-10 18:20:3525 days ago1765390835
Aztec: Access Pass Soulbound
0 ETH
Verify239793912025-12-10 2:34:5926 days ago1765334099
Aztec: Access Pass Soulbound
0 ETH
Verify239793912025-12-10 2:34:5926 days ago1765334099
Aztec: Access Pass Soulbound
0 ETH
Verify239786942025-12-10 0:12:5926 days ago1765325579
Aztec: Access Pass Soulbound
0 ETH
View All Internal Transactions
Loading...
Loading
Cross-Chain Transactions

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
IgnitionParticipantSoulbound

Compiler Version
v0.8.30+commit.73712a01

Optimization Enabled:
Yes with 200 runs

Other Settings:
prague EvmVersion
// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.27;

import {Ownable} from "@oz/access/Ownable.sol";
import {ERC1155, IERC1155} from "@oz/token/ERC1155/ERC1155.sol";
import {MerkleProof} from "@oz/utils/cryptography/MerkleProof.sol";
import {ReentrancyGuard} from "@oz/utils/ReentrancyGuard.sol";
import {IIgnitionParticipantSoulbound} from "./IIgnitionParticipantSoulbound.sol";
import {IWhitelistProvider} from "./providers/IWhitelistProvider.sol";

/**
 * @title IgnitionParticipantSoulbound
 * @notice A soulbound ERC1155 token used for whitelist access control
 * @dev Token ID 0: For Genesis Sequencer users
 *      Token ID 1: For Contributor users
 *      Token ID 2: For general de-risked users
 *      Tokens cannot be transferred once minted, making them "soulbound" to the recipient
 */
contract IgnitionParticipantSoulbound is IIgnitionParticipantSoulbound, ERC1155, Ownable, ReentrancyGuard {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       State Variables                      */
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/

    /// Merkle root for privileged whitelists
    /// @dev Gating for Token ID 0
    bytes32 public genesisSequencerMerkleRoot;
    /// @dev Gating for Token ID 1
    bytes32 public contributorMerkleRoot;

    /// Whitelist providers
    /// @dev Whitelist providers for general whitelist
    mapping(address provider => bool active) public identityProviders;

    /// @dev Provider for address screening
    address public addressScreeningProvider;

    /// @dev Track if an address has minted (can only mint once)
    mapping(address addr => bool hasMinted) public hasMinted;

    /// @dev Track the grid token ID for each address
    mapping(address soulboundRecipient => uint256 gridTileId) public gridTileId;
    /// @dev Track if a grid tile ID has been assigned
    mapping(uint256 gridTileId => bool isAssigned) public isGridTileIdAssigned;

    /// @dev Address of the token sale contract
    address public tokenSaleAddress;

    constructor(
        address _tokenSaleAddress,
        address[] memory _identityProviders,
        bytes32 _genesisSequencerMerkleRoot,
        bytes32 _contributorMerkleRoot,
        address _addressScreeningProvider,
        string memory _uri
    ) ERC1155(_uri) Ownable(msg.sender) {
        tokenSaleAddress = _tokenSaleAddress;
        // Set the initial whitelist providers
        for (uint256 i = 0; i < _identityProviders.length; i++) {
            identityProviders[_identityProviders[i]] = true;
            emit IdentityProviderSet(_identityProviders[i], true);
        }

        addressScreeningProvider = _addressScreeningProvider;
        emit AddressScreeningProviderSet(_addressScreeningProvider);

        genesisSequencerMerkleRoot = _genesisSequencerMerkleRoot;
        emit GenesisSequencerMerkleRootUpdated(_genesisSequencerMerkleRoot);

        contributorMerkleRoot = _contributorMerkleRoot;
        emit ContributorMerkleRootUpdated(_contributorMerkleRoot);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       Mint Functions                        */
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/

    /**
     * @notice Mint an IgnitionParticipant token to an address
     * @param _tokenId The token ID to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
     * @param _soulboundRecipient The address of the soulbound recipient
     * @param _merkleProof Merkle proof for token ID 0 or 1, can be empty for minting token ID 2
     * @param _identityProvider The contract address of the identity provider - these are allowlisted by the admin
     * @param _identityData Identity data - this is the data that the identity provider will verify
     * @param _soulboundRecipientScreeningData Screening data for the soulbound recipient - this is the data that the address screening provider will verify
     * @dev Only one token per address is allowed
     */
    function mint(
        TokenId _tokenId,
        address _soulboundRecipient,
        bytes32[] calldata _merkleProof,
        address _identityProvider,
        bytes calldata _identityData,
        bytes calldata _soulboundRecipientScreeningData,
        uint256 _gridTileId
    ) external override(IIgnitionParticipantSoulbound) nonReentrant {
        _internalMint(
            msg.sender,
            _tokenId,
            _soulboundRecipient,
            _merkleProof,
            _identityProvider,
            _identityData,
            _soulboundRecipientScreeningData,
            _gridTileId
        );
    }

    /**
     * @notice Mint an IgnitionParticipant token to an address
     * @param _operator The address of the operator
     * @param _soulboundRecipient The address of the soulbound recipient
     * @param _merkleProof Merkle proof for token ID 0 or 1, can be empty for minting token ID 2
     * @param _identityProvider The contract address of the identity provider - these are allowlisted by the admin
     * @param _identityData Identity data - this is the data that the identity provider will verify
     * @param _soulboundRecipientScreeningData Screening data for the soulbound recipient - this is the data that the address screening provider will verify
     * @param _gridTileId The grid tile ID that the soulbound recipient is associated with
     * @dev Only one token per address is allowed
     */
    function mintFromSale(
        address _operator,
        address _soulboundRecipient,
        bytes32[] calldata _merkleProof,
        address _identityProvider,
        bytes calldata _identityData,
        bytes calldata _soulboundRecipientScreeningData,
        uint256 _gridTileId
    ) external override(IIgnitionParticipantSoulbound) nonReentrant {
        // Check that the caller is the token sale contract
        require(msg.sender == tokenSaleAddress, IgnitionParticipantSoulbound__CallerIsNotTokenSale());

        // Call mint, allowing the token sale contract to set the operator as the msg.sender of the sale
        // The sale is limited to GENESIS_SEQUENCER (token ID 0), so we can hardcode it here
        _internalMint(
            _operator,
            IIgnitionParticipantSoulbound.TokenId.GENESIS_SEQUENCER,
            _soulboundRecipient,
            _merkleProof,
            _identityProvider,
            _identityData,
            _soulboundRecipientScreeningData,
            _gridTileId
        );
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       Admin Functions                       */
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/

    /**
     * @notice Set the address of the token sale contract
     * @param _tokenSaleAddress The address of the token sale contract
     *
     * @dev onlyOwner
     */
    function setTokenSaleAddress(address _tokenSaleAddress) external override(IIgnitionParticipantSoulbound) onlyOwner {
        tokenSaleAddress = _tokenSaleAddress;
        emit TokenSaleAddressSet(_tokenSaleAddress);
    }

    /**
     * @notice Mint an IgnitionParticipant token to an address
     * @param _to The address to mint the token to
     * @param _tokenId The token ID to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
     * @param _gridTileId The grid tile ID to mint
     *
     * @dev onlyOwner
     */
    function adminMint(address _to, TokenId _tokenId, uint256 _gridTileId)
        external
        override(IIgnitionParticipantSoulbound)
        onlyOwner
        nonReentrant
    {
        _internalAdminMint(_to, _tokenId, _gridTileId);
    }

    /**
     * @notice Batch mint IgnitionParticipant tokens to an array of addresses
     * @param _to The addresses to mint the tokens to
     * @param _tokenId The token IDs to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
     * @param _gridTileId The grid tile IDs to mint
     *
     * @dev onlyOwner
     */
    function adminBatchMint(address[] calldata _to, TokenId[] calldata _tokenId, uint256[] calldata _gridTileId)
        external
        override(IIgnitionParticipantSoulbound)
        onlyOwner
        nonReentrant
    {
        require(_to.length == _tokenId.length, IgnitionParticipantSoulbound__InvalidInputLength());
        require(_to.length == _gridTileId.length, IgnitionParticipantSoulbound__InvalidInputLength());

        for (uint256 i = 0; i < _to.length; i++) {
            _internalAdminMint(_to[i], _tokenId[i], _gridTileId[i]);
        }
    }

    /**
     * @notice Set the genesis sequencer merkle root
     * @param _genesisSequencerMerkleRoot The new merkle root
     *
     * @dev onlyOwner
     */
    function setGenesisSequencerMerkleRoot(bytes32 _genesisSequencerMerkleRoot)
        external
        override(IIgnitionParticipantSoulbound)
        onlyOwner
    {
        genesisSequencerMerkleRoot = _genesisSequencerMerkleRoot;
        emit GenesisSequencerMerkleRootUpdated(_genesisSequencerMerkleRoot);
    }

    /**
     * @notice Set the contributor merkle root
     * @param _contributorMerkleRoot The new merkle root
     *
     * @dev onlyOwner
     */
    function setContributorMerkleRoot(bytes32 _contributorMerkleRoot)
        external
        override(IIgnitionParticipantSoulbound)
        onlyOwner
    {
        contributorMerkleRoot = _contributorMerkleRoot;
        emit ContributorMerkleRootUpdated(_contributorMerkleRoot);
    }

    /**
     * @notice Set the whitelist provider
     * @param _provider The address of the whitelist provider
     * @param _active Whether the provider is active
     *
     * @dev onlyOwner
     */
    function setIdentityProvider(address _provider, bool _active)
        external
        override(IIgnitionParticipantSoulbound)
        onlyOwner
    {
        identityProviders[_provider] = _active;
        emit IdentityProviderSet(_provider, _active);
    }

    /**
     * @notice Set the screening provider
     * @param _provider The address of the screening provider
     *
     * @dev onlyOwner
     */
    function setAddressScreeningProvider(address _provider) external override(IIgnitionParticipantSoulbound) onlyOwner {
        addressScreeningProvider = _provider;
        emit AddressScreeningProviderSet(_provider);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       View Functions                      */
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/

    /**
     * @notice Check if an address has the merkle whitelist token
     * @param _addr Address to check
     * @return bool True if the address owns token ID 0
     */
    function hasGenesisSequencerToken(address _addr)
        external
        view
        override(IIgnitionParticipantSoulbound)
        returns (bool)
    {
        return balanceOf(_addr, uint256(TokenId.GENESIS_SEQUENCER)) > 0;
    }

    /**
     * @notice Check if an address has the contributor whitelist token
     * @param _addr Address to check
     * @return bool True if the address owns token ID 1
     */
    function hasContributorToken(address _addr) external view override(IIgnitionParticipantSoulbound) returns (bool) {
        return balanceOf(_addr, uint256(TokenId.CONTRIBUTOR)) > 0;
    }

    /**
     * @notice Check if an address has the general token
     * @param _addr Address to check
     * @return bool True if the address owns token ID 2
     */
    function hasGeneralToken(address _addr) external view override(IIgnitionParticipantSoulbound) returns (bool) {
        return balanceOf(_addr, uint256(TokenId.GENERAL)) > 0;
    }

    /**
     * Check if an address has the genesis sequencer or contributor token
     * @param _addr Address to check
     * @return bool True if the address owns token ID 0 or 1
     */
    function hasGenesisSequencerTokenOrContributorToken(address _addr)
        external
        view
        override(IIgnitionParticipantSoulbound)
        returns (bool)
    {
        return balanceOf(_addr, uint256(TokenId.GENESIS_SEQUENCER)) > 0
            || balanceOf(_addr, uint256(TokenId.CONTRIBUTOR)) > 0;
    }

    /**
     * @notice Check if an address has any token
     * @param _addr Address to check
     * @return bool True if the address owns any token ID (0,1, or 2)
     */
    function hasAnyToken(address _addr) external view override(IIgnitionParticipantSoulbound) returns (bool) {
        return balanceOf(_addr, uint256(TokenId.GENESIS_SEQUENCER)) > 0
            || balanceOf(_addr, uint256(TokenId.CONTRIBUTOR)) > 0 || balanceOf(_addr, uint256(TokenId.GENERAL)) > 0;
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*            ERC1155 Soulbound Override Functions            */
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/

    /**
     * @dev See {ERC1155-setApprovalForAll}. Overridden to prevent approvals.
     */
    function setApprovalForAll(address, bool) public pure override(IERC1155, ERC1155) {
        revert IgnitionParticipantSoulbound__TokenIsSoulbound();
    }

    /**
     * @dev See {ERC1155-_update}. Overridden to prevent transfers (soulbound).
     */
    function _update(address _from, address _to, uint256[] memory _ids, uint256[] memory _values)
        internal
        override(ERC1155)
    {
        // Allow minting (_from == address(0))
        // Prevent transfers (_from != address(0))
        if (_from != address(0)) {
            revert IgnitionParticipantSoulbound__TokenIsSoulbound();
        }

        super._update(_from, _to, _ids, _values);
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     Internal Functions                     */
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/

    /**
     * @notice Internal function to mint a token to an address
     * @param _identityAddress The address of the identity - checked to be in merkle tree's + identity provider checks
     * @param _tokenId The token ID to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
     * @param _soulboundRecipient The address of the soulbound recipient
     * @param _merkleProof Merkle proof for token ID 0 or 1, can be empty for minting token ID 2
     * @param _identityProvider The contract address of the identity provider - these are allowlisted by the admin
     * @param _identityData Identity data - this is the data that the identity provider will verify
     * @param _soulboundRecipientScreeningData Screening data for the soulbound recipient - this is the data that the address screening provider will verify
     * @param _gridTileId The grid token ID to mint
     */
    function _internalMint(
        address _identityAddress,
        TokenId _tokenId,
        address _soulboundRecipient,
        bytes32[] calldata _merkleProof,
        address _identityProvider,
        bytes calldata _identityData,
        bytes calldata _soulboundRecipientScreeningData,
        uint256 _gridTileId
    ) internal {
        // Assert that the user has not minted yet
        require(!hasMinted[_identityAddress], IgnitionParticipantSoulbound__AlreadyMinted());
        hasMinted[_identityAddress] = true;

        require(_gridTileId != 0, IgnitionParticipantSoulbound__GridTileIdCannotBeZero());

        // Assert that the grid token ID has not already been assigned
        require(!isGridTileIdAssigned[_gridTileId], IgnitionParticipantSoulbound__GridTileAlreadyAssigned());
        isGridTileIdAssigned[_gridTileId] = true;

        gridTileId[_soulboundRecipient] = _gridTileId;

        // Verify identity provider is whitelisted
        require(identityProviders[_identityProvider], IgnitionParticipantSoulbound__InvalidAuth(_identityProvider));

        if (_tokenId == TokenId.GENESIS_SEQUENCER) {
            // Verify merkle proof for genesis sequencer whitelist
            require(genesisSequencerMerkleRoot != bytes32(0), IgnitionParticipantSoulbound__NoMerkleRootSet());

            bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(_identityAddress))));
            require(
                MerkleProof.verify(_merkleProof, genesisSequencerMerkleRoot, leaf),
                IgnitionParticipantSoulbound__MerkleProofInvalid()
            );
        } else if (_tokenId == TokenId.CONTRIBUTOR) {
            // Verify merkle proof for contributor whitelist
            require(contributorMerkleRoot != bytes32(0), IgnitionParticipantSoulbound__NoMerkleRootSet());

            bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(_identityAddress))));
            require(
                MerkleProof.verify(_merkleProof, contributorMerkleRoot, leaf),
                IgnitionParticipantSoulbound__MerkleProofInvalid()
            );
        }
        // Further steps required for all cases

        // Ext call
        // Perform sanctions check on the identity address
        require(
            IWhitelistProvider(_identityProvider).verify(_identityAddress, _identityData),
            IgnitionParticipantSoulbound__InvalidAuth(_identityProvider)
        );

        // Ext call
        // Perform sanctions check on the _soulboundRecipient address
        require(
            IWhitelistProvider(addressScreeningProvider).verify(_soulboundRecipient, _soulboundRecipientScreeningData),
            IgnitionParticipantSoulbound__InvalidAuth(addressScreeningProvider)
        );

        // Ext call - with possible reentrancy on acceptance check - nonReentrant added to prevent
        _mint(_soulboundRecipient, uint256(_tokenId), 1, "");

        emit IgnitionParticipantSoulboundMinted(_soulboundRecipient, _identityAddress, _tokenId, _gridTileId);
    }

    /**
     * @notice Internal function to mint a token to an address
     * @param _to The address to mint the token to
     * @param _tokenId The token ID to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
     * @param _gridTileId The grid tile ID to mint
     */
    function _internalAdminMint(address _to, TokenId _tokenId, uint256 _gridTileId) internal {
        // The user must not have minted yet
        require(!hasMinted[_to], IgnitionParticipantSoulbound__AlreadyMinted());
        hasMinted[_to] = true;
        gridTileId[_to] = _gridTileId;

        require(!isGridTileIdAssigned[_gridTileId], IgnitionParticipantSoulbound__GridTileAlreadyAssigned());
        isGridTileIdAssigned[_gridTileId] = true;

        _mint(_to, uint256(_tokenId), 1, "");

        emit IgnitionParticipantSoulboundMinted(_to, msg.sender, _tokenId, _gridTileId);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "./IERC1155.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "./utils/ERC1155Utils.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the basic standard multi-token.
 * See https://eips.ethereum.org/EIPS/eip-1155
 * Originally based on code by Enjin: https://github.com/enjin/erc-1155
 */
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
    using Arrays for uint256[];
    using Arrays for address[];

    mapping(uint256 id => mapping(address account => uint256)) private _balances;

    mapping(address account => mapping(address operator => bool)) private _operatorApprovals;

    // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
    string private _uri;

    /**
     * @dev See {_setURI}.
     */
    constructor(string memory uri_) {
        _setURI(uri_);
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC1155).interfaceId ||
            interfaceId == type(IERC1155MetadataURI).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC1155MetadataURI-uri}.
     *
     * This implementation returns the same URI for *all* token types. It relies
     * on the token type ID substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * Clients calling this function must replace the `\{id\}` substring with the
     * actual token type ID.
     */
    function uri(uint256 /* id */) public view virtual returns (string memory) {
        return _uri;
    }

    /**
     * @dev See {IERC1155-balanceOf}.
     */
    function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
        return _balances[id][account];
    }

    /**
     * @dev See {IERC1155-balanceOfBatch}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] memory accounts,
        uint256[] memory ids
    ) public view virtual returns (uint256[] memory) {
        if (accounts.length != ids.length) {
            revert ERC1155InvalidArrayLength(ids.length, accounts.length);
        }

        uint256[] memory batchBalances = new uint256[](accounts.length);

        for (uint256 i = 0; i < accounts.length; ++i) {
            batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
        }

        return batchBalances;
    }

    /**
     * @dev See {IERC1155-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC1155-isApprovedForAll}.
     */
    function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
        return _operatorApprovals[account][operator];
    }

    /**
     * @dev See {IERC1155-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeTransferFrom(from, to, id, value, data);
    }

    /**
     * @dev See {IERC1155-safeBatchTransferFrom}.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeBatchTransferFrom(from, to, ids, values, data);
    }

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
     * (or `to`) is the zero address.
     *
     * Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
     *   or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
     * - `ids` and `values` must have the same length.
     *
     * NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
     */
    function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
        if (ids.length != values.length) {
            revert ERC1155InvalidArrayLength(ids.length, values.length);
        }

        address operator = _msgSender();

        for (uint256 i = 0; i < ids.length; ++i) {
            uint256 id = ids.unsafeMemoryAccess(i);
            uint256 value = values.unsafeMemoryAccess(i);

            if (from != address(0)) {
                uint256 fromBalance = _balances[id][from];
                if (fromBalance < value) {
                    revert ERC1155InsufficientBalance(from, fromBalance, value, id);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance
                    _balances[id][from] = fromBalance - value;
                }
            }

            if (to != address(0)) {
                _balances[id][to] += value;
            }
        }

        if (ids.length == 1) {
            uint256 id = ids.unsafeMemoryAccess(0);
            uint256 value = values.unsafeMemoryAccess(0);
            emit TransferSingle(operator, from, to, id, value);
        } else {
            emit TransferBatch(operator, from, to, ids, values);
        }
    }

    /**
     * @dev Version of {_update} that performs the token acceptance check by calling
     * {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
     * contains code (eg. is a smart contract at the moment of execution).
     *
     * IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
     * update to the contract state after this function would break the check-effect-interaction pattern. Consider
     * overriding {_update} instead.
     */
    function _updateWithAcceptanceCheck(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal virtual {
        _update(from, to, ids, values);
        if (to != address(0)) {
            address operator = _msgSender();
            if (ids.length == 1) {
                uint256 id = ids.unsafeMemoryAccess(0);
                uint256 value = values.unsafeMemoryAccess(0);
                ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
            } else {
                ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
            }
        }
    }

    /**
     * @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     * - `ids` and `values` must have the same length.
     */
    function _safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev Sets a new URI for all token types, by relying on the token type ID
     * substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * By this mechanism, any occurrence of the `\{id\}` substring in either the
     * URI or any of the values in the JSON file at said URI will be replaced by
     * clients with the token type ID.
     *
     * For example, the `https://token-cdn-domain/\{id\}.json` URI would be
     * interpreted by clients as
     * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
     * for token type ID 0x4cce0.
     *
     * See {uri}.
     *
     * Because these URIs cannot be meaningfully represented by the {URI} event,
     * this function emits no events.
     */
    function _setURI(string memory newuri) internal virtual {
        _uri = newuri;
    }

    /**
     * @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev Destroys a `value` amount of tokens of type `id` from `from`
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     */
    function _burn(address from, uint256 id, uint256 value) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     * - `ids` and `values` must have the same length.
     */
    function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC1155InvalidOperator(address(0));
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Creates an array in memory with only one value for each of the elements provided.
     */
    function _asSingletonArrays(
        uint256 element1,
        uint256 element2
    ) private pure returns (uint256[] memory array1, uint256[] memory array2) {
        assembly ("memory-safe") {
            // Load the free memory pointer
            array1 := mload(0x40)
            // Set array length to 1
            mstore(array1, 1)
            // Store the single element at the next word after the length (where content starts)
            mstore(add(array1, 0x20), element1)

            // Repeat for next array locating it right after the first array
            array2 := add(array1, 0x40)
            mstore(array2, 1)
            mstore(add(array2, 0x20), element2)

            // Update the free memory pointer by pointing after the second array
            mstore(0x40, add(array2, 0x40))
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.

pragma solidity ^0.8.20;

import {Hashes} from "./Hashes.sol";

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the Merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates Merkle trees that are safe
 * against this attack out of the box.
 *
 * IMPORTANT: Consider memory side-effects when using custom hashing functions
 * that access memory in an unsafe way.
 *
 * NOTE: This library supports proof verification for merkle trees built using
 * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
 * leaf inclusion in trees built using non-commutative hashing functions requires
 * additional logic that is not supported by this library.
 */
library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with the default hashing function.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProof(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in memory with a custom hashing function.
     */
    function processProof(
        bytes32[] memory proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with the default hashing function.
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processProofCalldata(proof, leaf, hasher) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leaves & pre-images are assumed to be sorted.
     *
     * This version handles proofs in calldata with a custom hashing function.
     */
    function processProofCalldata(
        bytes32[] calldata proof,
        bytes32 leaf,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = hasher(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProof}.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProof(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in memory with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with the default hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = Hashes.commutativeKeccak256(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
     * The `leaves` must be validated independently. See {processMultiProofCalldata}.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * This version handles multiproofs in calldata with a custom hashing function.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
     * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
     * validating the leaves elsewhere.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves,
        function(bytes32, bytes32) view returns (bytes32) hasher
    ) internal view returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofFlagsLen = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proof.length != proofFlagsLen + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](proofFlagsLen);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < proofFlagsLen; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = hasher(a, b);
        }

        if (proofFlagsLen > 0) {
            if (proofPos != proof.length) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[proofFlagsLen - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
 * consider using {ReentrancyGuardTransient} instead.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.27;

import {IERC1155} from "@oz/token/ERC1155/IERC1155.sol";

interface IIgnitionParticipantSoulbound is IERC1155 {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        Structs                             */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    enum TokenId {
        GENESIS_SEQUENCER,
        CONTRIBUTOR,
        GENERAL
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        Events                              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    event IgnitionParticipantSoulboundMinted(
        address indexed _beneficiary, address indexed _operator, TokenId indexed _tokenId, uint256 _gridTileId
    );
    event GenesisSequencerMerkleRootUpdated(bytes32 newRoot);
    event ContributorMerkleRootUpdated(bytes32 newRoot);
    event IdentityProviderSet(address provider, bool active);
    event AddressScreeningProviderSet(address provider);
    event TokenSaleAddressSet(address tokenSaleAddress);

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        Errors                              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    error IgnitionParticipantSoulbound__CallerIsNotTokenSale();
    error IgnitionParticipantSoulbound__TokenIsSoulbound();
    error IgnitionParticipantSoulbound__AlreadyMinted();
    error IgnitionParticipantSoulbound__GridTileIdCannotBeZero();
    error IgnitionParticipantSoulbound__InvalidAuth(address _authProvider);
    error IgnitionParticipantSoulbound__MerkleProofInvalid();
    error IgnitionParticipantSoulbound__NoMerkleRootSet();
    error IgnitionParticipantSoulbound__InvalidInputLength();
    error IgnitionParticipantSoulbound__GridTileAlreadyAssigned();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       Functions                            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    function mint(
        TokenId _tokenId,
        address _beneficiary,
        bytes32[] calldata _merkleProof,
        address _identityProvider,
        bytes calldata _identityData,
        bytes calldata _beneficiaryScreeningData,
        uint256 _gridTileId
    ) external;

    function mintFromSale(
        address _operator,
        address _beneficiary,
        bytes32[] calldata _merkleProof,
        address _identityProvider,
        bytes calldata _identityData,
        bytes calldata _beneficiaryScreeningData,
        uint256 _gridTileId
    ) external;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        Admin Functions                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    function adminMint(address _to, TokenId _tokenId, uint256 _gridTileId) external;
    function adminBatchMint(address[] calldata _to, TokenId[] calldata _tokenId, uint256[] calldata _gridTileId)
        external;
    function setGenesisSequencerMerkleRoot(bytes32 _genesisSequencerMerkleRoot) external;
    function setContributorMerkleRoot(bytes32 _contributorMerkleRoot) external;
    function setIdentityProvider(address _provider, bool _active) external;
    function setAddressScreeningProvider(address _provider) external;
    function setTokenSaleAddress(address _tokenSaleAddress) external;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                      View Functions                        */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    function hasGenesisSequencerToken(address _addr) external view returns (bool);
    function hasContributorToken(address _addr) external view returns (bool);
    function hasGenesisSequencerTokenOrContributorToken(address _addr) external view returns (bool);
    function hasGeneralToken(address _addr) external view returns (bool);
    function hasAnyToken(address _addr) external view returns (bool);
    function genesisSequencerMerkleRoot() external view returns (bytes32);
    function contributorMerkleRoot() external view returns (bytes32);
    function identityProviders(address _provider) external view returns (bool);
    function gridTileId(address _addr) external view returns (uint256);
}

// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.27;

interface IWhitelistProvider {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        Events                              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    event ConsumerSet(address indexed consumer);

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        Errors                              */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    error WhitelistProvider__InvalidConsumer();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                       Functions                            */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
    function setConsumer(address _consumer) external;

    /**
     * @notice Verify the authentication data
     * @param _user The address of the user to verify
     * @param _auth The authentication data
     * @return bool True if the authentication data is valid
     */
    function verify(address _user, bytes memory _auth) external returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[ERC].
 */
interface IERC1155 is IERC165 {
    /**
     * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the value of tokens of token type `id` owned by `account`.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {IERC1155Receiver-onERC1155Received} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {IERC1155Receiver-onERC1155BatchReceived} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external;
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "../IERC1155.sol";

/**
 * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
 * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
 */
interface IERC1155MetadataURI is IERC1155 {
    /**
     * @dev Returns the URI for token type `id`.
     *
     * If the `\{id\}` substring is present in the URI, it must be replaced by
     * clients with the actual token type ID.
     */
    function uri(uint256 id) external view returns (string memory);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC1155/utils/ERC1155Utils.sol)

pragma solidity ^0.8.20;

import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provide common ERC-1155 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
 *
 * _Available since v5.1._
 */
library ERC1155Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155Received(
        address operator,
        address from,
        address to,
        uint256 id,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
                if (response != IERC1155Receiver.onERC1155Received.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }

    /**
     * @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155BatchReceived}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155BatchReceived(
        address operator,
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
                bytes4 response
            ) {
                if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    assembly ("memory-safe") {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 13 of 23 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/Hashes.sol)

pragma solidity ^0.8.20;

/**
 * @dev Library of standard hash functions.
 *
 * _Available since v5.1._
 */
library Hashes {
    /**
     * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
     *
     * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     */
    function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
        return a < b ? efficientKeccak256(a, b) : efficientKeccak256(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function efficientKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32 value) {
        assembly ("memory-safe") {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC-1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC-1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 21 of 23 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 23 of 23 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

Settings
{
  "remappings": [
    "src/=src/",
    "test/=test/",
    "@aztec/=lib/l1-contracts/src/",
    "@aztec-test/=lib/l1-contracts/test/",
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@oz/=lib/openzeppelin-contracts/contracts/",
    "forge-std/=lib/forge-std/src/",
    "@atp/=lib/teegeeee/src/",
    "@atp-mock/=lib/teegeeee/src/test/mocks/",
    "@zkpassport/=lib/circuits/src/solidity/src/",
    "@splits/=lib/splits-contracts-monorepo/packages/splits-v2/src/",
    "@predicate/=lib/predicate-contracts/src/",
    "@teegeeee/=lib/teegeeee/src/",
    "@twap-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/src/",
    "@twap-auction-test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/",
    "@launcher/=lib/liquidity-launcher/src/",
    "@v4c/=lib/liquidity-launcher/lib/v4-core/src/",
    "@v4p/=lib/liquidity-launcher/lib/v4-periphery/src/",
    "@aztec-blob-lib/=lib/l1-contracts/src/core/libraries/rollup/",
    "@ensdomains/=lib/liquidity-launcher/lib/v4-core/node_modules/@ensdomains/",
    "@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
    "@openzeppelin-upgrades-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
    "@openzeppelin-upgrades/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable/",
    "@openzeppelin-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
    "@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
    "@solady/=lib/liquidity-launcher/lib/solady/",
    "@test/=lib/l1-contracts/test/",
    "@uniswap/v4-core/=lib/liquidity-launcher/lib/v4-core/",
    "@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
    "@zkpassport-test/=lib/l1-contracts/lib/circuits/src/solidity/test/",
    "btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
    "circuits/=lib/circuits/src/",
    "continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
    "ds-test/=lib/predicate-contracts/lib/forge-std/lib/ds-test/src/",
    "eigenlayer-contracts/=lib/predicate-contracts/lib/eigenlayer-contracts/",
    "eigenlayer-middleware/=lib/predicate-contracts/lib/eigenlayer-middleware/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-gas-snapshot/=lib/liquidity-launcher/lib/continuous-clearing-auction/lib/forge-gas-snapshot/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "hardhat/=lib/liquidity-launcher/lib/v4-core/node_modules/hardhat/",
    "kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
    "l1-contracts/=lib/l1-contracts/src/",
    "lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
    "liquidity-launcher/=lib/liquidity-launcher/",
    "merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
    "openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
    "openzeppelin-contracts-upgradeable-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
    "openzeppelin-contracts-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
    "openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "openzeppelin-foundry-upgrades/=lib/predicate-contracts/lib/openzeppelin-foundry-upgrades/src/",
    "openzeppelin-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/contracts/",
    "openzeppelin/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/",
    "optimism/=lib/liquidity-launcher/lib/optimism/",
    "permit2/=lib/liquidity-launcher/lib/permit2/",
    "predicate-contracts/=lib/predicate-contracts/src/",
    "safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
    "solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
    "solady/=lib/liquidity-launcher/lib/solady/src/",
    "solmate/=lib/predicate-contracts/lib/solmate/src/",
    "splits-contracts-monorepo/=lib/splits-contracts-monorepo/",
    "teegeeee/=lib/teegeeee/src/",
    "utils/=lib/predicate-contracts/lib/utils/",
    "v4-core/=lib/liquidity-launcher/lib/v4-core/src/",
    "v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
    "zkpassport-packages/=lib/zkpassport-packages/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "prague",
  "viaIR": false
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"address","name":"_tokenSaleAddress","type":"address"},{"internalType":"address[]","name":"_identityProviders","type":"address[]"},{"internalType":"bytes32","name":"_genesisSequencerMerkleRoot","type":"bytes32"},{"internalType":"bytes32","name":"_contributorMerkleRoot","type":"bytes32"},{"internalType":"address","name":"_addressScreeningProvider","type":"address"},{"internalType":"string","name":"_uri","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__AlreadyMinted","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__CallerIsNotTokenSale","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__GridTileAlreadyAssigned","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__GridTileIdCannotBeZero","type":"error"},{"inputs":[{"internalType":"address","name":"_authProvider","type":"address"}],"name":"IgnitionParticipantSoulbound__InvalidAuth","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__InvalidInputLength","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__MerkleProofInvalid","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__NoMerkleRootSet","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__TokenIsSoulbound","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"provider","type":"address"}],"name":"AddressScreeningProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"newRoot","type":"bytes32"}],"name":"ContributorMerkleRootUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"newRoot","type":"bytes32"}],"name":"GenesisSequencerMerkleRootUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"provider","type":"address"},{"indexed":false,"internalType":"bool","name":"active","type":"bool"}],"name":"IdentityProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_beneficiary","type":"address"},{"indexed":true,"internalType":"address","name":"_operator","type":"address"},{"indexed":true,"internalType":"enum IIgnitionParticipantSoulbound.TokenId","name":"_tokenId","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"_gridTileId","type":"uint256"}],"name":"IgnitionParticipantSoulboundMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"tokenSaleAddress","type":"address"}],"name":"TokenSaleAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[],"name":"addressScreeningProvider","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_to","type":"address[]"},{"internalType":"enum IIgnitionParticipantSoulbound.TokenId[]","name":"_tokenId","type":"uint8[]"},{"internalType":"uint256[]","name":"_gridTileId","type":"uint256[]"}],"name":"adminBatchMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"enum IIgnitionParticipantSoulbound.TokenId","name":"_tokenId","type":"uint8"},{"internalType":"uint256","name":"_gridTileId","type":"uint256"}],"name":"adminMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contributorMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"genesisSequencerMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"soulboundRecipient","type":"address"}],"name":"gridTileId","outputs":[{"internalType":"uint256","name":"gridTileId","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasAnyToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasContributorToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasGeneralToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasGenesisSequencerToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasGenesisSequencerTokenOrContributorToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"hasMinted","outputs":[{"internalType":"bool","name":"hasMinted","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"provider","type":"address"}],"name":"identityProviders","outputs":[{"internalType":"bool","name":"active","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"gridTileId","type":"uint256"}],"name":"isGridTileIdAssigned","outputs":[{"internalType":"bool","name":"isAssigned","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IIgnitionParticipantSoulbound.TokenId","name":"_tokenId","type":"uint8"},{"internalType":"address","name":"_soulboundRecipient","type":"address"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"},{"internalType":"address","name":"_identityProvider","type":"address"},{"internalType":"bytes","name":"_identityData","type":"bytes"},{"internalType":"bytes","name":"_soulboundRecipientScreeningData","type":"bytes"},{"internalType":"uint256","name":"_gridTileId","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"},{"internalType":"address","name":"_soulboundRecipient","type":"address"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"},{"internalType":"address","name":"_identityProvider","type":"address"},{"internalType":"bytes","name":"_identityData","type":"bytes"},{"internalType":"bytes","name":"_soulboundRecipientScreeningData","type":"bytes"},{"internalType":"uint256","name":"_gridTileId","type":"uint256"}],"name":"mintFromSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_provider","type":"address"}],"name":"setAddressScreeningProvider","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"bool","name":"","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_contributorMerkleRoot","type":"bytes32"}],"name":"setContributorMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_genesisSequencerMerkleRoot","type":"bytes32"}],"name":"setGenesisSequencerMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_provider","type":"address"},{"internalType":"bool","name":"_active","type":"bool"}],"name":"setIdentityProvider","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenSaleAddress","type":"address"}],"name":"setTokenSaleAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenSaleAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]

608060405234801561000f575f5ffd5b5060405161275e38038061275e83398101604081905261002e91610359565b33816100398161022e565b506001600160a01b03811661006757604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100708161023e565b506001600455600c80546001600160a01b0319166001600160a01b0388161790555f5b855181101561016157600160075f8884815181106100b3576100b3610467565b60200260200101516001600160a01b03166001600160a01b031681526020019081526020015f205f6101000a81548160ff0219169083151502179055507f4722b6080c33312153c492f4fe1a991e55e4ce10d8ab0a98f0b6457fa521cdf386828151811061012357610123610467565b602002602001015160016040516101519291906001600160a01b039290921682521515602082015260400190565b60405180910390a1600101610093565b50600880546001600160a01b0319166001600160a01b0384169081179091556040519081527f8c2f68cc47d5a76e3532d701aff037a3d7864663392be08ce9d24ee59e8508089060200160405180910390a160058490556040518481527f5b38306bccf4835883087505aee87f0cec1cc814fd53aab1903a3338b106f4389060200160405180910390a160068390556040518381527f6763d43e89476d0e6fe3417fe368c1959f70c60e1bcbc6d5a0df7e5f0a22e3959060200160405180910390a15050505050506105b9565b600261023a82826104ff565b5050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b80516001600160a01b03811681146102a5575f5ffd5b919050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b03811182821017156102e6576102e66102aa565b604052919050565b5f82601f8301126102fd575f5ffd5b81516001600160401b03811115610316576103166102aa565b610329601f8201601f19166020016102be565b81815284602083860101111561033d575f5ffd5b8160208501602083015e5f918101602001919091529392505050565b5f5f5f5f5f5f60c0878903121561036e575f5ffd5b6103778761028f565b60208801519096506001600160401b03811115610392575f5ffd5b8701601f810189136103a2575f5ffd5b80516001600160401b038111156103bb576103bb6102aa565b8060051b6103cb602082016102be565b9182526020818401810192908101908c8411156103e6575f5ffd5b6020850194505b8385101561040f576103fe8561028f565b8252602094850194909101906103ed565b60408c015160608d0151919a509850965061043393505060808a01915061028f9050565b60a08801519092506001600160401b0381111561044e575f5ffd5b61045a89828a016102ee565b9150509295509295509295565b634e487b7160e01b5f52603260045260245ffd5b600181811c9082168061048f57607f821691505b6020821081036104ad57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156104fa57805f5260205f20601f840160051c810160208510156104d85750805b601f840160051c820191505b818110156104f7575f81556001016104e4565b50505b505050565b81516001600160401b03811115610518576105186102aa565b61052c81610526845461047b565b846104b3565b6020601f82116001811461055e575f83156105475750848201515b5f19600385901b1c1916600184901b1784556104f7565b5f84815260208120601f198516915b8281101561058d578785015182556020948501946001909201910161056d565b50848210156105aa57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b612198806105c65f395ff3fe608060405234801561000f575f5ffd5b50600436106101f1575f3560e01c80637950058911610114578063bcb9f86c116100a9578063e76c668811610079578063e76c668814610478578063e985e9c51461048b578063ecfca83a1461049e578063f242432a146104b1578063f2fde38b146104c4575f5ffd5b8063bcb9f86c1461042c578063c66f04d01461043f578063ceda666f14610452578063e605f39414610465575f5ffd5b80638da5cb5b116100e45780638da5cb5b146103d3578063929b2e8b146103e4578063a22cb465146103f7578063b2ee1e8f1461040a575f5ffd5b80637950058914610391578063796b0af6146103a457806381a3d0d0146103ad57806383eab624146103c0575f5ffd5b80632d95460c1161018a5780634e1273f41161015a5780634e1273f4146103435780635afe5207146103635780635fcc946514610376578063715018a614610389575f5ffd5b80632d95460c146102f25780632eb2c2d61461030557806338e21cce146103185780634dd8085a1461033a575f5ffd5b80630e89341c116101c55780630e89341c146102665780631448b3ca1461028657806319fe9970146102b15780632b7776f0146102d3575f5ffd5b8062fdd58e146101f557806301ffc9a71461021b578063036e4c5c1461023e5780630dd8454414610253575b5f5ffd5b6102086102033660046118a2565b6104d7565b6040519081526020015b60405180910390f35b61022e6102293660046118df565b6104fe565b6040519015158152602001610212565b61025161024c36600461197e565b61054d565b005b610251610261366004611a65565b6105a9565b610279610274366004611a9f565b6105d3565b6040516102129190611ae4565b600c54610299906001600160a01b031681565b6040516001600160a01b039091168152602001610212565b61022e6102bf366004611a9f565b600b6020525f908152604090205460ff1681565b6102086102e1366004611af6565b600a6020525f908152604090205481565b610251610300366004611b0f565b610665565b610251610313366004611ce6565b610749565b61022e610326366004611af6565b60096020525f908152604090205460ff1681565b61020860055481565b610356610351366004611d92565b6107ad565b6040516102129190611e8d565b610251610371366004611af6565b610877565b61022e610384366004611af6565b6108d4565b6102516108fa565b61022e61039f366004611af6565b61090d565b61020860065481565b600854610299906001600160a01b031681565b6102516103ce366004611af6565b61091a565b6003546001600160a01b0316610299565b6102516103f2366004611a9f565b610970565b610251610405366004611eac565b6109ad565b61022e610418366004611af6565b60076020525f908152604090205460ff1681565b61022e61043a366004611af6565b6109c6565b61022e61044d366004611af6565b6109d3565b610251610460366004611a9f565b610a06565b61022e610473366004611af6565b610a43565b610251610486366004611ee1565b610a4f565b61022e610499366004611f03565b610a6a565b6102516104ac366004611eac565b610a97565b6102516104bf366004611f34565b610b01565b6102516104d2366004611af6565b610b60565b5f818152602081815260408083206001600160a01b03861684529091529020545b92915050565b5f6001600160e01b03198216636cdb3d1360e11b148061052e57506001600160e01b031982166303a24d0760e21b145b806104f857506301ffc9a760e01b6001600160e01b03198316146104f8565b610555610b9d565b600c546001600160a01b03163314610580576040516350d2853360e11b815260040160405180910390fd5b6105938a5f8b8b8b8b8b8b8b8b8b610bc7565b61059d6001600455565b50505050505050505050565b6105b1611086565b6105b9610b9d565b6105c48383836110b3565b6105ce6001600455565b505050565b6060600280546105e290611f87565b80601f016020809104026020016040519081016040528092919081815260200182805461060e90611f87565b80156106595780601f1061063057610100808354040283529160200191610659565b820191905f5260205f20905b81548152906001019060200180831161063c57829003601f168201915b50505050509050919050565b61066d611086565b610675610b9d565b84831461069557604051630b94f95160e41b815260040160405180910390fd5b8481146106b557604051630b94f95160e41b815260040160405180910390fd5b5f5b858110156107365761072e8787838181106106d4576106d4611fbf565b90506020020160208101906106e99190611af6565b8686848181106106fb576106fb611fbf565b90506020020160208101906107109190611fd3565b85858581811061072257610722611fbf565b905060200201356110b3565b6001016106b7565b506107416001600455565b505050505050565b336001600160a01b038616811480159061076a57506107688682610a6a565b155b156107a05760405163711bec9160e11b81526001600160a01b038083166004830152871660248201526044015b60405180910390fd5b61074186868686866111cc565b606081518351146107de5781518351604051635b05999160e01b815260048101929092526024820152604401610797565b5f83516001600160401b038111156107f8576107f8611bab565b604051908082528060200260200182016040528015610821578160200160208202803683370190505b5090505f5b845181101561086f5760208082028601015161084a906020808402870101516104d7565b82828151811061085c5761085c611fbf565b6020908102919091010152600101610826565b509392505050565b61087f611086565b600c80546001600160a01b0319166001600160a01b0383169081179091556040519081527fa212c6db6e22cafeb534243c976e6fdb8781e6a0d67d21082244a342c450164d906020015b60405180910390a150565b5f806108e083826104d7565b11806104f857505f6108f38360016104d7565b1192915050565b610902611086565b61090b5f611231565b565b5f806108f38360016104d7565b610922611086565b600880546001600160a01b0319166001600160a01b0383169081179091556040519081527f8c2f68cc47d5a76e3532d701aff037a3d7864663392be08ce9d24ee59e850808906020016108c9565b610978611086565b60068190556040518181527f6763d43e89476d0e6fe3417fe368c1959f70c60e1bcbc6d5a0df7e5f0a22e395906020016108c9565b604051634c8a651160e11b815260040160405180910390fd5b5f806108f38360026104d7565b5f806109df83826104d7565b11806109f457505f6109f28360016104d7565b115b806104f857505f6108f38360026104d7565b610a0e611086565b60058190556040518181527f5b38306bccf4835883087505aee87f0cec1cc814fd53aab1903a3338b106f438906020016108c9565b5f806108f383826104d7565b610a57610b9d565b610593338b8b8b8b8b8b8b8b8b8b610bc7565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205460ff1690565b610a9f611086565b6001600160a01b0382165f81815260076020908152604091829020805460ff19168515159081179091558251938452908301527f4722b6080c33312153c492f4fe1a991e55e4ce10d8ab0a98f0b6457fa521cdf3910160405180910390a15050565b336001600160a01b0386168114801590610b225750610b208682610a6a565b155b15610b535760405163711bec9160e11b81526001600160a01b03808316600483015287166024820152604401610797565b6107418686868686611282565b610b68611086565b6001600160a01b038116610b9157604051631e4fbdf760e01b81525f6004820152602401610797565b610b9a81611231565b50565b600260045403610bc057604051633ee5aeb560e01b815260040160405180910390fd5b6002600455565b6001600160a01b038b165f9081526009602052604090205460ff1615610c0057604051636000a9ab60e01b815260040160405180910390fd5b6001600160a01b038b165f908152600960205260408120805460ff19166001179055819003610c4257604051633b2eefeb60e11b815260040160405180910390fd5b5f818152600b602052604090205460ff1615610c7157604051631e72049b60e01b815260040160405180910390fd5b5f818152600b60209081526040808320805460ff191660011790556001600160a01b03808d168452600a8352818420859055891683526007909152902054869060ff16610cdd57604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b505f8a6002811115610cf157610cf1611fec565b03610dc457600554610d1657604051632b1bd04d60e21b815260040160405180910390fd5b604080516001600160a01b038d1660208201525f910160408051601f1981840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050610da18989808060200260200160405190810160405280939291908181526020018383602002808284375f9201919091525050600554915084905061130e565b610dbe5760405163ccc42ef560e01b815260040160405180910390fd5b50610ea7565b60018a6002811115610dd857610dd8611fec565b03610ea757600654610dfd57604051632b1bd04d60e21b815260040160405180910390fd5b604080516001600160a01b038d1660208201525f910160408051601f1981840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050610e888989808060200260200160405190810160405280939291908181526020018383602002808284375f9201919091525050600654915084905061130e565b610ea55760405163ccc42ef560e01b815260040160405180910390fd5b505b604051631290746b60e21b81526001600160a01b03871690634a41d1ac90610ed7908e9089908990600401612000565b6020604051808303815f875af1158015610ef3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f17919061203f565b8690610f4257604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b50600854604051631290746b60e21b81526001600160a01b0390911690634a41d1ac90610f77908c9087908790600401612000565b6020604051808303815f875af1158015610f93573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fb7919061203f565b6008546001600160a01b031690610fed57604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b5061101a898b600281111561100457611004611fec565b600160405180602001604052805f815250611323565b89600281111561102c5761102c611fec565b8b6001600160a01b03168a6001600160a01b03167fa931d07fbe89d0417ccce536c43b692694705d1d3662b35549d4dc6043f183908460405161107191815260200190565b60405180910390a45050505050505050505050565b6003546001600160a01b0316331461090b5760405163118cdaa760e01b8152336004820152602401610797565b6001600160a01b0383165f9081526009602052604090205460ff16156110ec57604051636000a9ab60e01b815260040160405180910390fd5b6001600160a01b0383165f908152600960209081526040808320805460ff19166001179055600a8252808320849055838352600b90915290205460ff161561114757604051631e72049b60e01b815260040160405180910390fd5b5f818152600b60205260409020805460ff191660011790556111758383600281111561100457611004611fec565b81600281111561118757611187611fec565b60405182815233906001600160a01b038616907fa931d07fbe89d0417ccce536c43b692694705d1d3662b35549d4dc6043f183909060200160405180910390a4505050565b6001600160a01b0384166111f557604051632bfa23e760e11b81525f6004820152602401610797565b6001600160a01b03851661121d57604051626a0d4560e21b81525f6004820152602401610797565b61122a858585858561137a565b5050505050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0384166112ab57604051632bfa23e760e11b81525f6004820152602401610797565b6001600160a01b0385166112d357604051626a0d4560e21b81525f6004820152602401610797565b60408051600180825260208201869052818301908152606082018590526080820190925290611305878784848761137a565b50505050505050565b5f8261131a85846113cd565b14949350505050565b6001600160a01b03841661134c57604051632bfa23e760e11b81525f6004820152602401610797565b604080516001808252602082018690528183019081526060820185905260808201909252906107415f878484875b61138685858585611407565b6001600160a01b0384161561122a57825133906001036113bf57602084810151908401516113b8838989858589611441565b5050610741565b610741818787878787611562565b5f81815b845181101561086f576113fd828683815181106113f0576113f0611fbf565b6020026020010151611649565b91506001016113d1565b6001600160a01b0384161561142f57604051634c8a651160e11b815260040160405180910390fd5b61143b84848484611678565b50505050565b6001600160a01b0384163b156107415760405163f23a6e6160e01b81526001600160a01b0385169063f23a6e6190611485908990899088908890889060040161205a565b6020604051808303815f875af19250505080156114bf575060408051601f3d908101601f191682019092526114bc9181019061209e565b60015b611526573d8080156114ec576040519150601f19603f3d011682016040523d82523d5f602084013e6114f1565b606091505b5080515f0361151e57604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b805181602001fd5b6001600160e01b0319811663f23a6e6160e01b1461130557604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b6001600160a01b0384163b156107415760405163bc197c8160e01b81526001600160a01b0385169063bc197c81906115a690899089908890889088906004016120b9565b6020604051808303815f875af19250505080156115e0575060408051601f3d908101601f191682019092526115dd9181019061209e565b60015b61160d573d8080156114ec576040519150601f19603f3d011682016040523d82523d5f602084013e6114f1565b6001600160e01b0319811663bc197c8160e01b1461130557604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b5f818310611663575f828152602084905260409020611671565b5f8381526020839052604090205b9392505050565b80518251146116a75781518151604051635b05999160e01b815260048101929092526024820152604401610797565b335f5b83518110156117a9576020818102858101820151908501909101516001600160a01b0388161561175b575f828152602081815260408083206001600160a01b038c16845290915290205481811015611735576040516303dee4c560e01b81526001600160a01b038a166004820152602481018290526044810183905260648101849052608401610797565b5f838152602081815260408083206001600160a01b038d16845290915290209082900390555b6001600160a01b0387161561179f575f828152602081815260408083206001600160a01b038b16845290915281208054839290611799908490612116565b90915550505b50506001016116aa565b5082516001036118295760208301515f906020840151909150856001600160a01b0316876001600160a01b0316846001600160a01b03167fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62858560405161181a929190918252602082015260400190565b60405180910390a4505061122a565b836001600160a01b0316856001600160a01b0316826001600160a01b03167f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb8686604051611878929190612135565b60405180910390a45050505050565b80356001600160a01b038116811461189d575f5ffd5b919050565b5f5f604083850312156118b3575f5ffd5b6118bc83611887565b946020939093013593505050565b6001600160e01b031981168114610b9a575f5ffd5b5f602082840312156118ef575f5ffd5b8135611671816118ca565b5f5f83601f84011261190a575f5ffd5b5081356001600160401b03811115611920575f5ffd5b6020830191508360208260051b850101111561193a575f5ffd5b9250929050565b5f5f83601f840112611951575f5ffd5b5081356001600160401b03811115611967575f5ffd5b60208301915083602082850101111561193a575f5ffd5b5f5f5f5f5f5f5f5f5f5f60e08b8d031215611997575f5ffd5b6119a08b611887565b99506119ae60208c01611887565b985060408b01356001600160401b038111156119c8575f5ffd5b6119d48d828e016118fa565b90995097506119e7905060608c01611887565b955060808b01356001600160401b03811115611a01575f5ffd5b611a0d8d828e01611941565b90965094505060a08b01356001600160401b03811115611a2b575f5ffd5b611a378d828e01611941565b9b9e9a9d50989b979a96999598949794969560c090950135949350505050565b80356003811061189d575f5ffd5b5f5f5f60608486031215611a77575f5ffd5b611a8084611887565b9250611a8e60208501611a57565b929592945050506040919091013590565b5f60208284031215611aaf575f5ffd5b5035919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6116716020830184611ab6565b5f60208284031215611b06575f5ffd5b61167182611887565b5f5f5f5f5f5f60608789031215611b24575f5ffd5b86356001600160401b03811115611b39575f5ffd5b611b4589828a016118fa565b90975095505060208701356001600160401b03811115611b63575f5ffd5b611b6f89828a016118fa565b90955093505060408701356001600160401b03811115611b8d575f5ffd5b611b9989828a016118fa565b979a9699509497509295939492505050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b0381118282101715611be757611be7611bab565b604052919050565b5f6001600160401b03821115611c0757611c07611bab565b5060051b60200190565b5f82601f830112611c20575f5ffd5b8135611c33611c2e82611bef565b611bbf565b8082825260208201915060208360051b860101925085831115611c54575f5ffd5b602085015b83811015611c71578035835260209283019201611c59565b5095945050505050565b5f82601f830112611c8a575f5ffd5b81356001600160401b03811115611ca357611ca3611bab565b611cb6601f8201601f1916602001611bbf565b818152846020838601011115611cca575f5ffd5b816020850160208301375f918101602001919091529392505050565b5f5f5f5f5f60a08688031215611cfa575f5ffd5b611d0386611887565b9450611d1160208701611887565b935060408601356001600160401b03811115611d2b575f5ffd5b611d3788828901611c11565b93505060608601356001600160401b03811115611d52575f5ffd5b611d5e88828901611c11565b92505060808601356001600160401b03811115611d79575f5ffd5b611d8588828901611c7b565b9150509295509295909350565b5f5f60408385031215611da3575f5ffd5b82356001600160401b03811115611db8575f5ffd5b8301601f81018513611dc8575f5ffd5b8035611dd6611c2e82611bef565b8082825260208201915060208360051b850101925087831115611df7575f5ffd5b6020840193505b82841015611e2057611e0f84611887565b825260209384019390910190611dfe565b945050505060208301356001600160401b03811115611e3d575f5ffd5b611e4985828601611c11565b9150509250929050565b5f8151808452602084019350602083015f5b82811015611e83578151865260209586019590910190600101611e65565b5093949350505050565b602081525f6116716020830184611e53565b8015158114610b9a575f5ffd5b5f5f60408385031215611ebd575f5ffd5b611ec683611887565b91506020830135611ed681611e9f565b809150509250929050565b5f5f5f5f5f5f5f5f5f5f60e08b8d031215611efa575f5ffd5b6119a08b611a57565b5f5f60408385031215611f14575f5ffd5b611f1d83611887565b9150611f2b60208401611887565b90509250929050565b5f5f5f5f5f60a08688031215611f48575f5ffd5b611f5186611887565b9450611f5f60208701611887565b9350604086013592506060860135915060808601356001600160401b03811115611d79575f5ffd5b600181811c90821680611f9b57607f821691505b602082108103611fb957634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52603260045260245ffd5b5f60208284031215611fe3575f5ffd5b61167182611a57565b634e487b7160e01b5f52602160045260245ffd5b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f6020828403121561204f575f5ffd5b815161167181611e9f565b6001600160a01b03868116825285166020820152604081018490526060810183905260a0608082018190525f9061209390830184611ab6565b979650505050505050565b5f602082840312156120ae575f5ffd5b8151611671816118ca565b6001600160a01b0386811682528516602082015260a0604082018190525f906120e490830186611e53565b82810360608401526120f68186611e53565b9050828103608084015261210a8185611ab6565b98975050505050505050565b808201808211156104f857634e487b7160e01b5f52601160045260245ffd5b604081525f6121476040830185611e53565b82810360208401526121598185611e53565b9594505050505056fea2646970667358221220e3fb48cd83eba12f0312e71f36fea2fe194430dfd7fe5b4a0ae84ac6dcf1b22b64736f6c634300081e0033000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c08b874f488695850c2a75fc4819776861e597b010c7f86eb209f60a3070b5862ae151ee61d1d4b3fc00a2b7dd7ce64cdc679dea0d21096a574e97c27aa707136f0000000000000000000000004ea4bbc070f7b117f264fcba503b4eaadd2f1e59000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000000020000000000000000000000009d67e84b24104648cbd2597c8acf5aeef7d7df890000000000000000000000005f2ca7dbe47068996933e5dcc8654814526803000000000000000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561000f575f5ffd5b50600436106101f1575f3560e01c80637950058911610114578063bcb9f86c116100a9578063e76c668811610079578063e76c668814610478578063e985e9c51461048b578063ecfca83a1461049e578063f242432a146104b1578063f2fde38b146104c4575f5ffd5b8063bcb9f86c1461042c578063c66f04d01461043f578063ceda666f14610452578063e605f39414610465575f5ffd5b80638da5cb5b116100e45780638da5cb5b146103d3578063929b2e8b146103e4578063a22cb465146103f7578063b2ee1e8f1461040a575f5ffd5b80637950058914610391578063796b0af6146103a457806381a3d0d0146103ad57806383eab624146103c0575f5ffd5b80632d95460c1161018a5780634e1273f41161015a5780634e1273f4146103435780635afe5207146103635780635fcc946514610376578063715018a614610389575f5ffd5b80632d95460c146102f25780632eb2c2d61461030557806338e21cce146103185780634dd8085a1461033a575f5ffd5b80630e89341c116101c55780630e89341c146102665780631448b3ca1461028657806319fe9970146102b15780632b7776f0146102d3575f5ffd5b8062fdd58e146101f557806301ffc9a71461021b578063036e4c5c1461023e5780630dd8454414610253575b5f5ffd5b6102086102033660046118a2565b6104d7565b6040519081526020015b60405180910390f35b61022e6102293660046118df565b6104fe565b6040519015158152602001610212565b61025161024c36600461197e565b61054d565b005b610251610261366004611a65565b6105a9565b610279610274366004611a9f565b6105d3565b6040516102129190611ae4565b600c54610299906001600160a01b031681565b6040516001600160a01b039091168152602001610212565b61022e6102bf366004611a9f565b600b6020525f908152604090205460ff1681565b6102086102e1366004611af6565b600a6020525f908152604090205481565b610251610300366004611b0f565b610665565b610251610313366004611ce6565b610749565b61022e610326366004611af6565b60096020525f908152604090205460ff1681565b61020860055481565b610356610351366004611d92565b6107ad565b6040516102129190611e8d565b610251610371366004611af6565b610877565b61022e610384366004611af6565b6108d4565b6102516108fa565b61022e61039f366004611af6565b61090d565b61020860065481565b600854610299906001600160a01b031681565b6102516103ce366004611af6565b61091a565b6003546001600160a01b0316610299565b6102516103f2366004611a9f565b610970565b610251610405366004611eac565b6109ad565b61022e610418366004611af6565b60076020525f908152604090205460ff1681565b61022e61043a366004611af6565b6109c6565b61022e61044d366004611af6565b6109d3565b610251610460366004611a9f565b610a06565b61022e610473366004611af6565b610a43565b610251610486366004611ee1565b610a4f565b61022e610499366004611f03565b610a6a565b6102516104ac366004611eac565b610a97565b6102516104bf366004611f34565b610b01565b6102516104d2366004611af6565b610b60565b5f818152602081815260408083206001600160a01b03861684529091529020545b92915050565b5f6001600160e01b03198216636cdb3d1360e11b148061052e57506001600160e01b031982166303a24d0760e21b145b806104f857506301ffc9a760e01b6001600160e01b03198316146104f8565b610555610b9d565b600c546001600160a01b03163314610580576040516350d2853360e11b815260040160405180910390fd5b6105938a5f8b8b8b8b8b8b8b8b8b610bc7565b61059d6001600455565b50505050505050505050565b6105b1611086565b6105b9610b9d565b6105c48383836110b3565b6105ce6001600455565b505050565b6060600280546105e290611f87565b80601f016020809104026020016040519081016040528092919081815260200182805461060e90611f87565b80156106595780601f1061063057610100808354040283529160200191610659565b820191905f5260205f20905b81548152906001019060200180831161063c57829003601f168201915b50505050509050919050565b61066d611086565b610675610b9d565b84831461069557604051630b94f95160e41b815260040160405180910390fd5b8481146106b557604051630b94f95160e41b815260040160405180910390fd5b5f5b858110156107365761072e8787838181106106d4576106d4611fbf565b90506020020160208101906106e99190611af6565b8686848181106106fb576106fb611fbf565b90506020020160208101906107109190611fd3565b85858581811061072257610722611fbf565b905060200201356110b3565b6001016106b7565b506107416001600455565b505050505050565b336001600160a01b038616811480159061076a57506107688682610a6a565b155b156107a05760405163711bec9160e11b81526001600160a01b038083166004830152871660248201526044015b60405180910390fd5b61074186868686866111cc565b606081518351146107de5781518351604051635b05999160e01b815260048101929092526024820152604401610797565b5f83516001600160401b038111156107f8576107f8611bab565b604051908082528060200260200182016040528015610821578160200160208202803683370190505b5090505f5b845181101561086f5760208082028601015161084a906020808402870101516104d7565b82828151811061085c5761085c611fbf565b6020908102919091010152600101610826565b509392505050565b61087f611086565b600c80546001600160a01b0319166001600160a01b0383169081179091556040519081527fa212c6db6e22cafeb534243c976e6fdb8781e6a0d67d21082244a342c450164d906020015b60405180910390a150565b5f806108e083826104d7565b11806104f857505f6108f38360016104d7565b1192915050565b610902611086565b61090b5f611231565b565b5f806108f38360016104d7565b610922611086565b600880546001600160a01b0319166001600160a01b0383169081179091556040519081527f8c2f68cc47d5a76e3532d701aff037a3d7864663392be08ce9d24ee59e850808906020016108c9565b610978611086565b60068190556040518181527f6763d43e89476d0e6fe3417fe368c1959f70c60e1bcbc6d5a0df7e5f0a22e395906020016108c9565b604051634c8a651160e11b815260040160405180910390fd5b5f806108f38360026104d7565b5f806109df83826104d7565b11806109f457505f6109f28360016104d7565b115b806104f857505f6108f38360026104d7565b610a0e611086565b60058190556040518181527f5b38306bccf4835883087505aee87f0cec1cc814fd53aab1903a3338b106f438906020016108c9565b5f806108f383826104d7565b610a57610b9d565b610593338b8b8b8b8b8b8b8b8b8b610bc7565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205460ff1690565b610a9f611086565b6001600160a01b0382165f81815260076020908152604091829020805460ff19168515159081179091558251938452908301527f4722b6080c33312153c492f4fe1a991e55e4ce10d8ab0a98f0b6457fa521cdf3910160405180910390a15050565b336001600160a01b0386168114801590610b225750610b208682610a6a565b155b15610b535760405163711bec9160e11b81526001600160a01b03808316600483015287166024820152604401610797565b6107418686868686611282565b610b68611086565b6001600160a01b038116610b9157604051631e4fbdf760e01b81525f6004820152602401610797565b610b9a81611231565b50565b600260045403610bc057604051633ee5aeb560e01b815260040160405180910390fd5b6002600455565b6001600160a01b038b165f9081526009602052604090205460ff1615610c0057604051636000a9ab60e01b815260040160405180910390fd5b6001600160a01b038b165f908152600960205260408120805460ff19166001179055819003610c4257604051633b2eefeb60e11b815260040160405180910390fd5b5f818152600b602052604090205460ff1615610c7157604051631e72049b60e01b815260040160405180910390fd5b5f818152600b60209081526040808320805460ff191660011790556001600160a01b03808d168452600a8352818420859055891683526007909152902054869060ff16610cdd57604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b505f8a6002811115610cf157610cf1611fec565b03610dc457600554610d1657604051632b1bd04d60e21b815260040160405180910390fd5b604080516001600160a01b038d1660208201525f910160408051601f1981840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050610da18989808060200260200160405190810160405280939291908181526020018383602002808284375f9201919091525050600554915084905061130e565b610dbe5760405163ccc42ef560e01b815260040160405180910390fd5b50610ea7565b60018a6002811115610dd857610dd8611fec565b03610ea757600654610dfd57604051632b1bd04d60e21b815260040160405180910390fd5b604080516001600160a01b038d1660208201525f910160408051601f1981840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050610e888989808060200260200160405190810160405280939291908181526020018383602002808284375f9201919091525050600654915084905061130e565b610ea55760405163ccc42ef560e01b815260040160405180910390fd5b505b604051631290746b60e21b81526001600160a01b03871690634a41d1ac90610ed7908e9089908990600401612000565b6020604051808303815f875af1158015610ef3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f17919061203f565b8690610f4257604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b50600854604051631290746b60e21b81526001600160a01b0390911690634a41d1ac90610f77908c9087908790600401612000565b6020604051808303815f875af1158015610f93573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fb7919061203f565b6008546001600160a01b031690610fed57604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b5061101a898b600281111561100457611004611fec565b600160405180602001604052805f815250611323565b89600281111561102c5761102c611fec565b8b6001600160a01b03168a6001600160a01b03167fa931d07fbe89d0417ccce536c43b692694705d1d3662b35549d4dc6043f183908460405161107191815260200190565b60405180910390a45050505050505050505050565b6003546001600160a01b0316331461090b5760405163118cdaa760e01b8152336004820152602401610797565b6001600160a01b0383165f9081526009602052604090205460ff16156110ec57604051636000a9ab60e01b815260040160405180910390fd5b6001600160a01b0383165f908152600960209081526040808320805460ff19166001179055600a8252808320849055838352600b90915290205460ff161561114757604051631e72049b60e01b815260040160405180910390fd5b5f818152600b60205260409020805460ff191660011790556111758383600281111561100457611004611fec565b81600281111561118757611187611fec565b60405182815233906001600160a01b038616907fa931d07fbe89d0417ccce536c43b692694705d1d3662b35549d4dc6043f183909060200160405180910390a4505050565b6001600160a01b0384166111f557604051632bfa23e760e11b81525f6004820152602401610797565b6001600160a01b03851661121d57604051626a0d4560e21b81525f6004820152602401610797565b61122a858585858561137a565b5050505050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0384166112ab57604051632bfa23e760e11b81525f6004820152602401610797565b6001600160a01b0385166112d357604051626a0d4560e21b81525f6004820152602401610797565b60408051600180825260208201869052818301908152606082018590526080820190925290611305878784848761137a565b50505050505050565b5f8261131a85846113cd565b14949350505050565b6001600160a01b03841661134c57604051632bfa23e760e11b81525f6004820152602401610797565b604080516001808252602082018690528183019081526060820185905260808201909252906107415f878484875b61138685858585611407565b6001600160a01b0384161561122a57825133906001036113bf57602084810151908401516113b8838989858589611441565b5050610741565b610741818787878787611562565b5f81815b845181101561086f576113fd828683815181106113f0576113f0611fbf565b6020026020010151611649565b91506001016113d1565b6001600160a01b0384161561142f57604051634c8a651160e11b815260040160405180910390fd5b61143b84848484611678565b50505050565b6001600160a01b0384163b156107415760405163f23a6e6160e01b81526001600160a01b0385169063f23a6e6190611485908990899088908890889060040161205a565b6020604051808303815f875af19250505080156114bf575060408051601f3d908101601f191682019092526114bc9181019061209e565b60015b611526573d8080156114ec576040519150601f19603f3d011682016040523d82523d5f602084013e6114f1565b606091505b5080515f0361151e57604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b805181602001fd5b6001600160e01b0319811663f23a6e6160e01b1461130557604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b6001600160a01b0384163b156107415760405163bc197c8160e01b81526001600160a01b0385169063bc197c81906115a690899089908890889088906004016120b9565b6020604051808303815f875af19250505080156115e0575060408051601f3d908101601f191682019092526115dd9181019061209e565b60015b61160d573d8080156114ec576040519150601f19603f3d011682016040523d82523d5f602084013e6114f1565b6001600160e01b0319811663bc197c8160e01b1461130557604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b5f818310611663575f828152602084905260409020611671565b5f8381526020839052604090205b9392505050565b80518251146116a75781518151604051635b05999160e01b815260048101929092526024820152604401610797565b335f5b83518110156117a9576020818102858101820151908501909101516001600160a01b0388161561175b575f828152602081815260408083206001600160a01b038c16845290915290205481811015611735576040516303dee4c560e01b81526001600160a01b038a166004820152602481018290526044810183905260648101849052608401610797565b5f838152602081815260408083206001600160a01b038d16845290915290209082900390555b6001600160a01b0387161561179f575f828152602081815260408083206001600160a01b038b16845290915281208054839290611799908490612116565b90915550505b50506001016116aa565b5082516001036118295760208301515f906020840151909150856001600160a01b0316876001600160a01b0316846001600160a01b03167fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62858560405161181a929190918252602082015260400190565b60405180910390a4505061122a565b836001600160a01b0316856001600160a01b0316826001600160a01b03167f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb8686604051611878929190612135565b60405180910390a45050505050565b80356001600160a01b038116811461189d575f5ffd5b919050565b5f5f604083850312156118b3575f5ffd5b6118bc83611887565b946020939093013593505050565b6001600160e01b031981168114610b9a575f5ffd5b5f602082840312156118ef575f5ffd5b8135611671816118ca565b5f5f83601f84011261190a575f5ffd5b5081356001600160401b03811115611920575f5ffd5b6020830191508360208260051b850101111561193a575f5ffd5b9250929050565b5f5f83601f840112611951575f5ffd5b5081356001600160401b03811115611967575f5ffd5b60208301915083602082850101111561193a575f5ffd5b5f5f5f5f5f5f5f5f5f5f60e08b8d031215611997575f5ffd5b6119a08b611887565b99506119ae60208c01611887565b985060408b01356001600160401b038111156119c8575f5ffd5b6119d48d828e016118fa565b90995097506119e7905060608c01611887565b955060808b01356001600160401b03811115611a01575f5ffd5b611a0d8d828e01611941565b90965094505060a08b01356001600160401b03811115611a2b575f5ffd5b611a378d828e01611941565b9b9e9a9d50989b979a96999598949794969560c090950135949350505050565b80356003811061189d575f5ffd5b5f5f5f60608486031215611a77575f5ffd5b611a8084611887565b9250611a8e60208501611a57565b929592945050506040919091013590565b5f60208284031215611aaf575f5ffd5b5035919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6116716020830184611ab6565b5f60208284031215611b06575f5ffd5b61167182611887565b5f5f5f5f5f5f60608789031215611b24575f5ffd5b86356001600160401b03811115611b39575f5ffd5b611b4589828a016118fa565b90975095505060208701356001600160401b03811115611b63575f5ffd5b611b6f89828a016118fa565b90955093505060408701356001600160401b03811115611b8d575f5ffd5b611b9989828a016118fa565b979a9699509497509295939492505050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b0381118282101715611be757611be7611bab565b604052919050565b5f6001600160401b03821115611c0757611c07611bab565b5060051b60200190565b5f82601f830112611c20575f5ffd5b8135611c33611c2e82611bef565b611bbf565b8082825260208201915060208360051b860101925085831115611c54575f5ffd5b602085015b83811015611c71578035835260209283019201611c59565b5095945050505050565b5f82601f830112611c8a575f5ffd5b81356001600160401b03811115611ca357611ca3611bab565b611cb6601f8201601f1916602001611bbf565b818152846020838601011115611cca575f5ffd5b816020850160208301375f918101602001919091529392505050565b5f5f5f5f5f60a08688031215611cfa575f5ffd5b611d0386611887565b9450611d1160208701611887565b935060408601356001600160401b03811115611d2b575f5ffd5b611d3788828901611c11565b93505060608601356001600160401b03811115611d52575f5ffd5b611d5e88828901611c11565b92505060808601356001600160401b03811115611d79575f5ffd5b611d8588828901611c7b565b9150509295509295909350565b5f5f60408385031215611da3575f5ffd5b82356001600160401b03811115611db8575f5ffd5b8301601f81018513611dc8575f5ffd5b8035611dd6611c2e82611bef565b8082825260208201915060208360051b850101925087831115611df7575f5ffd5b6020840193505b82841015611e2057611e0f84611887565b825260209384019390910190611dfe565b945050505060208301356001600160401b03811115611e3d575f5ffd5b611e4985828601611c11565b9150509250929050565b5f8151808452602084019350602083015f5b82811015611e83578151865260209586019590910190600101611e65565b5093949350505050565b602081525f6116716020830184611e53565b8015158114610b9a575f5ffd5b5f5f60408385031215611ebd575f5ffd5b611ec683611887565b91506020830135611ed681611e9f565b809150509250929050565b5f5f5f5f5f5f5f5f5f5f60e08b8d031215611efa575f5ffd5b6119a08b611a57565b5f5f60408385031215611f14575f5ffd5b611f1d83611887565b9150611f2b60208401611887565b90509250929050565b5f5f5f5f5f60a08688031215611f48575f5ffd5b611f5186611887565b9450611f5f60208701611887565b9350604086013592506060860135915060808601356001600160401b03811115611d79575f5ffd5b600181811c90821680611f9b57607f821691505b602082108103611fb957634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52603260045260245ffd5b5f60208284031215611fe3575f5ffd5b61167182611a57565b634e487b7160e01b5f52602160045260245ffd5b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f6020828403121561204f575f5ffd5b815161167181611e9f565b6001600160a01b03868116825285166020820152604081018490526060810183905260a0608082018190525f9061209390830184611ab6565b979650505050505050565b5f602082840312156120ae575f5ffd5b8151611671816118ca565b6001600160a01b0386811682528516602082015260a0604082018190525f906120e490830186611e53565b82810360608401526120f68186611e53565b9050828103608084015261210a8185611ab6565b98975050505050505050565b808201808211156104f857634e487b7160e01b5f52601160045260245ffd5b604081525f6121476040830185611e53565b82810360208401526121598185611e53565b9594505050505056fea2646970667358221220e3fb48cd83eba12f0312e71f36fea2fe194430dfd7fe5b4a0ae84ac6dcf1b22b64736f6c634300081e0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c08b874f488695850c2a75fc4819776861e597b010c7f86eb209f60a3070b5862ae151ee61d1d4b3fc00a2b7dd7ce64cdc679dea0d21096a574e97c27aa707136f0000000000000000000000004ea4bbc070f7b117f264fcba503b4eaadd2f1e59000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000000020000000000000000000000009d67e84b24104648cbd2597c8acf5aeef7d7df890000000000000000000000005f2ca7dbe47068996933e5dcc8654814526803000000000000000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _tokenSaleAddress (address): 0x0000000000000000000000000000000000000000
Arg [1] : _identityProviders (address[]): 0x9D67e84B24104648cBd2597C8acF5aeeF7d7DF89,0x5F2ca7dbe47068996933e5dCc865481452680300
Arg [2] : _genesisSequencerMerkleRoot (bytes32): 0x8b874f488695850c2a75fc4819776861e597b010c7f86eb209f60a3070b5862a
Arg [3] : _contributorMerkleRoot (bytes32): 0xe151ee61d1d4b3fc00a2b7dd7ce64cdc679dea0d21096a574e97c27aa707136f
Arg [4] : _addressScreeningProvider (address): 0x4eA4BBC070f7b117f264fcba503b4eaadd2F1E59
Arg [5] : _uri (string):

-----Encoded View---------------
10 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [1] : 00000000000000000000000000000000000000000000000000000000000000c0
Arg [2] : 8b874f488695850c2a75fc4819776861e597b010c7f86eb209f60a3070b5862a
Arg [3] : e151ee61d1d4b3fc00a2b7dd7ce64cdc679dea0d21096a574e97c27aa707136f
Arg [4] : 0000000000000000000000004ea4bbc070f7b117f264fcba503b4eaadd2f1e59
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000120
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [7] : 0000000000000000000000009d67e84b24104648cbd2597c8acf5aeef7d7df89
Arg [8] : 0000000000000000000000005f2ca7dbe47068996933e5dcc865481452680300
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000000


Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.