Overview
ETH Balance
0 ETH
Eth Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Latest 25 from a total of 20,543 transactions
| Transaction Hash |
Method
|
Block
|
From
|
|
To
|
||||
|---|---|---|---|---|---|---|---|---|---|
| Mint | 24077681 | 12 days ago | IN | 0 ETH | 0.00055908 | ||||
| Mint | 24074269 | 12 days ago | IN | 0 ETH | 0.00056011 | ||||
| Mint | 24063287 | 14 days ago | IN | 0 ETH | 0.00014483 | ||||
| Mint | 24047151 | 16 days ago | IN | 0 ETH | 0.00012923 | ||||
| Mint | 24044245 | 17 days ago | IN | 0 ETH | 0.0000053 | ||||
| Mint | 24044226 | 17 days ago | IN | 0 ETH | 0.00000142 | ||||
| Mint | 24044225 | 17 days ago | IN | 0 ETH | 0.00003262 | ||||
| Mint | 24040183 | 17 days ago | IN | 0 ETH | 0.00059965 | ||||
| Mint | 24034874 | 18 days ago | IN | 0 ETH | 0.00014671 | ||||
| Mint | 24021087 | 20 days ago | IN | 0 ETH | 0.00001083 | ||||
| Mint | 24018423 | 20 days ago | IN | 0 ETH | 0.00014895 | ||||
| Mint | 23991371 | 24 days ago | IN | 0 ETH | 0.00003421 | ||||
| Mint | 23984047 | 25 days ago | IN | 0 ETH | 0.00020533 | ||||
| Mint | 23979391 | 26 days ago | IN | 0 ETH | 0.00017946 | ||||
| Mint | 23978694 | 26 days ago | IN | 0 ETH | 0.00060319 | ||||
| Mint | 23977377 | 26 days ago | IN | 0 ETH | 0.00008815 | ||||
| Mint | 23976262 | 26 days ago | IN | 0 ETH | 0.00020454 | ||||
| Mint | 23973849 | 26 days ago | IN | 0 ETH | 0.00062207 | ||||
| Mint | 23971695 | 27 days ago | IN | 0 ETH | 0.00010083 | ||||
| Mint | 23971694 | 27 days ago | IN | 0 ETH | 0.0000994 | ||||
| Mint | 23971693 | 27 days ago | IN | 0 ETH | 0.00010071 | ||||
| Mint | 23971692 | 27 days ago | IN | 0 ETH | 0.00010217 | ||||
| Mint | 23971691 | 27 days ago | IN | 0 ETH | 0.00062711 | ||||
| Mint | 23970114 | 27 days ago | IN | 0 ETH | 0.00063945 | ||||
| Mint | 23969497 | 27 days ago | IN | 0 ETH | 0.0001108 |
Advanced mode: Intended for advanced users or developers and will display all Internal Transactions including zero value transfers.
Latest 25 internal transactions (View All)
Advanced mode:
| Parent Transaction Hash | Method | Block |
From
|
|
To
|
|||
|---|---|---|---|---|---|---|---|---|
| Verify | 24077681 | 12 days ago | 0 ETH | |||||
| Verify | 24077681 | 12 days ago | 0 ETH | |||||
| Verify | 24074269 | 12 days ago | 0 ETH | |||||
| Verify | 24074269 | 12 days ago | 0 ETH | |||||
| Verify | 24063287 | 14 days ago | 0 ETH | |||||
| Verify | 24063287 | 14 days ago | 0 ETH | |||||
| Verify | 24047151 | 16 days ago | 0 ETH | |||||
| Verify | 24047151 | 16 days ago | 0 ETH | |||||
| Verify | 24044225 | 17 days ago | 0 ETH | |||||
| Verify | 24044225 | 17 days ago | 0 ETH | |||||
| Verify | 24040183 | 17 days ago | 0 ETH | |||||
| Verify | 24040183 | 17 days ago | 0 ETH | |||||
| Verify | 24034874 | 18 days ago | 0 ETH | |||||
| Verify | 24034874 | 18 days ago | 0 ETH | |||||
| Verify | 24021087 | 20 days ago | 0 ETH | |||||
| Verify | 24021087 | 20 days ago | 0 ETH | |||||
| Verify | 24018423 | 20 days ago | 0 ETH | |||||
| Verify | 24018423 | 20 days ago | 0 ETH | |||||
| Verify | 23991371 | 24 days ago | 0 ETH | |||||
| Verify | 23991371 | 24 days ago | 0 ETH | |||||
| Verify | 23984047 | 25 days ago | 0 ETH | |||||
| Verify | 23984047 | 25 days ago | 0 ETH | |||||
| Verify | 23979391 | 26 days ago | 0 ETH | |||||
| Verify | 23979391 | 26 days ago | 0 ETH | |||||
| Verify | 23978694 | 26 days ago | 0 ETH |
Loading...
Loading
Cross-Chain Transactions
Loading...
Loading
Contract Name:
IgnitionParticipantSoulbound
Compiler Version
v0.8.30+commit.73712a01
Optimization Enabled:
Yes with 200 runs
Other Settings:
prague EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.27;
import {Ownable} from "@oz/access/Ownable.sol";
import {ERC1155, IERC1155} from "@oz/token/ERC1155/ERC1155.sol";
import {MerkleProof} from "@oz/utils/cryptography/MerkleProof.sol";
import {ReentrancyGuard} from "@oz/utils/ReentrancyGuard.sol";
import {IIgnitionParticipantSoulbound} from "./IIgnitionParticipantSoulbound.sol";
import {IWhitelistProvider} from "./providers/IWhitelistProvider.sol";
/**
* @title IgnitionParticipantSoulbound
* @notice A soulbound ERC1155 token used for whitelist access control
* @dev Token ID 0: For Genesis Sequencer users
* Token ID 1: For Contributor users
* Token ID 2: For general de-risked users
* Tokens cannot be transferred once minted, making them "soulbound" to the recipient
*/
contract IgnitionParticipantSoulbound is IIgnitionParticipantSoulbound, ERC1155, Ownable, ReentrancyGuard {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* State Variables */
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/// Merkle root for privileged whitelists
/// @dev Gating for Token ID 0
bytes32 public genesisSequencerMerkleRoot;
/// @dev Gating for Token ID 1
bytes32 public contributorMerkleRoot;
/// Whitelist providers
/// @dev Whitelist providers for general whitelist
mapping(address provider => bool active) public identityProviders;
/// @dev Provider for address screening
address public addressScreeningProvider;
/// @dev Track if an address has minted (can only mint once)
mapping(address addr => bool hasMinted) public hasMinted;
/// @dev Track the grid token ID for each address
mapping(address soulboundRecipient => uint256 gridTileId) public gridTileId;
/// @dev Track if a grid tile ID has been assigned
mapping(uint256 gridTileId => bool isAssigned) public isGridTileIdAssigned;
/// @dev Address of the token sale contract
address public tokenSaleAddress;
constructor(
address _tokenSaleAddress,
address[] memory _identityProviders,
bytes32 _genesisSequencerMerkleRoot,
bytes32 _contributorMerkleRoot,
address _addressScreeningProvider,
string memory _uri
) ERC1155(_uri) Ownable(msg.sender) {
tokenSaleAddress = _tokenSaleAddress;
// Set the initial whitelist providers
for (uint256 i = 0; i < _identityProviders.length; i++) {
identityProviders[_identityProviders[i]] = true;
emit IdentityProviderSet(_identityProviders[i], true);
}
addressScreeningProvider = _addressScreeningProvider;
emit AddressScreeningProviderSet(_addressScreeningProvider);
genesisSequencerMerkleRoot = _genesisSequencerMerkleRoot;
emit GenesisSequencerMerkleRootUpdated(_genesisSequencerMerkleRoot);
contributorMerkleRoot = _contributorMerkleRoot;
emit ContributorMerkleRootUpdated(_contributorMerkleRoot);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Mint Functions */
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/**
* @notice Mint an IgnitionParticipant token to an address
* @param _tokenId The token ID to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
* @param _soulboundRecipient The address of the soulbound recipient
* @param _merkleProof Merkle proof for token ID 0 or 1, can be empty for minting token ID 2
* @param _identityProvider The contract address of the identity provider - these are allowlisted by the admin
* @param _identityData Identity data - this is the data that the identity provider will verify
* @param _soulboundRecipientScreeningData Screening data for the soulbound recipient - this is the data that the address screening provider will verify
* @dev Only one token per address is allowed
*/
function mint(
TokenId _tokenId,
address _soulboundRecipient,
bytes32[] calldata _merkleProof,
address _identityProvider,
bytes calldata _identityData,
bytes calldata _soulboundRecipientScreeningData,
uint256 _gridTileId
) external override(IIgnitionParticipantSoulbound) nonReentrant {
_internalMint(
msg.sender,
_tokenId,
_soulboundRecipient,
_merkleProof,
_identityProvider,
_identityData,
_soulboundRecipientScreeningData,
_gridTileId
);
}
/**
* @notice Mint an IgnitionParticipant token to an address
* @param _operator The address of the operator
* @param _soulboundRecipient The address of the soulbound recipient
* @param _merkleProof Merkle proof for token ID 0 or 1, can be empty for minting token ID 2
* @param _identityProvider The contract address of the identity provider - these are allowlisted by the admin
* @param _identityData Identity data - this is the data that the identity provider will verify
* @param _soulboundRecipientScreeningData Screening data for the soulbound recipient - this is the data that the address screening provider will verify
* @param _gridTileId The grid tile ID that the soulbound recipient is associated with
* @dev Only one token per address is allowed
*/
function mintFromSale(
address _operator,
address _soulboundRecipient,
bytes32[] calldata _merkleProof,
address _identityProvider,
bytes calldata _identityData,
bytes calldata _soulboundRecipientScreeningData,
uint256 _gridTileId
) external override(IIgnitionParticipantSoulbound) nonReentrant {
// Check that the caller is the token sale contract
require(msg.sender == tokenSaleAddress, IgnitionParticipantSoulbound__CallerIsNotTokenSale());
// Call mint, allowing the token sale contract to set the operator as the msg.sender of the sale
// The sale is limited to GENESIS_SEQUENCER (token ID 0), so we can hardcode it here
_internalMint(
_operator,
IIgnitionParticipantSoulbound.TokenId.GENESIS_SEQUENCER,
_soulboundRecipient,
_merkleProof,
_identityProvider,
_identityData,
_soulboundRecipientScreeningData,
_gridTileId
);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Admin Functions */
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/**
* @notice Set the address of the token sale contract
* @param _tokenSaleAddress The address of the token sale contract
*
* @dev onlyOwner
*/
function setTokenSaleAddress(address _tokenSaleAddress) external override(IIgnitionParticipantSoulbound) onlyOwner {
tokenSaleAddress = _tokenSaleAddress;
emit TokenSaleAddressSet(_tokenSaleAddress);
}
/**
* @notice Mint an IgnitionParticipant token to an address
* @param _to The address to mint the token to
* @param _tokenId The token ID to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
* @param _gridTileId The grid tile ID to mint
*
* @dev onlyOwner
*/
function adminMint(address _to, TokenId _tokenId, uint256 _gridTileId)
external
override(IIgnitionParticipantSoulbound)
onlyOwner
nonReentrant
{
_internalAdminMint(_to, _tokenId, _gridTileId);
}
/**
* @notice Batch mint IgnitionParticipant tokens to an array of addresses
* @param _to The addresses to mint the tokens to
* @param _tokenId The token IDs to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
* @param _gridTileId The grid tile IDs to mint
*
* @dev onlyOwner
*/
function adminBatchMint(address[] calldata _to, TokenId[] calldata _tokenId, uint256[] calldata _gridTileId)
external
override(IIgnitionParticipantSoulbound)
onlyOwner
nonReentrant
{
require(_to.length == _tokenId.length, IgnitionParticipantSoulbound__InvalidInputLength());
require(_to.length == _gridTileId.length, IgnitionParticipantSoulbound__InvalidInputLength());
for (uint256 i = 0; i < _to.length; i++) {
_internalAdminMint(_to[i], _tokenId[i], _gridTileId[i]);
}
}
/**
* @notice Set the genesis sequencer merkle root
* @param _genesisSequencerMerkleRoot The new merkle root
*
* @dev onlyOwner
*/
function setGenesisSequencerMerkleRoot(bytes32 _genesisSequencerMerkleRoot)
external
override(IIgnitionParticipantSoulbound)
onlyOwner
{
genesisSequencerMerkleRoot = _genesisSequencerMerkleRoot;
emit GenesisSequencerMerkleRootUpdated(_genesisSequencerMerkleRoot);
}
/**
* @notice Set the contributor merkle root
* @param _contributorMerkleRoot The new merkle root
*
* @dev onlyOwner
*/
function setContributorMerkleRoot(bytes32 _contributorMerkleRoot)
external
override(IIgnitionParticipantSoulbound)
onlyOwner
{
contributorMerkleRoot = _contributorMerkleRoot;
emit ContributorMerkleRootUpdated(_contributorMerkleRoot);
}
/**
* @notice Set the whitelist provider
* @param _provider The address of the whitelist provider
* @param _active Whether the provider is active
*
* @dev onlyOwner
*/
function setIdentityProvider(address _provider, bool _active)
external
override(IIgnitionParticipantSoulbound)
onlyOwner
{
identityProviders[_provider] = _active;
emit IdentityProviderSet(_provider, _active);
}
/**
* @notice Set the screening provider
* @param _provider The address of the screening provider
*
* @dev onlyOwner
*/
function setAddressScreeningProvider(address _provider) external override(IIgnitionParticipantSoulbound) onlyOwner {
addressScreeningProvider = _provider;
emit AddressScreeningProviderSet(_provider);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* View Functions */
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/**
* @notice Check if an address has the merkle whitelist token
* @param _addr Address to check
* @return bool True if the address owns token ID 0
*/
function hasGenesisSequencerToken(address _addr)
external
view
override(IIgnitionParticipantSoulbound)
returns (bool)
{
return balanceOf(_addr, uint256(TokenId.GENESIS_SEQUENCER)) > 0;
}
/**
* @notice Check if an address has the contributor whitelist token
* @param _addr Address to check
* @return bool True if the address owns token ID 1
*/
function hasContributorToken(address _addr) external view override(IIgnitionParticipantSoulbound) returns (bool) {
return balanceOf(_addr, uint256(TokenId.CONTRIBUTOR)) > 0;
}
/**
* @notice Check if an address has the general token
* @param _addr Address to check
* @return bool True if the address owns token ID 2
*/
function hasGeneralToken(address _addr) external view override(IIgnitionParticipantSoulbound) returns (bool) {
return balanceOf(_addr, uint256(TokenId.GENERAL)) > 0;
}
/**
* Check if an address has the genesis sequencer or contributor token
* @param _addr Address to check
* @return bool True if the address owns token ID 0 or 1
*/
function hasGenesisSequencerTokenOrContributorToken(address _addr)
external
view
override(IIgnitionParticipantSoulbound)
returns (bool)
{
return balanceOf(_addr, uint256(TokenId.GENESIS_SEQUENCER)) > 0
|| balanceOf(_addr, uint256(TokenId.CONTRIBUTOR)) > 0;
}
/**
* @notice Check if an address has any token
* @param _addr Address to check
* @return bool True if the address owns any token ID (0,1, or 2)
*/
function hasAnyToken(address _addr) external view override(IIgnitionParticipantSoulbound) returns (bool) {
return balanceOf(_addr, uint256(TokenId.GENESIS_SEQUENCER)) > 0
|| balanceOf(_addr, uint256(TokenId.CONTRIBUTOR)) > 0 || balanceOf(_addr, uint256(TokenId.GENERAL)) > 0;
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* ERC1155 Soulbound Override Functions */
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/**
* @dev See {ERC1155-setApprovalForAll}. Overridden to prevent approvals.
*/
function setApprovalForAll(address, bool) public pure override(IERC1155, ERC1155) {
revert IgnitionParticipantSoulbound__TokenIsSoulbound();
}
/**
* @dev See {ERC1155-_update}. Overridden to prevent transfers (soulbound).
*/
function _update(address _from, address _to, uint256[] memory _ids, uint256[] memory _values)
internal
override(ERC1155)
{
// Allow minting (_from == address(0))
// Prevent transfers (_from != address(0))
if (_from != address(0)) {
revert IgnitionParticipantSoulbound__TokenIsSoulbound();
}
super._update(_from, _to, _ids, _values);
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Internal Functions */
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/**
* @notice Internal function to mint a token to an address
* @param _identityAddress The address of the identity - checked to be in merkle tree's + identity provider checks
* @param _tokenId The token ID to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
* @param _soulboundRecipient The address of the soulbound recipient
* @param _merkleProof Merkle proof for token ID 0 or 1, can be empty for minting token ID 2
* @param _identityProvider The contract address of the identity provider - these are allowlisted by the admin
* @param _identityData Identity data - this is the data that the identity provider will verify
* @param _soulboundRecipientScreeningData Screening data for the soulbound recipient - this is the data that the address screening provider will verify
* @param _gridTileId The grid token ID to mint
*/
function _internalMint(
address _identityAddress,
TokenId _tokenId,
address _soulboundRecipient,
bytes32[] calldata _merkleProof,
address _identityProvider,
bytes calldata _identityData,
bytes calldata _soulboundRecipientScreeningData,
uint256 _gridTileId
) internal {
// Assert that the user has not minted yet
require(!hasMinted[_identityAddress], IgnitionParticipantSoulbound__AlreadyMinted());
hasMinted[_identityAddress] = true;
require(_gridTileId != 0, IgnitionParticipantSoulbound__GridTileIdCannotBeZero());
// Assert that the grid token ID has not already been assigned
require(!isGridTileIdAssigned[_gridTileId], IgnitionParticipantSoulbound__GridTileAlreadyAssigned());
isGridTileIdAssigned[_gridTileId] = true;
gridTileId[_soulboundRecipient] = _gridTileId;
// Verify identity provider is whitelisted
require(identityProviders[_identityProvider], IgnitionParticipantSoulbound__InvalidAuth(_identityProvider));
if (_tokenId == TokenId.GENESIS_SEQUENCER) {
// Verify merkle proof for genesis sequencer whitelist
require(genesisSequencerMerkleRoot != bytes32(0), IgnitionParticipantSoulbound__NoMerkleRootSet());
bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(_identityAddress))));
require(
MerkleProof.verify(_merkleProof, genesisSequencerMerkleRoot, leaf),
IgnitionParticipantSoulbound__MerkleProofInvalid()
);
} else if (_tokenId == TokenId.CONTRIBUTOR) {
// Verify merkle proof for contributor whitelist
require(contributorMerkleRoot != bytes32(0), IgnitionParticipantSoulbound__NoMerkleRootSet());
bytes32 leaf = keccak256(bytes.concat(keccak256(abi.encode(_identityAddress))));
require(
MerkleProof.verify(_merkleProof, contributorMerkleRoot, leaf),
IgnitionParticipantSoulbound__MerkleProofInvalid()
);
}
// Further steps required for all cases
// Ext call
// Perform sanctions check on the identity address
require(
IWhitelistProvider(_identityProvider).verify(_identityAddress, _identityData),
IgnitionParticipantSoulbound__InvalidAuth(_identityProvider)
);
// Ext call
// Perform sanctions check on the _soulboundRecipient address
require(
IWhitelistProvider(addressScreeningProvider).verify(_soulboundRecipient, _soulboundRecipientScreeningData),
IgnitionParticipantSoulbound__InvalidAuth(addressScreeningProvider)
);
// Ext call - with possible reentrancy on acceptance check - nonReentrant added to prevent
_mint(_soulboundRecipient, uint256(_tokenId), 1, "");
emit IgnitionParticipantSoulboundMinted(_soulboundRecipient, _identityAddress, _tokenId, _gridTileId);
}
/**
* @notice Internal function to mint a token to an address
* @param _to The address to mint the token to
* @param _tokenId The token ID to mint (0 for GENESIS_SEQUENCER, 1 for CONTRIBUTOR, 2 for GENERAL)
* @param _gridTileId The grid tile ID to mint
*/
function _internalAdminMint(address _to, TokenId _tokenId, uint256 _gridTileId) internal {
// The user must not have minted yet
require(!hasMinted[_to], IgnitionParticipantSoulbound__AlreadyMinted());
hasMinted[_to] = true;
gridTileId[_to] = _gridTileId;
require(!isGridTileIdAssigned[_gridTileId], IgnitionParticipantSoulbound__GridTileAlreadyAssigned());
isGridTileIdAssigned[_gridTileId] = true;
_mint(_to, uint256(_tokenId), 1, "");
emit IgnitionParticipantSoulboundMinted(_to, msg.sender, _tokenId, _gridTileId);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
pragma solidity ^0.8.20;
import {Context} from "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* The initial owner is set to the address provided by the deployer. This can
* later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
/**
* @dev The caller account is not authorized to perform an operation.
*/
error OwnableUnauthorizedAccount(address account);
/**
* @dev The owner is not a valid owner account. (eg. `address(0)`)
*/
error OwnableInvalidOwner(address owner);
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the address provided by the deployer as the initial owner.
*/
constructor(address initialOwner) {
if (initialOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(initialOwner);
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
_checkOwner();
_;
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if the sender is not the owner.
*/
function _checkOwner() internal view virtual {
if (owner() != _msgSender()) {
revert OwnableUnauthorizedAccount(_msgSender());
}
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby disabling any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
_transferOwnership(address(0));
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
if (newOwner == address(0)) {
revert OwnableInvalidOwner(address(0));
}
_transferOwnership(newOwner);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Internal function without access restriction.
*/
function _transferOwnership(address newOwner) internal virtual {
address oldOwner = _owner;
_owner = newOwner;
emit OwnershipTransferred(oldOwner, newOwner);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/ERC1155.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "./IERC1155.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "./utils/ERC1155Utils.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";
/**
* @dev Implementation of the basic standard multi-token.
* See https://eips.ethereum.org/EIPS/eip-1155
* Originally based on code by Enjin: https://github.com/enjin/erc-1155
*/
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
using Arrays for uint256[];
using Arrays for address[];
mapping(uint256 id => mapping(address account => uint256)) private _balances;
mapping(address account => mapping(address operator => bool)) private _operatorApprovals;
// Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
string private _uri;
/**
* @dev See {_setURI}.
*/
constructor(string memory uri_) {
_setURI(uri_);
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
return
interfaceId == type(IERC1155).interfaceId ||
interfaceId == type(IERC1155MetadataURI).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev See {IERC1155MetadataURI-uri}.
*
* This implementation returns the same URI for *all* token types. It relies
* on the token type ID substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
*
* Clients calling this function must replace the `\{id\}` substring with the
* actual token type ID.
*/
function uri(uint256 /* id */) public view virtual returns (string memory) {
return _uri;
}
/**
* @dev See {IERC1155-balanceOf}.
*/
function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
return _balances[id][account];
}
/**
* @dev See {IERC1155-balanceOfBatch}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] memory accounts,
uint256[] memory ids
) public view virtual returns (uint256[] memory) {
if (accounts.length != ids.length) {
revert ERC1155InvalidArrayLength(ids.length, accounts.length);
}
uint256[] memory batchBalances = new uint256[](accounts.length);
for (uint256 i = 0; i < accounts.length; ++i) {
batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
}
return batchBalances;
}
/**
* @dev See {IERC1155-setApprovalForAll}.
*/
function setApprovalForAll(address operator, bool approved) public virtual {
_setApprovalForAll(_msgSender(), operator, approved);
}
/**
* @dev See {IERC1155-isApprovedForAll}.
*/
function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
return _operatorApprovals[account][operator];
}
/**
* @dev See {IERC1155-safeTransferFrom}.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeTransferFrom(from, to, id, value, data);
}
/**
* @dev See {IERC1155-safeBatchTransferFrom}.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) public virtual {
address sender = _msgSender();
if (from != sender && !isApprovedForAll(from, sender)) {
revert ERC1155MissingApprovalForAll(sender, from);
}
_safeBatchTransferFrom(from, to, ids, values, data);
}
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
* (or `to`) is the zero address.
*
* Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
* or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
* - `ids` and `values` must have the same length.
*
* NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
*/
function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
if (ids.length != values.length) {
revert ERC1155InvalidArrayLength(ids.length, values.length);
}
address operator = _msgSender();
for (uint256 i = 0; i < ids.length; ++i) {
uint256 id = ids.unsafeMemoryAccess(i);
uint256 value = values.unsafeMemoryAccess(i);
if (from != address(0)) {
uint256 fromBalance = _balances[id][from];
if (fromBalance < value) {
revert ERC1155InsufficientBalance(from, fromBalance, value, id);
}
unchecked {
// Overflow not possible: value <= fromBalance
_balances[id][from] = fromBalance - value;
}
}
if (to != address(0)) {
_balances[id][to] += value;
}
}
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
emit TransferSingle(operator, from, to, id, value);
} else {
emit TransferBatch(operator, from, to, ids, values);
}
}
/**
* @dev Version of {_update} that performs the token acceptance check by calling
* {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
* contains code (eg. is a smart contract at the moment of execution).
*
* IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
* update to the contract state after this function would break the check-effect-interaction pattern. Consider
* overriding {_update} instead.
*/
function _updateWithAcceptanceCheck(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal virtual {
_update(from, to, ids, values);
if (to != address(0)) {
address operator = _msgSender();
if (ids.length == 1) {
uint256 id = ids.unsafeMemoryAccess(0);
uint256 value = values.unsafeMemoryAccess(0);
ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
} else {
ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
}
}
}
/**
* @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
* - `ids` and `values` must have the same length.
*/
function _safeBatchTransferFrom(
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, to, ids, values, data);
}
/**
* @dev Sets a new URI for all token types, by relying on the token type ID
* substitution mechanism
* https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
*
* By this mechanism, any occurrence of the `\{id\}` substring in either the
* URI or any of the values in the JSON file at said URI will be replaced by
* clients with the token type ID.
*
* For example, the `https://token-cdn-domain/\{id\}.json` URI would be
* interpreted by clients as
* `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
* for token type ID 0x4cce0.
*
* See {uri}.
*
* Because these URIs cannot be meaningfully represented by the {URI} event,
* this function emits no events.
*/
function _setURI(string memory newuri) internal virtual {
_uri = newuri;
}
/**
* @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - `to` cannot be the zero address.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
if (to == address(0)) {
revert ERC1155InvalidReceiver(address(0));
}
_updateWithAcceptanceCheck(address(0), to, ids, values, data);
}
/**
* @dev Destroys a `value` amount of tokens of type `id` from `from`
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
*/
function _burn(address from, uint256 id, uint256 value) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
(uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `from` must have at least `value` amount of tokens of type `id`.
* - `ids` and `values` must have the same length.
*/
function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
if (from == address(0)) {
revert ERC1155InvalidSender(address(0));
}
_updateWithAcceptanceCheck(from, address(0), ids, values, "");
}
/**
* @dev Approve `operator` to operate on all of `owner` tokens
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
if (operator == address(0)) {
revert ERC1155InvalidOperator(address(0));
}
_operatorApprovals[owner][operator] = approved;
emit ApprovalForAll(owner, operator, approved);
}
/**
* @dev Creates an array in memory with only one value for each of the elements provided.
*/
function _asSingletonArrays(
uint256 element1,
uint256 element2
) private pure returns (uint256[] memory array1, uint256[] memory array2) {
assembly ("memory-safe") {
// Load the free memory pointer
array1 := mload(0x40)
// Set array length to 1
mstore(array1, 1)
// Store the single element at the next word after the length (where content starts)
mstore(add(array1, 0x20), element1)
// Repeat for next array locating it right after the first array
array2 := add(array1, 0x40)
mstore(array2, 1)
mstore(add(array2, 0x20), element2)
// Update the free memory pointer by pointing after the second array
mstore(0x40, add(array2, 0x40))
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol)
// This file was procedurally generated from scripts/generate/templates/MerkleProof.js.
pragma solidity ^0.8.20;
import {Hashes} from "./Hashes.sol";
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the Merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates Merkle trees that are safe
* against this attack out of the box.
*
* IMPORTANT: Consider memory side-effects when using custom hashing functions
* that access memory in an unsafe way.
*
* NOTE: This library supports proof verification for merkle trees built using
* custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving
* leaf inclusion in trees built using non-commutative hashing functions requires
* additional logic that is not supported by this library.
*/
library MerkleProof {
/**
*@dev The multiproof provided is not valid.
*/
error MerkleProofInvalidMultiproof();
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with the default hashing function.
*/
function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProof(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in memory with a custom hashing function.
*/
function processProof(
bytes32[] memory proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with the default hashing function.
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processProofCalldata(proof, leaf, hasher) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leaves & pre-images are assumed to be sorted.
*
* This version handles proofs in calldata with a custom hashing function.
*/
function processProofCalldata(
bytes32[] calldata proof,
bytes32 leaf,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32) {
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = hasher(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProof}.
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProof(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in memory with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with the default hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = Hashes.commutativeKeccak256(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
*
* NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`.
* The `leaves` must be validated independently. See {processMultiProofCalldata}.
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* This version handles multiproofs in calldata with a custom hashing function.
*
* CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op,
* and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not
* validating the leaves elsewhere.
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves,
function(bytes32, bytes32) view returns (bytes32) hasher
) internal view returns (bytes32 merkleRoot) {
// This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the Merkle tree.
uint256 leavesLen = leaves.length;
uint256 proofFlagsLen = proofFlags.length;
// Check proof validity.
if (leavesLen + proof.length != proofFlagsLen + 1) {
revert MerkleProofInvalidMultiproof();
}
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](proofFlagsLen);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < proofFlagsLen; i++) {
bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
bytes32 b = proofFlags[i]
? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
: proof[proofPos++];
hashes[i] = hasher(a, b);
}
if (proofFlagsLen > 0) {
if (proofPos != proof.length) {
revert MerkleProofInvalidMultiproof();
}
unchecked {
return hashes[proofFlagsLen - 1];
}
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol)
pragma solidity ^0.8.20;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at,
* consider using {ReentrancyGuardTransient} instead.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuard {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant NOT_ENTERED = 1;
uint256 private constant ENTERED = 2;
uint256 private _status;
/**
* @dev Unauthorized reentrant call.
*/
error ReentrancyGuardReentrantCall();
constructor() {
_status = NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be NOT_ENTERED
if (_status == ENTERED) {
revert ReentrancyGuardReentrantCall();
}
// Any calls to nonReentrant after this point will fail
_status = ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = NOT_ENTERED;
}
/**
* @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
* `nonReentrant` function in the call stack.
*/
function _reentrancyGuardEntered() internal view returns (bool) {
return _status == ENTERED;
}
}// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.27;
import {IERC1155} from "@oz/token/ERC1155/IERC1155.sol";
interface IIgnitionParticipantSoulbound is IERC1155 {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Structs */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
enum TokenId {
GENESIS_SEQUENCER,
CONTRIBUTOR,
GENERAL
}
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Events */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
event IgnitionParticipantSoulboundMinted(
address indexed _beneficiary, address indexed _operator, TokenId indexed _tokenId, uint256 _gridTileId
);
event GenesisSequencerMerkleRootUpdated(bytes32 newRoot);
event ContributorMerkleRootUpdated(bytes32 newRoot);
event IdentityProviderSet(address provider, bool active);
event AddressScreeningProviderSet(address provider);
event TokenSaleAddressSet(address tokenSaleAddress);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Errors */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
error IgnitionParticipantSoulbound__CallerIsNotTokenSale();
error IgnitionParticipantSoulbound__TokenIsSoulbound();
error IgnitionParticipantSoulbound__AlreadyMinted();
error IgnitionParticipantSoulbound__GridTileIdCannotBeZero();
error IgnitionParticipantSoulbound__InvalidAuth(address _authProvider);
error IgnitionParticipantSoulbound__MerkleProofInvalid();
error IgnitionParticipantSoulbound__NoMerkleRootSet();
error IgnitionParticipantSoulbound__InvalidInputLength();
error IgnitionParticipantSoulbound__GridTileAlreadyAssigned();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function mint(
TokenId _tokenId,
address _beneficiary,
bytes32[] calldata _merkleProof,
address _identityProvider,
bytes calldata _identityData,
bytes calldata _beneficiaryScreeningData,
uint256 _gridTileId
) external;
function mintFromSale(
address _operator,
address _beneficiary,
bytes32[] calldata _merkleProof,
address _identityProvider,
bytes calldata _identityData,
bytes calldata _beneficiaryScreeningData,
uint256 _gridTileId
) external;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Admin Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function adminMint(address _to, TokenId _tokenId, uint256 _gridTileId) external;
function adminBatchMint(address[] calldata _to, TokenId[] calldata _tokenId, uint256[] calldata _gridTileId)
external;
function setGenesisSequencerMerkleRoot(bytes32 _genesisSequencerMerkleRoot) external;
function setContributorMerkleRoot(bytes32 _contributorMerkleRoot) external;
function setIdentityProvider(address _provider, bool _active) external;
function setAddressScreeningProvider(address _provider) external;
function setTokenSaleAddress(address _tokenSaleAddress) external;
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* View Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function hasGenesisSequencerToken(address _addr) external view returns (bool);
function hasContributorToken(address _addr) external view returns (bool);
function hasGenesisSequencerTokenOrContributorToken(address _addr) external view returns (bool);
function hasGeneralToken(address _addr) external view returns (bool);
function hasAnyToken(address _addr) external view returns (bool);
function genesisSequencerMerkleRoot() external view returns (bytes32);
function contributorMerkleRoot() external view returns (bytes32);
function identityProviders(address _provider) external view returns (bool);
function gridTileId(address _addr) external view returns (uint256);
}// SPDX-License-Identifier: Apache-2.0
pragma solidity ^0.8.27;
interface IWhitelistProvider {
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Events */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
event ConsumerSet(address indexed consumer);
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Errors */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
error WhitelistProvider__InvalidConsumer();
/*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
/* Functions */
/*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/
function setConsumer(address _consumer) external;
/**
* @notice Verify the authentication data
* @param _user The address of the user to verify
* @param _auth The authentication data
* @return bool True if the authentication data is valid
*/
function verify(address _user, bytes memory _auth) external returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
function _contextSuffixLength() internal view virtual returns (uint256) {
return 0;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Required interface of an ERC-1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[ERC].
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the value of tokens of token type `id` owned by `account`.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(
address[] calldata accounts,
uint256[] calldata ids
) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the zero address.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {IERC1155Receiver-onERC1155Received} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `value` amount.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* WARNING: This function can potentially allow a reentrancy attack when transferring tokens
* to an untrusted contract, when invoking {IERC1155Receiver-onERC1155BatchReceived} on the receiver.
* Ensure to follow the checks-effects-interactions pattern and consider employing
* reentrancy guards when interacting with untrusted contracts.
*
* Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
*
* Requirements:
*
* - `ids` and `values` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external;
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)
pragma solidity ^0.8.20;
import {IERC1155} from "../IERC1155.sol";
/**
* @dev Interface of the optional ERC1155MetadataExtension interface, as defined
* in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
*/
interface IERC1155MetadataURI is IERC1155 {
/**
* @dev Returns the URI for token type `id`.
*
* If the `\{id\}` substring is present in the URI, it must be replaced by
* clients with the actual token type ID.
*/
function uri(uint256 id) external view returns (string memory);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (token/ERC1155/utils/ERC1155Utils.sol)
pragma solidity ^0.8.20;
import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";
/**
* @dev Library that provide common ERC-1155 utility functions.
*
* See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
*
* _Available since v5.1._
*/
library ERC1155Utils {
/**
* @dev Performs an acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155Received}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC1155Received(
address operator,
address from,
address to,
uint256 id,
uint256 value,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
if (response != IERC1155Receiver.onERC1155Received.selector) {
// Tokens rejected
revert IERC1155Errors.ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC1155Receiver implementer
revert IERC1155Errors.ERC1155InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
/**
* @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155Receiver-onERC1155BatchReceived}
* on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
*
* The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA).
* Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
* the transfer.
*/
function checkOnERC1155BatchReceived(
address operator,
address from,
address to,
uint256[] memory ids,
uint256[] memory values,
bytes memory data
) internal {
if (to.code.length > 0) {
try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
bytes4 response
) {
if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
// Tokens rejected
revert IERC1155Errors.ERC1155InvalidReceiver(to);
}
} catch (bytes memory reason) {
if (reason.length == 0) {
// non-IERC1155Receiver implementer
revert IERC1155Errors.ERC1155InvalidReceiver(to);
} else {
assembly ("memory-safe") {
revert(add(32, reason), mload(reason))
}
}
}
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol)
pragma solidity ^0.8.20;
import {IERC165} from "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*/
abstract contract ERC165 is IERC165 {
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return interfaceId == type(IERC165).interfaceId;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.
pragma solidity ^0.8.20;
import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";
/**
* @dev Collection of functions related to array types.
*/
library Arrays {
using SlotDerivation for bytes32;
using StorageSlot for bytes32;
/**
* @dev Sort an array of uint256 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
uint256[] memory array,
function(uint256, uint256) pure returns (bool) comp
) internal pure returns (uint256[] memory) {
_quickSort(_begin(array), _end(array), comp);
return array;
}
/**
* @dev Variant of {sort} that sorts an array of uint256 in increasing order.
*/
function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
sort(array, Comparators.lt);
return array;
}
/**
* @dev Sort an array of address (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
address[] memory array,
function(address, address) pure returns (bool) comp
) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of address in increasing order.
*/
function sort(address[] memory array) internal pure returns (address[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Sort an array of bytes32 (in memory) following the provided comparator function.
*
* This function does the sorting "in place", meaning that it overrides the input. The object is returned for
* convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
*
* NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
* array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
* when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
* consume more gas than is available in a block, leading to potential DoS.
*
* IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
*/
function sort(
bytes32[] memory array,
function(bytes32, bytes32) pure returns (bool) comp
) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), _castToUint256Comp(comp));
return array;
}
/**
* @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
*/
function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
sort(_castToUint256Array(array), Comparators.lt);
return array;
}
/**
* @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
* at end (exclusive). Sorting follows the `comp` comparator.
*
* Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
*
* IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
* be used only if the limits are within a memory array.
*/
function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
unchecked {
if (end - begin < 0x40) return;
// Use first element as pivot
uint256 pivot = _mload(begin);
// Position where the pivot should be at the end of the loop
uint256 pos = begin;
for (uint256 it = begin + 0x20; it < end; it += 0x20) {
if (comp(_mload(it), pivot)) {
// If the value stored at the iterator's position comes before the pivot, we increment the
// position of the pivot and move the value there.
pos += 0x20;
_swap(pos, it);
}
}
_swap(begin, pos); // Swap pivot into place
_quickSort(begin, pos, comp); // Sort the left side of the pivot
_quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
}
}
/**
* @dev Pointer to the memory location of the first element of `array`.
*/
function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
assembly ("memory-safe") {
ptr := add(array, 0x20)
}
}
/**
* @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
* that comes just after the last element of the array.
*/
function _end(uint256[] memory array) private pure returns (uint256 ptr) {
unchecked {
return _begin(array) + array.length * 0x20;
}
}
/**
* @dev Load memory word (as a uint256) at location `ptr`.
*/
function _mload(uint256 ptr) private pure returns (uint256 value) {
assembly {
value := mload(ptr)
}
}
/**
* @dev Swaps the elements memory location `ptr1` and `ptr2`.
*/
function _swap(uint256 ptr1, uint256 ptr2) private pure {
assembly {
let value1 := mload(ptr1)
let value2 := mload(ptr2)
mstore(ptr1, value2)
mstore(ptr2, value1)
}
}
/// @dev Helper: low level cast address memory array to uint256 memory array
function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 memory array to uint256 memory array
function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast address comp function to uint256 comp function
function _castToUint256Comp(
function(address, address) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/// @dev Helper: low level cast bytes32 comp function to uint256 comp function
function _castToUint256Comp(
function(bytes32, bytes32) pure returns (bool) input
) private pure returns (function(uint256, uint256) pure returns (bool) output) {
assembly {
output := input
}
}
/**
* @dev Searches a sorted `array` and returns the first index that contains
* a value greater or equal to `element`. If no such index exists (i.e. all
* values in the array are strictly less than `element`), the array length is
* returned. Time complexity O(log n).
*
* NOTE: The `array` is expected to be sorted in ascending order, and to
* contain no repeated elements.
*
* IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
* support for repeated elements in the array. The {lowerBound} function should
* be used instead.
*/
function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
low = mid + 1;
}
}
// At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
if (low > 0 && unsafeAccess(array, low - 1).value == element) {
return low - 1;
} else {
return low;
}
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value greater or equal than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
*/
function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Searches an `array` sorted in ascending order and returns the first
* index that contains a value strictly greater than `element`. If no such index
* exists (i.e. all values in the array are strictly less than `element`), the array
* length is returned. Time complexity O(log n).
*
* See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
*/
function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeAccess(array, mid).value > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Same as {lowerBound}, but with an array in memory.
*/
function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) < element) {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
} else {
high = mid;
}
}
return low;
}
/**
* @dev Same as {upperBound}, but with an array in memory.
*/
function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
uint256 low = 0;
uint256 high = array.length;
if (high == 0) {
return 0;
}
while (low < high) {
uint256 mid = Math.average(low, high);
// Note that mid will always be strictly less than high (i.e. it will be a valid array index)
// because Math.average rounds towards zero (it does integer division with truncation).
if (unsafeMemoryAccess(array, mid) > element) {
high = mid;
} else {
// this cannot overflow because mid < high
unchecked {
low = mid + 1;
}
}
}
return low;
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getAddressSlot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getBytes32Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
bytes32 slot;
assembly ("memory-safe") {
slot := arr.slot
}
return slot.deriveArray().offset(pos).getUint256Slot();
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
*
* WARNING: Only use if you are certain `pos` is lower than the array length.
*/
function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
assembly {
res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(address[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
/**
* @dev Helper to set the length of a dynamic array. Directly writing to `.length` is forbidden.
*
* WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
*/
function unsafeSetLength(uint256[] storage array, uint256 len) internal {
assembly ("memory-safe") {
sstore(array.slot, len)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard ERC-20 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
*/
interface IERC20Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC20InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC20InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
* @param spender Address that may be allowed to operate on tokens without being their owner.
* @param allowance Amount of tokens a `spender` is allowed to operate with.
* @param needed Minimum amount required to perform a transfer.
*/
error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC20InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `spender` to be approved. Used in approvals.
* @param spender Address that may be allowed to operate on tokens without being their owner.
*/
error ERC20InvalidSpender(address spender);
}
/**
* @dev Standard ERC-721 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
*/
interface IERC721Errors {
/**
* @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
* Used in balance queries.
* @param owner Address of the current owner of a token.
*/
error ERC721InvalidOwner(address owner);
/**
* @dev Indicates a `tokenId` whose `owner` is the zero address.
* @param tokenId Identifier number of a token.
*/
error ERC721NonexistentToken(uint256 tokenId);
/**
* @dev Indicates an error related to the ownership over a particular token. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param tokenId Identifier number of a token.
* @param owner Address of the current owner of a token.
*/
error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC721InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC721InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param tokenId Identifier number of a token.
*/
error ERC721InsufficientApproval(address operator, uint256 tokenId);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC721InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC721InvalidOperator(address operator);
}
/**
* @dev Standard ERC-1155 Errors
* Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
*/
interface IERC1155Errors {
/**
* @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
* @param balance Current balance for the interacting account.
* @param needed Minimum amount required to perform a transfer.
* @param tokenId Identifier number of a token.
*/
error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);
/**
* @dev Indicates a failure with the token `sender`. Used in transfers.
* @param sender Address whose tokens are being transferred.
*/
error ERC1155InvalidSender(address sender);
/**
* @dev Indicates a failure with the token `receiver`. Used in transfers.
* @param receiver Address to which tokens are being transferred.
*/
error ERC1155InvalidReceiver(address receiver);
/**
* @dev Indicates a failure with the `operator`’s approval. Used in transfers.
* @param operator Address that may be allowed to operate on tokens without being their owner.
* @param owner Address of the current owner of a token.
*/
error ERC1155MissingApprovalForAll(address operator, address owner);
/**
* @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
* @param approver Address initiating an approval operation.
*/
error ERC1155InvalidApprover(address approver);
/**
* @dev Indicates a failure with the `operator` to be approved. Used in approvals.
* @param operator Address that may be allowed to operate on tokens without being their owner.
*/
error ERC1155InvalidOperator(address operator);
/**
* @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
* Used in batch transfers.
* @param idsLength Length of the array of token identifiers
* @param valuesLength Length of the array of token amounts
*/
error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/cryptography/Hashes.sol)
pragma solidity ^0.8.20;
/**
* @dev Library of standard hash functions.
*
* _Available since v5.1._
*/
library Hashes {
/**
* @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs.
*
* NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
*/
function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) {
return a < b ? efficientKeccak256(a, b) : efficientKeccak256(b, a);
}
/**
* @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
*/
function efficientKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32 value) {
assembly ("memory-safe") {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)
pragma solidity ^0.8.20;
/**
* @dev Interface of the ERC-165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[ERC].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.20;
import {IERC165} from "../../utils/introspection/IERC165.sol";
/**
* @dev Interface that must be implemented by smart contracts in order to receive
* ERC-1155 token transfers.
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC-1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC-1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)
pragma solidity ^0.8.20;
/**
* @dev Provides a set of functions to compare values.
*
* _Available since v5.1._
*/
library Comparators {
function lt(uint256 a, uint256 b) internal pure returns (bool) {
return a < b;
}
function gt(uint256 a, uint256 b) internal pure returns (bool) {
return a > b;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.
pragma solidity ^0.8.20;
/**
* @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
* corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
* the solidity language / compiler.
*
* See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
*
* Example usage:
* ```solidity
* contract Example {
* // Add the library methods
* using StorageSlot for bytes32;
* using SlotDerivation for bytes32;
*
* // Declare a namespace
* string private constant _NAMESPACE = "<namespace>"; // eg. OpenZeppelin.Slot
*
* function setValueInNamespace(uint256 key, address newValue) internal {
* _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
* }
*
* function getValueInNamespace(uint256 key) internal view returns (address) {
* return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
* }
* }
* ```
*
* TIP: Consider using this library along with {StorageSlot}.
*
* NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
* upgrade safety will ignore the slots accessed through this library.
*
* _Available since v5.1._
*/
library SlotDerivation {
/**
* @dev Derive an ERC-7201 slot from a string (namespace).
*/
function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
assembly ("memory-safe") {
mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
slot := and(keccak256(0x00, 0x20), not(0xff))
}
}
/**
* @dev Add an offset to a slot to get the n-th element of a structure or an array.
*/
function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
unchecked {
return bytes32(uint256(slot) + pos);
}
}
/**
* @dev Derive the location of the first element in an array from the slot where the length is stored.
*/
function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, slot)
result := keccak256(0x00, 0x20)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, and(key, shr(96, not(0))))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, iszero(iszero(key)))
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
mstore(0x00, key)
mstore(0x20, slot)
result := keccak256(0x00, 0x40)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
/**
* @dev Derive the location of a mapping element from the key.
*/
function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
assembly ("memory-safe") {
let length := mload(key)
let begin := add(key, 0x20)
let end := add(begin, length)
let cache := mload(end)
mstore(end, slot)
result := keccak256(begin, add(length, 0x20))
mstore(end, cache)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
pragma solidity ^0.8.20;
/**
* @dev Library for reading and writing primitive types to specific storage slots.
*
* Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
* This library helps with reading and writing to such slots without the need for inline assembly.
*
* The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
*
* Example usage to set ERC-1967 implementation slot:
* ```solidity
* contract ERC1967 {
* // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
* bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
*
* function _getImplementation() internal view returns (address) {
* return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
* }
*
* function _setImplementation(address newImplementation) internal {
* require(newImplementation.code.length > 0);
* StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
* }
* }
* ```
*
* TIP: Consider using this library along with {SlotDerivation}.
*/
library StorageSlot {
struct AddressSlot {
address value;
}
struct BooleanSlot {
bool value;
}
struct Bytes32Slot {
bytes32 value;
}
struct Uint256Slot {
uint256 value;
}
struct Int256Slot {
int256 value;
}
struct StringSlot {
string value;
}
struct BytesSlot {
bytes value;
}
/**
* @dev Returns an `AddressSlot` with member `value` located at `slot`.
*/
function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `BooleanSlot` with member `value` located at `slot`.
*/
function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
*/
function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Uint256Slot` with member `value` located at `slot`.
*/
function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `Int256Slot` with member `value` located at `slot`.
*/
function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns a `StringSlot` with member `value` located at `slot`.
*/
function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `StringSlot` representation of the string storage pointer `store`.
*/
function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
/**
* @dev Returns a `BytesSlot` with member `value` located at `slot`.
*/
function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := slot
}
}
/**
* @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
*/
function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
assembly ("memory-safe") {
r.slot := store.slot
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.3.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Return the 512-bit addition of two uint256.
*
* The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
*/
function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
assembly ("memory-safe") {
low := add(a, b)
high := lt(low, a)
}
}
/**
* @dev Return the 512-bit multiplication of two uint256.
*
* The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
*/
function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
// 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
// the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = high * 2²⁵⁶ + low.
assembly ("memory-safe") {
let mm := mulmod(a, b, not(0))
low := mul(a, b)
high := sub(sub(mm, low), lt(mm, low))
}
}
/**
* @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a + b;
success = c >= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a - b;
success = c <= a;
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
uint256 c = a * b;
assembly ("memory-safe") {
// Only true when the multiplication doesn't overflow
// (c / a == b) || (a == 0)
success := or(eq(div(c, a), b), iszero(a))
}
// equivalent to: success ? c : 0
result = c * SafeCast.toUint(success);
}
}
/**
* @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `DIV` opcode returns zero when the denominator is 0.
result := div(a, b)
}
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
unchecked {
success = b > 0;
assembly ("memory-safe") {
// The `MOD` opcode returns zero when the denominator is 0.
result := mod(a, b)
}
}
}
/**
* @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryAdd(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
*/
function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
(, uint256 result) = trySub(a, b);
return result;
}
/**
* @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
*/
function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
(bool success, uint256 result) = tryMul(a, b);
return ternary(success, result, type(uint256).max);
}
/**
* @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
*
* IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
* However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
* one branch when needed, making this function more expensive.
*/
function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
unchecked {
// branchless ternary works because:
// b ^ (a ^ b) == a
// b ^ 0 == b
return b ^ ((a ^ b) * SafeCast.toUint(condition));
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a > b, a, b);
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return ternary(a < b, a, b);
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
Panic.panic(Panic.DIVISION_BY_ZERO);
}
// The following calculation ensures accurate ceiling division without overflow.
// Since a is non-zero, (a - 1) / b will not overflow.
// The largest possible result occurs when (a - 1) / b is type(uint256).max,
// but the largest value we can obtain is type(uint256).max - 1, which happens
// when a = type(uint256).max and b = 1.
unchecked {
return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
}
}
/**
* @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
*
* Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
// Handle non-overflow cases, 256 by 256 division.
if (high == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return low / denominator;
}
// Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
if (denominator <= high) {
Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [high low].
uint256 remainder;
assembly ("memory-safe") {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
high := sub(high, gt(remainder, low))
low := sub(low, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly ("memory-safe") {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [high low] by twos.
low := div(low, twos)
// Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from high into low.
low |= high * twos;
// Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
// that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv ≡ 1 mod 2⁴.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2⁸
inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
inverse *= 2 - denominator * inverse; // inverse mod 2³²
inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
// less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
// is no longer required.
result = low * inverse;
return result;
}
}
/**
* @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
}
/**
* @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
*/
function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
unchecked {
(uint256 high, uint256 low) = mul512(x, y);
if (high >= 1 << n) {
Panic.panic(Panic.UNDER_OVERFLOW);
}
return (high << (256 - n)) | (low >> n);
}
}
/**
* @dev Calculates x * y >> n with full precision, following the selected rounding direction.
*/
function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
}
/**
* @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
*
* If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
* If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
*
* If the input value is not inversible, 0 is returned.
*
* NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
* inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
*/
function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
unchecked {
if (n == 0) return 0;
// The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
// Used to compute integers x and y such that: ax + ny = gcd(a, n).
// When the gcd is 1, then the inverse of a modulo n exists and it's x.
// ax + ny = 1
// ax = 1 + (-y)n
// ax ≡ 1 (mod n) # x is the inverse of a modulo n
// If the remainder is 0 the gcd is n right away.
uint256 remainder = a % n;
uint256 gcd = n;
// Therefore the initial coefficients are:
// ax + ny = gcd(a, n) = n
// 0a + 1n = n
int256 x = 0;
int256 y = 1;
while (remainder != 0) {
uint256 quotient = gcd / remainder;
(gcd, remainder) = (
// The old remainder is the next gcd to try.
remainder,
// Compute the next remainder.
// Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
// where gcd is at most n (capped to type(uint256).max)
gcd - remainder * quotient
);
(x, y) = (
// Increment the coefficient of a.
y,
// Decrement the coefficient of n.
// Can overflow, but the result is casted to uint256 so that the
// next value of y is "wrapped around" to a value between 0 and n - 1.
x - y * int256(quotient)
);
}
if (gcd != 1) return 0; // No inverse exists.
return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
}
}
/**
* @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
*
* From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
* prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
* `a**(p-2)` is the modular multiplicative inverse of a in Fp.
*
* NOTE: this function does NOT check that `p` is a prime greater than `2`.
*/
function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
unchecked {
return Math.modExp(a, p - 2, p);
}
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
*
* Requirements:
* - modulus can't be zero
* - underlying staticcall to precompile must succeed
*
* IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
* sure the chain you're using it on supports the precompiled contract for modular exponentiation
* at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
* the underlying function will succeed given the lack of a revert, but the result may be incorrectly
* interpreted as 0.
*/
function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
(bool success, uint256 result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
* It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
* to operate modulo 0 or if the underlying precompile reverted.
*
* IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
* you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
* https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
* of a revert, but the result may be incorrectly interpreted as 0.
*/
function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
if (m == 0) return (false, 0);
assembly ("memory-safe") {
let ptr := mload(0x40)
// | Offset | Content | Content (Hex) |
// |-----------|------------|--------------------------------------------------------------------|
// | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 |
// | 0x60:0x7f | value of b | 0x<.............................................................b> |
// | 0x80:0x9f | value of e | 0x<.............................................................e> |
// | 0xa0:0xbf | value of m | 0x<.............................................................m> |
mstore(ptr, 0x20)
mstore(add(ptr, 0x20), 0x20)
mstore(add(ptr, 0x40), 0x20)
mstore(add(ptr, 0x60), b)
mstore(add(ptr, 0x80), e)
mstore(add(ptr, 0xa0), m)
// Given the result < m, it's guaranteed to fit in 32 bytes,
// so we can use the memory scratch space located at offset 0.
success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
result := mload(0x00)
}
}
/**
* @dev Variant of {modExp} that supports inputs of arbitrary length.
*/
function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
(bool success, bytes memory result) = tryModExp(b, e, m);
if (!success) {
Panic.panic(Panic.DIVISION_BY_ZERO);
}
return result;
}
/**
* @dev Variant of {tryModExp} that supports inputs of arbitrary length.
*/
function tryModExp(
bytes memory b,
bytes memory e,
bytes memory m
) internal view returns (bool success, bytes memory result) {
if (_zeroBytes(m)) return (false, new bytes(0));
uint256 mLen = m.length;
// Encode call args in result and move the free memory pointer
result = abi.encodePacked(b.length, e.length, mLen, b, e, m);
assembly ("memory-safe") {
let dataPtr := add(result, 0x20)
// Write result on top of args to avoid allocating extra memory.
success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
// Overwrite the length.
// result.length > returndatasize() is guaranteed because returndatasize() == m.length
mstore(result, mLen)
// Set the memory pointer after the returned data.
mstore(0x40, add(dataPtr, mLen))
}
}
/**
* @dev Returns whether the provided byte array is zero.
*/
function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
for (uint256 i = 0; i < byteArray.length; ++i) {
if (byteArray[i] != 0) {
return false;
}
}
return true;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* This method is based on Newton's method for computing square roots; the algorithm is restricted to only
* using integer operations.
*/
function sqrt(uint256 a) internal pure returns (uint256) {
unchecked {
// Take care of easy edge cases when a == 0 or a == 1
if (a <= 1) {
return a;
}
// In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
// sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
// the current value as `ε_n = | x_n - sqrt(a) |`.
//
// For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
// of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
// bigger than any uint256.
//
// By noticing that
// `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
// we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
// to the msb function.
uint256 aa = a;
uint256 xn = 1;
if (aa >= (1 << 128)) {
aa >>= 128;
xn <<= 64;
}
if (aa >= (1 << 64)) {
aa >>= 64;
xn <<= 32;
}
if (aa >= (1 << 32)) {
aa >>= 32;
xn <<= 16;
}
if (aa >= (1 << 16)) {
aa >>= 16;
xn <<= 8;
}
if (aa >= (1 << 8)) {
aa >>= 8;
xn <<= 4;
}
if (aa >= (1 << 4)) {
aa >>= 4;
xn <<= 2;
}
if (aa >= (1 << 2)) {
xn <<= 1;
}
// We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
//
// We can refine our estimation by noticing that the middle of that interval minimizes the error.
// If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
// This is going to be our x_0 (and ε_0)
xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)
// From here, Newton's method give us:
// x_{n+1} = (x_n + a / x_n) / 2
//
// One should note that:
// x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
// = ((x_n² + a) / (2 * x_n))² - a
// = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
// = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
// = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
// = (x_n² - a)² / (2 * x_n)²
// = ((x_n² - a) / (2 * x_n))²
// ≥ 0
// Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
//
// This gives us the proof of quadratic convergence of the sequence:
// ε_{n+1} = | x_{n+1} - sqrt(a) |
// = | (x_n + a / x_n) / 2 - sqrt(a) |
// = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
// = | (x_n - sqrt(a))² / (2 * x_n) |
// = | ε_n² / (2 * x_n) |
// = ε_n² / | (2 * x_n) |
//
// For the first iteration, we have a special case where x_0 is known:
// ε_1 = ε_0² / | (2 * x_0) |
// ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
// ≤ 2**(2*e-4) / (3 * 2**(e-1))
// ≤ 2**(e-3) / 3
// ≤ 2**(e-3-log2(3))
// ≤ 2**(e-4.5)
//
// For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
// ε_{n+1} = ε_n² / | (2 * x_n) |
// ≤ (2**(e-k))² / (2 * 2**(e-1))
// ≤ 2**(2*e-2*k) / 2**e
// ≤ 2**(e-2*k)
xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above
xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5
xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9
xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18
xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36
xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72
// Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
// ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
// sqrt(a) or sqrt(a) + 1.
return xn - SafeCast.toUint(xn > a / xn);
}
}
/**
* @dev Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// If upper 8 bits of 16-bit half set, add 8 to result
r |= SafeCast.toUint((x >> r) > 0xff) << 3;
// If upper 4 bits of 8-bit half set, add 4 to result
r |= SafeCast.toUint((x >> r) > 0xf) << 2;
// Shifts value right by the current result and use it as an index into this lookup table:
//
// | x (4 bits) | index | table[index] = MSB position |
// |------------|---------|-----------------------------|
// | 0000 | 0 | table[0] = 0 |
// | 0001 | 1 | table[1] = 0 |
// | 0010 | 2 | table[2] = 1 |
// | 0011 | 3 | table[3] = 1 |
// | 0100 | 4 | table[4] = 2 |
// | 0101 | 5 | table[5] = 2 |
// | 0110 | 6 | table[6] = 2 |
// | 0111 | 7 | table[7] = 2 |
// | 1000 | 8 | table[8] = 3 |
// | 1001 | 9 | table[9] = 3 |
// | 1010 | 10 | table[10] = 3 |
// | 1011 | 11 | table[11] = 3 |
// | 1100 | 12 | table[12] = 3 |
// | 1101 | 13 | table[13] = 3 |
// | 1110 | 14 | table[14] = 3 |
// | 1111 | 15 | table[15] = 3 |
//
// The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
assembly ("memory-safe") {
r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
}
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 x) internal pure returns (uint256 r) {
// If value has upper 128 bits set, log2 result is at least 128
r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
// If upper 64 bits of 128-bit half set, add 64 to result
r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
// If upper 32 bits of 64-bit half set, add 32 to result
r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
// If upper 16 bits of 32-bit half set, add 16 to result
r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
// Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)
pragma solidity ^0.8.20;
/**
* @dev Helper library for emitting standardized panic codes.
*
* ```solidity
* contract Example {
* using Panic for uint256;
*
* // Use any of the declared internal constants
* function foo() { Panic.GENERIC.panic(); }
*
* // Alternatively
* function foo() { Panic.panic(Panic.GENERIC); }
* }
* ```
*
* Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
*
* _Available since v5.1._
*/
// slither-disable-next-line unused-state
library Panic {
/// @dev generic / unspecified error
uint256 internal constant GENERIC = 0x00;
/// @dev used by the assert() builtin
uint256 internal constant ASSERT = 0x01;
/// @dev arithmetic underflow or overflow
uint256 internal constant UNDER_OVERFLOW = 0x11;
/// @dev division or modulo by zero
uint256 internal constant DIVISION_BY_ZERO = 0x12;
/// @dev enum conversion error
uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
/// @dev invalid encoding in storage
uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
/// @dev empty array pop
uint256 internal constant EMPTY_ARRAY_POP = 0x31;
/// @dev array out of bounds access
uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
/// @dev resource error (too large allocation or too large array)
uint256 internal constant RESOURCE_ERROR = 0x41;
/// @dev calling invalid internal function
uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;
/// @dev Reverts with a panic code. Recommended to use with
/// the internal constants with predefined codes.
function panic(uint256 code) internal pure {
assembly ("memory-safe") {
mstore(0x00, 0x4e487b71)
mstore(0x20, code)
revert(0x1c, 0x24)
}
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.
pragma solidity ^0.8.20;
/**
* @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
* checks.
*
* Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
* easily result in undesired exploitation or bugs, since developers usually
* assume that overflows raise errors. `SafeCast` restores this intuition by
* reverting the transaction when such an operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeCast {
/**
* @dev Value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);
/**
* @dev An int value doesn't fit in an uint of `bits` size.
*/
error SafeCastOverflowedIntToUint(int256 value);
/**
* @dev Value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);
/**
* @dev An uint value doesn't fit in an int of `bits` size.
*/
error SafeCastOverflowedUintToInt(uint256 value);
/**
* @dev Returns the downcasted uint248 from uint256, reverting on
* overflow (when the input is greater than largest uint248).
*
* Counterpart to Solidity's `uint248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toUint248(uint256 value) internal pure returns (uint248) {
if (value > type(uint248).max) {
revert SafeCastOverflowedUintDowncast(248, value);
}
return uint248(value);
}
/**
* @dev Returns the downcasted uint240 from uint256, reverting on
* overflow (when the input is greater than largest uint240).
*
* Counterpart to Solidity's `uint240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toUint240(uint256 value) internal pure returns (uint240) {
if (value > type(uint240).max) {
revert SafeCastOverflowedUintDowncast(240, value);
}
return uint240(value);
}
/**
* @dev Returns the downcasted uint232 from uint256, reverting on
* overflow (when the input is greater than largest uint232).
*
* Counterpart to Solidity's `uint232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toUint232(uint256 value) internal pure returns (uint232) {
if (value > type(uint232).max) {
revert SafeCastOverflowedUintDowncast(232, value);
}
return uint232(value);
}
/**
* @dev Returns the downcasted uint224 from uint256, reverting on
* overflow (when the input is greater than largest uint224).
*
* Counterpart to Solidity's `uint224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toUint224(uint256 value) internal pure returns (uint224) {
if (value > type(uint224).max) {
revert SafeCastOverflowedUintDowncast(224, value);
}
return uint224(value);
}
/**
* @dev Returns the downcasted uint216 from uint256, reverting on
* overflow (when the input is greater than largest uint216).
*
* Counterpart to Solidity's `uint216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toUint216(uint256 value) internal pure returns (uint216) {
if (value > type(uint216).max) {
revert SafeCastOverflowedUintDowncast(216, value);
}
return uint216(value);
}
/**
* @dev Returns the downcasted uint208 from uint256, reverting on
* overflow (when the input is greater than largest uint208).
*
* Counterpart to Solidity's `uint208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toUint208(uint256 value) internal pure returns (uint208) {
if (value > type(uint208).max) {
revert SafeCastOverflowedUintDowncast(208, value);
}
return uint208(value);
}
/**
* @dev Returns the downcasted uint200 from uint256, reverting on
* overflow (when the input is greater than largest uint200).
*
* Counterpart to Solidity's `uint200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toUint200(uint256 value) internal pure returns (uint200) {
if (value > type(uint200).max) {
revert SafeCastOverflowedUintDowncast(200, value);
}
return uint200(value);
}
/**
* @dev Returns the downcasted uint192 from uint256, reverting on
* overflow (when the input is greater than largest uint192).
*
* Counterpart to Solidity's `uint192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toUint192(uint256 value) internal pure returns (uint192) {
if (value > type(uint192).max) {
revert SafeCastOverflowedUintDowncast(192, value);
}
return uint192(value);
}
/**
* @dev Returns the downcasted uint184 from uint256, reverting on
* overflow (when the input is greater than largest uint184).
*
* Counterpart to Solidity's `uint184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toUint184(uint256 value) internal pure returns (uint184) {
if (value > type(uint184).max) {
revert SafeCastOverflowedUintDowncast(184, value);
}
return uint184(value);
}
/**
* @dev Returns the downcasted uint176 from uint256, reverting on
* overflow (when the input is greater than largest uint176).
*
* Counterpart to Solidity's `uint176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toUint176(uint256 value) internal pure returns (uint176) {
if (value > type(uint176).max) {
revert SafeCastOverflowedUintDowncast(176, value);
}
return uint176(value);
}
/**
* @dev Returns the downcasted uint168 from uint256, reverting on
* overflow (when the input is greater than largest uint168).
*
* Counterpart to Solidity's `uint168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toUint168(uint256 value) internal pure returns (uint168) {
if (value > type(uint168).max) {
revert SafeCastOverflowedUintDowncast(168, value);
}
return uint168(value);
}
/**
* @dev Returns the downcasted uint160 from uint256, reverting on
* overflow (when the input is greater than largest uint160).
*
* Counterpart to Solidity's `uint160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toUint160(uint256 value) internal pure returns (uint160) {
if (value > type(uint160).max) {
revert SafeCastOverflowedUintDowncast(160, value);
}
return uint160(value);
}
/**
* @dev Returns the downcasted uint152 from uint256, reverting on
* overflow (when the input is greater than largest uint152).
*
* Counterpart to Solidity's `uint152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toUint152(uint256 value) internal pure returns (uint152) {
if (value > type(uint152).max) {
revert SafeCastOverflowedUintDowncast(152, value);
}
return uint152(value);
}
/**
* @dev Returns the downcasted uint144 from uint256, reverting on
* overflow (when the input is greater than largest uint144).
*
* Counterpart to Solidity's `uint144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toUint144(uint256 value) internal pure returns (uint144) {
if (value > type(uint144).max) {
revert SafeCastOverflowedUintDowncast(144, value);
}
return uint144(value);
}
/**
* @dev Returns the downcasted uint136 from uint256, reverting on
* overflow (when the input is greater than largest uint136).
*
* Counterpart to Solidity's `uint136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toUint136(uint256 value) internal pure returns (uint136) {
if (value > type(uint136).max) {
revert SafeCastOverflowedUintDowncast(136, value);
}
return uint136(value);
}
/**
* @dev Returns the downcasted uint128 from uint256, reverting on
* overflow (when the input is greater than largest uint128).
*
* Counterpart to Solidity's `uint128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toUint128(uint256 value) internal pure returns (uint128) {
if (value > type(uint128).max) {
revert SafeCastOverflowedUintDowncast(128, value);
}
return uint128(value);
}
/**
* @dev Returns the downcasted uint120 from uint256, reverting on
* overflow (when the input is greater than largest uint120).
*
* Counterpart to Solidity's `uint120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toUint120(uint256 value) internal pure returns (uint120) {
if (value > type(uint120).max) {
revert SafeCastOverflowedUintDowncast(120, value);
}
return uint120(value);
}
/**
* @dev Returns the downcasted uint112 from uint256, reverting on
* overflow (when the input is greater than largest uint112).
*
* Counterpart to Solidity's `uint112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toUint112(uint256 value) internal pure returns (uint112) {
if (value > type(uint112).max) {
revert SafeCastOverflowedUintDowncast(112, value);
}
return uint112(value);
}
/**
* @dev Returns the downcasted uint104 from uint256, reverting on
* overflow (when the input is greater than largest uint104).
*
* Counterpart to Solidity's `uint104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toUint104(uint256 value) internal pure returns (uint104) {
if (value > type(uint104).max) {
revert SafeCastOverflowedUintDowncast(104, value);
}
return uint104(value);
}
/**
* @dev Returns the downcasted uint96 from uint256, reverting on
* overflow (when the input is greater than largest uint96).
*
* Counterpart to Solidity's `uint96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toUint96(uint256 value) internal pure returns (uint96) {
if (value > type(uint96).max) {
revert SafeCastOverflowedUintDowncast(96, value);
}
return uint96(value);
}
/**
* @dev Returns the downcasted uint88 from uint256, reverting on
* overflow (when the input is greater than largest uint88).
*
* Counterpart to Solidity's `uint88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toUint88(uint256 value) internal pure returns (uint88) {
if (value > type(uint88).max) {
revert SafeCastOverflowedUintDowncast(88, value);
}
return uint88(value);
}
/**
* @dev Returns the downcasted uint80 from uint256, reverting on
* overflow (when the input is greater than largest uint80).
*
* Counterpart to Solidity's `uint80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toUint80(uint256 value) internal pure returns (uint80) {
if (value > type(uint80).max) {
revert SafeCastOverflowedUintDowncast(80, value);
}
return uint80(value);
}
/**
* @dev Returns the downcasted uint72 from uint256, reverting on
* overflow (when the input is greater than largest uint72).
*
* Counterpart to Solidity's `uint72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toUint72(uint256 value) internal pure returns (uint72) {
if (value > type(uint72).max) {
revert SafeCastOverflowedUintDowncast(72, value);
}
return uint72(value);
}
/**
* @dev Returns the downcasted uint64 from uint256, reverting on
* overflow (when the input is greater than largest uint64).
*
* Counterpart to Solidity's `uint64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toUint64(uint256 value) internal pure returns (uint64) {
if (value > type(uint64).max) {
revert SafeCastOverflowedUintDowncast(64, value);
}
return uint64(value);
}
/**
* @dev Returns the downcasted uint56 from uint256, reverting on
* overflow (when the input is greater than largest uint56).
*
* Counterpart to Solidity's `uint56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toUint56(uint256 value) internal pure returns (uint56) {
if (value > type(uint56).max) {
revert SafeCastOverflowedUintDowncast(56, value);
}
return uint56(value);
}
/**
* @dev Returns the downcasted uint48 from uint256, reverting on
* overflow (when the input is greater than largest uint48).
*
* Counterpart to Solidity's `uint48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toUint48(uint256 value) internal pure returns (uint48) {
if (value > type(uint48).max) {
revert SafeCastOverflowedUintDowncast(48, value);
}
return uint48(value);
}
/**
* @dev Returns the downcasted uint40 from uint256, reverting on
* overflow (when the input is greater than largest uint40).
*
* Counterpart to Solidity's `uint40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toUint40(uint256 value) internal pure returns (uint40) {
if (value > type(uint40).max) {
revert SafeCastOverflowedUintDowncast(40, value);
}
return uint40(value);
}
/**
* @dev Returns the downcasted uint32 from uint256, reverting on
* overflow (when the input is greater than largest uint32).
*
* Counterpart to Solidity's `uint32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toUint32(uint256 value) internal pure returns (uint32) {
if (value > type(uint32).max) {
revert SafeCastOverflowedUintDowncast(32, value);
}
return uint32(value);
}
/**
* @dev Returns the downcasted uint24 from uint256, reverting on
* overflow (when the input is greater than largest uint24).
*
* Counterpart to Solidity's `uint24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toUint24(uint256 value) internal pure returns (uint24) {
if (value > type(uint24).max) {
revert SafeCastOverflowedUintDowncast(24, value);
}
return uint24(value);
}
/**
* @dev Returns the downcasted uint16 from uint256, reverting on
* overflow (when the input is greater than largest uint16).
*
* Counterpart to Solidity's `uint16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toUint16(uint256 value) internal pure returns (uint16) {
if (value > type(uint16).max) {
revert SafeCastOverflowedUintDowncast(16, value);
}
return uint16(value);
}
/**
* @dev Returns the downcasted uint8 from uint256, reverting on
* overflow (when the input is greater than largest uint8).
*
* Counterpart to Solidity's `uint8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toUint8(uint256 value) internal pure returns (uint8) {
if (value > type(uint8).max) {
revert SafeCastOverflowedUintDowncast(8, value);
}
return uint8(value);
}
/**
* @dev Converts a signed int256 into an unsigned uint256.
*
* Requirements:
*
* - input must be greater than or equal to 0.
*/
function toUint256(int256 value) internal pure returns (uint256) {
if (value < 0) {
revert SafeCastOverflowedIntToUint(value);
}
return uint256(value);
}
/**
* @dev Returns the downcasted int248 from int256, reverting on
* overflow (when the input is less than smallest int248 or
* greater than largest int248).
*
* Counterpart to Solidity's `int248` operator.
*
* Requirements:
*
* - input must fit into 248 bits
*/
function toInt248(int256 value) internal pure returns (int248 downcasted) {
downcasted = int248(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(248, value);
}
}
/**
* @dev Returns the downcasted int240 from int256, reverting on
* overflow (when the input is less than smallest int240 or
* greater than largest int240).
*
* Counterpart to Solidity's `int240` operator.
*
* Requirements:
*
* - input must fit into 240 bits
*/
function toInt240(int256 value) internal pure returns (int240 downcasted) {
downcasted = int240(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(240, value);
}
}
/**
* @dev Returns the downcasted int232 from int256, reverting on
* overflow (when the input is less than smallest int232 or
* greater than largest int232).
*
* Counterpart to Solidity's `int232` operator.
*
* Requirements:
*
* - input must fit into 232 bits
*/
function toInt232(int256 value) internal pure returns (int232 downcasted) {
downcasted = int232(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(232, value);
}
}
/**
* @dev Returns the downcasted int224 from int256, reverting on
* overflow (when the input is less than smallest int224 or
* greater than largest int224).
*
* Counterpart to Solidity's `int224` operator.
*
* Requirements:
*
* - input must fit into 224 bits
*/
function toInt224(int256 value) internal pure returns (int224 downcasted) {
downcasted = int224(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(224, value);
}
}
/**
* @dev Returns the downcasted int216 from int256, reverting on
* overflow (when the input is less than smallest int216 or
* greater than largest int216).
*
* Counterpart to Solidity's `int216` operator.
*
* Requirements:
*
* - input must fit into 216 bits
*/
function toInt216(int256 value) internal pure returns (int216 downcasted) {
downcasted = int216(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(216, value);
}
}
/**
* @dev Returns the downcasted int208 from int256, reverting on
* overflow (when the input is less than smallest int208 or
* greater than largest int208).
*
* Counterpart to Solidity's `int208` operator.
*
* Requirements:
*
* - input must fit into 208 bits
*/
function toInt208(int256 value) internal pure returns (int208 downcasted) {
downcasted = int208(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(208, value);
}
}
/**
* @dev Returns the downcasted int200 from int256, reverting on
* overflow (when the input is less than smallest int200 or
* greater than largest int200).
*
* Counterpart to Solidity's `int200` operator.
*
* Requirements:
*
* - input must fit into 200 bits
*/
function toInt200(int256 value) internal pure returns (int200 downcasted) {
downcasted = int200(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(200, value);
}
}
/**
* @dev Returns the downcasted int192 from int256, reverting on
* overflow (when the input is less than smallest int192 or
* greater than largest int192).
*
* Counterpart to Solidity's `int192` operator.
*
* Requirements:
*
* - input must fit into 192 bits
*/
function toInt192(int256 value) internal pure returns (int192 downcasted) {
downcasted = int192(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(192, value);
}
}
/**
* @dev Returns the downcasted int184 from int256, reverting on
* overflow (when the input is less than smallest int184 or
* greater than largest int184).
*
* Counterpart to Solidity's `int184` operator.
*
* Requirements:
*
* - input must fit into 184 bits
*/
function toInt184(int256 value) internal pure returns (int184 downcasted) {
downcasted = int184(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(184, value);
}
}
/**
* @dev Returns the downcasted int176 from int256, reverting on
* overflow (when the input is less than smallest int176 or
* greater than largest int176).
*
* Counterpart to Solidity's `int176` operator.
*
* Requirements:
*
* - input must fit into 176 bits
*/
function toInt176(int256 value) internal pure returns (int176 downcasted) {
downcasted = int176(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(176, value);
}
}
/**
* @dev Returns the downcasted int168 from int256, reverting on
* overflow (when the input is less than smallest int168 or
* greater than largest int168).
*
* Counterpart to Solidity's `int168` operator.
*
* Requirements:
*
* - input must fit into 168 bits
*/
function toInt168(int256 value) internal pure returns (int168 downcasted) {
downcasted = int168(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(168, value);
}
}
/**
* @dev Returns the downcasted int160 from int256, reverting on
* overflow (when the input is less than smallest int160 or
* greater than largest int160).
*
* Counterpart to Solidity's `int160` operator.
*
* Requirements:
*
* - input must fit into 160 bits
*/
function toInt160(int256 value) internal pure returns (int160 downcasted) {
downcasted = int160(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(160, value);
}
}
/**
* @dev Returns the downcasted int152 from int256, reverting on
* overflow (when the input is less than smallest int152 or
* greater than largest int152).
*
* Counterpart to Solidity's `int152` operator.
*
* Requirements:
*
* - input must fit into 152 bits
*/
function toInt152(int256 value) internal pure returns (int152 downcasted) {
downcasted = int152(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(152, value);
}
}
/**
* @dev Returns the downcasted int144 from int256, reverting on
* overflow (when the input is less than smallest int144 or
* greater than largest int144).
*
* Counterpart to Solidity's `int144` operator.
*
* Requirements:
*
* - input must fit into 144 bits
*/
function toInt144(int256 value) internal pure returns (int144 downcasted) {
downcasted = int144(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(144, value);
}
}
/**
* @dev Returns the downcasted int136 from int256, reverting on
* overflow (when the input is less than smallest int136 or
* greater than largest int136).
*
* Counterpart to Solidity's `int136` operator.
*
* Requirements:
*
* - input must fit into 136 bits
*/
function toInt136(int256 value) internal pure returns (int136 downcasted) {
downcasted = int136(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(136, value);
}
}
/**
* @dev Returns the downcasted int128 from int256, reverting on
* overflow (when the input is less than smallest int128 or
* greater than largest int128).
*
* Counterpart to Solidity's `int128` operator.
*
* Requirements:
*
* - input must fit into 128 bits
*/
function toInt128(int256 value) internal pure returns (int128 downcasted) {
downcasted = int128(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(128, value);
}
}
/**
* @dev Returns the downcasted int120 from int256, reverting on
* overflow (when the input is less than smallest int120 or
* greater than largest int120).
*
* Counterpart to Solidity's `int120` operator.
*
* Requirements:
*
* - input must fit into 120 bits
*/
function toInt120(int256 value) internal pure returns (int120 downcasted) {
downcasted = int120(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(120, value);
}
}
/**
* @dev Returns the downcasted int112 from int256, reverting on
* overflow (when the input is less than smallest int112 or
* greater than largest int112).
*
* Counterpart to Solidity's `int112` operator.
*
* Requirements:
*
* - input must fit into 112 bits
*/
function toInt112(int256 value) internal pure returns (int112 downcasted) {
downcasted = int112(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(112, value);
}
}
/**
* @dev Returns the downcasted int104 from int256, reverting on
* overflow (when the input is less than smallest int104 or
* greater than largest int104).
*
* Counterpart to Solidity's `int104` operator.
*
* Requirements:
*
* - input must fit into 104 bits
*/
function toInt104(int256 value) internal pure returns (int104 downcasted) {
downcasted = int104(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(104, value);
}
}
/**
* @dev Returns the downcasted int96 from int256, reverting on
* overflow (when the input is less than smallest int96 or
* greater than largest int96).
*
* Counterpart to Solidity's `int96` operator.
*
* Requirements:
*
* - input must fit into 96 bits
*/
function toInt96(int256 value) internal pure returns (int96 downcasted) {
downcasted = int96(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(96, value);
}
}
/**
* @dev Returns the downcasted int88 from int256, reverting on
* overflow (when the input is less than smallest int88 or
* greater than largest int88).
*
* Counterpart to Solidity's `int88` operator.
*
* Requirements:
*
* - input must fit into 88 bits
*/
function toInt88(int256 value) internal pure returns (int88 downcasted) {
downcasted = int88(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(88, value);
}
}
/**
* @dev Returns the downcasted int80 from int256, reverting on
* overflow (when the input is less than smallest int80 or
* greater than largest int80).
*
* Counterpart to Solidity's `int80` operator.
*
* Requirements:
*
* - input must fit into 80 bits
*/
function toInt80(int256 value) internal pure returns (int80 downcasted) {
downcasted = int80(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(80, value);
}
}
/**
* @dev Returns the downcasted int72 from int256, reverting on
* overflow (when the input is less than smallest int72 or
* greater than largest int72).
*
* Counterpart to Solidity's `int72` operator.
*
* Requirements:
*
* - input must fit into 72 bits
*/
function toInt72(int256 value) internal pure returns (int72 downcasted) {
downcasted = int72(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(72, value);
}
}
/**
* @dev Returns the downcasted int64 from int256, reverting on
* overflow (when the input is less than smallest int64 or
* greater than largest int64).
*
* Counterpart to Solidity's `int64` operator.
*
* Requirements:
*
* - input must fit into 64 bits
*/
function toInt64(int256 value) internal pure returns (int64 downcasted) {
downcasted = int64(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(64, value);
}
}
/**
* @dev Returns the downcasted int56 from int256, reverting on
* overflow (when the input is less than smallest int56 or
* greater than largest int56).
*
* Counterpart to Solidity's `int56` operator.
*
* Requirements:
*
* - input must fit into 56 bits
*/
function toInt56(int256 value) internal pure returns (int56 downcasted) {
downcasted = int56(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(56, value);
}
}
/**
* @dev Returns the downcasted int48 from int256, reverting on
* overflow (when the input is less than smallest int48 or
* greater than largest int48).
*
* Counterpart to Solidity's `int48` operator.
*
* Requirements:
*
* - input must fit into 48 bits
*/
function toInt48(int256 value) internal pure returns (int48 downcasted) {
downcasted = int48(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(48, value);
}
}
/**
* @dev Returns the downcasted int40 from int256, reverting on
* overflow (when the input is less than smallest int40 or
* greater than largest int40).
*
* Counterpart to Solidity's `int40` operator.
*
* Requirements:
*
* - input must fit into 40 bits
*/
function toInt40(int256 value) internal pure returns (int40 downcasted) {
downcasted = int40(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(40, value);
}
}
/**
* @dev Returns the downcasted int32 from int256, reverting on
* overflow (when the input is less than smallest int32 or
* greater than largest int32).
*
* Counterpart to Solidity's `int32` operator.
*
* Requirements:
*
* - input must fit into 32 bits
*/
function toInt32(int256 value) internal pure returns (int32 downcasted) {
downcasted = int32(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(32, value);
}
}
/**
* @dev Returns the downcasted int24 from int256, reverting on
* overflow (when the input is less than smallest int24 or
* greater than largest int24).
*
* Counterpart to Solidity's `int24` operator.
*
* Requirements:
*
* - input must fit into 24 bits
*/
function toInt24(int256 value) internal pure returns (int24 downcasted) {
downcasted = int24(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(24, value);
}
}
/**
* @dev Returns the downcasted int16 from int256, reverting on
* overflow (when the input is less than smallest int16 or
* greater than largest int16).
*
* Counterpart to Solidity's `int16` operator.
*
* Requirements:
*
* - input must fit into 16 bits
*/
function toInt16(int256 value) internal pure returns (int16 downcasted) {
downcasted = int16(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(16, value);
}
}
/**
* @dev Returns the downcasted int8 from int256, reverting on
* overflow (when the input is less than smallest int8 or
* greater than largest int8).
*
* Counterpart to Solidity's `int8` operator.
*
* Requirements:
*
* - input must fit into 8 bits
*/
function toInt8(int256 value) internal pure returns (int8 downcasted) {
downcasted = int8(value);
if (downcasted != value) {
revert SafeCastOverflowedIntDowncast(8, value);
}
}
/**
* @dev Converts an unsigned uint256 into a signed int256.
*
* Requirements:
*
* - input must be less than or equal to maxInt256.
*/
function toInt256(uint256 value) internal pure returns (int256) {
// Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
if (value > uint256(type(int256).max)) {
revert SafeCastOverflowedUintToInt(value);
}
return int256(value);
}
/**
* @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
*/
function toUint(bool b) internal pure returns (uint256 u) {
assembly ("memory-safe") {
u := iszero(iszero(b))
}
}
}{
"remappings": [
"src/=src/",
"test/=test/",
"@aztec/=lib/l1-contracts/src/",
"@aztec-test/=lib/l1-contracts/test/",
"@openzeppelin/=lib/openzeppelin-contracts/",
"@oz/=lib/openzeppelin-contracts/contracts/",
"forge-std/=lib/forge-std/src/",
"@atp/=lib/teegeeee/src/",
"@atp-mock/=lib/teegeeee/src/test/mocks/",
"@zkpassport/=lib/circuits/src/solidity/src/",
"@splits/=lib/splits-contracts-monorepo/packages/splits-v2/src/",
"@predicate/=lib/predicate-contracts/src/",
"@teegeeee/=lib/teegeeee/src/",
"@twap-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/src/",
"@twap-auction-test/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/",
"@launcher/=lib/liquidity-launcher/src/",
"@v4c/=lib/liquidity-launcher/lib/v4-core/src/",
"@v4p/=lib/liquidity-launcher/lib/v4-periphery/src/",
"@aztec-blob-lib/=lib/l1-contracts/src/core/libraries/rollup/",
"@ensdomains/=lib/liquidity-launcher/lib/v4-core/node_modules/@ensdomains/",
"@openzeppelin-latest/=lib/liquidity-launcher/lib/openzeppelin-contracts/",
"@openzeppelin-upgrades-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"@openzeppelin-upgrades/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable/",
"@openzeppelin-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"@optimism/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/",
"@solady/=lib/liquidity-launcher/lib/solady/",
"@test/=lib/l1-contracts/test/",
"@uniswap/v4-core/=lib/liquidity-launcher/lib/v4-core/",
"@uniswap/v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"@zkpassport-test/=lib/l1-contracts/lib/circuits/src/solidity/test/",
"btt/=lib/liquidity-launcher/lib/continuous-clearing-auction/test/btt/",
"circuits/=lib/circuits/src/",
"continuous-clearing-auction/=lib/liquidity-launcher/lib/continuous-clearing-auction/",
"ds-test/=lib/predicate-contracts/lib/forge-std/lib/ds-test/src/",
"eigenlayer-contracts/=lib/predicate-contracts/lib/eigenlayer-contracts/",
"eigenlayer-middleware/=lib/predicate-contracts/lib/eigenlayer-middleware/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-gas-snapshot/=lib/liquidity-launcher/lib/continuous-clearing-auction/lib/forge-gas-snapshot/src/",
"halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
"hardhat/=lib/liquidity-launcher/lib/v4-core/node_modules/hardhat/",
"kontrol-cheatcodes/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/kontrol-cheatcodes/src/",
"l1-contracts/=lib/l1-contracts/src/",
"lib-keccak/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/lib-keccak/contracts/",
"liquidity-launcher/=lib/liquidity-launcher/",
"merkle-distributor/=lib/liquidity-launcher/lib/merkle-distributor/",
"openzeppelin-contracts-4.7/=lib/liquidity-launcher/lib/openzeppelin-contracts-4.7/",
"openzeppelin-contracts-upgradeable-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/",
"openzeppelin-contracts-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/",
"openzeppelin-contracts-v4.9.0/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-v4.9.0/",
"openzeppelin-contracts-v5/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/openzeppelin-contracts-v5/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"openzeppelin-foundry-upgrades/=lib/predicate-contracts/lib/openzeppelin-foundry-upgrades/src/",
"openzeppelin-upgradeable/=lib/predicate-contracts/lib/openzeppelin-contracts-upgradeable/contracts/",
"openzeppelin/=lib/predicate-contracts/lib/eigenlayer-contracts/lib/openzeppelin-contracts-upgradeable-v4.9.0/contracts/",
"optimism/=lib/liquidity-launcher/lib/optimism/",
"permit2/=lib/liquidity-launcher/lib/permit2/",
"predicate-contracts/=lib/predicate-contracts/src/",
"safe-contracts/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/safe-contracts/contracts/",
"solady-v0.0.245/=lib/liquidity-launcher/lib/optimism/packages/contracts-bedrock/lib/solady-v0.0.245/src/",
"solady/=lib/liquidity-launcher/lib/solady/src/",
"solmate/=lib/predicate-contracts/lib/solmate/src/",
"splits-contracts-monorepo/=lib/splits-contracts-monorepo/",
"teegeeee/=lib/teegeeee/src/",
"utils/=lib/predicate-contracts/lib/utils/",
"v4-core/=lib/liquidity-launcher/lib/v4-core/src/",
"v4-periphery/=lib/liquidity-launcher/lib/v4-periphery/",
"zkpassport-packages/=lib/zkpassport-packages/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "prague",
"viaIR": false
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"_tokenSaleAddress","type":"address"},{"internalType":"address[]","name":"_identityProviders","type":"address[]"},{"internalType":"bytes32","name":"_genesisSequencerMerkleRoot","type":"bytes32"},{"internalType":"bytes32","name":"_contributorMerkleRoot","type":"bytes32"},{"internalType":"address","name":"_addressScreeningProvider","type":"address"},{"internalType":"string","name":"_uri","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC1155InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC1155InvalidApprover","type":"error"},{"inputs":[{"internalType":"uint256","name":"idsLength","type":"uint256"},{"internalType":"uint256","name":"valuesLength","type":"uint256"}],"name":"ERC1155InvalidArrayLength","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC1155InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC1155InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC1155InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC1155MissingApprovalForAll","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__AlreadyMinted","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__CallerIsNotTokenSale","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__GridTileAlreadyAssigned","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__GridTileIdCannotBeZero","type":"error"},{"inputs":[{"internalType":"address","name":"_authProvider","type":"address"}],"name":"IgnitionParticipantSoulbound__InvalidAuth","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__InvalidInputLength","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__MerkleProofInvalid","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__NoMerkleRootSet","type":"error"},{"inputs":[],"name":"IgnitionParticipantSoulbound__TokenIsSoulbound","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"provider","type":"address"}],"name":"AddressScreeningProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"newRoot","type":"bytes32"}],"name":"ContributorMerkleRootUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"newRoot","type":"bytes32"}],"name":"GenesisSequencerMerkleRootUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"provider","type":"address"},{"indexed":false,"internalType":"bool","name":"active","type":"bool"}],"name":"IdentityProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"_beneficiary","type":"address"},{"indexed":true,"internalType":"address","name":"_operator","type":"address"},{"indexed":true,"internalType":"enum IIgnitionParticipantSoulbound.TokenId","name":"_tokenId","type":"uint8"},{"indexed":false,"internalType":"uint256","name":"_gridTileId","type":"uint256"}],"name":"IgnitionParticipantSoulboundMinted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"tokenSaleAddress","type":"address"}],"name":"TokenSaleAddressSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"values","type":"uint256[]"}],"name":"TransferBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"id","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"TransferSingle","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"value","type":"string"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"URI","type":"event"},{"inputs":[],"name":"addressScreeningProvider","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_to","type":"address[]"},{"internalType":"enum IIgnitionParticipantSoulbound.TokenId[]","name":"_tokenId","type":"uint8[]"},{"internalType":"uint256[]","name":"_gridTileId","type":"uint256[]"}],"name":"adminBatchMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"enum IIgnitionParticipantSoulbound.TokenId","name":"_tokenId","type":"uint8"},{"internalType":"uint256","name":"_gridTileId","type":"uint256"}],"name":"adminMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"}],"name":"balanceOfBatch","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contributorMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"genesisSequencerMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"soulboundRecipient","type":"address"}],"name":"gridTileId","outputs":[{"internalType":"uint256","name":"gridTileId","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasAnyToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasContributorToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasGeneralToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasGenesisSequencerToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_addr","type":"address"}],"name":"hasGenesisSequencerTokenOrContributorToken","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"addr","type":"address"}],"name":"hasMinted","outputs":[{"internalType":"bool","name":"hasMinted","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"provider","type":"address"}],"name":"identityProviders","outputs":[{"internalType":"bool","name":"active","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"gridTileId","type":"uint256"}],"name":"isGridTileIdAssigned","outputs":[{"internalType":"bool","name":"isAssigned","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IIgnitionParticipantSoulbound.TokenId","name":"_tokenId","type":"uint8"},{"internalType":"address","name":"_soulboundRecipient","type":"address"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"},{"internalType":"address","name":"_identityProvider","type":"address"},{"internalType":"bytes","name":"_identityData","type":"bytes"},{"internalType":"bytes","name":"_soulboundRecipientScreeningData","type":"bytes"},{"internalType":"uint256","name":"_gridTileId","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_operator","type":"address"},{"internalType":"address","name":"_soulboundRecipient","type":"address"},{"internalType":"bytes32[]","name":"_merkleProof","type":"bytes32[]"},{"internalType":"address","name":"_identityProvider","type":"address"},{"internalType":"bytes","name":"_identityData","type":"bytes"},{"internalType":"bytes","name":"_soulboundRecipientScreeningData","type":"bytes"},{"internalType":"uint256","name":"_gridTileId","type":"uint256"}],"name":"mintFromSale","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256[]","name":"ids","type":"uint256[]"},{"internalType":"uint256[]","name":"values","type":"uint256[]"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeBatchTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_provider","type":"address"}],"name":"setAddressScreeningProvider","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"bool","name":"","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_contributorMerkleRoot","type":"bytes32"}],"name":"setContributorMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_genesisSequencerMerkleRoot","type":"bytes32"}],"name":"setGenesisSequencerMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_provider","type":"address"},{"internalType":"bool","name":"_active","type":"bool"}],"name":"setIdentityProvider","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_tokenSaleAddress","type":"address"}],"name":"setTokenSaleAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenSaleAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"uri","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]Contract Creation Code
608060405234801561000f575f5ffd5b5060405161275e38038061275e83398101604081905261002e91610359565b33816100398161022e565b506001600160a01b03811661006757604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100708161023e565b506001600455600c80546001600160a01b0319166001600160a01b0388161790555f5b855181101561016157600160075f8884815181106100b3576100b3610467565b60200260200101516001600160a01b03166001600160a01b031681526020019081526020015f205f6101000a81548160ff0219169083151502179055507f4722b6080c33312153c492f4fe1a991e55e4ce10d8ab0a98f0b6457fa521cdf386828151811061012357610123610467565b602002602001015160016040516101519291906001600160a01b039290921682521515602082015260400190565b60405180910390a1600101610093565b50600880546001600160a01b0319166001600160a01b0384169081179091556040519081527f8c2f68cc47d5a76e3532d701aff037a3d7864663392be08ce9d24ee59e8508089060200160405180910390a160058490556040518481527f5b38306bccf4835883087505aee87f0cec1cc814fd53aab1903a3338b106f4389060200160405180910390a160068390556040518381527f6763d43e89476d0e6fe3417fe368c1959f70c60e1bcbc6d5a0df7e5f0a22e3959060200160405180910390a15050505050506105b9565b600261023a82826104ff565b5050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b80516001600160a01b03811681146102a5575f5ffd5b919050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b03811182821017156102e6576102e66102aa565b604052919050565b5f82601f8301126102fd575f5ffd5b81516001600160401b03811115610316576103166102aa565b610329601f8201601f19166020016102be565b81815284602083860101111561033d575f5ffd5b8160208501602083015e5f918101602001919091529392505050565b5f5f5f5f5f5f60c0878903121561036e575f5ffd5b6103778761028f565b60208801519096506001600160401b03811115610392575f5ffd5b8701601f810189136103a2575f5ffd5b80516001600160401b038111156103bb576103bb6102aa565b8060051b6103cb602082016102be565b9182526020818401810192908101908c8411156103e6575f5ffd5b6020850194505b8385101561040f576103fe8561028f565b8252602094850194909101906103ed565b60408c015160608d0151919a509850965061043393505060808a01915061028f9050565b60a08801519092506001600160401b0381111561044e575f5ffd5b61045a89828a016102ee565b9150509295509295509295565b634e487b7160e01b5f52603260045260245ffd5b600181811c9082168061048f57607f821691505b6020821081036104ad57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156104fa57805f5260205f20601f840160051c810160208510156104d85750805b601f840160051c820191505b818110156104f7575f81556001016104e4565b50505b505050565b81516001600160401b03811115610518576105186102aa565b61052c81610526845461047b565b846104b3565b6020601f82116001811461055e575f83156105475750848201515b5f19600385901b1c1916600184901b1784556104f7565b5f84815260208120601f198516915b8281101561058d578785015182556020948501946001909201910161056d565b50848210156105aa57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b612198806105c65f395ff3fe608060405234801561000f575f5ffd5b50600436106101f1575f3560e01c80637950058911610114578063bcb9f86c116100a9578063e76c668811610079578063e76c668814610478578063e985e9c51461048b578063ecfca83a1461049e578063f242432a146104b1578063f2fde38b146104c4575f5ffd5b8063bcb9f86c1461042c578063c66f04d01461043f578063ceda666f14610452578063e605f39414610465575f5ffd5b80638da5cb5b116100e45780638da5cb5b146103d3578063929b2e8b146103e4578063a22cb465146103f7578063b2ee1e8f1461040a575f5ffd5b80637950058914610391578063796b0af6146103a457806381a3d0d0146103ad57806383eab624146103c0575f5ffd5b80632d95460c1161018a5780634e1273f41161015a5780634e1273f4146103435780635afe5207146103635780635fcc946514610376578063715018a614610389575f5ffd5b80632d95460c146102f25780632eb2c2d61461030557806338e21cce146103185780634dd8085a1461033a575f5ffd5b80630e89341c116101c55780630e89341c146102665780631448b3ca1461028657806319fe9970146102b15780632b7776f0146102d3575f5ffd5b8062fdd58e146101f557806301ffc9a71461021b578063036e4c5c1461023e5780630dd8454414610253575b5f5ffd5b6102086102033660046118a2565b6104d7565b6040519081526020015b60405180910390f35b61022e6102293660046118df565b6104fe565b6040519015158152602001610212565b61025161024c36600461197e565b61054d565b005b610251610261366004611a65565b6105a9565b610279610274366004611a9f565b6105d3565b6040516102129190611ae4565b600c54610299906001600160a01b031681565b6040516001600160a01b039091168152602001610212565b61022e6102bf366004611a9f565b600b6020525f908152604090205460ff1681565b6102086102e1366004611af6565b600a6020525f908152604090205481565b610251610300366004611b0f565b610665565b610251610313366004611ce6565b610749565b61022e610326366004611af6565b60096020525f908152604090205460ff1681565b61020860055481565b610356610351366004611d92565b6107ad565b6040516102129190611e8d565b610251610371366004611af6565b610877565b61022e610384366004611af6565b6108d4565b6102516108fa565b61022e61039f366004611af6565b61090d565b61020860065481565b600854610299906001600160a01b031681565b6102516103ce366004611af6565b61091a565b6003546001600160a01b0316610299565b6102516103f2366004611a9f565b610970565b610251610405366004611eac565b6109ad565b61022e610418366004611af6565b60076020525f908152604090205460ff1681565b61022e61043a366004611af6565b6109c6565b61022e61044d366004611af6565b6109d3565b610251610460366004611a9f565b610a06565b61022e610473366004611af6565b610a43565b610251610486366004611ee1565b610a4f565b61022e610499366004611f03565b610a6a565b6102516104ac366004611eac565b610a97565b6102516104bf366004611f34565b610b01565b6102516104d2366004611af6565b610b60565b5f818152602081815260408083206001600160a01b03861684529091529020545b92915050565b5f6001600160e01b03198216636cdb3d1360e11b148061052e57506001600160e01b031982166303a24d0760e21b145b806104f857506301ffc9a760e01b6001600160e01b03198316146104f8565b610555610b9d565b600c546001600160a01b03163314610580576040516350d2853360e11b815260040160405180910390fd5b6105938a5f8b8b8b8b8b8b8b8b8b610bc7565b61059d6001600455565b50505050505050505050565b6105b1611086565b6105b9610b9d565b6105c48383836110b3565b6105ce6001600455565b505050565b6060600280546105e290611f87565b80601f016020809104026020016040519081016040528092919081815260200182805461060e90611f87565b80156106595780601f1061063057610100808354040283529160200191610659565b820191905f5260205f20905b81548152906001019060200180831161063c57829003601f168201915b50505050509050919050565b61066d611086565b610675610b9d565b84831461069557604051630b94f95160e41b815260040160405180910390fd5b8481146106b557604051630b94f95160e41b815260040160405180910390fd5b5f5b858110156107365761072e8787838181106106d4576106d4611fbf565b90506020020160208101906106e99190611af6565b8686848181106106fb576106fb611fbf565b90506020020160208101906107109190611fd3565b85858581811061072257610722611fbf565b905060200201356110b3565b6001016106b7565b506107416001600455565b505050505050565b336001600160a01b038616811480159061076a57506107688682610a6a565b155b156107a05760405163711bec9160e11b81526001600160a01b038083166004830152871660248201526044015b60405180910390fd5b61074186868686866111cc565b606081518351146107de5781518351604051635b05999160e01b815260048101929092526024820152604401610797565b5f83516001600160401b038111156107f8576107f8611bab565b604051908082528060200260200182016040528015610821578160200160208202803683370190505b5090505f5b845181101561086f5760208082028601015161084a906020808402870101516104d7565b82828151811061085c5761085c611fbf565b6020908102919091010152600101610826565b509392505050565b61087f611086565b600c80546001600160a01b0319166001600160a01b0383169081179091556040519081527fa212c6db6e22cafeb534243c976e6fdb8781e6a0d67d21082244a342c450164d906020015b60405180910390a150565b5f806108e083826104d7565b11806104f857505f6108f38360016104d7565b1192915050565b610902611086565b61090b5f611231565b565b5f806108f38360016104d7565b610922611086565b600880546001600160a01b0319166001600160a01b0383169081179091556040519081527f8c2f68cc47d5a76e3532d701aff037a3d7864663392be08ce9d24ee59e850808906020016108c9565b610978611086565b60068190556040518181527f6763d43e89476d0e6fe3417fe368c1959f70c60e1bcbc6d5a0df7e5f0a22e395906020016108c9565b604051634c8a651160e11b815260040160405180910390fd5b5f806108f38360026104d7565b5f806109df83826104d7565b11806109f457505f6109f28360016104d7565b115b806104f857505f6108f38360026104d7565b610a0e611086565b60058190556040518181527f5b38306bccf4835883087505aee87f0cec1cc814fd53aab1903a3338b106f438906020016108c9565b5f806108f383826104d7565b610a57610b9d565b610593338b8b8b8b8b8b8b8b8b8b610bc7565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205460ff1690565b610a9f611086565b6001600160a01b0382165f81815260076020908152604091829020805460ff19168515159081179091558251938452908301527f4722b6080c33312153c492f4fe1a991e55e4ce10d8ab0a98f0b6457fa521cdf3910160405180910390a15050565b336001600160a01b0386168114801590610b225750610b208682610a6a565b155b15610b535760405163711bec9160e11b81526001600160a01b03808316600483015287166024820152604401610797565b6107418686868686611282565b610b68611086565b6001600160a01b038116610b9157604051631e4fbdf760e01b81525f6004820152602401610797565b610b9a81611231565b50565b600260045403610bc057604051633ee5aeb560e01b815260040160405180910390fd5b6002600455565b6001600160a01b038b165f9081526009602052604090205460ff1615610c0057604051636000a9ab60e01b815260040160405180910390fd5b6001600160a01b038b165f908152600960205260408120805460ff19166001179055819003610c4257604051633b2eefeb60e11b815260040160405180910390fd5b5f818152600b602052604090205460ff1615610c7157604051631e72049b60e01b815260040160405180910390fd5b5f818152600b60209081526040808320805460ff191660011790556001600160a01b03808d168452600a8352818420859055891683526007909152902054869060ff16610cdd57604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b505f8a6002811115610cf157610cf1611fec565b03610dc457600554610d1657604051632b1bd04d60e21b815260040160405180910390fd5b604080516001600160a01b038d1660208201525f910160408051601f1981840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050610da18989808060200260200160405190810160405280939291908181526020018383602002808284375f9201919091525050600554915084905061130e565b610dbe5760405163ccc42ef560e01b815260040160405180910390fd5b50610ea7565b60018a6002811115610dd857610dd8611fec565b03610ea757600654610dfd57604051632b1bd04d60e21b815260040160405180910390fd5b604080516001600160a01b038d1660208201525f910160408051601f1981840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050610e888989808060200260200160405190810160405280939291908181526020018383602002808284375f9201919091525050600654915084905061130e565b610ea55760405163ccc42ef560e01b815260040160405180910390fd5b505b604051631290746b60e21b81526001600160a01b03871690634a41d1ac90610ed7908e9089908990600401612000565b6020604051808303815f875af1158015610ef3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f17919061203f565b8690610f4257604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b50600854604051631290746b60e21b81526001600160a01b0390911690634a41d1ac90610f77908c9087908790600401612000565b6020604051808303815f875af1158015610f93573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fb7919061203f565b6008546001600160a01b031690610fed57604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b5061101a898b600281111561100457611004611fec565b600160405180602001604052805f815250611323565b89600281111561102c5761102c611fec565b8b6001600160a01b03168a6001600160a01b03167fa931d07fbe89d0417ccce536c43b692694705d1d3662b35549d4dc6043f183908460405161107191815260200190565b60405180910390a45050505050505050505050565b6003546001600160a01b0316331461090b5760405163118cdaa760e01b8152336004820152602401610797565b6001600160a01b0383165f9081526009602052604090205460ff16156110ec57604051636000a9ab60e01b815260040160405180910390fd5b6001600160a01b0383165f908152600960209081526040808320805460ff19166001179055600a8252808320849055838352600b90915290205460ff161561114757604051631e72049b60e01b815260040160405180910390fd5b5f818152600b60205260409020805460ff191660011790556111758383600281111561100457611004611fec565b81600281111561118757611187611fec565b60405182815233906001600160a01b038616907fa931d07fbe89d0417ccce536c43b692694705d1d3662b35549d4dc6043f183909060200160405180910390a4505050565b6001600160a01b0384166111f557604051632bfa23e760e11b81525f6004820152602401610797565b6001600160a01b03851661121d57604051626a0d4560e21b81525f6004820152602401610797565b61122a858585858561137a565b5050505050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0384166112ab57604051632bfa23e760e11b81525f6004820152602401610797565b6001600160a01b0385166112d357604051626a0d4560e21b81525f6004820152602401610797565b60408051600180825260208201869052818301908152606082018590526080820190925290611305878784848761137a565b50505050505050565b5f8261131a85846113cd565b14949350505050565b6001600160a01b03841661134c57604051632bfa23e760e11b81525f6004820152602401610797565b604080516001808252602082018690528183019081526060820185905260808201909252906107415f878484875b61138685858585611407565b6001600160a01b0384161561122a57825133906001036113bf57602084810151908401516113b8838989858589611441565b5050610741565b610741818787878787611562565b5f81815b845181101561086f576113fd828683815181106113f0576113f0611fbf565b6020026020010151611649565b91506001016113d1565b6001600160a01b0384161561142f57604051634c8a651160e11b815260040160405180910390fd5b61143b84848484611678565b50505050565b6001600160a01b0384163b156107415760405163f23a6e6160e01b81526001600160a01b0385169063f23a6e6190611485908990899088908890889060040161205a565b6020604051808303815f875af19250505080156114bf575060408051601f3d908101601f191682019092526114bc9181019061209e565b60015b611526573d8080156114ec576040519150601f19603f3d011682016040523d82523d5f602084013e6114f1565b606091505b5080515f0361151e57604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b805181602001fd5b6001600160e01b0319811663f23a6e6160e01b1461130557604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b6001600160a01b0384163b156107415760405163bc197c8160e01b81526001600160a01b0385169063bc197c81906115a690899089908890889088906004016120b9565b6020604051808303815f875af19250505080156115e0575060408051601f3d908101601f191682019092526115dd9181019061209e565b60015b61160d573d8080156114ec576040519150601f19603f3d011682016040523d82523d5f602084013e6114f1565b6001600160e01b0319811663bc197c8160e01b1461130557604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b5f818310611663575f828152602084905260409020611671565b5f8381526020839052604090205b9392505050565b80518251146116a75781518151604051635b05999160e01b815260048101929092526024820152604401610797565b335f5b83518110156117a9576020818102858101820151908501909101516001600160a01b0388161561175b575f828152602081815260408083206001600160a01b038c16845290915290205481811015611735576040516303dee4c560e01b81526001600160a01b038a166004820152602481018290526044810183905260648101849052608401610797565b5f838152602081815260408083206001600160a01b038d16845290915290209082900390555b6001600160a01b0387161561179f575f828152602081815260408083206001600160a01b038b16845290915281208054839290611799908490612116565b90915550505b50506001016116aa565b5082516001036118295760208301515f906020840151909150856001600160a01b0316876001600160a01b0316846001600160a01b03167fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62858560405161181a929190918252602082015260400190565b60405180910390a4505061122a565b836001600160a01b0316856001600160a01b0316826001600160a01b03167f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb8686604051611878929190612135565b60405180910390a45050505050565b80356001600160a01b038116811461189d575f5ffd5b919050565b5f5f604083850312156118b3575f5ffd5b6118bc83611887565b946020939093013593505050565b6001600160e01b031981168114610b9a575f5ffd5b5f602082840312156118ef575f5ffd5b8135611671816118ca565b5f5f83601f84011261190a575f5ffd5b5081356001600160401b03811115611920575f5ffd5b6020830191508360208260051b850101111561193a575f5ffd5b9250929050565b5f5f83601f840112611951575f5ffd5b5081356001600160401b03811115611967575f5ffd5b60208301915083602082850101111561193a575f5ffd5b5f5f5f5f5f5f5f5f5f5f60e08b8d031215611997575f5ffd5b6119a08b611887565b99506119ae60208c01611887565b985060408b01356001600160401b038111156119c8575f5ffd5b6119d48d828e016118fa565b90995097506119e7905060608c01611887565b955060808b01356001600160401b03811115611a01575f5ffd5b611a0d8d828e01611941565b90965094505060a08b01356001600160401b03811115611a2b575f5ffd5b611a378d828e01611941565b9b9e9a9d50989b979a96999598949794969560c090950135949350505050565b80356003811061189d575f5ffd5b5f5f5f60608486031215611a77575f5ffd5b611a8084611887565b9250611a8e60208501611a57565b929592945050506040919091013590565b5f60208284031215611aaf575f5ffd5b5035919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6116716020830184611ab6565b5f60208284031215611b06575f5ffd5b61167182611887565b5f5f5f5f5f5f60608789031215611b24575f5ffd5b86356001600160401b03811115611b39575f5ffd5b611b4589828a016118fa565b90975095505060208701356001600160401b03811115611b63575f5ffd5b611b6f89828a016118fa565b90955093505060408701356001600160401b03811115611b8d575f5ffd5b611b9989828a016118fa565b979a9699509497509295939492505050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b0381118282101715611be757611be7611bab565b604052919050565b5f6001600160401b03821115611c0757611c07611bab565b5060051b60200190565b5f82601f830112611c20575f5ffd5b8135611c33611c2e82611bef565b611bbf565b8082825260208201915060208360051b860101925085831115611c54575f5ffd5b602085015b83811015611c71578035835260209283019201611c59565b5095945050505050565b5f82601f830112611c8a575f5ffd5b81356001600160401b03811115611ca357611ca3611bab565b611cb6601f8201601f1916602001611bbf565b818152846020838601011115611cca575f5ffd5b816020850160208301375f918101602001919091529392505050565b5f5f5f5f5f60a08688031215611cfa575f5ffd5b611d0386611887565b9450611d1160208701611887565b935060408601356001600160401b03811115611d2b575f5ffd5b611d3788828901611c11565b93505060608601356001600160401b03811115611d52575f5ffd5b611d5e88828901611c11565b92505060808601356001600160401b03811115611d79575f5ffd5b611d8588828901611c7b565b9150509295509295909350565b5f5f60408385031215611da3575f5ffd5b82356001600160401b03811115611db8575f5ffd5b8301601f81018513611dc8575f5ffd5b8035611dd6611c2e82611bef565b8082825260208201915060208360051b850101925087831115611df7575f5ffd5b6020840193505b82841015611e2057611e0f84611887565b825260209384019390910190611dfe565b945050505060208301356001600160401b03811115611e3d575f5ffd5b611e4985828601611c11565b9150509250929050565b5f8151808452602084019350602083015f5b82811015611e83578151865260209586019590910190600101611e65565b5093949350505050565b602081525f6116716020830184611e53565b8015158114610b9a575f5ffd5b5f5f60408385031215611ebd575f5ffd5b611ec683611887565b91506020830135611ed681611e9f565b809150509250929050565b5f5f5f5f5f5f5f5f5f5f60e08b8d031215611efa575f5ffd5b6119a08b611a57565b5f5f60408385031215611f14575f5ffd5b611f1d83611887565b9150611f2b60208401611887565b90509250929050565b5f5f5f5f5f60a08688031215611f48575f5ffd5b611f5186611887565b9450611f5f60208701611887565b9350604086013592506060860135915060808601356001600160401b03811115611d79575f5ffd5b600181811c90821680611f9b57607f821691505b602082108103611fb957634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52603260045260245ffd5b5f60208284031215611fe3575f5ffd5b61167182611a57565b634e487b7160e01b5f52602160045260245ffd5b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f6020828403121561204f575f5ffd5b815161167181611e9f565b6001600160a01b03868116825285166020820152604081018490526060810183905260a0608082018190525f9061209390830184611ab6565b979650505050505050565b5f602082840312156120ae575f5ffd5b8151611671816118ca565b6001600160a01b0386811682528516602082015260a0604082018190525f906120e490830186611e53565b82810360608401526120f68186611e53565b9050828103608084015261210a8185611ab6565b98975050505050505050565b808201808211156104f857634e487b7160e01b5f52601160045260245ffd5b604081525f6121476040830185611e53565b82810360208401526121598185611e53565b9594505050505056fea2646970667358221220e3fb48cd83eba12f0312e71f36fea2fe194430dfd7fe5b4a0ae84ac6dcf1b22b64736f6c634300081e0033000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c08b874f488695850c2a75fc4819776861e597b010c7f86eb209f60a3070b5862ae151ee61d1d4b3fc00a2b7dd7ce64cdc679dea0d21096a574e97c27aa707136f0000000000000000000000004ea4bbc070f7b117f264fcba503b4eaadd2f1e59000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000000020000000000000000000000009d67e84b24104648cbd2597c8acf5aeef7d7df890000000000000000000000005f2ca7dbe47068996933e5dcc8654814526803000000000000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x608060405234801561000f575f5ffd5b50600436106101f1575f3560e01c80637950058911610114578063bcb9f86c116100a9578063e76c668811610079578063e76c668814610478578063e985e9c51461048b578063ecfca83a1461049e578063f242432a146104b1578063f2fde38b146104c4575f5ffd5b8063bcb9f86c1461042c578063c66f04d01461043f578063ceda666f14610452578063e605f39414610465575f5ffd5b80638da5cb5b116100e45780638da5cb5b146103d3578063929b2e8b146103e4578063a22cb465146103f7578063b2ee1e8f1461040a575f5ffd5b80637950058914610391578063796b0af6146103a457806381a3d0d0146103ad57806383eab624146103c0575f5ffd5b80632d95460c1161018a5780634e1273f41161015a5780634e1273f4146103435780635afe5207146103635780635fcc946514610376578063715018a614610389575f5ffd5b80632d95460c146102f25780632eb2c2d61461030557806338e21cce146103185780634dd8085a1461033a575f5ffd5b80630e89341c116101c55780630e89341c146102665780631448b3ca1461028657806319fe9970146102b15780632b7776f0146102d3575f5ffd5b8062fdd58e146101f557806301ffc9a71461021b578063036e4c5c1461023e5780630dd8454414610253575b5f5ffd5b6102086102033660046118a2565b6104d7565b6040519081526020015b60405180910390f35b61022e6102293660046118df565b6104fe565b6040519015158152602001610212565b61025161024c36600461197e565b61054d565b005b610251610261366004611a65565b6105a9565b610279610274366004611a9f565b6105d3565b6040516102129190611ae4565b600c54610299906001600160a01b031681565b6040516001600160a01b039091168152602001610212565b61022e6102bf366004611a9f565b600b6020525f908152604090205460ff1681565b6102086102e1366004611af6565b600a6020525f908152604090205481565b610251610300366004611b0f565b610665565b610251610313366004611ce6565b610749565b61022e610326366004611af6565b60096020525f908152604090205460ff1681565b61020860055481565b610356610351366004611d92565b6107ad565b6040516102129190611e8d565b610251610371366004611af6565b610877565b61022e610384366004611af6565b6108d4565b6102516108fa565b61022e61039f366004611af6565b61090d565b61020860065481565b600854610299906001600160a01b031681565b6102516103ce366004611af6565b61091a565b6003546001600160a01b0316610299565b6102516103f2366004611a9f565b610970565b610251610405366004611eac565b6109ad565b61022e610418366004611af6565b60076020525f908152604090205460ff1681565b61022e61043a366004611af6565b6109c6565b61022e61044d366004611af6565b6109d3565b610251610460366004611a9f565b610a06565b61022e610473366004611af6565b610a43565b610251610486366004611ee1565b610a4f565b61022e610499366004611f03565b610a6a565b6102516104ac366004611eac565b610a97565b6102516104bf366004611f34565b610b01565b6102516104d2366004611af6565b610b60565b5f818152602081815260408083206001600160a01b03861684529091529020545b92915050565b5f6001600160e01b03198216636cdb3d1360e11b148061052e57506001600160e01b031982166303a24d0760e21b145b806104f857506301ffc9a760e01b6001600160e01b03198316146104f8565b610555610b9d565b600c546001600160a01b03163314610580576040516350d2853360e11b815260040160405180910390fd5b6105938a5f8b8b8b8b8b8b8b8b8b610bc7565b61059d6001600455565b50505050505050505050565b6105b1611086565b6105b9610b9d565b6105c48383836110b3565b6105ce6001600455565b505050565b6060600280546105e290611f87565b80601f016020809104026020016040519081016040528092919081815260200182805461060e90611f87565b80156106595780601f1061063057610100808354040283529160200191610659565b820191905f5260205f20905b81548152906001019060200180831161063c57829003601f168201915b50505050509050919050565b61066d611086565b610675610b9d565b84831461069557604051630b94f95160e41b815260040160405180910390fd5b8481146106b557604051630b94f95160e41b815260040160405180910390fd5b5f5b858110156107365761072e8787838181106106d4576106d4611fbf565b90506020020160208101906106e99190611af6565b8686848181106106fb576106fb611fbf565b90506020020160208101906107109190611fd3565b85858581811061072257610722611fbf565b905060200201356110b3565b6001016106b7565b506107416001600455565b505050505050565b336001600160a01b038616811480159061076a57506107688682610a6a565b155b156107a05760405163711bec9160e11b81526001600160a01b038083166004830152871660248201526044015b60405180910390fd5b61074186868686866111cc565b606081518351146107de5781518351604051635b05999160e01b815260048101929092526024820152604401610797565b5f83516001600160401b038111156107f8576107f8611bab565b604051908082528060200260200182016040528015610821578160200160208202803683370190505b5090505f5b845181101561086f5760208082028601015161084a906020808402870101516104d7565b82828151811061085c5761085c611fbf565b6020908102919091010152600101610826565b509392505050565b61087f611086565b600c80546001600160a01b0319166001600160a01b0383169081179091556040519081527fa212c6db6e22cafeb534243c976e6fdb8781e6a0d67d21082244a342c450164d906020015b60405180910390a150565b5f806108e083826104d7565b11806104f857505f6108f38360016104d7565b1192915050565b610902611086565b61090b5f611231565b565b5f806108f38360016104d7565b610922611086565b600880546001600160a01b0319166001600160a01b0383169081179091556040519081527f8c2f68cc47d5a76e3532d701aff037a3d7864663392be08ce9d24ee59e850808906020016108c9565b610978611086565b60068190556040518181527f6763d43e89476d0e6fe3417fe368c1959f70c60e1bcbc6d5a0df7e5f0a22e395906020016108c9565b604051634c8a651160e11b815260040160405180910390fd5b5f806108f38360026104d7565b5f806109df83826104d7565b11806109f457505f6109f28360016104d7565b115b806104f857505f6108f38360026104d7565b610a0e611086565b60058190556040518181527f5b38306bccf4835883087505aee87f0cec1cc814fd53aab1903a3338b106f438906020016108c9565b5f806108f383826104d7565b610a57610b9d565b610593338b8b8b8b8b8b8b8b8b8b610bc7565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205460ff1690565b610a9f611086565b6001600160a01b0382165f81815260076020908152604091829020805460ff19168515159081179091558251938452908301527f4722b6080c33312153c492f4fe1a991e55e4ce10d8ab0a98f0b6457fa521cdf3910160405180910390a15050565b336001600160a01b0386168114801590610b225750610b208682610a6a565b155b15610b535760405163711bec9160e11b81526001600160a01b03808316600483015287166024820152604401610797565b6107418686868686611282565b610b68611086565b6001600160a01b038116610b9157604051631e4fbdf760e01b81525f6004820152602401610797565b610b9a81611231565b50565b600260045403610bc057604051633ee5aeb560e01b815260040160405180910390fd5b6002600455565b6001600160a01b038b165f9081526009602052604090205460ff1615610c0057604051636000a9ab60e01b815260040160405180910390fd5b6001600160a01b038b165f908152600960205260408120805460ff19166001179055819003610c4257604051633b2eefeb60e11b815260040160405180910390fd5b5f818152600b602052604090205460ff1615610c7157604051631e72049b60e01b815260040160405180910390fd5b5f818152600b60209081526040808320805460ff191660011790556001600160a01b03808d168452600a8352818420859055891683526007909152902054869060ff16610cdd57604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b505f8a6002811115610cf157610cf1611fec565b03610dc457600554610d1657604051632b1bd04d60e21b815260040160405180910390fd5b604080516001600160a01b038d1660208201525f910160408051601f1981840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050610da18989808060200260200160405190810160405280939291908181526020018383602002808284375f9201919091525050600554915084905061130e565b610dbe5760405163ccc42ef560e01b815260040160405180910390fd5b50610ea7565b60018a6002811115610dd857610dd8611fec565b03610ea757600654610dfd57604051632b1bd04d60e21b815260040160405180910390fd5b604080516001600160a01b038d1660208201525f910160408051601f1981840301815282825280516020918201209083015201604051602081830303815290604052805190602001209050610e888989808060200260200160405190810160405280939291908181526020018383602002808284375f9201919091525050600654915084905061130e565b610ea55760405163ccc42ef560e01b815260040160405180910390fd5b505b604051631290746b60e21b81526001600160a01b03871690634a41d1ac90610ed7908e9089908990600401612000565b6020604051808303815f875af1158015610ef3573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f17919061203f565b8690610f4257604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b50600854604051631290746b60e21b81526001600160a01b0390911690634a41d1ac90610f77908c9087908790600401612000565b6020604051808303815f875af1158015610f93573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fb7919061203f565b6008546001600160a01b031690610fed57604051632779b33160e01b81526001600160a01b039091166004820152602401610797565b5061101a898b600281111561100457611004611fec565b600160405180602001604052805f815250611323565b89600281111561102c5761102c611fec565b8b6001600160a01b03168a6001600160a01b03167fa931d07fbe89d0417ccce536c43b692694705d1d3662b35549d4dc6043f183908460405161107191815260200190565b60405180910390a45050505050505050505050565b6003546001600160a01b0316331461090b5760405163118cdaa760e01b8152336004820152602401610797565b6001600160a01b0383165f9081526009602052604090205460ff16156110ec57604051636000a9ab60e01b815260040160405180910390fd5b6001600160a01b0383165f908152600960209081526040808320805460ff19166001179055600a8252808320849055838352600b90915290205460ff161561114757604051631e72049b60e01b815260040160405180910390fd5b5f818152600b60205260409020805460ff191660011790556111758383600281111561100457611004611fec565b81600281111561118757611187611fec565b60405182815233906001600160a01b038616907fa931d07fbe89d0417ccce536c43b692694705d1d3662b35549d4dc6043f183909060200160405180910390a4505050565b6001600160a01b0384166111f557604051632bfa23e760e11b81525f6004820152602401610797565b6001600160a01b03851661121d57604051626a0d4560e21b81525f6004820152602401610797565b61122a858585858561137a565b5050505050565b600380546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0384166112ab57604051632bfa23e760e11b81525f6004820152602401610797565b6001600160a01b0385166112d357604051626a0d4560e21b81525f6004820152602401610797565b60408051600180825260208201869052818301908152606082018590526080820190925290611305878784848761137a565b50505050505050565b5f8261131a85846113cd565b14949350505050565b6001600160a01b03841661134c57604051632bfa23e760e11b81525f6004820152602401610797565b604080516001808252602082018690528183019081526060820185905260808201909252906107415f878484875b61138685858585611407565b6001600160a01b0384161561122a57825133906001036113bf57602084810151908401516113b8838989858589611441565b5050610741565b610741818787878787611562565b5f81815b845181101561086f576113fd828683815181106113f0576113f0611fbf565b6020026020010151611649565b91506001016113d1565b6001600160a01b0384161561142f57604051634c8a651160e11b815260040160405180910390fd5b61143b84848484611678565b50505050565b6001600160a01b0384163b156107415760405163f23a6e6160e01b81526001600160a01b0385169063f23a6e6190611485908990899088908890889060040161205a565b6020604051808303815f875af19250505080156114bf575060408051601f3d908101601f191682019092526114bc9181019061209e565b60015b611526573d8080156114ec576040519150601f19603f3d011682016040523d82523d5f602084013e6114f1565b606091505b5080515f0361151e57604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b805181602001fd5b6001600160e01b0319811663f23a6e6160e01b1461130557604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b6001600160a01b0384163b156107415760405163bc197c8160e01b81526001600160a01b0385169063bc197c81906115a690899089908890889088906004016120b9565b6020604051808303815f875af19250505080156115e0575060408051601f3d908101601f191682019092526115dd9181019061209e565b60015b61160d573d8080156114ec576040519150601f19603f3d011682016040523d82523d5f602084013e6114f1565b6001600160e01b0319811663bc197c8160e01b1461130557604051632bfa23e760e11b81526001600160a01b0386166004820152602401610797565b5f818310611663575f828152602084905260409020611671565b5f8381526020839052604090205b9392505050565b80518251146116a75781518151604051635b05999160e01b815260048101929092526024820152604401610797565b335f5b83518110156117a9576020818102858101820151908501909101516001600160a01b0388161561175b575f828152602081815260408083206001600160a01b038c16845290915290205481811015611735576040516303dee4c560e01b81526001600160a01b038a166004820152602481018290526044810183905260648101849052608401610797565b5f838152602081815260408083206001600160a01b038d16845290915290209082900390555b6001600160a01b0387161561179f575f828152602081815260408083206001600160a01b038b16845290915281208054839290611799908490612116565b90915550505b50506001016116aa565b5082516001036118295760208301515f906020840151909150856001600160a01b0316876001600160a01b0316846001600160a01b03167fc3d58168c5ae7397731d063d5bbf3d657854427343f4c083240f7aacaa2d0f62858560405161181a929190918252602082015260400190565b60405180910390a4505061122a565b836001600160a01b0316856001600160a01b0316826001600160a01b03167f4a39dc06d4c0dbc64b70af90fd698a233a518aa5d07e595d983b8c0526c8f7fb8686604051611878929190612135565b60405180910390a45050505050565b80356001600160a01b038116811461189d575f5ffd5b919050565b5f5f604083850312156118b3575f5ffd5b6118bc83611887565b946020939093013593505050565b6001600160e01b031981168114610b9a575f5ffd5b5f602082840312156118ef575f5ffd5b8135611671816118ca565b5f5f83601f84011261190a575f5ffd5b5081356001600160401b03811115611920575f5ffd5b6020830191508360208260051b850101111561193a575f5ffd5b9250929050565b5f5f83601f840112611951575f5ffd5b5081356001600160401b03811115611967575f5ffd5b60208301915083602082850101111561193a575f5ffd5b5f5f5f5f5f5f5f5f5f5f60e08b8d031215611997575f5ffd5b6119a08b611887565b99506119ae60208c01611887565b985060408b01356001600160401b038111156119c8575f5ffd5b6119d48d828e016118fa565b90995097506119e7905060608c01611887565b955060808b01356001600160401b03811115611a01575f5ffd5b611a0d8d828e01611941565b90965094505060a08b01356001600160401b03811115611a2b575f5ffd5b611a378d828e01611941565b9b9e9a9d50989b979a96999598949794969560c090950135949350505050565b80356003811061189d575f5ffd5b5f5f5f60608486031215611a77575f5ffd5b611a8084611887565b9250611a8e60208501611a57565b929592945050506040919091013590565b5f60208284031215611aaf575f5ffd5b5035919050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f6116716020830184611ab6565b5f60208284031215611b06575f5ffd5b61167182611887565b5f5f5f5f5f5f60608789031215611b24575f5ffd5b86356001600160401b03811115611b39575f5ffd5b611b4589828a016118fa565b90975095505060208701356001600160401b03811115611b63575f5ffd5b611b6f89828a016118fa565b90955093505060408701356001600160401b03811115611b8d575f5ffd5b611b9989828a016118fa565b979a9699509497509295939492505050565b634e487b7160e01b5f52604160045260245ffd5b604051601f8201601f191681016001600160401b0381118282101715611be757611be7611bab565b604052919050565b5f6001600160401b03821115611c0757611c07611bab565b5060051b60200190565b5f82601f830112611c20575f5ffd5b8135611c33611c2e82611bef565b611bbf565b8082825260208201915060208360051b860101925085831115611c54575f5ffd5b602085015b83811015611c71578035835260209283019201611c59565b5095945050505050565b5f82601f830112611c8a575f5ffd5b81356001600160401b03811115611ca357611ca3611bab565b611cb6601f8201601f1916602001611bbf565b818152846020838601011115611cca575f5ffd5b816020850160208301375f918101602001919091529392505050565b5f5f5f5f5f60a08688031215611cfa575f5ffd5b611d0386611887565b9450611d1160208701611887565b935060408601356001600160401b03811115611d2b575f5ffd5b611d3788828901611c11565b93505060608601356001600160401b03811115611d52575f5ffd5b611d5e88828901611c11565b92505060808601356001600160401b03811115611d79575f5ffd5b611d8588828901611c7b565b9150509295509295909350565b5f5f60408385031215611da3575f5ffd5b82356001600160401b03811115611db8575f5ffd5b8301601f81018513611dc8575f5ffd5b8035611dd6611c2e82611bef565b8082825260208201915060208360051b850101925087831115611df7575f5ffd5b6020840193505b82841015611e2057611e0f84611887565b825260209384019390910190611dfe565b945050505060208301356001600160401b03811115611e3d575f5ffd5b611e4985828601611c11565b9150509250929050565b5f8151808452602084019350602083015f5b82811015611e83578151865260209586019590910190600101611e65565b5093949350505050565b602081525f6116716020830184611e53565b8015158114610b9a575f5ffd5b5f5f60408385031215611ebd575f5ffd5b611ec683611887565b91506020830135611ed681611e9f565b809150509250929050565b5f5f5f5f5f5f5f5f5f5f60e08b8d031215611efa575f5ffd5b6119a08b611a57565b5f5f60408385031215611f14575f5ffd5b611f1d83611887565b9150611f2b60208401611887565b90509250929050565b5f5f5f5f5f60a08688031215611f48575f5ffd5b611f5186611887565b9450611f5f60208701611887565b9350604086013592506060860135915060808601356001600160401b03811115611d79575f5ffd5b600181811c90821680611f9b57607f821691505b602082108103611fb957634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52603260045260245ffd5b5f60208284031215611fe3575f5ffd5b61167182611a57565b634e487b7160e01b5f52602160045260245ffd5b6001600160a01b03841681526040602082018190528101829052818360608301375f818301606090810191909152601f909201601f1916010192915050565b5f6020828403121561204f575f5ffd5b815161167181611e9f565b6001600160a01b03868116825285166020820152604081018490526060810183905260a0608082018190525f9061209390830184611ab6565b979650505050505050565b5f602082840312156120ae575f5ffd5b8151611671816118ca565b6001600160a01b0386811682528516602082015260a0604082018190525f906120e490830186611e53565b82810360608401526120f68186611e53565b9050828103608084015261210a8185611ab6565b98975050505050505050565b808201808211156104f857634e487b7160e01b5f52601160045260245ffd5b604081525f6121476040830185611e53565b82810360208401526121598185611e53565b9594505050505056fea2646970667358221220e3fb48cd83eba12f0312e71f36fea2fe194430dfd7fe5b4a0ae84ac6dcf1b22b64736f6c634300081e0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c08b874f488695850c2a75fc4819776861e597b010c7f86eb209f60a3070b5862ae151ee61d1d4b3fc00a2b7dd7ce64cdc679dea0d21096a574e97c27aa707136f0000000000000000000000004ea4bbc070f7b117f264fcba503b4eaadd2f1e59000000000000000000000000000000000000000000000000000000000000012000000000000000000000000000000000000000000000000000000000000000020000000000000000000000009d67e84b24104648cbd2597c8acf5aeef7d7df890000000000000000000000005f2ca7dbe47068996933e5dcc8654814526803000000000000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _tokenSaleAddress (address): 0x0000000000000000000000000000000000000000
Arg [1] : _identityProviders (address[]): 0x9D67e84B24104648cBd2597C8acF5aeeF7d7DF89,0x5F2ca7dbe47068996933e5dCc865481452680300
Arg [2] : _genesisSequencerMerkleRoot (bytes32): 0x8b874f488695850c2a75fc4819776861e597b010c7f86eb209f60a3070b5862a
Arg [3] : _contributorMerkleRoot (bytes32): 0xe151ee61d1d4b3fc00a2b7dd7ce64cdc679dea0d21096a574e97c27aa707136f
Arg [4] : _addressScreeningProvider (address): 0x4eA4BBC070f7b117f264fcba503b4eaadd2F1E59
Arg [5] : _uri (string):
-----Encoded View---------------
10 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [1] : 00000000000000000000000000000000000000000000000000000000000000c0
Arg [2] : 8b874f488695850c2a75fc4819776861e597b010c7f86eb209f60a3070b5862a
Arg [3] : e151ee61d1d4b3fc00a2b7dd7ce64cdc679dea0d21096a574e97c27aa707136f
Arg [4] : 0000000000000000000000004ea4bbc070f7b117f264fcba503b4eaadd2f1e59
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000120
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [7] : 0000000000000000000000009d67e84b24104648cbd2597c8acf5aeef7d7df89
Arg [8] : 0000000000000000000000005f2ca7dbe47068996933e5dcc865481452680300
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 36 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|---|---|---|---|---|
| BASE | 100.00% | $3,154.62 | 0.0004 | $1.26 |
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.